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ABSTRACT

An analysis of the infrared spectra of H,Se and D,Se is made in
order to determine the rotational constants and the first order
stretching coefficients of these molecules. The analysis utilizes
the energy moment treatment of the quantum mechanical asym-

metric rotator developed by Parker and Brown.
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Introduction

In order to discuss the rotational energies of nonlinear
polyatomic molecules, it is both customary and convenient to
classify them according to the relative magnitudes of their prin-
cipal moments of inertia. 'i‘he principal moments of inertia are
expressed in terms of a body-fixed coordinate system which has its
origin at the center of mass of the molecule and is so oriented that
the product of inertia terms are all zero. Depending upon the
geometry of the molecule, the three moments of inertia may all
have the same value, O;l' two may have the same value but differ
from the third, or all three may have different values. The mol-
ecules are then classified as spherical tops, symmetrical tops,
and asymmetrical tops respectively.

The vibration-rotation energies of asymmetrical tops can
be formulated in terms of a quantum mechanical Hamiltonian
function.l To a first approximation the vibrational energy of the
molecule is that of an ensemble of harmonic oscillators, and the
rotational part of the energy is that of a semi-rigid microphysical
rotator.

The total energy expressed by the Hamiltonian can then

in this approximation be set down as the sum of two terms, a

1 H.H. Nielsen, Rev. Mod. Physics 23, 90 (1951)
1
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vibrational and a rotational term. If the forces of attraction be-
tween the atoms of a molecule are considered strong enough to
hold the molecule almost rigid, it is found to a good approximat-
ion that the rotational energy can be separated from the vibration-
al energy. Thus, if one considers transitions for which the
electronic configuration remains unchanged and for which the
vibrational energy remains unchanged, then the case dealt with
is one of ''pure rotation', and the rotational energies are added
to the energy of vibration of the molecule vibrating in one of its
normal modes. When this approximation is inadequate, a second-
order correction term involving both rotation and vibration is
necessary to account for the change in the average moment of
inertia due to vibration-rotation interaction, and depending on
the molecule and energy levels considered a correction term
may be needed to adjust for the change in the moment of inertia
caused by centrifugal stretching of the molecule.

In their literature, Parker and Brown?: 3» 4 describe
a procedure which relates the energies of a stationary quantum
mechanical system to the physical constants appearing in the

Hamiltonian describing this system.

2 P,M. Parker and L.C. Brown, Amer. J. Phys. 27, 509 (1959)
3 P. M. Parker and L.C. Brown, J. Chem. Phys., 27, 1108, (1957)
4 P.M. Parker and L.C. Brown, J. Chem. Phys. 30, 909 (1959)
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Utilization of this method makes it possible to compute

the effective rotational constants of a molecule from spectro-

scopic data. The method described by Parker and Brown deals

not only with the rigid rotator, 3,4 but is extended to include first

order centrifugal stretching effects.

5

The present work utilizes this energy moment treatment

of the quantum mechanical asymmetrical rotator developed by

Parker and Brown3: 4 5 for the analysis of the infrared spectral

data of D,Se and H)Se obtained by Palik and Oetjen. 6,7 The

effective rotational constants of DSe and HSe are calculated for

the rigid case; the stretching coefficients as well as the rotational

constants are determined for the non-rigid case.

An error analysis is made and the results are com-

pared with the rotational constants which Palik and Oetjenb’ 7 ob-

tained by applying a different method of analysis to the same

data.

3 P.M. Parker and L.C. Brown, J. Chem. Phys. 27, 1108, (1957)
4 p,M. Parker and L.C. Brown, J. Chem. Phys. iQ’ 909 (1959)
2 P.M. Parker and L.C. Brown, J. Chem. Phys. 31, 1227, (1959)

-

E.D. Palik and R. A. Oetjen, J. Molecular Spectroscopy, 1, 223,
(1959)
E.D. Palik and R. A. Oetjen, J. Molecular Spectroscopy, 3, 259,
(1959)






II

Theory

(a) Rigid rotator analysis
The energies of a rigid quantum mechanical system can
be expressed by a Schroedinger equation,
| Wi = Fidx (2a.1)
where W is the appropriate Hamiltonian for the system, k enum-
erates the members of a supposedly complete set of energy
eigenfunctions / » and F) their corresponding eigenvalues.
When it is possible to express the matrix elements
Wij of the Hamiltonian W in some convenient representation
Vk, the allowed energies of the system F) are the roots of the
secular equation,

[wij - F5ij = 0, (2a. 2)
where 1is the Kronecker delta symbol. This secular equation
can be expanded into a polynomial of degree n in the form,

F! o+ ¢ Fl 4 ,F?2 4. . .4+c, =0, (2a.3)
in which the n roots of F and the n coefficients form a complete
set of invariants of the matrix. The subsequent determination of
the physical constants of the system can in certain cases be effected
by equating values of cj expressed in terms of experimentally de-~
termined energy levels to the corresponding values of cj expressed

in terms of the matrix elements W which contain the physical






parameters. Parker and Brown3 show that these constants c;
can be expressed in terms of the first r moments of the energy

levels.

S, =§:T (F )T (2a. 4)

and alternately by the equation,

S; Tr(Wi) (2a.5)

1

i

1,2,3, ...,n,
where S, represents the moments of the energy levels, and
Tr(Wi) are the traces of the submatrices of the Schroedinger
equation; their method is then developed in terms of moments of
the energy levels rather than in terms of the polynomial co-
efficients.

In applying this method to the rigid asymmetric ro-
tator problem, the Hamiltonian for the system is

W = H/hc = AP 2

2
+BP 2+ CP,". (2a. 6)
Here Px’ Py’ and Pz are components of angular momentum of
the rotator in units of A referred to the body-fixed coordinate
system which is defined by the diagonal inertia tensor; and
_ 2 poy _ 2
A =h/8T"Ic, B =h/8T I,c, C = h/8M"I,c . (2a.7)

The constants A, B, and C are the reciprocals of the effective

principal moments of inertia I, Iy, and I, apart from universal

3

P. M, Parker and LL.C. Brown, J. Chem. Phys. 2_7, 1108, (1957)



constants,

2 that the first three moments are adequate

It is shown
in the determination of A, B, and C. The value of the first
moment Sl is obtained from the experimental data by adding the
(2J + 1) levels F corresponding to a fixed value of J; the electronic
state is assumed to remain fixed throughout the procedure. The
first moments is given by the equation

S1 =3 (FT ) (2a.8)
T =J, J-1, «..,-TJ.

The mean value of the energies FJ corresponding to a given J is

next found by dividing S; by the number of terms in the summat-
ion:

FJ = SI/2J+1. (2a.9)

Subtraction of F. from each of the (2J+1) values of F,r yields

J

r;;’, = (1«:,, -i“'J). (2a.10)
This modifying process shifts the zero level equally for all
energies considered, but does not change any of the physical as-
pects of the problem. The second and third moments can then be
evaluated by squaring and cubing the sum of the (2J+1) modified
energies,

S, == (F (2a.11)

o 2
7 )
S3 =X (FO, )3 (2a.12)

2 P.M. Parker and L.C. Brown, Amer. J. Phys. 27, 509 (1959)



It can then be shown tha.t3’ 4

S; =py & (2a.13)
Sz =y Y 2(1+p 2/3) (2a.14)
s3=p3Y 31-p %) (2a.15)

The quantities p), pp, and p3 are polynomials in J as follows:

p] = 2J(J+1)(2J+1)/31 (2a.16)
py = 2J(J+1)(2J-1)(2T+1)(2T+3)/3(51) (2a.17)
p3 = 2J(J+1)(2J-3)(2J-1)(2J+1)(2T+3)(2T+5)/3(71) (2a.18)

The parameterc , which is a measure of an equivalent spherical
rotator, now follows from (2a.13)., The para.meterlg measures
the deviation from a symmetrical top, and has a value that lies
in the range -1 B 0. Its value can be determined by em-
ploying (2a.14) and (2a.15) simultaneously to give
1-8 = (1-g4%/1+p2/3)° = p2%s32/p3%523,  (2a.19)

where § is first determined from the experimental data and IB is
then obtainable from a tabulation o£/8 in terms of ¢ . Having
determined /B , then™Y  , which shows the deviation of the top
from spherical symmetry, is given by (2a.14).

When L , /8 , and Y are known, A, B, and C can

be found by solving the equations

3 P.M. Parker and L.C. Brown, J. Chem. Phys. 27, 1108, (1957)
4 P.M. Parker and L.C. Brown, J. Chem. Phys. 30, 909 (1959)
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A=Q1/3)[L-7/21-B)] (2a. 20)
B =(1/3)[& -7 /2(1+F )] (2a.21)
C=(1/3)[c + 7] . (2a.22)

The principal moments of inertia readily follow from equations
(2a.7).
(b) Non-rigid rotator analysis

The basic scheme of vibration-rotation energies is ex-
pressed by the harmonic oscillator and rigid rotator formulas.
However, a precise quantita.tive‘adjustment to spectral data must
consider both the anharmonicity of the potential energy and the |
centrifugal strétching of the rotating molecule. Only the effects
of stretching are considered here.

To correct for non-rigidity, one may set down a

Hamiltonian of the form

W=W_+W,, (2b. 1)
a2 2 2
Wo = AP, + BP + CP, (2b. 2)

is the Hamiltonian of the rigid rotator, and Wl is the centrifugal

distortion term which can be written to a first order in the

following forms:

P

2
4 4 2p? LPo (2b. 3)

4
W, = o,P, + °zpy + 0P, + O (PP, +P
2

2
1 y
2.2 2.2 2 2.2
T5(PyP, + P,P,) + o-é(PxPy + Pny) .

The coefficients ¢~ depend on the geometrical form and the

5 P. M, Parker and L,C., Brown, J., Chem. Phys. 31, 1227, (1959)






9
force constants of the molecule and their values can in principle
be determined from experimental data. The moment equations

of (2b.1) are then shown to be>:

S1/p,Y = (& [y )+ (3/2)Lac | (3£-1) + L, (2f+1]); (2b. 4)

Sp/p2 Y2 = (1+ P 213) +2(65-5) YU+ p g 1) - (2b. 5)
4(£+5) P (1+ /9/92) ;

S3/p3 7> = (1- p2) + 9(E-2)01+ P 2/3)( L] -& 2) + (2b.6)

21 Y1(E-1)C (- p2/3) -2 BB 1T -
427, Ca- p2/3) - 2B p 2]

In these moment equations,

S 1= (15/2)7 )\ 1=1,2 ..., 6, (2b.7)
=N+ Np + N3) (2b. 8)
L2=(Ng+ N5+ Neh (2b. 9)
Pr=(N;-N2/EN3-N - N (2b. 10)
B2=(Ng-n5/2Ng"Ng-n5) (2b.11)
Y1 = (15/14)(2 N3 - N1 -2 (2b. 12)
T2 = (15/14)2 N - N4 -\ 5), (2b. 13)

f = J(J+1) (2b.14)

Application of the three moment equations to three different
values of J yields a set of nine equations which can be solved in
principle for the nine physical parameters d ,/3, 7, L1, /8 1

T 1 K2 £ 2, Y 5. The stretching constants }\,1 can then

> P.M. Parker and L.C. Brown, J. Chem Phys. 31, 1227, (1959)
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be calculated by means of equations (2b. 8) through (2b.13). The
constants & j then follow from (2b. 7).
(c) Non-rigid rotator analysis with "initial conditions"
The procedure of calculating the values of the nine
physical parameters is simplified a great deal ifcC, B, and
Ta.re found by extrapolation to J = 0 as in a rigid rotator
analysis by employing the following method.
Equation (2b. 4) can be arranged in the form
S1/pp = L+ (3/2)F (K- +(3/2)YV 3L +24,] &
(2c. 1)
It is seen on a graph of §; /PI vs, f that (2c.1) is the equation of
a straight line with intercept
L+ (3/2) Y (L, - &) (2¢c. 2)
and with slope
(3/2) 713, +20L,). (2c.3)
Then if the 'initial condition' is imposed that for J = 0
Sy/p; = &L , (2c. 4)
it must follow that
(3/2)(L, - &) =0, d, =, (2¢c.5)
In imposing the 'initial conditions' it is assumed that the ¢
extrapolated to J = 0 obtained by the rigid analysis is the
"unstretched" or 'true'' value of L . Using the values of CCI

and dz resulting from these conditions, the slope (S1)] of the
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line in equation (2c.1) is
(s1); = (15/2)Y L . (2c.6)
Next, equation (2b.5) can be arranged in the following form:
Sa/p2 =[(1+B2/3) - 10Y1 - 10 P77 - 2072 - 20 BBV I
+L1271 +12PR Y1 -47T, -4 BPL YL, IY? 6 (2.7

again the equation of a straight line with the first bracketed term
equal to the intercept and the second bracketed term ;qual to the
slope of the line. Extrapolating to J = 0, it becomes
Sp/p2 =1 2L(1+P2/3) - 107 1-10 BB 20BP 72] . (2c.8)
Imposing the condition that at J = 0,
S2/p2 = Y21 + B2/3) (2¢.9)
requires that
Y11+ PR +27,(1+ BBy =0, (2¢c.10)
and slope (S1)2 then becomes
(S1)z = -28 T2 T2(1+ PRy) . (2c.11)
Now, sincec( ] =l 2, the third moments equation
arranged in slope-intercept form becomes
S3/p3 Y’ =(1- B2 -21 7y [a-p2/3) -2 PR
21, La-P2r3) -2 Pp2l+a1 1 - B2/3- 2 PP £
(2c.12)
This time the condition imposed at J = 0 is
S3/p3 = T3(1- p2), (2c.13)

requiring that
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'}'1 [(1‘p2/3 -2 FFI)J -ZYZ E(l- p2/3 -ZPPZ)J = 0. (2c.14)

The slope (S1)3 is then

(s1)3 =21T3Y701-P2/3 -2BB ). (2c.15)

1f the value of ﬂ is found from equation (2c,.10) and
then substituted in (2c.14), the following equation results after
some algebraic manipulation:

(B2 -B1)(B?2/3-3) =o0. (2c.16)
As B # 0, it follows that PB1 = B 2; and if this fact is used in con-
junction with equation (2c.10) it is found also that ’)’1 = -2 )’2
Solving equation (2¢c.11) for ¥, yields

Yz = -(s1)2/ 28721+ B B2). (2¢.17)
Here it is seen that YZ is expressed, with the exception of ﬁz,
in terms of parameters that can be determined by a rigid
analysis. The value of P 2 can be found, however, in terms of
similar parameters by solving (2c.11) and (2c. 15) simultaneously,
and by using the additional information that B = P2and® ;=

-Y1/2.

The resulting expression for P 2 1is

B2 =37 (s1)2(1-B2/3) - 2(s1)3 ,
2 BIS1)3 + 37181)2] (2c.18)

Substitution of e 1, p 1> and ')/1 in terms of cC 5,

P 2, and 'rz respectively in equations (2. b8) through (2b.13)

leads to the equations for the stretching constants \i:



13

N1 =173 [k -1 170-381)], (2¢.19)
Nz =1/3fL; -5 1+38)], (2c. 20)
N3 = 1/3[; +14/15) 7], (2c. 21)

€\e=1/3fC 2 -1/15)TL0-3B2)], (2c. 22)
)\5 1/3 Eﬁz -(7/15)Yz(l+3ﬁ z)_]. | (2¢.23)

Ne = 173k 2 +14/15)) 5 ]. (2c. 24)

If it is possible to obtainel, A, and 7 along with (S1)1, (S1),

and (S1)3 from an analysis of experimental data, oL | can then be
found by (2c.6), TZ by (2¢.17) and ﬁ 2 by (2c.18). All stretch-
ing constants, )\1, follow from equations (2c.19) through
(2c. 24). Knowledge of these values then makes it possible to
determine the coefficients O j, of the centrifugal stretching
correction terms by employing equation (2b. 7).

(d) Intercept-slope method of analysis

If the rotating molecule were strictly a rigid rotator,

the effective values ofef , P , and Twould be constants un-

affected by changes in angular momentum as shown by the equations:

S;/py =<k, (2d.1)
S2/p2 =T2(1+B2/3), (2d. 2)
S3/ps3 = 3(1- B2). (2d. 3)

Graphs of Si/pl ve. J(J+1) are straight lines with zero slope show-
ing that the constants are unaffected by a change in the angular

momentum quantum number J,



-
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Analysis of experimental data shows that stretchiﬁg
due to centrifugal force does occur, resulting in changes in
these parameters. One may, however, attempt to find the
value of Sj/p; for J = 0 by fitting the effective values of S;j/p;

obtained from an analysis of experimental data to curves of

the form
Si/p; = & +A, (2d. 4)
Sp/py = P21+ B 2I3) + A, (2d. 5)
S3/p3 = 7 2(1 - B 2) + Asf, (2d. 6)

where a straight line fit is obtained by applying the method of
least squares. 8 The A j represent the slopes of the curves
and are to be interpreted as a measure of the deviation from
the zero-order rigid rotator theory; and in order for this
first order correction to be adequate for a given system, the
slopes must be very small.

Where this correction is adequate, extrapolation of
the S;j/pj curves to J = 0 enables one to determine fhe "true"
values of the principal moments of inertia.

The first order theory is approximate even for small
values of J; even for moleculesthat are not very ''stretchy'' the
approximation becomes progressively poorer at higher values

of J and higher order correction terms become necessary. In

8 See for example C. G, Lambe, Elements of Statistics, Chapter
VII, (Longmans Green and Co., New York, 1952)
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this case, the S;/p;j vs. f curves would no longer be straight

lines. 5

5 P.M. Parker and L.C. Brown, J. Chem Phys. 31, 1227, (1959)
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Analysis

Symmetric, nonlinear, triatomic molecules like H)Se
and DZSe have three fundamental vibration-rotation bands, Vi
V,» andV3. Associated with the fundamental modes of vibration
are the quantum numbers Vi» Vo, and Vi which serve to
describe the vibrational energy state. In the following procedure,
analyses of the rotational levels associated with a fixed mode of
vibration are carried out,.

The geometry for both D,Se and HySe is shown in Fig.
1, where it is seen that the principal axes are so oriented that
the Z axis is normal to the plane of the molecule. Both molecules
are asymmetric rotators with principal moments of inertia

I, 1y)Ix; and rotational constants A>B>C.

z z

X Se X

Se
H AN TR
<

HZSe DZSe

Figure 1. Geometry of the HpSe and D,Se molecules.

16
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The data used in the analysis were taken from the works
of Palik and Oetjen6’ 7 as follows:
H,Se for the vibrational state V; = V, = V3 = 0;

6

J=0toJ =7 from the first paper",

]}

10 from the second pa.per7.

J=8toJ

H,;Se for the vibrational state V) = V3 =0, V;, =1;

J=1toJ =6 from the second paper7.

DZSe for the vibrational state V| = V, = V3 =0;

J=0to J =6 from the second pa.per7.
D;Se for the vibrational state V) = V3 =0, V, =1;

J=1toJ =3 from the second pa.per7.

Following the procedure discussed in part II (a), and
employing equations (2a. 8) through (2a.21) a rigid analysis of the
preceding data was carried out. Five significant figures were re-
tained in all calculations and the physical parameters resulting
from the analysis are listed in Table I, Table II, Table III, and
Table IV, These are the effective values of the parameters.

Next, the values of S;/p; corresponding to a given
value of J were determined from the data given in Tables I
through IV, The S;/p; along with the J(J+1) for a given J are

tabulated in Tables V through VIII. Preliminary plots of S;/p; vs.

6 E.D. Palik and R. A. Oetjen, J. Molecular Spectroscopy, _1_, 223,

(1959)
E.D. Palik and R. A, Oetjen, J. Molecular Spectroscopy, 3, 259,
(1959)
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Table V - S;/pj for the HySe molecule in the vibrational state *

Vi=V2=VY3=0

e —_—

J S;/p; S,/p2 -S3/p3
1 19,785 65,274 504, 43
2 19,786 65,171 501.50
3 19,782 65,114 501. 89
4 19,773 65.006 502.15
5 19,764 64, 830 501.77
6 19,750 64,523 499, 68
7 19,735 64.234 497, 26
8 19,719 63,932 494, 84
9 19.700 63.518 491, 76
10 19,678 63.125 488.70

Table VI - S;/pj for the HpSe molecule in the vibrational state *

V1=V3=0;V2—1

J SI/pl Sz/pz -S3/P3
1 19.670 91, 602 843,23
2 20.167 74.163 608,11
3 20.159 73.810 604.73
4 20,150 73.865 602,52
5 20.139 72.273 603, 26

* 5 /PI in ﬁnits of cm'l, Sz/pz in units of cm"z, S3/p3 in
units of crn"3.
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Table VII - Si/Pi for the D,Se molecule in the vibrational state *

V1=V2=V3=O

J S;/p1 S,/p2 -S3/p3
1 10,045 17.055 64, 397
2 10,048 17.018 64.395
3 10,048 ' 17.015 64,352
4 10,048 17.019 64,343
5 10,048 17.019 64, 345
6 10.048 17.011 64,220

Table VIII - Si/ pj for the D,Se molecule in the vibrational state *

V1=V3=0;V2=1

J Sl /PI SZ/PZ "S3/P3
1 10.135 17.633 66,388
2 10.182 18.559 74,083
3 10.184 18. 661 71.121

* S1/p)] in units of cm™!, Sz /p2 in units of cm-z, S3/p3 in
units of cm-~3,



24
(J+1) indicated that the data for the vibrational state described by
the quantum numbers V; = V5 =0, V, =1 for both DpSe and H;Se
were not only too limited, but also very erratic, no further
analysis was attempted.

Further analysis of the data corresponding to the
vibrational ground state (V; = V, = V3 = 0) was carried out for
both molecules, but here too, some values were discarded. Only
the values below the solid lines in the columns in Tables V and
VII were used in the subsequent analysis.

The method of least squares was then applied to the
data in Table V and Table VII in order to obtain the straight line
best fitted to these data. The six equations which resulted are:

H,Se (V, = V, = V; = 0)

e
S,/p; = [19.795 - . 0010595 J(3+1)] cm™! (3.1)
S,/p, = [65.431 - . 021057 J(J+1)] cm™2 (3.2)
S,/p, = [-506.55 + .16322 J(J+1)] cm™3 (3. 3)

D,Se (V, =V, =V, =0)
s;/p, = [10.048] cm™! (3. 4)
s,/p, = [17.019 - . 00012621 J(7+1)] cm™2 (3.5)
S3/p3 = [-64.421 +.004085 J(J+1)] cm™3 (3.6)

Graphs of these equations are shown in Figs. 2, 3, 4, 5, 6, and 7.
Extrapolation of these curves yielded the values of

S;/p; corresponding to J = 0, A rigid analysis of these extrapolated
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values gave the rotational constants of the molecules which are

listed in Table 1X.
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Table IX - Parameters of HySe and DySe calculated from a rigid

analysis of extrapolated values (to J=0) of S;/p;

ste (Vl = VZ = V3 = 0)

o E 4 A B c
19.795 .17032 8.0501 8.1683 7.7115 3,9150
D,Se (V; =V, =V, = 0)
ool B 7 A B C
10.048 .23758 4.0871 4.1924 3.8687 1.9870

&, 'Y', A, B, and C in units of cm'l; B dimensionless,
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A non-rigid analysis of these data then followed. By
using the values of &, B, and 7 obtained from the preceding
rigid analysis along with the slopes of the curves from equations
(3.1) through (3. 6) it was possible to findC 4, ’}’2, and B 2 from
(2c.6), (2c.17) and (2c.18). The values ofcC,, B, and ] then
followed from the relations: € =C,, B 1 = B, and Tl =
-2 7,2. The )\i 8 were next determined from equations (2c.19)
through (2c.24). Finally, the O°; 8 were calculated by using
(2.b7). The values of the stretching coefficients }\i’ and the re-
sulting coefficients O ; of the centrifugal correction terms in the
Hamiltonian (2b. 3) are listed in Table X.

Error Analysis

An error analysis9 was performed in order to measure
the quality of the fit obtained by the method of least squares for
equations (3.1) through (3.6). As the final interest lies in the
rotational constants and in the coefficients of the centrifugal
correction terms, the probable error of the values used to calcu-
late them were found, These values were the probable errors in
the slopes and intercepts of equations (3.1) through (3. 6); results

are tabulated in Table XI.

9 F.A. Willers, Practical Analysis, Chapter IV,
(Dover Publications, New York, 1948)
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Table X - Stretching coefficients )\ i and

centrifugal correction term coefficients & i

HZSe (V1 =V

2

=V3=O)

+3.0498 x 1072

3.8924 x 10-3

.91317 x 10-3

2.4028 x 1072
+1.0684x107°

.42125 x 10°°

+1.8413x 103

2.3501 x 10~

.55133 x 10-3

1.4507 x 10~ 3

+.64505 x 10-3

.25433 x 10~

D,Se (V) =V, = V3 = 0)

+2.1317x10°6

2.3160 x 10~

+.18433 x 1076
- 1.0658 x 10~
+1.1580 x 10~

.09217 x 10-©

+6.5344 x 105

7.0994 x 1075

+.56504 x 10°°
-3.2671 x 1072
+3.5497 x 1072

.28252 x 10-5
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These values of Si/Pi along with their probable errors

were used in a rigid analysis once more to determinecC , ﬁ, and

?’. The worst possible combinations of these values and their
corresponding probable errors were used this time in order to
ascertain the largest error that might result in the present
calculations. These '"worst' values of &C, ﬁ, and 7/were next
used in the same manner to determine the rotational constants in
the way previously described. Results showed that A and B for

1

the HySe molecule might be in error as much as + .01 cm™" and

the value of C by as much as +,02 cm-1,
An error analysis of the stretching coefficients was
carried out in the same manner. Here, the slopes of the Si/pi
curves along with their probable errors were used in con-
junction with the ''worst' values of OC, B, and ?/to find the
greatest error likely to occur in the stretching coefficients )\1.
The \f\ i 8 were in turn used to determine the greatest amount

by which the coefficients & ; might be in error. The results of

the calculations are shown in the summary in Table XII.
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Summary

The ''unstretched' values of the rotator constants A, B,
and C obtained by the energy moment method in the present work
are in very close agreement with the values which Palik and
Oet:jen7 arrived at by employing a different method of analysis,

A comparison of the results is shown in Table XIII,

The coefficients of the centrifugal correction terms in
the Hamiltonian seem to be reasonably accurate for H,Se; Table
XII shows that the values calculated from these data might be in
error by as much as +.04 x 10-3cm™1,

Although the values of the rotational constants for
D,Se are quite satisfactory, the results obtained for the &, s
are rather poor; -the error may be as high as 28%. D,Se is not
a very ''stretchy' molecule; the zero slope of equation (3. 4)
and the very small slopes of the curves represented by equations
(3.5) and (3.6) bear this out. As a consequence, a small error
in the calculated value of the slope shows up in the end results
as a very large relative error.

In this particular case it is believed that the data,

although sufficient to enable determination of the rotator con-

7 E.D. Palik and R. A. Oetjen, J. Molecular Spectroscopy, 3,

259, (1959)

37
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Table XII - Coefficients of the centrifugal correction terms in
the Hamiltonian - equation (2b. 3)

ste (Vl = Vz = V3 = 0)

&y = (+1.84) +.010) x 1073
&g = (-2.35, +.002) x 1073
S5 =(- .55, +.002) x 107>
o =(-1.45 + 000)x 10-3
S = (+.645 +.010)x 107>
S, = (- .254, +.040) x 1077

D,Se (V, =V, =V, =0)

S, =(+6.53, +1.84)x 107>

4
S, =(-7.099 +1.79) x 1077

= -5
&, = (+'5650i .05)x 10

3.26, +1.10) x 107>

s _ = (+ 3.5501 .89) x 107>

.2825 + .11)x 1075
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Table XIII - Rotational constants of H,Se and D,Se for the

vibrational* state (V] = V2 = V3 = 0)

Present work Palik and Oetjen**

H;,Se HjSe
A 8.16g A 8.165
B 7.714 B 7.71,
C 3.915 C 3.91g
D;,Se DySe
A 4.19, A 4.193
3. 869 B 3. 865
C 1.98, C 1.98,

* All values expressed in units of cm™l,

*¥ These values for the rotational constants are taken from the
works of Palik and Oetjen’ where it is stated that they may
be in error by as much as + .02 cm™1,

7 E.D. Palik and R.A. Oetjen, J. Molecular Spectroscopy, 3,
259, (1959).
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stants with a fair degree of accuracy, is insufficient to obtain the
slope of the S;/pj vs. J(J+l) curve accurately enough. Figs. 5,
6, and 7 show the graphs of these data for D,Se. Here it is seen
that although the data for the S;/ p; curve is satisfactory, the data
for the S;/py and S3/p3 are very limited and very erratic. In-
clusion of a value of S;/p; which may border on the point of
rejection, while it may not change the value of the intercept
appreciably, can result in a relatively large change in the slope
of the curve. The smaller the slope of the curve, the more
sensitive the values of 6'1 would be to such a change. Without
doubt, acceptable results could be obtained had more complete
data been available for the D,Se molecule.

The data for the higher vibrational states is seen to
be far too limited and erratic to warrant any attempt at analysis
beyond the calculation of the effective values of the rotational

constants obtained by a rigid analysis.






nmr B T

R



IIllllllllllll!IIHIIIIIIUIlllll!IIIII!I!ll(MIIUIIIIIIHIIHI

017430202



