# AN ANALYSIS OF OPTICAL AND ELECTRON SPIN RESONANCE SPECTRA OF METAL-AMINE SOLUTIONS

Thesis for the Degree of M. S.

MICHIGAN STATE UNIVERSITY

Jay Dean Rynbrandt

1966

Transie

Michigan State
University

032404

.

.

#### ABSTRACT

AN ANALYSIS OF OPTICAL AND ELECTRON SFIN RESONANCE SPECTRA OF RETAL-ANDRE SOLUTIONS.

by Jay Dean Rynbrandt

The electron spin resonance (ESR) hyperfine splitting value of potassium in ethylamine-ammonia mixtures is highly dependent upon the temperature and the ammonia content. A rapid equilibrium between two species (atoms and monomers) is proposed to explain this behavior. Using a computer program which employs an iterative procedure, the equilibrium model is shown to quantitatively describe the change in hyperfine splitting. The free energy of solution of metal atoms is calculated which, combined with the free energy of formation of the gaseous atom yields  $\Delta G^{\circ} = -5.2$  kcal mole  $^{-1}$  for the solvation process

$$K(g) = K(solv.)$$

ASR spectra resulting from overlap of a potassium four line hyperfine pattern with a broad single absorption have been separated into the contributions from each. A correlation was observed between the linewidth of the extra line and the potassium hyperfine splitting value. Two types of computer programs used in making the separation are described.

The variation of linewidth for the eight line hyperfine pattern of cesium in ethylamine is fit to a polynomial in powers of the nuclear spin quantum number, m<sub>I</sub>. Graphs of the coefficients of a third order fit are given as a function of 1 / T for three different samples along with the program used to make the calculation. A program is also described which makes second order corrections to the field positions in ESR spectra having large hyperfine splittings.

A new variable-temperature spectrophotometer has been assembled to measure the optical spectra of solutions in ASR sample tubes. This spectrophotometer can be used over the temperature range from -150 to  $30^{\circ}\text{C}$ .

## AN AMALYSIS OF OPTICAL AND ELECTRON SPIN RESUNANCE SPECTRA OF RETAL-AMERIC SOLUTIONS.

Вy

Jay Dean Rynbrandt

## A THESIS

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

Department of Chemistry

To my Parents

1/4/m

### ACKNO.JLEDGMENTS

The author wishes to express his sincere appreciation to Professor James L. Dye for his guidance and assistance throughout the course of this investigation.

He also wishes to extend his appreciation to Mr. Russell Geyer for his advice and to a colleague, Mr. Larry R. Dalton for his assistance in the experimental work.

Financial aid from the Atomic Energy Commission is gratefully acknowledged.

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

## TABLE OF CONTENTS

|      |      |                  |       |             |       |               |       |     |           |    |    |     |                  |     |     |            |    |   | Page |
|------|------|------------------|-------|-------------|-------|---------------|-------|-----|-----------|----|----|-----|------------------|-----|-----|------------|----|---|------|
| I.   | TNT  | RODU             | CTIC  |             |       |               | •     | •   | •         | •  | •  | • • | •                | •   | •   | •          | •  | • | 1    |
| II.  | HIS  | TORI             | CAL   |             |       |               | •     | •   | •         | •  | •  | • • | •                | •   | •   | •          | •  | • | 3    |
|      |      | 1.               | The   | IR A        | Bend  |               | •     | •   | •         | •  | •  |     | •                | •   | •   | •          | •  | • | 7    |
|      |      | 2.               | The   | R Ba        | and.  |               | •     | •   | •         | •  | •  | •   | •                | •   | •   | •          | •  | • | 8    |
|      |      | 3•               | The   | <b>V</b> Ba | and.  |               | •     | •   | •         | •  | •  |     | •                | •   | •   | •          | •  | • | 9    |
|      |      | 4.               | Inte  | rcor        | nver  | sion          | St    | tud | lie       | s  | •  | • • | •                | •   | •   | •          | •  | • | 10   |
| III. | EXP  | ERII             | IINTA | L Ai        | ID R. | :SUI          | TS    | •   | •         | •  | •  | • • | •                | •   | •   | •          | •  | • | 13   |
|      | Α.   | <b>O</b> pti     | ical  | and         | Elec  | ctro          | n S   | Spi | n         | Re | so | nar | ıce              | •   | •   | •          | •  | • | 13   |
|      |      | 1.               | Opti  | .cal        | Spec  | ctra          | . o.t | F   | ot        | 25 | si | um  | So:              | Lut | tic | ns         | 3  |   |      |
|      |      |                  | in E  | thy.        | lamir | ne <b>-</b> A | mnic  | ni  | .a        | Mi | xt | ure | :5               | •   | •   | •          | •  | • | 13   |
|      |      | 2.               | £SR   | Stud        | lies  | of            | Met   | al  | <u>-4</u> | mi | ne | Sc  | olu <sup>.</sup> | tio | ons | 5 <b>•</b> | •  | • | 14   |
|      | В•   | Prog             | ;rans | and         | l Res | sult          | S     | •   | •         | •  | •  | • • | •                | •   | •   | •          | •  | • | 21.  |
|      |      | 1.               | Prog  | ren         | A M   | EQ            | •     | •   | •         | •  | •  |     | •                | •   | •   | •          | •  | • | 21   |
|      |      | 2.               | Prog  | ram         | K E   | SR .          | •     | •   | •         | •  | •  | •   | •                | •   | •   | •          | •  | • | 27   |
|      |      | 3•               | Proé  | ran         | GEN   | LS            | •     | •   | •         | •  | •  |     | •                | •   | •   | •          | •  | • | 28   |
|      |      | 4.               | Prog  | ram         | POL   | r FT          |       | •   | •         | •  | •. |     | •                | •   | •   | •          | •  | • | 31   |
|      |      | ۲.               | Pro   | ram         | IR I  | TIT           | •     | •   | •         | •  | •  | • • |                  | •   | •   | •          | •  | • | 35   |
|      |      | 6.               | Prog  | ram         | SEC   | $\infty$      | •     | •   | •         | •  | •  | •   | •                | •   | •   | •          | •  | • | 40   |
|      | €.   | A Ne             | ем Vа | rial        | ole-ï | l'emp         | era   | atu | ıre       | S  | pe | cti | op!              | hot | ton | ıet        | eı |   | 41   |
| .VI  | CON  | CLUS             | STORE |             |       |               | •     | •   | •         | •  | •  | •   | •                | •   | •   | •          | •  | • | 45   |
| ٧.   | A D  |                  | L FOR | TIII        | E V 1 | BAHD          |       | •   | •         | •  | •  |     |                  | •   | •   | •          | •  | • | 48   |
|      | मः व | ਦਾ <b>ਰ ਵਾ</b> ਦ | יחבק  |             |       |               |       |     |           |    |    |     |                  |     |     |            |    |   | ל ז  |

## TABLE OF CONTENTS - Continued

|        |                                           | Page |
|--------|-------------------------------------------|------|
| APPAND | ICES                                      | 54   |
| A. 1.  | Atom-Monomer Equilibrium (A M EQ)         | 55   |
| 2.     | Least Squares Line (LEME)                 | 63   |
| B. 1.  | Least Squares Spectra Synthesizing        | 66   |
| 2.     | Adjustment Monitor (ADJ.)                 | 74   |
| 3•     | Magnetude Adjustment (SIZE)               | 77   |
| 4.     | Information Printout (DPAN)               | 83   |
| C. 1.  | Generalized Least Squares (GEN LS)        | 85   |
| 2.     | Square-Root Method (SQRTNET)              | 93   |
| D. 1.  | Linewidth Analysis (POLY LV)              | 96   |
| 2.     | Least Squares Polynomial Fitting (LSQPOL) | 100  |
| E. Sec | ond Order Correction (GAC GC)             | 104  |
| F. Lea | st Squares Spectra Synthesizing (K ESR)   | 111  |
| G. Var | iable-Temperature Spectrophotometer       | 124  |

## LICT OF TABLES

| TADIE |                                                                                         | Page |
|-------|-----------------------------------------------------------------------------------------|------|
| I.    | Absorption haxima of Letals in Amine Solvents                                           | 4    |
| II.   | Least-Squares Slopes and Intercepts from Computer Analysis of Atom-Lonomer Equilibria   | 24   |
| III.  | Thermodynamic Parameters for Solvation of the Gaseous Potassium Atom                    | 26   |
| IV.   | MUR Parameters of his Pattern and Axtra Absorption as Obtained Using Program K AUR .    | 29   |
| V •   | LGR Parameters of his Pattern and Extra<br>Absorption as Obtained Using Program GMI IS. | 32   |

## LIST OF FIGURES

| FIGURE |                                                                                   | Page       |
|--------|-----------------------------------------------------------------------------------|------------|
| 1.     | ESR spectra of alkali metals in some amines .                                     | 16         |
| 2.     | Qualitative ammonia dependence of the LUR spectra                                 | 1.7        |
| 3•     | Dependence of the hyperfine splitting upon ammonia concentration                  | 18         |
| 4.     | Temperature dependence of hyperfine splitting                                     | 19         |
| 5a.    | Separation of hyperfine splitting into atomic and monomeric contributions         | 25         |
| 5b.    | Computer analysis of ASR pattern                                                  | 30         |
| 6.     | Correlation of linewidth of extra line and hyperfine splitting of monomer         | 33         |
| 7•     | Correlation of the linewidth of the extra line with that of the hyperfine pattern | 34         |
| ၉.     | Variation of the coefficient of $m_{I}$ , $(C_0)$ with $1/T$                      | 36         |
| 9•     | Variation of the coefficient of m <sub>I</sub> , (C <sub>1</sub> ) with 1/T       | 37         |
| 10.    | Variation of the coefficient of m <sub>I</sub> , (3 <sub>2</sub> ) with 1/T       | <b>3</b> 3 |
| 11.    | Variation of the coefficient of m <sub>I</sub> , (C <sub>3</sub> ) with 1/T       | 39         |
| 12.    | Temperature-controlled cell compartment                                           | 126        |
| 13.    | Goolant delivery system                                                           | 127        |
| 14.    | Gell holder                                                                       | 128        |

#### I. INTRODUCTION

The behavior of metal solutions is not easily explained. Their blue color has intrigued workers since 1861, when Weyl discovered that alkali metals dissolve in ammonia (1). Progress has been made in identifying the source of this color, but even today there is considerable difference of opinion regarding the structure of these solutions. The possibility that a species, very similar to that found in metal ammonia solutions, is an important agent of radiation damage to biological systems (2), has provided a new impetus for the explanation of metal solutions.

The optical and electron spin resonance spectra of metal-ammonia solutions are deceivingly simple: a single absorption occurs in each case (47,48). However when alkyl amines are added to these systems, both spectra become more complicated. Two additional optical bands begin to appear, until, in solutions of high amine content, three separate absorption bands are present. The ESR spectrum of metal-amine solutions also becomes more complex, with at least two different species being detected.

It now seems that no ESR signal is intense enough to be solely responsible for any of the optical absorption bands. However, because all species in the solution interact with each other, optical and ESR measurements are interrelated and correlations between them should be valuable. With the spectrophotometer described in this thesis, optical

•

•

and ESR measurements can be made on the same sample under similar experimental conditions.

As the description of metal solutions becomes more quantitative, more exact and extensive date are required. Often these new data cannot be obtained directly from either the optical or ESR spectra and must be calculated by separating the factors contributing to a spectrum or by considering trends among large quantities of data. Another part of this thesis describes some techniques developed to use high speed computers for solving these problems.

#### HISTORICAL

The first quantitative information about metal-ammonia solutions came from the conductance studies of Kraus (3). He proposed that the solvation process involved the separation of an electron from the metal (4-6), according to

$$11 = 11^{+} + e^{-}$$
 (1)

The state of the electron was described by an equilibrium between free and solvated species (7). Gibson and Argo, on the basis of spectral studies, concluded that fow free electrons existed and extended their work to amines by obtaining optical spectra of solutions of metals in methylamine as well as in ammonia. Although these studies were limited to the visible region, they were able to differentiate between the visible band, V, at 650 mu and the tail of the infrared band, IR, seen in ammonia solution (3). The V band was attributed to undissociated metal atoms, IN (5). It is now clear that these early proposals do not adequately explain the behavior of metal solutions.

The range of wavelengths investigated and the variety of solvents used have since been extended. The maximum in the IR band occurs in ammonia at 14,00-1500 mu and an intermediate red (R) band is also observed for potassium, rubidium and desium with a maximum at 910 to 1040 mu depending upon the metal and temperature. A summary of metal-amine optical results is given in Table I. The similarity in the behavior of a given band for the different alkali metals strongly suggests that it is due to the same type of chemical species (9,10). For this reason the chemistry of the three species will be first considered individually with an

Table I. Absorption Laxima of Netals in Amine Solvents.

| Solvent                         | Neta <b>l</b> | Temperature<br>OC | Absorption hax. mu       | Absorbance | Cell Path<br>Length mm | Reference            |
|---------------------------------|---------------|-------------------|--------------------------|------------|------------------------|----------------------|
| NH <sub>3</sub>                 | Li            | <b>-</b> 70       | 1500                     | 2.43       | 0.1                    | (11)                 |
| -                               | Na            | <b>-</b> 62       | 1470                     | 2.57       | 1.0                    | (11)                 |
|                                 | K             | <b>-</b> 71       | 1480                     |            | 0.1                    | (11)                 |
|                                 | Cs            |                   | 1500                     |            |                        | (51)                 |
| CH <sub>3</sub> NH <sub>3</sub> | Li            | <b>-</b> 55       | 1320                     | 0.73       | 0.1                    | (11)                 |
|                                 | Na            | -40               | 650 <del>2</del>         |            |                        | <b>(</b> 3)          |
|                                 | Na            | <b>-3</b> 0       | 650                      | 0.45       | 1.0                    | (11)                 |
|                                 | Na            |                   | 690                      |            |                        | <b>(</b> 12)         |
| +20%NH3                         | Na            |                   | 690 <sup>b</sup><br>1320 |            |                        | (12)                 |
| +40%HH3                         | Na            |                   | 1250                     |            |                        | <b>(</b> 12 <b>)</b> |
|                                 | K             | <b>-</b> 67       | 660<br>800               |            | 1.0                    | (11)                 |
|                                 | K             |                   | 650ª                     |            |                        | <b>(</b> 0)          |
|                                 | Cs            |                   | 650ª                     |            |                        | <b>(</b> 3)          |
|                                 | Ca            | <b>-</b> 60       | 1280                     | 0.8        | 0.1                    | <b>(</b> 8)          |
| CH3CH2NH2                       | Li            | -40               | 11;20                    | 2.14       | 0.1                    | (11)                 |
|                                 | Li            | RT                | 1300<br>700              | 1.3        | 0.2                    | (10)                 |
|                                 | Na            |                   | 680                      |            |                        | <b>(</b> 12 <b>)</b> |
| +30ÄNH3                         | Na            |                   | 700<br>1300              |            |                        | (12)                 |
| +50%NH3                         | Na            |                   | 1250                     |            |                        | (12)                 |

Table I. Continued.

| S. Juant                                                        | Mata I | Temperature<br>OC | Absorption                               | Absorbance  | Cell Path | Deference |
|-----------------------------------------------------------------|--------|-------------------|------------------------------------------|-------------|-----------|-----------|
| Solvent                                                         | Metal  |                   | Max. mp                                  |             | Length mm | Reference |
| CH3CH2NH2                                                       | K      | -64               | 650                                      | 1.66        |           | (11)      |
|                                                                 | K      | RT                | 675                                      | 1.2         | 10        | (10)      |
|                                                                 | Rb     | RT                | 930<br>630                               | 1.6         | 10        | (10)      |
|                                                                 | Rb     | <del>-</del> 30   | 650 <b>°</b>                             |             | 10        | (10)      |
|                                                                 | Cs     | RT                | 1040<br>710<br>1300                      | 0.8         | 10        | (10)      |
|                                                                 | Cs     | <b>-</b> 80       | 675 <sup>c</sup><br>940                  |             |           | (10)      |
| NH <sub>2</sub> (CH <sub>2</sub> ) <sub>2</sub> NH <sub>2</sub> | Li     | RT                | 660<br><b>1</b> 280                      | 0.9<br>1.2  |           | (13)      |
|                                                                 | Na     | RT                | 660<br>1280                              | 2.0<br>0.03 |           | (13)      |
|                                                                 | Na     | RT                | 670 <sup>d</sup>                         |             |           | (114)     |
|                                                                 | Na     |                   | 650                                      | 1.5         | 1.0       | (15)      |
|                                                                 | K      | RT                | 845<br>650<br><b>1</b> 300               |             | 0.1       | (13)      |
|                                                                 | K      | RT                | 660<br>840<br><b>1</b> 300               |             | 1.0       | (13)      |
|                                                                 | K      |                   | 670 <b>d</b>                             |             |           | (14)      |
|                                                                 | K      |                   | 650<br>800 <b>°</b>                      | 1.0<br>0.8  | 0.1       | (15)      |
|                                                                 | Rb     | RT                | 8 <i>9</i> 0<br>1280<br>650 <sup>e</sup> | 1.0<br>0.5  |           | (13)      |

Table I. Continued.

| Solvent                                                         | Metal | Temperature<br>C | Absorption              | Absorbance | Cell Path<br>Length mm | Reference            |
|-----------------------------------------------------------------|-------|------------------|-------------------------|------------|------------------------|----------------------|
| NH <sub>2</sub> (CH <sub>2</sub> ) <sub>2</sub> NH <sub>2</sub> | Rb    |                  | 700<br>900              | 1.3<br>1.5 | 0.1                    | (15)                 |
|                                                                 | Rb    |                  | 700 <sup>£</sup><br>900 | 0.7<br>0.4 | 0.1                    | (15)                 |
|                                                                 | Cs    | RT               | 1030<br>1250            | 1.35       | 0.1                    | <b>(</b> 13 <b>)</b> |
|                                                                 | Cs    | RT               | 1280 <b>f</b>           |            | 0.1                    | <b>(</b> 13)         |
| NH2CH (Me)CH2NH2                                                | 2 Na  | RT               | 600 <sup>d</sup>        |            |                        | (1) <sub>1</sub> )   |
|                                                                 | K     | RT               | 670 <sup>d</sup><br>870 |            |                        | (17†)<br>(17†)       |

a Limited to visible region

b Absorption maxima listed in order of decreasing magnitude unless otherwise noted

c Samples diluted by decomposition

d Limited to below 1000 mp

e Seen only after some decomposition

f After some decomposition

emphasis on the trends among the various metals and solvents.

1. The IR band. This is the only optical absorption seen in metal-ammonia and metal-deuteroammonia solution (16). This absorption has been shown to obey Beer's law (17-19) and to have a temperature dependence of -14.3cm<sup>-1</sup>deg<sup>-1</sup> (16) in deuteroammonia and a slightly lower value in ammonia (18,11,20). However Burrow and Lagowski point out that ammonia possesses an intense absorption band at 1532 mm which may cause the ammonia results to be somewhat ambiguous (16).

An IR absorbing species is produced when pure ammonia, ethylamine, propylamine, ethylenediamine and 1,3 propanediamine are exposed to short pulses of high energy electrons (21). This IR absorption in ethylenediamine has the same shape in the region studied as the IR band for metal solutions in this solvent (22,13). When fresh or faded metal solutions in ethylamine were flashed with pulses of high intensity light, an immediate increase of the IR absorption was noted (23,24,10).

The IR band tends to become more predominant relative to the V and R band absorptions in better solvents for ionic species. The ESR hyperfine splitting appears to correlate with solubility in the larger alkyl amines showing the greatest hyperfine splitting, lowest IR absorption, and lowest solubility (25-27). The metal used also affects the relative size of the IR band. It is predominant in fresh lithium solutions and becomes less predominant as the metal solubility decreases in the order Li>Cs>Rb>K>Na. Dewald's work with cesium and lithium in ethylenediamine indicated that the cesium IR band decomposes more slowly than the R band, and that the lithium IR band is less stable than the V band (22,13).

The IR absorption band is attributed to the solvated electron. ESR results indicate that in fresh, saturated solutions of the larger alkyl amines the electrons probably exist primarily as the paired species (28,29). A possible pairing reaction is

$$2e^{-} = e_{2}^{-}$$
 (2)

The low dielectric constants of the amines would also tend to favor ion pairing of the electrons with metal cations (9) according to

$$e_2^{-} + 2M^{\dagger} = M^{\dagger} \cdot e_2^{-} + M^{\dagger} = M^{\dagger} \cdot e_2^{-} \cdot M^{\dagger} \cdot$$
 (3)

Alternatively, the paired species might exist as ion triples and quadrupoles. The presence of different absorption bands indicates that the electrons can also interact in other ways with the metal to give rise to species not present in ammonia.

2. The R band. This absorption is observed only in amine solutions of potassium, rubidium and cesium. The absorption maxima for these metals in ethylenediamine at room temperature occur at 840, 890 and 1020 mm respectively and at 910, 930 and 1040 mm in ethylamine (22,10). The similarity in temperature dependence of the band maximum, -11.3 cm<sup>-1</sup> deg<sup>-1</sup> for cesium and rubidium in ethylamine supports assignment of the R band to the same chemical species for the different metals (10,9). It is generally agreed that this species is dimeric (9,10). The peak positions of potassium, rubidium and cesium in ethylenediame correlate well with the intense  ${}^{1}\Sigma_{u} \leftarrow {}^{1}\Sigma_{g}$  transitions of gaseous dimers listed in Herzberg (30,9). However the potassium R band absorption in ethylenediamine occurs

at a higher energy (840 mm at room temperature) than the dimer transition in the gas phase (860 mm) (30,9). Solvation would be expected to lower the energy of this transition. The position of maximum absorption shifts to even higher energies as the temperature is lowered (10). Work in this laboratory (31), indicates that the absorption should probably be assigned to the  $1\pi + 1\Sigma$  transition. In the gas phase dimers, this is a comparatively narrow absorption occurring near 660 mm in rubidium and 770 mm in cesium. This absorption is presumed to broaden and shift to longer wavelengths as a result of solvation.

Dye and Dewald, using thermodynamic arguments, have predicted the concentrations of metal dimers in ethylenediamine using the rubidium concentration and absorbance as a standard (3). These calculations agree well with the observed absorbances and indicate that lithium and sodium solutions should have no R band absorption, in agreement with experiment. Less polar amines seem to favor this band. It is also more predominant at high metal concentrations. The cesium R species sppears to be the least stable of those giving optical absorption; in decomposing cesium solutions in ethylenediamine, this band decays most rapidly (13).

3. The V band. The behavior of this band (650-750 mm) is somewhat paradoxical. Its presence or absence is dependent upon the metal used but the position of its maximum absorbance is only slightly - if at all - metal dependent. It is not observed in metal-ammonia spectra but is more prominent in strongly solvating amines than in the less polar amines. When compared to the relative intensity of the R band, the V band is favored by low temperatures and by dilute solutions where these tests have been made (13,22,10). Under similar conditions, the lighter alkali metals

\_\_\_\_\_\_

favor the V band in comparison with the R band.

Tuttle and co-workers found that in decomposing solution, the ratio of the square of the V band absorption to that of the R band was constant for solutions of both potassium and rubidium in ethylamine (32,24). The relative intensities of the V and R band were not however, reproduced in regenerated solutions (32). A graph of log absorbance at 650 mm versus the log absorbance at 850 mm for the data of Tuttle and co-workers showed a slope slightly greater than 1/2. Data obtained in this laboratory, when plotted on the same graph, had a slope of nearly one (25,29). The nonreproducibility of the decomposition data indicates mainly that these results are not good criteria on which to base proposed models. The qualitative dilution observations remain useful however. A correlation between the V band optical absorption and the ESR signal in a decomposing potassium ethylamine solution, along with other ESR studies in mixtures of amines and the optical decomposition results, have led Tuttle and co-workers to conclude that this absorption is due to a Becker-Lindquist-Adler monomer (33,32,28). In this laboratory, using reference standards of known spin concentration, it has been shown that there is no correlation between the number of spins in the potassium hyperfine pattern and the V band optical absorption (25,29).

4. Interconversion studies. Studies of the interconversion of different optically absorbing species have given interesting results. The absorptions at 660 mm and at 1280 mm in lithium ethylenediamine solutions decayed at different rates (13). The IR absorption decayed more rapidly

and, when it had disappeared, the decay rate of the V band increased (22,13). The decomposition rate of the sum of the V and IR band absorbances was continuous implying that the IR absorbing species acts as a buffering agent for the V species (13). In another study, a lithium ethylenediamine solution showing only V band absorption was removed from contact with its decomposition products. The V band continued to decay but as it did an IR absorption slowly built up and finally both peaks decayed (22,13). The slow interconversion of the lithium V and IR bands implied the breaking of a covalent bond. On this basis, an  $K_2^+$ .e-, molecule-ion was proposed as the V species (9).

Recent flash photolysis studies by Linschitz and co-workers (10,24,23) of metal-ethylamine solutions over a range of temperatures and concentrations seem pertinent to the understanding of the interconversion of the V, R and IR bands. Briefly these investigators flashed the solutions with light of known wavelength and then observed the change in absorbance at various wavelengths as a function of time. Flashing at wavelengths below 400 mm initially gave rise to an increased absorbance in the IR region and a bleaching of both the V and R bands. Following photobleaching of the V band, a rapid second order build-up of the R species was noted. No absorbance was observed in the region scanned (410-1000 mm) whose decrease matched the rapid build-up of the R absorbance. The increased IR absorption from this flash decayed at about the same first order rate as a second, slower, first order build-up of the R band noted in cesium solutions. The R species then decayed in a first order reaction to give the V species. The rate constant of the first order build-up of the V band (except for a fast initial build-up amounting to 10% of the total

recovery) is the same as that of the R band decay. The IR species obtained when the R band in rubidium solutions was flashed behaved differently from that resulting from flash photolysis of the V band. This IR species decays in a rapid second order process which matches the build-up of the R band, implying that the two IR species undergo different reactions as the system returns to equilibrium (10).

### III. EXPERIMENTAL AND RESULTS

A. Optical and Electron Spin Resonance Spectra.

Lany data have recently been obtained in this laboratory from ESR and optical studies of potassium solutions in ethylamine-armonia mixtures and from similar studies on other metal-amine systems. In order to extract additional information from these data and to process data in different ways, computer techniques were required. This section provides a background for the theories and methods used in these calculations. While the author has participated in all phases of solution preparation, and in some of the measurements, this thesis deals primarily with the treatment of the ESR and optical spectra. In addition, the construction of a new spectrophotometer is described. Earlier publications have described in detail the preparation of the solutions used (34,13,22).

1. Optical spectra of potassium solutions in ethylamine-ammonia mixtures. These spectra are strongly dependent upon the ammonia concentration. In agreement with the observation of Kraus (35) potassium formed no blue solution in high purity ethylamine. At ammonia concentrations up to 4.5 mole percent, the V band is predominant with a temperature shift of -11 cm<sup>-1</sup> deg<sup>-1</sup>. At higher temperatures and 7 to 14 mole percent ammonia, all three absorption bands were observed. The IR band is present in all solutions in this concentration range and the ratio of R to V band absorption was very temperature dependent, again favoring the R band at higher temperatures. For example, at 15 mole percent ammonia and 25°C the

visible absorption appeared only as a shoulder on an intense R absorption and the solution showed strong IR absorption. However, at -38°C and below, the V band was the strongest absorption, the R band was not observed and only a small IR absorption was apparent. For the same temperatures, the position of the V band shifted to longer wavelengths with increased ammonia concentration. Comparing the sample containing 4.5% ammonia with that containing 3.9% ammonia, this change was approximately 400 cm<sup>-1</sup>. The IR band became more predominant with higher ammonia content until in a sample containing 32.5% ammonia, both the V and R bands were absent (29).

2. ESR studies of metal-amine solutions. These studies have produced much new information pertaining to these systems. Metal-ammonia solutions show only a single narrow ESR absorption. Most metal-amine solutions however give hyperfine splitting. Hyperfine splitting of an electron by a nucleus is related to the fraction of the time the electron spends at this nucleus. The change in hyperfine splitting with temperature and solvent composition provides valuable information regarding the nature of the hyperfine species. ESR linewidths, g values and spin concentrations are also useful because they relate respectively to the relaxation time, the orbital angular momentum and the concentration of the unpaired electrons in question. Some ESR spectra of metal-amine solutions indicate that two or more species with unpaired electrons are simultaneously present in the solutions (29,36).

The structure of the hyperfine pattern observed in lithium-ethylamine solutions is different from that seen for the other metals in this solvent. At room temperature a single ESR absorption is seen which at -40°C converts to a nine line pattern with peak intensities suggesting splitting by four nitrogen nuclei (I = 1) (37,27). This pattern becomes clearer as the temperature is lowered and is well resolved at the freezing point of the solvent. Below the freezing point the nine line pattern converts back to a single absorption (27). This nitrogen splitting in lithium solutions was first observed by Tuttle (28), but the low signal-to-noise ratio made it advisable to confirm this observation. In all other metal-amine solutions showing hyperfine structure, the splitting is attributed to a metal nucleus.

Potassium solutions have been most extensively studied, particularly solutions of potassium in ethylamine-anmonia mixtures. At room temperature, fresh potassium-ethylamine solutions with low ammonia content give a well-resolved four line potassium hyperfine splitting pattern as seen in Figure 1. This observation was first reported by Tuttle and has since been confirmed by other investigators (28,29). The hyperfine splitting value decreases markedly with increased ammonia concentration as illustrated in Figures 2 and 3. A striking change in hyperfine splitting also resulted from changes in the temperature of given samples. Between -60°C and 20°C the hyperfine splitting increased moderately with temperature but above 40°C the temperature dependence of the hyperfine splitting changed markedly as shown in Figure 4. Extrapolation of log contact density versus 1/T to infinite temperature gives a value close to that of the free atom (29). By considering the hyperfine splitting to arise from a rapid equilibrium between a species with the magnetic properties of free atoms and one or more species having a lifetime greater than the rotation time of a solvent

molecule, the temperature and ammonia dependence of the hyperfine splitting

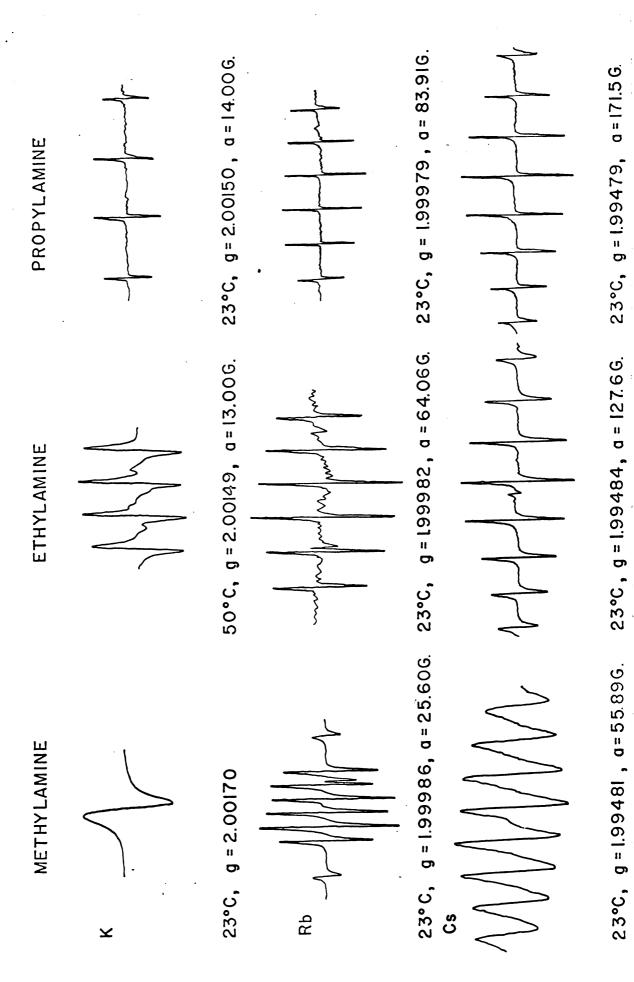



Figure 1. ESR spectra of alkali metals in some amines; data given are for 39K, 85Rb and 131Cs.

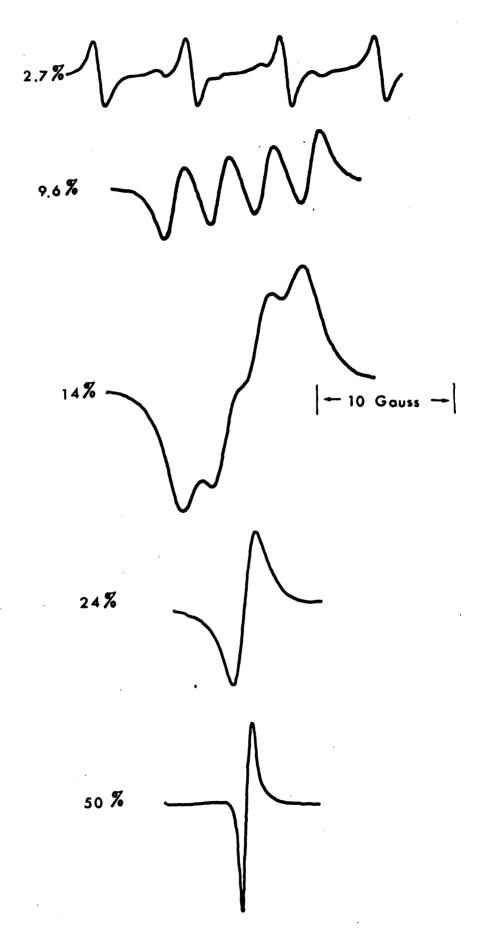



Figure 2. Qualitative ammonia dependence of the ESR spectra.

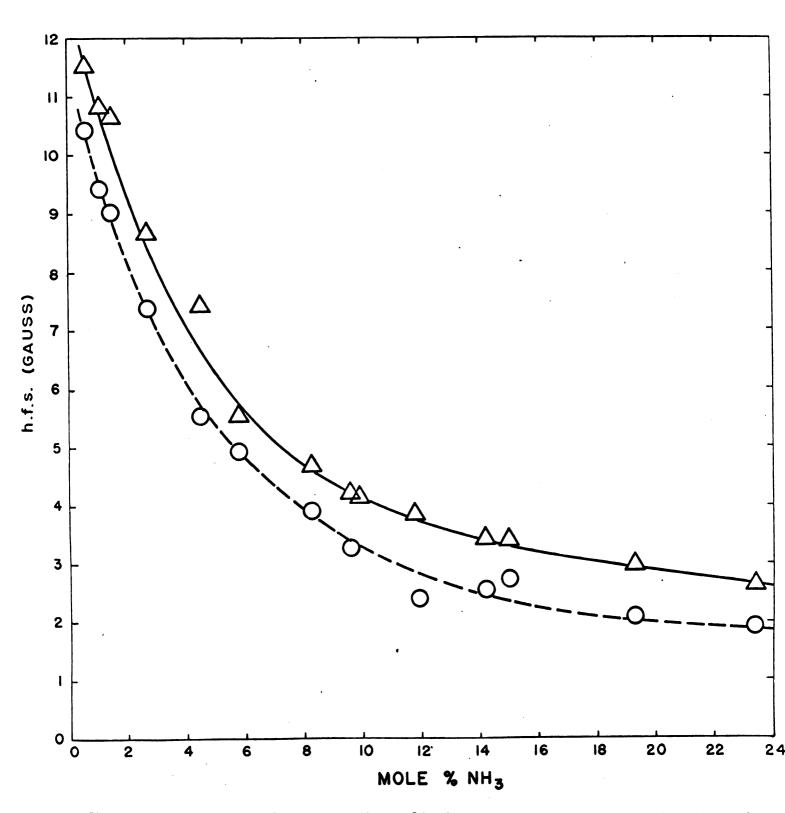
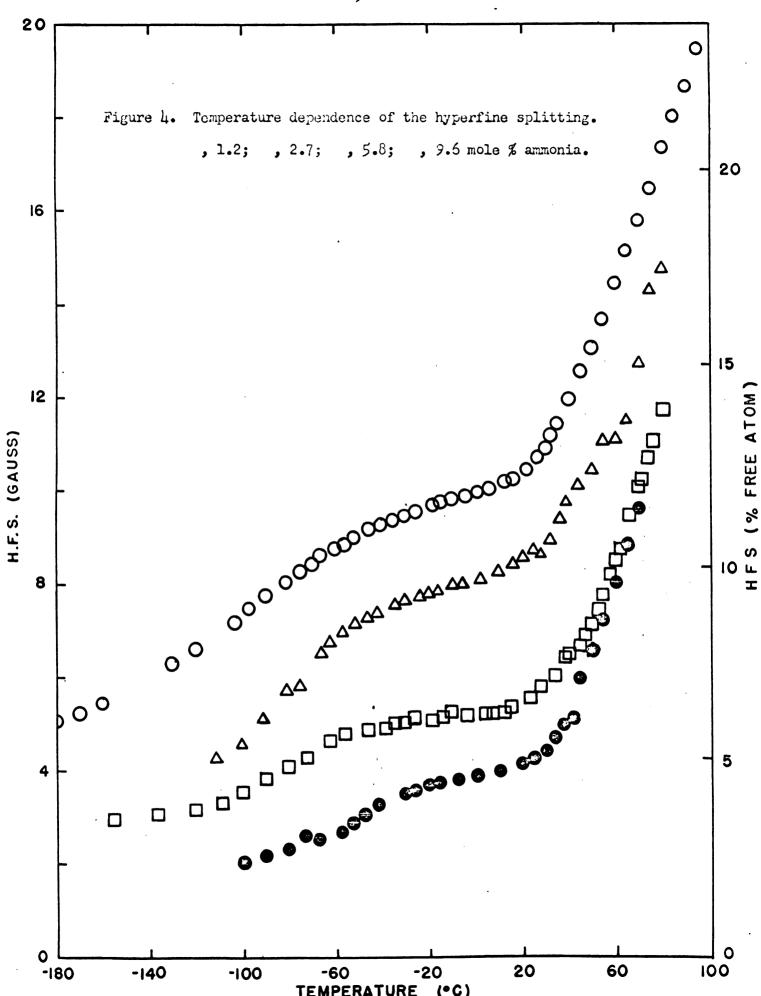




Figure 3. Dependence of the hyperfine splitting upon ammonia concentration. Triangles are for a temperature of 25°C; circles, for -40°C.



could be quantitatively described. The program used to separate the contributions to hyperfine splitting from an atom and monomer is described later.

Along with the four line potassium hyperfine splitting pattern, at least one additional single line absorption was noted. In older potassium solutions with low ammonia concentration, the single line was quite narrow, centered near the free electron g value and related to the degree of decomposition. Symons and co-workers have observed an extra absorption in unsaturated solutions. The absorption of the species they describe correlates with the intensity of the four line species and implies the equilibrium (36)

$$M = M^{+} + e^{-}$$
 (4)

This may well be the same species observed in this laboratory in saturated solutions of higher ammonia content. In solutions with 9.6 to 14.2 mole percent ammonia, a broad extra line was observed underlying the four line hyperfine pattern (29). Two programs, (ESR FT and GEN LS), were written to separate the observed spectra into contributions from the  $^{39}$ K and  $^{41}$ K hyperfine patterns and these from a broad single absorption. These programs are described later in this section. At 33 mole percent ammonia, the hyperfine structure is no longer discernable.

ESR spectra of rubidium-amine solutions are a superposition of hyperfine patterns from \$5Rb and \$7Rb as can be seen in Figure 1. A narrow single absorption was also noted in these solutions. The hyperfine splitting in many Rb amine solutions was large enough to warrant performing second and third order corrections in order to obtain the g value and hyperfine splitting more accurately.

Amine solutions of cesium have the largest ESR hyperfine splitting and therefore also require second order corrections. As will be noted in Figure 1, the linewidth of the eight line cesium hyperfine pattern shows marked dependence upon the nuclear spin, m<sub>I</sub> (26). Recent results in this laboratory indicate that the variation of linewidth with nuclear spin is greater in 1, 2 propanediamine than in othylamine whereas the hyperfine splitting value is smaller in 1, 2 propanediamine than in ethylamine (27). An explanation and treatment of the variation of linewidth is described atter in this section. In addition to the hyperfine pattern, a single line was noted with a g value near that of the free electron. The magnitude of this line seemed related to the degree of decomposition as in the potassium solutions.

## B. Programs and Results.

All programs described in this section were written in Fortran 3600 for use with the Michigan State University Control Data 3600 computer.

1. Program A M EQ. This program was used to separate the hyperfine splitting of potassium ethylamine-ammonia solutions into contributions from the atom, A, and two solvated monomeric species, B and C, which are considered to be M  $(\text{EtNH}_2)_x$  and M  $(\text{EtNH}_2)_{x-1}$   $(\text{NH}_3)$ . The following scheme describes the equilibra involved:

$$A = B$$
  $K_a = (B)/(A)$  (5)  
 $B + NH_3 = C + EtNH_2$   
 $K_1^{(c)} = ((C) / (B)) ((1 - X) / X).$ 

in which X is the mole fraction of ammonia. The measured hyperfine splitting

 ${f A}_{
m F}$  is related to the concentration of these species and their respective splittings by

$$A_{F} = (n_{A} A_{A}^{\circ} + n_{B} A_{B}^{\circ} + n_{C} A_{C}^{\circ}) / n$$
 (6)

in which  $n = n_A + n_B + n_C$ .

If the solutions are assumed to be saturated, the concentration of atoms would be expected to vary according to

$$\ln (A) = -\Delta H^{\circ} + \Delta S^{\circ}$$

$$\overline{RT} = \overline{R}$$
(7)

in which  $\Delta H^0$  and  $\Delta S^0$  are the molar enthalpy and molar entropy of solution of the metal to give atoms. The strong dependence of  $A_F$  upon temperature above  $h0^0$ C indicates that the temperature variation of atom concentration is much greater than that of the other two species. This permits an approximate separation of the splitting due to atoms from that due to the species B and C by extrapolation of the low temperature behavior. The separation is accomplished by using the approximation

$$n_{\hat{A}}^{\circ} = n \left( A_{\hat{F}}^{\circ} - A_{\hat{A}}^{\circ} \right) / \left( A_{\hat{A}}^{\circ} - A_{\hat{A}}^{\circ} \right) , \qquad (3)$$

in which  $A_{\rm c}^{-0}$  represents the splitting expected to be observed in the absence of atoms and includes the contributions from species B and C

$$A_{M}^{o} = (n_{B} A_{D}^{o} + n_{C} A_{D}^{o}) / (n_{B} + n_{C}) .$$
 (9)

 ${\rm A_M}^{\rm O}$  was obtained for the low temperature region by calculating a least squares line through the  ${\rm A_F}$  values as a function of temperature assuming no contribution from atoms to the observed splitting. The high temperature

value of  $A_{\rm in}^{\ \ 0}$  was then estimated from a linear extrapolation into this region. Using  $n_{\rm A}$  calculated from Equation (3) as a measure of the concentration of atoms, a least squares line was calculated through a plot of ln  $(n_{\rm A})$  vs. 1 / T to evaluate  $\Delta\pi^0$  and  $\Delta S^0$  in Equation (7) with a standard state of one mole per liter. The points on this line were weighted to place greater emphasis on those for higher temperature which are less affected by errors resulting from the extrapolation of  $A_{\rm in}^{\ \ 0}$  into this region. The atom concentrations in the low temperature region were then calculated from the extrapolation of the high temperature ln  $(n_{\rm A})$  vs. 1 / T plot. These calculated atom concentrations were then combined with the experimental splitting to give new values of  $A_{\rm in}^{\ \ 0}$  using the expression

$$A_{M}^{O} = (nA_{F} - n_{A} A_{A}) / (n - n_{A})$$
 (10)

in the low temperature region. These new values of  $A_{\rm H}^{\,\,0}$  were extrapolated into the high temperature region and new values of  $n_{\rm A}$  were calculated. This procedure was repeated five times to give consistent results. These results are reported in Table II. Calculated and experimental splittings are compared in Figure 5a for a 2.7 mole percent ammonia solution.

It is seen from Table III that the value of  $\Delta G^{\circ}$  is reasonably independent of ammonia concentration as are  $\Delta H^{\circ}$  and  $\Delta S^{\circ}$  at lower concentrations. This lends support to the treatment used, especially in light of the large variation of  $A_{\rm F}$  and n with ammonia concentration. The average value of  $\Delta G^{\circ}$ , combined with the free energy of formation of the gaseous atom yields  $\Delta G^{\circ} = -5.2$  kcal mole<sup>-1</sup> for the solvation process

$$K (g) = K (solution)$$
 (11)

Table II. Least-Squares Slopes and Intercepts from Computer Analysis of Atom-Honomer Equilibria.

| Mole percent ammonia | h.cromer <sup>a</sup><br>slope | Monomer <sup>a</sup><br>intercept | Atom <sup>b</sup><br>slope   | Atom <sup>b</sup><br>intercept |  |
|----------------------|--------------------------------|-----------------------------------|------------------------------|--------------------------------|--|
| 1.2                  | C•00277                        | 9•5337                            | -4192.3                      | 42.940                         |  |
| 2.7                  | 0.00765                        | 7.7905                            | -4923.2                      | 45.079                         |  |
| 5.8                  | -0.00042                       | 4.9918                            | -4601.9                      | <u> </u>                       |  |
| 9.6                  | 0.00588                        | 3.7188                            | <b>-</b> 6512.l <sub>4</sub> | 50.663                         |  |
| 11.8                 | 0.01093                        | 2.8433                            | <b>-</b> 7326 <b>.</b> 3     | 54.285                         |  |
| 14.2                 | 0.00709                        | 3.0427                            | -7607.6                      | 55.607                         |  |

<sup>a</sup>The slopes and intercepts given are for the linear function used to evaluate the contribution to the total hyperfine splitting arising from the concentration of monomers in solution. It is well to remember that the intrinsic splittings of the monomer and atom units may or may not be temperature dependent.

bSlope and intercept of the exponential function used to evaluate the contribution arising from atoms in concentration units of spins per cc.

The slope and intercept must be multiplied by R to obtain the correct units.

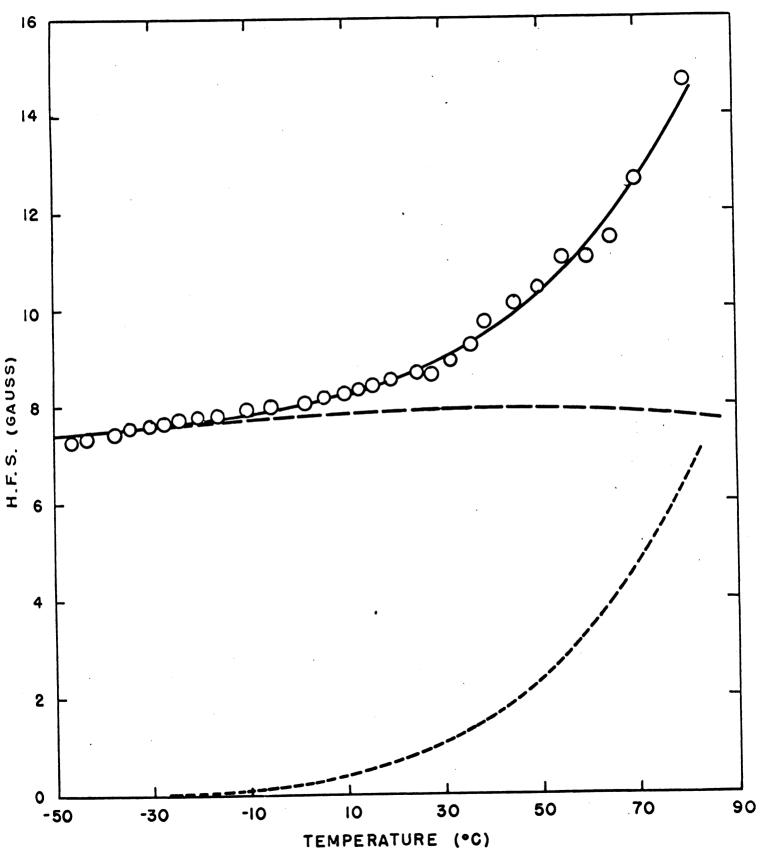



Figure 5a. Separation of hyperfine splitting into atomic and monomeric contributions, experimental; \_\_\_\_\_, calculated; \_\_\_\_\_, monomer contr.; ----, atom contr.

Table III. Thermodynamic Parameters for Solvation of the Gaseous Potassium Atom.

|                         | Parameters of Eq. 7    |                                 |                      |
|-------------------------|------------------------|---------------------------------|----------------------|
| hole percent<br>ammonia | ΔH <sup>O</sup> (kcal) | ΔS <sup>0</sup><br>(cal/degree) | ΔG° (25°C)<br>(kcal) |
| 1.2                     | 8•3                    | <b>-</b> 9•S                    | 11.2                 |
| 2•7                     | 9.8                    | <b>-</b> 5•5                    | 11.4                 |
| <b>5.</b> 3             | 9.1                    | <b>-</b> 7•2                    | 11.9                 |
| 9•6                     | 12.9                   | 5.6                             | 11.3                 |
| 11.3                    | 14.6                   | 12.8                            | 10.8                 |
| 14.2                    | 15.1                   | 15.4                            | 10.5                 |

using standard states of 1 mole / liter for both the gas and the solution. Results for the three lowest armonia concentrations yield  $\Delta \text{H}^{\circ} = -12.4$  kcal mole  $^{-1}$  and  $\Delta \text{S}^{\circ} = -24.2$  cal mole  $^{-1}$  deg  $^{-1}$  for this process. Because of the limited studies above ambient temperatures at higher ammonia concentrations and possible unsaturation of the solutions, the values of  $\Delta \text{H}^{\circ}$  and  $\Delta \text{S}^{\circ}$  especially in the high ammonia region, are subject to considerable uncertainty (29).

2. Program K ESR. The ESR spectra of potassium in ethylamine-ammonia mixtures between 9.9 and 14.5 mole percent in ammonia were difficult to interpret because of overlap of a four line hyperfine pattern with a broad extra line (29). To be certain that the pattern did not simply result from broadening of the hyperfine lines, a program was written to calculate and plot the expected spectra for a given splitting value as the lines broadened. This program could use both Gaussian and Lorentzian line shapes and included the pattern from both 37K and 41K. Neither line shape could give spectra similar to those observed. The problem was then one of separating the observed spectra into contributions from a single and a four line pattern.

A program, K ESR, was written to generate a spectrum which would duplicate as closely as possible those observed and is described and listed in the appendix. An observed spectrum was read into the computer as a series of X - Y points. Using initial estimates for splitting, g value, linewidth and intensity parameters, the computer calculated a composite spectrum. The parameters were then adjusted individually until the sum of squares of the deviations from the observed spectrum was minimized. Each time a parameter other than intensity was changed, the intensity was adjusted to give the best fit. During adjustment of one parameter the

contribution of the other pattern was kept constant. The relative intensities of the two patterns depended on which was adjusted first. After approximately fifteen iterations however, the relative intensities reached values which were in most cases nearly independent of the order of adjustment. Table IV lists the results obtained when various spectra were fit using this program with Gaussian shape functions; Figure 50 illustrates the type of pattern fit and the degree of fit obtained. If more spectra were fitted by this method, a new program should be written similar to IR, FIT, to be described later. This shorter and more flexible program has the advantage of permitting independent adjustment of intensities. By adjusting the intensities of both patterns from the start, the other parameters would not be forced to compensate for the initial absence of one pattern. The other parameters could then be adjusted and, would presumably converge more quickly to the best value.

3. Program JEN IS. Many of the problems resulting when the parameters were individually adjusted, were eliminated by using the method of generalized least squares (38,39) to fit the spectra. This method is more rigorous, more accurate and requires less computer time. The program, GEN IS, utilizing this method requires the same kind of information described previously. The program, described in detail in the appendix, uses matrix techniques to find corrections to the estimated parameters. The matrices are generated from partial derivatives of the spectral function evaluated at each point being considered. The corrected parameters are then used as new estimates in repeated cycles. Usually constancy better than the precision of the data is reached after three iterations. There are,

Table IV. EFR Parameters of hfs Fattern and Extra Absorption as Obtained by Computer Analysis<sup>a</sup>, Using Program K ESR.

| Temp•       | A <sub>F</sub><br>(gauss) | igtriangledown $igtriangledown$ $igtriangl$ | △H(extra<br>absorption)<br>(gauss) | n <sub>extra</sub> /n <sub>hfs</sub> |
|-------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------|
| Sample K-12 | 2                         | 5.8 Mole percent ammor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nia                                |                                      |
| <b>-</b> 38 | 5.08 <sup>b</sup>         | 1•25 <sup>b</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    |                                      |
| <b>-</b> 72 | 4.24b                     | 1.17 <sup>b</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    |                                      |
| Sample K-11 | <u>L</u>                  | 9.6 Mole percent emmor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nia                                |                                      |
| <b>-</b> 7  | 3•76 <sup>b</sup>         | 2 <b>.</b> 11 <sup>b</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12.1 <sup>b</sup>                  | 2.31 <sup>b</sup>                    |
| <b>-1</b> 5 | 3.66                      | 2.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10.3                               | 1.28                                 |
|             | 3.66 <sup>b</sup>         | 2.18 <sup>b</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.2b                              | 1.27 <sup>b</sup>                    |
| -41         | 3.24                      | 1.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12.7                               | 4.94                                 |
|             | 3•23 <sup>b</sup>         | 1.84 <sup>b</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11.8 <sup>b</sup>                  | 3•35 <sup>b</sup>                    |
| Sample K-25 | <u>,</u>                  | 9.9 Mole percent ammon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nia                                |                                      |
| <b>-</b> 8  | 3.52                      | 2.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9•27                               | 1.74                                 |
|             | 3•52 <sup>b</sup>         | 2.64°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9•24b                              | 1.70 <sup>b</sup>                    |
| <b>-</b> 35 | 3•39                      | 2.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.83                               | 1.78                                 |
| <b>-</b> 68 | 2.97                      | 2.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7•87                               | 1.88                                 |
|             | 2.97 <sup>b</sup>         | 2.24 <sup>b</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.85 <sup>b</sup>                  | 1.73 <sup>b</sup>                    |
| Sample K-10 | <u>)</u>                  | 11.8 Hole percent amme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | onia                               |                                      |
| <b>-</b> 12 | 2.74                      | 2.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.83                               | 4.81                                 |
| <b>-</b> 42 | 2.36                      | 1.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.95                               | 6.45                                 |
| <b>-</b> 75 | 1.39                      | 1.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.69                               | 7.78                                 |

Table IV. (continued)

| Temp.       | A <sub>F</sub><br>(gauss) | △ H(hfs)<br>(gauss)     | ∆H(extra<br>absorption)<br>(gauss) | n <sub>extra</sub> /n <sub>lifs</sub> |
|-------------|---------------------------|-------------------------|------------------------------------|---------------------------------------|
| Sample K-9  |                           | 14.2 Mole percent ammon | iia                                |                                       |
| <b>-1</b> 0 | 2.94                      | 2.50                    | 7•45                               | 4.77                                  |
| -41         | 2.54                      | 2.16                    | 6.51                               | 4.31                                  |
| <b>-</b> 69 | 2.21                      | 1.77                    | 5.68                               | 3.19                                  |

aspectra were fit by the superposition of two absorption patterns. One of these was the Gaussian hyperfine pattern arising from electronic interaction with the <sup>39</sup>K and <sup>41</sup>K nuclei. The other was a single absorption of Gaussian shape. The routine alternately adjusted the parameters for both of these patterns. Except as noted, initial adjustment was made on the single absorption.

bThe hyperfine pattern was adjusted first.

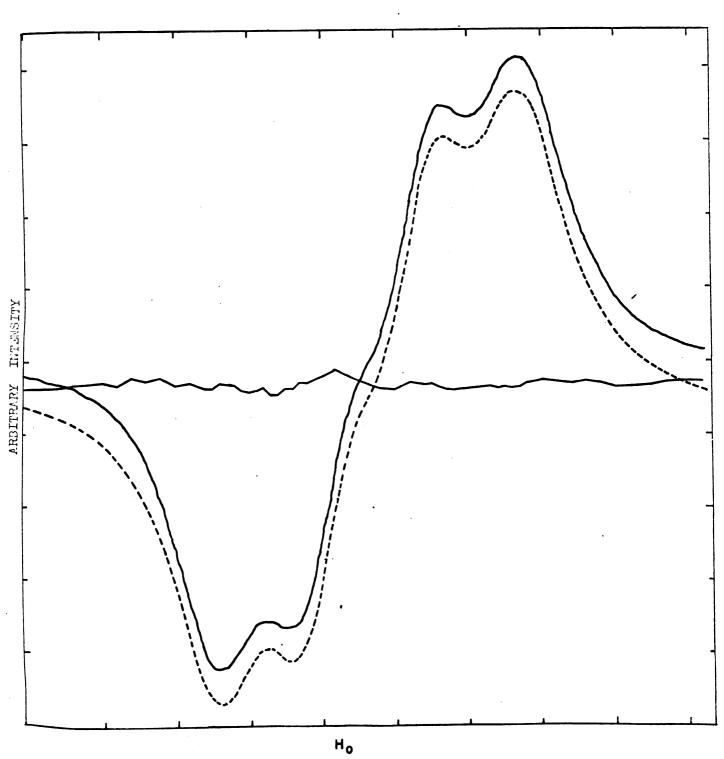



Figure 5b. Computer analysis of ESR pattern. Observed spectrum at -42°C for 11.8 mole % ammonia is the solid line. The calculated superposition of a hyperfine pattern and a single line is given (displaced vertically) by the dotted line. The difference (obs - calc.) is shown by the solid line in the center.

however, two disadvantages involved in using this method with a computer. First, it requires that one take the partial derivatives of the function representing the spectrum with respect to each parameter being adjusted. This makes it difficult to adapt the program to new functions. Second, the initial parameters must be known more accurately than for the program which adjusts each parameter individually.

The parameters obtained for each spectrum using the program K ESR were used as the initial estimates for program GEN IS. The results using this method generally agreed well with those obtained earlier. Those cases which had yielded two sets of parameters depending upon which pattern had been adjusted first now converged on the same set of parameters from either starting point as seen in Table V. These parameters are considered to be more accurate than those given in the previous Table. A striking correlation was found between the linewidth of the extra line and the hyperfine splitting of the four line potassium pattern as illustrated in Figure 6. The correlation was much better than that between the linewidths of the two patterns shown in Figure 7. The linewidths and splittings in these Figures are in arbitrary units. The implications of this correlation are not yet fully understood.

4. Program POLY FT. A detailed theoretical treatment based upon the McConnell model (50) of an asymmetric species has been derived by Kivelson (49) and co-workers to describe the variation of linewidth with nuclear spin,  $m_{\text{I}}$ . On the basis of this model, the variation of linewidth with  $m_{\text{I}}$  seen in

Table V. ESR Parameters of his Pattern and Extra Absorption as Obtained by Computer Analysis, Using Program GEN LS.

| Temp.           | A <sub>F</sub><br>(gauss) | ∆ H(hfs)<br>(¿auss) | igtriangledown H(extra absorption) (gauss) | n <sub>extra</sub> /n <sub>hfs</sub> |
|-----------------|---------------------------|---------------------|--------------------------------------------|--------------------------------------|
| Sample K-l      | <u>.1</u>                 | 9.6 Lole percent :  | emmonia                                    |                                      |
| <b>-</b> 7      | 3.75                      | 2.36                | 10.13                                      | 1.03                                 |
| <b>-1</b> .5    | 3.66                      | 2.32                | 9 <b>.</b> 65                              | 0.90                                 |
| -1,1            | 3.24                      | 2.03                | 9•70                                       | 1.61                                 |
| <b>-</b> 67     | 2.58                      | 1.65                | 6.74                                       | 1.50                                 |
| Sample K-2      | <u> </u>                  | 9.9 Mole percent    | ammonia                                    |                                      |
| <b>-</b> 8      | 3•52                      | 2.66                | 9.13                                       | 1.62                                 |
| <b>-</b> 35     | 3•39                      | 2.53                | 8.69                                       | 1.67                                 |
| <b>-</b> 68     | 2.97                      | 2.25                | 7•73                                       | 1.61                                 |
| Sample K-1      | .0                        | 11.8 Mole percent   | ammonia                                    |                                      |
| <b>-1</b> 2     | 2.74                      | 2.36                | 6.79                                       | 4.48                                 |
| -42             | 2.36                      | 2.01                | 5•96                                       | 6.27                                 |
| <b>-</b> 46     | 2.45                      | 2.14                | 6.07                                       | 4.92                                 |
| <del>-</del> 75 | 1.89                      | 1.46                | 4.74                                       | ۥ52                                  |
| <b>-</b> 86     | 1.34                      | 1.38                | 4.50                                       | 3•74                                 |
| Sample K-9      | )                         | 14.2 Mole percent   | ammonia                                    |                                      |
| -10             | 2.94                      | 2.55                | 7.45                                       | 4.63                                 |
| -1:1            | 2.54                      | 2.18                | 5.46                                       | 4.21                                 |
| <b>-</b> 69     | 2.21                      | 1.79                | 5.64                                       | 3.05                                 |

Figure 6. Correlation of linewidth of extra line and hyperfine splitting of monomer for potassium.

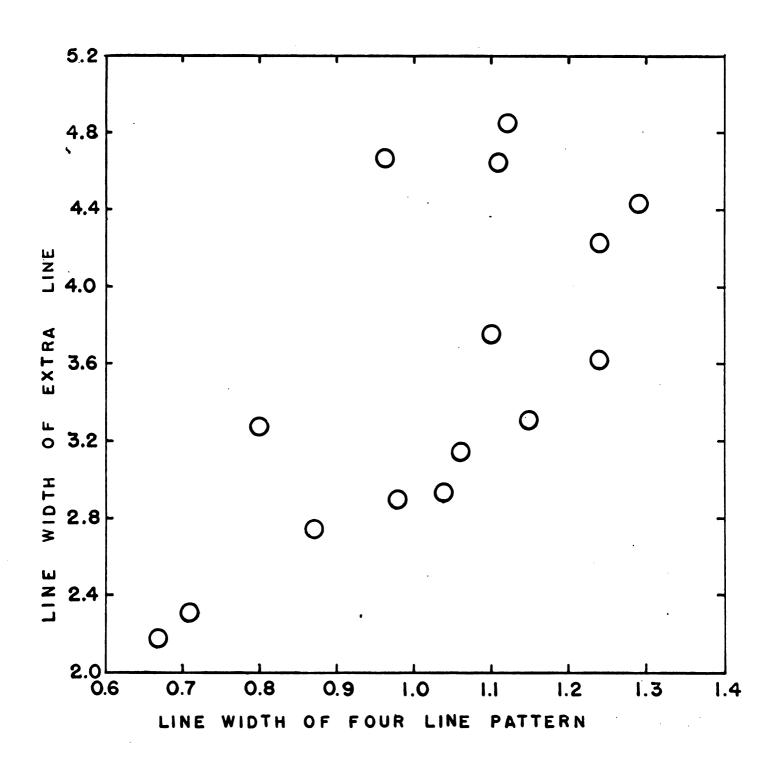



Figure 7. Correlation of the linewidth of the extra line with that of the hyperfine pattern for potassium.

cesium solutions should be described by the polynomial

linewidth = 
$$c_0 + c_{1}^{m_1} + c_{2}^{m_2} + c_{3}^{m_3} \dots$$
 (12)

The ratio of coefficients of the various powers of m<sub>I</sub> can be calculated from a knowledge of certain properties of the species giving rise to the absorption. Hopefully, knowing the behavior of the ratios, more precise assignments can be made with regard to the absorbing species. A program, FOLY FT, was written to fit a least-squares polynomial in m<sub>I</sub> to the varying linewidth. In this program the heights were used as a measure of the linewidth and one of the eight lines was more closely examined and used as a standard in calculating the linewidths of the others. A modified library least-squares polynomial fitting subroutine (co-op identification: E2 UCSD LEAPOL) was used to calculate the curve through the points. Figures 8,9,10,11 illustrate the behavior of the coefficients of a third order fit on three different cesium-ethylamine samples as a function of 1 / T. The program is listed and described in the appendix.

5. Program IR FIT. The overlap between peaks in the optical spectra of metal amine solutions often makes it difficult to know the absorbances of the various species. The technique developed for fitting ESR spectra by summing the contributions of two patterns seemed well suited to separating the optical spectra into their V, R and IR bands. To accomplish this, a more general program of the ESR FT type was written. This program uses one subroutine to minimize the sum of squares of deviations and a second to monitor the adjustment of a specific parameter. The main program determines the sequence of parameters adjusted and the number of iterations over the set of parameters available to fit a spectrum. To date, this

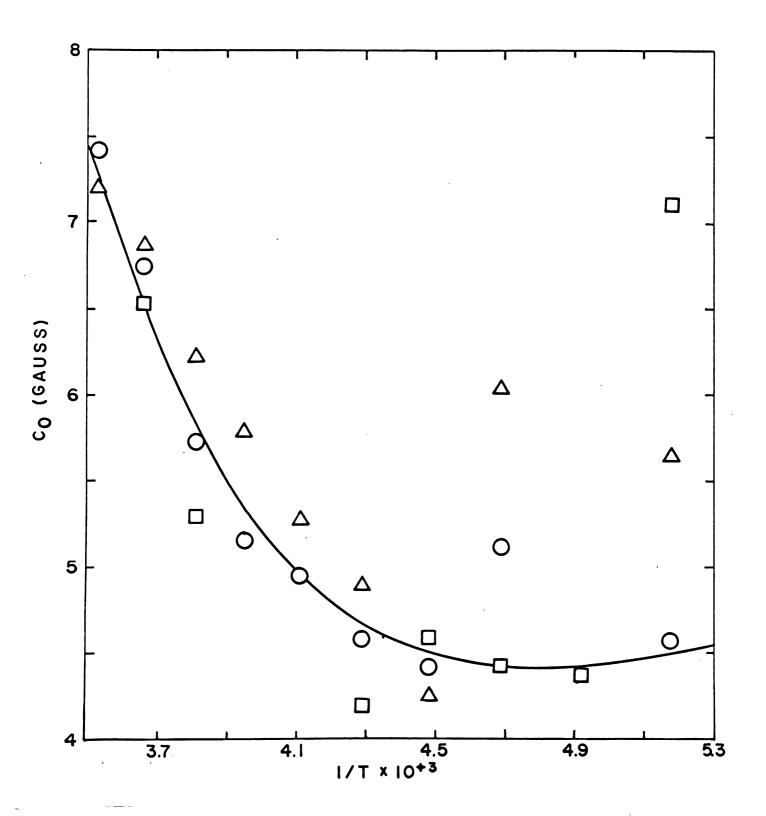



Figure 8. Variation of the coefficient of  $m_{\rm I}$ ,  $(C_{\rm O})$  with 1/T: Cs in ethylamine. Results are shown for three different sample preparations.

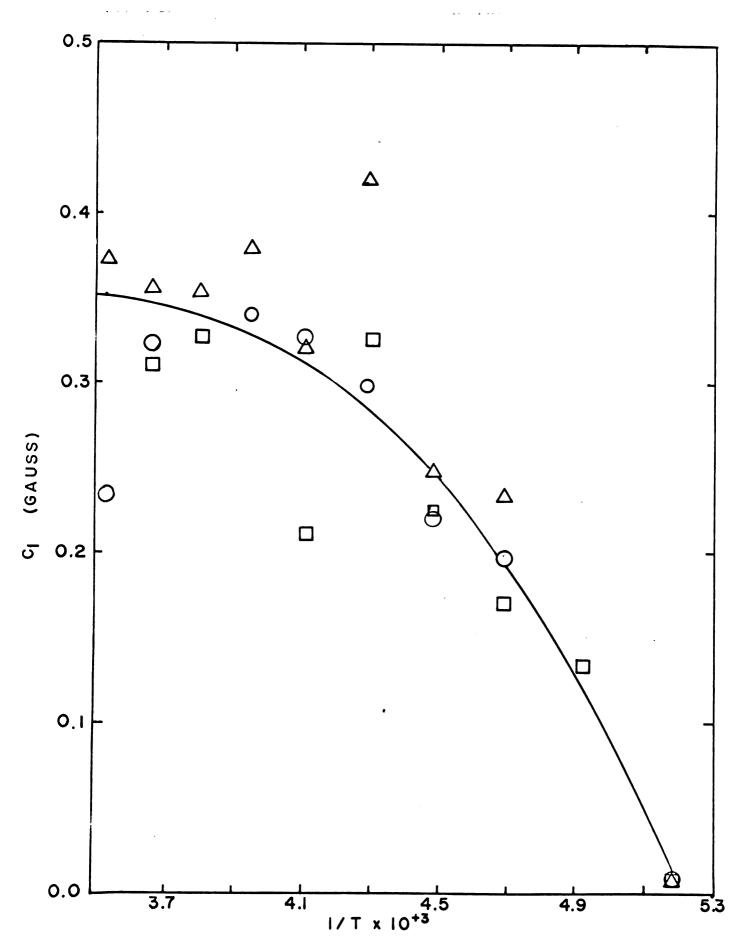



Figure 9. Variation of the coefficient of m<sub>I</sub>, (C<sub>1</sub>) with 1/T: Os in ethylamine.

Posults are shown for three different sample preparations.

.

i

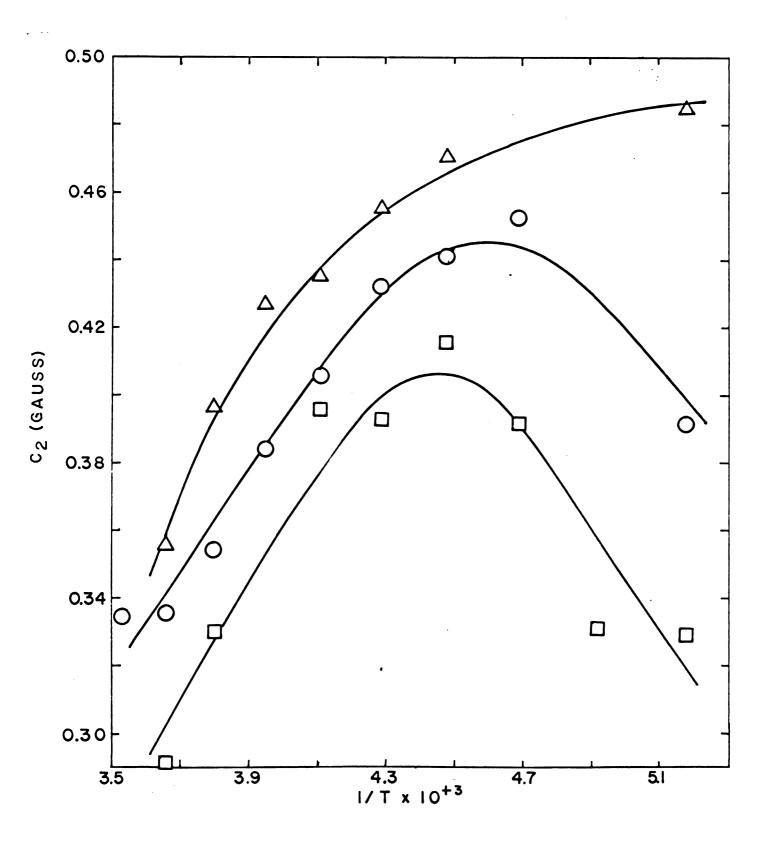



Figure 10. Variation of the coefficient of  $m_{\widetilde{1}}$ ,  $(C_2)$  with 1/T: Cs in ethylamine. Results are shown for three different sample preparations.

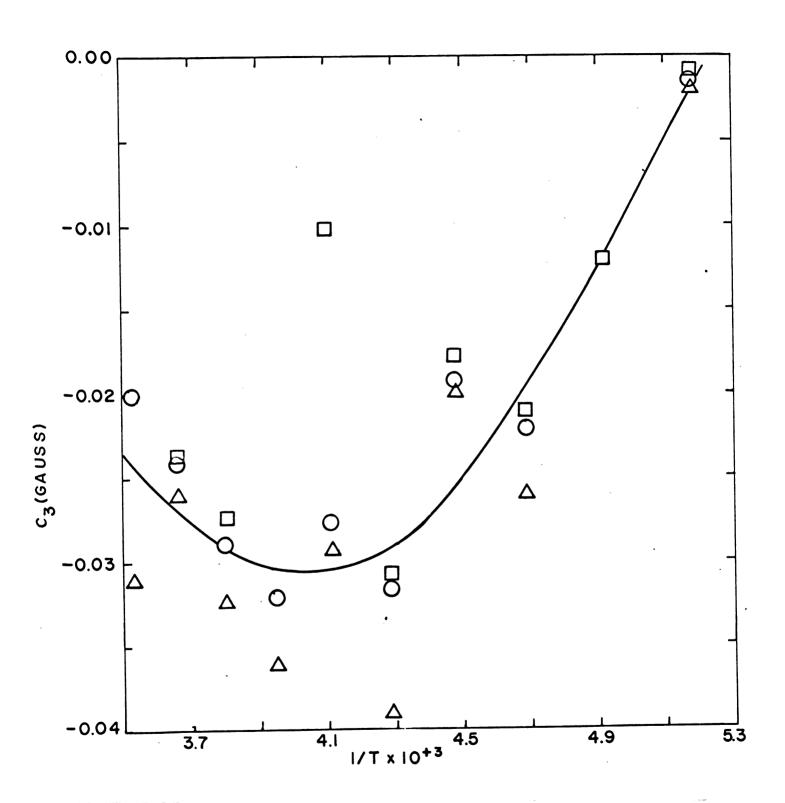



Figure 11. Variation of the coefficient of  $m_{\rm I}$ , (C<sub>3</sub>) with 1/T: Cs in ethylamine. Results are shown for three different sample preparations.

program has been used to find a function capable of fitting the TR peak with the minimal number of parameters. It seems to require at least four parameters to describe this absorption; they relate to the center (C), the intensity (I), the width (I) and the asymmetry (S) of the peak in question. Approximately ten Gaussian or Lorentzian functions with different asymmetry properties have been used in attempting to fit the curve representing the absorption. This curve was plotted on the basis of either a wave length or wave number scale. In both cases the function

Absorption (
$$\lambda$$
 or  $\overline{\nu}$ ) = I(1 + S•R) / (1 + (R/W<sup>2</sup>)

in which  $R = (\lambda \text{ or } \overline{\nu}) - C$ , gave the most satisfactory results. The degree of fit in the region of interest is nearly identical for the wave length and wave number fit, with agreement within 0.02 of an absorption unit for a peak with a maximum absorption of one. Of course the constants required in the two representations are different.

6. <u>Program SEC OC.</u> Perturbation methods are usually used to treat the hyperfine splitting of electronic energy levels resulting from contact with atomic nuclei (40). The magnetic field, H<sub>o</sub>, at which the transition would occur in the absence of the perturbation is given by (41)

$$H_{o} = H_{m} + A \cdot m + A^{2} \cdot (I (I + 1) - m^{2}) / 2H_{m} + A^{3} / 4H_{m}^{2}$$
 (13)

in which H<sub>m</sub> is the observed field position for the hyperfine component with nuclear spin quantum number m, I is the total nuclear spin, and A is the hyperfine splitting. In this Equation, the perturbation treatment is carried through third order. Because of the large values of A for rubidium and cesium in amines, these higher order corrections are required and the

hyperfine splittings cannot be taken directly from the spectra.

A program, SEC OC, described and listed in the appendix, was written to make second and third order corrections to the peak positions and from these to calculate hyperfine splittings and g values. This program calculates the quantity  $H_{\rm C}$  - Am by subtracting the second and third order contributions from the observed field position. This calculation for various values of m can be used to evaluate  $H_{\rm O}$  and A. The process is repeated until constant values are obtained. The center of the spectrum,  $H_{\rm O}$ , is taken as the average of values calculated for each peak using Equation (2). Finally the g value is calculated from the expression (42)

$$g = h V/\beta H_0$$
 (14)

where h is Flanck's constant,  $\nu$  the klystron frequency and  $\beta$  the electronic Bohr magneton.

## C. A New Variable-Temperature Spectrophotometer.

The desirability of measuring optical spectra under conditions used for ESR measurements prompted the construction of a temperature controlled optical cell compartment. Previously it was necessary to attach an Aminco optical cell to the ESR tube. Difficulty in cleaning the sample tubes, the large surface to volume ration of the optical cells and the cumbersome temperature control unit restricted the measurements which could be made. Obviously, if the ESR tubes themselves could be used for optical measurements over the entire ESR temperature range, some of these problems would be eliminated.

The stopped-flow system assembled in this laboratory (43) employing

a Perkin-Elmer model 108 rapid scanning monochromator was adapted to take static spectra by replacing the flow cell with a temperature controlled cell compartment which held the LIR cells in a fixed position. The monochromator, using a fused quartz prism, is able to scan the spectral region from 0.2 to 12.5  $\mu$  with appropriate light sources. To date this instrument has been used over a range of 0.4 to 1.1  $\mu$  with a Bausch and Lomb tungsten-iodine source. A stacked mirror beam splitter, with appropriate focusing mirrors, divides the emergent light from the monochromator into two beams and focuses the slit image approximately 8 cm from the monochromator. After passing through the sample and reference cells, the two light beams strike photomultipliers whose anode current output is fed into a Philbrick differential amplifier and log circuit rendering output voltages which are proportional to absorbance from 0.01 to 2.0 absorbance units.

A Textronix type 564 storage oscilloscope, with types 2A63 differential amplifier and 3B4 time base plug-in units, recorded the spectra. The spectra were photographed with a C-12 camera attachment using Polaroid type 146-L red sensitive film to give transparancies with good contrast between the spectrum and background. In order to insure that the horizontal positions on the screen during successive scans would represent the same wavelength, a triggering circuit was devised which fired each time a slot in a rotating sector disc within the monochromator allowed light from a small neon lamp to strike a cadmium sulfide photocell. The principle difference between this spectrophotometer and that used in the flow system is the temperature-controlled cell compartment.

This unit employs a Varian V-L557 Variable temperature accessory as the temperature controller. It operates by heating a stream of precooled

nitrogen to the desired temperature with stability sufficient to maintain  $a \pm 1^{\circ}C$  maximum temperature variation at the sensor. Two thermocouples were placed at the bottom of the cell compartments as a added check on the temperatures. This was necessary because the sensor is approximately two inches from the samples and because of the comparatively large spaces which required cooling. The sample and reference cell compartments can accommodate either conventional one centimeter optical cells or round ESR cells.

In order to position the round ESR-optical cells reproducibly, the cell holder illustrated in the appendix was designed. A point, groove and plane locating system for the cell holders proved to be quite functional. When the cells were in these holders, their position could be adjusted to allow proper alignment in the light beam. Quartz rods were used to connect the cell holder to the adjustment system. The low coefficient of thermal expansion of quartz minimizes changes in the cell position with changing temperature. The quartz rods were attached to the upper and lower cell holder plates with epoxy cement. The point, groove and plane of the locating system for the cell holder were set as far as possible from the cell compartments to lessen the effect of any distortions in their positions as the temperature changed. The cell compartments and light tubes were constructed of black Plexiglas to reduce light and heat leaks.

Double windows were required to keep the cold nitrogen gas in the cell compartment and to prevent frosting. The centers of thick pieces of black plastic were drilled out to make the light tubes. Originally quartz flats (American Thermal Fused Quartz Co.) were sealed with epoxy cement to the ends of the light tubes. Upon cooling, the inner quartz flats cracked because of the difference in the thermal expansion coefficient of the quartz and Plexiglas. Next a plastic bracket screwed to the main body

of the light tube was used to press the quartz flats and a thin Teflon gasket to the tube body. When this unit cooled, the windows frosted even though dry nitrogen was blown into the light tubes during assembly. The moisture may have entered the light tubes when the cooling lowered the pressure inside the tubes and impaired the sealing quality of the Teflon. The frost was eliminated by blowing a small stream of dry nitrogen through the light tubes while the temperature controlling unit was in operation. If this unit were to be rebuilt, it would be advisable to substitute evacuated one-piece quartz or quartz faced light tubes for those now in use.

When conventional one centimeter optical cells were used in the spectrometer, good spectra were obtained. However when the solutions used in the one centimeter cells were transferred to round ESR-optical cells, certain anomalies in their spectra became obvious. The problem was eliminated by carefully masking the front side of the cell holder to prevent light from striking the side of the round cell and being refracted around it without having passed through the sample. A one millimeter slit positioned in front of and very near the sample provided the desired masking effect.

## IV. CONCLUSIONS

The computer program, A M EQ, has permitted the equilibrium model to be tested quantitatively. A satisfactory description of the dependence of the hyperfine splitting and spin concentration on temperature and ammonia content has resulted. Although stationary-state models can qualitatively describe the nature of this dependence, they have not yet permitted a quantitative description of the ESR results. Symons and co-workers have recently proposed an additional equilibrium with diamagnetic species to explain the broadening of the four-line potassium pattern with increased cation concentration (36).

The appearance of a broad extra absorption underlying the potassium four line hyperfine pattern in ethylamine-ammonia mixtures between 9.9 and lh.5 mole percent ammonia has been confirmed by a quantitative fit of the spectra. The surprising correlation between the linewidth of this extra absorption and the hyperfine splitting of the four line pattern strongly suggests that the species giving rise to the broad extra absorption is also interacting with one or more metal nuclei. It should be noted that the spectra analyzed by the computer were in the low-temperature range. At these temperatures atom concentration predicted by the equilibrium model is negligible. The factors which influence the width of the extra line are therefore those which also influence the monomer hyperfine splitting. The change of the linewidth of the extra line into the higher temperature region should be examined to see whether the presence of atoms destroys

this correlation.

spectra for comparison with experiment. The TR FIT type which adjusts each parameter individually is very easily modified for use with different functions. It can be used effectively to develop and test fitting functions or in cases where only a few spectra are to be analyzed. Where many similar spectra are to be treated, programs of the GET IS type take less computer time and are probably more accurate. If some of the parameters to be used in fitting the spectra are not reasonably well known, the generalized least-squares method may not converge. In such cases a combination of the two types of programs should be a powerful technique. The least well known parameters could be adjusted individually before they were all simultaneously corrected. The ability to obtain data not otherwise accessible suggests that this method would be useful for other systems where merger of several patterns makes analysis difficult.

The second order correction program, 523 OC, illustrates the use of computers in efficiently treating large quantities of information. Over two hundred spectra have been treated with this program.

It is difficult at this time to draw any definite conclusions from the dependence of the cesium linewidth on m<sub>I</sub>. It can only be said that the major contributions to the linewidth come from the coefficients of the zero and second-power terms in the polynomial and that these coefficients showed more consistency from one sample to another than did the other two coefficients.

The new temperature-controlled spectophotometer enables us to measure optical spectra on all solutions used for ESR measurements, pro-

vided the absorbance is small enough. The conditions present when EDR measurements are made can be duplicated in this instrument. As the description of metal-amine solutions becomes more quantitative it will be increasingly necessary to correlate results from different areas of study. This instrument should prove to be a valuable ascet in obtaining data for correlation of optical and USR spectra.

## V. A MODEL FOR THE V DAND

There is general agreement among workers in this field on the assignment of the species giving rise to the IR and R absorption bands as has been discussed in the historical section. The temperature dependence of the hyperfine splitting is adequately explained by an equilibrium between atoms and monomers. This section will deal with the species giving rise to the broad single ESR absorption and the V species.

The absorption in the region of 650 mm (V band) is assigned to  $e_2^{--}$  species whose potential has been lowered by a partially solvated metal cation at the cavity center giving a species of stoichiometry k...

This is a symmetrical species to be differentiated from M in ammonia (44-46) which is assumed to exist mainly in an ion pair between  $e_2^{--}$  and k. The assignment of the V species is based primarily on the flash photolysis results of Linschitz and is supported by the changes in intensity relative to the R band which occur upon dilution and cooling (10,13,22). The species which result from photo bleaching of the V band must be capable of combining in a rapid second order reaction to form dimors (R species). The proposed reactions are

The increased IR absorption observed immediately following V band photolysis is attributed by the author to electrons, implying their

removal from the V species. The R species can then produce the V species by the reaction

$$H_2(R) = M^-(V) + A^+.$$
 (16)

This reaction will also occur upon dilution. The increased relative intensity of the V band at low temperatures implies a species favored by low concentrations and/or by a more highly structured solvent, both of which support this assignment. The apparent low V band absorption for rubidium and cesium may arise because they are too large to fit easily within the cavity. The explanation of the slow interconversion of the lithium V species to the IR band (22) according to this model is admittedly weak. It is attributed to the high activation energy brought about by the required solvent reorganization since a symmetric species M<sup>-</sup> goes to species with the charges separated.

The broad extra ESR absorption observed in certain solutions of potassium in ethylamine-ammonia mixtures is attributed to an unpaired electron. The high metal concentrations present when this phenomenon is observed would allow the solvated electron to pair with and separate from a number of metal cations rapidly enough to give a single line. It is believed that simultaneous interaction with several nuclei occurs since a single metal nucleus would not be capable of broadening the electron ESR line to a width greater than the splitting observed for the monomer.

The greater asymmetry of the cesium hyperfine pattern compared with potassium and rubidium could result from a slower atom-monomer equilibrium and/or the increased hyperfine splitting by the cesium nucleus. Although

the former may be true, the major effect appears to be the increased hyperfine splitting.

Clearly much work remains before models are developed which are capable of quantitatively describing all facets of the behavior of metal solutions. The instrumentation and computer programs described in this thesis should help to develop and test such models.

## RAFERATIOES

- 1. E. J. Hart, "Solvated Electron" in Asvances in Chemistry Series 50, R. F. Gould, Ed., American Chemical Dociety Fub., vii (1965).
- 2. A. Ebert and A. J. Swallow, "Solvated Electron" in Advances in Shortistry Series 50, R. F. Gould, Ed., American Chemical Society Fub., 209 (1965).
- 3. C.A. Kraus, J. Am. Chem. Soc., 36, 864 (1714).
- h. C. A. Kraus, J. Am. Chem. Soc., 29, 1557 (1907).
- 5. C. A. Kraus, J. A... Chem. Soc., 30, 1197 (1908).
- 6. C. A. Arnus, J. Am. Chem. Soc., 30, 653 (1903).
- 7. U. A. Kraus, J. Am. C. em. Soc., 30, 1323 (1908).
- 8. G. E. Gibson, and M. L. Argo, J. Am. Chem. Soc., 40, 1327 (1918).
- 9. J. L. Dye and R. R. Dewald, J. Phys. Chem., 68, 135 (1964).
- 10. M. Ottolenghi, K. Bar-Eli and M. Linschitz, J. Chem. Phys., 43, 206 (1965).
- 11. H. Blades and J. W. Hodgins, Can. J. Chem., 83, 411 (1955).
- 12. G. Hollstein and V. Mannagat, Z. Anorg. Chem., 288, 193 (1956).
- 13. R. R. Dewald, Ph.D.dissertation, Michigan State University, (1963).
- 14. G. M. A. Fowles, M. R. McGregor and M. C. R. Symons, J. Chem. Soc., 1957, 3329.
- 15. S. Windwer and B. Sundheim, J. Phys. Chem., 66, 1254 (1962).
- 16. D. F. Burow and J. J. Lagowski, "Solvated Electron" in Advances in Chemistry Series 50, R. F. Gould, Ed., American Chemical Society Pub., 125, (1965).
- 17. W. L. Jolly, C. J. Hallada and M. Gold, <u>Letal Ammonia Solutions</u>, G. Le Poutre and M. J. Sienko, Ed., <u>Benjamin</u>, New York, 174 (1964).

- 18. R. C. Douthit and J. L. Dye, J. Am. Chem. Soc., 82, 4472 (1260).
- 19. M. Gold, W. L. Jolly and H. S. Pitzer, J. Am. Chem. Soc., 84, 2264 (1962).
- 20. M. Gold and W. L. Jolly, Inorg. Chem., 1, 318 (1962).
- 21. L. R. Dalton, J. L. Dye, E. H. Fielden and E. J. Hart, J. Phys. Chem., in press.
- 22. R. R. Devald and J. L. Dye, J. Phys. Chem., 68, 121 (1)64).
- 23. M. Ottolenghi, M. Bar-Eli and H. Linschitz, J. Am. Chem. Soc., 87, 1309 (1965).
- 24. A. Ottolenghi and H. Linschitz, "Solvated Electron" in Advances in Chemistry Series 50, R. F. Gould, Ed., American Chemical Society Pub., 149 (1965).
- 25. J. L. Dye, L. R. Dalton and E. F. Hansen, Abstracts, 149th National Meeting of the American Chemical Society, April 1965, 455.
- 26. J. L. Dye and L. R. Dalton, Symposium on Electron Spin Resonance, East Lansing, Michigan, August 1966.
- 27. L. R. Dalton and J. L. Dye, results to be published.
- 28. K. Bar-Eli and T. R. Tuttle, Jr., J. Chem. Phys., 40, 2508 (1964).
- 29. L. R. Dalton, J. D. Rymbrandt, E. M. Hansen and J. L. Dye, J. Chem. Phys., 14, 3269 (1966).
- 30. G. Herzberg, Spectra of Diatomic Molecules, D. Van Nostrad Co., New York (1950).
- 31. A. Hess and J. L. Dye, unpublished results.
- 32. N. Ottolenghi, K. Bar-Eli and H. Linschitz, J. Chem. Phys., 40, 3729 (1964).
- 33. E. Becker, R. H. Lindquist and B. Alder, J. Chem. Phys. 25, 971 (1956).
- 34. J. L. Dye, R. F. Sankuer and G. E. Smith, J. An. Chem. Soc., 82, 4797 (1960).
- 35. C. A. Kraus, Metal Ammonia Solutions, G. Le Foutre and M. J. Sienke, Ed., Benjamin, New Yerk, 9 (1964).

• • •

•

- 36. R. Catterall, h. C. R. Symons and J. W. Tipping, private communication.
- 37. N. F. Ramsey, <u>Nuclear Moments</u>, John Wiley and Sons, Inc., New York, 89 (1953).
- 38. N. E. Wentworth, J. Chem. Ed., 42, (2), 96 (1965).
- 39. W. E. Wentworth, J. Chem. Ed., 12, (3), 162 (1965).
- 40. R. P. Kohin, Fh. D. dissertation, University of Maryland (1961).
- 41. H. A. Kuska, Ph. D. dissertation, Michigan State University (1965).
- 42. J. R. Morton, Chem. Rev., 64, 453 (1964).
- 43. J. L. Dye and L. Feldman, Rev. Scientific Instr., 37, (2), 154 (1966).
- 14. E. Arnold and A. J. Patterson, J. Chem. Phys., 41, 3089 (1964).
- 45. M. C. R. Symons, M. J. Blandamer, R. Catterall and L. Shields, J. Chem. Soc., 1964, 4357.
- 46. W. H. Brendly and E. C. Evers, "Solvated Electron" in Advances in Chemistry Series 50, R. F. Gould, Ed., American Chemical Society Pub., 111 (1965).
- 47. H. C. Clark, A. Horsfield and H. C. R. Symons, J. Chem. Soc. 1959, 2478.
- 48. R. Catterall, J. Carset and M. C. R. Symons, J. Chem. Phys. 38, 272 (1263).
- 49. R. Wilson and D. Kivelson, J. Chem. Phys., 44, 154 (1966).
- 50. H. M. McJonnell, J. Chem. Phys., 25, 709 (1956).
- 31. II. Julia, W. I. Jolly and K. S. Pitzer, J. Am. Cham. Soc., 84, 2264 (1962).

• • • • • • • • • • • • • • • • 

APPENDICES

#### APPENDIX A

# 1. ATOM-HOMORER EQUILIBRIUM

#### A. IDENTIFICATION

Title: Atom-Monomer Equilibrium

Category: Separation of effects

Programmer: Jay D. Rynbrandt

Date: July 29, 1966

#### B. PURPOSE

Given the variation of potassium hyperfine splitting in ethylamineammonia mixtures with temperature, calculate the contributions of atoms and monomers to this splitting.

#### C. USAGE

# 1. Arguments

JL, KL are integers defining the low field region for each data set.

JH, KH are integers defining the high field region for each data set.

PC is the mole percent ammonia.

C is the array name of the temperature in degrees centigrade.

A is the array name for the hyperfine splitting in Gauss.

S is the array name for the total number of spins.

T is the array name for the temperature in degrees  $\mathtt{Kelvin}_{\bullet}$ 

X is the array name stored in common and used to transfer the independent variables into the least squares subroutine.

Y is the same as X but for dependent variables.

AT is the array name for the calculated number of atom spins.

NA is the array name for the weighting factors. (NOTE: A more

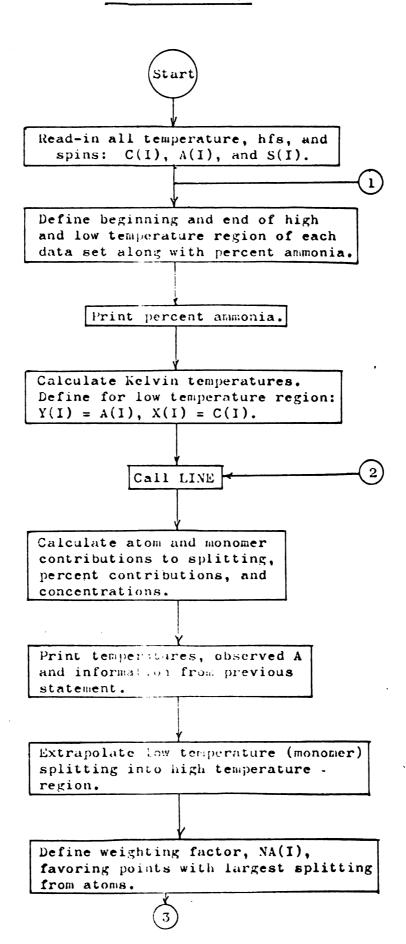
recent least squares subroutine than that used with this program is listed. This subroutine can use non-integer weighting values.)

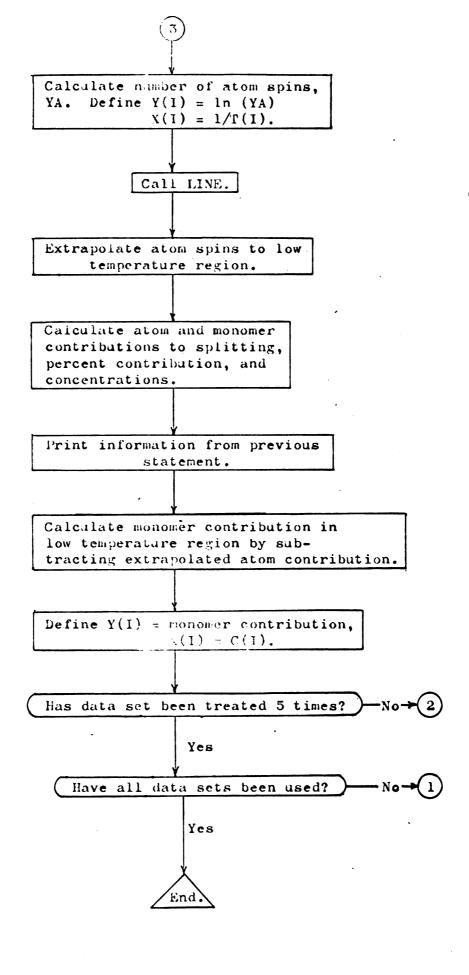
- KA, JA are the integers defining the first and last points to be used in the least squares subroutine.
- SAC, SLC are the calculated contributions to the splitting of the atom and monomer.
- SPA, SPM are the atom and monomer splittings calculated another way.
- PA, PM are the percent atom and monomer contributions to the splitting.
- TS, DS are the total splitting and its difference from the observed value.

All is the calculated monomer splitting.

YB is the splitting from atoms.

YA is the number of spins due to atoms.


- 2. Print-Cuts: All arrays on each iteration.
- 3. Output Formats: See listing.
- 4. Timing: Roughly one minute for all operations described here.
- 5. Accuracy: Depending on data and number of iterations.
- 6. References: L. R. Dalton, J. D. Rynbrandt, E. M. Hansen and
  - J. L. Dye, Journal of Chemical Physics 44, 3969, 1966 and
  - J. D. Rynbrandt, MS Thesis, Michigan State University.


#### D. METHOD

The contributions of either of two species to the total hyperfine splitting are calculated in one temperature range and extrapolated

into another, to be used in the calculation of the contribution from the other species. An iterative procedure is then applied to reach constant contributions from each. For the details of the calculation see the references.

### Program A M EQ





```
PROGRAM A M EQ
   COMMON JA+KA+NA+SY+CY+X+Y
   DIMENSION T(200) . A(200) . S(200) . X(200) . Y(200) . C(200) . NA(200)
  1 AT(200)
 1 FORMAT (2F10.0 .E10.2)
 2 FORMAT (*1PERCENT NH3 = *F4.1 )
 3 FORMAT (*0
               TEMP
                                        MON A C
                                                      MON A
                                                                 P MON
                  AT A
                                PAT
                                           T S
      AT A C
                                                      OBS-CALC*/)
  1
 4 FORMAT (*0
                   TEMP
                              SPINS
                                                      P MON
                                                                  AT S C
                                           MON S
     PAT
                      */)
 5 FORMAT (10F11.5)
 6 FORMAT (F11.5.2E11.3.F11.5. E11.3.F11.5)
   NB = 165
   PEAD 1 \leftarrow (C(I) \leftarrow A(I) \leftarrow S(I) \leftarrow I = 1 \leftarrow NB)
   D0 15 MB = 1.6
   BM = MB
   IF (BM-1.0) 20.20.21
20 CONTINUE
   JL = 1
   KL = 17
   JH = 18
   KH = 35
   PC = 1.6
   GO TO 32
21 CONTINUE
   IF (BM-2.0) 22. 22.23
22 CONTINUE
   JL = 36
   KL = 54
   JH = 55
   KH = 66
   PC = 2.7
   GO TO 32
23 CONTINUE
   IF (BM-3.0) 24.24.25
24 CONTINUE
   JL = 67
   KL = 85
   JH = 86
   KH = 107
   PC = 5.8
   GO TO 32
25 CONTINUE
```

```
IF (BM-4.0) 26.26.27
26 CONTINUE
   JL = 108
   KL = 118
   JH = 122
   KH = 130
   PC = 9.6
   GO TO 32
27 CONTINUE
   IF (BM-5.0) 28.28.29
28 CONTINUE
   JL = 131
   KL = 140
   JH = 143
   KH = 148
   PC = 14.2
   GO TO 32
29 CONTINUE
   IF (BM - 6.0) 30.30.31
30 CONTINUE
   JL = 149
   KL = 156
   JH = 159
   KH = 165
   PC = 11.8
   GO TO 32
31 CONTINUE
32 CONTINUE
   PRINT 2. PC
   DO 11 1= JL.KH
   T(1) = C(1) + 273.15
   X(1) = C(1)
   Y(1) = A(1)
   AT(I) = 0.0
   NA(1) = 1
11 CONTINUE
   JA = JL
   KA = KL
   CX = 0.0
   SX = 0.0
```

DO 14 MA = 1.5

```
CALL LINE
  PRINT 3
  DO 16 I = JL+KH
   SAC = AT(1)
                            #82.4/5(1)
   SMC = (C(1)*SY + CY)*(S(1) - AT(1)) / S(1)
   SPA = A(1) - SMC
   SPM = A(I) - SAC
   PA = 100.0*SAC/A(I)
   PM = 100.0*SMC/A(1)
   TS = SAC + SMC
   DS = A(1) - TS
   PRINTS C(1) A(1) SMC+ SPM+ RM+ SAC+ SPA+ PA+ TS+DS
16 CONTINUE
   JA = JH
  KA = KH
  DO 12 1 = JA+KA
   AM = SY*C(1) + CY
   YB = A(I) - AM
  NA(I) = YB + 1.0
   YA = YB*S(1) / (82.4 - AM)
  Y(1) = LOGF(YA)
  X(I) = (1.0 / T(I))
12 CONTINUE
  CALL LINE
  PRINT 4
  DO 17 I = JL.KH
   AT(1)=FXPF(SY/T(1) + CY)
   SAC = AT(1)
   SPM = S(1) - SAC
   PA = 100 \cdot 0 + SAC/S(I)
  PM = 100 \cdot 0 + SPM/S(I)
  TS = SAC + SMC
   DS = S(1) - TS
  PRINT 6. C(1). S(1). SPM. PM. SAC.
                                                PA
17 CONTINUE
  KA = KL
   JA = JL
  DO 13 I = JA+KA
   Y(1) = (S(1) + A(1) - AT(1) + 82.4) / (S(1) - AT(1))
  X(1) = C(1)
  NA(I) = 1
13 CONTINUE
14 CONTINUE
15 CONTINUE
  END
```

#### APPENDIX A

### 2. LEAST SQUARES LINE.

#### IDENTIFICATION

Title:

Least Squares Line

Category:

Line calculating

Programmers Jay D. Rynbrandt

Date:

July 29, 1966

### B. PURPOSE

Given a set of X - Y points, calculate a least squares line through them.

### C. USAGE

1. Calling sequence:

CALL LINE (X,Y,YY,DY,S,C,SDB,SDA,TIGS,W,N)

### 2. Arguments:

X is the array name of the independent variable.

Y is the array name of the dependent variable.

YY is the array name of the calculated dependent variable.

DY is the array name for the difference between Y and YY.

S is the slope.

C is the intercept.

SDB is the standard deviation of the slope.

SDA is the standard deviation of the intercept.

TIGS is the total sum of the squares of DY.

W is the array name of the weighting factors.

I is the number of data points.

- 3. Print-Outs: All values listed in calling sequences
- 4. Out-put formats: See listing.
- 5. Timing: Less than a second for 50 data points.

- 6. Accuracy: Floating point, single precision.
- 7. References: B. W. Lindgren and G. W. McElrath, <u>Introduction</u>
  to Probability and Statistics, The Fac Millan Co., New York (1959).

# D. RETHOD

$$C = \sum_{i=1}^{N_i \cdot Y_i} \sum_{i=1}^{N_i \cdot Y_i} \sum_{i=1}^{N_i \cdot X_i} \sum_{i=1}^{N_i \cdot X_i}$$

See reference for standard deviation evaluation.

```
SUBROUTINE LINE (X. Y. YY. DY. S. C. SDB. SDA. TIGS. 6. N)
   DIMENSION X(100) + Y(100) + W(100) + YY(100) + DY(100)
 1 FORMAT (*OSLOPE
                        ##E14.6)
 2 FORMAT (* INTERCEPT =*E14.6)
 3 FORMAT (*0
                 X
                                            Y CALC
                                                           RESIDUE
 1
       W*/)
 4 FORMAT (5F14.7)
 5 FORMAT (*OSTD DEV SLOPE =*E14.6)
 6 FORMAT (* STD DEV INTCPT =*E14.6)
   P = N
   SS=0.0
   WS = 0.0
   XS=0.0
   YP=0.0
   YS=0.0
   DO 10 I = 1.N
   W(1) = ABSF(W(1))
   SS = SS + W(I)*X(I)**2
   WS = WS + W(I)
   XS=XS+X(I)*W(I)
   YP = YP + X(1) + Y(1) + W(1)
   YS=YS+Y(1)*W(1)
10 CONTINUE
   C = ((XS*YP) - (SS*YS))/((XS**2) - WS*SS)
   S = ((XS*YS) - WS*YP) / ((XS**2) - WS*SS)
   AVX = XS / P
   TIGS = 0.0
   TXS = 0.0
   PRINT 3
   DO 11 I = 1.N
   YY(1) = S #X(1) + C
   DY(1) = Y(1) - YY(1)
   SIGS = DY(1)**2
   SXS = X(1) + (X(1) - AVX)
   TIGS = TIGS + SIGS
   TXS = TXS + SXS
   PRINT 4. X(1). Y(1). YY(1). DY(1). W(1)
11 CONTINUE
   STIGS = TIGS/P
   STXS = TXS/P
   VARA = STIGS * (1.0 + AVX**2/STXS)/P
   VARB = STIGS / (P#STXS)
   VARA = ABSF(VARA)
   VARB = ABSF(VARB)
   SDA = SQRTF(VARA)
   SDB = SQRTF(VARB)
   PRINT 1.5
   PRINT 2.C
   PRINT 5. SDB
   PRINT 6. SDA
13 RETURN
```

END

#### AFPLIDIX B

### 1. LLAST SQUARLS SPECTED SHITHESIZING.

#### A. IDENTIFICATION

Title: Least Squares Spectra Synthesizing.

Category: Curve fitting.

Programmer: Jay D. Rynbrandt

Date: July 29, 1966

# B. PURPOSE

diven a spectrum as a series of X - Y coordinates, a shape function capable of fitting the curve and estimates of the parameters involved, more precise values of the parameters are obtained by adjusting them in an iterative process to obtain a best fit as judged by the sum of the squares of the deviation from the observed spectra. This specific program was used to reproduce an optical spectrum consisting of three peaks with four parameters used to describe each peak.

### C. JUAGE

#### 1. Calling sequence:

Terms are stored and transferred through common.

### 2. Arguments:

X is the array name of the independent variable. The second subscript, I, is a running index over all points used. The first subscript denotes: 1. the wavelength in mu, 2. the wave number and 3. is an extra array in the event that X must be read in some different units and converted to one of the prior two.

I is the array name of the dependent variable. The second subscript, I, is a running index over all points used. The first subscript, 1 - 6, designates: 1. the contribution from the IR band at the point in the spectrum being considered, 2. the contribution from the R band, 3. that from the V band, 4. the observed spectra, 5. the calculated spectra and 6. the difference of the observed and calculated spectra.

W is the array name of the weighting factor which enables certain regions of the spectrum to be emphasized, The first subscript, 1 - 3, representing the peak; the second subscript, the point in question.

P is the array name of the parameters used for each peak. The first subscript, 1 - 3, designates the IR, R and V band, respectively; the second subscript, 1 - 3, relates to the skew factor, the linewidth and the peak center respectively.

B is the array name of the parameters related to the magnitude of the three peaks.

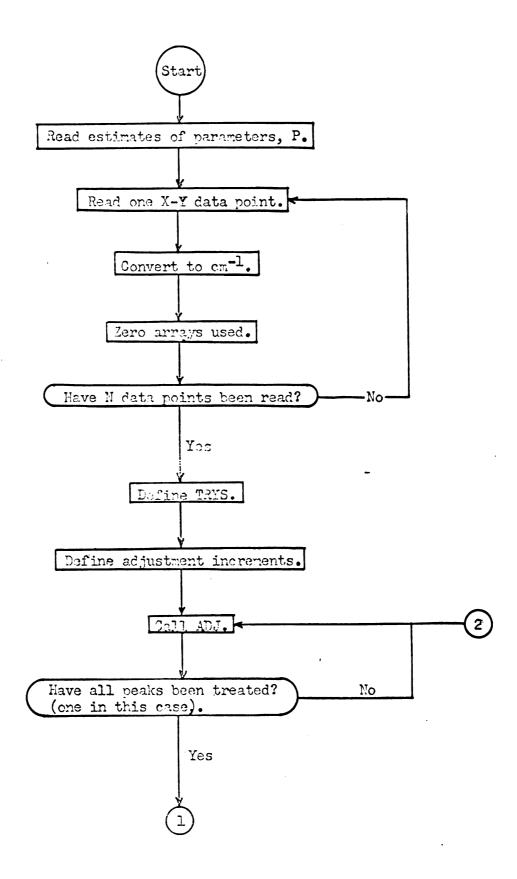
C is the array name of the adjustment increments with subscripts corresponding to those of P.

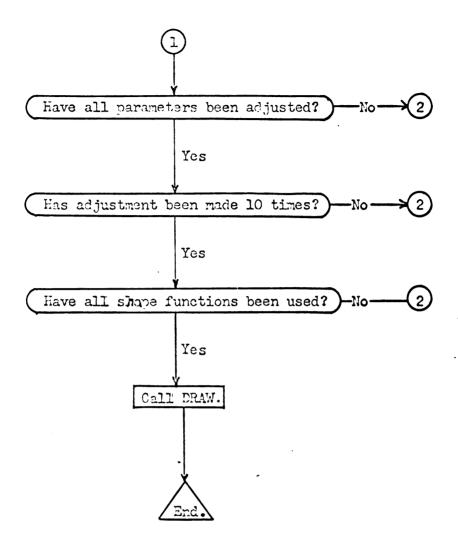
SO is the sum of the deviation squared.

TMMS is the number of attempts allowed to obtain a best fit by adjusting any particular parameter.

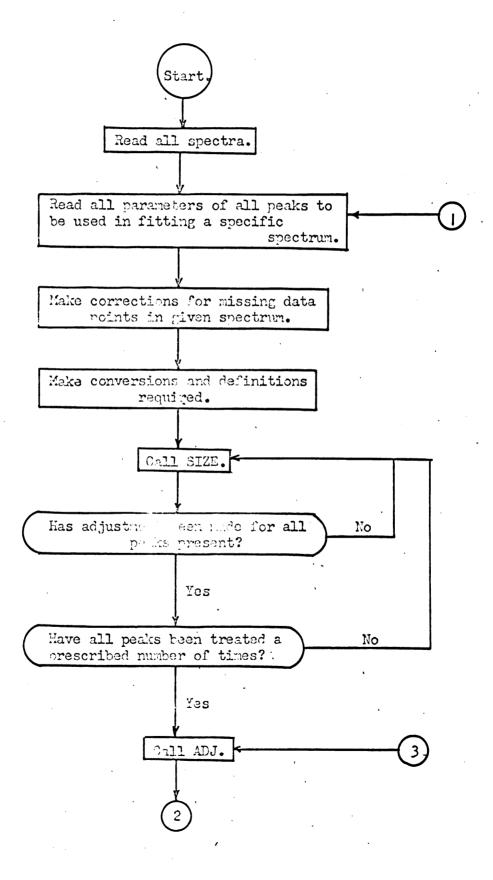
N is the number of points used to represent the spectrum.

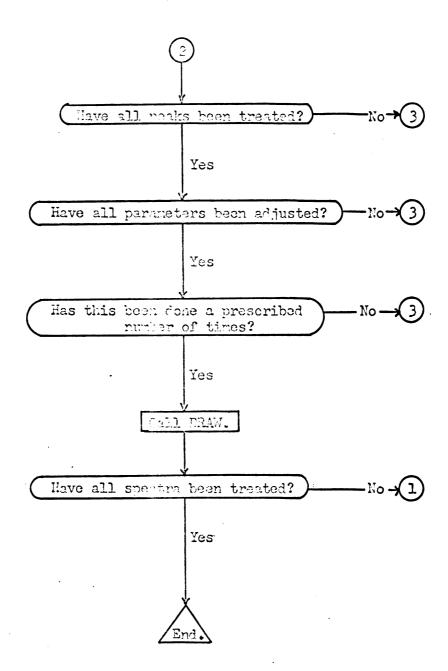
J is the integer designating the particular band.


K is the integer ranging over three of the parameters describing each peak.


L represents the fitting function used.

TR is the number of times the program passed through a given point in subroutine SIZE.


- 3. Storage: 1300
- 4. Input, Output formats: See listing.
- 5. Timing:
  - a. Compile 20 sec.
  - b. Execution 10 sec for 10 iterations over three peaks.
- 6. Accuracy: Limited by the capacity of the shape function and the number of iterations.
- 7. References: 3400/3600 Fortran Reference Manual, Control Data Corporation, Palo Alto, Calif. (1965).


Program IR FIT





# Proposed Flow Chart fot IR FIT





```
PROGRAM IR FIT
   COMMON X. Y. W. P. C. B. SO. TRYS. N. J. K. L. TR. BO
   DIMENSION X(3+100) + Y(6+100) + W(3+100) + P(3+3) + C(3+3) + B(3)
 1 FORMAT (12.A8)
2 FORMAT (2E10.3)
3 FORMAT (3E10.0)
 4 FORMAT (*1DATA OF SPECTRUM *AB)
5 FORMAT (*0
                                           L =#12)
   READ 1. N.RECORD
   READ 3. P(1.1). P(1.2). P(1.3)
   DO 11 I = 1.0
   READ2 • X(1+1) • Y(4+1)
   X(2\cdot1) = 10000000\cdot0/X(1\cdot1)
   X(3.1) = 0.0
   Y(2.1) = 0.0
   Y(3.1) = 0.0
   W(1 \cdot 1) = 1 \cdot 0
   W(2 \cdot 1) = 1 \cdot 0
   W(3 \cdot 1) = 1 \cdot 0
11 CONTINUE
   50 = 1.0
   TRYS = 25.0
   DO 15 L = 1.8
   PRINT 4. RECORD
   PRINT 5. L
   B(1) = 1.0
   80 = 0.4
   C(1 \cdot 1) = 0 \cdot 1 $ C(1 \cdot 2) = 0 \cdot 005 $ C(1 \cdot 3) = 0 \cdot 002
   DO 14 NB = 1 . 10
   DO 14 J = 1 • 1
   D0 14 K = 1.3
   CALL ADJ
14 CONTINUE
   CALL DRAW
15 CONTINUE
```

END

# APPENDIX B

# 2. ADJUSTALENT MONITOR (ADJ.)

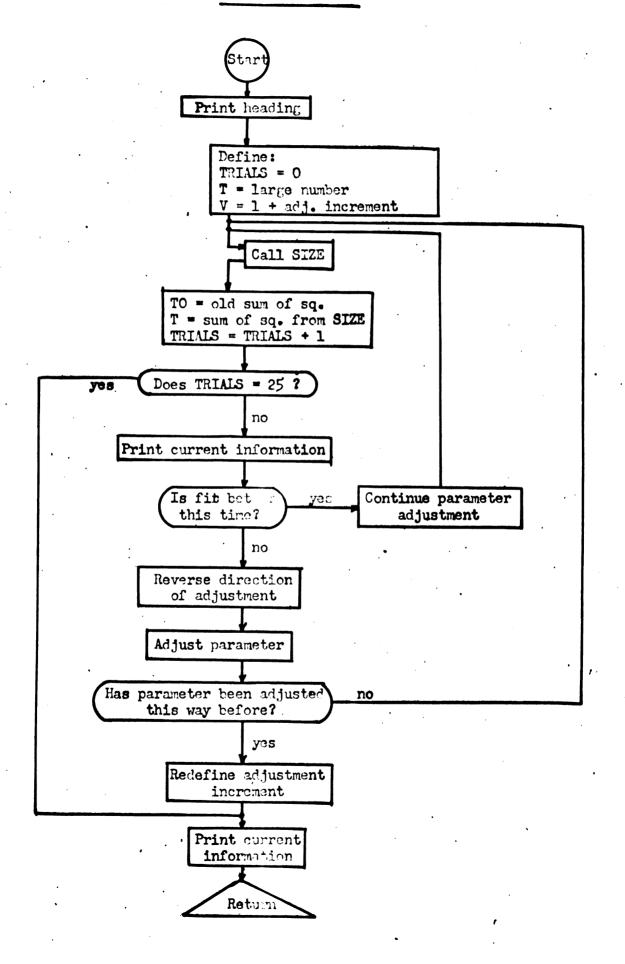
# A. IDENTIFICATION

Title: Adjustment Monitor

Category: Curve Fitting

Programmer: Jay D. Rynbrandt

Date: July 29, 1966


### B. PURPOSE

Given a set of parameters of which one is being adjusted, obtain the best value of that parameter.

# C. USAGE

See Least Squares Spectra Synthesizing (IR FIT).

# Subroutine ADJ



```
SUBROUTINE ADJ
  COMMON X. Y. W. P. C. B. SO. TRYS. N. J. K. L. TR. BO
  DIMENSION X(3+100) + Y(6+100) + W(3+100) + P(3+3) + C(3+3) + B(3)
1 FORMAT (16. 110. 4X. 4E12.4.2F7.1)
                                         CONST
                                                       ADJ
                                                                      INT
                          CONST NO
                 PK NO
2 FORMAT(/#
                  TR
                         TRIALS*/)
 1 50
  PRINT 2
  TRIALS = 0.0
  T = 999999.9
  V = 1.0 + C(J.K)
  DO 8 N1 = 1.2
3 CONTINUE
  CALL SIZE
  TO = T
  T = 50
  TRIALS = TRIALS + 1.0
  IF (TRIALS - TRYS) 5.9.9
5 CONTINUE
  PRINT 1. J. K. P(J.K). C(J.K). B(J). SO. TR.TRIALS
  IF (T - TO)6.7.7
6 CONTINUE
  P(J_{\bullet}K) = P(J_{\bullet}K)*V
  GO TO 3
7 CONTINUE
  C(J_{\bullet}K) = -C(J_{\bullet}K)
  V = 1.0 + C(J \cdot K)
  P(J_{\bullet}K) = P(J_{\bullet}K)*V
8 CONTINUE
9 CONTINUE
  C(J_{\bullet}K) = C(J_{\bullet}K)*TRIALS/10_{\bullet}O
  PRINT 1. J. K. P(J.K). C(J.K). B(J). SO. TR.TRIALS
  RETURN
  END
```

### APPENDIX B

# 3. LAGNITUDE ADJUSTMENT (SIZE)

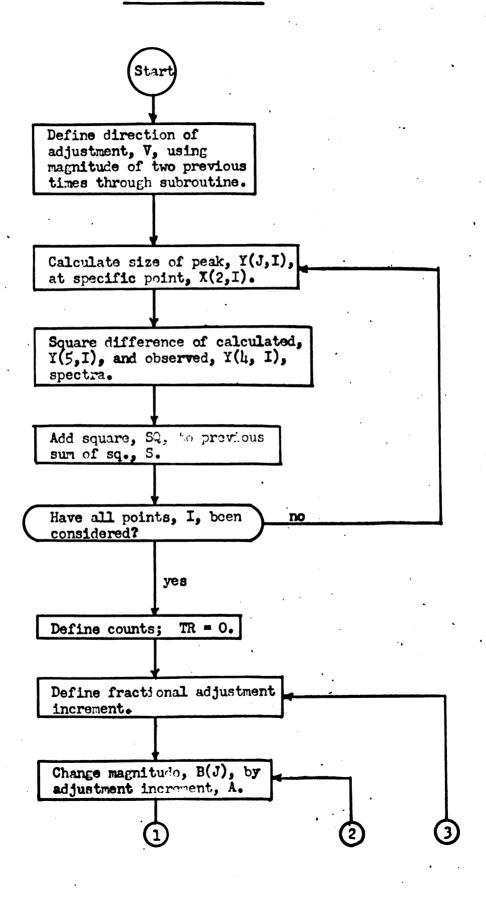
# A. IDENTIFICATION

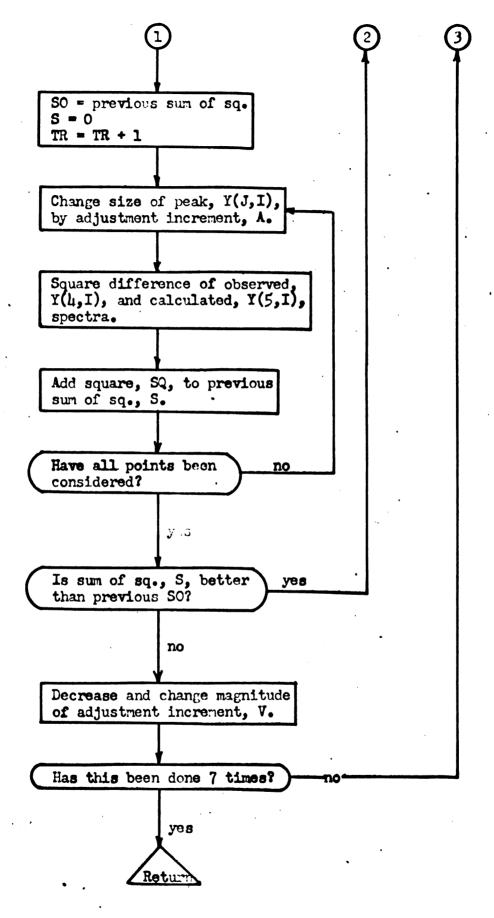
Title: Size

Category: Curve Fitting

Programmer: Jay D. Rymbrandt

Date: July 29, 1966


# B. PURPOSA


Given a spectrum as a series of **X** - Y coordinates, a shape function capable of fitting the curve and a set of parameters other than magnitude, adjust the magnitude to give the lowest sum of squares of the deviation from the observed spectra.

# C. USAGE

See Least Squares Spectra Synthesizing (IR FIT).

# Subroutine SIZE





```
SUBROUTINE SIZE
   DIMENSION X(3+100) + Y(6+100) + W(3+100) + P(3+3) + C(3+3) + B(3)
   COMMON X. Y. W. P. C. B. SO. TRYS. N. J. K. L. TR. BO
   S = 0.0
   V = 0.025*(B(J)-B0)/ABSF(B(J)-B0)
   BO = B(J)
   GO TO (10.12.14.16.18.20.22.24) L
10 CONTINUE
   DO 11 I = 1.N
   R = X(2 \cdot 1) - P(J \cdot 3)
   PX = P(J+1)*X(2+1)
   Y(J_01) = B(J)*(1_0+PX )/(1_0+(P(J_02)*R)**2)
   Y(5 \cdot 1) = Y(1 \cdot 1) + Y(2 \cdot 1) + Y(3 \cdot 1)
   Y(6 \cdot 1) = Y(4 \cdot 1) - Y(5 \cdot 1)
   SQ = W(J \cdot I) * Y(6 \cdot I) * *2
   S = S + SQ
11 CONTINUE
   GO TO 4
12 CONTINUE
   DO 13 I = 1.N
   R = X(2+1) - P(J+3)
   PX = P(J+1) * X(2+1)
   Y(J_0T) = B(J)*(1_0+PX**2)/(1_0+(P(J_02)*R)**2)
   Y(5 \cdot 1) = Y(1 \cdot 1) + Y(2 \cdot 1) + Y(3 \cdot 1)
   Y(6+1) = Y(4+1) - Y(5+1)
   SQ = W(J_1)*Y(6_1)**2
   S = S + SQ
13 CONTINUE
   GO TO 4
14 CONTINUE
   DO 15 I = 1.N
   R = X(2 \cdot 1) - P(J \cdot 3)
   PX = P(J+1) *X(2+1)
   Y(J_01) = B(J)*(1_0+PX**3)/(1_0+(P(J_02)*R)**2)
   Y(5 \cdot 1) = Y(1 \cdot 1) + Y(2 \cdot 1) + Y(3 \cdot 1)
   Y(6 \cdot 1) = Y(4 \cdot 1) - Y(5 \cdot 1)
   SQ = W(J \cdot I) * Y(6 \cdot I) * * 2
   5 = 5 + 50
15 CONTINUE
   GO TO 4
16 CONTINUE
   DO 17 I = 1 \cdot N
   R = X(2 \cdot 1) - P(J \cdot 3)
   PX = P(J_1)*X(2_1)
   Y(J_0!) = B(J)*(1_0+PX**4)/(1_0+(P(J_02)*R)**2)
   Y(5 \cdot 1) = Y(1 \cdot 1) + Y(2 \cdot 1) + Y(3 \cdot 1)
   Y(6.1) = Y(4.1) - Y(5.1)
   SQ = W(J \cdot 1) * Y(6 \cdot 1) * * 2
   S = S + SQ
```

```
17 CONTINUE
    GO TO 4
18 CONTINUE
    DO 19 I = 1.N
    R = X(2 \cdot 1) - P(J \cdot 3)
    PR = P(J_1) R
    Y(J_0!) = B(J)*(1_0+PR )/(1_0+(P(J_02)*R)**2)
    Y(5 \cdot 1) = Y(1 \cdot 1) + Y(2 \cdot 1) + Y(3 \cdot 1)
    Y(6 \cdot 1) = Y(4 \cdot 1) - Y(5 \cdot 1)
    SQ = W(J \cdot I) * Y(6 \cdot I) * *2
    S = S + SQ
19 CONTINUE
    GO TO 4
20 CONTINUE
    DO 21 I = 1.N
    R = X(2 \cdot 1) - P(J \cdot 3)
    PR = P(J \cdot 1) *R
    AR = ABSF(PR)
    Y(J_01) = B(J) + (1_0 + PR + AR) / (1_0 + (P(J_02) + R) + + 2)
    Y(5 \cdot 1) = Y(1 \cdot 1) + Y(2 \cdot 1) + Y(3 \cdot 1)
    Y(6,1) = Y(4,1) - Y(5,1)
    SQ = W(J_1)*Y(6_1)**2
    S = S + SQ
21 CONTINUE
    GO TO 4
22 CONTINUE
    D0 23 1 = 1.N
    R = X(2 \cdot 1) - P(J \cdot 3)
    PR = (P(J_{\bullet}1)*R)**3
    Y(J_01) = B(J)*(1_0+PR )/(1_0+(P(J_02)*R)**2)
    Y(5 \cdot 1) = Y(1 \cdot 1) + Y(2 \cdot 1) + Y(3 \cdot 1)
    Y(6 \cdot 1) = Y(4 \cdot 1) - Y(5 \cdot 1)
    SQ = W(J \cdot I) * Y(6 \cdot I) * * 2
    S = S + SQ
23 CONTINUE
    GO TO 4
24 CONTINUE
    D0 25 I = 1.N
    R = X(2 \cdot 1) - P(J \cdot 3)
    PR = (P(J_{1})*R)**3
    AR = ARSF(P(J \cdot 1) *R)
    Y(J_{\bullet}!) = B(J)*(1_{\bullet}+PR*AR)/(1_{\bullet}+(P(J_{\bullet}2)*R)**2)
    Y(5 \cdot 1) = Y(1 \cdot 1) + Y(2 \cdot 1) + Y(3 \cdot 1)
    Y(6 \cdot 1) = Y(4 \cdot 1) - Y(5 \cdot 1)
    SQ = W(J_1)*Y(6_1)**2
    S = S + SQ
25 CONTINUE
    GO TO 4
```

```
4 CONTINUE
  TR = 0.0
  DO 8 N2 = 1.7
  A = 1.0 + V
5 CONTINUE
  B(J) = B(J) *A
  SO = S
  5 = 0.0
  TR = TR+1.0
  DO 6 I = 1.N
  A*(1 \bullet U)Y = (1 \bullet U)Y
  Y(5 \cdot 1) = Y(1 \cdot 1) + Y(2 \cdot 1) + Y(3 \cdot 1)
  Y(6 \cdot 1) = Y(4 \cdot 1) - Y(5 \cdot 1)
  SQ = W(J \cdot 1) * Y(6 \cdot 1) * * 2
  s = s + sQ
6 CONTINUE
  IF (S - SO) 5.7.7
7 CONTINUE
  V = -V*0.25
8 CONTINUE
  RETURN
```

END

|  | ٠ |  |
|--|---|--|
|  | • |  |
|  | , |  |
|  |   |  |
|  |   |  |
|  |   |  |
|  | · |  |
|  | • |  |
|  |   |  |
|  |   |  |
|  |   |  |
|  |   |  |
|  |   |  |
|  |   |  |
|  |   |  |
|  |   |  |
|  |   |  |
|  |   |  |
|  |   |  |
|  |   |  |
|  |   |  |
|  |   |  |

# APPINDIX B

# 4. IMPOREATION PRINTOUT (DRAW)

# A. IDENTIFICATION

Title: Information Printout

Programmer: Jay D. Rynbrandt

Date: July 29, 1966

# B. PURPOSE

Printout information obtained previously.

```
SUBROUTINE DRAW
  DIMENSION X(3+100) + Y(6+100) + W(3+100) + P(3+3) + C(3+3) + B(3)
  COMMON X. Y. W. P. C. B. SO. TRYS. N. J. K. L. TR. BO
1 FORMAT (*1 X OBS LAMDA CM-1 ABS CALC ABS OBS RESIDU
                                    WT R
                            YR
       YIR
                 WT IR
                                               YV
                                                        WT V*/)
2 FORMAT (3F10.1.9F10.5)
  PRINT 1
  DO 12 I = 1.N
  PRINT 2.X(3.1).X(1.1).X(2.1).Y(5.1).Y(4.1).Y(6.1).Y(6.1).W(1.1).
 1Y(2+1)+W(2+1)+Y(3+1)+W(3+1)
12 CONTINUE
  RETURN
  END
```

### APPENDIX C

# 1. GENERALIZED LEAST SQUARES

#### A. IDELTIFICATION

Title: Generalized Least Squares

Category: Farameter adjustment

Programmer: Jay D. Rymbrandt

Date: July 29, 1966

#### B. PURFUSE

Given F  $(x_i, y_i, a^0, b^0, c^0)$ , find the corrections to  $a^0$ ,  $b^0$ , and  $c^0$  so as to minimize the weighted deviations,

D = 
$$\sum Wy_i (y_{obs} - y_{calc})^2 + Wx_i (x_{obs} - x_{calc})^2$$

### C. USAGE

### 1. Arguments:

X is the array name of the independent variable.

Y is the array name of the dependent variable.

C is the array name of the parameters to be adjusted.

RECORD is the array name used to store and print the date set identification.

S is the array name for the nuclear spins.

P is the array name for the partial derivatives (partials) calculated at each point.

SB is the array name for some sums of partials going into subroutine SQRTHET and that for the corrections to the parameters which it calculates.

ST is the array name used to sum the products of partial derivatives calculated. WY is the array name of the weights.

YI, YII are the array names for the calculated single line contribution (YII being that obtained with weighing factors of 1).

Yh, Yll are the array names for the calculated four line patterns.

YC, YlC are the array names for the calculated spectrum.

YD, Y1D are the array names for the difference of the observed and calculated spectra.

N is the number of points in a particular data set.

- 2. Print Outs: All parameters with each adjustment and all observed and calculated spectra.
- 3. Input and Output Formats: See listing.
- 4. Timing: Less than one second for each complete adjustment with 50 data points.
- 5. Accuracy: Single precision, adjustment completed in three cycles.
- 6. References: W. E. Wentworth, J. Chem. Ed., <u>L2</u>, (2), 96 (1965) W. E. Wentworth, J. Chem. Ed., <u>L2</u>, (3),162 (1965).

### D. METHOD

Given:

$$F_i = F_i \quad (\bar{x}_i, \bar{y}_i, a, b, c) = 0$$

a, b and c are the least squares estimate of these parameters.

$$F_{i}^{o} = F_{i}^{o} (x_{i}, y_{i}, a^{o}, b^{o}, c^{o})$$

x<sub>i</sub>, y<sub>i</sub>, are the observed variables;

a<sup>0</sup>, b<sup>0</sup>, c<sup>0</sup> are the estimated parameters.

If

$$A = a^{\circ} - a$$

$$B = b^{\circ} - b$$

$$C = c^{\circ} - c$$

then A, B and C can be found by solving the symmetric matrix:

$$\sum_{\mathbf{L_i}}^{\mathbf{Fa_i}\mathbf{Fa_i}} \Lambda + \sum_{\mathbf{L_i}}^{\mathbf{Fa_i}\mathbf{Fb_i}} \mathbf{B} + \sum_{\mathbf{L_i}}^{\mathbf{Fa_i}\mathbf{Fc_i}} \mathbf{C} = \sum_{\mathbf{L_i}}^{\mathbf{Fa_i}\mathbf{F_i}^{\circ}}$$

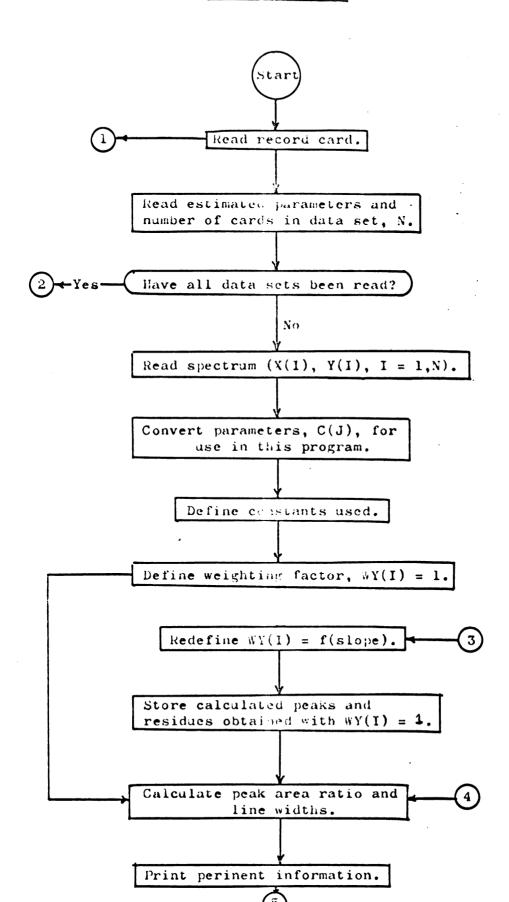
$$\sum_{\mathbf{L_i}}^{\mathbf{Fb_iFa_i}} \mathbf{A} + \sum_{\mathbf{L_i}}^{\mathbf{Fb_iFb_i}} \mathbf{B} + \sum_{\mathbf{L_i}}^{\mathbf{Fb_iFc_i}} \mathbf{C} = \sum_{\mathbf{L_i}}^{\mathbf{Fb_iFa_i}^{\circ}}$$

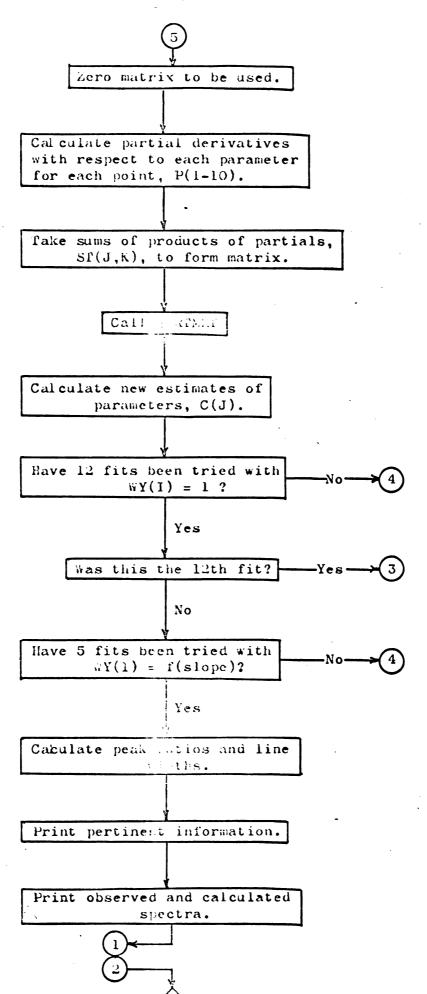
$$\sum_{\mathbf{L_{i}}}^{\mathbf{Fc_{i}Fa_{i}}} \mathbf{A} \sum_{\mathbf{L_{i}}}^{\mathbf{Fc_{i}Fo_{i}}} \mathbf{E} \sum_{\mathbf{L_{i}}}^{\mathbf{Fc_{i}Fc_{i}}} \mathbf{C} \sum_{\mathbf{L_{i}}}^{\mathbf{Fc_{i}Fc_{i}}} \mathbf{C}$$

in which

$$L_{i} = \frac{Fx_{i}^{2}}{Wx_{i}} + \frac{Fy_{i}^{2}}{Wy_{i}}$$

and


 $Wx_i$ ,  $Wy_i$  are the weighting factors of  $x_i$  and  $y_i$ ,


and

$$Fx_{i} = \frac{\int_{x_{i}}^{x_{i}} dx}{\int_{x_{i}}^{x_{i}} dx} |_{(x_{i}, y_{i}, a^{\circ}, b^{\circ}, c^{\circ}), \text{ etc.}}$$

$$Fa_{i} = \frac{\int_{a_{i}}^{x_{i}} dx}{\int_{a_{i}}^{x_{i}} dx} |_{(x_{i}, y_{i}, a^{\circ}, b^{\circ}, c^{\circ}), \text{ etc.}}$$

#### Program GEN LS





```
PROGRAM GEN L S
  DIMENSION X(100) + Y(100) + C(10) + RECORD(10) + S(10) + P(10) + SB(10) +
                                                       Y1(100)+Y4(100)+
            ST(10+10)+
                                       WY(100).
 1
             YD(100) • YC(100) • Y1C(100) • Y11(100) • Y14(100) • Y1D(100)
 2
1 FORMAT (8E5.0.15)
2 FORMAT (2E10.0)
3 FORMAT (
              12F11.5)
4 FORMAT (H1+10A8)
5 FORMAT (+0
                R14/R11
                              RI J
                                         INT 4
                                                       A 4
                                                                   W 4
                              INT 1
                                           W 1
                                                     CEN 1
                                                                   AVY
                   RI 1
       CEN 4
 1
 2
      SUM SQ#/)
6 FORMAT (10A8)
                                     Y CALC
                                                            Y 1LN
                   X(1)
                            Y OBS
                                                 Y 4LN
7 FORMAT (*0
                                               Y 1
                                                          Y 4*/)
                                    Y C
                    I RES WY=1
 1 Y
          RES
9 FORMAT (7F10.5.15.4F10.5)
10 FORMAT (9E14.4)
18 CONTINUE
   READ 6. (RECORD(1). 1 = 1.10)
   READ 1.C(1).C(2).C(3).W4.W1.C(6).C(7).C(8).N
   IF (N-1)33,33,19
19 CONTINUE
   READ 2. (X(I).Y(I).I=1.N)
   W4 = W4*2.0
   W1 = W1*2.0
   SRT = 1.414214
   C(3) = C(3)/3.0
   C(4) = SRT/W4
   C(5) = SRT/W1
   C(1) = C(1)/C(4)/C(4)
   C(7) = C(7)/C(5)/C(5)
   AR = 0.0691/0.9308
   SR = 9.07477/16.53766
   5(1)=-1.5$S(2)=-0.5$S(3)=0.5$S(4) = 1.5
   PRINT 4. (RECORD(1)+1 = 1+10)
   DO 99 L = 1.2
   GO TO (34,35) L
34 CONTINUE
   NADJ = 12
   DO 20 I = 1.N
20 WY(1) = 1.0
   GO TO 39
35 CONTINUE
   NADJ = 5
   NM = N - 1
   SW = 0.0
   D0 36 I = 2 \cdot NM
   IP = I + I
   1M = 1 - 1
   WY(I) = 1.0/(ABSF(Y(IP) -Y(IM)) + 1.0)
36 SW = SW + WY(I)
```

```
D0 37 1 = 2.0M
37 WY(1) =WY(1) *NM/SW
   WY(1) = 1.0
   WY(N) = 1.0
   D0 38 I = 1.N
   Y1C(I) = YC(I)
   Y11(1) = Y1(1)
   Y14(1) = Y4(1)
38 \text{ YID}(1) = \text{YD}(1)
39 CONTINUE
   PRINT 5
   SQ = 0.0
   DO 99 NTIMES = 1.NADJ
   W4 = SRT/C(4)
   W1 = SRT/C(5)
   R14 = 4.0*(1.0+AR)*C(1)/C(4)
   RI1 = C(7)/C(5)
    RAT = R11 / R14
   PRINT 3+RAT+R14+C(1)+C(3)+W4+C(2)+R11+C(7)+W1+C(6)+C(8)+SQ
   D0 22 J = 1.9
   DO 22 K = J.9
22 ST(J \cdot K) = 0 \cdot 0
   SQ = 0.0
   D0 \ 26 \ I = 1.N
   D0 23 J = 1.10
23 P(J) = 0.0
   DO 24 M = 1.4
   RK = X(1) + S(M) * C(3) - C(2)
   RI = X(I) + S(M)*C(3)*SR - C(2)
   PK = C(1)*C(4)*C(4)*RK*EXPF(-(C(4)*RK)**2)
   PI = C(1) \# C(4) \# C(4) \# RI \# EXPF(-(C(4) \# RI) \# \# 2) \# AR
   P(1) = P(1) + (PK + PI)/C(1)
   PC = -PK/RK-P1/R1+PK*C(4)*C(4)*2.0*RK + P1*C(4)*C(4)*2.0*R1
   P(2) = P(2) + PC
   P(3) = P(3)+S(M)*(PK/RK+PI*SR/RI-PK*C(4)*C(4)*2**RK-PI*SR*C(4)
          *C(4)*2.*RI)
   P(4) = P(4) + (PK +PI)*2.0/C(4) -PK*RK*RK*2.0*C(4)-PI*RI*RI*2*C(4)
   P(9) = P(9) + PK + PI
   P(10) = P(10) - PC
24 CONTINUE
   RS = X(1) - C(6)
   PS = C(7)*C(5)*C(5)*RS*FXPF(-(C(5)*RS)**2)
   P(5) = PS*2.0/C(5) = PS*RS*RS*C(5)*2.0
   P(6) = -PS/RS + PS*C(5)*C(5)*RS*2.0
   P(7) = PS/C(7)
   P(8) = 1.0
   Y4(1) = P(9)
   P(9) = P(9) + PS + C(8) - Y(1)
   P(10) = (P(10) - P(6)) **2 + 1.0/WY(1)
   YC(1) = P(9) + Y(1)
   Y1(1) = PS
   YD(1) = P(9)
   SQ = SQ + P(9) *P(9)
```

```
D0 25 J = 1.9
   DO 25 K = J.9
25 ST(J+K) # ST(J+K) + P(J)*P(K)/P(10)
26 CONTINUE
   NX = 8
   DO 98 J = 1.NX
   SB(J) = ST(J \cdot 9)
98 CONTINUE
   CALL SQRTMET(ST+SB+NX)
   D0 31 J = 1.0X
31 C(J) = C(J) - SB(J)
99 CONTINUE
   W4 = SRT/C(4)
   W1 = SRT/C(5)
   R14 = 4.0*(1.0+AR)*C(1)/C(4)
   R11 = C(7)/C(5)
    RAT = RI1 / RI4
   PRINT 3.RAT.R14.C(1).C(3).W4.C(2).R11.C(7).W1.C(6).C(8).SQ
   PRINT 4. (RECORD(1).1 = 1.10)
   PRINT 7
   D0 32 I = 1.N
32 PRINT 9. X(I).Y(I).YC(I).Y4(I).Y1(I).WY(I).YD(I).I.Y1D(I).Y1C(+).
            Y11(1)+Y14(1)
   GO TO 18
33 CONTINUE
   END
   TWO BLANK CARDS SHOULD BE AT END OF DATA DECK
```

C

## AFPAIDIX C

## 2. SQUARE-ROOT NETHOD

## A. IDENTIFICATION

Title:

Square-Root Method

Category:

Symmetric Linear Systems Solving

Programmer:

Dr. R. H. Schwendenan, Department of Chemistry,

Michigan State University

Date:

January 1, 1965

## B. PURPOSE

Given: AX = B in which A is a symmetric matrix and X and E are column matrices, find the values of X.

## C. USAGE

1. Calling sequence:

CALL SQRIMET (P, W, N)

2. Arguments:

P is the array name of the symmetric matrix.

W is the array name of the column matrix read in and the solutions to the linear system after execution.

N is the order of the matrix.

- 3. Print-Outs: None.
- 4. Timing: Fast.
- 5. Accuracy: Single precision, to accuracy of input values.
- 6. Reference: V. N. Faddeeva, <u>Computational Methods of Lineal Algebra</u>,

  Translator C. D. Benster, Dover Publications Inc., New York.

## D. HETHOD

The symmetric matrix, A, is resolved into the product of a triangular matrix and its transpose

then

$$S'K = B$$

$$SX = K$$

This subroutine calculates the triangular matrix  $S_{\bullet}$ . From the triangular matrix it is a simple matter to calculate K and from K to calculate  $X_{\bullet}$ 

```
SUBROUTINE SQRTMET (P.W.N)
   DIMENSION P(10+10) . W(10)
   NN=N+1
   NM=N-1
10 DO 50 I=1+N
   P(I \cdot NN) = W(I)
   JM=1-1
   SUM=P(1+1)
   DO 20 J=1.JM
20 SUM=SUM-W(J)*P(J,1)**2
   W(1)=SUM/ABSF(SUM)
         =SQRTF(ABSF(SUM))
   SUM
   P(1+1)=SUM
   JP=1+1
   DO 40 J=JP.NN
   TUM=P([.J)
   DO 30 K=1+JM
30 TUM=TUM-P(K+1)*P(K+J)*W(K)
40 P(1.J)=TUM/SUM
50 CONTINUE
   W(N) = W(N) *P(N NN) /P(N N)
   DO 70 1=1.NM
   SUM=P(N-I+NN)
   JP=N-1+1
   DO 60 J=JP.N
60 SUM=SUM-P(N-I.J)*W(J)
70 W(N-1)=W(N-1)*SUM/P(N-1+N-1)
```

END

## APPLIDIX D

## 1. LENEMEDTH ANALYSIS

## A. IDENTIFICATION

Title: Polynomial Linewidth Fit

Category: Curve Fitting

Programmen: Jay D. Rynbrandt

Date: July 2), 1966

## B. PURPOSA

Given the heights of a series of ESR hyperfine lines, obtain the linewidths and from them, the polynomial describing their dependency on the nuclear spin quantum number  $m_{\rm T} {\circ}$ 

## C. USAGE

l. Calling sequence:

Hain program.

## 2. Arguments:

S is the array name of the nuclear spins.

W is the array name of the linewidths.

WC is the array name of the linewidths calculated from the coefficients of the least squares polynomial.

B is the array name of the coefficients.

SB is the array representing the estimated errors in B.

TT is the array name of the temperatures of all the samples.

C is the array name of the coefficients calculated for all samples.

EC is the array name of the estimated errors in C for all samples.

TR is the array name of 1 / Kelvin temperature.

H is the array name of the heights.

RE is the array name of the spectra identifications.

WS is the width of the standard line.

IS is the number of the standard line.

H is the number of data sets for a particular spectrum.

- 3. Output-Input Formats: See listing.
- 4. Timing: 1 minute for 140 spectra.
- 5. References: Jay D. Rymbrandt, LS Thesis, Michigan State
  University, (1966). Los Alamos Subroutine Description M-050.

## D. HUTHOD

The heights, H(I), of the various hyperfine lines are read-in, along with the linewidths of a standard line, WS, which has been accurately determined. The linewidth of all of the lines are then determined from the expression

$$W(I) = WS (H(IS) / H(I))^{\frac{1}{2}}$$

in which IS represents the number of the standard line. The polynomial describing the linewidth as a function of  $m_{\rm I}$  is then calculated in subroutine LSQPOL.

```
PROGRAM POLY LW
   DIMENSION S(100) + W(100) + WC(100) + SB(10) + B(10) + TT(200) + C(5+200) +
              EC(5,200),TR(200),H(100),RE(200)
  1
  1 FORMAT (A8.2X.2E10.2.215)
  2 FORMAT (8E 5.2)
  3 FORMAT (1H1+30X+* DATA OF SPECTRUM NO. *A8* L =*I3)
  4 FORMAT (//* DEG CENT **F9.4.5X.**STANDARD L W
  5 FORMAT (*OSPINS
                      *8F10.3)
  6 FORMAT (* HEIGHTS *8F10.3)
  7 FORMAT (* WIDTHS *8F10.3)
  8 FORMAT (*1 L T
                          1/K
                                    C 1
                                                 E 1
                                                              C 2
                  C 3
                               E 3
                                            C 4
                                                                      C 5
  1 E 2
                                                         E 4
  2
            E 5*/)
 9 FORMAT (14.F4.0.F9.6.2X.4(E12.4.E11.3).2X.A8)
 10 FORMAT ( * DEG KELV =*F9.4.5X. *NO OF STD L W
                                                        = + [4)
 11 FORMAT (
              * 1/D KELV **F9.6.5X. *NO OF DATA PTS
                                                              C 2
 12 FORMAT (*O L T
                          1/K
                                    CI
                                                 E 1
                  С 3
                                                                      C 5
   1 E 2
                                                         E 4
   2
            E 5*/)
 13 FORMAT (15.F5.0.4E14.7.2X.A8)
    L = 0
100 READ 1.REC.WS.T.IS.M
    IF(M)120+120+110
110 READ 2. (H(I) \cdot I = 1 \cdot M)
    L = L+1
    SH = 4.5
    DO 20 I = 1.M
    SH = SH - 1.
 20 S(1) = SH
    00.19 I = 1.M
    IF (H(1)) 17+17+19
 17 M = M-1
    IF (IS-1)15+15+16
 16 \text{ IS} = \text{IS}-1
 15 CONTINUE
    DO 18 II = I+M
    IP = II+1
    H(II) = H(IP)
 18 S(11) = S(1P)
    1 = 1 - 1
 19 CONTINUE
```

```
D0 21 I = 1.M
21 W(I)= WS*SQRTF(H(IS)/H(I))
    PRINT 3.REC.L
    DK = 273.15+T
    RK = 1.0/DK
    PRINT 4.T .WS
    PRINT 10.DK.IS
    PRINT 11.RK.M
    PRINT 5 \cdot (S(I) \cdot I = 1 \cdot M)
    PRINT 6 \cdot (H(1) \cdot I = 1 \cdot M)
    PRINT 7 \cdot (W(I) \cdot I = 1 \cdot M)
    KM = 4
    CALL LSQPOL (M.KM.S.W.WC.B.SB.SIG)
    PUNCH 13.L.T.B(1).B(2).B(3).B(4).REC
    DO 22 LP = 1.KM
    C(LP+L) = B(LP)
 22 EC(LP+L) = SB(LP)
    TT(L) = T
    TR(L) = RK
    RE(L) = REC
    PRINT 12
    PRINT 9. L *TT(L )*TR(L )*(C(LP*L )*EC(LP*L )*LP=1*KM)*RE(L)
    GO TO 100
120 CONTINUE
    PRINT 8
    PRINT 9. (LS.TT(LS).TR(LS).(C(LP.LS).EC(LP.LS).LP=1.KM).RE(LS).
   1
              LS = 1.L)
    END
```

## APPLIDIX D

## 2. LAIST SQUARES POLITICITAL FITTING

## A. IDMNTIFICATION

Title: Least Squares Tolynomial Phiting

Co-op Ident. E2 UCSD LEQFOL

Carve Fitting

Programer: T. L. Jordan and R. E. Vogel, Los Alamos

Scientific Laboratory, New Mexico.

Modified and tested on the CDC 1604 by

George A. Baker, Jr. and E. Clark.

Date: September 19, 1961

## B. PURPOSE

Given X:  $(X_1, X_2, \dots X_m)$  and Y:  $(Y_1, Y_2, \dots Y_m)$  where Y is the observed dependent variable and X is the observed independent variable, the polynomial

 $Y = B_1 + B_2 X + \cdots B_{km+1} X^{km}$  is fitted to all degrees KN KNI max.

## C. USAGE

 $K_{i}$ 

1. Jalling Sequence:

CALL ISUPOL ( M, KA, X, Y, YOAL, DELY, B, SD, SIGNA )

2. Arguments:

M is the number of data points, H 100.

KH is the maximum degree of fit, KA. 10.

X is the array name of observed independent variables.

Y is the array name of observed dependent variables.

YCAL is the output array name of the estimated dependent variable.

DILY is the output array name for the difference between Y and YCAL.

B is the output array name for the coefficients of the powers of X.

EB is the output array name of the estimates of the errors in B.

SIGNA is the standard deviation corrected for the order of fit used.

- 3. Output Formats: Sec listing.
- 4. Timing: Roughly 0.2 sec. per degree of fit for 30 data points.
- 5. Accuracy: Floating point, single precision.
- 6. References: Los Alamos Subroutine Description M-050.

## D. HETHOD

YGAL =  $B_1$  +  $B_2X$  + ...  $B_{km+1}$   $X^{km}$  is obtained by collecting the powers of X in a set of orthogonal polynomials which are generated by this subroutine.

SIGNA = 
$$\frac{\sum^{M} (YCAL_{i} - Y_{i})^{2}}{H - (M + 1)}$$

```
SUBROUTINE LSQPOL(M.KM.X.Y.YCAL.B.SB.SIGMA)
   DIMENSION S(10) • X(100) • Y(100) • ST(10) • SB(10) • P(100) • B(10) •
  1DELY(100) • A(10 • 10) • T(10) • YCAL(100) • PM(100)
   A(1.1)=1.0
   A(2.2)=1.0
   YBAR=0.0
   XBAR=0.0
   DO 10 I=1 .M
   PM(1)=1.0
   YBAR=YBAR+Y(1)
10 XBAR=XBAR+X(I)
   XBAR=XBAR/M
   T(1)=YBAR/M
   A(2+1)=-XBAR
   PXF=0.0
   PXP=0.0
   DO 20 1=1.M
   P(1) #X(1) -XBAR
   PXF=PXF+P([)*Y([)
20 PXP=PXP+P(1)*P(1)
   T(2)=PXF/PXP
   PMXPM=M
   S(1)=PMXPM
   B(1)=T(1) *A(1+1)+T(2) *A(2+1)
   B(2)=T(2)*A(2.2)
60 DO 190 K=2.KM
   L=K-1
   IF(K-2)190,165,65
65 XPXP=0.0
   XPXPM=0.0
   B(K)=0.0
   DO 70 J=1.M
   XP=X(J)*P(J)
   (U) 9*9X+4X9Xe(J)
70 XPXPM=XPXPM+XP*PM(J)
   ALPHA=XPXP/PXP
   BETA=XPXPM/PMXPM
   PPXF=0.0
   PPXPP=0.0
   DO 90 I=1+M
80 PT=P(1)
81 P(1)=X(1)*PT-ALPHA*PT-BETA*PM(1)
82 PPXF=PPXF+P(I)*Y(I)
83 PPXPP=PPXPP+P(1)*P(1)
90 PM(1)=PT
```

```
T(K)=PPXF/PPXPP
    PMXPM=PXP
    PXP=PPXPP
    A(K+1)=-ALPHA*A(K-1+1)-BETA*A(K-2+1)
    A(K_{\bullet}K-1)=A(K-1_{\bullet}K-2)-A(K-1_{\bullet}K-1)*ALPHA
    A(K+K)=1.0
    IF(K-3)150 • 150 • 110
110 K1=K-2
    DO 120 1=2.K1
120 A(K+1)=A(K-1+1-1)-ALPHA+A(K-1+1)-BETA+A(K-2+1)
150 DO 160 I=1.K
160 B(1)=B(1)+T(K)*A(K+1)
165 SIG2=0.0
    DO 180 I=1.M
    YCAL(1)=B(K)
    KK=K-1
    DO 40 J=1 KK
    IK=K-J
 40 YCAL(1)=X(1)*YCAL(1)+B(1K)
175 DELY(1)=YCAL(1)-Y(1)
180 SIG2=SIG2+DELY(I) *DELY(I)
    AMK=M-K
    IF(AMK)181.181.182
181 AMK=1.0
182 SIGMA=SQRTF(SIG2/AMK)
    S(K) = PXP
    DO 499 I=1.K
499 ST(1) = SIGMA/SQRTF(S(1))
    DO 501 I=1.K
    SB(1)=0.0
    DO 500 J=1.K
500 SB([)=SB([)+(A(J+1)*ST(J))**2
501 SB(I) #SQRTF(SB(I))
    KJ = K
190 CONTINUE
    WRITE OUTPUT TAPE 61.300.L
    DO 183 I=1.KJ
183 WRITE OUTPUT TAPE 61.304.1.8(1).SB(1)
195 WRITE OUTPUT TAPE 61+301+SIGMA
670 WRITE OUTPUT TAPE 61+302+(1+X(1)+Y(1)+YCAL(1)+DFLY(1)+1=1+M)
300 FORMAT(51H0COEFFICIENTS OF Y=B1+B2*X+ETC AND ERRORS FOR ORDER+13+/
   1)
301 FORMAT(8HOSIGMA =E16.8)
302 FORMAT(4H0 19X+4HX(1)14X+4HY(1)13X+7HYCAL(1)11X+7HDELY(1)//(14+
   14E18.8))
304 FORMAT(3X+2HB(12+2H)=E15+8+5X+5HERRB=E10+3)
    RETURN
    END
```

#### APPHIDIX E

## SECOND URDER CORRECTION (SEC OC)

## A. IDELTIFICATION

Title: Second Order Correction

Category: Iterative Data Treatment

Programmer: Jay D. Rynbrandt

Date: January 1, 1966

## B. PURPOSE

Given the chart position of ESR hyperfine absorption peaks, the nuclear spin quantum number of these peaks and the chart position of two frequency markers, calculate the field positions of the peaks, make second order corrections and calculate the g value.

#### C. USAGE

1. Calling Sequence:

Hain program with no subroutines.

## 2. Arguments:

HA is the array name for the observed magnetic field positions.

3 is the array name of the nuclear spin quantum number.

XM is the array name of the chart positions of the peaks,

HO is the array name of the field position calculated in the

absence of interaction with nuclear moments.

HOB is the average value of HO.

SHO is the sum of HO.

FL, FH are the low and high field frequency markers.

FK is the klystron frequency.

XL, XH are the low and high field chart positions of the frequency markers.

SI is the nuclear spin.

SPECHO identifies the spectrum.

SL, C are the slope and intercept of the magnetic field as a function of chart position.

I is the number of peaks in a specific spectrum.

A is the hyperfine splitting.

Al, A2, A3 are the hyperfine splitting calculated between different pairs of ESR lines.

G is the g value.

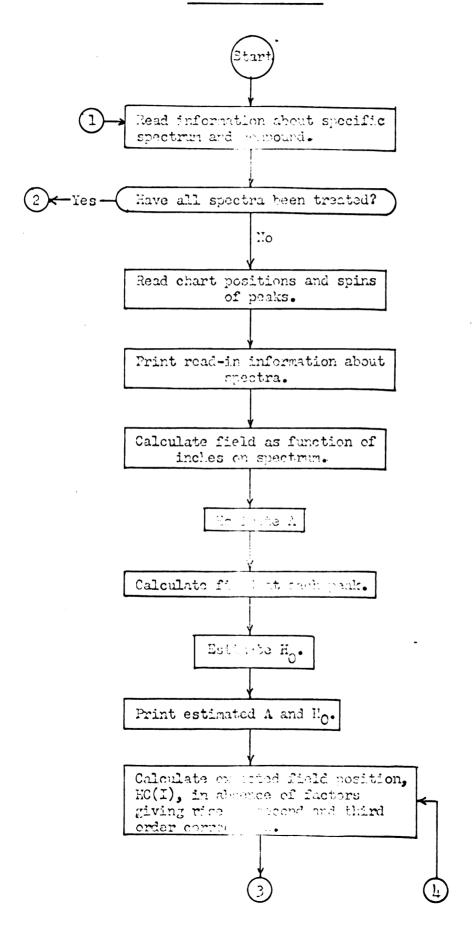
- 3. Output and Input Formats: See listing.
- 4. Timing: 0.3 sec per spectra.
- 5. Accuracy: Consistent results after three iterations.
- 6. References: M. A. Kuska, Ph. D. dissertation, Michigan State University (1965), Jay D. Rynbrandt, AS dissertation, Lichigan State University (1966).

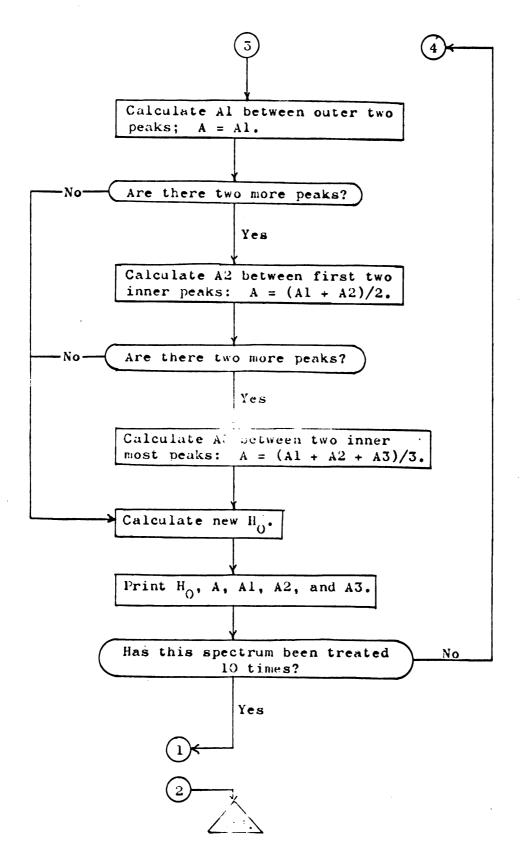
## D. LETHOD

The magnetic field, HO (I), at which an electronic transition would occur in the absence of interaction with atomic nuclei is

$$HO(I) = HM(I) + A \cdot S(I) + A^{2} / (2 \cdot HM(I)) \cdot$$

$$(SI(SI + 1) - S(I)^{2}) + A^{3} / h \cdot HM(I)^{2}$$


in which the terms have been previously described. This program calculates the quantity  $HO(I) - A \cdot S(I)$  by subtracting the


second and third order contributions from the observed field position. This calculation for various values of S(I) can be used to evaluate HO(I) and A. The process is repeated until constant values are obtained. The center of the spectrum,  $H_{\rm O}$ , is taken as the average of values calculated for each peak using Equation (13). Finally the givalue is calculated from the expression

g = h•FK / / •HOB

where h is Flanck's constant, FK is the klystron frequency and \$\beta\$ the electronic Bohr magneton.

## Program SDC OC





```
PROGRAM SEC 0 C
  DIMENSION HM(20) + S(20) + HC(20) + XM(20) + HO(20)
1 FORMAT (* G VALUE =*F11.6)
2 FORMAT (6E10.1.110.A8)
3 FORMAT (2E10.1)
4 FORMAT(/+O
                  HO
                                               A1
                                                              A2
                                 A
 1
         A3#/)
5 FORMAT (5F14.7)
6 FORMAT (/*0 SPIN
                        X VAL
                                   H OBS
                                                H CALC*/)
7 FORMAT (2F9.2.2F14.6)
8 FORMAT (*1
                                DATA OF SPECTRUM NO. *+A8)
9 FORMAT (*0SLOPE **F11.5/* INTERCEPT * *F10.3)
50 FORMAT (3F12.4.3F9.3.16)
51 FORMAT(/*O
               FREQ H
                           FREQ L FREQ K X VAL L X VAL H
         PEAKS*/)
  1 SPIN
22 CONTINUE
  READ 2.FL.FH.FK.XL.XH.SI. N.SPECNO
   IF (FL) 20,20,21
21 CONTINUE
  READ 3. (XM(I).S(I).I = 1.N)
  PRINT B. SPECNO
  PRINT 51
  PRINT 50 .FL .FH .FK .XL .XH .SI . N
  PRINT 4
  A1=0.0 $ A2=0.0 $ A3=0.0
  BL = 2.3486855#FL
  BH = 2.3486855#FH
  SL = (BH-BL)/(XH-XL)
  C = BH -SL*XH
   A = SL*(XM(N)-XM(1))/(S(1)-S(N))
   A = ABSF(A)
   SHO = 0.0
  D0 10 1 = 1 \cdot N
  HM(I) = SL + XM(I) + C
  HO(I) = HM(I) + S(I)*A
  SHO = SHO + HO(1)
10 CONTINUE
  HOB = SHO / N
   A1 = A
```

PRINT 5. HOB. A. A1. A2. A3

```
DO 19 KB = 1 \cdot 10
     DO 12 I = 1.N
     HC(1) = HM(1) + A##2/(2.0#HM(1))#(SI#(SI+1.0)-S(1)##2) + A##3/(4#
              HM(1) ##2)
  12 CONTINUE
      A1 = (HC(N) - HC(1))/(S(1) - S(N))
      A1 = ABSF(A1)
      A = A1
      IF (N.GT.3) 13.15
  13 CONTINUE
      J = N - 1
      A2 = (HC(J) - HC(2))/(S(2) - S(J))
     A2 = ABSF(A2)
      A = (A1 + A2)/2 \cdot 0
      IF (N.GT.5) 14.15
  14 CONTINUE
      J = N - 2
      A3 = (HC(J) - HC(3))/(S(3) - S(J))
      A3 = ABSF(A3)
      A = (A1 + A2 + A3)/3.0
  15 CONTINUE
     SHO = 0.0
     DO 11 I = 1 \cdot N
     HO(1) = HM(1) + (A*S(1) + A**2/(2.0*HM(1))*(SI*(SI+1.0) -S(1)**2)
              + A**3/( 4.0*HM(1)**2))
     SHO = SHO + HO(I)
  11 CONTINUE
     HOB= SHO / N
     PRINT 5. HOB. A. A1. A2. A3
  19 CONTINUE
     PRINT 6
     DO 17 I = 1.N
     PRINT 7. S(1). XM(1). HM(1). HC(1)
  17 CONTINUE
     G = 0.714489 * FK/HOB
     PRINT 9. SL.C
     PRINT 1. G
     GO TO 22
  20 CONTINUE
     END
1RUN . 1 . 2000 . . M
```

## APPLIDIK F

## LEAST SQUARUS SPECTRA STITTHESIZING (M EGR)

## A. IDLATIFICATION

Title:

Least Squares Spectra Synthesizing

Jategory:

Curve Fitting

Programmer: Jay D. Rymbrandt

Date:

August 1, 1965

## B. PURPOSE

Adjust a set of parameters to synthesizing ESR spectra.

(Note: Program IR FIT uses this same method and is more general.

This listing is presented for the sake of completeness.)

```
PROGRAM K ESR
C
  SAMPLE 5
             TEMP. -41 SPLIT 4.82 LINE WD .603 CEN 9.75 CARDS 39
      COMMON X.Y.JA.KA.A.B.T.AR.TR.AVX.AVY.AVXR.C.H.TRYS.P.PI.PIS.
     1 C2.C3.C4.C5.SW.TRIALS.TI.JB.CT.CB.CX.DT.DX
      DIMENSION X(9+100)+Y(7+100)
    1 FORMAT (2(F10.0))
      READ 1. (X(1.1). Y(1.1). I = JA.KA)
      C = 1.0
      B = 4.71
      WL = 0.43
      AVX = 9.73
      AVXR = 9.8
      JA = 1
      KA = 39
      SUM Y = 0.0
      XJ = JA
      XK = KA
      TI = XK - XJ + 1.0
      DO 30 1 = JA+KA
      SUM Y = SUM Y + Y(1+1)
      Y(3.1) = 0.0
   30 CONTINUE
      AVY = SUM Y/ TI
      A = C
      AR = C
      AVXR = AVX
      C2 = -1.0/2.0
      C3 = -1.0/6.0
      C4 = + 1.0/6.0
      C5 = + 1.0/2.0
      T = 1.00 / (1.414214 + WL)
      TR = 0.39
      PI = 3.1415926536
      PIS = (2.0*PI)**2
      JB = 4
      TRYS = 20.0
      CB =-10.0
      CT = 10.0
```

CALL SEP4

CALL WDTH4

CB = 1.0

CT = 1.0

CX = 1.0

CALL SEP4

CALL WDTH4

CALL CEN4

DT = 10.0

CALL WOTHEX

DT = 1.0

CALL WOTHEX

DX = 1.0

CALL CENEX

CB = 2.0

CT = 2.0

CALL SEP4

CALL WDTH4

CALL CEN4

DT = 2.0

DO 7 LA = 1.6

CALL WOTHEX

CALL SEP4

CALL WDTH4

CALL WOTHEX

CALL SEP4

CALL WDTH4

CALL WOTHEX

CALL CENEX

CALL SEP4

CALL WDTH4

CALL CEN4

7 CONTINUE

CALL WOTHEX

CALL CENEX

CALL SEP4

CALL WOTH4

CALL CEN4

CALL PRINT4

CALL WOTHEX

CALL CENEX

CALL PRINT1

END

```
SUBROUTINE WOTH4
   COMMON X.Y.JA.KA.A.B.T.AR.TR.AVX.AVY.AVXR.C.H.TRYS.P.PI.PIS.
  1 C2.C3.C4.C5.SW.TRIALS.TI.JB.CT.CB.CX.DT.DX
   DIMENSION X(9,100), Y(7,100)
 5 FORMAT ( 9(F11.5))
 6 FORMAT (////*
                         T
                                                 ST
                                                               В
                                                                          WL
                      TRIALS
                                    TRYS
                                                  C */)
  1
            RI
   PRINT 6
   TRIALS = 0.0
   DO 14 I = JA+KA
   X(2 \cdot 1) = AVX + B*C2 - X(1 \cdot 1)
   X(3.1) = AVX + B*C3 - X(1.1)
   X(4 \cdot 1) = AVX + B*C4 - X(1 \cdot 1)
   X(5.1) = AVX + B*C5 - X(1.1)
   X(6 \cdot I) = AVX + BI * C2 - X(1 \cdot I)
   X(7 \cdot 1) = AVX + BI * C3 - X(1 \cdot 1)
   X(8 \cdot 1) = AVX + BI * C4 - X(1 \cdot 1)
   X(9 \cdot 1) = AVX + BI + C5 - X(1 \cdot 1)
14 CONTINUE
   DO 25 NT = 1+2
26 CONTINUE
   STO = ST
   AB = A
   A = C
   BI = B * (9.07477 / 16.53766)
   H = A * (0.0691 / 0.9308)
   SA = 0.0
   V = C
   DO 31 I = JA+KA
   Y2 = -A*X(2*I)*EXPF(-(T*X(2*I))**2)
   Y3 = -A*X(3+1)*EXPF(-(T*X(3+1))**2)
   Y4 = -A*X(4*I)*EXPF(-(T*X(4*I))**2)
   Y5 = -A*X(5,1)*EXPF(-(T*X(5,1))**2)
   Y6 = -H*X(6,1)*EXPF(-(T*X(6,1))**2)
   Y7 = -H*X(7,1)*EXPF(-(T*X(7,1))**2)
   Y8 = -H*X(8.1)*EXPF(-(T*X(8.1))**2)
   Y9 = -H*X(9,I)*EXPF(-(T*X(9,I))**2)
   Y(4,1) = Y2+Y3+Y4+Y5+Y6+Y7+Y8+Y9
   Y(7 \cdot 1) = Y(1 \cdot 1) - Y(4 \cdot 1) - AVY - Y(3 \cdot 1)
   SQ = Y(7 \cdot 1) **2
   SA = SA + SQ
31 CONTINUE
```

```
DO 18 MD = 1.JB
27 CONTINUE
   SAO = SA
   SA = 0.0
   AA = A + V
   AC = AA/A
   A = AA
   DO 13 1 = JA+KA
   Y(4 \cdot 1) = Y(4 \cdot 1) *AC
   Y(2 \cdot 1) = Y(1 \cdot 1) - Y(4 \cdot 1) - AVY
   Y(7 \cdot 1) = Y(1 \cdot 1) - Y(4 \cdot 1) - AVY - Y(3 \cdot 1)
   SQ = Y(7 \cdot 1) **2
   SA = SA + SQ
13 CONTINUE
   IF (SA - SAO ) 27.34.34
34 CONTINUE
   V =-V*0.1
18 CONTINUE
   ST = SAO
   TRIALS = TRIALS + 1.0
   IF (TRIALS - TRYS) 2.2.3
 2 CONTINUE
   RI = (A#4.0#1.7724539) # (1.0 + 0.0691/0.9308) / (2.0#T##3)
   WL = 1.00 / (1.414214*T)
   PRINT 5. T. A. ST . B. WL. RI. TRIALS, TRYS, CT
   IF (ST - STO ) 23,24,24
23 CONTINUE
   T = T + CT*0.01
   GO TO 26
24 CONTINUE
   CT = -CT
   T = T + CT*0.01
25 CONTINUE
   A = AB + V*10.0
 3 CONTINUE
   CT = TRIALS * CT/ 10.0
   PRINT 5. T. A. ST. B. WL. RI. TRIALS. TRYS. CT
   RETURN
   END
```

```
SUBROUTINE SEP4
   COMMON X+Y+JA+KA+A+B+T+AR+TR+AVX+AVY+AVXR+C+H+TRYS+P+PI+PIS+
  1 C2.C3.C4.C5.SW.TRIALS.TI.JB.CT.CB.CX.DT.DX
   DIMENSION X(9,100), Y(7,100)
 5 FORMAT ( 9(F11.5))
 6 FORMAT (////*
                         B
                                      A
                                                 ST
                                                              T
                                                                          WL
            RI
                      TRIALS
                                   TRYS
                                                  C */)
  1
   PRINT 6
   TRIALS = 0.0
   DO 45 NB = 1.2
47 CONTINUE
   SB0 = SB
   AB = A
   A = C
   BI = B * (9.07477 / 16.53766)
   H = A + (0.0691 / 0.9308)
   SA = 0.0
   V = C
   DO 49 I = JA+KA
   X(2 \cdot 1) = AVX + B*C2 - X(1 \cdot 1)
   X(3.1) = AVX + B*C3 - X(1.1)
   X(4.1) = AVX + B*C4 - X(1.1)
   X(5 \cdot 1) = AVX + B*C5 - X(1 \cdot 1)
   X(6 \cdot 1) = AVX + B1 * C2 - X(1 \cdot 1)
   X(7.1) = AVX + BI*C3 - X(1.1)
   X(8 \cdot 1) = AVX + BI*C4 - X(1 \cdot 1)
   X(9 \cdot 1) = AVX + B1 * C5 - X(1 \cdot 1)
   Y2 = -A*X(2*1)*EXPF(-(T*X(2*1))**2)
   Y3 = -A*X(3+1)*EXPF(-(T*X(3+1))**2)
   Y4 = -A*X(4*1)*EXPF(-(T*X(4*1))**2)
   Y5 = -A*X(5*1)*EXPF(-(T*X(5*1))**2)
   Y6 = -H*X(6,1)*EXPF(-(T*X(6,1))**2)
   Y7 = -H*X(7,1)*EXPF(-(T*X(7,1))**2)
   Y8 = -H*X(8 \cdot 1) *EXPF(-(T*X(8 \cdot 1)) **2)
   Y9 = -H*X(9,I)*EXPF(-(T*X(9,I))**2)
   Y(4.1) = Y2+Y3+Y4+Y5+Y6+Y7+Y8+Y9
   Y(7 \cdot 1) = Y(1 \cdot 1) - Y(4 \cdot 1) - AVY - Y(3 \cdot 1)
   SQ = Y(7 \cdot 1) **2
   SA = SA + SQ
49 CONTINUE
```

. • • • • • .

```
DO 48 MD = 1.JB
29 CONTINUE
   SAO = SA
   SA = 0.0
   AA = A + V
   AC = AA/A
   A = AA
   DO 57 I = JA+KA
   Y(4 \cdot 1) = Y(4 \cdot 1) *AC
   Y(2+1) = Y(1+1) - Y(4+1) - AVY
   Y(7 \cdot 1) = Y(1 \cdot 1) - Y(4 \cdot 1) - AVY - Y(3 \cdot 1)
   SQ = Y(7 \cdot 1) **2
   SA = SA + SQ
57 CONTINUE
   IF (SA - SAO ) 29.58.58
58 CONTINUE
   V =-V*0.1
48 CONTINUE
   SB = SAO
   TRIALS = TRIALS + 1.0
   IF (TRIALS - TRYS) 2.2.3
 2 CONTINUE
   RI = (A#4.0#1.7724539) # (1.0 + 0.0691/0.9308) / (2.0#T##3)
   WL = 1.0 / (1.414214*T)
   PRINT 5. B. A. SB . T. WL. RI. TRIALS. TRYS. CB
   1F (SB - SBO ) 43,44,44
43 CONTINUE
   B = B + CB*0.01
   GO TO 47
44 CONTINUE
   CB = -CB
   B = B + CB * 0 * 01
45 CONTINUE
   A = AB + V*10.0
 3 CONTINUE
   CB = TRIALS * CB/ 10.0
   PRINT 5. B. A. SB. T. WL. RI. TRIALS. TRYS. CB
   RETURN
   END
```

```
SUBROUTINE CEN4
   COMMON X.Y.JA.KA.A.B.T.AR.TR.AVX.AVY.AVXR.C.H.TRYS.P.PI.PIS.
  1 C2.C3.C4.C5.SW.TRIALS.TI.JB.CT.CB.CX.DT.DX
   DIMENSION X(9+100)+Y(7+100)
 4 FORMAT (\pm0AVY \pm \pmF9.6)
 5 FORMAT (10(F11.5))
 7 FORMAT(////*
                       ΔVX
                                                                          SX
                                                  В
                                      TRYS
                                                                C*/)
                         RI
                                                 TRIALS
  1
   PRINT 7
   TRIALS = 0.0
   BI = B * (9.07477 / 16.53766)
   H = A + (0.0691 / 0.9308)
   D0.55 NX = 1.2
66 CONTINUE
   SX0 = SX
   SUMDY = 0.0
   SW = 0.0
   SX = 0.0
   DO 51 I = JA+KA
   X(2 \cdot 1) = AVX + B*C2 - X(1 \cdot 1)
   X(3+1) = AVX + B*C3 - X(1+1)
   X(4 \cdot 1) = AVX + B*C4 - X(1 \cdot 1)
   X(5 \cdot 1) = AVX + B*C5 - X(1 \cdot 1)
   X(6+1) = AVX +B1*C2 - X(1+1)
   X(7 \cdot 1) = AVX + BI * C3 - X(1 \cdot 1)
   X(8 \bullet 1) = AVX + B1 * C4 - X(1 \bullet 1)
   X(9.1) = AVX + B1 * C5 - X(1.1)
   Y2 = -A*X(2*I)*EXPF(-(T*X(2*I))**2)
   Y3 = -A*X(3.1)*EXPF(-(T*X(3.1))**2)
   Y4 = -A*X(4*I)*EXPF(-(T*X(4*I))**2)
   Y5 = -A*X(5*1)*EXPF(-(T*X(5*1))**2)
   Y6 = -H*X(6,I)*EXPF(-(T*X(6,I))**2)
   Y7 = -H*X(7.1)*EXPF(-(T*X(7.1))**2)
   Y8 = -H*X(8*I)*EXPF(-(T*X(8*I))**2)
   Y9 = -H*X(9,1)*EXPF(-(T*X(9,1))**2)
   Y(4 \cdot 1) = Y2+Y3+Y4+Y5+Y6+Y7+Y8+Y9
   Y(2 + 1) = Y(1 + 1) - Y(4 + 1) - AVY
   Y(7+1) = Y(1+1) - Y(4+1) - AVY - Y(3+1)
   SQ = Y(7 \cdot 1) **2
   SUMDY = SUMDY + Y(7 \cdot I)
   Y(5+1) = Y(4+1) + AVY
   Y(2 \cdot 1) = Y(1 \cdot 1) - Y(5 \cdot 1)
   SQW = Y(2+1)**2
   SX = SX + SQ
   SW = SW + SQW
51 CONTINUE
   AVY = AVY + SUMDY/TI
```

```
RI = (A#4.0*1.7724539) * (1.0 + 0.0691/0.9308) / (2.0*T**3)
   WL = 1.0 / (1.414214 + T)
   PRINT 5. AVX. T. B. A. SX. WL. RI. TRYS. TRIALS. CX
   TRIALS = TRIALS + 1.0
   IF (TRIALS - TRYS) 2+2+3
 2 CONTINUE
   IF (SX - SXO) 53.54.54
53 CONTINUE
   AVX = AVX + CX*0.001
   GO TO 66
54 CONTINUE
   CX = -CX
   AVX = AVX + CX*0.001
55 CONTINUE
 3 CONTINUE
   CX = TRIALS * CX/ 10.0
   PRINT 5. AVX. T. B. A. SXO. WL. RI. TRYS. TRIALS. CX
   PRINT 4. AVY
   RETURN
   END
```

```
SUBROUTINE WOTHEX
   COMMON X.Y.JA.KA.A.B.T.AR.TR.AVX.AVY.AVXR.C.H.TRYS.P.PI.PIS.
  1 C2.C3.C4.C5.SW.TRIALS.TI.JB.CT.CB.CX.DT.DX
   DIMENSION X(9,100),Y(7,100)
 5 FORMAT ( 9(F11.5))
 6 FORMAT (////*
                        TR
                                    AR
                                                STR
                                                           AVXR
                                                                         WLR
  1
            RIR
                     TRIALS
                                  TRYS
                                                 C*/)
   PRINT 6
   TRIALS = 0.0
   STR= 999999999999
   DO 15 1 # JA+KA
   X(6 \cdot 1) = AVXR - X(1 \cdot 1)
15 CONTINUE
   DO 65 NTR = 1.2
70 CONTINUE
   STOR = STR
   ABR = AR
   AR = C
   SAR= 0.0
   V = C
   DO 71 1 = JA+KA
   Y(3 \cdot 1) = -AR + X(6 \cdot 1) + EXPF(-(TR + X(6 \cdot 1)) + +2)
   Y(7.1) = Y(2.1) - Y(3.1)
   SQ = Y(7,1)**2
   SAR= SAR+ SQ
71 CONTINUE
   DO 73 KK= 1.JB
75 CONTINUE
   SAOR = SAR
   SAR = 0.0
   AA = AR + V
   AC = AA / AR
   AR= AA
   DO 16 1 = JA+KA
   Y(3.1) = AC + Y(3.1)
   Y(7 \cdot 1) = Y(2 \cdot 1) - Y(3 \cdot 1)
   SQ = Y(7 \cdot 1) **2
   SAR = SAR + SQ
16 CONTINUE
```

```
IF (SAR - SAOR) 75.74.74
74 CONTINUE
  V =-V*0.1
73 CONTINUE
   STR = SAOR
  RIR = AR*1.7724539 / (2.0*TR**3)
   WLR= 1.0 / (1.414214*TR)
  PRINT 5. TR. AR. STR. AVXR. WLR. RIR. TRIALS. TRYS.DT
  TRIALS = TRIALS + 1.0
   IF (TRIALS - TRYS) 2.2.3
 2 CONTINUE
   IF (STR - STOR) 63.64.64
63 CONTINUE
   TR = TR + DT*0.01
   GO TO 70
64 CONTINUE
  DT = -DT
   TR = TR + DT*0.01
65 CONTINUE
   AR = ABR + V*10.0
 3 CONTINUE
  DT = TRIALS * DT/ 12.0
  PRINT 5. TR. AR. STOR.AVXR. WLR. RIR. TRIALS. TRYS.DT
  RETURN
  END
```

```
SUBROUTINE CENEX
   COMMON X+Y+JA+KA+A+B+T+AR+TR+AVX+AVY+AVXR+C+H+TRYS+P=PI+PIS+
  1 C2.C3.C4.C5.SW.TRIALS.TI.JB.CT.CB.CX.DT.DX
   DIMENSION X(9.100) .Y(7.100)
 5 FORMAT (10(F11.5))
                    AVXR
 6 FORMAT (////*
                                 AR
                                             STR
                                                        TR
                                                                    WLR
                    TRIALS
                             TRYS
  1
           RIR
                                             C*/)
   PRINT 6
   TRIALS = 0.0
   SXR= 99999999999
   DO 85 NXR = 1.2
80 CONTINUE
   SXOR = SXR
   SXR = 0.0
   DO 81 1 = JA+KA
   X(6+1) = AVXR - X(1+1)
   Y(3+1) = -AR*X(6+1)*EXPF(-(TR*X(6+1))**2)
   Y(7 \cdot 1) = Y(2 \cdot 1) - Y(3 \cdot 1)
   SQ = Y(7.1)**2
   SXR= SXR+ SQ
81 CONTINUE
   RIR = AR*1.7724539 / (2.0*TR**3)
   WLR= 1.0 / (1.414214*TR)
   PRINT 5.AVXR. AR. SXR. TR. WLR. RIR. TRIALS. TRYS. DX
   TRIALS = TRIALS + 1.0
   IF (TRIALS - TRYS) 2.2.3
 2 CONTINUE
   IF (SXR - SXOR) 83.84.84
83 CONTINUE
   AVXR = AVXR + DX*0.001
   GO TO 80
84 CONTINUE
   DX = -DX
   AVXR = AVXR + DX*0.001
85 CONTINUE
 3 CONTINUE
   DX = TRIALS * DX/ 10.0
   PRINT 5.AVXR. AR. SXOR.TR. WLR. RIR. TRIALS. TRYS.DX
   RETURN
```

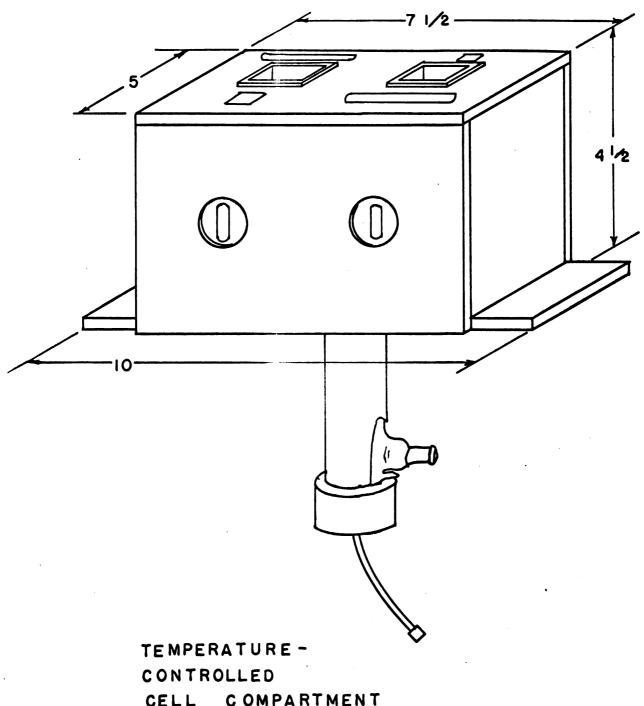
END

```
SUBROUTINE PRINT4
   COMMON X.Y.JA.KA.A.B.T.AR.TR.AVX.AVY.AVXR.C.H.TRYS.P.PI.PIS.
  1 C2.C3.C4.C5.SW.TRIALS.TI.JB.CT.CB.CX.DT.DX
  DIMENSION X(9+100)+Y(7+100)
                                     OBS SP 4 LINE
 6 FORMAT (*0 X AXIS 5 LINE
                                                                 RES*/)
 9 FORMAT (5F12.6)
   PRINT 6
   DO 10 I = JA+KA
   Y(6 \cdot 1) = Y(4 \cdot 1) + Y(3 \cdot 1)
   PRINT 9. X(1.1).
                                  Y(6 \cdot 1) \cdot Y(1 \cdot 1) \cdot Y(5 \cdot 1) \cdot Y(7 \cdot 1)
10 CONTINUE
   RETURN
   END
   SUBROUTINE PRINT!
  COMMON X.Y.JA.KA.A.B.T.AR.TR.AVX.AVY.AVXR.C.H.TRYS.P.PI.PIS.
  1 C2.C3.C4.C5.SW.TRIALS.TI.JB.CT.CB.CX.DT.DX
   DIMENSION X(9,100), Y(7,100)
 4 FORMAT (4F12.6)
 8 FORMAT ( *0 X AXIS CALC EX PK DIFF EX PK RES*/)
   PRINT 8
   DO 91 I = JA+KA
   PRINT 4. X(1.1).Y(3.1).Y(2.1). Y(7.1)
91 CONTINUE
```

RETURN END

## APPLIDIM G

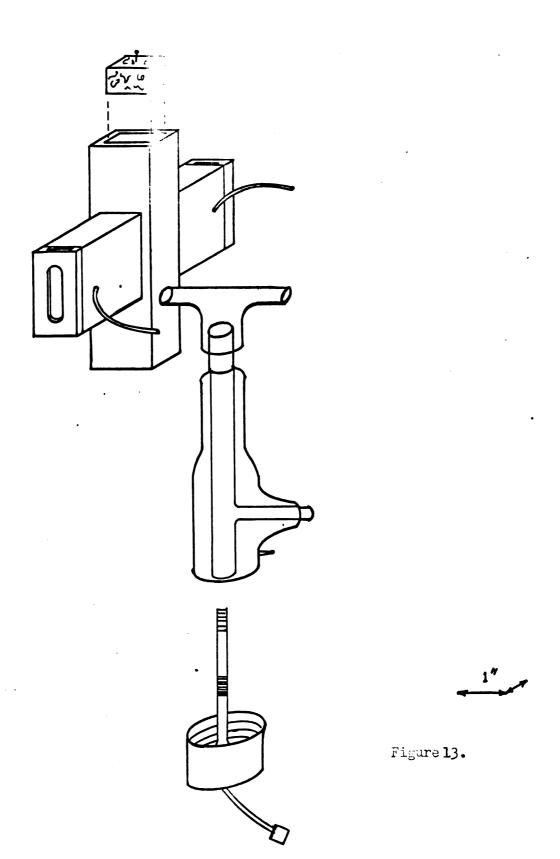
## VARIABLE-TE PERATURE SPLOTROPHOTOLETER

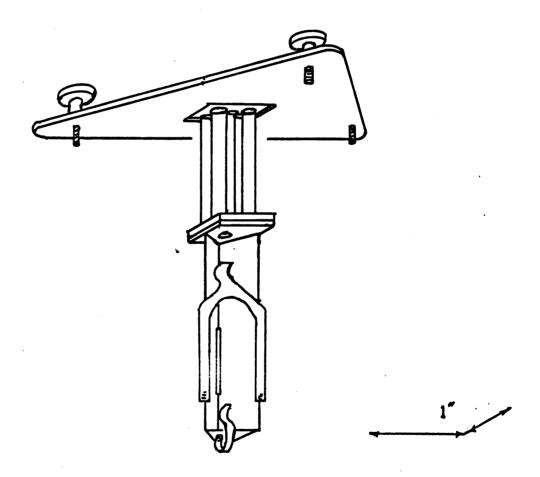

## 1. Figures.

- a. Temperature-controlled cell compartment (Figure 12).
- b. Coclant delivery system (Figure 13).
- c. Sell holder (Figure 14).

## 2. Notes.

- a. Housing of cell compartment constructed of 1/4" aluminum (Figure 12).
- b. Polyurethane foam used as insulation.
- c. Alarinum of Linder supporting Dewar connected to housing by a threaded ring which presses against a shoulder at the end of the cylinder (Figure 12).
- d. Plexiglas used for light tubes and cell compartment (rigare 13).
- e. Quartz windows used in light tubes (Figure 13).
- f. Teflor washers used to prevent glass from touching metal.
- g. Teflon gaskets used to seal the Dewar to the glase T and to seal quartz flats to light tubes (Figure 13).
- h. Lower section of cell holder can be replaced with unit to hold standard 1 cm optical cells (Figure 14).
- i. Foint, groove and plane locating system used for all componets of spectrophotometer requiring alignment.


- j. A polyurethane plug with a thermocouple seals the bottoms of cell compartments (Figure 13).
- h. Mitrogen blown through light tubes to prevent frosting of the windows (Figure 13).




CELL COMPARTMENT

Figure 12.

## COOLANT DELIVERY SYSTEM





# CELL HOLDER

Figure 14.

