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ABSTRACT

An analysis of the infrared spectra of HZSe and DZSe is made in

order to determine the rotational constants and the first order

stretching coefficients of these molecules. The analysis utilizes

the energy moment treatment of the quantum mechanical asym-

metric rotator developed by Parker and Brown.
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Introduction

In order to discuss the rotational energies of nonlinear

polyatomic molecules, it is both customary and convenient to

classify them according to the relative magnitudes of their prin-

cipal moments of inertia. The principal moments of inertia are

expressed in terms of a body-fixed coordinate system which has its

origin at the center of mass of the molecule and is so oriented that

the product of inertia -terms are all zero. Depending upon the

geometry of the molecule, the three moments of inertia may all

have the same value, or two may have the same value but differ

from the third, or all three may have different values. The mol-

ecules are then classified as spherical tops, symmetrical t0ps,

and asymmetrical tops respectively.

The vibration—rotation energies of asymmetrical t0ps can

be formulated in terms of a quantum mechanical Hamiltonian

function. 1 To a first approximation the vibrational energy of the

molecule is that of an ensemble of harmonic oscillators, and the

rotational part of the energy is that of a semi-rigid microphysical

rotator.

The total energy expressed by the Hamiltonian can then

in this approximation be set down as the sum of two terms, a

 

1 H. H. Nielsen, Rev. Mod. Physics 23, 90 (1951)
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vibrational and a rotational term. If the forces of attraction be-

tween the atoms of a molecule are considered strong enough to

hold the molecule almost rigid, it is found to a good approximat-

ion that the rotational energy can be separated from the vibration-

al energy. Thus, if one considers transitions for which the

electronic configuration remains unchanged and for which the

vibrational energy remains unchanged, then the case dealt with

is one of "pure rotation", and the rotational energies are added

to the energy of vibration of the molecule vibrating in one of its

normal modes. When this approximation is inadequate, a second-

order correction term involving both rotation and vibration is

necessary to account for the change in the average moment of

inertia due to vibration-rotation interaction, and depending on

the molecule and energy levels considered a correction term

may be needed to adjust for the change in the moment of inertia

caused by centrifugal stretching of the molecule.

In their literature, Parker and Brownz' 3’ 4 describe

a procedure which relates the energies of a stationary quantum

mechanical system to the physical constants appearing in the

Hamiltonian describing this system.

 

P. M. Parker and L.C. Brown, Amer. J. Phys. 21, 509 (1959)

P. M. Parker and L.C. Brown, J. Chem. Phys. 21, 1108, (1957)

P. M. Parker and L.C. Brown, J. Chem. Phys. Q, 909 (1959)
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Utilization of this method makes it possible to compute

the effective rotational constants of a molecule from spectro-

scopic data. The method described by Parker and Brown deals

not only with the rigid rotator, 3’ 4 but is extended to include first

order centrifugal stretching effects. 5

The present work utilizes this energy moment treatment

of the quantum mechanical asymmetrical rotator developed by

Parker and Brown3’ 4' 5 for the analysis of the infrared spectral

data of DZSe and HZSe obtained by Palik and Oetjen. 6’ 7 The

effective rotational constants of DZSe and HZSe are calculated for

the rigid case; the stretching coefficients as well as the rotational

constants are determined for the non-rigid case.

An error analysis is made and the results are com-

pared with the rotational constants which Palik and Oetjené’ 7 ob-

tained by applying a different method of analysis to the same

 

data.

3 P. M. Parker and L.C. Brown, J. Chem. Phys. 31, 1108, (1957)

4 P. M. Parker and L.C. Brown, J. Chem. Phys. 39, 909 (1959)

2 P. M. Parker and L.C. Brown, J. Chem. Phys. 31, 1227, (1959)

E.D. Palik and R.A. Oetjen, J. Molecular Spectroscopy, l, 223,

(1959)

E.D. Palik and R. A. Oetjen, J. Molecular Spectroscopy, _3, 259,

(1959)

.
4
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Theory

(a) Rigid rotator analysis

The energies of a rigid quantum mechanical system can

be expressed by a Schroedinger equation,

i Wtk = PM k (2a.1)

where W is the appropriate Hamiltonian for the system, k enum-

erates the members of a supposedly complete set of energy

eigenfunctions / , and Fk their corresponding eigenvalues.

When it is possible to express the matrix elements

Wij of the Hamiltonian W in some convenient representation

Vk, the allowed energies of the system Fk are the roots of the

secular equation,

[wij - F5” = o, (2a.2)

where is the Kronecker delta symbol. This secular equation

can be expanded into a polynomial of degree n in the form,

F1 + chn'1 + can'2+.....+cn=O, (2a.3)

in which the n roots of F and the n coefficients form a complete

set of invariants of the matrix. The subsequent determination of

the physical constants of the system can in certain cases be effected

by equating values of Ci expressed in terms of experimentally de-

termined energy levels to the corresponding values of C]; expressed

in terms of the matrix elements W which contain the physical





parameters. Parker and Brown3 show that these constants Ci

can be expressed in terms of the first r moments of the energy

levels.

sr =27 (F )1‘ (2a. 4)

T = 1,2,3, ...,n.

and alternately by the equation,

51 = Tr(Wi) (2a. 5)

i = 1,2,3, ...,n .

where Sr represents the moments of the energy levels, and

Tr(Wi) are the traces of the submatrices of the Schroedinger

equation; their method is then develoPed in terms of moments of

the energy levels rather than in terms of the polynomial co-

efficients.

In applying this method to the rigid asymmetric ro-

tator problem, the Hamiltonian for the system is

w = H/hc = APXZ
2

+ BIPY2 + CPz . (2a. 6)

Here Px’ Py' and P2 are components of angular momentum of

the rotator in units of’h referred to the body-fixed coordinate

system which is defined by the diagonal inertia tensor; and

A - h/8FZI c B - h/87le c C - h/87TZI c (2a 7)_ X i " y a " Z s .

The constants A, B, and C are the reciprocals of the effective

principal moments of inertia Ix, IY’ and 12 apart from universal

 

3 P. M. Parker and L.C. Brown, J. Chem. Phys. 31, 1108, (1957)



constants.

2
It is shown that the first three moments are adequate

in the determination of A, B, and C. The value of the first

moment S1 is obtained from the experimental data by adding the

(ZJ + 1) levels F corresponding to a fixed value of J; the electronic

state is assumed to remain fixed throughout the procedure. The

first moments is given by the equation

S1 =Z( (2a.8)FT)

’T’ =J, J-l, ...,-J.

The mean value of the energies FJ corresponding to a given J is

next found by dividing 51 by the number of terms in the summat—

ion:

FJ = 51/2J+1. (2a. 9)

Subtraction of P from each of the (2J+l) values of F yields
J '1'

13;]? = (1:1; 5}). (2a.10)

This modifying process shifts the zero level equally for all

energies considered, but does not Change any of the physical as-

pects of the problem. The second and third moments can then be

evaluated by squaring and cubing the sum of the (2J+l) modified

energies,

52:2. (F (2a.11)
o )2

T

53 =2: (F537,)3 (2a.12)

 

2 P. M. Parker and L.C. Brown, Amer. J. Phys. _2__7_, 509 (1959)



It can then be shown that3’ 4

51 e pl ,1 (2a.13)

s2 = p2Y2(1+p 2/3) (2a.14)

$3 -'- psY 3(1-p 2) ~ (2a.15)

The quantities p1, p2, and p3 are polynomials in J as follows:

p1 = 2J(J+1)(2J+1)/3[ (2a.16)

p2 = 2J(J+l)(ZJ-1)(2J+l)(2J+3)/3(5!) (2a. 17)

p3 = 2J(J+1)(2J-3)(2J-1)(2J+1)(2J+3)(2J+5)/3(71) (2a. 18)

The parametercfi , which is a measure of an equivalent spherical

rotator, now follows from (2a. 13). The parameter/B measures

the deviation from a symmetrical top, and has a value that lies

in the range ~1< fl < 0. Its value can be determined by em—

ploying (2a.14) and (2a. 15) simultaneously to give

1 ~ 8 = (1-p2)2/(1+F2/3)3 = p23532/p32523 . (2a.19)

where (3 is first determined from the experimental data and ,8 is

then obtainable from a tabulation of F in terms of (5' . Having

determined P , thenY , which shows the deviation of the top

from spherical symmetry, is given by (2a.14).

When a , /8 , and T are known, A, B, and C can

be found by solving the equations

 

3 P. M. Parker and L.C. Brown, J. Chem. Phys. 2_7, 1108, (1957)

4 P. M. Parker and L.C. Brown, J. Chem. Phys. 33, 909 (1959)
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A = (1/3IL'cc-Y/2u-p13 (2a.20)

= (1/3)E<£ -"r'/2(1+p)j (2a.21)

= (1/3)|:cr. + ’7’j . (2a. 22)

The principal moments of inertia readily follow from equations

(2a. 7).

(b) Non-rigid rotator analysis

The basic scheme of vibration-rotation energies is ex-

pressed by the harmonic oscillator and rigid rotator formulas.

However, a precise quantitativeiadjustment to spectral data must

consider both the anharmonicity of the potential energy and the '

centrifugal stretching of the rotating molecule. Only the effects

of stretching are considered here.

To correct for non-rigidity, one may set down a

Hamiltonian of the form

W=WO+W (2b.1)
1'

_ 2 2 2
W0 - APx + BPy + CPz (2b. 2)

is the Hamiltonian of the rigid rotator, and W1 is the centrifugal

distortion term which can be written to a first order in the

following form5:

2

W = 01P:2+ GZP4+ 0 P:+ 04(PZP: +Pz
1 y 3

05(Piip +P§2Px)+o~6(PZPZ+yPyP:.)

P (2b. 3)
2+

Y+

The coefficients 0‘ depend on the geometrical form and the

 

5 P. M. Parker and L.C. Brown, J. Chem. Phys. §_1_, 1227, (1959)
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force constants of the molecule and their values can in principle

be determined from experimental data. The moment equations

of (2b. 1) are then shown to be5:

51/131?“ (cu-r113 (3/2)E011(3f—1) + d2(2f+1D; (210.4)

SZ/pz Y2 = (1+ 13 2/3) + 2(6f—5)7’1(1+’3F 1) - (2b.5)

4(£+5) 7.2““ [9,522) ;

s3/p3 T3 = (1- p21+ 9(f-2111+}a 2/311cL1 ”<3. 2) + (zb.6)

217’1(£—1)E(1- pz/3) —2 FF 1] _

42 7211(1— P2/3)— ZPP 2]

In these moment equations,

<9 1 =(15/2)’r)(1 1 =1, 2, 6, (2b.?)

¢1=()\1+)\Z+}\3). (2b.8)

C52=I7x4+7\5+)\6), (2b.9)

P1=(?\1-7\2)/(27\3-1\1-V\2). (2b.10)

52=('7\4-‘7\5)/(27\6-'“1\4-‘1~ 5). (212.11)

T1=115/14)(2\3 Wu A2). (210.12)

72 = (15/141(2~7\6 -\’\4 3h 5). (2b. 13)

f = J(J+1) (2b.14)

Application of the three moment equations to three different

values of J yields a set of nine equations which can be solved in

principle for the nine physical parameters cf, 73, 7’: (£1, fl 1,

"fl, (5,2, ,3 2, Y2. The stretching constants )1 can then

 

5 P. M. Parker and L.C. Brown, J. Chem Phys. 2, 1227, (1959)
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be calculated by means of equations (2b. 8) through (2b. 13). The

constants 6‘ i then follow from (2b. 7).

(c) Non-rigid rotator analysis with ”initial conditions"

The procedure of calculating the values of the nine

physical parameters is simplified a great deal ide, P , and

Tare found by extrapolation to J = O as in a rigid rotator

analysis by employing the following method.

Equation (2b. 4) can be arranged in the form

51pr = at + 6/21“)” (<12 — 0C1) + <3/21TL'3c5l1 + 2&2] f.

(2c.l)

It is seen on a graph of 51 /p1 vs. f that (2c. 1) is the equation of

a straight line with intercept

ci+ (3/2)’)’(c1:.z - 6.1) (2c.2)

and with slope

(3/2)7/(3d:1 + zccz). (2c. 3)

Then if the "initial condition" is imposed that for J = 0

Sl/pl = d; , (2c.4)

it must follow that

(3/2)(<£2 .. 6/1) = 0, at, a (£2 (2c.5)

In imposing the "initial conditions” it is assumed that the Cf.

extrapolated to J = 0 obtained by the rigid analysis is the

"unstretched" or "true" value of 0):» . Using the values of C191

and (52 resulting from these conditions, the slope (Sl)1 of the
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line in equation (2c. 1) is

(s1)1 = (15/2)‘Yc£1 . (2c.6)

Next, equation (2b. 5) can be arranged in the following form:

Sz/pz {(1+/82m - 107/1 - 10/9/9171 - 207’s - 20 Iii/9272172

+[12'Y‘1 + 12 1313173 - 4 ’13 — 4 P19172372 f, (2c.7)

again the equation of a straight line with the first bracketed term

equal to the intercept and the second bracketed term equal to the

slope of the line. Extrapolating to J = 0, it becomes

Sz/pz =7’Z[(1+fi2/3)-1o‘r1—1o [3,81]; zoppl 7’2]. (2c.8)

Imposing the condition that at J 3 0,

Sz/pz = 73(1 + [32/3) (2c.9)

requires that

71(1+pf1) +2'r2(1+,B/92) = o, (2c.lO)

and slope ($1 )2 then becomes

(SI)2 = ~28 TZTzIH PPz). 12c.11)

Now, sincecL 1 = dig, the third moments equation

arranged in sloPe-intercept form becomes

(S3/P3‘Y3 = 11- 189-2171 131- sz -2 PAD“

-42 T2 [(143 2/3) -2 Ffifl +21TIE1- P2/3 - 2 FPIII f .

(2c. 12)

This time'the condition imposed at J = 0 is

S3/p3 = 73(1- p2) , (2c.13)

requiring that
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'Yl [(1-fi2/3 -2 HM] ~27; [(1- 52/3 —2pP2)] = o. (2c.14)

The slope (Sl)3 is then

(Sl)3 =2173?fi(1-F2/3 ~2Pfi1). (2c.15)

If the value of 71 is found from equation (2c. 10) and

then substituted in (2c. 14), the following equation results after

some algebraic manipulation:

(pa-pl)(p2/3_3)=o. (2c.16)

As F f 0, it follows that p 1 = p 2; and if this fact is used in con-

junction with equation (2c.10) it is found also that 7’1 = -2 7’2.

Solving equation (2c. 11) for 7’2 yields

7;, = -(51)2/ 2872(1+fifl2). (2c.17)

Here it is seen that 72 is expressed, with the exception of ’82,

in terms of parameters that can be determined by a rigid

analysis. The value of P 2 can be found, however, in terms of

similar parameters by solving (2c. 11) and (2c.15) simultaneously,

and by using the additional information that p 1 = ,5 2 and T2 =

“VI/2-

The resulting expression for P 2 is

52 = 37’(51)z(1—fi2/3) — 2(s1)3 ,

2 p[(s1)3 + 3751);] (2c.18)

Substitution ofcc 1, p1, and Y1 in terms ofdtz,

 

)3 z, and ’I’z re8pectively in equations (2. b8) through (2b.13)

leads to the equations for the stretching constants xi:



13

\1 = 1/3 [5321 —(7/15)’V1<1-3)91)]. (2c.19)

)\z=1/3 Efii ~17/15)’)’1(1+3,31)j. (2c.20)

\3 =1/3 [3:1 +(14/15)’)’1], (2c.21)

\4 1/332 -(7/15)')’2(1-3Bz)], (2c.22)

X5 1/3ECZ ~(7/15)Yz(1+3#2).]. i (2c.23)

he 1/3ECZ +(14/15)9’2]. (2c.24)

If it is possible to obtainoc, )8, and 7’a1ong with (s1)1, (51);,

and ($1 )3 from an analysis of experimental data, (Ll can then be

found by (2c. 6), Y2 by (2c.17) and ,8 2 by (2c.18). All stretch-

ing constants, )\1, follow from equations (2c. 19) through

(2c. 24). Knowledge of these values then makes it possible to

determine the coefficients 0'1, of the centrifugal stretching

correction terms by employing equation (2b. 7).

(d) Intercept-slope method of analysis

If the rotating molecule were strictly a rigid rotator,

the effective values och , P , and Vwould be constants un-

affected by changes in angular momentum as shown by the equations:

Sl/pl =00, (2d.1)

Sz/Pz =7’Z(1+flz/3), (2.1.2)

S3/p3 =73(1-,BZ). (2d. 3)

Graphs of Si/Pl vs. J(J+l) are straight lines with zero slope show-

ing that the constants are unaffected by a change in the angular

momentum quantum number J.



V
"
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Analysis of experimental data shows that stretching

due to centrifugal force does occur, resulting in Changes in

these parameters. One may, however, attempt to find the

value of 51/13}. for J = 0 by fitting the effective values of Si/Pi

obtained from an analysis of experimental data to curves of

the form

Si/pl = ct. +791. (2d. 4)

s2/p_2 = 7211 +13 2/3) +247}. (2.1.5)

83/133 = 730 -,8 2) was. (2d.6)

where a straight line fit is obtained by applying the method of

least squares. 8 The,” i represent the slopes of the curves

and are to be interpreted as a measure of the deviation from

the zero-order rigid rotator theory; and in order for this

first order correction to be adequate for a given system, the

slopes must be very small.

Where this correction is adequate, extrapolation of

the Si/Pi curves to J = 0 enables one to determine the "true"

values of the principal moments of inertia.

The first order theory is approximate even for small

values of J; even for moleculesthat are not very "stretchy” the

approximation becomes progressively poorer at higher values

of J and higher order correction terms become necessary. In

 

8 See for example C. G. Lambe, Elements of Statistics, Chapter

VII, (Longmans Green and Co. , New York, 1952)
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this case, the Si/Pi vs. f curves would no longer be straight

lines. 5

 

5 P. M. Parker and L.C. Brown, J. Chem Phys. 2_l_, 1227, (1959)
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Analysis

Symmetric, nonlinear, triatomic molecules like HZSe

and DZSe have three fundamental vibration- rotation bands, 'V 1,

”V2, and 1/3. Associated with the fundamental modes of vibration

are the quantum numbers V1, V2, and V3; which serve to

describe the vibrational energy state. In the following procedure,

analyses of the rotational levels associated with a fixed mode of

vibration are carried out.

The geometry for both DZSe and HZSe is shown in Fig.

1, where it is seen that the principal axes are so oriented that

the Z axis is normal to the plane of the molecule. Both molecules

are asymmetric rotators with principal moments of inertia

Iz>Iy)Ix3 and rotational constants A>B>C.

z 2

Se x

H ,,/ ' . H s

/ I
H2Se

 

 

 

  
 

Figure 1. Geometry of the HZSe and DZSe molecules.
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of Palik and Oetjen

17

The data used in the analysis were taken from the works

6,7
as follows:

HZSe for the vibrational state V1 = V2 = V3 = O;

6
J O to J 7 from the first paper ,

7
J 8 to J 10 from the second paper .

HZSe for the vibrational state V1 = V3 = 0, V2 = 1;

J = l to J = 6 from the second paper7.

DZSe for the vibrational state V1 = V2 = V3 = O;

J = O to J = 6 from the second paper7.

DZSe for the vibrational state Vl = V3 = 0, V2 = l;

J = l to J = 3 from the second paper7.

Following the procedure discussed in part II (a), and

employing equations (2a. 8) through (2a. 21) a rigid analysis of the

preceding data was carried out. Five significant figures were re-

tained in all calculations and the physical parameters resulting

from the analysis are listed in Table I, Table II, Table III, and

Table IV. These are the effective values of the parameters.

Next, the values of Si/Pi corresponding to a given

value of J were determined from the data given in Tables I

through IV. The Si/Pi along with the J(J+l) for a given J are

tabulated in Tables V through VIII. Preliminary plots of Si/Pi vs.

 

6
E.D. Palik and R. A. Oetjen, J. Molecular SpectrosCOpy, _1_, 223,

(1959)

E.D. Palik and R. A. Oetjen, J. Molecular Spectroscopy, 3, 259,

(1959)
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Table V - Si/Pi for the HZSe molecule in the vibrational state *

22

 

 

 

V1=V2=V3=0

J sl/Pl SZ/PZ -S3/P3

1 19.785 65.274 504.43

2 19.786 65.171 501.50

3 19.782 65.114 501.89

4 19.773 65.006 502.15

5 19.764 64.830 501.77

6 19.750 64.523 499.68

7 19.735 64.234 497.26

8 19.719 63.932 494.84

9 19.700 63.518 491.76

10 19.678 63.125 488.70

 

Table VI - Si/Pi for the HzSe molecule in the vibrational state *

VI=V3=O;V2-l

 

 

 

J Sl/Pl Sz/Pz -S3/P3

1 19.670 91.602 843.23

2 20.167 74.163 608.11

3 20.159 73.810 604.73

4 20.150 73.865 602.52

5 20.139 72.273 603.26

 

units of cm” 3.

* 81/131 in units of cm'l, Sz/pz in units of cm'z, S3/p3 in



Table VII - Si/Pi for the DZSe molecule in the vibrational state *

V1=V2=V3=0

 

 

J 51/P1 Sz/pz -S3/p3

1 10.045 17.055 64.397

2 10.048 17.018 64.395

3 10.048 17.015 64.352

4 10.048 17.019 64.343

5 10.048 17.019 64.345

6 10.048 17.011 64.220

 

Table VIII - 55./Pi for the DzSe molecule in the vibrational state *

 

V1=V3:O;VZ=1

.

:—__

 

 

1 10.135 17.633 66.388

2 10.182 18.559 74.083

3 10.184 18.661 71.121

* 81 /p1 in units of cm'l, Sz/pz in units of cm_2, S3/p3 in

units of cm" 3.
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(J +1) indicated that the data for the vibrational state described by

the quantum numbers V1 = V3 2 0, V2 = l for both DZSe and HZSe

were not only too limited, but also very erratic, no further

analysis was attempted.

Further analysis of the data corresponding to the

vibrational ground state (Vl = V2 = V3 = 0) was carried out for

both molecules, but here too, some values were discarded. Only

the values below the solid lines in the columns in Tables V and

VII were used in the subsequent analysis.

The method of least squares was then applied to the

data in Table V and Table VII in order to obtain the straight line

best fitted to these data. The six equations which resulted are:

HZSe(V1=V =v —0)
2 3 ‘

sllp1 = [19.795 - .0010595 J(J+1)j cm'1 (3.1)

sz/p2 = [65.431 - .021057 J(J+1)j cm'2 (3.2)

S3/p3 = [-506.55 + .16322 J(J+1)j cm‘3 (3. 3)

DZSe (v1 = v2 = v3 = 0)

sl/p1 = [10.048] cm‘1 (3.4)

32/P2 = [17.019 - .00012621 J(J+1)] cm"2 (3.5)

S3/p3 = [—64. 421 '+ .004085 J(J+1)j cm"3 (3.6)

Graphs of these equations are shown in Figs. 2, 3, 4, 5, 6, and 7.

Extrapolation of these curves yielded the values of

Si/Pi corre3ponding to J = 0. A rigid analysis of these extrapolated
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values gave the rotational constants of the molecules which are

listed in Table IX.
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Table IX - Parameters of HZSe and DZSe calculated from a rigid

analysis of extrapolated values (to J =0) of Si/Pi

ste (V1 = V2 = V3 = O)

 

 

03 fl 7’ A B C

 

19.795 .17032 8.0501 8.1683 7.7115 3.9150

 

DZSe (v1 = v2 = v3 = 0)

d: ,8 7" A B c

 

10. 048 . 23758 4. 0871 4.1924 3. 8687 1 . 9870

 

d} , .r.’ A, B, and C in units of cm'l; B dimensionless.
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A non—rigid analysis of these data then followed. By

using the values of Cfs, ,8 , and Vobtained from the preceding

rigid analysis along with the slopes of the curves from equations

(3. 1) through (3. 6) it was possible to findCD 1, ’72, and P 2 from

(2c.6), (2c. 17) and (2c.18). The values ochZ, .91, and?”1 then

followed from the relations: ($1.: ($2, B 1 = fiz, and 7’1 =

-2 72. The x1 3 were next determined from equations (2c.19)

through (2c. 24). Finally, theG‘i s were calculated by using

(2.b7). The values of the stretching coefficients Xi, and the re-

sulting coefficients 0‘ i of the centrifugal correction terms in the

Hamiltonian (2b. 3) are listed in Table X.

Error Analysis

An error analysis9 was performed in order to measure

the quality of the fit obtained by the method of least squares for

equations (3. 1) through (3. 6). As the final interest lies in the

rotational constants and in the coefficients of the centrifugal

correction terms, the probable error of the values used to calcu-

late them were found. These values were the probable errors in

the slopes and intercepts of equations (3. 1) through (3. 6); results

are tabulated in Table XI.

 

9 F. A. Willers, Practical Analysis, Chapter—IV,

(Dover Publications, New York, 1948)
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Table X - Stretching coefficients }\ i and

centrifugal correction term coefficients 6' i

HZSe (Vl = V

1

—_

+ 3. 0498 x10-5

3. 8924 x 10-5

.91317 x 10-5

2.4028 x10'"5

+1.0684x10'5

- .42125x10‘5

2

:V3:O)

I

__‘—:

o-1 +1.8413x10'3

2.3501 x10"35'2 '-

53 - .55133x10'3

0'4 -1.4507x10'3

55 + .64505 x10"3

.25433 x10"3.9
 

13286 (V1 = V2 = V3 = 0)

 

+ 2.1317 x 10"6

2.3160 x10"6

+.18433x10"6

— 1.0658 x 10"6

+1.1580x10'6

. 09217 x 10“6

as, +6.5344x10"5

<32 — 7.0994 x10"5

6'3 + .56504x10"5

5'4 - 3.2671 x10"5

55 + 3.5497 x10"5

06 - .28252 x10"5
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These values of Si/Pi along with their probable errors

were used in a rigid analysis once more to determined: , )8, and

7. The worst possible combinations of these values and their

corresponding probable errors were used this time in order to

ascertain the largest error that might result in the present

calculations. These "worst" values ofCD, p, and Vwere next

used in the same manner to determine the rotational constants in

the way previously described. Results showed that A and B for

l
the HZSe molecule might be in error as much as i . 01 cm" and

the value of C by as much as i . 02 cm'l.

An error analysis of the stretching coefficients was

carried out in the same manner. Here, the slopes of the Si/Pi

curves along with their probable errors were used in con-

junction with the "worst" values of 03, B, and 7’to find the

greatest error likely to occur in the stretching coefficients 7‘1'

The x i s were in turn used to determine the greatest amount

by which the coefficients 6 i might be in error. The results of

the calculations are shown in the summary in Table XII.
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IV

Summary

The ”unstretched" values of the rotator constants A, B,

and C obtained by the energy moment method in the present work

are in very close agreement with the values which Palik and

Oetjen7 arrived at by employing a different method of analysis.

A comparison of the results is shown in Table Kill.

The coefficients of the centrifugal correction terms in

the Hamiltonian seem to be reasonably accurate for HZSe; Table

XII shows that the values calculated from these data might be in

error by as much as i. 04 x 10‘3cm'1.

Although the values of the rotational constants for

DZSe are quite satisfactory, the results obtained for the 0‘ i s

are rather poor;.the error may be as high as 28%. DZSe is not

a very “stretchy" molecule; the zero sloPe of equation (3. 4)’

and the very small slopes of the curves represented by equations

(3. 5) and (3.6) bear this out. As a consequence, a small error

in the calculated value of the slope shows up in the end results

as a very large relative error.

In this particular case it is believed that the data,

although sufficient to enable determination of the rotator con-

 

? E.D. Palik and R. A. Oetjen, J. Molecular Spectrosc0py, 2,

259. (1959)
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Table XII - Coefficients of the centrifugal correction terms in

the Hamiltonian - equation (2b. 3)

ste (V1 = V2 '3 V3 = 0)

 
a

01=(+ 1.841 1.010)}:10'3

-3

53 -- (“-°5513i-°°3) x 10"3

_ ‘ -3
6'4 - (- 1.451 1: 000)x10

6‘5 — (+ .64503: .010) x 10‘3

_ _ -3
0'6 -( .25431.040)x 10

 

 

 

61=(+ 6.53 i1.84) x 10"5
4

62 = (- 7.099_+_1.79)x10'5

53 = (+ .5650: .05)on‘5

_ -5
64. (- 3.267:1.10)x10

s = (+ 3.5501 .89) x 10’5
5

456 = (- .2825: .11)x10“5
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Table XIII - Rotational constants of HZSe and DZSe for the

vibrational* state (VI = V2 = V3 = 0)

Present work Palik and Oetjen**

W 

 

 

 

 

HZSe HZSe

A 8.163 8. 165

B 7.711 7. 712

C 3. 915 3. 915

DZSe DZSe

A 4.192 4.193

3.869 3.865

C 1. 987 l. 987

 

* All values expressed in units of cm'I.

** These values for the rotational constants are taken from the

works of Palik and Oetjen7 where it is stated that they may

be in error by as much as + . 02 cm’l.

7 E.D. Palik and R. a. OetjeE, J. Molecular Spectroscopy, _3,

259.(1959L
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stants with a fair degree of accuracy, is insufficient to obtain the

slope of the Si/Pi vs. J(J+1) curve accurately enough. Figs. 5,

6, and 7 show the graphs of these data for DZSe. Here it is seen

that although the data for the Si/Pi curve is satisfactory, the data

for the Sz/pz and S3/p3 are very limited and very erratic. In-

clusion of a value of 51/Pi which may border on the point of

rejection, while it may not change the value of the intercept

appreciably, can result in a relatively large change in the slepe

of the curve. The smaller the slope of the curve, the more

sensitive the values of O' i would be to such a change. Without

doubt, acceptable results could be obtained had more complet e

data been available for the DzSe molecule.

The data for the higher vibrational states is seen to

be far too limited and erratic to warrant any attempt at analysis

beyond the calculation of the effective values of the rotational

constants obtained by a rigid analysis.
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