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ABSTRACT

 A STOCHASTIC MODEL FOR NEARSHORE COASTAL PROCESSES

By “tag

Louis Allen Orlowski

Quantification of the changes in nearshore topography

 has proven difficult due to rapid. short-tern fluctuations

of bottom features. Structuring topographic transitions

into three states. (1) no significant deflections fro-

unifors slope. (2) positive deflections. and. (3) negative

deflections. and analysing state succession through tine

and space as a Markov chain allows for the description

of the evolution of nearshore coastal features. Data.

from the eastern shore of southern Lake Michigan (Davis

and Fox, 1971) indicate that such an approach is feasible.

Five clusters were defined, within which the topographic

response of the inner nearshore functions as a first order

larkov chain. Associated transition probabilities describe

process function through tine and space within the environ-

ments of the inner nearshore: bar. trough. subaqueous.\

terrace, and swash sons. Good correlation is obtained

between the larkov chain.nodel and eapirical interpretation

of nearshore topographic fluctuations. Stochastic process



Louis Allen Orlowski

aodels can serve as an accurate technique for the

description of coastal processes.
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INTRODUCTION

Fluctuations in bottom topography within the near-

shore sone are rapid and ephemeral. The types and sequences

of topographic transitions are known fron.observationa1

data. Quantification of such empirical data has proven

difficult due to the aforementioned variability and the

multiplicity of causative factors. These.factors. which

are both deterministic and probabilistic in nature. can

invoke sisilar responses in a natural system by any number

of process routes. This has limited the effectiveness of

deterministic modeling of the nearshore environment.)

A stochastic process model can describe these topog-

raphic variations on a probability basis. larkov chains.

a stochastic process. structure the response of the system

as a finite number of states and evaluate the probability

of state succession through tise. By identifying those

areas that have siailar probabilities of topographic

transition. areas as similar process response can be

delineated and investigated.

Such an analysis of the nearshore sone froa.eastern

Lake lichigan has been undertaken for this study. The

topographic data were obtained from a sequence of tine

distance maps ease-bled by Davis and Fox (1971) for the

J

 

 



2

Office of Naval Research. A thirty day tine series study

of the nearshore environment was conducted 2.2 ailes north

of the Black River at Holland. Michigan: Ottawa County.

ISN. R16W. Section 21 (Figure 1). At this locality nine

ranges 100 feet apart were surveyed along the north-south

 
trending shoreline. Along each range. bottom elevation

was aeasured at ten stations at 12.5 foot intervals fro:

50.0 feet. outward to 162.5 feet. Contouring was based

upon a 0.5 1,0.5 foot contour interval and reflected

depth of water or bottoa elevation with respect to stilled

 water level.

Relating topographic variations in the nearshore

zone. at Holland. Michigan. to Markov chains has resulted

in the outlining of five clusters of similar process

response. Analyses of the probabilities of state occur-

rence. up. down. and unifbrn slope. and of the internal

chain structure within these clusters have indicated a

good correlation between the stochastic process model and

the known sequence of events occurring within the near-

shore sone. This study indicates that larkov chains are

an accurate model for the description and simulation of

nearshore processes.



Figure 1 - locality map of study area.
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STOCHASTIC PROCESSES

Natural phenomena can be approximated through model-

ing. Applicable mathematical models can be classed as

deterministic. random. and/or stochastic.

In a deterministic model the state of the system at

any point in time or space can be exactly predicted from

knowledge of the functional relations specified by appli-

cable differential equations. The variability and complexity

of geologic systems and the restriction to sampling of

available populations limits the accurate description of

the true geologic population by deterministic para-eters.

A random model is characterised by the independence

of the state of the system at any point in time or space

from any other point. Preceding events have no effect

upon the present state of the system. Occurrence of a

state is based upon fixsd probabilities determined by

the proportion of occurrence within the sample. That is.

the long term occurrence of a state in the model cannot

exceed that of the initial input data taken from the

natural system. Population estimators are biased and

predictions inaccurate.

Stochastic models. of which larkov chains are a type.

are intermediate between deterministic and random. lost

natural processes are stochastic. exhibiting a predictable

random behavior. That is. deterministic and probabilistic

elements of a process produce a response. the occurrence

of which is random. This random occurrence in stochastic

 

 

 



5

processes is controlled by probabilistic mechanisms which

allow statistically for the complete description of the

phenomena by its probability distribution. A stochastic

model specifies the complete Joint probability distribution

of the observations at each point of time. Viewed as a

continuous development in time. the natural process can

be termed stochastic.

Iathematically. a stochastic process can be described

in the following manner:

Xt. ts T (1)

where

It I a family of random variables.

t I the index time. and

T I the index set of the process. the population.

For each t in the population T. there exists a random

variable It. With the index t taken as time. It denotes

the state of the process at time t. When T is countable.

the process is a discrete-time process. All possible

values of It define the state space of the process. when

It is countable it is a discrete-state process. Thus. a

stochastic process consists of a family of random variables

that describes the evolution through time and space of

some natural process.

A discrete-time. discrete-state larkov chain is the

particular stochastic process investigated in this study.

A larkcv chain is a sequence of states. the order of

occurrence of which is determined by the transition
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probabilities associated with the immediately preceding

state. A process so structured has a.memory relationship

termed first-order. Nathematically. it can be represented

as.

P(xt+1 I j/Xt I i) I P13 (2)

where

P I probability.

i: I the 11th cell in a matrix. Figure 4.

xt+1 I an observation at time t + 1.

It I an observation at time t.

i. J I states of the system. and

P13 I the probability associated with an 1: transition.

That is. the probability that the observation I at time

t + 1 will be equal to the state 1. given that at time t

the observation X is equal to the state i. is the Joint

probability P11. This defines the one-step transition

probabilities. A process satisfying Equation 2 is said

to possess the Markov property. This property indicates

that the order of state succession in the chain is indepen-

dent of the process route prior to the immediately preceding

state.

Observed transitions from a process lacking a first-

order dependence. the larkov property. are stochastically

independent random variables having a memory relationship

termed sero-order. It is represented as.

put“ - j/xt . 1) . 11,1 (3)

where
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P1 I the probability associated with a J transition.

That is. the probability of a transition to the state 1.

at time t e 1. given that the process was in state i. at

time t. is equal to the probability P1. The immediately

preceding state of the system has no influence upon the

present state of the system. so the state transition is

independent. The probability P3 is determined by the

percentage of occurrence of the state 1 in the sample set.
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PROCEDURE

Depths of water or bottom elevation at all station

locations were recorded daily by Davis and Fox (1971)

during the thirty day observation period. These observa-

tions. taken from the time-distance topographic maps

(Figure 2). are the source of all subsequent generated

data.

Subtle. small-scale. topographic variation within the

nearshore zone was objectively detected and classified by

a reference line defined by least squares linear regression

techniques (Draper and Smith. 1966). Use of linear regres-

sion replaces the subjective definition of states from

longshore profiles. Linear regression determines the

functional relationship between two variables. x and f.

in terms of a linear function. where a change in the value

of X is reflected in the response of the variable I. This

relationship allows regression to be used as a predictive

tool of the response of I. over the investigated range of

x. The regression equation is of the following form:

21 - b0 + blxl (‘0

where _

‘1 I the estimated value of ’1 for a given x1.

0 I the Y intercept.

b1 I the regression coefficient or slope factor. and

11 I the given value 11.

The parameters b0 and b1 are estimated by least squares





Figure 2 - Time-distance topographic map of Range B.

reproduced from Davis and Fox (1971).
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which minimizes the sum of squares of deviation from regres-

sion. The regression calculations were performed using

the Stat System Version Three Least Squares Program

(Michigan State University. 1973). A measure of how

accurately the regression predicts the response of Y is

the coefficient of determination. R2. (Draper and Smith.

1966). which determines the proportion of the total vari-

ability in Y associated with the variability in X. With

depth of water the dependent variable I and distance out-

ward from the shore the independent variable x. the reference

line for each range was obtained. to which all other topog-

raphic variations are compared. Data for regression

analyses were chosen from a day during the study period

when the recorded elevations along a range approximated a

uniform slope and the longshore profile was featureless.

The regression equations obtained (Table l) from.these data

mathematically define the negative sloping longshore

profiles (Figure 3). Equations were chosen that give a

high coefficient of determination. a significant F test

in the analysis of variance. a low error mean square or

deviation from regression for the setting of prediction

limits. and a one per cent slope on the regression

coefficimt.

Prediction limits (Sokal and Rohlf. 1969) for a single

other predicted value of bottom elevation were computed to

the reference line. Observations that fall outside of these

limits are statistically significant topographic expressions
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TABLE 1. Regression equations derived for each range.

 

Date of Data Used for

  WW 31811511211

A r - -0.8‘+ + (-.01)x 7/1u/7o

100 Y = ~1.33 + (-.01)x 7/ 7/70

200 Y - -1.33 + (-.01)x 7/ 2/70

300 Y - -1.16 + (-.o1)x 7/ 2/70

s r . -0.87 + (-.01)x 7/ 2/70

500 Y - -1.12 4- (-.01)x 7/1u/7o

600 r . -1.21 + (-.01)x 7/ u/7o

700 r - -1.23 + (-.01)x 7/17/70

0 Y a -1.u6 + (-.01)x 6/30/70

 



Figure 3 - longshore profile along Range B on 7/2/70

3:111 fitted regression line and prediction

t'e
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in all stages of development and magnitude. The functional

relationship defined by X and Y in the regression equation

is employed to predict the outcome of other observations.

The standard error (Sokal and Rohlf. 1969). sy. for a

single predicted value of Y1 based on a given value of X1

is derived in the following manner:

2A 2 -

SyI\Fy.x(l+%+L§l;zfl-) (5)

 

where

82

y o x I the error mean square obtained from the

regression.

Xi I the given values of X. i I 1. "’. n.

1' I the mean of the 1's. and

z x2 I the sum of the squares of the 1's.

With n-2 degrees of freedom. prediction limits (Sokal and

Rohlf. 1969) are computed by the following formula.

P(Y1 - tat s’ 3%,. :21 4- ta: 5),) I 1 -oc (6)

where

ii I the esttmated value of T. for a given Xi.

ta: I the table value from the t distribution.

Vithci I .05 and n92 degrees of freedom.

S I the standard error of a predicted value of

y Yi' for a given x1. and

fl ’1 I the parametric value of Y1.

These limits delineate two hyperbole about the regression

line (Figure 3). The prediction lflmits form an envelope

of acceptance about the one per cent slope. Recorded

values of elevation. from the time-distance topographic

maps. that fall outside of the range of the prediction
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limits represent statistically significant departures from

this slope.

All observations can now be categorized into three

states. (1) no significant deflection from slope (slope).

(2) positive deflections (up). and (3) negative deflections

(down) (Figure I) so that the response of the system to

any process is determined by bottom elevations. So

structured. the nearshore acne can be observed as a

discrete-time. discrete-state stochastic process. The

fsmily of random variables formed by the states and their

order of transition through time describes the evolution

of nearshore coastal features as a Markov chain.

Station locations based on a small interval of

separation were tested for independence of observations

based upon contingency table tests of observed and expected

frequency of state occurrence (Sokal and Rohlf. 1969).

Statistical independence exists if the probability of two

events occurring together is the product of their separate

probabilities. That is.

in - P(X - xi and Y - yj) . P(x - :1) - P(Y - yj) (7)

where

f11 I the obggrved frequency of occurrence in

the 1: cell of the tally matrix.

x. Y I distinct. random variables. and

x1. yJ I the corresponding states for X at i and

T at 3 for all 11.

Contingency tables. based upon this required property of

probabilities. determine if three properties occurring in



Figure I - Form of matrix used to develop tallies and

babilities of state changes. States are

l) slope. where there is no significant

deflection from a unifora 0.01 slope. (2)

up. where deflection is positive. as in a

bar. and (3) down. where deflection is

negative as in a trough.
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two states are independent. Hypotheses of the forms

“0 a the row is independent of the column

classification (Figure h)

H1 3 H0 is not true

are tested from tables of the Chi-square distribution.

The computational formula (Sokal and Rohlf. 1969) is of

the following form:

x2 = 2 (0n - 31112 (8)

Eli

 

where

01: I thghobserved frequency of occurrence in the

ij cell. and

311 I th hexpected frequency of occurrence in the

i1 cell.

Bi: is computed as.

311-111011-1 (9)

nee

where

n11 I the number of observations in the 11th cell.

n1, I r I the column marginal totals.

2 nij

i- 1

no: I c I the row marginal totals. and

z nij

1.- l

n00 I re I the grand total

2 1101,10

1:)

Based upon (r-1)(c-1) degrees of freedom. this is a model

two test in which the n . j marginal totals are fixed.

Initially. 10 by 2 tables (Table 2) for an entire range were

computed to determine if total independence occurred. It
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TABLE 2. 10 by 3 contingency table for testing of total

independence along Range B.

mm IE 29!!!

WWW—.m— mi

50.0 25 21.51 0 3.53 5 4.9” 30

62.5 2“ 21.51 0 3.53 6 4.9# 30

75.0 27 21.51 0 3.53 3 b.9b 30

87.5 25 21.51 3 3.53 2 “.9“ 30_

100.0 26 21.51 3 3.53 l 4.94 30

112.5 18 21.51 12 3.53 O #.9# 36

125.0 18 21.51 12 3.53 0 n.94 30

137.5 25 21.51 4 3.53 l “.94 30

150.0 21 21.51 1 3.53 8 “.90 30

162.5 I 19.36 0 3.18 23 #.#5 27

n1. 213 35 “9 297 no-     
e I observed frequency

e I expected frequency

2

x 005(9)(2)

Izusing Equation 8 I 172.2“57

I 28.869

Reject Ho
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did not. Station location pairs. progressively outward

from the shore. were then compared in 2 by 3 tables

(Table 3). From these tables the areal distribution of

independence was determined (Figure 5). No discernible

patterns are apparent and dependence is not restricted to

any range of stations.

A random variable is a.mathematical entity occurring

from probabilistic mechanisms. just as a systematic

variable occurs from deterministic mechanisms (Ross. 1972).

A random variable is a real valued function defined on a A

probability space such that the probability of sets of

the following form can be defined:

(w/X(w)_<_x) (10)

where

to I an element of a random phenomena. and

x( ) I the set of points at which the value of X

“ does not exceed x.

For every x there is a distribution function of the random

variable x. such that.

”(x)-P(w/X(w):x) (11)

IP(X:X)

where

F is non-decreasing and right continuous.

0 §|PX(X ) 5_1. and

1im rx(x ) I 1.

x-Ho

Topographic transitions. observed as a process

response through time. were tested for the first order
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TABLE 3. 2 by 3 contingency table for testing of

independence between stations 150.0 and

162.5. Range Be

 

 
 

 

.STA:E_ SLOPE~ UP 2:02!n_____1

Statics....c__Ji__JL___._2__n____a___141__J1__sL__..nai.

150.0 21 13.15 1 0.52 8 16.31 30

162.5 a 11.84 0 o.u7 23 1A.63 27

n1. 25 l 31 57 no-

     
o I observed frequency

e I expected frequency

2

x .os(1)<2) ‘ 5'991

2 using Equation 8 I 19.7396 Reject Ho



Figure 5 - Station location map showing independence

of stations.
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Markov chain property. as opposed to a sequence of

stochastically independent. identically distributed.

random variables. Testing is based upon the likelihood

ratio criterion (Anderson and Goodman. 1957) and takes

the following computational form:

-2 logel I 2 (n: r11.1 loge (PM) ) (12)

i3 P.1

where

.1 I the likelihood ratio criterion.

m I the number of states.

ni.1 I the number of observations in the 11th cell

of the probability transition matrix.

P13 I the probability in the ijth cell. and

P.1 I the marginal probability for the 1th column.

The asymptotic distribution of -2 logell is based upon a

Chi-square distribution with (m-l)2 degrees of freedom.

A,map of the study area was obtained that outlines these

stations that possess the Markov property (Figure 6).

Several clusters are apparent. within which the associated

transition probabilities show a first order Markov

property. These clusters appear to delineate areas

subject to similar process. The resulting map is a fixed

distance analysis.

Tests for stationarity in time and space were

conducted on the transition probability matrices within

clusters to substantiate that the Markov properties of

the clustered stations justify grouping. In a stationary



Figure 6 - Location map showing areas occupied by

first order clusters. 1. J. K. 0. N

designate clusters.
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process the transition probabilities are approximately

equal and constant through time or space (Harbaugh and

Bonham-Carter. 1970). In a stationary first-order'Marhov

chain. P11 is the probability of transition from state i

at time t to j at time t + 1. In a nonstationary chain.

probabilities vary in time or space. and P13 (t) becomes

a function of time or space. The hypotheses tested are: 5‘7’

Ho 3 P13 (t) I P1: stationary

H1 1 P11 (t) I Pij nonstationary

Testing of these hypotheses is based upon the likelihood

ratio criterion and is similar in form to that used to

determine the order of the chain.(Equation 12). A station

is designated as the control station. to which all other

 

stations are compared for stationarity. by means of the

following equations T P (t)

I

-2 log. 1 - 2 (z 2 nn(t) 1.3. (gt-a ) (13)
t I 1 i:

where

l . the likelihood ratio criterion.

t I l. ..., T I the number of subintervals.

m I the number of states.

n1j(t) .. the tally matrix in the 13‘” «11 of the

tth subinterval.

P1j(t) - the prob 111 matrix in the 11““ cell

of the t sub nterval. and

P1.1 I the probability matrix in the 13th cell

of the testing location or control station.

This is distributed as a Chi-square with m(mrl)(T-1)
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degrees of freedom. All stations within a cluster were

tested as the control station using Equation 13. All

clusters were found to be stationary with respect to at

least one station within it. This allows for the grouping

together of a number of station locations which possess the

Markov property of a first order chain. One station was

chosen from each cluster to characterise the cluster. This

station functions as the control station in comparison to

which the other stations in the cluster are stationary.

The one step transition probabilities. Pijl I P11.

was introduced in the discussion on.Markov chains. An

n-step transition probability (Ross. 1972). P1j(n). is

defined as the probability that a process in state i will

be in state 1 after h transitions. Mathematically. the

relation is represented as:

P13(n) , P13(t) x Pij(t+l) (1a)

where

P11(n) I the probability matrix after n transitions.

p11“) - the probability matrix at time t. and.

P11(t+1) I the probability matrix at time t+1

In essence the n-step transition.probability'matrix is

obtained by the matrix multiplication of the initial

matrix. Pij(1)' by itself n times. As n.+-I. P1J(n)

converges to a value which is identical for all is all

rows in the matrix are equal. This value. the limiting

probability. is the probability that after n transitions.

the process will be in state 1. independent of the initial
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state. The limiting probability is also equal to the

proportion of the time that the process will occupy state

1. Limiting probability matrices were computed for the

control station for each cluster to obtain the limiting

probability matrix or equilibrium matrix characterising

the cluster. Table fl lists the tally. probability. and

limiting probability matrices for each cluster.

State 3 communicates or is accessible from.state i

if 211‘“) > o. n z, o (Kemeny and Snell. 1960). The

communication is denoted by i‘r+j. Any two states that

communicate are in the same class. The concept of

communication divides the state space. E It. into

separate classes. A finite. irreduciblrfiarkov chain is

composed of one class. For any state i. let f1 denote

the probability that starting in i the process will ever

return to i. State 1 is recurrent if f1 I 1 and transient

if f1<z 1. If recurrent the process will return to state

i infinitely often. if transient there will be a positive

probability. 1 - f1. that the process will never return

to state i. Recurrence and transience are class properties.

If the process returns to state i in finite time. the

state i is positive recurrent. All recurrent states in

a finite state irreducible Markov chain are positive

recurrent. The communication of states and the internal

structure of the chain for the controlling station for

each cluster is evaluated in the separate discussions of

the clusters in the following section.
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TABLE 4. Cluster characteristics for each controlling

station.

Cluster

(See Tally Probability Limiting Probability

L___1Eflzilgg» M31213 IIIHJ£11_______.

s U 01'

I S 6 2 4 .50 .17 .33 .3757 .0852 .5391

U 3 1 0 .75 .25 .00 .3757 .0852 .5391

D 3 0 10 .23 .00 .77 .3757 .0852 .5391

J

Sub 1 6 0 2 .75 .00 .25 .3590 .0000 .6410

O 0 0 .00 .00 .00 .0000 .0000 .0000

3 O 18 .14 .00 .86 .3590 .0000 .6410

Sub 2 h 3 3 .40 .30 .30 .3212 .u3§o .2309

2 7 0 .22 .78 .00 .3212 .4380 .2409

4 O 6 .40 .00 .60 .3212 .4380 .2409

K 11 1 2 .79 .07 .14 .4843 .0696 .4461

1 0 1 .50 .00 .50 .4843 .0696 .4461

2 1 10 .15 .08 .77 .4843 .0696 .4461

0 7 3 .70 .00 .30 .3478 .0000 .6522

0 0 0 .00 .00 .00 .0000 .0000 .0000

3 0 16 .16 .00 .84 .3478 .0000 .6522

N 3 0 .70 .30 .00 .3478 .6522 .0000

3 16 0 .16 .84 .00 .3478 .6522 .0000

0 0 .00 .00 .00 .0000 .0000 .0000    
1. A11 3 by 3 matrices have the indices S. U. D. which

stand for the states slope. up. and down. See text

for explanation.
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DISCUSSION

Davis and Fox (1971) have noted the presence of two

or more distinct bars at approximately 300 and 500 feet

outward from the shoreline. These true sand bars are

fairly continuous. are storm generated. and have an

associated trough on their shoreward side (Figure 7).

The boundary that separates the nearshore sone from the

nearest trough. the inner from the outer nearshore. is the

four foot depth contour line (Figures 2 and 7). and is

approximately 175 feet offshore. Within the inner near-

 
shore sone a shallow bar is usually present approximately

100 feet offshore. This wave generated ephemeral bar is

normally discontinuous. being interrupted by rip channels.

and is ocassionally eroded away completely by storm-

generated waves. There is usually an associated trough-

like structure in front of the ephemeral bar. The trough

sometimes grades off into a subaqueous terrace. The

ephemeral bar form does not migrate in the direction of

littoral drift but seems to oscillate within the 100.0 to

125.0 foot range.

The five defined clusters span the environments of

ephemeral bar and trough development along with the swash

some and the area dropping into the first true trough at

the four feet contour line. Analysis of the internal

chain structure of the controlling station for each cluster

quantifies and supports the observational data on the



Figure 7 - Generalised map of the inner and outer

nearshore some of eastern Lake Michigan.

Ladif'ifid from Davis and Fox (1971). Not

so e.
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behavior of the inner. ephemeral bar and trough structures

within the nearshore zone. It appears that there is a

tendency by the inner bar to develop the equilibrium

configuration that characterises the true. outer bars.

That is. the inner bar tends to develop a continuous bar

structure within the nearshore. However. large amounts

of water congregated into rip channels cut across the bar

form and prevent a continuous bar from forming. The

result is that the bar form oscillates back and forth

within its location range. The large central portion of

the study area (Figure 6) is probably one of these rip

channels. The continuous. rapid deposition and erosion

prevent the topographic fluctuations within this area

from having a significant effect upon each other. hence

they are stochastically independent. random.variables.

These areas that fall into the clusters (Figure 6) are

less likely to fluctuate than the central. rip channel

area. so they are more likely to show continuity of

process through time. An analyses of each cluster.

the environment the cluster spans. and the way in which

the sediment responds in topographic fluctuations. as

described by the chain structure. follows.
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91:13:12.1

Cluster I is situated at the far end of ranges A and

100 (Figure 6) offshore of the area of ephemeral bar

activity and near the slope into the first_true trough.

The chain structure is that of a finite. positive recurrent.

irreducible Markov chain. Within the single class. all

states communicate (Table 4) and all states can succeed

themselves. The only single step transitions not possible

are up - down and the converse. The up/down states

communicate through the state slope. indicating a time

period of approximately one day as a.minimum. to proceed

through the transition. Storm induced topographic

activity is significant in this sons. but the response of

the system is slow. The limiting probability matrix

indicates approximately 54 per cent of process time is

spent in the down state. a reflection of the first true

trough. 38 per cent in slope. and 8 per cent in up. due

to the occasional development of large bars originating

from within the 100.0 to 125.0 foot range. Erosion

appears the dominant factor in this some.

911mm

Cluster J is located along the first three southern

ranges. A. 100. 200. and spans the area of ephemeral

trough and bar development. 0f the eleven included

stations five can function as the control station. with

the majority of these stations falling in the trough

area. Two subclusters which divide the environments. can
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be recognised.

Subclustsr_1

In the trough sons. from 87.5 feet shoreward. the

structure is that of a finite. positive recurrent.

irreducible Markov chain with zero probability of the

occurrence of the state up (Table 4). All other states

communicate. either succeeding themselves or each other.

Erosion is the dominant factor with sediment accumulation

never surpassing uniform slope. Limiting probabilities

indicate approximately 64 per cent of overall time is

spent in the state down. reflecting vigorous trough

activity in front of the ephemeral bars. 36 per cent in

slope. A corollary to this is that bar development in

the adjacent area (Subcluster 2) occurs and the bar can

move lakeward but does not migrate shoreward. Transported

sediment from the crest of the bar into this area is

reflected in the slepe state. but the sediment is removed

by erosion before the bar form can migrate shoreward. This

substantiates and quantifies the empirical observation

that there is a net displacement down drift of the

sediment by littoral drift. but not of the bar form itself.

Suhslusta:_z

The chain structure within the bar development area.

100.0 to 125.0 feet offshore. is similar to that of Cluster

1 in structure. Single step transition between the states

up and down is impossible. with communication through
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slope being required (Table 4). The major difference.

which is apparent in the limiting probability matrix. is

that within this area 44 per cent of process time is spent

in bar development and maintenance. Deposition is the

primary factor. The ephemeral nature of these bars is

indicated by the fact that within this area there is a

probability that the down state can be attained. reflecting

the complete removal of the bar form.

W

Cluster K is situated along Range 200 and is composed

of three stations located near the swash sons. The chain

structure (Table 4) is similar to that of the previous

clusters. In this area. which is characterised by ridge

and runnel systems. all states can succeed themselves

except up. When in the up state there is an equal

probability of transition to either the slope or down

states. This indicates that large amounts of sediment

introduced into this area are rapidly (approximately one

day maximum lag time) removed in either forward transport.

which results in welding to the beach proper. or transport

in the direction of littoral drift. or the sediment is

distributed evenly about the area. Direct transition

between the states up and down. which is possible in this

case. is also indicative of the rapid. erosive nature of

this some. Limiting probabilities show the long term

percentage of occurrence to be nearly equally distributed

between slope and down. 48 per cent and 45 per cent of
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the time respectively. with an average of 7 per cent of the

time available for large sediment buildups.

011m

Cluster 0 is located along ranges 600 and 700 from the

near swash sone to the base of ephemeral bar development.

Its structure (Table 4) is identical to that of Subcluster

1 of Cluster J in that both clusters encompass similar

environments. Conclusions regarding this cluster are

similar to those of Subcluster l.

Clustsr_n

Cluster N covers four ranges. 500. 600. 700. and C.

in the outer. northern corner of the study area. The area

of the cluster is within the acne of ephemeral bar develop-

ment. The structure is that of a finite. positive recurrent.

irreducible Markov chain with mere probability of the

occurrence of the down state (Table 4). All states can

succeed themselves or one another. Deposition is the major

factor. as the limiting probabilities indicate 65 per cent

of process time is devoted to bar development. Comparison

with the station locations of Cluster J and 0. indicates

that the central area of bar activity is located approx-

imately 12 to 25 feet lakeward of that in the southern

part of the study area.
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CONCLUSIONS

Identification of clusters that encompass several

station locations. all of which are stationary to more than

one station. allows for the objective selection of the

probability transition matrix that is used to characterise

that cluster. In.most clusters. the similarity in chain

structure among possible control stations allows for

selection of a representative station to characterise the

process response of the cluster. Where chain structures

vary. a control station can be chosen which best fits the

observed environment. but this is a subjective choice of

the controlling station. This is an inherent weakness in

a simple first order model based on a fixed distance

analyses. A more complex model which would limit the

number of possible control stations is desirable.

Within all stations that respond as a first order

Markov chain. a plethora of chain structures was observed.

The stationary chain structure defined in each cluster

was that of a finite. positive recurrent. irreducible

Markov chain. This structure represents a stable con-

figuration in which all states occupying a single class

have complete intercommunication. Topographic transitions

in the nearshore. when structured as a stochastic process.

operate in this equilibrium.configuration. The probability

of‘major fluctuations in topography in response to large

external factors. such as storms. is accounted for in the
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stochastic model. However the long term probabilities of

occurrence. as defined in the stable configuration of the

chain structure. reflects the dynamic equilibrium in the

nearshore zone between land and water.

Fluctuations within the central portion of the study

area are independent. with the succession of events lacking

any dependence upon previous events. Hypothesising upon

the significance or stability of this area would require

extrapolation outside the range of the data. Coastal

process on Lake Michigan undoubtedly have seasonal

variations. The data for this study were collected during

the month of July. It is impossible to determine if the

derived probabilities are stationary throughout the year.

and the ephemeral or permanent nature of this central

portion of independence cannot be ascertained from the

available data.

Topographic response to external factors in the near-

shore sone. when structured as a stochastic process. can

be modeled on the basis of probability distributions. This

allows for the quantification of empirical data and the

computer simulation of the nearshore environment. Observa-

tional data of process evolution are substantiated and

mathematically defined by Markov chain analysis.
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