W! i l WWI“ ‘~ "W8 .5 \ x I h b. 1 ,‘f': '. {Nu-«f «.13 13“:- 3:: ‘ ffifiagg I“ x '5. : ."\ a .'s ..\:.‘\\.5 WP figs, \ a 9.. o: s' .. .; § o‘LE‘su- ‘o":£~.u\ U 0 a“. c u.- ; Acts .3 .1}? 23".; “f ‘0 ’h ‘ Q - b -I ‘-I t ' . .1 no . . ..'——";..\:"...‘\.\'.‘.s.-". '.s... - . “ '. ~ 9 1 : '2; 9: ‘. . f‘ '; r t: ‘ " \ - - - .. ". 3 ‘~ .: I I a'- u n— a“.:"~l-‘B. o. ‘:'o.': \- f. g c a ‘33"3~ r \ x “a B a ‘9 ‘l- s . a a: 5 IL,- '4» p Q. “.N. 2‘: no . l 8% & IHHHHIHHIIHHMHHHMINWHl\|\l\|1|lH|HHi| 3 1293 01704 PLACE IN RETURN BOX to remove this checkout from your record. TO AVOID FINES return on or before date due. DATE DUE DATE DUE DATE DUE use mus-m4 DIFFEACTION OF ELECTROMAGNETLC WAVQS AT MICROWAVE FREQUENClfifi. By Fr. Jules A. goucher. if r‘ A THESIS “ ‘\ Submitted to the College of Science and Arts of Michigan State University of Agriculture and Applied Science in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE. Department of Physics. 4.956- \3\ “\ \ V \J\ \.,2 ‘ \ RECONNAISSANCE. Je desire, dés maintenant, exprimer toute mon appreciation pour l'aide precieuse et les suggestions innombrables que le Professeur C.D.Hause a bien voulu me fournir tout au long de ce travail. De mEme, l'intérat des autres membres de la faculté n'a pas 9M4» o I ete sans porter encouragement. TABLES OF CONTENTS. pages I) ' INTRODUCTION . . . . . . . . . .I II) OUTLINE OF THEORY . . . . . . . . .3 III) PRODUCTION OF A PLANE WAVE AT MICROWAVE FREQUENCIES.8 A) The generator . . . . . . . . .8 B) The reflector with its feed . . . . .10 C) The detector . . . . . . . . .lh D) ‘Wave field at 520 and 550 cm. from the reflectonlh E) wavelength in paraffin and index of refraction 16 IV) DIFFRACTION OF A PLANE WAVE BY.A SLIT WITH CONDUCTIVE JAWS . . .19 A) The slit aperture . . . . . . . .19 B) In the plane of the slit . . . . . .19 0) Near the slit: at 2.5 and 5.0 wavelengths . .25 V) PHASE SHIFTS INTRODUCED BY PARAFFIN. . . . .33 A) With a slit width of 2 wavelengths . . . .37 B) With a slit width of 3 wavelengths . . . .37 VI) CONCLUSION AND SUGGESTIONS . . . . . . .38 -1- INTRODUCTION. The problem of diffraction of electromagnetic waves has attracted the interest of many investigators of all types, from the theoretician to the experimentalist. Until recent years, the work was confined almost entirely to optical frequencies and apertures, and observation distances large in comparison to the wave length. The greatest difficulties were then of two kinds: 1) The irreducible gap between the ideal case, which can be treated theoretically, and the physical situation. 2) The absence of electromagnetic waves of suitable wavelength. The available waves were either too short or too long to permit a practical study of all aspects of diffraction. But now that we can produce microwaves, the second difficulty disappears. The problem we are left with is the realization of experiments as close as possible to the ideal case. Our purpose then is to observe and explain semi- quantitatively several diffraction patterns of 12. cm. microwaves produced by slit apertures. The observations are made in the neighborhood of the apertures, at distances not exceeding several wavelengths. A qualitative explanation of the observed patterns is obtained by using Thomas Young's method of interpretation. The patterns are represented as being formed by the interference of the direct wave and secondary waves which arise at the edges of the apertures. -2- A more quantitative account is obtained by comparing our data with that expected from the exact treatement by Sonmerfeld C1) of the diffraction by an infinite half-plane. Application of this theory to our problem is only partially valid and discrepancies are expected. OUTLINE OF THEORY. Our interest in this field was excited by an article in "TheIPhysical Review" Qi),'where C.L. Andrews studies quite extensively the diffraction of Llcm. microwaves by a circular aperture. That work presents the patterns in the H—plane as well as in the E-plane, thus stressing the differences. Andrews does not extend his observations to the geometrical shadow, and being three-dimensional, the quantitative interpretation of his readings is made more complicated and the qualitative interpretation is not helped. 'We will limit ourselves to a two-dimensional study, and, at the same time, we will observe only in the H—plane. However, the high degree of polarization shown by our apparatus would provide facilities also for good readings in the E-plane. We will indicate later the small differences due to the absence of a third dimension. . Andrews himself, in a later paper (3), does not hesitate in pointing out that "in the plane of the aperture, ..., Young's theory yields the experimentally observed positions of maxima and,ninina". In this work, we will also attempt to account for maxima and minima even in the geometrical shadow. Another investigator, Houston ('4), successfully detected a "turn up" effect near the edge of a diffracting aperture, indicating the correctness of the predictions of electromagnetic theory. -h- Houston was using a long wavelength (50 cm.), and the patterns are similar in general to those obtained by Andrews. We are unable to detect close edge effects in our readings for two reasons: a) We are using a shorter wavelength. The detector is relatively large in comparison to the wavelength, approximately 0.DK. b) The edges of the apertures are not thin and knife- like, which is the primary condition to get those effects. The problem of diffraction of a plane wave by a conducting half-plane has been solved by Sommerfeld. The disturbed 'field takes on three different forms, each having its own equation: \‘ Sewage, \. a ‘\ \ \ a -F'an€h fifdje' / / ‘\‘ ’ ‘8 ‘\ / Figure :1 In the region number I, called the reflection region, |lslel14l~ III III luall ' II! I I I l { l‘lllcllll‘lllll -5- we can represent the disturbed field by the equation: U150. : CosEKr cod(§°’fo)] "'2 MLKT’ (#0 (T‘ffo)] T' Z where the first term on the right is the incident plane wave, and the next term is the reflected plane wave. In the region number II, called the unshadowed region, we can represent the disturbed field by the equation: UEW :. Cos£Kmm(5p~fl)] + Z In the region number III, called the shadow region, we can represent the disturbed field by the equation: a 1 In all these equations, the term 2 is a cylindrical wave arising at the edge, and K is the propagation constant if . It can be shown that the cylindrical wave arising at the edge undergoes a phase change of 180°, when the angle 7- 700 goes from 7-%9. 0.75 3r;~” ’5' 20 a 5' Jo I. figure 7 ~35' ~30 a a ..e. . q . ... O. 9.. .e. v ..ee o... e a o .AQVio .... lento 9.! e e one v... .... .. .o.. 0. . . . .... 1.1.r'ee. u... . .-.. . . ,. e .. I... .. . .... .... e . .. e ..e. e... .. .V. e e a ... ... .. ... ... . . ... .. c... .e.. o... wwvu...4 . . . .. .- ... . . .. . e .. . e e. e ..e. ..t. e. 0e )AHeTQ . ... .... A'.e ..- eon .e 1:. .. .. . e-.. .... . It ...! . .1. . . .. e. o.$ .... .... .... . v A .Y..ee veto 00 be elve O 0 e.. .... .... .V.lA). .. I... .. ... .. .A.b.. .... .‘cc.v9||. 1 ev.... e . e ... .« .eA . In ..ee .40. a . .n ’eee e.e. .tiee e .6 a e .v QIeAAQeeer .7. 0.. .e . . .. .... ..eoveelvie... .qqrefide’e y .... . . . . ... e. ... ...vrueo. 9.. . o .. e ...e .... .v .0 . e . ... e. . ....e ..|.,¢.e .. . . . ... . o. . .... .... .... .... . ..e. . w. v . ... .. ..v ...- ee.v. .... . o e. we.el ... eels. . I . e .v. e..e¢4.907 .eei‘tuo .. 1 . .tveuu . . . a.lo ... o... ....l A r . 4a . o e pe . O o . ... .u ..4 ... VeeeYivae . . ee .i Oweeer...e .0 e. n e e . .06 Wet. es: eAGVIee .e .1. .~ ... .... one ... ... on.. e ..-fi. . a . . e.v A. ... ...e e... v... . a .. e e..e e... e. e. . .0 e . .0. eyes .yp ..nvee. 9. . . o. o a . c... .... run. .... . vz.. . . v . ..v .. .19- ...e .... .... e . e. e a... v... ..lt. VI . . ..o -..e ..A. e.- b..v e. o v .. o. . .... ... .. . ..4. anne ev e . . . ... .. .Aa .... OVOOYOVIe . . we< e 4e.e .eee a. 3A 0 e e . .Q‘v 'e.Oin|AblAY '1eI... 4. . 9‘ .b. v e. . ... .IA. a... 04‘... . > 4 tel? 4 A 4.44 4] ...... a Y. . . ... .. .40 .... 0.0 .... o . ... . o... .... .. n. . . . . .e. 9....v9.0e sue» .... . . .. -.. v .. .... .....xv.... 91.; e u .I . e. e a e l .e ... .oaj ... case r . e. . och: ... u. .. e I . - .ee 0 to does as i... . . . e.. . .0 . ... .. . ...-‘u.e. w..- . . . a... - .0. e... ..e. n...« . .. .0: ...e .. H 6 e . e 4.? e.le...ee ...l... .. . .. . . . ..v. v.v. -ny.§.o.. 0 bet) e o . . 5+. ‘A ... .3.” saw. ee.H a . .e O ..ee 0... v. i. . v . . a.e .....- o... Onion. . . e. . . . ao.v Areril'etvte.enl a. . tl) » rt 1 1+ . ... I o . . ..o . ... 0... ..-.wt... o .. . .... . .I .. .. . . . . . ..oe-e .... 7...... .. . o .. . . .v I . . Q‘WV‘A . .... . . . . ... .. . . .~.. ....xven. . . .. . v... .. . .. . . .. . .. ......... ..t v.. . . . .. . .. . ...r r. u. ! e.t4 . ...» .. ... . .. .....a... . .. v ..eo .. .e .. . . . o ..I.... . ... .01 . e . . o . .. .. r .1.- . .... . . . . .. .. ... . .... ... . . .. olve.e. .. . .a . . . . .. ..o. r... .rvY.A«. .. . . .. H . 9.-. ..-.v [4,-.H-.. 1 1 ha . ...Ol . . . ... .. ... .... .vov .... . . .. .weve. .... .. .. . . ... ...aivae. . . vivv .. . H ‘1‘.. ...!Y‘ Y.41.-. . .... . . . . . .. ... ....w..tq . .. . . . . .... ... .v .. v e . ... ..y. .. . ....lvo. . . . .e- . I... .. ..Y nirflv... L r .. a . n . . .. .. A r. ... . .. . .. .v . . T . . ... .. . .. .... .. . o . . . . ...tlo.. . e... . ... . . . . . .. ... l... ..... . .. .. .. . .. . . .. ... . . ... . ... . .. . . .. .-.r. .u.. ... H.. ... I y . 0.. a. .y Are. ... .. . .. . ... . . .. u. . 1 . t . .... v4- ... .. .. . c . .. v.-.‘~ 09.nv. I ....- . .... . . . ... . ..- . .. . .. . .. . .. . I . . . o . .. .. - .4 d. . a... . ..v , .... V .... . . . n. .. .. ....Y... ... . . .. .... . .. . T . e . . ... .. u. -u v. A . .. .. .... ....v.... tr .0 .v91.. . . » ... .. ... .... ... to. . . . . ... .... .. v. 1.3 . v ... .... ... n Iv.. «- Viv. 0. tr- ox..-) .ov. .... .-.... ..v. . .1. . . . y no. .A ... ... . .... t. e . . .... I. vs 6 r . e . . . . . .... .. . o u. .. Vow . .... .... I 1‘! 9y . .. . . I o . . .. . . . o . a v . . . . . .1. n . v . . e . . e . . . . a 9 . t e e . . e . . . . . . . . u . . u. a O o . Inv . . . , . . . . v . . . .Irl .vl. . v . ...: . ... .. . : .... .... .... . _ .. . .... .... .. .. . . . . ... .... ... ... .4--.:+ . - -r . . .. - -.., . .. -921r1-.- . .... . . . . ... .. ... .... .... a . . .... .... .. . . T o . ... .... .. utvO ‘a O c . . . . ....4.-.. I..rv. 10l . . .. . . . ... .. ... . .... ... .. . .. . .... .. .. . I . V . . .. ... ..rv.. .. . . . v ...v. ..... .o.~fl av. . .. . ... .. ... . .... ...- . .. .‘v... .... . .. . . . . .... .. . ... .-.. .. . .- .- . .. ..H. .. -...w-... d . .... . . . . ... .. ... .... .... .... . . .. . .... .. . .. . . . . _- .... .. . . .... .. . . .. . . .. ..vr,r.... ....+-..an . . .. ....f.... .... . . .. . .... ..-. .v .. . 7 - . ... .. - . .1! . . .. .. +.. ..-:..;O. +y.-. ... . . . ... .. . . ....v..4. e... . . .e . ...v .... .. .. .l1 0 t ..e v... -... v .$.\. ‘v. . . . .. n .. .Y .61 vAArY..o.Hoo . 4 < - . . .. . . . .. ...... .. . . .. ..Irx. .. .. .. . . .....L.... 7..-. . ... . . . ... .. ... c.x. . v .... . . .. . .... .... .u . e .u. .... ...v ..V vol.A.¢ . . .. . .. . wv.. ..-. ... ...- . y. . . . . unstii .VV.... .... .... . .. . .... -vio .. . . .. .a . .v. . . .. . e. . . .. .. . .. . ... c... .. . . ¢Y6... . e . . Oriel.... v.. 1... ...0 v... . . no «fie....l>:.e ... . . o.$ l.-¢ t... e.r or. or-) e I. .. e .. . .... I. .lro--rofl. 4 a d 1 or..ee . . . . .50 e. ... .... .... .... . . .. r e.11v.v.. . o . o..l.c.. .... ... a .e v. . 4 .. . .. . .... u‘nv..‘T.‘.. ....e . ... v . . . . . v. ....-. . .... ... v . .. .xeo.. ..,.. .. . . ... ....vf... .... -. e e .. . . e. o .. v..,i- .... ... o ..e. . . . ... .. ... o... .... ... . .. .\.... ,. . .. . . I.. .... ... ... .... r . .. a .. . ..-Ye...lrvvnxn ... . .... . V v .. ... .... ... .... v . .. . ... .. .. . . .. .... .... . . .. . v . . .. . . ... ..-. ...- ...e a e... . . . ... .. .7- .... .... . . .... .. . .v e . ... .. . ... . . . . .. . . . ....Avc!.i.... ... . ....l . . . t 0. o. .-. .... ...- v r. v n t. . .. . .... n. O . .. . . .-.... .74 .... . .w. e. .. . vn . .Antnvv:nA....r .... 4 o eev. . . . . ... .0 -.. .. . ...1 . .. e . .. . ... .... .. e .. ... .... ... .... .. . e o. .. ove. vvr-vt o .. . . ...... . .... . o . . o.. v. ... . .. . ..r . . wit. . .. . .. . . .. .. ... ,... .A v . .. .. . .. . ..ps ... .... v. . .... . . . .. .3114). ... .-.. ..,. . . . . . ..-. .v . . ... ... ..-. ... ....Y... 6*. .. .. . .. . ..-. .... r. . Y... A e... . . Q oi IYro‘O. e.. ..lTIloI. 99.0.. C . .... T... .. . u .. 903.;AT. .o o... r. ' . . .. . .t . ...6 v..).... ...1 ) d— ‘ .... 7 . . - .-- .. «Y- .-.. . . .. ... . .... :0... . .. .. . .. -.. ...-.w: . . . . .. . . .l ..9 .. ... ...v .. . .... . . . . . .. .... .vnv . ... .... . ... .. . . .. . .. . ...A ..v. .... .9. . ...Z . . . . .. .. ... .. -.... . ... v- . . . . ... . .. . . ...:H.... ...- . .. evroeo o r. . . v.1vel .i. .. .... a... . e .n . ..eo e..a .. u . 1... ..Av ... .e.. .0 a . ..iv. liv~6olerotoxveue 01......o ..... . ... .. . .. ..q; a... . . . . .... .. .. . . . .... .... .... e. . . .. , . .. . ....iv... .A.. .I. ... . . . . .. .. ... . . .... . .. . . . . .... q. .. . 4 . ... .. . .. . .. .. . ... .. . v-.. .. . ... . .. -. .. ... ., . .. ... . . - . .... .. .. . . . . .. . . .. .. .-. .H .. .. .... . . . .ooL . . . ... .. . .. .. . .. . .... .1 . . .. . .- V., . .. ...H .-...r.... .. . ... a . .. . .. r. ... e... . . n. e .00. o... . . .1 . . 9... .. e .. . A e.Yv. . .v ue. Ie.e s.e‘v|A .. . .... . . . . .. . .. .... .... ... . .. . .... . . . . . . . ... .. . . .I . e . V. . . . . .. ....v ... .. .. . . -. .0 ...- ..... . . . . . ... -.. .. . . . . . T. -... n . . . .. . .. .. .. . o . .. o . .. . .. ... ... . . . .. . ... y... LvVole... ... . . . . . . ... .. . .. .. . .. .v . . . . ... . . . . .. e. . .. . ... .... Once e-.- . . . . . . ... . .. . . . . .. . . .. . . . . ...l..v. v.0. .... . . . . .... .. . . . . . .. . . ., . . . ..A.. . . v-.. ...e e... . . . ... .. ... . . . . . . . e .. .. . .9.. ... .. . . .. .. . . .... .... .v.o .... . ‘ ... ... .. .. .... . . .... .. . . .. ... ... . ... . o . .. . e. . .... .... .... ... . . ... . ... ... .. . ... . .. . . . . ... . . .. .... . e .. .. 4 .. .... ..9\ e... .... . . ... .. ... .... ... .... . . .... . . ... .... ..0! a. ,. . . a .. .. . r . ... .... .... .... V 4 . .... . . ... .. .. .. ... ... . . ... 9.. . . . . . .... He.. . . .. . . .. .. 4 .. . ... .... .... ae.. ..... . .. .. . . .. .. .l.... . . . . .. .. ... , .. . .. .. . .. . c. .... ..... ... . . _. .. . . . . .. . . ,. .l.... . . . . .. ... .... ,. .1 . e. . .... .. . .... .... 4 ... ... .. . .... ..., . . . . . . .... .. . . . . .. . . . ., ... .... . . . . . . .. . . . v .. . . . . .. .. . . .... . .. ..-: . .. . .. ... .. . .. . . ._ .0 .. I . ... . ...... . . . . . . . .. .. .. . .. .. . . .e .. . . . ... .. ...).etue . . .. . . . .. ... .. .. .. n e. .. . ... .. .... . . ... . . . . . . .. -.. .... .. .. .. . .. . .... . . .... .... . . . . . .. . .. .. . . .. . ... .... .. .. e. . .. . . .. . c e b . , . . . . .. . .. . .. . . .. .. . e .. .. . ‘40.... .. . . . .. . .. . ... .... .. .. .. . . . .... .. .. o.... . . . .. . . .. _ . . .. . Y. .. .. . . . . . u . .... . ‘... . . . .. . . v, . . .... ... ... .. .. .o . .. .1. .. . . o. .p I r —3 see -16.. E) Wavelength in paraffin and index of refraction of paraffin. To deternine the index of refraction of paraffin at 2b50 Mc., a cylindrical lens of paraffin was constructed, its focal length measured at this frequency and the index deduced. The cylindrical lens was of the piano-convex type. 5. :3. g .- . \o . V '7’ ° Fig. /0 H ”I using equations (1) and (2a), for file“; we obtain I? a! - (3) a? “7" where &= 90'6““ d :- firm a g :703 M -18- Solving for n, the index of refraction at 21.50 Mc. 39:3442’4‘1’01/41_£r=0 and n = 2.28 Kittel (5) lists the index of refraction of paraffin at 25,000 Me. as 2.26 -19- DIFFRACTION OF A PLANE WAVE BY A SLIT WITH CONDUCTIVE JAWS. A) The slit aperture. The ideal here would be an "infinite slit" or rather, two infinite conductive half-planes. The best we could dO'was to set two sheets of thin aluminum alloy in a wooden frame. Each piece was 36 inches high and 6 feet wide. In cases of small widths, this slit would be considered almost infinite. B) In the plane of the slit: In Fig. // , one can see a plot of the intensity distribution accross the aperture of a 2‘} slit, in the plane of the slit. The renarkable features of the pattern are: two naxina at one half of a wavelength from the edge and a nininun in the center. The .intensity at the maximum reads 1.78 if one takes as unity the intensity cxf the undisturbed field. At the mini-um point, the intensity reads 0-3? . The amplitude of these two points are 1.33h and 0.836 respective- ly, unity being again the amplitude of the undisturbed field. Let us find the anplitude at these two points assuming 'fll’ infinite slit and applying Sonnerfeldis Theory. Let us first take t11€3 central point. There the distance from the edge is unity (in units 01‘ A ) and the radiation from each of the edges has an amplitude of J—- " ... .../.... ) .. :in 477' cow/5’" 43.45" " 111' And since these two radiations are in phase and of equal amplitude, their sun will be just twice: ”V: .. ...— ,y{ 77- \Mnt~¥.%bV\« 00°09 rem . Tuwhsakwmfikay . putt-r Ahab \\ nmbzfiaux and) “.3 -21.. And remembering that this amplitude has a phase angle or.%;f with the radiation Iron the source at infinity, 1.0 m the resultant amplitude is 0.75 (compared with the measured 0.836). The difference should not be surprising for the reasons explained in the second section. We feel that the major variation is caused by the interaction of the two edges. Following the same method, one can also get an idea of what the amplitude of the naxina should be. It is to be noticed that here the intensities contributed from the two edges are not equal on account of the different distances of the "sources". The phase angle between these two however remains zero. One can easily figure out that the amplitude of the contribution of the two edges together is 0.519 + 0.181 = 0.5 and that the phase angle of this amplitude with regard to the radiation froathe source at infinity, is 77.731101! the resultant of all three radiations is: -22.. which is an anplitude of l.h (compared with the measured 1.33h) Here, it seens interesting to point out that, in the corresponding experiment with a circular aperture, (instead of a slit) Andrews' mininum intensity is practically zero at a point where, with a slit, it is expected to be around.0}56 . And here again, that is not surprising since the two apertures are essentially different. The jaws of the slit can be opened to any desired width. If the width is three wavelengths, the intensity distribution is that shown in Fig. F? 'We have three maxina instead of two. In the present case, let us note that the central maxima is not quite as high as the two lateral ones. This is to be expected, fbr, one can go through the same calculations as before and predict that the three maxina will have amplitudes of: l.36-—----~-l.2h-—------l.36 and the two central ninima will have amplitudes of: 0078 $078 Our readings for the same cases were: the maxima: 1.26 1.17-—-----l.2 the minima: ‘ 0.82 0.71 (Our'pattern lacks symmetry but this should.not disturb ‘3‘11‘ study). Once more, Andrews' ninima go to much lower values because -2 ) .... CXQLoos .osOOOo ..eE R V emits. rt 3 «a; N <2. 2.6 m3 -2h.. his aperture is essentially different. In general then, for a slit width of an integral number of wavelengths, we should expect an equal number of naxina, the weakest in the center,.the strongest adjacent to the slit edges. -25... C) Diffraction patterns near the slit: Another series of diffraction patterns can be obtained close to the slit. p; i? L5 . .3. 6—4—9"; /’ : 5117 5 y are l“. Plane of- 055$,” Here again we will forget about a third dimension, and the distance we will refer to will be the distance d, the displacenent along the observing plane. ‘We will study three different patterns: two at a distance of 2.5 wavelengths and one at a distance of 5.0 wavelengths. For the first two, the width of the slit is two and three wavelengths. The interesting feature of these different patterns is the portion extending into the geonetrical shadow. As a natter of fact, according to the interpretation we have followed so far, that portion of’the pattern is contributed to by the two cylindrical waves arising at the edges only. .-v‘ ‘ -26— Evidently, a maximum intensity in that region should show up at a point where the two cylindrical waves are in phase. ( A small correction for the distance factor V; is here neglected). One should not forget that in the shadow region, of the two radiations, one is deflected and the other is inflected. 'We can say that when the path difference is a half-integer of a wavelength, the two radiations will be in phase, accounting for the phase angle between an inflected and a deflected wave. In Fig. /3 , we have plotted the intensity distribution at a distance of 2.5 wavelengths, the width of the slit being 2.0 wavelengths. The maximal point in the shadow region arises in the neighborhood of three wavelengths from the central point. As can be checked easily, the difference between path a and path b at that point is very close to 1.5 wavelengths. ....t .. 9 a a...” .... g edaspmemea—t’» 3.0.x- Fljurc ’7 Following the same method, one can verify that at 1 . S wavelength from the central point, where the difference between -27- 9.12m w %\ 0....me 2...: Q‘- -28- path a and path b is just about 1.0 wavelength, we get a low point, in the intensity distribution pattern. -————.- .— Iii/aerate»:- Evidently, that low point is not expected to reach zero, on account of the difference in amplitude between the radiation from A and the radiation from B, their paths being different. So far, intentionally, we have neglected the distance factor V; in the intensity variations. But the influence of that factor is very low in comparison to the phase angle factor and further; more, in some cases, it is within the experimental error. We can mention however that the distance factor might be responsible for the asymmetry of the secondary maxima about their own maximum points. The pattern obtained with a 3 k slit at a distance of 2 .S wavelengths, is a little more complicated for the following reasons: a) The change in path difference being more rapid than in the previous case, we expect more frequent variations, even in the unshadowed region. b) ‘At any point in the unshadowed region we will have -29- to account forthree radiations, each having its own intensity, and phase. c) ‘we do not know the intensity at points close to J21) For all these reasons, we will not attempt to account for the"shoulders" appearing on the intensity pattern, on Fig. a] . But the low point of these "shoulders" seems reasonable if one considers that, for example, at the "shoulder" B, a) The phase angle between the radiation from the source at infinity and the radiation from edge B changes very slowly ‘with regard to the displacement. b) The main factor in the intensity pattern should be the phase angle between the radiation from.edge A and the plane wave. A glance at the next diagram and one sees that, at the low point of the "shoulder", the phase angle is in the neighborhood of 7f. ""‘""‘""' " T...T~‘>“’"‘""" dISp/Ode new 3" /:l:7LI71? 43¢) A similar method shows'that the low point in the Sluadow'region is again due to the phase angle 1T'between the radiation -3 axeserm -31- from A and the one from B. That low point shows up at about 28 cm. from the central point. chap/atom on t We have taken similar readings with a 3} slit at a distance of 5.0 wavelengths, and the pattern is shown in Fig. 9." The same method as previously still accounts nicely for the minimum at 23.5 cm. from the central point V figure 3-: But one should not draw drastic conclusions from this Pattern, because at this distance, the slit loses its: character of "infinite slit" , in height as well as in the, size of the half-planes. -3 2- -33- PHASE SHIFTS INTRODUCED BY PARAFFIN. Up to now, we have considered all our diffraction patterns as interference patterns, the interfering radiations being from three different sources: a source at infinity and a source at each of the two edges A and Ba we have also recognized that the intensity depends upon different factors among which is the phase angle between the radiations. Now, if we cause a phase shift in any of the radiations, by introducing a medium of a different.index of refraction, we should expect changes in the patterns. But this may become much more complicated than desired. In the following, we introduce a first approach to that kind of'work. And, in so doing, we have tried to make it as simple as possible. A "slab" of paraffin\was introduced in the path of two of the radiations. The pattern we should get at a distance of 2.5 ‘wavelengths, will depend.upon many different factors: a) In place of a plane wave coming from.a source at infinity, a part of our new plane wave will have its phase shifted by an angle: at: 2317(44-0‘: where X is the wavelength n is the index of refraction of paraffin for this frequency. t is the thickness of the "slab" [:1 ] "‘""‘"L_.__-- - - .5. g.- L a" w. —v o; - - ..‘b an! —-I.n.‘w-'l * —-.-— .N- i:lgitl7’€1 3b5' I -3L- b) The radiation from A is also shifted by an angle: CXC:: f§512e1-5)£?1e44; tr where S‘is the angle between the radiation and the normal . A C—"'f\ “I figu re 26 ----- 1‘ c) The intensity of those two radiations will be somewhat diminished because of the reflection at the two surfaces of the paraffin "slab" (change of index of refraction). d) Furthermore, there will be a third cylindrical were arising at the edge of the "slab" of paraffin. And, as up to now, we must admit that there is not much we can say about this last radiation. However, the problem is simplified if; t) we stay away for the moment from.the critical point p, 'where there is a phase change. L ’ I /5gure 37 I P b) the reflection at the two surfaces of the "slab"of paraffin is neglected. c) the third cylindrical wave arising at the edge of -35- the "slab" is certainly very weak, in the same way and order as the reflected wave and is neglected. Besides these small corrections then, the new problem looks the same as before except for the phase shifts. In the new pattern, there is one feature we can predict at once: the central maximum that we observed in almost all patterns will be shifted. Indeed, most of the time, in the unshadowed region, a maximum point will show up where the two cylindrical radiations are in phase. Since one of these radiations is now shifted in phase, most of the time one should expect to find a maximum point shifted.from.the center. However, one should not try to predict accurately the place of the maximum unless we are certain of: l) the index of refraction of the introduced medium. 2) the intensity of the transmitted.radiation, through that medium. 3) the 8 factor of the intensity of the radiation. h) the exact thickness of the introduced medium. -36- 5) and something more about the cylindrical wave arising at the edge of the "slab" of paraffin. In Fig.3/ , we have plotted the intensity distribution for two different situations: with and without the "slab" of paraffin. Fig.3’a is for the case cf a 2X slit: 42=e———~—-1).—————-Ea> \ L figure )7 Fig. 3H>is for the case of a 3/\ slit: _ 6 3A 3 #‘ l I figure 30 4 . .0 90¢. vaev ..V.... k..¢i9vv e-efc .ev eoee .... .n..v¢'.e .. . .... . .. .. .. v41... 9... ..A-o 0.90 .v.. . .TVt e».| ..w‘. ......o..g7ex.q. .. ++o.l.... ..v-.l... .... .... A..- « .. .... -..vfi..e. .... ...- .v...ve.. . «cl 1....) a... .Vebewlela‘ ¢O.e“t :0. hate liviv t... .oaleel...\. ...< q... .... v... t... Y... .... .14-: O.f6 o1.c 4.....L.i e... .yravelaoo 4001. Of. .?e‘9 +r|a ovloLoetiivofe. ..«Oi- .. .... .... ...‘olrlccv. .. Viv...tl7. . V..$TT||§\Q‘ . e L.» 4 4. a. 7!. c .e . e .0... .tofi. tee! .Oi’b e09 eve o 9. .0. TO‘eJ Q’OO YIA...‘ -... 1+9. ... . . I. v. fee-x ‘10 YO. ... +1 . 4 ooev ...-0. v .9 vv.. .0... .o.1r'..i. a.aa oe-v 19-. event .... 400 Fox.» Ovvl...o ce.. 0 it v.-. ...w.. c .. ... ..V ...- to.» I .. .... f... .... .... veO‘ o‘ot ..4 o... .... ...; .rA3. ac¢..el.. . .. .... at... c... .... .... a... ..Ot a... ..A.... .....e...v.._e o..9l'f0. so. 9... .-.. ..T. c.-b.¢-¢6|... .... ....v...o..o.¢.... . ...vnvl... a... ...VL .80. . > .r L 4 . . .e o... y..t‘.vv.+..... ...4.l¢lc$$ ...vao.t...14u4..Y...t-Iio*v-ol.... .... .... ...olTvcr. ....ini+v ... ..yalvO-§i . .... at... ..-. ....i ...- Ole. rev ...: .‘Aoilo ..V.ivo.oirv..tiaiw... ..-. .... I... .... .. . i¢.. .... -1IYO.v. .? i. I +... .... lo-.. .... :91. flee .... ...+.Yi¢..6..ottilt to .LQ... .... t... .... . .. ... .......00va.. via ..vflo . otv. ...ly4evv too. a... ... .... .xi? a.9I+ YLIOOI.i QJ’V‘. 0a.. a... 1.0. ...? .... ..J‘Q..00O I’J‘loenviuis -» i -e L _ ' 4|4 ,4 4 .+ 9.... vict- uua. 4+0. 9+§ti.ooa a.-YO.L.‘ 1“ YtrHle“eLQ.‘ o'ev e0. . .. ...a 59.0 ...? L9 one. 99.1.; 000$; YIAL .e a... 6...‘L ...Q. v.4. a5?.1i§~.. ... f... .40 ..r-ol tit. c..o 7... . 9-..! ...Olvc.¢- ......»..¢l....u.6o$}o .o .... T1». .... .a.. ...Olbvt. ... . .. «aafl a1.volo-§. a...n.n .. .vl 1.. c.4b .tt. .1... ?.I|b.co.. ...l .. a... .AIL f... 4". A:v¢i.-.. .. .... v... a... xv... v1.4 7 .. ... ... to . ...v .....Yl.o6.lo.\YoL.-€r.v.vél.6 . .. A... -..V -. . .v.v V... ... .-.liVn.vv9.o¢vv.oc .. v . - .... ....i c... .L- ...1 ll.-- ul.. ‘ .. -..-l .... +0.. .. . .. .... . . .... .... ---. -... .c. .<.. .. ...: -l ..ilflxi... it: . ..f vatli Y a e I .i o n e 0 e c . o v . . v. . t e i . . . . . v n . aw fete. . a a . $.ic . . . . i .. . o .- . . . . y o V II A b . II c . . . . . v. n . ’ . viii. .... 94.9ioa.. -..: .... .... . .. ...IIoo... - .Yi: .... .. ....o ...- ..vtiw .p.|. 91..711¢$.0Ti .. . ..L. Vi .. .91..Y. t...vc:-.o ooioitin. .... ..v ... a..-A Vt. a... .....l.... v.9t1wo. . .... v.-. . ....Oi a“- Puy. -.V. .. .... .... .A.. .....v.-.. .... ... .... ..--.$-.. . . .... ... .. . .. . ..-. ...9.+.A...... .... .. .... .... .... .... .... ..n....ve.1-....-.. .. .... .... .... . .- v..-n...o 6.1. Y-. ..- .A ... .... .... .... :A.. o. . ..v ... .... n...ia... .. ... ...- .... . . .-.. ..yvu?iv.tut|lvv..iivla...‘ .v... K ’ 4 4 < 4 4 .. r... .... .... ..... .... 7... ... .... .... ......y..... . ... ..-. .. . .....v¢ir..i.ieo .... ‘yi\.. \v.. I .. v-.- ..-? -..- ... ...- .u.. ..- .... .... .... ... . . . fay. o .. .... .--: .-....».. ... rt. . ..7..n. ...ii‘I... .... . .w. .... -nYii-§.. .... ...: o.-- .--. . . ... ...... ..- ....A. +v¢. .... .... .iTt 9 oo. .o ...: ...- ..-. .... ...1- .... .Q. ...: . .. .fq. .u.. .... . ... 4V.- .-vtlr....w.+:4i.fivx’.T.... .-dd -04. ...... ...-... .-....- _.... .......-. i.-tr-.. ..E-i.-......-...m .. .... .... . .. .... .....o.9. .... .... .. . .... .I». . . ....u .... .. I.|O.u . . a... ...I-. v... ... 0... ......c .... ....r4... ...-o «1.41 .. «y.-. .o.. .f.¢ .ito .... .... .... ... .016!v-l;...o. y. . .... ...:Y..-’ e .. .... .... ...liee... ...... ct... ... QaQ§ etiilvli... .... i. v .... v-» lieklaxvotlllvootiv‘ . ..L$14.¢ra¢tiuo... .£.II.I .t..... .... ....Q a... .... a... .L. I... ofiitao..4 ....i .. . . .. ..IV alb4T..‘eu ....I y .. .+¢.. ...!lo... a..- .. 49.¢ .... ...olt .41.. ..v..ie.o. ..uwa4e. .9‘..’ t .. .. is... . .v -Vu+ Q.-I .\-4. ...i ..u.» ...Avtovk T§.llur IOIQA .. .... .....vi iao‘1,Y.... 0..4 .«O. ... ‘9.Tr|?.lvlui.... «til- T-:.. .--.Yf.9?.>..ic. .... 6x?.-f1‘?.41 -..O f-.L.-O-A , 4 A .. 9....r+.49 .-...1...O.i..?. ..... ...IT ... ...diffi-d.. .... ...-v.4 -.Ylpoi .«..... .ni+t.t1.‘.¢03i1....i’ A .... 1L. 4.. ...v .0.... ....Ptfivf .uroeoelYO‘.1 to..l 1.. ...-v.y.:-i¢... . .. wVJwvv ..1it103r‘.’uiw..bli . t... I. . .... 5-6.1.0... .... 94'. ii». a... .. iiyva. .... .9...- .... .... I... i... ... .-.... .... o...i.-n.l-eto .. .... .eap efdtie.|e ... ...Veo Ivio... .....\ $00.. ...lelf.‘:t ...o .cvfli-AQA A... x..:1..vvl.biTl-.l 091.. vetlfiriltif } .. +.c.. ......-.. .... .... ...L .0. .... ..-. .... -..: .... . .. 1v-1v.9.. .... -«o:V 0.....74...r....i ....JLILYLI . Y.... 9... a... o... . .. e.f. .0. ..Y. .....A.... wtuv‘ . .- o vv‘19 S... v .. In... a... ...+ .... .-.fll¢1IL .. ... .... ...A ..v. .... ¢iIib ..- e... ..¢.. .-.. 4... .... ... l . .. . ... .... .... .. -..:t «-..; .. .... ...riY..,.o|liao. I... Y4¢9 ..-. ..Jo+.coe f..IT’io. .9...L.t....‘ x1 c.0dL...- ... ..+. ... n ..140 7.... 1 , . . . I .. .... .|.'. .... .... O... .9..- ..7. ....vvvti. .no. .v.4 .‘ .. .... ..o.i F.[ .... ..v. .1.\. 9......el ..xcl .A.. .. ..v... .... 1.... ..raa .... veto... ‘.A4 0... +3.. ....r.YvT v... a... .--vileot. .... w... Y.XT. .-....iro... 9.319ivoL.IL a .. .. ..4. a..v o..¢ . . .9..\ .90 0| . f... .- .i.... .. . ...A .§.vl:... ... ..uv ..vi .... ...v. ..‘viTv\v..A ou.1r..«.. -.te, rvtltvliiwv. ff..- .To'e. .lOolua..6 a¢te 0’5. +..¢ «w... c... .$:.l‘.... ...... Q.e.¢i‘I¢IV.enol....o ? i ' r r 1 . 1 A .p .39.... .0.1 #914: ....9 ..I. 4... v1.. ...- ..vtli 7..'i.... . I.1 ...A ...1 ...-..w.‘ ‘v Y... oiwtlvtftl 1...1-.A-l. $-01 .. .-.. ....TAAI. .-.. .... .... ,.. .... ....L..... .... . c ..n. .... .x A ... ...:--o:.. k... .... ...i .. .... .... .... .... ... .... ... .... ...4 .... a... «0-. . .... ..b.. .v . ....‘Y?v\.'. v-.. o. . .... ;+-1 .. 4o. 1..«YrT.|. .... .... d‘T.. ... ..o. --.......+ 03¢ilTQ--- .... ... ....... . .... .. ..... ..l‘ifll.l a»? t r 1 . ..l?.«. ...91 .. ... .... .... ..Q ... . .............o v... . .. . I ..b. .-.. ii... ......-.. ... ....ii..-e .AY.... . 4a . .. .. . .. . -... .v .... .... ... .. .... . .. 03+- ...- .... 0‘ Yve.,.x a... ...y. .... ...; .va. .0. ntt‘ii‘...a. . .5 u. y. lit. .... ..Olil"v\r at. uttd e 4 : .+l\.... Octti... .. _ ...: .... .eavlvi... .. . .44 ... .... u... b... ..o. . . ...o .ai...o ....i. . .... . .. ...... .. 4... .... .... .... v -. o..1 . It. 7... v -... - e ....6 ..vvfileraie 10. ...‘O b. .. eaevc$fixy‘vvee ‘4.. a . r .e ..... ...: .... .... ...... .. . ... .... ... ...Io .51.. .... .... . v ~VY‘H.oO .... ...a .o.. 0... .... ... ...4 ... ......i.... . . ... . .. ...6 .... ...: .... . .. ... ... .... .... .... . .. . ..v. .11....oao .... ..Yf tn... .. . ...... ...ri..5 ....ilnlo... .... 1 .n1 0... . , at a... a... 0“. any. ll.c use. OD. Aw... wt 1 Vtfiit a... 1.. a... 9 .. ... .... .... .. . ._ .. .... ... . . .. L- . .. . .. p. one. eye. V... ...a . .4 n. V ale 7... .0 .- .. ... . _. ..Va.. 10.! YTvI. .... a... -... ... ..9. .- .... .... .. ..vl..v -... .... .... Owl. .. . ... V-t. .... .1.- v... .... .. - A .. .Tv. ..¢+ .0... A. . .. .....vl . .. ...: -... ..- . .. ..- .v. ..-. .. .... ... . . .. ...... ..p ....i..... .. ... .. .... . .. ,. . . .... . . . . . .. . . . . . ... ....v.... ....i .e .... ... ...- .... . . .- ...n. .. . .- ..... .. -. . .-.. . ...! .... ......$.O|oi ... . i 4 4 .. . .. .. .... , . .... ... .... ... .... .... o . .. . -. . .0... ....Ve..e e... . . . . . . .. ... . .. ... A... .. . .. a .... . . . 4... .... ....n ...I.... - ... . .. . . .... ... I... .. .... . . A . . ..Ya... .... ... .... . ... . . I ... .. V .. ... ..oe .... . . .vc. . . ....A.V.v .... e994l‘sue ‘ y , . 4 .. ... , . .. .... .... .. . . .. ... .. . . .... ...A .. ...- ... ..o. .... .... .... . . . . .... .... .. . ..V.T¢:9.A ... . . . .... a... .e.» . . . ... .0. e... .. . . .>. .. . .. .I.t ... .eab I... ... .... . . I . .... nose ..to o‘b. .oA . -... . ... ...k - .. .. . . . .. .. ... . .... .... ... .... v . .... 109-v.. . . ...‘. ..-. Q... a... .... .. .. ... ...... .... ..... ... . .. .. - ... .......... ... -..........-.i.... .. . .... ... .....a...... 4 ii a . . .. .... a, . ... ... .... ... . ... . .. .. .... ... .. . . .... ... ....io. . ... ... . . ... ... .... .5... 49>.- .. .... .. .. . .... .. . . . .. ... . .... ... .... ...- ... t... . . .. .. . . . . .. .. . .. ....t..e. .. .. . ... . . ... .... A... . . ... .. .... .. . ... .... .. .. .4.. o. .. . . . ... . .. . .. .. ... .o.. a... . .... - . . ... .. . ., . ... ... .. .. ..A .A. .... .. .. . . .A.. ... . . . - .... .. .... .. - ...-A.... . .. .... . .... .. A. . i. . . . ... . .. ._ i .. . .. ...i.... .... . .A. ... .... o.v0 «... .5. . . -. .- . .... 0.. .... .... .... .... ... win. ., . .. .. . .... .... A . ... . . ... . . . . . A ... .. o t... ... .. . .. . ... . . . .. .. a . .. .... .... .... I... .eoni . . .. _ . . . . .. . .. i. . . . .. , . . ... .. .4 .... .. . _ . . .. .oo. . .#. a.». .c.. ..a ....lo.¢. .. .. . . . . .. . . .. - . ... . . .. ..A e. i.... ... ‘ . ... .. : .... s... I. . .... .... .. . Anetta . . .. . .. . . . . A . ... .... . .. . . . . ... . . . . .. .... ... .... .... .... .... .... .... .... .fiobl . . , .. . .0. . . ... . . . . . .... . .. ..4 .. .... ... .... e... .... ....i,... .... .... ...vv.94v.ll.viioeda . a 1 . ._ . . .... ... o . . . . . ... . .. . .......... ...-.... . . ...- .... i.........-.. . . - .. . _. .A. .. . . .. . .... .. .... .. . . .... . . .. c i. . l .. .... ... . .A ..A o. . .... .... .v.. l..cl . .. . . . A . . . . _ ... .... ... , .N ... . .. . .. ... ... .... ... . . . . . .. . .. .--. .... . .. .... V.-- 4‘t0i .. .... .. . . _ . . . ...- ... .. .—. .. .... . . . .. . . ... .. . v... .... ....¥ ...w v . .It. A. . .. . .... ..Q‘ -19. «bale ~38- GONCLUSION AND SUGGESTIONS . An appreciable improvement would show up in the quantitative readings if the slit were wider: 5) or 8)‘ or so. The interaction between the edges would then be considerably reduced. But at the same time, the slit would lose some of its "infinity" in height. A good idea would be to use a shorter wavelength, so that the dimension of the instruments will not become prohibitive. There is still a lot of work to do in the region of 6:0 . In fact, we know that the intensity is not infinite at that point. In our interpretation we assumed a sudden change of phase for the plane wave from the source at infinity: which should give a discontinuity in the intensity distribution at that point unless there is another sudden change of phase of another radiation‘oi‘ equal inten- city, which can only be the cylindrical wave from the edge. #13078 33‘ ‘”-—. Another point of interest would be the study of the different radiations independently. One could then make use of the -39.. very strong polarization of the system and study independently the 77" and 0" cases. A rapid check in the course of our experiment showed that one can use the polarization of the system and "separate" the dif- ferent radiations. The detector used as a probe, ean take three orien- tations: three perpendicular axes. Each orientation will eliminate any radiation propagating along that axis. (1) (2) (5) (4) (5) (6) -ho- REFERENCES. Wolfsohn G. "Strenge theorie der Interferenz und Beugung." Handbuch der Physik. Vol. XX. C.L. Andrews: "Diffraction pattern of a Circular Aperture at Short Distances" in "The Physical Review" Vol. 71 June 1, 19h7, p. 777 C.L. Andrews: "Correction to the treatment of Fresnel Diffraction" in "The American Journal of Physics" Vol. 19, May 1951, p. 280 Robert E. Houston Jr.: "The radiation pattern of circular apertures". A thesis for the degree of “.3. at Michigan State College. Charles Kittel: Introduction to Solid State Physics, p. 110 S. Silver "Microwave Antenna Theory and Design" Radiatidn‘Laboratory L Series. (19h9). s5 HICHIGRN STQTE UNIV LIBRQRIE IILII”I11lllzlllglllNIIIIIWHIWIIIIWIIWIIIIIIIHWI 9301 17040084