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ABSTRACT

The heat capacity of several single crystals has been examined

in the helium temperature range. The purpose of this study has been

to locate anomalies which are characterized by a very rapid increase

in the heat capacity just below the transition temperature with a sudden

drop above this point. Such an anomaly is one of the distinguishing

features of a paramagnetic-antiferromagnetic transition.

The anomaly is caused by a drastic change in the degree of order-

ing in the spins of the magnetic atoms. In the paramagnetic state the

spins have a random alignment while in the antiferromagnetic state there

exists an ordered antiparallel arrangement of the spins. This anomaly

which is part of the magnetic heat capacity is superimposed upon the

normal lattice heat capacity, but in the helium temperature region the

lattice heat capacity is very small so that the anomaly may be observed.

Paramagnetic-antiferromagnetic transitions were found in five of

the crystals examined. The magnetic entropy associated with these

transitions was estimated and found to be in good agreement in each case

with the theoretical value. The theory of antiferromagnetism by

Van Vleck predicts that all the ordering should be of a long-range nature,

but in the crystals examined short-range forces accounted for from 3 to

55 percent of the entropy gained during the transformation.
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INTRODUCTION

This paper presents work that has been done in measuring the

heat capacities of single crystals at low temperatures. These studies

were conducted to determine whether there existed an anomaly in the

heat capacity of a crystal, particularly, a large peak of the shape

which is associated with a paramagnetic-antiferromagnetic transition.

The presentation is divided into three parts. First,- the theory

is presented. In this chapter the importance of heat capacity is dis-

cussed, and a simple picture of an antiferromagnetic system is given

including the thermodynamical significance of such a system. Next,

follows consideration of the apparatus and of the experimental pro-

cedures. The third chapter gives the results of these experiments

and the conclusions which can be drawn from them.



THEORY

 

Heat Capacity. The heat capacity of a substance is defined as the

lim AQ ’

AT—> 0 2—71"-

corresponding temperature change. Actually in a thermodynamic

where A0 is the heat added to the sample and AT is the

system there are two heat capacities: one at constant pressure, denoted

by GP, and the other at constant volume, denoted by Cv- Starting from

the first law of thermodynamics:

dQ-= dU + PdV (l)

where U is the internal energy of the system

P is the pressure

V is the volume

95%) == (-3-? + (Ed?
P P p

while (2)

CP=(

- .219 _ dU
CV_ (dT)v - (El—TR.

It can now be seen why the heat capacity at constant volume is the

one of principal interest in solids. It is directly coupled with the internal

energy of the system while Cp has a much more complicated connection

with this energy. Unfortunately, however, it is much more difficult to

measure CV, but on the other hand Cp can be determined more easily.

An expression for the difference of these heat capacities can be

reduced to the form [1],

TVBz

p-cv= K. (3) 

Here B is the volume expansivity, and

K is the isothermal compressibility.



In the helium temperature range this difference becomes negligible;

hence, at these very low temperatures it is possible, in effect, to

measure Cv° The measurement of heat capacity in these experiments

therefore resolved itself into the determination of the dependence of the

internal energy of the system on the temperature. (Let Cv now be

denoted simply by C. )

Many effects may contribute to the internal energy of a system,

but only three of these need be considered.

In the first instance, the internal energy of a solid is due in part

to the lattice vibrations and at higher temperatures these vibrations

completely dominate other effects which contribute to the heat capacity

of the solid. Dulong and Petit derived the classical expression for the

heat capacity which would be correct were the theorem of equipartition

of energy applicable. Their law is now known to be the high temperature

limit for a solid's heat capacity. Einstein took a major step forward in

1907 when he applied Planck's quantum theory to the problem by replac-

ing the mean energy per oscillator, kT, by

hv

u = exp(hv /kT) - 1 (4)

 

k is the Boltzman constant, v is the frequency of vibration of an

oscillator, and h is Planck's constant. Einstein's theory fell short,

however, because of a simplifying assumption which he made, viz. ,

that the energy of an oscillator could be written as the energy of three

harmonic oscillators each having the same frequency.

In 1912 Debye attacked the problem by considering the solid as an

elastic continuum [2]. Much work has been done since then, but Debye's

theory is still used as a basis for comparison. Therefore, owing to its

importance, the essential elements of this theory will be presented.



In a solid both longitudinal and transverse modes of vibration are

possible, and each transverse mode must be considered as two inde-

pendent modes at right angles to each other. The number of longitudinal

modes per unit volume in an elastic continuum is given by

where x is the wave length.

Since there are two independent transverse modes,

 

8wdx
dnt — X4

The total number of modes per unit volume is dn = (in! + dnt, and using

the fact v = \t/x,

l 2 z

dn = 4Tr(-—-3— + ---3-—-) v dv (51
V1 Vt

where v is the velocity of the lattice waves.

Debye postulated that there exists a cut-off frequency. To calculate this

frequency, Vm. the total number of modes of vibrations was set equal to

the number of degrees of freedom of all the atoms.

f ”m
o Vdn = 3N0

1 z 3 (6)

(WWI-v7:- + v-tS—IVm = 3N.

No is Avogadro's number.

The energy associated with each oscillator was assumed given by

equation (4), so the total energy was



 

 

' “(’va Vh-v
= . d

U ”'20) exp (hv/ICT) - l n

'(71

l 2 ”m hv= 3d .
U “VIE? + :71 I, exp(hv/m-1 " V

Upon differentiating this expression with respect to T,

hv X 4
__ (£1 _ IST— 3 m e x dx

c — dT — 9R (th) IOTT’ -—---(ex_ 1),

c = 9R (T/ @1313 £( @ D/T) (8)

Where x =2 hv/kT, @D = hum/k, and

f( @ D/T) is the Debye function.

At low temperatures the heat capacity reduces to the form

lzR-n‘ ( T )3

5 @D

The ro ortionalit to T3 is a conse uence of the fact that the
P P V q

C: a: const. T3 (9) 

number of vibrations per frequency interval is proportional to vzdv.

At low temperatures only slow vibrations are of importance. This means

that waves with very long wavelengths will be excited, and hence the

propagation of such waves whose wavelengths are long compared to

interatomic distances should not be affected by atomic arrangements;

the Debye theory should therefore apply to these waves. At the same time

the proportionality to vzdw deduced from elastic equations is known to be

applicable at low frequencies. Consequently, the prOportionality to T3

follows for bodies at low temperatures. This law is valid to approxi-

mately ® D/lZ [3].



In the helium temperature region the constant in Debye's expression

is small, so other terms contributing to the total heat capacity cannot

be neglected. If the solid shows no anomalous effects, a second contri-

bution to heat capacity will be that due to the free electrons. This

electronic term varies as T.

Ce = const. T.

50, the total heat capacity at low temperatures has the form

c = aT3 + bT. (10)

As will be seen later, the electronic contribution will be negligible,

since the single crystals to be examined are insulators.

The crystals in part A of Table 1 show paramagnetic-antiferro-

magnetic transitions. Such transitions are accompanied by large peaks

in the heat capacity at the Néel (transition) temperature. Figures 14- 18

show the heat capacity curves exhibiting such transitions. The heat

capacity in the antiferromagnetic region, i. e., below the Néel temperature,

TN, has not been expressed in a simple analytical form as some function

of T. Above the Neel point, however, the heat capacity may be expressed

as a function of T. This is due to Van Vleck who considered a system

having magnetic dipole-dipole and simultaneously feeble exchange

coupling [4]. The crystals in part A, Table I, are thought to represent

such a system, and the experimental data obeys Van Vleck's equation.

Van Vleck derives this expression by considering the partition

function, Z, from which the heat capacity is derived

_ 0 mc- W (kTZ 0T). (11)

To write the partition function, Van Vleck uses the following

form for the Hamiltonian,



 

_. Iii-IV 3(Ili.r")(p'.r") ..

H-I—gzl- 111% <12)
J 7’ 1 ll 1'13

pi is the magnetic moment of atom i.

r-ij is the distance between atoms i and j.

The first term in expression (12) represents the dipoleudipole coupling

between atoms i and j, and Vij is the exchange energy,

_ Hi- IV
Vij - const. (7+) (13)

11

The constant in (13) contains r133 so that Vij depends only on the relative

orientation of pi and 1.1:], and hence is isotropic. (This effect will be dis-

cussed in greater detail on page 10.), The two types of interactions in

(13) are physically quite different, but mathematically rather similar

since both couple together the angular momentum vectors of different

atoms.

The partition function is then,

Wx
Z = 2 exp (- -—— (14)

7‘. kT

where W, the characteristic value of H, is summed over all energy states

of the system.

Van Vleck develops this partition function, then using equation (11)

obtains an expression for the heat capacity which at low temperatures

is best represented by

const.

C = T . (15)

Therefore, the heat capacity of crystals which have paramagnetic-

antiferromagnetic transitions can be represented in the paramagnetic

state by

c = aT3 + 11/1“Z . (16)

where the term b/Tz is the paramagnetic contribution.



Antiferromignetism. The anomalies in Figures 14-18 have been
 

described as representing a paramagnetic-'antiferromagnetic transition.

The essential features implied by these terms will now be discussed.

If the ions in a medium are far enough apart for their mutual inter-

action to be negligible, then the medium is considered to be a simple

paramagnetic substance with an induced magnetic moment M per unit

volume in the presence of a field H given by [5]

'H
: ' E. ii}...—M NJgP J( M ) (17)

where [3 is the Bohr magneton, N is the total number of magnetic ions

per unit volume, j is the total quantum number, g is the Landé factor,

and Bj is the Brillouin function,

 

. _ 2.1+ 1 (21+ 113’ __1_ Y
BJ(y) — Zj coth[ Zj ] - 2j coth. Zj . (18)

For y < < 1 equation (17) can be simplified and gives for the susceptibility

H 3kT ' (1”

 

This is the Curie law for paramagnetic substance. However, when there

exists exchange effects between atoms, this equation for susceptibility

is no longer valid.

The susceptibility is one of the distinguishing features of an anti-

ferromagnetic medium. This property shows a well defined kink at the

transition temperature when it is graphed against temperature.

Figure 1 compares the susceptibility between paramagnetic, ferromagnetic,

and antiferromagnetic systems. For an antiferromagnetic system above

its transition temperature the susceptibility obeys the relation

x = (20) 
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where C = N 67‘ng (j + l) is the Curie constant. The quantity 9 indicates

the net effect of the internal fields in aiding or hindering an applied

magnetic field to produce alignment [6]. The difference X“ ‘VXJ. is

essentially due to the anisotropy energy, 1. e., the excess energy needed

to magnetize the crystal to saturation in a hard direction.

An antiferromagnetic medium can be defined as a system in which

there exists very strong exchange coupling favoring antiparallel align-

ment of the electron spins. A ferromagnetic substance is just the opposite

to this in that it is a medium in which strong exchange coupling favors

parallel alignment of the electronic Spins.

This exchange coupling is strictly a quantum. mechanical phenomenon

with no classical analogue. It concerns the degeneracy associated with

the possibility of electrons trading places.

In antiferromagnetic interactions it proves useful to divide the

lattice of magnetic atoms into sublattices, to account for the various

types of magnetic ordering [6]. The method of subdivision depends upon

the symmetry of the Specific lattice, but there should be at least division

into enough sublattices so that a given atom has neither first or second

nearest neighbors on its own sublattices and only one kind of neighbor on

any other lattice. Consider, as did Van Vleck in his original treatment

of the problem [7], a crystal divided into only two interpenetrating sub—

lattices A and B such that all nearest neighbors of an atom on sublattice

A lie on sublattice B. This condition is satisfied for s. c. and b. c. c.

lattices but not by f. c. c. lattices.

The exchange interactions are equivalent to an interatomic potential

Vij = -1/2 J(1+ 4 0'1 - C'j) (21)

where 01 and O‘j are the spin vectors of atoms i and j measured in

units of “F1. and J is the exchange integral. J is negative for an antiferro-

magnetic system. Actually equation (21) is an Operator equation, and 0'1
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and CJ should be considered as operators. It is a good first approxi-

mation, however, to consider these spins simply as vectors. The

atoms are in effectively an S state with a common exchange integral J.

Since the quantmn number j now represents only the spiri quantum number,

let it be denoted as s.

The effective potential acting on an atom i is to a good approxi-

mation

The summation which extends over the z ‘nearest neighbors of atom i

may be replaced by z multiplied by the mean value of the spin of any

neighbor of atom i. These neighbors have the same’alignment on the

average and there is a common exchange integral J.

At thermal equilibrium the mean average of the spins of atoms on

sublattices A and B will have the same value. Also, in the absence of

an applied field it may be supposed that this mean average has an opposite

direction for the two sublattices. If a field is applied, it will give a

displacement 8 0‘1 and 8 O'j to the spins of atoms i and j. It is

possible to take OO’i = OO'j = 8 O‘since for small fields the suscepti-

bility is the same even when the external field is rotated 1800 with

respect to the internal field. Hence,

_. a __ o
C—i: Co‘I‘Cq; ’-°: -C-0+JC—°

(23)

6'0 represents the mean value of the spin in the antiferromagnetic state

and is termed by Van Vleck the "Spontaneous antiferromagnetism. "

The sign difference of 0-0 in the two equations (23) comes from the fact

that the spins are oppositely directed in the two sublattices. The Néel

point is that temperature above which 0'0 vanishes.
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An atom i will experience, besides the exchange potential, an

energy -g(3H~ O'i due to the applied field H. The effective field acting

on atom i then becomes

2(1) z (— :70 + or)
 

 

H = H +
eff gf}

ZIJI Z 6-0 ZIJI zM

H = H + (24eff g 9 -—-r-z-—NgI3 I

where

M = 1/2 ngm-i + 0-,) 2: Ngeao: (25)

M is the magnetic moment per unit volume.

Applying equations (17) and (24) to the two sublattices separately,

the variation of 0'0 with temperature may be obtained.

H

I (‘0 + ;, 0') = sBS (fig—E521) (26)

If the applied field is set equal to zero, then

 

<ZZSIJI (To

l 7.1 r. 5B8 H I

 The value of approaches 3 as T ——>- 0, but this value falls to
I CTel

3

zero at T = TN. The conclusion from this is that above the transition

temperature there is no exchange interaction, while below this

temperature the exchange potential increases in strength until at T = 0

the spins of the individual atom are completely aligned in parallel or

antiparallel directions. A graph of this is shown in Figure 2.

For small values of the argument, y,

sBs (Yo) = 1/3(8 + 1) Yo

where

228 I J) 60

YO : kT

 

So,

_ 2|les(s+ 1)

TN - 3k ° (27)
 



l.

1001/5

 

 

0.

 

 
Figure 2. Variation of | o-ol/s With T/TN

Numbers Indicate Values of S

   

2.o_

C/Nk T 1

1.0— +

o 0.5

T/TN

~ Figure 3. Magnetic Heat Capacity

13



14

The transition temperature thus depends upon the-magnetic structure

below this temperature and it can be considered as essentially a

measure of the energy necessary to bring the system from a state of

perfect order to one where the long-range order is destroyed.

The magnetic internal energy may now be expressed as

U = -Nz|JI (707‘ (28)

and the-magnetic heat capacity as

dU d| 0|
2 —— = —c H 2NzIJl o-0 ———9—dT . (29)

A graph of this heat capacity is shown in‘Figure 3.

Comparison of Antiferromagnetic Model with Experiment... Compare
 

Figure 3 with the graphs drawn from experimental data in Figures 14-18.

This comparison may be made directly, for the lattice heat capacity

contributes only a very small percent to the total heat capacity‘in this

low temperature region. It can be seen that they have a strong resem-

blance, but the experimental plots exhibit a tail above TN while the heat

capacity falls directly to zero in Figure 3. This difference is due to

short-range ordering, an effect which was ignored in the theory of

Van Vleck which was presented. This short-range ordering is the tendency

for the spins of the nearest neighbor's of an atom to remain aligned in

antiparallel positions even above the transition temperature. Van Vleck

considers only'long- range ordering; i. e. , the tendency for atoms on

the same sublattice to have their spins aligned on the average in the same

direction. This ordering vanishes at TN. (See'Figure 2.)

At absolute zero there will be perfect long-range order and perfect

short-range order. Suppose that the spins of the atoms on sublattice A

point in a north direction, and the spins of the atoms on sublattice B

point south. ‘ At afinite temperature below TN there will be a certain
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number of atoms on sublattice A whose spins do not point north. This

makes it energetically easier for atoms on sublattice'B which are

nearest neighbors to these "bad" atoms on sublattice A not to-have their

spins aligned and pointed in a southerly direction. As the temperature

increases, the thermal energy of the atoms will increase, and it will

become less difficult for long-range disorder to increase. This effect

will avalanche and lead finally to complete and abrupt disappearance of

long-range order at the critical temperature. This increasing disorder

requires energy, thus producing a steep rise in the heat capacity curve

just below TN. This manner of increasing disorder is an'example of

what is known as a cooperative phenomenon.

Increasing energy requires a rise in the heat capacity curve

because the area under this curve represents the magnetic internal

energy of the system. This is the energy required to take the system

from a state of complete magnetic order, T < < T to a state of com-N’

plete-magnetic disorder, T > > TN.

A quantity of considerable interest is the entropy. This gives a

measure of the disorder of the system, increasing entropy correspond-

ing to increasing randomness of the internal motion of a system.

Mathematically, entropy enters thermodynamics by the second law,

d0 = TdS. A useful relation will nqw be obtained.

TdS _ dQ _ c

d'I‘ ‘ dT '

_ c
as- T dT

s: f (3-1, dT (30)

So, it is possible to calculate the entropy having measured the heat

capacity. The‘manner of evaluating this integral is discussed on page 44.
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Statistical mechanics shows that the entropy of a paramagnetic

system at low temperatures and in the absence of any magnetic fields

is given by

s = R mm. + 1) [8]. (31)

Therefore, it is possible to compare a measured entr0py with this

theoretical value. By determining the entropy gained above and below

the Néel point it is also possible to determine the amount of order

remaining in a crystal above the Néel point.

Phase Transition. A paramagnetic-antiferromagnetic transition
 

may be a second-order phase transformation; i. e. , a transition occur-

ring between two crystal modifications [9]. If this transition is indeed

second-order, then one would expect an infinity in the specific heat at

the Néel temperature, as is the case in the'Helium I-Helium II

transition. The symmetry of the body undergoes a sudden change at

the transition point, and at any moment it can be said to which of the

two phases the crystal belongs. At a first-order transition point the

two phases of the body are in equilibrium while at a second-order

transition point the two phases are identical. ‘ A change of symmetry by

means of a second-order phase transformation has the property that

the symmetry of one of the phases is higher than that of the other.

The functions of the thermodynamic state of the body (entrepy, energy,

etc.) remain continuous as the transition point is passed, but derivatives

of the thermodynamic quantities are discontinuous. ‘ Also there is no

latent heat associated with a second-order transformation.

The heat capacity of single crystals at low temperatures is seen

to be the study of the dependence of internal energy upon temperature.

In the antiferromagnetic state the dominating force is the exchange

interaction . Above the transition temperature this exchange
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interaction still persists in what is known as short-range ordering.

The total effect of this short-range ordering can be determined by

measuring the entropy gain above and below the critical temperature.

The magnetic internal energy of this antiferromagnetic ordering process

is represented by the area under the heat capacity curve.
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APPARATUS AND EXPERIMENTAL PROCEDURES

Apparatus. The crystals which have been examined for para-
 

magnetic-antiferromagnetic transitions are listed in Table I. ' All of

these were grown at room temperature from aqueous solutions except

for'the‘minerals, azurite and dioptase. All of the single crystals were

examined in the helium temperature range. The heat capacity studies

indicated paramagnetic-antiferromagnetic transitions in five of these

crystals.

The experiments were conducted in a double‘Dewar system.

This is a Pyrex glass system and is shown in Figure 4. The inner

Dewar which contains the liquid helium is a double wall construction

with the intervening space evacuated. This Space must be periodically

re-evacuated, because helium gas will diffuse through Pyrex and thus

introduce a path of heat flow into the helium bath. The outer jacket is

filled with-liquid air. The outside of this jacket is silver coated except

for two narrow slits on each side which extend the entire length of the

Dewar. This slit is used to observe the helium level and to align the

apparatus.

To measure the heat capacity of a sample, two things are

necessary: first, there must be a means for measuring the exact

temperature of the crystal; and second, there must be a mechanism

whereby known amounts of power can be added to the sample. The

thermometers used in these experiments were‘Allen-Bradley 1/10-watt

carbon resistors [14]. They have a room temperature resistance of

approximately 56 ohms. This. resistance increases to approximately

80 ohms at liquid air temperature (roughly 800K), is approximately

500 ohms at the boiling point of helium (4. 2°K) and increases to 10,000
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TABLE I

Crystalline o

Crystals Form TN ( K) Color

Cu3(CO3)z- (OH); [10] Monoclinic l. 84 Blue

(Azurite)

NiBrz° 6HzO [l 1] Monoclinic 6 . 50 Green

‘CoBrz- 6HzO ’[12] Monoclinic 3. 07 Red-violet

MnClz- 4HZO [l3] Monoclinic 1. 60 Rose

MnBrZ- 4HZO Monoclinic 2. 12 Rose-red

MnSO4- 4HZO . Monoclinic Pink

N1(N03)2‘ 61-120 MOHOCliniC Green

HZO- CuO- SiOz Trigonal Green

(Di0ptase)

C0504. 7HZO Monoclinic Red
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to'15, 000 ohms as the temperature is lowered toward 10K. For each

experiment these thermometers were calibrated over the entire

temperature range covered.

A thermometer was mounted in a sample by placing the resistor

in a small hole drilled in the crystal and gluing it in place with a small

amount of Glyptal (GE 1202 varnish).

A heater of manganin wire (approximately 400 ohms) was used for

each sample. This was wound onto the surface of the crystal and also

glued in place with Glyptal. The heater wire (as well as the thermometer)

was soldered to Teflon insulated leads which were used to make the

electrical connections to the measuring circuits external to the calorimeter

system.

- The thermometer and heater leads on the sample were brought out

of the calorimeter through tungsten-glass seals. The Teflon insulated

wires were soldered to the tungsten-glass seal on the outside of the can

(see'Figure 5) and were then connected to the external circuit outside

the Dewar. The electrical leads were handled in this‘manner so that they

would pass through the helium bath, thus greatly reducing any heat leaks

which-might occur along the wires. Both ends of the tungsten were tipped

with silver s'older. This served a two-fold purpose: first, to prevent

' any. flow of superfluid along the wire, and second, tomake-possible quick

attachment and removal of samples.

Some crystals reacted upon exposure to the atmospheric conditions

in the laboratory. To prevent such action the surfaces of the samples

were coated lightly withGlyptal, thus insuring that the crystals would

not change their water content during preparatory stages of the experiment.

The calorimeter is diagramed in Figure 5~[10]. Actually two dif-

ferent Calorimeters have been used in these measurements which-have

extended over a period of one and a half years. The second calorimeter

is almost a duplicate of the first with the exception of a few small
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refinements. These refinements were: increasing the thickness of the

top plate, enlarging the screws which held the can to the rest of the

assembly, and inclusion of a second radiation shield. Pictures of the

assembly are shown in Figures 6 and 7.

Two radiation shields are shown in the picture, Figure 6. One of

these was rigidly attached to the bottom of the pumping line. The other

shield fitted around the sample and was held in place by two small screws.

It was not possible to use this shield if the crystal was larger than

approximately one-half inch in diameter.

The calorimeter can was attached to the rest of the apparatus with

eight No. 8 x 32 screws. The vacuum was sealed with a lead "0"-ring

[15.] which seated in a small groove in the upper plate. This arrangement

worked very well, and there have been no helium leaks when this "0"- ring

was properly seated.

The pumping system used to evacuate the calorimeter is shown in

Figure 8. An N. R. C. ionization gauge fastened in the pumping line at

the top of the Dewar (see Picture, Figure 7), has been used to measure

the vacuum. Vacuums of the order of 10"5 mm of Hg have been recorded,

but it has been suggested that the actual vacuum in the calorimeter might

be several orders of magnitude greater than this, due possibly to helium

being driven off the sample and subsequent adsorption by the calorimeter

walls [16].

During the course of an experimental run, three D. C. circuits were

used. One of these gave the temperature of the sample (Figure 9). This

was actually done by measuring the potential drop across the carbon

thermometer with a Leeds and Northrup type K-Z potentiometer. Since

the resistance of the thermometer changes continuously as the temperature

changes, the unbalance in the potentiometer was amplified by a Leeds

and Northrup microvolt amplifier and recorded on a Leeds andeNorthrup

Speedomax recorder.
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Figure 6

 
Second Radiation Shield Added to Top Plate
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Since there is considerable change in the resistance of the

thermometer during an experiment, the recorder was calibrated against

this range of resistance to determine its sensitivity. This is shown

graphically in Figure 10 where the resistance is plotted against the volt-

age change per large division of recorder paper. (A typical recorder

chart is shown in Figure 11.) When the thermometer's resistance is

approximately 16, 000 ohms, (corresponding to roughly 1. 30K) potential

changes of 2. 1 x 10'5 volts could be detected. This changes linearly

until at about 500 ohms (roughly 4. 00K) a potential drop of 0. 3 x 10"5

volts could be observed. These numbers might lead to the conclusion

that it was possible to determine the temperature more accurately as

the thermometer's temperature increased. This would be incorrect,

for the resistance of the thermometer does not vary linearly with

temperature, but this resistance changes extremely rapidly at the very

low temperatures.

The current in the thermometer circuit was determined by reading

a Weston microammeter. During an experiment the current might vary

from 8. 5 to 11. 0 microamperes, as the thermometer resistance changed.

Another very important circuit was that for the heater. This is

shown diagrammatically in Figure 12, and it can be seen to be very

similar in principle to the thermometer circuit. Both the current through

and the voltage drop across the heater were measured with a Leeds and

Northrup type K-l potentiometer, the current being measured by measur-

ing the voltage drop across a 100 ohm standard resistance. The) current

was measured to :I: 0. 5 microamperes, while the voltage was increased

to i 0. l mv. Energy supplied to the samples varied depending on the

characteristics of the individual crystals, but it was generally in the

millijoule region. The time interval was measured manually with'a stop

watch, the A t varying from a few seconds to more than a minute.
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An automatic st0p clock had been connected in the circuit, but it was

found that this electric timer set up a signal which was detected on the

Speedomax recorder. Therefore, this device could not be used; at the

same time, sufficient accuracy could be obtained by the use of the

manual Stop watch. This measurement was made to :1: 0. 1 sec.

The third circuit used was for controlling the temperature of the

helium bath below the x-point during the calibration [17]. This con-

sisted of a Wheatstone bridge arrangement, one arm of which was a

carbon resistor in the bath. A constant bath temperature could easily

be maintained by adding heat, Via a heater circuit in the bath, or by

adjusting the pumping speed on the helium bath and by observing the

deflection of the bridge galvanometer. By this technique temperatures

could be maintained constant to 0. 0010K.

This was the equipment used in these studies. Another description

of the entire apparatus can be found in reference 10.

Experimental Procedures. The measurement of the heat capacity
 

of a sample at low temperatures usually averages about 10 or 12 hours

to complete. The steps taken in each experiment were very distinct and

have been listed in Table 11. Some of these steps are self-explanatory.

Roughly 1 mm of Hg of exchange gas (helium) was added to the

calorimeter. This gas was introduced so that good thermal contact

would exist between the sample and the helium bath. Equilibrium condi-

tions could be achieved within a few minutes after the temperature of

the bath was under control.

Calibrating the sample required recording the thermometer's

resistance and the bath's temperature at a number of different points

covering the entire temperature range that was to be studied. At each

point the thermometer and helium bath had to be in an equilibrium state.

This calibration actually consisted of two phases: one was the



TABLE II

- STEPS IN AN EXPERIMENTAL RUN
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temperature region from the boiling point of helium (4. 210K at 76. 0 cm

of Hg) to the x-point (2. 170K at 3. 79 cm of Hg), the other was the

region below the x-point to the lower temperature limit of the apparatus.

The bath temperature was controlled above the x-point by adjusting the

pumping speed on the bath; the vapor pressure of the bath was determined

with a Hg manometer. Below the x-point the temperature was controlled

by a slightly different method [17]. In this region the vapor pressure

was determined with an oil manometer, the density of this oil being

1/13. 84 that of Hg. A TSSE helium vapor pressure scale [18] converted

this data to temperatures.

A graph of log Rls (l/T) was made for each experiment. (See

Figure 13.) This is a linear relation except for a break at approximately

the X-point. This plot was subsequently used to determine the crystal's

temperature.

When the calibration was completed, the calorimeter was evacuated

to approximate adiabatic conditions. Some heat leaks into the sample

still occurred. The parameters of the system were adjusted until this

leak was small and of constant magnitude. Then the heater circuit was

actuated for a short period and the input power recorded.

To compensate for the heat leak during a heating cycle, the before

and after drifts were extrapolated to the mid-point of the heating curve.

The fore drift was always begun on the reference line so that with the aid

of the recorder calibration (Figure 10), the potential, and thus resistance,

of these two points could be determined. With this information two

temperatures were found; then the A T and the average temperature at

which the heat capacity was measured were obtained. On the average of

50 to 60 points per experiment were taken in exactly this manner.

By using the equation,

VIt
c = —— (32)

Tf - Ti
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where

V is the potential drop across the heater,

I is the current through the heater,

t is the time of heating,

Ti is the initial temperature (before the heater circuit is

turned on), and

Tf is the final temperature (after heater circuit is turned

off).

The heat capacity is obtained at the average temperature

Tf + T]-

2 .

Corrections to the heat capacity (thermometer, heater, and Glyptal) were

small and usually amounted to less than 0. 5% of the total measured heat

capacity.

It is now seen how the requirements (page 18) necessary to-measure

heat capacity were met. The Speedomax recorder gave a continuous

account of the sample's temperature while from the heater circuit one

could determine the power input to the system.
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RESULTS AND CONCLUSIONS

The heat capacities of the crystals that have been examined were

calculated with equation (32). This experimental data is listed in the

Appendix; the temperature which is listed with each value of heat

capacity is the average temperature at which that value was calculated.

Heat capacity versus temperature graphs are shown in Figures 14-19.

The accuracy of the points was approximately 2. 5%. By observing these

graphs the crystals were divided into three groups: (A) those crystals

which exhibited a paramagnetic-antiferromagnetic transition, (B) crystals

which did not exhibit such a transition, and (C) crystals for which there

is not sufficient reliable data to determine whether there exists a tran-

sition. The statements concerning the existence or non-existence of a

transformation are made relative only to the temperature region studied.

Crystals Having Paramagnetic-Antiferromagnetic Transitions.
 

The heat capacity of these crystals was drawn such that it has a finite

value at the Néel temperature. However, if this point represents a

second-order transition as was speculated on page 16, the heat capacity

might become infinite but should show a discontinuity. To establish

definitely whether or-not this peak represents a second-order trans-

formation, it would be necessary to examine the heat capacity in the

region of the Néel point much more closely to determine if there exists

a logarithmic singularity at this transition temperature.

Two of the crystals which exhibited paramagnetic-antiferromagnetic

transitions, MnClz- 4HZO and MnBrZo 4HZO, had been previously studied

[19, 20]. This earlier work had been done upon samples consisting of a

great number of small crystals, or what was effectively a powder

measurement. This work on single crystals agreed, within the experi—

mental error, with the experiments on powders.
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Table 111 lists the Néel temperatures of a number of samples

which exhibit paramagnetic-antiferromagnetic transitions. This table

is not intended to be complete, but it is sufficient to illustrate some

rather general characteristics of these transformations. Observe the

hydrated salts of nickel, cobalt, and manganese. It appears that the

transition temperature for the nickel salts is higher than that for the

cobalt salts which in turn is higher than that for themanganese salts.

Another characteristic which can be observed from Table III is

that the Néel temperature decreases as the number of waters of hydration

‘in a sample is increased (note for the case of manganese and nickel).

An increase in the waters of hydration in a sample increases the-mag-

netic dilution of the crystal and hence tends to lower the temperature at

which antiparallel spin alignment can occur.

The magnetic entropy gained in paramegnetic-antiferromagnetic

transition is of great interest. This has been measured experimentally

and is compared with its theoretical value, R ln(28 + 1). Also, the

entropy has been separated into that gained below and above the Néel

temperature, and from this the net effect of the short-range ordering

is estimated.

The experimental value of the entropy is computed by using

equation (30). This expression presents the task of integrating the heat

capacity, divided by the temperature, over the entire temperature range.

Above the Néel point it is possible to represent the heat capacity

by an expression of the form

c = a'r3 + J?— . (16)
T’-

It should be remembered that in applying this formula two assumptions

are made: one, that the heat capacity due to lattice vibrations follows

a T3 law; and two, the magnetic heat capacity can be represented by a

term of the form b/Tz. To calculate the constants a and b in equation



TABLE III

45

 
m

 

Sample TN (0K1

MnBrz- 4HZO 2. 12

MDClz' 41-130 1. 60

COBrz° 61-120

COCIZ' 61—120 [22]

NiBrz' 6Hzo

NiClzo 6H,,o [22]

Nic1z [23]

CuClz- ZHZO [24]

CU3IC0312(0H12

1.81 and 1.96

3.07

2.29

6.50

5.34

53.0

4.31
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(16), CT2 versus T5 must be plotted. If this equation is valid, the

experimental points will fall on a straight line, and a and b 'may be

determined from this graph. Such a graph is shown for azurite in

Figure 20. Notice that as the‘Néel temperature is approached, the curve

deviates from linearity. This furnishes another very important fact;

i. e. , the exact temperature at which equation (16) is no longer applicable.

Therefore, the magnetic entropy gained in the paramagnetic state can

be calculated by evaluating the integral

00 b

[T1 —T-3- dT.

T, represents the temperature at which the experimental points deviate

from a straight line. Only a very small error is introduced by extending

the upper limit to 00 , since the integrand decreases as l/T3. The con-

stant b and the temperature T, are presented for the crystals with

paramagnetic-antiferromagnetic transitions in Table IV.

Below T1 the heat capacity cannot be represented as a simple

function of T. To calculate the entropy in this region, C/T versus T is

graphed and the curve is extrapolated to 00K. This graph for azurite is

shown in‘Figure 21. The area under the curve is measured graphically;

it represents the entropy gained in this temperature region. The lattice

heat capacity here is negligible, within the limit of experimental error;

hence, the entr0py gain in this region due to the thermal motion of the

lattice may be ignored. Thus, the entropy measured graphically maybe

Considered as entirely due to the increasing magnetic disorder.

The total magnetic entropy increase during a paramagnetic-anti-

ferromagnetic transitionis obtained by adding the entropy measured

a-bove and below T1. The experimental values for the entropy are listed

along with the theoretical values in Table IV. It can be seen that these

Values compare very well.
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Also in Table IV are listed the approximate percent of entropy due

to the short-range ordering. This percentage is the fraction of entropy

gained above T, to the total value. The entropy due to this ordering is

much smaller for the Mn salts than for the other crystals examined.

This indicates that the antiferromagnetic ordering in Mn salts is due

primarily to the long-range ordering forces. Notice the strong similarity

between the heat capacity curves for MnBrz- 4HZO and MnClz-4HZO,

Figures 17 and 18, with the heat capacity curve predicted by Van Vleck's

model, Figure 3.

The other crystals in this group gain a considerable percentage of

their entropy above the Néel temperature. This indicates a rather slow

diminishing of the short—range ordering forces, an effect which was not

considered in the theory of Van Vleck. Corroborating evidence for the

existence of the antiferromagnetic state in these crystals has been supplied

by the proton resonance work of R. D. Spence [11, 12, 25, 26], and in the

case of CoBrz- 6HZO and azurite further evidence has been supplied by the

magnetic susceptibility work of M. Garber [27, 28].

Crystals Without Transitions. These are examples of crystals
 

which do not show a paramagnetic-antiferromagnetic transiton in the

helium temperature range. The heat capacity curves are shown in

Figure 19.

The heat capacity of these crystals can probably be represented by

c = aT + bT3.

The first term represents the electronic contribution to the heat Capacity

while the second term is for the lattice vibrations. However, the general

shape of the curve for MnSO4-4HZO appears to be very similar to the part

of the graphs, in the paramagnetic state, for those crystals of group A.

There is consequently, some slight evidence that this crystal may show

some magnetic ordering below 1. 30K.
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Crystals in Group C. Due to experimental difficulties it has not
 

been possible toimeasure the heat capacity for these crystals. The dif-

ficulties center in the fact that it has been impossible to achieve a

temperature change in the sample by adding heat. Upon accentuating the

heater circuit, heat is observed to flow into the crystal, but this will

immediately flow out of the crystal when the circuit is turned off. This

phenomenon occurs even though there appears to-be a good insulating

vacuum in the calorimeter. The procedures followed in this work were

exactly the same as those outlined in Table II. Whether this is due to a

very large heat capacity, a thermal conductivity phenomenon, or some

other factor is yet to be determined. Further work needs to be done on

these crystals.

The studies which have been done on theheat capacity of a number

of single crystals has now been presented. This property shows anomalous

peaks in five of the crystals, and these peaks have been explained as

representing paraJnagnetic-antiferromagnetic transitions. The entropy

gained through the transformation was found to compare very favorably

with the theoretical value of the entropy for each crystal. - Also, it was

found that the short-range ordering contributed to the entropy, the amount

of this contribution varying from 3 to 55 percent. Van Vleck'smodel does

not take into account any short-range ordering.
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AZURITE

bdarch 10, 1959

T" c T’ c

(0K) (Ca1/Mo1eo Deg.) (0K) (Cal/Mole- Deg.)

1.717 1.11 1.950 1.85

1.763 1.18 . 1.997 1.49

1.782 1.21 2.081 1.08

1.799 1.42 2.137 0.92

1.802 1.39 2.198 0.94

1.814 1.57 2.357 0.87

1.818 1.50 2.413 0.80

1.831 1.74 2.541 0.84

1.844 3.93 2.611 0.83

1.852 3.33 2.775 0.75

1.876 2.49 3.018 0.84

1.914 2.18 3.625 0.61

NiBr2~ 6HZO

Adarch 28, 1959

4.150 0.45 6.234 3.60

4.905 1.16 6.366 2.94

5.260 1.00 6.530 5.88

5.531 1.17 7.357 2.13

5.735 1.65 8.619 1.94

5.944 2.58 9.595 1.55

6.092 2.06 13.295 0.95



(0K)

1.649

1.660

1.677

1.682

1.694

1.713

1.722

1.795

1.892

1.931

1.948

.010

.090

.242

.267

.407

2.477

2.520

2.561

2.645

N
N
N
N
N

(I

(Cal/Mole- Deg)

0.29

0.27

0.39

0.27

0.27

0.27

0.41

0.45

0.45

0.43

0.47

0.58

0.59

0.68

0.73

0.72

0.84

0.87

0.97

0.98

(SoBrzo6HQCI

(°K)

2.700

2.745

2.786

2.831

2.878

2.947

3.012

3.071

3.138

3.204

3.275

3.356

3.436

3.526

3.613

3. 909

4.103

4.425

5. 066

June 4, 1959

C

56

(Cal/Mole- Deg)

(1.08

1.15

1.93

.97

.74

.47

.79

.35

.87

.39

.14

.24

.14

.99

.07

1.01

0.78

0.84

0.57

H
H
H
W
N
N
N
o
—
a

H
O
H
H



(0K)

1.170

1.175

1.180

1.193

1.198

1.204

1.208

1.212

1.221

1.230

1.240

1.244

1.253

1.274

1.279

1.293

1.307

1.341

1.353

1.360

1.383

1.403

1.439

1.453

(Cal/Mole- Deg)

3.

.49

.52

.70

.28

.13

.43

.77

.95

.76

.81

.75

.66

.83

.84

.02

.64

.33

.68

.70

.76

.44

.52

.36m
m
e
e
p
h
e
p
e
w
w
w
w
w
w
w
w
w
w
w
w
w
w

C

44

MnC12° 41—120

T

(°K)

1.472

1.490

1.503

1.515

1.533

1.549

1.567

1.582

1.598

1.653

1.671

1.688

1.708

1.728

1.746

1.808

1.829

1.853

1.881

1.904

1.932

1.959

1.991

2.052

December 3,

(3

5.49

5.65

5.75

6.32

6.52

6.99

7.03

7.14

8.15

1.73

1.53

1.34

1.24

1.10

1.20

0.96

0.86

0.78

0.67

0.75

0.67

0.63

0.60

0.60

1959

57

{Cal/Mole- Deg)



T

(0K)

2.138

2.167

2 .302

2.363

2.542

2.747

3.402

.455

.466

.474

.480

.490

.498

.504

.513

.524

.532

.538

.548

.560

.572 W
W
W
W
W
W
W
W
N
W
W
W
W
W

C

(Cal/Mole- Deg)

0.45

0.39

.39

.35

.36

.28

.180
0
0
0
0

.05

.16

.37

.41

.02

.90

.16

.18

.65

.50

.50

.29

.58

.72

MIIClz“ 4H20

MnBrZO

T

(0K)

.500

.681

(Cont'd)

C

58

(Cal/Mole- Deg)

0.

.18

16

.806

.951

.083

.257

.426r
h
u
h
r
F
-
w
w
w
w

41120

1.584

1.595

1.606

1.618

1.633

1.644

1.676

1.695

1.728

1.749

1.772

31.800

1.850

1.869

h4arch.18,

0

0.18

0.16

0.20

0.14

0.23

1960

3.60

3.38

4.27

4.05

3.81

3.93

4.13

4.19

4.16

4.16

4.13

4.93

4.56

4.35



(0K)

N
N
N
N
N
N
N
N
N
N

.892

.919

.997

.031

.052

.072

.095

.113

.129

. 156

.191

.290

.328

C

(Cal/Moleo Deg)

4.86

.65

.42

.17

.95

.33

.89

.71

.12

1
4
>

N
U
J
N
C
D
Q
O
‘
O
‘
O
‘

.21

1.69

1.67

1.56

MnBrz ° 41—120

T

(OK)

W
N
W
W
W
N
N
N
N
N
N
N

. 371

.417

.488

.539

.588

.707

.796

.023

.588

.673

.808

.903

(C ont'd)

(Cal/Mole-Deg)

1.

1.

1.

C

34

17

07

0.89

0.91

0.

0

0

85

.70

.74

0.

0.

0.

0.

34

35

37

35

59



N
N
N
N

(OK)

.376

.392

.400

.464

.485

.502

.513

.521

.534

.546

.557

.568

.577

.584

.600

.614

.627

.638

.653

.668

.690

.725

.519

.579

.719

.823

(3

(Cal/Mole- Deg)

1.30

1.12

1.17

1.33

1.25

1.27

1.16

1.25

1.18

1.22

1.16

1.18

1.09

1.13

1.38

1.36

1.31

1.31

1.24

.23

.29

.20

.09

.19

1.30

1.21

H
H
H
H
H

Ni(NO3)3- 61120

T

(°K)

1.743

1.759

1.773

1.789

1.809

1.832

1.861

1.889

1.917

1.944

1.978

2.001

2.028

2.063

2.116

2.160

2.203

2.243

2.306

2.373

-2.418

2.465

2.989

3.435

3.586

3.770

January 28, 1960

C3

60

(Cal/Mole- Deg)



(OK)

1.361

1.367

1.372

1.377

1.382

1.390

1.396

1.402

1.410

1.421

1.427

1.433

1.443

1.449

1.454

1.463

1.474

1.677

1.693

1.719

1.733

1.751

1.775

1.792

1.814

(Cal/Mole. Deg)

1.

C3

39

.29

.26

.34

.30

.27

.28

.34

.31

.22

.27

.42

.36

.38

.31

.23

.33

.30

.33

.41

.37

.44

.35

.31

.29

Ni(N03)z° 61‘120

(OK)

H
N
N
N
N
N
N
N
N

.481

.488

.496

.503

.510

.519

.534

.544

.553

.564

.574

.590

.608

.621

.636

.649

.660

.318

.357

.530

.582

.641

.710

.789-

.873

(Cont'd)

February IL 1960

C

61

(Cal/Mole- Deg)

1.38

1.38

1.22

1.37

1.37

1.36

1.28

1.30

1.34

1.45

1.39

1.35

1.44

1.39

1.34

1.31

1.38

.1.17

1.17

1.30

1.34

1.23

1.33

1.36

1.30



Ni(NO3)Z° 61120 - .(Cont'd)

February. 11, 1960

T c T c

(0K) (Cal/Mole- Deg) (0K) (Cal/Mole- Deg)

1.833 1.30 2 972 1.26

1.852 1.49 3.087 1.15

1.877 ‘1.27 3.160 1.26

1.908 1.40 3.241 1.22

1.926 1.22 3.523 1.02

1.950 1.30 3.638 0.96

1.983 1.23 3.763 0.89

2.084 1.23 3.942 0.91

2.131 1.25 4.101 0.87

2.178 1.25 4.440 0.76

2.228 1.23 4.806 0.62

2.275 1.21

MnSO4-4HZO

April 19, 1960

1.378 0.24 1.554 0.14

1.384 0.21 1.574 0.14

1.390 0.20 1.585 0.15

1.396 0.20 1.595 0.13

1.403 0.19 1.611 0.13

1 410 0.20 1.622 0.13

1.416 0.18 1.635 0.14

1.421 0.19 1.651 0.13

1.425 0.19 1.679 0.11

1.430 0.18 1.706 0.15

1.436 0.18 1.726 0.11



MnS04 - 4HZO (Cont'd)

April 19, 1960

T c T 0

(0K) (Cal/Melee Deg) (0K) Cal/Mole- Deg)

1.443 0.18 1.749 0.11

1.449 0.22 1.775 0.14

1.457 0.17 1.801 0.09

1.463 0.29 1.846 0.10

1.469 0.14 1.867 0.09

1.479 0.17 1.905 0.09

1.487 0.16 1.953 0.11

1.494 0.17 2.002 0.07

1.506 0.14 2.054 0.06

1.516 0.15 2.084 0.07

1.521 0.18 2.100 0.08

1.539 0.16 2.126 0.07

1.547 0.16 2.147 0.06

2.182 0.08 2.798 0.07

2.211 0.07 2.932 0.11

2.246 0.06 3.063 0.10

2.301 0.07 3.224 0.23

2.345 0.07 3.577 0.19

2.393 0.05 3.663 0.28

2.446 0.09 3.807 0.26

2.517 0.05 3.921 0.28

2.572 0.06 3.986 0.31

2.672 0.09
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MnS04- 4HZO (Cont'd)

May 5, 1960

T’ c T’ C

(ox) (Cal/Mole- Deg) (0K) (Ca1/M61e- Deg)

1.289 0.22 1.357 0.21

1.298 0.19 1.366 0.16

1.304 0.21 1.371 0.19

1.313 0.19 1.380 0.18

1.321 0.20 1.391 0.19

1.325 0.19 1.397 0.19

1.330 0.19 1.404 0.18

1.333 0.19 1.414 0.17

1.337 0.19 1.421 0.19

1.343 0.25 1.429 0.15

1.351 0.20 1.439 0.16

1.458 0.15 1.801 0.16

1.472 0.15 1.823 0.20

1.488 0.14 1.843 0.12

1.503 0.16 1.868 0.09

1.513 0.15 1.910 0.09

1.522 0.13 1.944 0.09

1.542 0.15 1.997 0.09

1.549 0.15 2.072 0.09

1.569 0.16 2.114 0.13

1.581 0.14 2.160 0.16

1.594 0.14 2.217 0.11

1.613 0.14 2.332 0.09

1.626 0.12 2.364 0.07



T

(OK)

.661

.667

.728

.760

.785

C

MnSO4° 4H20

(Cal/Mole. Deg)

0
0
0
0
0

.13

.12

.11

.09

.16

(Cont'd)

T

(OK)

2.414

2.459

2.563

3.339

May 5,

65

1960

C

(Cal/MoleoDeg)

0.09

0.08

0.05

0.22



HICHIGQN STQTE UNIV. LIBRQRIES

 

31293017430210


