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Abstract

TCAM REDUCTION TECHNIQUES FOR ALL-MATCH CLASSIFIERS

By

Nicholas Jon Wender

Network intrusion detection systems require all-match packet classification, where all

rules matching a packet are reported by the system. The problem of efficiently reporting all

matching rules is known as the all-match optimization problem. One solution is to convert

an all-match classifier into a first-match classifier (in which only the first classifier rule that

matches a packet is reported), and use ternary content addressable memory (TCAM) for

packet classification.

In this thesis, we evaluate two classifier minimization approaches. First, we consider

the use of all-match classifier-specific optimization algorithms. Second, we use state-of-the-

art first-match classifier optimization algorithms in conjunction with all-match algorithms.

Our results indicate the appropriate approach is related to the number of TCAM chips

available for classification. When using one TCAM chip, we attain 70.85% TCAM space

savings using first-match classifier optimization algorithms instead of all-match classifier

optimization algorithms. When using multiple TCAM chips, we found that it is best to use

all-match specific optimization algorithms.
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Chapter 1: Introduction

Network intrusion detection/prevention systems (NIDS/NIPS) detect and prevent malicious

attacks on networks. Most NIDS use a set of rules, called a classifier, that define how to

handle network traffic. Given a packet, the system searches the classifier for rules that match

the packet. These rules specify how the matched packet should be processed.

The Snort intrusion detection system is a NIDS with a publicly available set of rules [1].

The Snort rules consist of two parts: a rule header and a set of rule options (signature). The

rule header is a filter and an action. We use the filter to determine if a given packet matches

the rule header. For a given packet and rule, if the packet header matches the rule header’s

filter and the packet payload matches the rule options, then we apply the rule’s action to

the packet.

Our focus in this thesis is on the first step in the above classification procedure. We

are only concerned with matching packet headers to rule headers; we do not worry about

matching the packet payload to the rule options. By design, the Snort rules are in all-match

(also called multi-match) semantics. This means that a packet can match multiple rule

headers. We define the all-match or multi-match optimization problem as the problem of

finding all rules in a given classifier that match a given packet.

One solution to the all-match optimization problem is to convert a given all-match classi-

fier to a first-match classifier, which have been extensively studied. A first-match classifier is

a classifier in which we only return the first (or highest priority) rule matching a given packet.

The conversion process takes our all-match classifier and creates a semantically equivalent

first-match classifier such that we can find all matching rules for any packet.

Given a first-match classifier, our challenge is the first-match optimization problem, in

which we want to minimize the size of the classifier. There are many solutions to the first-
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match optimization problem, including the very popular solution of using ternary content

addressable memory (TCAM) to store the classifier. TCAM chips are widely used because

they provide a constant time lookup for all packets. However, TCAM suffers from several

drawbacks: high cost, high power consumption, and limited size.

In the end, we are left with two approaches when converting an all-match classifier

into a first-match classifier: (1) We can use all-match optimization techniques like Negation

Removal and the Set Splitting Algorithm (SSA) to reduce the size of the resulting first-match

classifier. (2) We can simply convert the all-match classifier into a first-match classifier and

then apply first-match optimization algorithms to reduce the size of the classifier.

We begin with a short discussion of ternary content addressable memory and follow with

an overview of the Snort network intrusion detection system.

1.1 Ternary Content Addressable Memory

Hardware based packet classification using ternary content addressable memory (TCAM)

has become the industry standard for high performance firewalls and Internet routers [6].

Each TCAM entry holds one rule, and each cell of a TCAM entry can take one of three

states: 0, 1, or * — a special “don’t care” state that allows a bit to be either a 0 or 1. Given

a packet as a search key, the underlying TCAM circuitry search all entries in parallel and

return the index of the first-matching (or highest priority) entry. For example, the TCAM

shown in figure 1.1 searches all entries in parallel for the key 10100. We can see from the

highlighted rows that the search key matches two entries; however, only the index of the first

matching entry will be returned.

While providing a deterministic lookup time for a given packet [18], TCAM suffers from
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key

1 0 1 0 0

0 0 * 0 0
1 * 1 * *
1 0 1 0 *
0 1 1 * 0

TCAM entries

Figure 1.1: Using a TCAM to search for a given key in parallel. For interpretation of the
references to color in this and all other figures, the reader is referred to the electronic version
of this thesis

several well known disadvantages. TCAM chips are much more expensive to manufacture,

have smaller capacities, and consume significantly more power than a comparable amount

SRAM [18]. The complex circuitry that allows TCAM to perform a parallel search is not

only costly, but also uses additional board space and consumes more power. Similarly while

TCAM chips of up to 72 Mbit have been produced, smaller TCAM chips are more widely

used due to the high cost.

Another issue faced by TCAM is the extensively studied range expansion problem. While

prefixes (discussed in detail in a section 4.3) can encode the IP address and protocol fields

for classifiers, ranges given for the port fields usually cannot map directly into one TCAM

entry. Thus TCAM chips need to use multiple entries to encode a single range. A b-bit field

needs to be split into at most 2(b− 1) separate entries [18]. Therefore, each 16-bit port field

can require up to 30 TCAM entries in the worst case. In addition, if a rule has a range for

both port fields, it can require up to 30x30 = 900 TCAM entries. Many strategies have been

developed to deal with the range expansion problem [2, 3, 8, 12, 17, 14, 16].

A third challenge TCAM chips have is the presence of negated rules. A negated rule is

a rule that has a field that is negated, for example TCP 74.12.200.100 43 → 10.1.0.1

!43. Consider the negated destination port !43. In binary, 43 = 0000 0000 0010 1011
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1*** **** **** ****

*1** **** **** ****

**1* **** **** ****

***1 **** **** ****

**** 1*** **** ****

**** *1** **** ****

**** **1* **** ****

**** ***1 **** ****

**** **** 1*** ****

**** **** *1** ****

**** **** **0* ****

**** **** ***1 ****

**** **** **** 0***

**** **** **** *1**

**** **** **** **0*

**** **** **** ***0

Figure 1.2: Näıve negation removal of the port !43 by flipping bits.

and the näıve approach (see figure 1.2) for putting this negated field in TCAM would create

sixteen entries, flipping one bit in each and replacing the rest with a “don’t care” value.

Thankfully there are more intelligent solutions to the problem of negated fields, which we

will discuss this topic at length in section 4.2.1.

1.2 Snort Rules

Snort is an open source rule-based network intrusion detection and prevention system that

can perform real-time packet analysis including content searching and protocol analysis.

While Snort can perform simpler operations like packet logging and traffic sniffing, we only

concern ourselves with Snort’s network intrusion detection mode [1].

As briefly mentioned above, the Snort system is a rule-based system that relies on sig-

nature detection for packet classification. To Snort, both the packet header and the packet

payload (the data contained in the packet) are important elements. Snort inspects the packet
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payload for any packet whose header matches a Snort rule header. For this, Snort searches

the packet’s data according to the options specified in the corresponding rule. There are

two aspects to this system that are worth noting. First, an arbitrary packet can match

many distinct Snort rule headers. Second, each Snort rule header may correspond to several

signatures.

Rule 1
Filter: TCP $EXTERNAL NET any → $SQL SERVERS 3306

Options: content:"|0A 00 00 01 85 04 00 00 80|root|00|";

Action: alert msg:"MYSQL root login attempt"

Rule 2
Filter: TCP $EXTERNAL NET any → $SQL SERVERS 3306

Options: content:"|0F 00 00 00 03|show databases";

Action: alert msg:"MYSQL show databases attempt"

Rule 3

Filter: TCP $EXTERNAL NET 21 → $HOME NET any

Options:
isdataat:1023;

pcre:"/\d{3}\s+[^\n]{1019}/smi";

Action:
alert msg:"FTP Microsoft Internet Explorer FTP

Response Parsing Memory Corruption"

Figure 1.3: Example Snort rules with Filter, options, and actions.

For example, consider the three Snort rules shown in figure 1.3.

Any packet over the TCP protocol originating from any port outside the network and

destined for an SQL server on port 3306 (any packet matching TCP $EXTERNAL NET any →

$SQL SERVERS 3306) will match the header of the first two rules; thus, such packet payloads

will be searched for the signatures in both rules. Any incoming packet (any packet going

from $EXTERNAL NET to $HOME NET) on port 21 will match the header of the third rule; thus

such packet payloads will be searched for the third rule’s signature.

Furthermore, given that $SQL SERVERS is defined as a subset of $HOME NET, suppose that

an incoming packet matched the following fields: TCP $EXTERNAL NET 21 → $SQL SERVERS

3306. This packet, would then match all three headers; thus, its payload would have to be

checked for all three signatures. Admittedly, this is a contrived example because it is not
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likely that a MySQL server will be accepting FTP connections on port 3306. However, the

indicated rules illustrate the major point well: a packet may match many headers and the

packet’s payload needs to be inspected accordingly.

1.3 Problem Overview

From the preceding discussions of TCAM and the Snort system, we summarize the main

challenge we address in this thesis. We wish to construct the smallest possible TCAM

classifier that returns all rules that match a given packet header. We will state this problem

formally in chapter 3.

1.4 Contributions

To solve the all-match optimization problem using TCAM chips, we implement previous

solutions (all-match to first-match conversion with negation removal [22] and SSA [23])

in conjunction with additional first-match optimizations: TCAM Razor [11], Topological

Transformation [14], and TCAM SPliT [15]. The objective of this thesis is to evaluate

two approaches to the all-match optimization problem. (1) Evaluate the performance of

optimization algorithms designed specifically for all-match classifiers. (2) Convert an all-

match classifier to a first-match classifier and evaluate general purpose first-match classifier

optimization algorithms.

We evaluate the performance and efficiency of various combinations of these algorithms by

testing them on three different Snort rules. When using only one TCAM, our results show

that TCAM Razor outperforms Negation Removal with TCAM space savings of 70.85%.

When using multiple TCAM chips, it is best to use SSA to reduce the all-match classifier.
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Stated another way, with one TCAM we should use general purpose first-match classifier

optimization algorithms, and with multiple TCAM chips, we should use all-match specific

optimization algorithms.

The remainder of this thesis proceeds as follows. In chapter 2 we discuss related work for

the all-match optimization problem and first-match classifier optimization. In chapter 3 we

define our notation and present a formal statement of the all-match optimization problem.

Chapter 4 outlines technical details of our experiments. Chapter 5 presents our simulation

results, and chapter 6 offers conclusions.
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Chapter 2: Related Work

In this chapter we review the relevant prior work in both all-match and first-match opti-

mization. First we review the prior art of all-match optimization.

2.1 All-Match Optimization

While there is a surprisingly small volume of work in the area of all-match packet classifi-

cation, the related work can roughly be split into two categories: (1) FPGA-based solutions

and (2) TCAM-based solutions.

FPGA-based solutions use field programmable gate arrays (FPGAs) to implement all-

match classification methods. A review of the work on all-match classification using FPGAs

yields a fair body of research. However, we prefer TCAM-based solutions because many

network processors already use TCAM chips for first-match classification.

As discussed earlier, TCAM is the industry standard for high performance devices (such

as firewalls and routers) because TCAM chips provide line rate (or near line rate) classifica-

tion that software solutions cannot match [20].

The current state of the art in TCAM-based all-match packet classification is the work by

Yu et al. presented in [22] and [23]. In addition TCAM-based solutions have been proposed

in [9] and [21].

The solution presented in [9] is intended to scale to larger databases as it requires no

additional TCAM entries. However, this approach requires significantly more TCAM lookups

to find all matching results. The work of [21] encodes classifier rules and performs both

multiple one-dimensional TCAM lookups and hash table accesses.

The geometric approach in [22] transforms an all-match classifier into a first-match clas-
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sifier which can be stored in TCAM such that with one additional SRAM lookup, we can

obtain all matching rules for a given packet. However, this solution can drastically increase

the number of rules that need to be stored. Yu et al. extend the work of [22] with [23], in

which the resulting first-match classifier is split into two or four sets to reduce the number

of additional rules that need to be stored. This approach requires only a handful of extra

TCAM entries at the cost of requiring two or four lookups to classify each packet. We build

upon these two all-match optimization techniques in the rest of this thesis.

2.2 First-Match Optimization

First-match packet classification has been extensively studied in the literature (See [6, 20]

for a general overview). In the broadest sense, packet classification can be split into two

categories, algorithmic and architectural. The industry standard TCAM-based architec-

tural approach resulted from the inability of algorithmic solutions to provide fast enough

performance. However due to the limitations of TCAM, combinations of algorithmic and

architectural solutions are becoming more common [20]. Nevertheless, this thesis is not

intended to be a comprehensive survey of packet classification algorithms.

For this thesis, we apply several state-of-the-art TCAM-based first-match classifier opti-

mization algorithms to reduce the size of a first-match classifier generated from an all-match

classifier. We focus on the following three approaches: TCAM Razor [11], Topological

Transformation [14], and TCAM SPliT [15]. We describe these methods in more detail in

section 4.3.
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Chapter 3: Definitions and Problem Statement

As we mention in the introduction, firewalls and Internet routers classify packets based

on sets of rules called classifiers. In this chapter we formally define intervals, fields, rules,

packets, and classifiers (both all-match and first-match classifiers). Then we formally state

the problem we study in this thesis. These definitions provide a formal basis to discuss the

all-match optimization problem throughout the rest of this thesis.

3.1 Definitions

We define a classifier as a set of rules C. Each rule r ∈ C is in turn defined as a set of fields

that is associated with an action or decision. The decision for r defines the result imposed

upon packets matching r by C. Let ri be the ith rule of classifier C. Then we have that

d(ri) is the action of C on ri.

In general a rule has d fields, denoted as Fi for 1 ≤ i ≤ d, and each rule is said to be

a d-tuple, r = (ri, ..., rd) over fields F1, ..., Fd. We say that a b-bit field Fi is defined over

the domain D(Fi) = [0, 2b − 1]. For convenience, we denote the ith field of rule r with the

notation r[i]. Typically r[i] = [j, k] is an interval1 such that [j, k] ∈ D(Fi). Finally, we say

that a classifier containing rules with d fields is a d-dimensional classifier.

In practice, five commonly used fields are an 8-bit protocol, 32-bit source and destination

IPv4 addresses, and 16-bit source and destination ports. We note that as IPv6 becomes more

common, the 32-bit IPv4 address fields will become 128-bit fields. This will also increase the

difficulty of packet classification as it will greatly increase the width of each rule.

1When working with the Snort rules, we relax our notion of an interval such that the field
of a rule can be a set of intervals such that each interval in the set if in the domain of the
field.
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For classification, we say that a packet matches a rule if each field of the packet matches

the corresponding field of the rule. More formally, a packet p is a d-tuple (p1, ..., pd) over

fields F1, ...,Fd. We overload the notation we use with rules for packets and say that field

Fi of packet p is p[i] for 1 ≤ i ≤ d. The formal difference between a rule r and a packet p

is that p[i] = v for 1 ≤ i ≤ d where v is some discrete value in D(Fi). Packet p is said to

match rule r (denoted as p ⊆ r) if p[i] = v ∈ [j, k] = r[i] for 1 ≤ i ≤ d. If p ⊆ r, we set the

decision of the packet, d(p) = d(r). Let C(p) be the procedure through which C classifies

p. Further let C(p) = {r1, ..., rk} be the set of k rules that p matches sorted in descending

order by priority. Formally, we have p ⊆ rj ∀ rj ∈ C(p).

Now we define the types of classifiers we consider in this thesis. First let us note that for

any classifier C we may have some packet p such that p ⊆ ri and p ⊆ rj for rules {ri, rj} ∈ C

where ri 6= rj . That is, in any classifier there may exist a packet that matches more than

one rule of the classifier. Let ri and rj be two distinct rules matched by p. Without loss of

generality, let us say that ri has a higher priority than rj — which in practice implies that

ri appears before rj in C. We say that C is a first-match classifier if for any packet p, C(p)

is exactly the set {ri}, the highest priority rule matching p. Then, |C(p)| = 1 for all packets

p. On the other hand, we say that C is an all-match classifier if C(p) is the set {r|p ⊆ r}.

Typically, |C(p)| > 1 for most packets.

3.2 Problem Statement

Commonly referred to as the multi-match or all-match optimization problem, our goal is

to transform an all-match classifier into the smallest equivalent first-match classifier. More

specifically, given a classifier C, we must generate a first-match classifier C′ such that for any
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packet p, we obtain all matching rules of p in C by computing C′(p). Since C is an all-match

classifier, C(p) = {ri, ..., rk}. Likewise, because C′ is a first-match classifier, C′(p) = {r′i}.

Therefore our task is to encode d(r′i) so that we can compute {ri, ..., rk} given d(r′i).
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Chapter 4: Algorithms

In this chapter, we provide an overview of all algorithms we evaluate. We begin with the

all-match to first-match conversion algorithm from [22]. This algorithm is the basis of our

work, as it allows us to create a first-match classifier FM from an all-match classifier AM.

Following this discussion, we present two all-match specific optimizations: Negation Re-

moval and the Set Splitting Algorithm (SSA). Negation removal allows us to reduce the

number of rules required to represent negated fields in TCAM, while SSA enables us to

reduce the number of intersection rules we need to store in TCAM.

After the sections on all-match algorithms, we present the first-match algorithms we eval-

uate. We begin by presenting the concepts of prefixes and firewall decision diagrams. Then

we review three first-match optimization algorithms: TCAM Razor, Topological Transfor-

mation, and TCAM SPliT.

4.1 All-Match to First-Match Conversion

The initial step in solving the all-match optimization problem is to convert the given all-

match classifier, AM, into an equivalent first-match classifier, FM. We follow the algorithm

presented by Yu et al [22] to transform AM into FM.

Before we discuss the relationships defined for rules, we explain the concept of a rule’s

matchlist and discuss how we use this concept with a first-match classifier. With each rule

ri ∈ FM we associate a matchlist, denoted m(ri), that enumerates the rules, rj ∈ AM, that

packets matching ri in FM will match in AM. More precisely, the matchlist m(ri) for rule

ri ∈ FM defines a subset of rules from AM such that for any packet p: if p ⊆ ri, then p ⊆ rj

∀ rj ∈ m(ri).
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The all-match to first-match algorithm works as follows: (1) Create FM from AM and

store FM in TCAM. (2) Compute a matchlist for every ri ∈ FM and store all matchlists in

SRAM (3) For ri ∈ FM, assign d(ri) = k where k is the SRAM index of m(ri).

Then to compute AM(p) for any packet, we perform a TCAM lookup to get FM(p) =

d(p). Then we perform an SRAM lookup of d(p) to obtain the matchlist for p.

Now we detail the possible relationships rules can have. These relationships are the

foundation that we will use to compute FM from AM. Between any pair of rules ri and rj

in AM, there exists a relationship (defined over all packets) that satisfies one of the following:

1. ri ∩ rj = ∅. We say that ri and rj are exclusive. If two rules are exclusive, then no

packet will match both rules and we can place the rules in any order relative to each

other in FM.

2. ri ⊆ rj . If ri is a subset of rj , then we have that any packet that matches ri will also

match rj . Thus, we should place ri before rj in FM and add j to m(ri).

3. ri∩rj 6= ∅ (such that ri 6⊆ rj and rj 6⊆ ri). If ri and rj have a non-empty intersection,

then we need to create rule rk = ri ∩ rj , and place rk before ri and rj in FM, and

add m(ri) and m(rj) to m(rk).

Let us explicitly state how we use the preceding relationships to convert AM to FM.

Initially FM is an empty classifier and we sequentially insert each rule r ∈ AM into FM

leveraging these relationships. Let ri be the current rule from AM we are inserting. First we

make m(ri) = (i). Then for and each existing rule of FM, re, we take one of the following

actions based on the relationship between ri and re:

1. If ri and re are exclusive, we take no action and proceed to the next rule in FM.
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2. If ri is a subset of re, we insert ri before re, append m(re) to m(ri), and proceed to

the next ri in AM1.

3. If re is a subset of ri, we append m(ri) to m(re) and proceed to the next re in FM.

4. If ri and re have a non-empty intersection, we create a new rule rk = ri∩ re, insert rk

before re, append m(re) to m(rk), append m(ri) to m(rk), and proceed to the next

re in FM.

The conversion process from in AM to in FM will produce many additional rules from step

4. We refer to these rules as intersection rules.

After transforming AM to FM, we must clean up FM to prepare FM for further reduction.

First, the rules in FM may contain fields with discontinuous ranges. However, the first-match

algorithms we use require that each field of a rule is defined over a continuous range. Thus,

we split each rule that has discontinuous field ranges into multiple rules. Figure 4.1 illustrates

the rule splitting process.

TCP $HOME NET !50 → $EXTERNAL NET [0:100]
↓

TCP $HOME NET [0:49,51:65535] → $EXTERNAL NET [0:100]
↓

TCP $HOME NET [0:49] → $EXTERNAL NET [0:100]
TCP $HOME NET [51:65535] → $EXTERNAL NET [0:100]

Figure 4.1: Splitting discontinuous rule ranges.

Second, the rules in FM have a matchlist as the decision, but the first-match classifier

optimization algorithms we apply require that each rule has a single integer action. Thus,

we map each distinct matchlist to a distinct integer. This mapping must be maintained so

that after optimizing FM, we can perform the SRAM lookup to find the corresponding AM.
1Yu et al. [22] present a proof of why we can skip the rest of the existing rules.
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No. Rule
1 TCP $HOME NET !50 → $HOME NET [0:100]
2 TCP $HOME NET 50 → $HOME NET 75
3 TCP $HOME NET any → $HOME NET 150

↓
1 TCP $HOME NET any → $HOME NET [0:100]
2 TCP $HOME NET 50 → $HOME NET 75
3 TCP $HOME NET any → $HOME NET 150

Figure 4.2: Simple application of negation removal losing classifier semantics.

4.2 All-Match Optimization

When we transform AM into FM, we can apply existing all-match optimization schemes

designed specifically to minimize the resulting first-match classifier. As we discussed previ-

ously, representing negated fields in TCAM leads to a large growth in the number of TCAM

entries. To mitigate this problem, we use a negation removal algorithm during the conversion

process [22]. In addition, the first-match conversion process generates many additional inter-

section rules. We can limit the number of intersection rules by applying the SSA algorithm

[23].

4.2.1 Negation Removal

There is no direct way of mapping a negated field into a single TCAM entry [22]. However,

there is a scheme that we can use to replace negated fields with the any keyword. However as

figure 4.2 illustrates, thoughtless application of negation removal would destroy the semantics

of the classifier. Prior to negation removal, no packet could match both rule 1 and rule 2

because of the source port field. Yet after replacing rule 1’s source port of !50 with any, all

packets matching rule 2 will match rule 1. This is a violation we cannot allow.
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To remove negation and maintain classifier semantics, [22] presents a scheme for grouping

rules of a classifier into regions. The regions logically partition the classifier. Each region

R is a set of rules with a domain D(R) defined as a set of packets P such that ∀ p ∈ P ,

∃ r ∈ R such that p ⊆ r. We want to reorder the rules so that all rules of each region are

together and the regions are in decreasing order by number of negated fields.

To group rules into regions, the algorithm generates a special rule s (which is called a

separator) for each region such that ∀ p ∈ D(R), p ⊆ s. By definition, each separator rule

defines a region. The goal is that we place the separators at the end of their corresponding

regions to stop packets that belong to the region from incorrectly matching later rules. Every

separator has an empty matchlist, m(s) = ∅.

To generate separator rules, we must enumerate all negated fields in the classifier. Toward

this end, we create d sets of negated fields; one for each dimension of our classifier. For

F1, ...,Fd we have a set of negated fields Ni for 1 ≤ i ≤ d. For each rule r ∈ AM, if r[i]

is negated we add the non-negated form of r[i] to Ni. For example, if F3 has the negated

value !45, we add 45 to N3. After processing all rules, if a set Ni = ∅, we append the any

keyword to the set. After we have processed all fields of all rules, we generate the separator

set S by taking the d-ary Cartesian product of the d negated field sets.

Our simple classifier presented above in figure 4.2 would generate just one separator

because there is one distinct negated field in the classifier (!50). See figure 4.3 for a slightly

more complex example where we generate three separator rules for two negated fields. We

have a negated source port of !80 and a negated destination port of !50, so we store 80 and

50 in the corresponding Ni negated field sets. Then we create the separators shown at the

bottom of figure 4.3.

After we have generated the separator rules as described, we set FM = S. That is, we
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Rule
TCP 70.10.32.41 !80 → 10.1.0.1 [10:20]

TCP 60.11.42.15 65 → 10.1.0.2 !50
↓

Field Value
Source port 80

Destination port 50
↓

Separators
any any 80 → any 50
any any 80 → any any
any any any → any 50

Figure 4.3: Example of negation removal generating three separators for two negated fields.

initialize our first-match classifier to be the set of separators. Finally, we can apply the

reduction of AM to FM as described in the preceding section. Our separators ensure that

each rule in AM is inserted into the appropriate region. After we have transformed AM to

FM we replace all negated fields in FM with the any keyword [22].

4.2.2 SSA

As noted in [22, 9, 23], the geometric all-match to first-match conversion used above generates

many intersection rules which greatly increases the size of the resulting classifier. The Set

Splitting Algorithm (SSA) of [23] reduces the number of intersection rules that we must store

for the classifier. We now provide a brief overview of SSA.

SSA is an approach that seeks to minimize the number of additional intersection rules

that need to be stored by splitting the classifier into multiple logically distinct sets. The key

observation is that if we store the rules that compose an intersection in the different sets,

we no longer need the intersection [23]. However, the cost of this solution is that we require

two or four TCAM chips with 104-bit wide entries.
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Thus, the problem is reduced to finding the best way to split the rules of AM into

multiple sets. The ideal solution would split the rules such that any two rules that intersect

are placed into different sets. In such as case, no new rules would be created. However, such

a solution may not exist for all classifiers. In general, is equivalent to the NP-hard maximum

set splitting or maximum hypergraph cut problem [4].

Given the problem is NP-hard, SSA uses Johnson’s approximation algorithm [7] for the

maximum satisfiability problem to split the classifier. We leave out the underlying details of

Johnson’s algorithm and only provide an overview of SSA. Nevertheless, let us restate the

maximum satisfiability problem as presented by Yu et al. [23].

A literal xi, is a variable (a positive literal) or the negation of a variable (a negative

literal) to which we can assign either true or false. We are given a set of n literal pairs:

L = {{x1,¬x1}, {x2,¬x2}, ..., {xn,¬xn}}. A clause is the disjunction of some set of literals.

For example, we may have a clause C = x1 ∨ ¬x5 ∨ ¬x8. By definition, a clause evaluates

to true if any of its literals evaluate to true. For our problem, we are given m clauses. The

task at hand is to assign values to the literals in L such that we satisfy as many clauses as

possible.

We assume that we have applied the all-match to first-match reduction (with or without

negation removal) and have the two classifiers AM and FM. Let I ⊆ F be the subset of FM

containing all intersection rules generated. Furthermore, let R = FM − I be the subset of

rules that are not intersection rules. Let |R| = n and |I| = m. SSA proceeds as follows.

For each rule ri ∈ R, we create two literals: xi and ¬xi. Next we create two clauses

for each intersection I ∈ I. Let I be an intersection of y rules: I = r1 ∩ ... ∩ ry. Then,

the clauses we generate are CI1 = {r1 ∨ ... ∨ ry} and CI2 = {¬r1 ∨ ... ∨ ¬ry} [23]. After

we create the literals and clauses, we run Johnson’s algorithm which assigns a value to each
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Rule # Rule Literals
1 TCP $EXTERNAL NET [10:30] → $HOME NET [10:30] x1, ¬x1
2 TCP $EXTERNAL NET [15:35] → $HOME NET [15:35] x2, ¬x2
3 TCP $EXTERNAL NET any → $HOME NET [5:20] x3, ¬x3

↓
Intersections Rules Clauses

TCP $EXTERNAL NET [15:30] → $HOME NET [15:20] 1,2,3
(x1 ∨ x2 ∨ x3)
(¬x1∨¬x2∨¬x3)

TCP $EXTERNAL NET [15:30] → $HOME NET [15:30] 1,2
(x1 ∨ x2)
(¬x1 ∨ ¬x2)

TCP $EXTERNAL NET [10:30] → $HOME NET [10:20]
1,3 (x1 ∨ x3)

(¬x1 ∨ ¬x3)

TCP $EXTERNAL NET [15:35] → $HOME NET [15:20] 2,3
(x2 ∨ x3)
(¬x2 ∨ ¬x3)

↓
Literal Assignments
x1 False
x2 True
x3 False

↓
SSA Set 1 SSA Set 2
Rule 2 Intersection of Rule 1 and Rule 3

Rule 1
Rule 3

Figure 4.4: Example of SSA splitting a set of rules into two sets.

literal. Finally we split R into two sets based on the literal assignments. If xi is true, we

assign ri to set one; otherwise we assign ri to set two. Yu et al. [23] show that we only need

to store an intersection, I ⊆ I, if either CI1 or CI2 is unsatisfied. Figure 4.4 illustrates SSA

on a set of three rules that have four intersections. SSA splits the seven rules into two sets

with four total rules.

4.3 First-Match Classifier Optimization

After performing all-match to first-match conversion and processing our first-match classifier

to be ready for additional minimization, we evaluated the following first-match optimization
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algorithms: (1) TCAM Razor, (2) Topological Transformation, and (3) TCAM SPliT. Before

we present an overview of each algorithm, we discuss two important topics: prefixes and

firewall decision diagrams (FDD).

The first-match algorithms we apply work almost exclusively with prefixes. A b-bit prefix

represents an integer interval and has k leading 1’s or 0’s followed by (b − k) ∗’s . That is,

a prefix has the form W{∗}(b−k) and represents the interval [W{0}b−k,W{1}b−k] where

W ∈ {0, 1}k. For example, the prefix, 101** represents the interval [10100, 10111] or in

decimal, [20, 23] 2.

When storing rules in TCAM we must convert ranges into prefixes, which leads to the

previously discussed range expansion problem. For example, the range [2, 10] converts to the

following 3 -bit prefixes, 01* and 1**.

All of the first-match algorithms we use convert the given classifier into a firewall decision

diagram [10], which is a canonical representation of a classifier. A firewall decision diagram

(FDD) represents a classifier and the set of decisions (denoted DS) of the classifier. An FDD

is a directed, acyclic graph that has both node and edge labels. All FDDs must satisfy the

following properties:

Rule # F1 F2 Decision
1 10* 10* discard
2 10* 11* accept
3 10* 0** accept
4 0** *** discard
5 1** *** discard

Table 4.1: Two-dimensional classifier where each field has domain [0, 7].

2When working with an interval from a to b for first-match classifiers we use the common
notation [a, b], but when discussing Snort rules we use the Snort notation [a : b].
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1. There exists exactly one root node that has no incoming edges. We refer to all nodes

with no outgoing edges as terminals, and all other nodes are non-terminals.

2. F (v) is the label of node v:

(a) F (v) ∈ {F1, ..., Fd} if v is a non-terminal node.

(b) F (v) ∈ DS if v is a terminal node.

3. I(e) is a non-empty set of labels for edge e : u → v such that I(e) ⊆ D(F (u)). That

is, I(e) is a subset of the domain of the field corresponding to node u.

4. A path from the root to a terminal is called a decision path. All nodes on a decision

path have a distinct label.

5. Two properties hold for E(v), the set of outgoing edges of node v:

(a) I(e1) ∩ I(e2) = ∅ ∀ (e1, e2) ∈ E(v). A prefix can match only one outgoing edge

of v. This is called consistency.

(b)
⋃
e∈E(v) I(e) = D(F (v)). The union of the labels for all outgoing edges of

node v cover the domain of the field associated with v. This property is called

completeness.

Let us illustrate the concept of an FDD with the classifier shown in table 4.1 and figure 4.5.

The two-dimensional classifier is over fields F1 and F2 with D(Fi) = [0, 7] for 1 ≤ i ≤ 2.

We can see how the FDD properties apply from the table and the figure. The following

discussions present an overview of each of the first-match optimization algorithms we use.

After we construct an FDD for the classifier, we use an FDD reduction algorithm to make

the FDD smaller, which reduces the number of rules the FDD generates. FDD reduction

ensures three properties of the FDD: (1) no two nodes are isomorphic, (2) any pair of nodes
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has at most one edge between them, and (3) no node has exactly one outgoing edge [5]. For

example, we can reduce the FDD in figure 4.5 by removing the non-terminal right-child of

the root, and instead have the outgoing edge go directly to the terminal node.

It is important to realize that the order in which we use the fields to build an FDD

changes the FDD generated. This is an important consideration for two of the first-match

classifier optimization algorithms that we use: TCAM Razor and TCAM SPliT. To maximize

performance of these two algorithms we must try all permutations (orderings) of the fields

when minimizing a classifier.

F1

F2

10*

F2

0**
11*

d

10*

a

11*
0**

d

***

Figure 4.5: FDD corresponding to the classifier shown in table 4.1 with decisions “a” for
accept and “d” for discard.

4.3.1 TCAM Razor

In [11], Liu et al. build on the dynamic programming solution presented in [19], with which

Liu et al. solve the weighted one-dimensional TCAM minimization problem. The optimal

one-dimensional solution is then extended to the multi-dimensional case to find a greedy

solution for each dimension. Due to its greedy nature, Razor does not guarantee a globally

optimal solution, but it is one of the best first-match minimization algorithms available.

TCAM Razor is classified as an equivalent transformation algorithm because it produces a
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F1 F2 Decision
101 11* d
101 10* a
101 0** a
110 11* d
110 10* a
110 0** a
111 *** d
0** *** d

F1

v1

F2

v2

101
110

F2 v3

111
0**

a

10*
0**

d

11*

d

***

Figure 4.6: Two dimensional classifier with decisions and its associated FDD.

semantically equivalent, but smaller, classifier [11].

Given a classifier C with d fields, F1, ...,Fd, Razor converts the classifier into a firewall

decision diagram (FDD). Before minimizing the classifier, Razor next reduces the FDD.

Following FDD creation and reduction, Razor builds a classifier C′ that is semantically

equivalent to C in a bottom-up fashion by repeatedly applying the optimal one-dimensional

solution to obtain a solution for each field. These solutions are combined to give an overall

solution. Finally, Razor applies a redundancy removal algorithm to C′ to remove redundant

rules.

Consider the two-dimensional classifier and the associated FDD shown in 4.6. For Razor,

we use the one-dimensional minimization algorithm on both subgraphs rooted at nodes v2

and v3 to get the TCAM tables shown in 4.7.
Next we consider v2 and v3 to be decisions and process v1 as if it were a one-dimensional

node and we obtain the resulting TCAM table in 4.8. Finally we put the three tables together

to obtain to the final TCAM table in 4.9. The resulting TCAM table has four rules while

the original classifier had eight rules.
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4.3.2 Topological Transformation

Topological Transformation [14] is a range encoding scheme for minimizing first-match clas-

sifiers. Unlike other range encoding schemes, Topological Transformation uses rule decisions

when minimizing the classifier. The algorithm’s key observation is that many values for each

field are equivalent; two values are said to be equivalent if they can be interchanged without

changing the decision for a packet. A classifier partitions each field into equivalence classes

such that all values with the same decision belong to the same class. The goal is to reduce

the number and size of TCAM entries by eliminating equivalent values.

Like TCAM Razor, Topological Transformation first converts a classifier to an FDD.

Then we apply two reduction techniques, domain compression and prefix alignment. Domain

compression attempts to make the domain of each field, D(Fi), as small as possible, while

prefix alignment modifies the domain of each field so that we can convert ranges to prefixes

with less expansion [14]. Domain compression uses three steps: (1) first we compute the

equivalence classes for each field, (2) we build transformers for each field, (3) we apply the

field transformers to create the re-encoded classifier [14].

For a d-dimensional classifier, we compute the equivalence classes for each field Fi by first

creating an FDD, fi, rooted at Fi for 1 ≤ i ≤ d. Let u be the root of the FDD fi and let u

have outgoing edges e1, ..., em. Meiner’s et al. [14] observe that the labels of these outgoing

edges form the equivalence classes for Fi. Each label is associated with several ranges, but

v2 v3
F2 Decision F2 Decision
11* d *** d
*** a

Figure 4.7: One-dimensional solutions for nodes v2 and v3.
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v1
F1 Decision
111 v3
1** v2
*** v3

Figure 4.8: One-dimensional solution for node
v1 with virtual v2 and v3 nodes.

F1 F2 Decision
111 *** d
1** 11* d
1** *** a
*** *** d

Figure 4.9: Result of TCAM Razor on the
classifier from 4.6.

all ranges belong to the same equivalence class. Thus we choose the range that intersects the

fewest rules in C to represent the equivalence class for each edge ej . Once a range, denoted

by Lm, has been chosen for each edge, we put the edges in ascending order by the range

values Lm. After we sort the edges, we have the transformer Ti for field Fi, which assigns

edge ej the decision j for 1 ≤ j ≤ m. Next we can use these transformers to create the

transformed classifier.

To create the transformed classifier C′ for C we must re-encode each rule using the

transformers we computed in the preceding step. Let Si = [x, y] be the original range for

field Fi. S′i = [a, b] where a is arg mina a ∈ [0,m − 1] such that La ∩ Si 6= ∅ and b is

arg maxb b ∈ [0,m− 1] such that Lb ∩ Si 6= ∅. If a range in C does not have an intersection

with any landmark, we do not create a transformed rule in C′. That is, for any rule r ∈ C,

if ∃ a field Fi where r[i] has an empty intersection with all landmark ranges in Fi, then we

do not create the transformed rule r′ in C′.

The second optimization that Topological Transformation provides is with prefix align-

ment. Prefix alignment again re-encodes the domain of each field, but the goal now is to

change the field domains to be such that ranges can be encoded with fewer prefixes.

Domain compression is illustrated in figures 4.10 to 4.13. Figure 4.10 presents a two-

dimensional classifier we want to perform domain compression on. Figure 4.11 shows the
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F1 F2 Decision
[1, 9] [2, 26] d
[29, 31] [2, 26] d
[0, 31] [0, 19] a
[12, 17] [19, 28] d
[0, 30] [4, 27] a
[0, 31] [0, 31] a

Figure 4.10: Two dimensional classifier ex-
pressed with ranges.

F1
[0, 0]
[1, 9]

[10, 11]
[12, 17]

Figure 4.11: Landmarks identified by Topo-
logical Transformation for field F1.

F1 Decision
[0, 0] 0
[1, 9] 1
[10, 11] 2
[12, 17] 3
[18, 28] 2
[29, 31] 1

Figure 4.12: Transformer for field F1.

F1 F2 Decision
[1, 1] [0, 1] d
[1, 1] [0, 1] d
[0, 3] [0, 2] a
[3, 3] [0, 1] d
[0, 3] [0, 1] a
[0, 3] [0, 2] a

Figure 4.13: Transformed classifier.

landmark ranges identified after Topological Transform creates an FDD rooted at field F1.

Figure 4.12 lists the transformer for the ranges in field F1. Figure 4.13 shows the transformed

classifier, which clearly contains redundant rules. The crossed-out rule in figure 4.13 indicates

that the rule would not be generated because [29, 31] does not intersect any landmark ranges

for F1.

4.3.3 TCAM SPliT

TCAM SPliT [15] is a first-match optimization algorithm that splits a classifier into several

smaller classifiers. SPliT is intended for use in an environment where multiple TCAM chips

can be pipelined to perform packet classification. The observation exploited by SPliT is that

higher dimensional classifiers suffer from the multiplicative effect where rules interact badly

and cause additional TCAM entires. By splitting a classifier into multiple lower dimensional
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classifiers, SPliT avoids the cost of the multiplicative effect [15].

SPliT first converts a classifier C into an FDD. Then we reduce the FDD by merging all

isomorphic subgraphs [14]. Following this setup phase, SPliT applies a divide and conquer

approach to create several smaller classifiers from C. The two steps SPliT uses to create

smaller classifiers are: (1) node table generation, and (2) field table generation.

During node table generation, SPliT creates a one-dimensional TCAM table for each non-

terminal in the FDD. Each of these tables has one rule per prefix, per outgoing edge. The

decision SPliT assigns each of these rules is the ID of the node to which the outgoing edge

goes to.

Field table generation combines the node tables for each field we created in the previous

step into one TCAM table. This involves three steps. First we assign a unique node ID

to each of the node tables. Next we prepend the ID for each node table to all the rules

contained in the table. Lastly, SPliT combines all tables for each field into one TCAM table.

We can optimize field table generation by using shadow encoding when combining the

tables for field Fi [13]. While FDD reduction combines isomorphic nodes together, there are

often nodes that are not isomorphic, but similar. Shadow encoding leverages the similarity

among nodes during field table generation using two key observations: we have free reign

over what table IDs to assign and we can use ternary strings. Shadow encoding allows us

to remove similar entries from one node table and use a ternary string for the table ID of

another table to match both tables, thus reducing the overall size of the field table [15].

In the end, SPliT produces multiple classifiers of smaller dimension than C. Typically,

SPliT will produce either d one-dimensional classifiers or two classifiers, one with k dimen-

sions and the other with (d− k) dimensions. TCAM SPliT is a state-of-the-art first match

optimization algorithm when multiple TCAM chips can be used [15].
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F1

v1

F2v2

101

F2 v4

100
00*
11*

F2 v3

01*

d

***

a

110

d

111
0**

a

0**

d

1**

Figure 4.14: FDD for node and field table generation.

We assign nodes v2, v3, and v4 node IDs 00, 01, and 11, respectively. Then we can create

the field table for F2. We prepend the node ID of a node table to its rules when we add

them to the field table.

To illustrate shadow encoding, consider the field table composed of two node tables (t1

and t2) shown in figure 4.16. We can see that t1 and t2 are identical except that t1 has one

additional rule. We let t1 defer to t2 and we get the shadow encoded field table in 4.16

4.4 Verification

Our work would be pointless without verification that the first-match classifier resulting

from the all-match to first-match conversion was actually equivalent to the original all-

match classifier. To our knowledge there is no algorithm short of brute force to confirm that

an all-match classifier AM and a first-match classifier FM are equivalent. We verified clas-

sifier equivalence by generating a comprehensive set of packets and verifying both classifiers

produced the same result for each packet.

We generate two sets of packets InputPackets and OutputPackets based on AM and
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v1 node table
101 00
01* 01
*** 11

v2 node table v3 node table v4 node table
*** d 110 a 0** a

*** d *** d

F2 Field table
00 *** d
01 110 a
01 *** d
11 0** a
11 *** d

Figure 4.15: Node tables for F1 and F2, and field table for F2.

t1

00 110 a
00 100 a
00 *** d

t2
01 110 a
01 *** d

→
t1 00 100 a

t2
0* 110 a
0* *** d

Figure 4.16: Field table and shadow encoded field table for F2.

FM, respectively. However, since the packet generation procedure is the same for both

classifiers, let us focus on the packet generation for AM.

Recall that each field in AM can consist of several discontinuous intervals and the ith

field of rule r is r[i]. For each interval int = (s, e) of r[i] for each rule r ∈ AM, generate

four packets pj for 1 ≤ j ≤ 4 as follows: (1) pj [k] ∈ Fk ∀ k 6= i. (2) pj [i] uses the values

(s − 1, s, e, e + 1) for 1 ≤ j ≤ 4, respectively. For example, Let r be a rule with a source

port field of [25:30,35:40], then we generate eight packets (four for each interval) with source

port values: 24, 25, 30, 31, 34, 35, 40, and 41.

After using the above method to generate the InputPackets and OutputPackets sets for
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AM and FM, we cross-classified the packets against both classifiers to ensure that neither

classifier made misclassifications.
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Chapter 5: Experimental Results

In this chapter, we present our experimental results. We evaluated three versions of the

Snort rules using our two approaches: (1) applying all-match classifier specific optimization

algorithms and (2) transforming the given all-match classifier to a first-match classifier and

then using state-of-the-art first-match classifier optimization algorithms.

When optimizing for a one TCAM environment, our results indicate it is best to perform

first-match classifier optimization on a transformed classifier when we perform no all-match

specific optimizations. Using TCAM Razor, we had TCAM space savings of nearly 71%.

However, when optimizing for a multiple TCAM environment, our results indicate using SSA

with Negation Removal is most effective.

First we discuss some pertinent implementation details. Then we present the classifiers

we used and what effect the all-match to first-match conversion has on them. We end by

giving performance and efficiency results for both approaches.

5.1 Methods

In our experiments, we used the three Snort rule sets shown in column one of table 5.1.

The Snort rules often used values like $HOME NET and $EXTERNAL NET for the source IP and

destination IP fields. In our experiments, we set $HOME NET to be a full class A subnet. By

default, we defined $EXTERNAL NET to be the negation of $HOME NET. We did test different

initializations for $HOME NET, but noticed no significant effect on the results.

We implemented the all-match classifier to first-match classifier transformation algorithm,

the negation removal algorithm, and the Set Splitting Algorithm (SSA). In addition, we used

previous implementations of first-match optimization algorithms TCAM Razor, Topological
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Transformation, and TCAM SPliT.

For TCAM Razor and TCAM SPliT, the order in which we process the fields of the

classifier has an impact on the results. We evaluated all permutations of field ordering and

have reported the results for the best ordering for each algorithm. To compare classifier

efficiency, we averaged the running times of the five best permutations of field ordering for

each classifier and algorithm.

While evaluating first-match optimizations for our classifiers, we considered different

values for the width of each TCAM entry. We evaluated using a perfect TCAM width of

104 bits, where each TCAM entry is exactly as wide as each rule, as well as multiples of 36

and 40bit TCAM entry widths. Specifically, we focused on TCAM widths of 104, 144, and

160 bits. The 104 bit perfect TCAM width is the sum of the width of each field; we assume

the protocol is an 8 bit field, the source and destination IP fields are 32 bits each, and the

source and destination port fields are 16 bits each. While having a perfect width TCAM

entry in practice is unrealistic, it provides a lower bound on the size of our classifiers.

Negation removal, SSA, and TCAM Razor all use 144 or 160 bit wide TCAM entries

because each rule is 104 bits wide. Thus, we are wasting 40 or 56 bits per entry, respectively.

For TCAM SPliT and Topological Transformation transformers, we also considered TCAM

widths of 36, 40, 72, and 80 bits since each TCAM entry only encodes one field plus a table

ID.

To evaluate the effectiveness of each algorithm, we compute the TCAM space saved

compared to our baseline result using only negation removal. Specifically, we calculate

TCAM space saved as,

TCAM Space Saved = 1− TCAM Size of Optimized Classifier

TCAM Size of Classifier with only Negation Removal
.
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Negation Removal w/o Negation Removal
Rules No. Rules Output Rules Converted Rules Output Rules Converted Rules
2.9.0.3 471 19240 90279 18685 177662
2.9.0.5 552 28239 176562 27564 349809
2.9.1.0 553 28243 176566 27565 349810

Table 5.1: Number of input and output rules through the all-match to first-match conversion.

Negation Removal w/o Negation Removal
Rules TCAM Entries TCAM Entries
2.9.0.3 131043 1022184
2.9.0.5 246276 1939700
2.9.1.0 246282 1939701

Table 5.2: Number of input and output rules through the all-match to first-match conversion.

More precisely, the TCAM space saved results we present are in addition to the inherent

savings given in [22] when performing negation removal during all-match to first-match

conversion.

5.2 Baseline Results

First we discuss how the classifiers expand as we progress through the all-match to first-match

conversion process. As we can see in table 5.1, the number of rules increases dramatically

when we perform the all-match to first-match conversion. The “Output Rules” columns of

table 5.1 indicate how many rules the all-match to first-match algorithm produced using or

not using negation removal. The “Converted Rules” columns indicate the number of rules

in the each classifier after splitting rules with discontinuous ranges. Table 5.2 shows the

number of TCAM entries required to store the converted rules without further optimization.

We can compute the size of these classifiers by multiplying by the number of bits used per

entry.
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The all-match to first-match algorithm in [22] increases the size of the classifier. This is

quite obvious when comparing “No. Rules” column to the values shown in any of the output

columns. In addition, the “Output Rules” are greater when we perform negation removal.

This is to be expected because the separator rules we add to maintain classifier semantics

will generate new intersection rules with other rules.

At first glance it may be puzzling why the “Converted Rules” are greater when we do

not perform negation removal, but there is a simple explanation for this phenomenon. When

we skip negation removal, the rules with a field of $EXTERNAL NET have discontinuous ranges

that we need to split into multiple rules. Since most of the rules have $EXTERNAL NET for

one of the IP fields, we effectively double the size of the classifier.

5.2.1 Single TCAM Approach

We first evaluated the TCAM Razor first-match classifier optimization algorithm [11]. The

percent of TCAM space saved using TCAM Razor on the first-match classifier for Snort

2.9.0.3 was 56.49%, as can be seen in Figure 5.1. On the newer and larger Snort rule sets

2.9.0.5 and 2.9.1.0, Razor achieved space savings of 70.85%, as can be seen in Figure 5.2.

Because TCAM Razor uses an FDD while minimizing classifiers, we attain the same TCAM

space savings whether or not we use negation removal during the all-match to first-match

conversion.

5.2.2 Mutliple TCAM Approach

When using multiple TCAM chips is an option, our results indicate it is best to use the

all-match specific optimizations negation removal and SSA instead of the first-match classi-
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Figure 5.1: Classifier sizes obtained using TCAM Razor vs negation removal alone for the
Snort 2.9.0.3 rule set.

Figure 5.2: Classifier sizes obtained using TCAM Razor vs negation removal alone for the
Snort 2.9.0.5 and 2.9.1.0 rule sets.
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Snort Rules: 2.9.0.3 2.9.0.5 2.9.1.0
Algorithm Bits TCAM TCAM Entries

Negation Removal 144
Entries 131043 246276 246282
Size 18.00 Mb 33.82 Mb 33.82 Mb
Space Savings — — —

TCAM Razor 144
Entries 57018 71798 71799
Size 7.83 Mb 9.86 Mb 9.86 Mb
Space Savings 56.49% 70.85% 70.85%

Topological Transformation 40
Entries 28491 36978 36979
Size 1113 Kb 1444 Kb 1444 Kb
Space Savings 93.96% 95.83% 95.83%

TCAM SPliT 36
Entries 26465 33952 33952
Size 931 Kb 1194 Kb 1194 Kb
Space Savings 94.95% 96.55% 96.55%

SSA 2 144
Entries 6518 1948 1432
Size 917 Kb 274 Kb 201 Kb
Space Savings 95.03% 99.21% 99.42%

SSA 4 144
Entries 1149 1323 1188
Size 162 Kb 186 Kb 167 Kb
Space Savings 99.12% 99.46% 99.52%

Table 5.3: Summary of results.

fier optimizations Topological Transformation and SPliT. SSA achieves better performance

because it solves a slightly different problem. While Topological Transformation and TCAM

SPliT return all matching rules, SSA returns only a subset per query. The results returned

by all SSA lookups must be unioned together to get a complete solution.

Table 5.3 summarizes the performance of all algorithms we evaluated. We have omitted

space savings for negation removal because it was our baseline, but in fact the space savings

for negation removal can be calculated by comparing against the size of the classifier if we

do not apply negation removal.

We can see that SSA 2 and SSA 4 outperformed both Topological Transformation and

TCAM SPliT. Note that of the multi-TCAM optimization algorithms, Topological Trans-

formation had the least space savings with 93.96% and SSA 4 had the most with 99.52%.
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5.3 Efficiency

The computational effort required to compress large classifiers like the Snort rules is a non-

trivial task. In this section, we evaluate the efficiency of our approaches. Surprisingly,

we report an increase in efficiency when we skip negation removal during the all-match to

first-match conversion.

We only collected efficiency data for TCAM Razor and Topological Transformation; how-

ever, Topological Transformation had an average run time on the order of hours while SSA 2

and SSA 4 were on the order of 10’s of minutes. Therefore, we only present efficiency results

for TCAM Razor.

Figure 5.3: Time efficiency of TCAM Razor with and without negation removal.

As figure 5.3 shows, we found that on average Razor performed 38% faster for input clas-

sifiers generated without using negation removal. This is a meaningful result given that the

classifiers without negation removal are twice as large as the classifiers with negation removal

(see table 5.1). Since the two classifiers are semantically equivalent, they are represented by
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the same FDD. Therefore, the only explanation for Razor being more efficient on one or the

other is that Razor can build the FDD faster using the classifier formed without negation

removal.
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Chapter 6: Conclusion

In this thesis, we evaluate the performance and efficiency of two approaches to minimizing

all-match classifiers by converting them to first-match classifiers. In the first approach we,

consider optimization algorithms specific to all-match classifiers: negation removal and SSA.

Our second approach applies state-of-the-art first-match classifier optimization algorithms to

a first-match classifier generated from an all-match classifier. We evaluated both approaches

in the context of how many TCAM chips are used. We found that when only one TCAM chip

is available, it is best to avoid all-match specific optimizations and apply first-match classifier

optimizations instead. Using this approach we were able to achieve a 70.85% reduction in

TCAM space with TCAM Razor over negation removal alone. On the other hand, we found

in a multiple TCAM chip environment, the best method to use is SSA with negation removal

which achieves TCAM space savings of 99.52% over negation removal alone.
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