«.- —. --.r-u- qP-"-.. —- "fi1‘.um..wfiv - 1 g‘ . l I . ’ . .‘b-.. I I v . ' t | I I 4n + ‘ I- . ' . ‘ I}. o o ‘ | o .o .n I _ . . Q“ ' I. I'" P i . u.-- .4- 0| - ‘ -0- . . _ ‘ ‘ I 0 J " H' _ - -1- § \ ‘ . - . I; -—. n-.. '0 ‘ - »'- .- -- .0 L. .. -_ oflO'u‘w . u I... . L . n...‘ ' . .... . .' " A 4‘. . ‘ I. . _" I II4.q- .' . ‘_ . _ _ . ”I . _ j u. .‘ ' .1 p I -I‘- ;f I. 8:. u o .h L". _ . . “ u! __ I. . 1’ ' "- o - . l | _, . o . 1 I t L f I I I. o . I. I - y .. . . w _ . . '#'. . a .- . ,_ "I. J ,.._., 1.5 ‘ . .'- O a _ v ‘ . a I o n _ I ' ' I - C I o '. o ‘ ‘ .' ‘1 v . ,.___ d no _' I o- ’ ' '- I I _— .- . I .‘I ‘ 0‘ I . I ' I i I .‘o-«4. I . I On — . - _ ‘ I I , _ ‘ - . I -|‘ I -I V [.17- . ¢l A": I I . , ‘.. I II I O "H I ‘ -. "1 I I . . I. -. H, v I' " . :‘fi‘1 5 n- ‘J7' ‘ - or ,5 ; 1 . . - . “-— L n . q ~ ‘ . ,‘I" I - c . I - ,..u. r _ -| . ' ._. I" r- _ ‘\ ' I ' I tl ; _ ,0 ' .é' ' ‘. ‘ - ‘ - . .. I. n i. J- 0' ‘5 . . .. if?! I . .I' I ‘o I ' o. . I b I 1 v . ~ . y . . . ‘ _‘ . -Y 0 ‘ . . . a I. _ z . _ ' - 'll "' h. .. -' I ' ‘ ' I I I u» . .8 _ o ,\ . r _ . —»‘q. 0‘ -.' _ . . ' . 1" ' ’ I - ' ‘ . . .. ' _ a t- - r. 03 O - I ' --.o O - I l . -_ _ . o ' - 4 g I . ' p. _ . . — _ .. ~.r.g. at 1 ’ , - l - r" o I I- | ‘ Ar fl :. ._\ ._ - ' ¢ ' — 7 _ A ' — - _ - - ”2:? . .. 1 ' ’17 . . 7 I ' h“ ' — _ i in :- 1‘ ~ 0 . ‘l , —.- a.» - _‘.“ I I -r ' ~ "I . ‘ ' 04', 2* a I, ' _ ‘3: 3‘— ‘ ._~ :— J. . .1 _ .. ‘ _ . .3.” no ' _ .- -. - I C _l i ‘ - “ ' - ‘-_- _-__.;_- _' ~,-_'.‘ ’ — - -r- ....L - -_ r.- - L ~r - " 7 D." a '- n — ' A-‘. - . ’1 - - I ‘ . 'I' :r— I I. .-“_‘"' ’2: g-‘_f‘f‘ . ' I. - .... . '— — -‘—..:-.' . ‘- 00' -. _ ._ . ._. ‘13." ' I 3' ' ~ ' ~ .. ' -‘-:'-:.:YL - ‘ » I ‘ " ~ l- _ — l .' t ' ' . I '--.. “3"“ . ' I —: . I L- -‘ .l' I * ' -—b‘:.-:F|:c- — ‘ .. 7" .: IL .1 . . a: , 5 r A; , ,. ..—'.. I~. ’ 5—2 E Q’. .v . v . ._ '5!- -- ‘ _ .9 _ . I- I n ‘} — :11 ; cv—n“ ;' [:1 " - unal-- o. Wh- L- . + : -‘fi- 1.0 " u .- ..II‘..‘2_I _ ‘I.:_ ‘11—- 71“! --- -—-s v'. THE—$5 e,,__.‘.. PLACE IN RETURN BOX to remove this checkout from your record. To AVOID FINES return on or before date due. MAY BE RECALLED with earlier due date if requested. DATE DUE m DATE DUE 3/01 c:/CIRCIDIIODuO.pfi5-p. 15 A Design of a Revetment Ball for Erosion Control on Red Cedar River A Thesis Submitted to The Faculty of RICHIGAN STATE COLLEGE of AGRICULTURE AND APPLIED SCIEKCE by J 0 H01 gate hh- Candidate for the Degree of Bachelor of Science June 1948 CN/ 6/“ [W C?" TABLE 9;; CONTENTS I Introduction A. Discussion of problem B. Preposed Measure to Alleviate Condtion II Design or Cantilever Retaining Wall A. Data and Assumptions for Design B. Determination of Economical Dimensions 0. Investigation of Forces during High.Water D. Design of Heel Slab E. Design or Toe Slab F. Design of Stem l. Shear 8c Moment 2. Cutting off Steel Rods G. Temperature Steel H. Design or Piles I. Drainage Weepholes III Construction Estimate A. Current Unit Prices B. Quantities of Materials Estimate c. -Cost Estimate IV Situation Plan, Profiles, Detail Drawing a Bill of. Materials (available in.pocket) v Bibliography 2.06054: I Introduction This thesis is concerned with the protection of an embankment against erosion by current. A problem frequently met in engineering, bank erosion often has destructive ef- fects on abuting land and structures. A case, in point, is that treated in this paper. In 1934, a highway bridge was built over the Red Cedar hiver on Kalamazoo Road between Lansing and East Lansing. The out- line of the banks of the river, adjacent to the bridge, was as shown in the situation plan at the end of this report. During the ensuing fourteen years to 1948, the northwest bank has been subjected to erosive action by the current. This so-called "scouring" has changed the location of that bank, as noted in the map. The significance of this condition has been recognized by local authorities. Further scouring of the bank can re- sult in subsequent exposure of the foundation piles support- ing abutment "A". This exposure is most likely to occur when the summer low water level is less than Elev. 819.0 and the soil has been washed away under the abutment. Tim- ber piles are most subject to decay at the water line where they become alternately wet and dry, while the portion of a pile, which remains continuously immersed in water, does not decay and lasts practically forever. This situation warrants the designing and building of a structure to resist further erosive action. A retaining wall has been selected as the design problem herein. Enclosed are photographs from various angles showing the present appearance of the site for the preposed re- taining wall. Photo No. l - Scour begins at this part or bank Photo No. 2 - Erosion oocuring on west bank Photo No. 3 - Additional view showing scouring action Photo No. 4 - Bridge adjacent to site of re- taining wall II Design of Cantilever Retaining Wall A. Data and Assumptions for Design Data: Cantilever Retaining Wall Surcharge: none Impact (Vibration): none Earth: We = 100 pcf e = 0° ¢ ‘ 53° 40' = angle of internal friction Foundation pressure = 5000 psf (assumed maximum) Specifications: (assumed) wt. of Gene. = 150 pcf f'c = 2000 psi n = 15 fc = 800 psi v = 40 psi u = 100 psi fs = 18,000 psi Design Constants: R = Egg = 159 J = 7/8 Coef. of friction between base & earth ' .40 I /\‘- “/z/x /// \ ~ ~/./__, \. - i it we 1 B. Determination of Economical Dimensions Pressure on base C - cos 9 (nos 9 - c032 9 - cos? M) (cos 0 + cosg’e - cosd C) 1-sin : 1-.554 = .287 l+sin 1+.554 p - th - .287X100Xl6 - 459 psg 459 x 16 = 5680 lb. .__7;____ I. AZ ///\\—‘~—// \\\///c~~/,/ ’ * till 1 I It?“ ML; ” W; l "+3 $0" HIV 2L6. hi .l/re/ 1”, 75¢] "" _, xaza' :4 Check for trial width: M - 5680 x 5.55 = 5/45 x 16 x 100 third pt. x (2/5b _ S/Bb) - 19040- 12005 (2/55 - 5/8b ) 19640-. 80052 - 450b2 - 550132 b2 = 56.1 b a 7.5 let b - 10' Base pressures: Moments about too: wl - 1.5x10xlx150 = 2250 lb. x 5.0 - 11,250 lb. ft. W2 - lxl4.5xlxl50 - 2170 " x 5.0 - 6,520 " " W3 - %x%xl4.5xlx150= 545 " x 3.67- 1,994 " " W4 - §x§x14.5xlx100- 562 " x 5.85- 1.386 " " W5 - 6xlxl4.5xlx100- 8700 " x 7.00- 60,900 " " Wtot - 14,025 lb. 82,050 lb. ft. Dist. from toe to Wtot : 82050 I 5.86 ft. 14025 I ........ .___5_§_3£_ 3.1. 40 1.40-.86- .74 5°35 14025 5.86 - 5.00 . .86 Eccentricity . .74 ft. ( mug-01. m 1/5 base 1: .60 - 1.67) Since this design with base width equal to 10 ft. shows a distance of .95 ft (1.67 - .74) between the extremity of the middle third and the point where the resultant load cuts the base, it was decided to take a smaller value for 'b' in order to obtain a more economical design. It is generally agreed that the optimum situation for economical design occurs when the resultant cuts the base of the wall at the extremity of the middle third. Let b a 7.50 ft. Iz" ///\\\”’\,\.\/” \ 5s El. 320 Wafer . " / E 3660 M [are a" 35-4" 255' ‘ W ’5 [L6 ’ Base Pressures: laments about toe: '1 - 5.5214.sa:100 - 5075 15 x 5.75 . 29200 lb.tt. I2 . 7.53: 1.51150 I 1690 H x 5.75 s 5340 u u w; = 1/211/2x14.51100 - 562 x 5.65 . 1566 a " '4 - l/2:l/2:tl4.51150 - 544 x 5.67 a 1997 a " W5 :- 1:14.52150 I 2170: 5.00 - 6500 n ' Wtot- 9841 lb. 45425 lb ft O 9 O 4 .u . .l 0 C C Dist. from too to Wtot s fl I 4.62 ft. 9841 3 .- - 369° 3; s 2.00 ft. 4.62 - 3.75 - .87“. 5.35 9841 ROCCntricity'. 2.00 ' e87 . 1.15 ft. (Allowable e 1.25) B”. n.5,”. . g . .2. 1' so , 9841 ._.., 9841x1.15:5.75x12 A f 7.5' ' 117 gr... 1' I 1510 t 1185 = 2495 psf at toe £23 psf at heel 'tot X mom. amm E x 5.33 Factor of safety for overturning I S.P. = 984114 62 3 45423 “#368015.“ W 8 2.32 (Allowable I 2.00) Factor of Safety for Sliding =Ifiz_____0°°to___or_m__,,o,.t.,1.o,n, s 8.1". i m = 1.07 (Anchorage not required since 3680 the soil 1- low in bearing capacity and piles will be driven) Sometime during the spring, the Red Cedar River can be counted on to reach flood levels and overflow its banks. Be- cause of this, the forces acting will be analysed herein. As shown in the following sketch, the earth pressure of water pressure tend to cancel each other and consequently the resultant force cuts the base closer to the center than at low water. Therefore, the base pressure is less at the toe than before. The picture is also improved for shear along face a-b. The bending moment on the stem could possibly be changed an appreciable amount, however. .1 0. Investigation of Forces during High Water noments about face a-b I 5680 x 5.55 - 2000 (9.17) '3 540ft1b' 650011111). 6 = v = 1680 = 4.00 in. 55' W assume d t 12" at this a - I 8 540 - 1.981s point RB 133 As - s - 6500 I .054 in.2 mm This area of steel will be taken carg of by temp. steel spaced 5'-0" c/c i” 0 'I .20 in. f/lfé bag #6 r ///(\\WA~- /,, \.\\//, ‘ Ear'ffl “-14." 85—0"Jeaa’ JL_ 15-13680 ' [—21 D. Design of Heel Slab W. 5'07: 1 :m 9 pa). L__1 MT 64* .. a’ u 14% Watt) (Hf ’ 5’: we r- 1.5 x 5.5 x 150 - 787.5 I 786 31 i 125 x 3.5 3 457.5 ' 438 32- 1110:}:5.5- 1940 laments about a-b: 4-5075 (1.75) + 788 (1.75) - 4:58 (1.75) - 1940 (1.17)=0 10250 - 767 - 2270 8 7,215 3 I a-b. Bending causes tension in top fibers of heel slab. VI5075+788-458-1940I54851b. d'V'MBS ”5531:; 53'; W Z I 5.5 d I n I 7213 2575 775 ‘35 1'59 6 51.9 2 I 1110 psf d I 7.20 in. I minim "d' In this case assume 6. I 15 in. with 5 in. cover. Check for allowable shear: v I V I 3485 I 22.1 psi WW Steel Design for Heel Slab: A, I I I 7215 x 12 I .566 in.2 reqd. per 12 in. ' s Usez-i'dbarsI .401ng32 12 I 6" spacing c/c ' 1 Check for Bond Stress: £0 3 5.14 in. l3 V ' 3485 384.5 281 (100 0.1:. £033 . _ Therefore, special anchorage not required. L = fs 9 3' 16000:.5 = 22,5 inches. Iii"- x ’ I .l ' _.'______ L I 37" ‘T’T‘ I / J. z .. I d "' {"2 ”—5 ”6/; 1499/ Qflflf: - a -'~ E. Design of Toe Slab ,6“ z I 2.5 2575 7'5. x25 a; z I 795 per 2500 F‘J‘ z w = 1.5 x 150 x 5.5 = 788 1b. as . 125 x 2.5 = 515 15. R4 = 795 x 1 x 2.5 - 990 15. 35 - 1582 x 2.5 - 5950 15. Moments about face 8-8: -788 x 1.25 + 515 z 1.25 + 5950 x 1.25 3+ 990 x 1.67 = 6000 ft.l' 4350 + 1650 Shear I v I 4465 lb. Assume too 18" thick 0: d I 15" v V = 4465 I 28.5 psi 53'! 1253778215 861 I6000 532' 125: 26.7 As I. I I 6000 z l2 3 .505 in.2 req'd. per foot. s , . Use 2}" 0 bars = .40 in.2 Bottom at 6" spacing 0/6 Check for Bond Stress: u 3 V 3 4465 = 108 psi zofla e L 3 st 3 18000 1|} 3 22.5 inches. In x Fe D0819. of at“ I/I\~s~/,,~~I// 9 Ill 7",” 14'4“ H E-_3olo l6 —- 43,1 L: AMI,” ‘ . . 2’2 P‘thI .287‘:100:14.5-416 3 I 416 x 14.5 I 5010 lb. -—T-.-- 3h.” : 3°10 Ibo d I 7 I 5010 I 7.17 inches v """'"" d 8 I 8 14540 - 104e5 = 1002 ‘m0‘ 3'5 15! mt d . 15 in. lake stem 12 in. at top a 18 in. at bottom 7 a 28.7h2 F 1'" Y: ' 14e2 he Steel required at Junction of stem 6: base: AsII =174 500 =.756 in.2 rm Imam-776515 ‘x'figihzh; xx - 28.7h5 "T" 8 4.2g3 Use a: 42 bars gives .75 in.2 per 12 inches \NNQ gmxh. \b\0\\\§0b \5 0.0\ sexekNx oukhmth. / Z 3 / / / 0'0 40 '20 {+16’Q‘IOII| (It I .V w W I. x. as. ,6 W ? 0 .s-‘fl, ‘I.. 'o. isle-v on {It 12 = 4 inch spacing 1 u L I st = 18000:.5 = 22.5 inches embeMent u 2 Investigation of shear a moment at third points: 7, = 14.55 h2 u, . 4.78 113 Where 7; a u, I shear a moment at any section “11" dist. from top of wall 2214.5 8 9.67 11.- h v, a 14.55 x 9.672- 1540 lb. I, - 4.76 53 a 4.78 x 9.673- 4520 ft.1b. d-v 21540 =5.19 in. #35 251778512 6 = 1 8 4320 . 3101 g 5058 1110 OeKe actual 5 "1'3! 'd' I 15" As a n 8 4520112 - 255 114.2 ' 153': mm ’ h s 14.5 a 4.85 ft. 73 = 14.55 x 4.852 = 555 lb. T a, = 4.78 x 4.85‘5 = 545 £5.15. 4 837 ~555 =.7981n. "5'5 M d I I I 545 = 5.92 I 1.98 or 2 inches 5 1'35 As s 545212 . .0577 15.2 W 0. Temperature Steel: .0025 (ave.) x concrete x-section area .0025 x 12 x 15 = .450 15.2 i¢@9"c/c . “£812”c/c Use Front + . Back I .46 in.2 To support horis. steel in front of tom: Use i“ 5 bars 8 She" Longitudnal bars in base: Use 4}“ 5 bars - 18" c/c I E. Design of Piles Although data concerning soundings was not avail- able for this design, helpful information was contributed by Mr. W. C. Gunn, Civil Engineer. Mr. Gunn was the construc- tion engineer for the bridge Job and consequently is familiar with the supporting characteristics of the soil. Considering the soil pressure developed at the toe, of the wall in.this idesign, he advised the addition.of timber piling to assure ample support. The problem of spacing and size of piles was taken.up with.Prof. C. A. Miller, Dept. of Civil Engineering. His reference to a graphical method of determining this spacing was greatly appreciated along with.his other helpful assis- tance on the design of the wall. Use 15 feet long piles, measuring 12 inches at butt and tapering down to 9 inches at the tip. These piles can be rated at 15 tons in this soil according to Mr. Gunn. The graphical method for determining spacing is shown on the following page. Since the theoretical center-line of the piles on the toe side is only 1 foot from.the toe, the piles will be moved.in another 6 inches. This will fulfill the required.minimum distance of 18 inches from pile center- line to edge of concrete. The second line of piles at 4 feet from the toe will be moved a corresponding distance. \nhOQ hKhthxxflx 005% U 26 e m 5 M /a d e m 4a +4 0 |%5rw.0 d/fidé/ I i T 1 | 6/fi A65 x 1 , . , . .I.. Q \ I . . . I 4.: 5 ' \ . ~r .- .- ._\\ '- I‘.-.—~- I 0! ego—oh-.. - b 0' ”I ’ r.’ r . 'f- ' l / I l/ f . . 1 / o / ' e. f I | 1‘ e / ‘ I 4 / _ or . ." . at O ' . I I. O e O Q 0 . . ' .I t ' i 0 . . I g V ' . . I llo - --e e - o . v. A l 1-“ 1 A A A 1 Calculation of load transfered to each pile: 1. [WI I | ' 116’ W F 7%- U l 32-0" I- IE sr Load er ile 8 2 ' uth 2%- fg. W I 2e3 x 4e5 ' 22,100 lbe longitudnal spacing. Load per pile equals approx. 11 tons. Allowable pile capacity 3 16 tons. Drainage We epholes The drainage problem for this retaining wall is somewhat different from the ordinary. Since the usual location or weepholes near the bottom of the stem is, in this case. below the river bed, the outlet will be placed at a higher elevation (820 ft.). Above this point bankrun grave]. is to be filled ~in as a filter- ing medium for catching silt and other foreign matter which would tend to clog the drains. The weepholes are to be constructed by building 6" x 6" boxes integrally with the‘stem forms. This technique is desirable because scrap lumber can be used for the boxes and the work need not be complica- ted by a possible difference in tile lengths and wall thickness. III Construction Estimate A. Current Unit Prices In the construction field,‘unit prices fluctuate due to many varying conditions. Therefore, it is often difficult to predict at a glance how much a certain struc- ture will cost to build. For this problem, the writer consulted with an.engineer connected with a local contracting firm to get a typical picture of the current prices in this area. The co-Opera- tion of Mr. Dave Cole of the Reniger Construction Company was greatly appreciated in connection with this matter. The following unit prices will be used herewith; Excavation ‘Power excavate - 80¢/yd. Backfill - 25¢/yd. Concrete Materials: 25001b. - 5 sack concrete - $8.70/yd. deliver- ed (ready mix) Labor: Footing concrete - $2.00/yd. Wall concrete - $3.50/yd. Forms: Footings - Material - 15¢/sq.rt. Labor - 25¢/sq.ft. Walls - Material - 58¢/sq.ft. Labor - 50¢/sq.ft. Const. Joint - 50¢/lin.ft. Reinforcing,Stee1 Material: Deformed, intermediate grade, billet steel will be used. Material Fabricated - $125/ton (this figure in- cludes accessories such as tie wire, beam chairs a Spacers.) Placing Steel - $50.00/ton Carborundum Rub (surface finish) Material - fi/sqd‘t. Labor - 30¢/sq.ft. Overhead - 10% Includes: supervision, timekeeping, layout, expedit- ing, sheds, workmen's compensation, social security. £9222. - a M - 10% for a Job of this type and size. B. Quantitie of Materials Estimate Concrete : Footing -' Vol. = 28 x 7.5 x 370.7 x 1/27 a 240 cuoydso Deduct cylinders gr pile heads: Vol. of one cyl. = 11’th 3 .785 x l x lO I .655 z . cuefte .655 cu.ft./cy1.x166 cyl. ' 108.5 cu.ft. 108e5 = 4.0 cu.yds. 240 - 4 8 256 cu.zds. ' conchol.in footing StOm " V01. . 1 J’ 1.5 x 14e51370e731/27 8 249 cuqu. T Total Concrete Yardage 8 256 l» 249 I 485 cu.yds. Steel : Footing steel top - i" 5 bars 5:.» rods 6 6" c/c 2 x 370 = 740 rods 740 x 5.17 i- 3820 lin.ft. Footing steel bottom - i“ C bars 4'-2" rods @ 6" c/c 2 x 5‘70 x 4.17- 5080 lin.ft. Footing steel longitudnal - 7%" 0 rods, entire length - of wall '7 x 5'70 8 2590 lin.ft. Dowel steel - i” 57 bars - 4"«0'l - 4" c/c 5x570x43444011n.ft. Stem steel - i“ W bars - ’7'-0" - 8" c/c 1.5 x 370 x 7 = 5880 lin.ft. Temp. steel horis. - i" 0 bars 15 x 5'70 + 19 x 3'70 II 12,580 lin.ft. Temp. steel vert. - 4}" 0 bars - 14'-6" - 5'-0" #0 14.5 x 125 rods 8 1780 lin.ft. W: 8520 lin.ft. of i” ‘9’ bars 25850 lin.ft. or g" 0 bars r ¢’/ bars weigh .850 lb/lin.ft. i” 9! ' " .555 lb/lin.ft. Total it. = 5520 x .350 + 25,550 x .668 . 25,020 15. I 11.50 tons Excavation: Slope trench 60° with horizontal Volume of excavation I! agrxm I 2440 cu.yd. Cost Estimate Power Excavate - 2440 cu. yds. x .80¢/cu.yd. Backfill - 1450 cu.yds. x .25¢/cu.yd. Forms:Footing: Materials - 15¢/sq.ft. x 570 ft. x g x 2 Labor - 25¢/sq.ft. x 5‘70 1: g x 2 Porms:Stem: Materials - 58¢]sq.ft. 3.14.5 x 370 3.2 Labor - 50¢/sq.ft. x 14.5 x 5'70 x 2 Footing Concrete: Materials - 256 cu.yd. x.8.70/cu.yd. ' delivered Labor " 236 Gueyde : 3.00/cu.yd. Stem Concrete: ‘ Materials - 249 cu.yd. x 8.70/cu.yd delivered Labor " 236 011.30. x sew/Weyde Construction Joints: One joint every 40 ft. = 92 Joints 3 3 1950.00 22 lin.ft./Joint x 92 Joints x 50¢/11n.ft.= Reinforcing Steel: laterials - 11.5 tons x $125/t0n Labor (placing) - 11.5 tons x $50/ton Carborundum Rub: upper art. of front sur- face of stem will be rubbed for appear- anOOe laterials: - 8 x 570 x fi/aqxt. Labor - 8.x 370 x 50¢/sq.ft. Piling: 166 piles x $60/pile (driving i materials) TOte Contractor's overhead I 10% Contractor's profit 1' 81 362.00 259.00 452.00 4080.00 5570.00 2050.00 472.00 2170.00 872.00 1010.00 1440.00 575.00 14.80 888.00 9950.00 5189.48 2810:00 85 37894.28 V Bibliography Urqhart. 9.15.1.1 Engineering Handbook. Sutherland, 3., 8: Reese, R. C. Reinforced Concrete DesiE. Pickels, Geo. W., Drainage g3 ELM-Control Engineering. Underwood, 0., Standard Construction Methods. Eshbach, O. 17., Handboog 2; Engineering Fundamentalg. L 1.1.1.9.. ..1 #1 mo / a. d. 4.60 pF‘GSEE/rf7" :1. {32/41/14}? 50/98 OUI ”277(52‘ f/. KEZ’C f‘7e: Pit/cc 5:30" 5’2 A? 77775.: n 7" M/U// { 7'07”? 1.677577% = 3 7036‘. ( ¢ Bridge and l .c g (/5337 f/ ’ / /// / ///// /‘/ fl ( / M'QQ //1 \TAV /‘/‘I/ f////// ’24 52/8/15 ; E. A lays/M / M’OA. [4 re- 1' L / / / v/L’ #1 0.5. g; “(a/‘57? 3—7-4, a IVe r / // I (5 Fmposea/ ¢ \J 5" fora/907” N /// // / r , / . ’ . p / 9 f 1 Lansxng’ ancrlqa //7 gfiom (”a an fig LOCAT/O/V SKETCH \ 5mm rxozv paw K0/07m0200 57‘7‘66 7" our/15m? Rt’I'AI/WA/é‘ mu 1 50415 .' / ” =ZO’ 0/1725: 5-3~4c5’ DAM ”01/ 57 ./. H04 GA 72' 5/1 1 0/" MA fffllAL .5 j [ 7'5 M #075775» Cecib’x’gsfe ”*7;sz ”"759?” meer ,o/xas 5». Manama. 54.279 PM»; /~\ 2- /-\ /-_\ Foof‘mg' Z36 /66 3750177427“ I ' ~ W ,waSfre/ TOP £5 7 5820 2550 9 /’ i 9 / 9 \ —/ ,. ,, 5.77. 55.5. 3080 2000 , ” ” 40W. 55.1. Z590 I730 *‘- n; i ' ‘ ‘ 5mm Z40 573/2757’66/ 5.5. 3880 3300 Dowe/ 5702/ D. 5. 4440 3 76 0 Tandy/J76}: 7.13/7’. /2, 580 84/0 72,45.sz 10% 775. V. l 780 #90 75 7‘. Exca V. 3 0.3 0 ..._J______,....._——_...__ fora/s 455 33/70 25020 x00 5020 875 SECFMIV 5'5 554-24? 0/80. £5.79 {5.5—{9900”02- A”. 4239.? ”00 M7 £2828 ‘ . ’0 ’7 er: s. ‘ 52131:; ———_-___.__.____.__._._________(_._1___,___ __ _______..___.___..*___.._.___—_._—————————-———--—-—-— ST"'!;-"‘ _,- I ' I >— 758/. ~;§-”¢ 0/092 5.95/6 'I-n I) 1 a 5 '9 :".'XI;-\Jci '9': 5 s { ' L I I l 7‘ AI” [ I I: I 55740006 {‘1«.>—775.//. - 24- ”¢ 00 ”c/c fmm‘ O Q ll ” ; {if-p. 4r 0x0 ”60,000.65” 2 ‘ 3 '- Spacea’ ens/y /C7 ’—\ 1:: "3:351“... EX 8,20 1' =9..:_: 7.5. V. "24 ”s25 0590” % i I 00/V57o/0/A/7-«21’20 ” 05—%”¢@4”c/c ——\ ' 556770” A-A I 1.... I . .l' . . I I .. . . ‘ e e I L g . . . e e C A e , e e e e 0 e 0 e n e [— :*————;::-—‘——— ' . :5. .‘:;'.:‘(..‘ -'- -. ' -“ . .' I.‘ E“,"-.. I I ‘ - .- ..- 0 F -_‘+* flFTr—_+—F— . . . i . T . . . . ‘ . . \F B Lot-’2; .‘ ‘ . :- .‘ '- .. ' . . ' .1.- .t :n .4. t.‘ i: B __ _ . \. _ . 9 . . ’. “v.“ .I [— ‘1—I j :— I N ,4 ‘5/ ‘. . h I}; ' I l I I I | “I '- 'AO" - J ' «fig/12 «« . - . (AA/2715”)? AER/MING mm 5044.: .- /”=Z ’ 0,4 75: 5— 5 -45 04‘ ova/v.50 8/ ./. #04 0/1 72‘ i , | 5157.070” 1”, Cox/e: 0495M: I _& .-__ mu: IIHHHH 13293 01747 8342