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ABSTRACT

QUANTIFYING SPATIAL RELATIONSHIPS BETWEEN LANDSCAPE PATTERNS
LINKED TO ANTHROPOGENIC DISTURBANCES AND BURULI ULCER DISEASE

By
Lindsay P. Campbell

Anthropogenic ecosystem disturbances play an important role in the distribution of
emerging and re-emerging infectious diseases. Advances in GIS, remote sensing technologies,
and spatial statistical methods facilitate the observation and quantification of anthropogenic
landscape disturbances, providing the tools necessary to link these disturbances to disease
emergence. Investigations into disturbances linked to environmental bacterial infections are an
underrepresented research area. One such disease is Buruli ulcer disease (BU), caused by the
environmental pathogen Mycobacterium ulcerans. The ecological drivers behind pathogen
proliferation and transmission to humans are currently unknown. The main objective of this
study included using a spatial landscape ecological approach to determine whether land cover
patches indicative of anthropogenic landscape disturbances surrounded villages with higher BU
rates. Landscape-level results supported study hypotheses that more fragmented landscapes, with
more uniform land cover patch shapes, lying within areas more likely to collect water surround
villages with higher BU rates, but results were not consistent. Class-level results, analyzing
forest, wetland, and a mixed agriculture/forest class, suggested that more aggregated patches
with more complex shapes surround villages with higher BU rates. Incorporation of a spatial
random effects component accounted for spatial autocorrelation and provided a spatial structure

from which to predict BU rates at unsampled locations.
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INTRODUCTION

Anthropogenic ecosystem disturbances, for example, land use change, human movement,
encroachment and wildlife translocation, rapid transport, and climate change play an important
role in the distribution of emerging and re-emerging infectious diseases (Wilcox and Gubler,
2005; Patz et al., 2000; Foley et al., 2005; Patz and Confalonieri, 2005; Confalonieri, 2005).
These activities have the potential to disrupt natural community assemblages in ecosystems,
impacting predator/prey relationships, thereby resulting in an imbalance of population control
mechanisms that may have prevented disease pathogens from infecting human populations prior
to disturbance (Wilcox and Gubler 2005; Morse 1995).

Land use and land cover (LULC) change at multiple scales are one anthropogenic
disturbance linked to disease incidence. Examples include: 1) changes in dry-season irrigation
practices at a local scale that created new mosquito-breeding habitats leading to elevated Ross
River virus cases in Australia; 2) deforestation of hillsides at a regional scale contributing to
nutrient run-off that proliferated macroalgae growth suitable to bacteria responsible for ciguatera
fish poisoning; and 3) rainforest degradation at a global scale resulting in new transmission
opportunities for simian retroviruses such as HIV/AIDS between human and non-human
primates (Cook et al., 2004).

Anthropogenic activities with major impacts on LULC are land degradation, including
agriculture intensification and water projects, urbanization, and deforestation (Patz et al., 2008).
These activities contribute to habitat fragmentation that can disrupt vector breeding sites and
reservoir distributions while creating habitats suitable to ecological edge effects that provide
opportunities for niche invasions that promote disease emergence (Patz and Confalonieri, 2005).

Further, these activities generate new pathways for humans to interact with environments



undisturbed previously, resulting in reduced proximities to potential vectors, reservoirs, and
isolated pathogens (Patz and Confalonieri, 2005; Morse, 1995; Epstein, 2002; Pongsiri et al.,
2009).

Landscapes impacted most by widespread anthropogenic ecosystem disturbance are those
situated within the tropics, which have experienced the largest ecosystem transformations in
history within the last 60 years (Clark et al., 1990). Agriculture intensification is the major driver
behind tropical deforestation, and as population growth rates continue to rise, agricultural land is
expected to increase by approximately 23% by the year 2050 to meet food and fuel demands
(Patz et al., 2008; Hansen et al., 2008). As these regions continue to transition from natural to
managed ecosystems, new habitat opportunities suitable to a variety of reservoirs, vectors, and
pathogens will continue to surface; therefore, identifying landscape patterns favorable to disease
emergence will be a critical first step in human disease prevention.

Advances in GIS and remote sensing technologies, along with spatial statistical methods,
facilitate the observation and quantification of anthropogenic landscape disturbances, providing
the tools necessary to study location-specific landscape characteristics that might be responsible
for disease incidence while enabling spatial modeling capabilities to link these characteristics
and to predict disease risk across a landscape (Kitron, 1998). While current research focuses
largely on wildlife and vector-borne zoonotic disease emergence, exploring linkages between
anthropogenically-disturbed landscapes and human bacterial infections is an underrepresented
area of research, although recent results suggest that these disturbances play an important role in
spatial distributions of environmental bacteria that pose a human health risk (Goldberg et al.,

2008). Quantifying landscape patterns related to bacterial disease emergence is central to the



prediction of present and future public health risk because often the ecological drivers behind
these diseases are poorly understood.

One example is Buruli ulcer (BU) disease, caused by the environmental pathogen
Mpycobacterium ulcerans. Although the ecological drivers behind MU growth remain a mystery,
dramatic increases in BU cases since the 1980s (Merritt et al., 2005) have been linked
empirically and anecdotally to anthropogenic landscape changes; for example, deforestation,
habitat fragmentation, aquatic ecosystem disturbances from dam construction and agriculture
irrigation, farming practices, and mining activities (Merritt et al., 2010). Although BU is not
transferred between persons, the mode or modes of transmission is not determined, and no
vaccine exists (Wansbrough-Jones and Phillips, 2006). Therefore, identifying landscape patterns
linked to BU incidence will provide a powerful tool for surveillance and prevention while

affording opportunities to learn more about the disease system.



Chapter 1 LITERATURE REVIEW

1.1 Buruli ulcer disease

Mycobacterium ulcerans (MU), the causative agent of BU, is an environmental pathogen
(Williamson et al., 2008) and the second most common mycobacterium infection in humans after
tuberculosis and leprosy (Wansbrough-Jones and Phillips, 2006; Walsh et al. 2008; WHO 2000).
BU presents as a necrotizing skin condition that often causes mobility loss and permanent
disabilities in patients due to the potential for ulcers to cover large areas of the body. The disease
is endemic in over 32 countries worldwide, but occurs predominantly in tropical areas of sub-
Saharan Africa and also in more temperate regions; specifically, the Melbourne area of Victoria,
Australia (WHO, 2007; Walsh et al., 2008). The World Health Organization (WHO) established
the Global Buruli Ulcer Initiative in 1998 with the goals of raising disease awareness, improving
treatment access, strengthening surveillance, and providing priority research into disease
diagnosis, treatment and prevention (WHO, 2007). BU affects all age groups, but children under
the age of 15 are most at risk for the disease (Metritt et al., 2005).

MacCallum and colleagues identified MU as the causal agent of BU in Victoria, Australia
in 1948 (MacCallum et al., 1948), although Sir Albert Cook in Africa in 1897 and Kleinshmidt
in northeast Congo during the 1920s identified likely BU cases (Johnson et al., 2005). BU has
had numerous names worldwide, each representing the region from which cases occurred. In
Australia, it was known as Bairnsdale ulcer after the town in which the identification of MU took
place and Searls’ ulcer after a physician practicing in Bairnsdale during the same era; the
infection is named Kumusi in Papua New Guinea and Kakerifu in Zaire (Meyers, 2007). The

name Buruli is linked to the former Buruli district in Uganda where a large number of cases



surfaced between 1950 and 1970 (Clancey ef al., 1964), and it is the name adopted by the WHO

to promote disease awareness (Meyers, 2007).

1.2 Symptoms and Treatment

Three BU disease stages exist: non-ulcerative or pre-ulcerative disease, ulcerative
disease, and healing or scarring (Figure 1-1, WHO, 2000). Pre-ulcerative symptoms include
painless, raised papules that are usually < Icm in diameter; painless, mobile nodules beneath the
skin; and firm plaques (WHO 2000). Edema and swelling can also occur, but subsides once an
ulcer develops (Dobos et al., 1999). An incubation period of approximately three months exists
before ulcer eruption, but varies by individual (Horsbough and Meyers, 1997) with as little as
two weeks to as long as one year being reported by individuals in contact with endemic regions

(Veitch et al., 1997).

The ulcerative disease stage develops when pre-ulcerative symptoms erupt into necrotic
skin lesions. Ulcer edges are deeply undermined and necrosis often extends beyond the visible
infection (Johnson ef al., 1999; Hayman J, 1993). Ulcers are usually painless and continue to
enlarge through necrosis of the underlying epidermis surrounding the initial lesion (Huygen et
al., 2009). Healing is a slow process that may occur spontaneously, but scarring of affected
tissues leads to debilitating conditions. Four methods of laboratory diagnosis exist, including

direct smear, culture, Polymerse Chain Reaction (PCR), and histopathology (Walsh et al., 2008).



Figure 1-1. BU stages. (Images Courtesy of Dr. K. Asiedu and Dr.

A. Chauty <http://www.who.int/buruli/photos/en/index.html>). For

interpretation of the references to color in this and all other figures,

the reader is referred to the electronic version of this thesis.

Approximately 80% of ulcers present on the limbs or extremities (Walsh ez al., 2008),
and no significant difference exists between male and female infection rates (Debacker et al.,
2004b). A country-wide case study in Ghana found that women and girls were more likely than
boys to develop lesions on their arms, but ulcerations on the legs were still dominant in both
sexes (Amofah et al., 2002).

Recent treatment advances determined that a combination of Streptomycin-Rifampin
antibiotics alone had a high success rate for persons presenting with ulcers < 15 cm in diameter
(Chauty et al., 2007), but larger ulcers must be surgically excised along with a large area of
surrounding, healthy tissue followed by skin grafting to help prevent disease recurrence, and
severe cases require amputation of ulcerated limbs (Sizaire et al., 2006). Although BU eventually
subsides on its own, it is not without devastating, long-term negative effects, and disease
recurrence rates range between 6.1% and 47% in some endemic regions (Debacker et al., 2005;
Amofah et al., 2002).

Although study results suggested that the M. bovis bacilli Calmette-Guérin, or BCG,
vaccine used commonly to protect against tuberculosis provided partial protection against BU for

a six month time period (Portaels et al., 2002), a definitive vaccine does not exist (Huygen et al.,

2009). However, the BCG vaccine may prevent more severe infections from developing in



patients (Portaels ef al., 2002; Noeske et al., 2004) and may decrease disease duration (Amofah
et al., 1993). While these results are promising, contrasting results also exist, suggesting that the
BCG vaccination provides no BU protection and may increase infection risk (Nackers et al.,
2006). Persons infected with the human immunodeficiency virus (HIV) are not at a higher risk
for contracting BU (Raghunathan et al., 2005), but may experience a more severe infection once
inoculated (Johnson ef al., 1999).

BU complications include mobility loss from surgical treatment and/or scarring of
affected tissues. Without adequate physical therapy, patients often experience contracture, or the
inability to straighten or flex muscles in affected areas (Hayman 1993). In severe cases, the
infection moves into the bone causing osteomyelitis (Johnson et al, 1999). In these cases, the
bone develops a “moth-eaten” appearance and severe disability may result (WHO, 2007).
Reactive osteitis, or contiguous osteitis, is another BU complication that results from soft tissue
destruction above the bone and also creates the potential for mobility loss in patients (WHO,
2007). A recent study in Ghana found that at least 27% of patients experienced a reduced range
of motion following treatment and the study suggested that better follow-up care should be a

priority to help limit disability from the disease (Figure 1-2, Schunk ef al., 2009).

Figure 1-2. BU Complications (Images Courtesy of the
National Buruli ulcer Control Programme, Benin, Professor
H. Assé, and Dr. K. Asiedu
<http://www.who.int/buruli/photos/en/index.html)



1.3 Prevalence and Economic Hardship

BU cases increased steadily and expanded geographically within the past few decades
(Merritt et al., 2005). Although elevated disease awareness contributed to higher diagnosis rates,
researchers believe an increase in the exposed population also took place (Debacker et al.,
2004a). The WHO estimated approximately 24,000 cases were recorded between 1978 and 2006
in Cote d’Ivoire; approximately 7,000 cases were recorded between 1989 and 2006 in Benin; and
more than 11,000 cases were recorded since 1993 in Ghana (WHO 2007). Underreporting is a
common problem when estimating BU case numbers because many patients do not have access
to health care facilities, are misdiagnosed, or live in countries in which BU is not a notifiable
disease (WHO 2007).

BU cases increased dramatically in the Melbourne area of Victoria, Australia with only 4
cases reported in 1999 but 61 cases reported in 2006 (Quek et al., 2007) with an outbreak of 83
cases occurring in the city of Point Lonsdale on the Bellarine Peninsula in 2002 (Johnson ef al.,
2007). Between 1992 and 1995, an outbreak occurred in the city of Cowes located on Phillips
Island off the mainland of Australia near Melbourne (Veitch, 1997). Although BU cases were
recorded since the 1930s in Melbourne suburbs, previous BU cases on Phillips Island had not
been recorded, suggesting that the pathogen expanded its geographic range. BU is also endemic
to the Daintree Forest region of Northern Queensland along the eastern coast of Australia,
though fewer cases are reported each year than in the Victoria region (Jenkin et al., 2002). Early
detection and access to health care, along with fewer overall cases, has prevented BU from
becoming a more serious public health problem in Australia, but persons living in developing
countries face greater challenges when seeking treatment, and the majority of cases received at

medical facilities are in advanced disease stages (WHO, 2000).



Persons presenting with BU often require extensive surgery and hospital stays, creating
economic challenges for families of patients (Aujoulat et al., 2003); for example, patient hospital
stays average approximately three months in Ghana (Stienstra et al., 2002). The WHO reported
in Ghana that the cost of treating a pre-ulcerative nodule in a patient is comparable to 16% of the
average total family income for the work-year; the cost of treating a patient requiring amputation
is equal to 89% of the average total family income for the work-year; and the average cost of
treating a patient in 1994-1996 exceeded the per capita government spending on health care
(WHO, 2007). Compounding the problem is income loss due to incapacitation from the disease
or from caring for a family member with BU, and families face additional challenges involving
prolonged care for members permanently disabled. Fear of surgery, long distances to treatment
facilities, and socioeconomic factors contribute to the rural poor being affected most negatively
by BU (Raghunathan et al., 2005).

Beyond prohibitive treatment costs and access to medical facilities, a stigma associated
with BU exists in many regions due to a belief that the infection is a result of witchcraft. A case
controlled study in Ghana determined that 59% of study respondents felt that witchcraft was
involved in disease development (Stienstra et al., 2002). Persons without BU reported avoiding
patients suffering from the disease, and patients reported hiding symptoms from community
members. Many respondents attributed the disease to a lack of hygiene by patients, and patients
reported a fear of the “evil eye” and did want community members staring at wounds or
watching dressing changes for fear that these activities would influence healing negatively.
Importantly, many respondents did not believe that BU was a “hospital disease” because the
infection was the result of a curse, and therefore, traditional healing methods would be the best

treatment option.



1.4 Mycobacterium ulcerans

MU is a slow-growing, mycolactone-producing environmental mycobacterium (Merritt et
al., 2005). During the pre-ulcerative stage, acid-fast bacilli localize to fatty tissues under the skin
where microcolony formation takes place (Dobos ef al., 1999). MU is unusual because of its
extracellular activity and mycolactone secretion, a lipid toxin responsible for fat and
subcutaneous tissue necrosis (George ef al., 1999) The mycolactone secretes an
immunosuppressive property, indicated by the lack of a granulomatous inflammatory response in
early lesion stages, allowing the disease to progress with little or no pain in the patient (Johnson
et al., 1999). Lack of a host immune response leaves the infection undetected by burulin skin
tests that become positive only after the bacterium ceases to reproduce and healing begins
(WHO, 2007).

Additional attributes set MU apart from related mycobacteria. Most notably, MU prefers
lower temperatures and has a narrower temperature range than its counterparts, preferring
temperatures between 28-34°C with an optimal growth range between 30-33°C in a laboratory
setting (Merritt et al., 2010). Although isolates from various regions show differences in
temperature tolerance, for example, isolates from Africa are more thermo-tolerant than those
from more temperate regions, survival at higher temperatures takes place without reproduction
(Edyanni and Portaels, 2007). Further, MU is intolerant to ultra-violet (UV) light because it lacks
pigments found in related mycobacterium, indicating that MU may be protected from sunlight in
its natural environment (Stinear et al., 2007).

Recent technological advances enabled researchers to detect MU DNA in a variety of
environmental samples ranging from soils to invertebrates (for a complete review see Merritt et

al., 2010) using PCR probes based on detection of 1S2404 (Ross et al., 1997). Although 1S2404
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was believed to be specific to M. ulcerans, it was later determined that other mycobacteria also
tested [S2404 positive; specifically, M. marinum, M. liflandji, and M. pseudoshottsii (Stragier et
al., 2007), but the advent of real-time PCR provided the tools necessary to differentiate MU from
other mycobacteria testing 1S2404 positive (Fyfe et al., 2007).

A significant contribution involving a pure MU culture from an environmental sample
took place recently in Benin (Portaels et al, 2008). The culture was obtained from a water strider,
an aquatic insect (Hemiptera: Gerridae, Gerris sp.). This discovery made a substantial
contribution to BU research because it was the first of its kind and confirmed MU existence in

aquatic habitats (Merritt ez al., 2010).

1.5 Hypothesized Modes of Transmission

The mode or modes of BU transmission are currently unknown. The occurrence of ulcer
presentation at the site of previous skin trauma in some patients suggests a direct mode of
transmission from the environment (Meyers et al., 1974). Ulcer presentation in a patient in Togo,
Africa was reported at the site of a wound from a large splinter of wood (Meyers et al., 1996),
and cleaning and covering cuts and abrasions is recommended in Victoria, Australia to help
prevent inoculation with the disease (Johnson ef al., 2007).

Aerosol transmission is another mechanism proposed for MU inoculation based on the
ability of Mycobacteria intracellulare to concentrate in air bubbles, suggesting that mycobacteria
may be propelled into the air and dispersed by wind or waves upon gas bubble bursts occurring
in water bodies in the natural environment (Hayman, 1991). Further speculation ensued when a
study in Australia revealed that BU patients did not report having contact with environmental
water other than the ocean before presenting with the disease, but a need exists for additional

research to determine the plausibility of this hypothesis (Johnson et al., 2005).
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Researchers found MU DNA in biofilm of aquatic vegetation in Ghana, and subsequent
testing determined that MU growth rates increased substantially after two green algae types were
entered into the medium in a laboratory setting (Marsollier ef al., 2004b). Persons may come into
direct contact with contaminated water and plants while bathing, farming or conducting domestic
duties, or contaminated insects may act as mechanical vectors of the disease.

Past studies focused on the possibility of aquatic insects as primary BU vectors. In 1999,
researchers investigated five aquatic invertebrate species found on the roots of various plants in
Benin and Ghana and found they were MU positive, but no evidence surfaced of these insects
passing the pathogen to humans, even though they were known to sometimes bite villagers
(Portaels et al., 1999). Further research determined that MU could survive and reproduce within
the salivary glands of biting aquatic bugs (Marsollier et al., 2003), and scientists observed ulcer
presentation in mice bitten by infected aquatic bugs in the laboratory, although insect species
native to West Africa were not used in these studies (Marsollier, 2002). Additional research
demonstrated that aquatic snails may act as passive hosts, harboring MU within their bodies after
eating contaminated aquatic vegetation, and that MU may be transferred to the salivary glands of
biting insects after feeding on infected snails (Marsollier et al. 2004a).

Contrasting results from a field study involving 27 water body sites near BU positive and
BU negative villages in Ghana determined that biting Hermiptera were not likely BU vectors
after finding no positive correlation between Hemiptera abundance and endemic sties; MU
positivity rates and endemic sites; MU positivity rates among Hemiptera versus other aquatic
insects within endemic sites; or overall MU positivity and vector abundance (Benbow et al.,
2008). However, a recent field study conducted in Cameroon (Marion ef al., 2010) supported

previous laboratory results, finding MU within biting hemiptera salivary glands, and contrary to
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field results from Ghana, found insect density counts ten times higher in BU endemic study sites
than in BU non-endemic sites.

Mosi et al. (2008) investigated MU colonization within the salivary glands of African
giant water bugs (Belostomatidae) through MU-infected mosquito larvae ingestion in the
laboratory. Results determined that MU preferred to accumulate on the exoskeleton as opposed
to the guts or salivary glands, but persistent colonization without replication could occur, and
therefore, these insects were capable of supporting the trophic transfer of MU within the
environment.

Researchers in Australia investigated the role of mosquitoes in potential BU transmission
after discovering that areas with BU outbreaks also had a large mosquito population (Johnson et
al., 2007). Although mosquitoes tested MU positive, it was inconclusive whether they were
harboring MU within their bodies or whether they had acquired the pathogen externally from the
environment. A recent study conducted in the laboratory determined that mosquito larvae fed
MU-contaminated materials accumulated the bacterium in their mouths and midgets over four
instars, although when fed closely-related M. marinum, bacterium was not detected (Tobias et
al., 2009). Additional research identified a correlation over a seven year time period between BU
case notifications and Ross River virus case notifications, a mosquito-transmitted disease in
Australia, although the authors conceded that suitable environmental conditions promoting both
diseases may be driving the correlation (Johnson and Lavender, 2009).

Several investigations into potential MU reservoirs exist. Mammals and marsupials in
Australia, including koalas, alpaca, a domestic cat, potaroos, two horses, black rats, and brushtail
and ringtail possums tested MU positive, but these infections were limited within the geographic

region of Australia (Mitchell et al., 1984; Elsner et al., 2008; van Zyl et al., 2009). A recent
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study in Australia found that 38% of captured ringtail possums and 24% of captured brushtail
possums had lesions testing MU positive or feces testing MU positive in a BU endemic region,
suggesting that these possums contribute to maintenance of the bacterium in the environment
(Fyfe et al., 2010). An additional study in Benin collected 326 rodents and 222 shrews around
water bodies and in houses during the dry season and during the wet season in high BU endemic
and low BU endemic areas, but MU was not identified in any of the collection samples (Durnez
et al., 2010). Finally, some researchers believe that migratory birds aid in disseminating MU
between wetlands, but further research is needed to determine the potential of this hypothesis

(Eddyani et al., 2004).

1.6 Risk Factors

The greatest risk factor for contracting BU is contact with an endemic area (Johnson et
al., 2007), although certain behavioral patterns may increase risk. A matched case-control study
in three endemic districts of Ghana confirmed researchers’ beliefs that BU is an
environmentally-acquired infection associated with rivers and streams (Raghunathan et al.,
2005). The results also indicated that wading in a river or stream was a risk factor, that using
certain soap products and wearing long trousers was protective against BU, and that wearing
clothing that covered the upper body while farming was also protective against the disease. In a
separate study conducted in Benin, wearing clothing during farming activities was not identified
as a protective factor against BU infection, contact with stagnant water increased BU risk, while
contact with flowing water and using soap decreased BU risk (Nackers et al., 2007). Aiga et al.
(2004) found that swimming in rivers and water use from rivers was a BU risk factor, but water
use from piped sources was not a protective factor in Ghana, while Marston et al. (1995) found

that swimming in rivers was not a BU risk factor Cote d’Ivoire.
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In Cameroon, the use of bed nets was a strongly-associated protective factor against BU,
but bed nets were not found to be protective in Ghana (Pouillot et al., 2007). Applying insect
repellant during outdoor activities reduced BU risk in Australia (Quek ef al., 2007), although
mosquito coil use was a behavioral risk factor in Cameroon (Pouillot et al., 2007). An
association between BU-infected patients and mosquito bites on the arms and legs exists in
Australia, but a direct link between insect bites and inoculation was not established (Quek ez al.,
2007).

BU cases are known to occur surrounding slow-moving or stagnant water bodies or
wetlands, and flooding is cited as a risk factor for the disease (CDC, 2005). The first recorded
BU cases in Bairnsdale, Australia occurred two to three years after a major flooding event during
Christmas of 1935 (Hayman, 1991). In 1978, Bairnsdale had its wettest year in recorded history,
and in 1980 BU cases emerged. In 1962 and 1964 severe flooding took place in Uganda, and
approximately two to three years later, BU cases surfaced (Dobos et al., 1999). The first reported
BU cases in Togo occurred in two children living near two separate rivers that experienced
seasonal flooding (Meyers et al., 1996), and in Papua New Guinea, cases occur near the Sepik
and Kumusi Rivers where a spike in cases emerged following the flooding and widespread
destruction from the Mount Lamington volcanic eruption in 1951 (WHO, 2000).

Empirical and anecdotal links exist between landscape alterations, including
deforestation, agriculture irrigation, mining activities, and artificial dam creation and increased
BU risk (Hayman 1991; Brou et al., 2009; Duker ef al., 2004; Wagner et al., 2008a; Wagner et
al., 2008b; WHO, 2000; Merritt ef al., 2005). Hayman (1991) postulated that closed rainforests
contain MU, and disruption of the rainforest results in MU-contaminated runoff water, creating

more concentrated MU quantities in water bodies, resulting in a bacteria bloom under favorable

15



environmental conditions. Deforestation contributes to increased flooding and erosion, creating
ideal conditions for nutrient introduction into water bodies that contribute to higher water
temperatures, decreased oxygen levels, and an increase in turbidity, all of which create a habitat
that may be suitable to MU (Merritt ef al., 2005). Duker et al. (2004) found a relationship
between the spatial distribution of BU cases and distance to gold mining sites and exposure to
arsenic-contaminated soils in Ghana, and Wagner et al. (2008b) found that villages experiencing
high BU rates were situated within low-lying areas at risk for flooding and surrounded by an
agriculture matrix, suggesting that deforestation likely took place.

Several associations exist between artificial water body creation and river damming and
increased BU risk. Students on the campus of the University of Ibadan in Nigeria began
contracting BU after the creation of a dam on a small river running through campus in order to
create an artificial lake (Oluwasanmi, 1975). BU cases also occurred following the building of
large dams for agriculture irrigation north of Brisbane, Australia between 1957 and 1958 and in
1962 (Abrahams, 1964), and a recent study in Cote d’Ivoire found a relationship between disease
rates and patients’ proximities to dams and irrigated agricultures (Brou ef al., 2009). In Liberia,
cases emerged after the installation of a swamp rice field that replaced an upland rice field and
also in areas where the creation of dams expanded wetland areas (WHO, 2000).

Although little is known regarding MU growth and subsequent transmission, linkages
between human activities and BU emergence suggest that identification of landscapes disturbed
by anthropogenic activities may provide information needed to characterize risk while

contributing to a better understanding of potential ecological drivers behind disease emergence.

1.7 Landscape Epidemiology/Ecology, GIS, and Remote Sensing
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Landscape epidemiology is a multidisciplinary field focused on abiotic and biotic
environmental conditions and their relationships to pathogen and vector ecology with an
emphasis on mapping and predicting potential disease distributions based on ecological
conditions (Pavlovsky, 1966; Ostfeld, 2005). Landscape epidemiology is nested partially within
the field of landscape ecology, or the study of spatial and temporal landscape patterns and their
interactions with ecological processes at multiple scales (Turner et al., 2001). Observing
landscape heterogeneity and its influences on ecological systems provides a substantial
advantage when working with environmental data, leading to a better understanding of
underlying mechanisms contributing ecosystem functions (Pickett and Cadenasso, 1995).

Emphases on spatial and temporal patterns are unique to landscape ecology in the broader
ecology discipline because spatial homogeneity across ecological systems was the standard
assumption until recently (Turner and Gardner, 1991; Wagner and Fortin, 2005). In general,
landscape ecological studies observe larger spatial extents than those used in more traditional
ecological studies with an understanding based on scale theory that finer-scale processes can act
as mechanisms driving landscape dynamics within broader-scale patterns and that these broader-
scale patterns can act as constraints limiting finer-scale processes (Turner et al., 2001). Emphasis
on neighborhood context is important under this framework and acknowledgement that
environmental heterogeneity may occur at any spatial scale differentiates landscape ecology
approaches further from traditional ecology methods (Wagner and Fortin, 2005).

Landscape epidemiology studies incorporate landscape ecology approaches regularly
(Kitron, 1998), from identifying vector habitat distributions based on landscape composition to
determining where anthrax risk from Bacillus anthracis exists in the United States using climate

and soil variables (Beck et al., 2000; Malone, 2005; Coetzee et al., 2000; Blackburn ef al., 2007).
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Several of these studies utilize geographic information systems (GIS), remote sensing
technologies, and spatial analyses to identify where disease emergence is likely to take place.

GIS and remote sensing technologies provide the foundation from which to collect and
process data to use in landscape ecological studies. GIS are unique in their ability to combine
information from multiple sources with a shared location across a large geographic region. GIS
are techniques to input, store, retrieve, manipulate, analyze, and output data that have spatial
attributes associated with them (Otsfeld et al., 2005). Common outputs include maps displaying
features of interest, but the real power of GIS is that it provides a platform from which to
organize a multitude of data for statistical and pattern analyses, for example natural
environmental data, such as climate, LULC, and elevation data, along with anthropogenic
attributes, such as demographic, road network, and socio-economic data.

GIS facilitates vector and raster data formats (Clarke 2003). A vector data format consists
of points, lines and polygons to which information about specific attributes are stored, for
example address locations, road networks, or administrative boundaries, while a raster format
consists of a grid of equally-sized cells. Cell sizes are referred to as the spatial resolution of the
grid; for example, a 30m resolution grid consists of cells measuring 30m on each side,
representing an area equal to 900 square meters total. Each cell contains information such as
elevation, temperature, or land cover classification values, and the possibility exists for
calculations between grids when cells correspond to the same geographic locations.

Satellite sensors that monitor the Earth from space generate remotely-sensed satellite
imagery (Jensen and Hodgson, 2004). The majority of remotely-sensed satellite products are
available in raster format. A variety of products exist, each measuring reflectance from the

Earth’s surface across the electromagnetic spectrum (EMS) (Turner et al., 2003). These images
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are useful particularly when observing land cover patterns, water turbidity, or when measuring
elevation.

Quantitative approaches characterizing landscape patterns often utilize landscape metric
calculations derived from raster images that are classified into different land cover categories
(McGarigal and Marks, 1995). Landscape metrics quantify landscape patterns based on
composition, or the presence of specific landscape components in a geographic area, and
landscape configuration, or the spatial arrangement of landscape components in an area (Turner,
2005; McGarigal and Marks, 1995). Outputs from these metrics are then interpreted and
analyzed statistically to gain a better understanding of patterns that may be influencing
ecological processes in a geographic area.

Of particular interest are landscape metrics that identify landscape disturbances linked to
anthropogenic activities. A disturbance is defined as “any relatively discrete event in time that
disrupts ecosystem, community, or population structure and changes resources, substrate
availability, or the physical environment” (Pickett and White, 1985). These disturbances include
habitat fragmentation, or a disruption in landscape connectivity (With et al., 1997) resulting from
large land cover expanses transforming into small patch sizes that become isolated by land cover
types alternative to the natural vegetation (Wilcove ef al., 1986), and agriculture intensification,
which takes place when cultivated land is altered to produce high-yield crops through the use of
fertilizers and pesticides, increased irrigation methods, or mechanization (Matson et al., 1997).

Observing land cover patch sizes and shape patterns using landscape metrics, along with
landscape composition, can provide insight into human activities in a region; for example,

Krummel et al. (1987) found that deciduous forest patches with more uniform shapes, such as
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squares or rectangles, indicated managed forest cover and forest cover adjacent to agricultural
land using a fractal dimension index.

A study conducted by Iverson (1988) assessing land cover changes over al 60 year
period in Illinois used several landscape metrics, including number of patches, mean patch area,
perimeter-to-area ratio, and fractal dimension indices by land cover type, to characterize
anthropogenic influence on the landscape. Results determined that a relationship existed between
high perimeter-to-area ratios and the presence of road networks; natural wetlands had highly-
complex shapes because they were not confined to regularly-shaped boundaries imposed by
human activities; surface mines, quarries, and gravel pits had highly-regular shapes because of
human management; and forest cover patches often had regular shapes because of adjacency to
agriculture land cover.

A landscape index quantifying the number of landscape patches was used to characterize
habitat fragmentation in a study area in lowa (Narumalani ef al., 2004), and a study observing
forest clearing patterns in Oregon used a landscape metric that employed a weighted patch edge
calculation to compare forest patches in privately-owned land versus in publically-owned land
between 1972 and 1988 (Spies et al., 1994). Results determined that privately-owned land had a
smaller percentage of interior forest patch habitat compared to publically-owned land, suggesting
a more fragmented forest landscape.

Landscape epidemiology studies use landscape metrics frequently to relate landscape
patterns to disease incidence. Graham et al. (2004) determined that mean shape index values at
the landscape-level within concentric polygons surrounding disease incidence locations were
important when investigating human alveolar echinococossis in China. Brownstein et al. (2005)

quantified a link between forest fragmentation and tick densities and numbers of infected ticks
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responsible for Lyme disease transmission to humans in Connecticut using observations of patch
size and patch isolation. Results identified a positive relationship between fragmentation and
entomologic risk, but a negative relationship between fragmentation and human disease
incidence.

A study investigating and predicting schistosomiasis-harboring mollusk densities in two
mountainous regions in China used an integrated approach, quantifying landscape patterns and
then employing Bayesian spatial modeling methods (Yang et al., 2008). Researchers analyzed
mean shape index values and Shannon’s evenness index values along with a variety of
environmental variables. Generation of non-spatial and spatial model results emphasized the
importance of using spatial statistical approaches when investigating natural phenomena. Final
results determined a positive relationship existed between mean shape index values and mollusk
densities, indicating that mollusks clustered in irregularly-shaped land cover patches such as
irrigation ditches. Using spatial statistical methods to predict mollusk densities took advantage of
information provided by landscape metric calculations while accounting for spatial
autocorrelation in the data, an important factor that can introduce bias and that many researchers

ignore when working with environmental data.

1.8 Spatial Autocorrelation

Tobler’s first law of geography states that everything is related to everything else, but
near things are more related than distant things (Tobler, 1970), or are spatially autocorrelated.
Ignoring positive spatial autocorrelation, a common phenomenon when working with ecological
data, can produce falsely-precise model estimates, the most common of which is to overestimate
regression coefficient significance leading to Type I errors by rejecting null hypotheses when

they are true (Legendre and Fortin, 1989; Wagner and Fortin, 2005; Lennon, 2000). These errors
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lead not only to inaccurate parameter estimates contributing to erroneous model prediction, but
promote a misunderstanding of processes driving ecological patterns (Lennon, 2000).

Spatial autocorrelation in environmental data can occur for a variety of reasons, including
processes inherent to the organism under investigation or because of spatial dependency of the
organism to spatially-structured environmental drivers (de Knegt et al., 2010) Further, the
processes driving spatial dependence may occur at different scales than which derivation of data
observations and variables took place (Keitt, 2002). Omission of important covariates will bias

f estimations, and if these covariates have a spatial structure, spatial autocorrelation in model

residuals will likely result (Waller and Gotway, 2004). Failure to account for spatially
autocorrelated model residuals violates the assumption of independently and identically
distributed errors, leading to inflated degrees of freedom, resulting in the overestimation of
coefficient significance mentioned above (de Knegt et al., 2010; Legendre and Fortin, 1989;
Wagner and Fortin, 2005; Lennon, 2000; Keitt, 2002; Waller and Gotway, 2004).

Spatial modeling approaches, for example the one employed by Yang et al. (2008),
mitigate spatial dependency problems by accounting for spatial autocorrelation in the modeling
process. Several spatial modeling approaches exist, each of which was designed to incorporate
different data formats and to achieve different goals. For a review of spatial statistical models

and methods see Schabenberger and Gotway (2005).

1.9 Past BU Landscape Studies

GIS, remote sensing technologies, and statistical analyses were used in several BU
studies investigating environmental features related to disease incidence, but to our knowledge

studies quantifying landscape patterns using landscape metrics do not exist, and, with the
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exception of Duker et al. (2006) and Wagner et al. (2008a, 2008b), these studies failed to
account for spatial autocorrelation among observations, variables, and model residuals.

A study investigating the relationship between arsenic-rich floodplains and BU incidence
in the Amasie West District of Ghana analyzed several human and environmental variables using
GIS and satellite imagery (Duker et al., 2004). BU incidence per settlement and settlement
population were mapped along with stream sediment sample locations and corresponding arsenic
concentration values. Farmlands lying below a specified elevation threshold were identified,
along with proximities to arsenic-enriched streams. A land use and land cover map generated
from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) imagery
determined that 21% of total farmlands in the study area lie within arsenic-enriched areas.
Although the results revealed a correlation existed between BU cases and arsenic-enriched, low-
lying farmlands, researchers did not determine whether the flooded lowlands or arsenic levels
contributed more to BU risk.

Duker et al. (2006) conducted another analysis in the Amansie West district of Ghana
targeting spatial patterns of BU incidence in the district. Stream sediment samples from 1992 and
37 ground water samples from 2003 were related to single year BU incidence reports obtained
from a 1999 national case search, along with BU average incidence from 2000-2003 for each
settlement within the district using a conditional autoregressive (CAR) statistical model. This
approach assumed that covariates from neighboring districts influenced BU prevalence in the
target district, and districts were defined as regions bordering each other or those that were
within a fixed 15km distance from one another. Results suggested that a relationship existed
between mean arsenic levels in soil and BU spatial distributions and distances to gold mining

sites and BU spatial distributions.
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The RESPOND Health Mapping Activity Ivory Coast study investigated BU occurrence
in the Ivory Coast (Cote d’Ivoire) using remote sensing and GIS to identify areas with a high BU
risk (RESPOND 2006). Landsat satellite imagery along with Moderate Resolution Imaging
Spectroradiometer (MODIS) data were used to classify vegetation and wetland conditions. A
digital elevation model using Shuttle Radar Topography Mission (SRTM) data was used to
search for low-lying areas prone to water accumulation. The results of the study indicated
definite vegetation trends in the area of interest, but researchers were unable to obtain the
necessary epidemiological data to complete their analysis.

A more recent country-wide study by Brou et al. (2008) investigated landscape variables
related to BU incidence in Cote d’Ivoire. Forest surface area in hectares, irrigated rice
production, banana production, and dam surface areas were mapped and quantified using GIS in
preparation for a multivariate statistical analysis. Logistic regression results suggested that closer
proximities to irrigated rice fields and to dams increased BU risk, but spatial autocorrelation in
the observed data, the environmental covariates, or the model residuals were not considered.

A study investigating the role of landscape features related to BU rates at a country-wide
scale in Benin used satellite imagery and GIS to prepare data for statistical analyses (Wagner et
al.,2008a). BU case data from 2004 and 2005 were mapped to corresponding village locations.
Concentric buffers with radii ranging from 100m to 50 km from village centers were generated
to analyze land cover composition, elevation, and potential wetness patterns, and distances from
village centers to the nearest river were quantified. A negative binomial statistical analysis
including random district effects determined that villages lying at low elevations within drainage
basins with variable wetness patterns that are surrounded by forest cover have a high BU risk. A

spatial scan statistic identified spatial disease clusters with higher than expected BU rates near
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the Zou and Ouémé Rivers located toward the eastern side of the country and along the Couffo
River located toward the western side of the country. Lower than expected BU rates occurred
near the coastline and toward the northern region of Benin.

A second study by Wagner et al. (2008b) used LULC variables to construct a probability
model related to BU infection. Latitude, longitude, distance to nearest river, elevation, total
population and seven LULC class percentages were analyzed statistically using a multilevel
Bayesian logistic regression model with district-level random effects. This modeling approach
used data derived at different scales and the district-level random effects mitigated correlation in
residuals due to unknown covariates at the district-level. Model residual plots revealed that
spatial autocorrelation was no longer present in the data set. The results indicated that the
probability of BU incidence increased with percentage surrounding agricultural land cover, and
the probability of BU incidence decreased as the percentage of surrounding urban land use
increased at large scales. A set of “best” models predicted BU rates from the mean posterior
distribution of each model at validation sites in Benin and also in Ghana. The models predicted
BU positive sites more accurately than BU negative sites.

A study investigating BU incidence in Victoria, Australia from 1980 to 2009 performed a
network analysis to determine whether BU cases occurred randomly before the analysis of
climate, landscape, and socioeconomic data (van Ravensway et al., IN PREP). Network analysis
results determined that BU cases did not occur randomly; therefore, administrative data
equivalent to U.S. census tract-level data demarcated town boundaries from which derivation of
several environmental and sociological data variables took place. Statistical analyses used
multilevel Poisson regression models with random effects for endemic locations. Two model sets

were produced, one investigating an approximate lag time between human infection and
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symptom presentation, with the assumption that mosquitoes play a direct role in transmission and
that infection occurred during high mosquito abundance periods, and referred to as the mosquito
abundance prediction (MAP) model. The second model set investigated landscape, occupational,
and climate (LOC) variables related to BU incidence in the study region.

The MAP models used climate variables as a proxy for high mosquito abundance periods,
wetland land cover and low elevations represented mosquito habitats, and outdoor occupation
variables represented proportion of humans at risk within each town. MAP model results
suggested that towns with high percentages of water and low elevations with increased
precipitation and minimum temperatures nine months prior to BU symptom presentation with
large proportions of the population working in agriculture, mining, or parks and gardens
professions were at a higher BU risk, but direct links to mosquitoes as vectors are still under
investigation. The LOC model results indicated that towns at lower elevations with high
percentages of forest and agriculture land cover, along with decreased maximum temperatures 14
months prior to symptom presentation, followed by increased precipitation 11 months prior to
symptom presentation are at a higher BU risk. This study was the first of its kind to incorporate
climate, social, and landscape variables into its analyses and the first to investigate a specific
vector habitat in relation to BU incidence.

While these studies investigated important environmental features related to BU risk,
landscape components focused on compositional features, rather than exploring landscape
configurations. Further, many of these studies investigated relationships between specific
anthropogenic activities, for example proximity to dams or percentage of surrounding

agriculture, while insight into overall landscape disturbance was not gained.
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Additionally, although these studies observed variables spatial in nature, with the
exception of Duker et al. (2006) and Wagner et al. (2008a, 2008b), quantified relationships
failed to account for potential spatial autocorrelation in model residuals, and while several
studies included random effects to help account for unobserved variables contributing to BU
prevalence, no studies incorporated spatial random effects that identify whether a spatial
structure exists for these unobserved covariates. Incorporating spatial random effects into the
modeling process while accounting for spatial autocorrelation among model residuals provides a
powerful tool from which to predict BU risk at new locations and to identify potential covariates

through observations of spatial characteristics related to unknown covariates.

1.10 Objectives

This study builds upon knowledge gain from previous studies in Benin by relating BU
occurrence to landscape patterns (Wagner et al., 2008a; Wagner et al., 2008b). Previous research
in this region related specific land cover composition to BU risk across large spatial extents. The
primary objective of this research is to observe landscape configurations in addition to landscape
composition related to BU rates at a medium spatial extent, ranging from 400m to 2k from
village centers. Observing closer proximities allowed quantification of habitats traversed
regularly by village residents, while maintaining study areas large enough to quantify landscape
patterns.

The specific objectives of this thesis were to

1) determine whether landscape patch configurations, quantified using landscape metrics
and used as indicators of potential anthropogenic-related landscape disturbances, are related to

BU rates in Benin, West Africa,

27



2) whether specific land cover configurations specific to individual land cover
composition types are related to BU rates,

3) whether compound topographic index values using 30m resolution data were
consistent with previous research outcomes implicating a relationship between stagnant water
and BU rates.

4) identify whether a spatial structure exists for underlying processes contributing to BU
rates and finally

5) create a BU risk surface based on identified contributing landscape characteristics and
underlying spatial processes in the study area.

Further, the goal of this study is not to identify specific ecological processes contributing
to MU growth and BU transmission in Benin, but to determine whether human disturbance
indicators as characterized by landscape patterns are linked to and can be used to identify high

BU risk landscapes.

1.11 Hypotheses

Previous research suggesting that a relationship exists between anthropogenic landscape
disturbances and BU risk (Merritt et al., 2005; Hayman 1991; Brou et al. 2009; Wagner et al.,
2008; Duker ef al., 2004; WHO, 2000) provided the basis for the first set of hypotheses. The first
hypothesis is that disturbed landscapes characterized by uniformly-shaped land cover patches
and low aggregation levels, representative of potential anthropogenic landscape disturbances,
surround villages with higher BU rates. The second hypothesis is that a positive relationship
exists between BU rates and land cover patch configurations representative of potential
anthropogenic landscape disturbances corresponding to specific land cover composition types;

for example, uniformly-shaped agriculture or forest patches. Previous research findings
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demonstrating that BU cases occur near slow-moving or stagnant bodies of water or in low-lying
areas within drainage basins (CDC, 2005; WHO, 2007; Wagner et al., 2008) provided the basis
for the final hypothesis that landscapes with higher average compound topographic, or wetness
index, values surround villages with higher BU rates.

A strong inference approach, involving the exploration of multiple, biologically plausible
hypotheses followed by identification of the model that provides the best approximation of the
data, will provide the basis from which inference may be drawn to predict disease risk across the

study domain (Plowright et al., 2008).
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Chapter 2 MATERIALS AND METHODS

2.1 Study Area

The southern regions of Benin and Togo, West Africa comprise the study area for this
investigation. The study area falls within a 185 x 185 km area that is equal to one Landsat
satellite image extent located in WRS path 192 row 55, with latitudes ranging from
approximately 8.167 N to 6.300 N and longitudes ranging from approximately 0.842 E to 2.482
E. The study area encompasses all or parts of several administrative districts, including
Atlantique, Mono, Plateau, Couffo, Zou, and Collines located in Benin and Centre, Plateaux, and
Maritime in Togo. Four major rivers flow through the study area, including the Couffu, Oueme
and Zou Rivers in Benin, and the Mono River which delineates the border between Togo and
Benin in the southern regions of the countries (Figure 2-1).

Buruli ulcer is endemic in Benin and Togo, but limitations exist regarding data
corresponding to disease incidence in Togo. Therefore, this study used BU case data and
corresponding environmental data from Benin to predict BU risk across the landscape, into
regions within the boundary of Togo.

The Republic of Benin is a coastal country located in West Africa along the Gulf of
Guinea, bounded by the countries of Togo, Burkina Faso, Niger, and Nigeria. Benin is a former
French colony that gained independence on August 1, 1960. The country encompasses a total
surface area of 112,622 sq km, with 110,622 sq km of land and 2,000 sq km of water (CIA). The
2010 estimated population is 9,056,010 people, and the average life expectancy at birth is 62.3
years for women and 60.1 years for men (United Nations Statistical Division). French is the
official language in Benin, but several groups speak local, indigenous languages, including the

Fon, Yorouba, Boun, Bariba, Somba, Aizo, Mina, and Dendi (United Nations Benin, 2010).
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Figure 2-1. Togo and Benin administrative districts included in study area

Subsistence farming is the main form of agriculture production, but for-profit agriculture
products include cotton, corn, cassava, yams, beans, palm oil, peanuts, cashews and livestock
(CIA). Benin’s landscape consists primarily of woodland and savannas, followed by cultivated

woodland and shrub savanna, then fallow fields mixed with cultivated fields; semi-deciduous
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forests are present in the southern region of the country and occupied an estimated 1-2% of the
land surface in 2007 (USAID, 2007). Deforestation and environmental degradation is an ongoing
problem in Benin, and the landscape continues to change rapidly. Food-crop and cotton
cultivation expanded by 265% and 79% between 1986 and 1997, while firewood extraction and
charcoal production contributed to a 30,000 ha per year deforestation rate, along with additional
deforestation taking place to construct fish corrals (USAID, 2007).

Southern Benin falls within an a sub-equatorial climate zone, often referred to as the
Dahomey Gap, with bimodal seasonal distributions; two rainy seasons extend from April to July
and from September to November, while two dry seasons extend from December to March and

in the month of August each year (Dossou and Gléhouenou-Dossou, 2007).

2.2 BU Case Data

The Programme National de Lutte contre la Lépre et ['ulcére de Buruli (PNLLUB)
provided a subset of Benin 2004 and 2005 BU positive and BU negative villages to use in this
analysis. Processing of these data included three levels. Initially, volunteers and trained
personnel reported cases at the village level under the supervision of health care workers from
nearby facilities, and then a trained nurse reported cases at the regional level using BU02
standardized forms, which were then summed quarterly at the national level (Sopah et al. 2007).

A total of 292 villages, 183 positive and 109 negative, from the data subset were located
within the study area (Figure 2-2); 558 cases occurred total, ranging between 1 case per village
to 29 cases per village. A village was identified as positive if at least one case occurred in 2004
or 2005. The data set consisted of BU case counts, population counts, and latitude and longitude

coordinates of villages. No correlation between population and BU incidence existed.
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Figure 2-2. Benin 2004 and 2005 BU case data subset

Wagner et al. (2008a) identified disease clusters with higher than expected and lower
than expected BU rates located across southern Benin using the same data set. A primary cluster
comprised of higher than expected BU rates was located across the Atlantic, Zou, and Couffo

districts and falls within the study area for this analysis.

2.3 Satellite imagery and derivatives
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Land use and land cover data was derived from December 13, 2000 Landsat ETM+
imagery obtained from the University of Maryland Global Land Cover Facility
(http://glct.umiacs.umd.edu/index.shtml). The imagery was geometrically rectified and projected
(UTM Zone 31N) before performing an unsupervised classification (Lillesand and Kiefer, 2000)
using an ISODATA algorithm with100 initial classes on the principal axis, set to approximate
true color for 10 iterations or 0.95 convergence in Erdas Imagine software program. The initial
100 classes were then reduced to 22 classes, which were then reduced further to 10 classes,
following Anderson’s Level I classification scheme, with the exception of a mixed class and the
agriculture class (Table 2-1; Figure 2-3; Anderson, 1976). The final classification consisted of
three mixed agriculture classes because a dominant agriculture class did not emerge from the
classification algorithm and a mixed class that included pixels classified with greater than two
categories. Execution of a 5x5 statistical majority filter helped to eliminate classification noise
(Mather, 2004).

Lack of ground truth data points from this region and during this time period limited the
ability to assign spectral signatures to specific land cover categories; therefore, visual
interpretation methods were used to delineate land cover classes and aggregated land cover

classes were intended to help mitigate classification error.
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Table 2-1. Land use and cover classification categories

Land Use and Land Cover Classes

Class

Number Class Name Class Description

1 Urban Mixed Urban or Built-up Land, Other Urban or Built-up
Land, Transportation

2 Not Present Agriculture: see classes 9, 10, and 11

3 Rangeland Shrub and Brush Rangeland: Shrub and Shrubland

4 Forest Riparian Forest, Evergreen Forest, Forest

> Water Streams and Canals, Lakes, Reservoirs, Bays and Estuaries
Wetland and Forested and Non-forested Wetland:

6 Wetland Water/Wetland, Wetland/Shrub, Wetland/Riparian
Vegetation

7 Barren Sand/Salt

] Mixed Evergreen/Ag/Shrub, Shrub/Ag/Wetland,
Wetland/Shrub/Urban, Shrub/Ag/Urban

9 Agriculture 1 | Shrub/Agriculture

10 Agriculture 2 | Agriculture/Forest

11 Agriculture 3 | Agriculture/Urban

Class categories correspond to Level I classification scheme except for class 8 (Mixed)
and classes 9-11 (Mixed Agriculture) (Anderson et al., 1976)

Quantifying landscape patterns within concentric polygons is a common approach in
landscape analyses (see Condeso and Meentemeyer, 2007; Graham et al., 2004; Danson et al.,
2004; Brownstein et al., 2005; Wagner et al., 2008a, Wagner et al., 2008b). Concentric polygons

with radii set at 100m intervals, from 400m to 2k, from village centroids acted as buffers from

which LULC classification data was obtained for pattern analysis (Figure 2-4).
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Figure 2-3. Land use and land cover classification.

The LULC within each buffer was clipped and reformatted for compatibility within
FRAGSTATS software package. A total of 292 individual buffers representing each village

location were created at each distance interval, with 16 distance intervals total.
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Figure 2-4. Concentric buffers example

Compound topographic index, or wetness index, derivation was completed using 30m
resolution ASTER Global Digital Elevation Model data (https://wist.echo.nasa.gov/wist-
bin/api/ims.cgi?mode=MAINSRCH&JS=1). DEM sinks were filled, and elevation slope was

calculated in degrees using ArcGIS software program. Flow direction was modeled using a D-8
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algorthim (O’Callaghan and Mark, 1984) from which flow accumulation and the wetness index
were calculated using the following equation (Equation 2-1; Beven and Kirby, 1979):
Equation 2-1
wi = ln(AS / tan f3)
where AS is the catchment area at a point, or flow accumulation, and tan £ is the local slope

gradient (Figure 2-5; Schmidt and Persson, 2003). Wetness index averages within each buffer

were calculated using the Zonal Statistics function within Hawth’s Tools in ArcGIS.

BU Positive A High Wetness Index Value 1l
BU Negative® Low Wetness Index Value []

Figure 2-5. Wetness index map.
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2.4 Statistical Modeling

Model sets were created at the landscape level, characterizing landscape configuration for
all classes across the study area, and at the class level, characterizing landscape configuration for
specific classes across the study area.

Following the integrated approach of Yang et al. (2008), a landscape analysis approach
and a hierarchical Bayesian spatial modeling approach employing Markov Chain Monte Carlo
(MCMC) simulation were used to identify important covariates and to predict the spatial
distribution of BU risk across the study domain. Figure 2-6 outlines the methods and approaches

used to generate the final predictive surface.

2.5 Landscape-level Configuration Analysis

A variety of landscape-level metrics were calculated within FRAGSTATS software
package using the clipped LULC data. These calculations employed an 8-neighbor rule that
included neighboring cells with flat adjacencies and those with diagonal adjacencies to the focal
cell (Gergel and Turner, 2002). The ability to characterize potential human disturbances to the
landscape expressed through relatively high fragmentation values, potential for ecological edge
effects, and potential biodiversity loss provided the basis for landscape metric selection (Table

2-2).
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Figure 2-6. Methods and approaches used for final model generation
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Table 2-2.Initial landscape metrics calculations.

Landscape-level Initial Landscape Metrics

Metric Abreviation Description Interest
Landscape Shape Standardized aggregation .
Index LSI index based on total edge Fragmentation

Standardized land cover Altered land
Shape Index Mean | SHAPE MN patch edge complexity

cover shapes

measurement

Fractal Dimension Land cover patch edge Altered land
FRAC_MN .

Index Mean - complexity measurement  cover shapes
Perl‘meter-to-area PARA MN Land cover shape Altered land
Ratio Mean - complexity measurement cover shapes
Perpent Land Cover PLANDI Land cover type Fragmentation
Adjacency aggregation measurement
Patch Richness PRD Sjcande'lrdlzed landcover Heterogeneity
Density diversity measurement
Shannon's Diversity SHDI Land cover diversity Heterogeneity
Index measurement

Measures number of
Number of Patches | NP individual patches present Fragmentation

in area

Redundancy among landscape metrics is a common problem (Riitters ef al., 1995);
therefore, a Spearman’s rank order correlation matrix identified mulitcolinearity between
metrics, and only those metrics that exhibited an r < 0.60 with one another across all distance
intervals were selected for candidate regression models. Correlation matrices generated for this
study are available in Appendix A.

Metrics were divided into groups representing shape complexity, potential fragmentation,
and land cover diversity. Candidate model generation used non-spatial binomial generalized
linear regression models (GLMs) with BU rates as the response variable and landscape metric
values and average wetness index values as independent variables. BU rates were derived by

dividing BU counts by the total population at each location. The binomial GLM model
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distribution is ¥, | p;~ binomial (ni , pl.) where P is the success probability and links to the

regression covariate xi through a logit transformation (Equation 2-2; SAS/STAT(R)):
Equation 2-2

Pi
I-p

log it(pl.) = log( )=a+ ,Bxl.

I

Nested models were generated at 100m distance intervals from 400m to 2k; data was not
combined across distances. High leverage points were identified using Cook’s distance measure,
and data locations with a value > 1.0 that impacted sign direction and model results substantially
were removed from the data set (Cook, 1977). Fourteen high leverage points were removed from
the landscape-level analysis, and removal of high leverage points at the class-level occurred on
an individual model basis (Appendix B). Final candidate models consisted of data points that
were never high leverage points at any distance interval between 400m and 2k. Observations of
Akaike Information Criterion (AIC) values (Akaike, 1974) determined the “best model” to use in
the final analysis. Two “best” model sets were created at the landscape-level because metrics
representing diversity and fragmentation were correlated with one another, but both model sets
demonstrated explanatory potential. Complete non-spatial candidate model results are available

in Appendix C.

2.6 Landscape-level Configuration Analysis Predictor Variables

Characterization of land cover shape complexity used the shape index mean. Selection of
the shape index mean over the fractal dimension index mean occurred because the fractal

dimension index mean has the potential to introduce bias when working with small areas, as was
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the case when working with buffers with shorter radii from village centers (Turner, 2005). Shape
index mean values characterize land cover patch shape complexity using an equation that adjusts
for a square standard, thereby eliminating problems introduced from changing perimeter-to-area
ratios (McGarigal and Marks, 1995). The shape index mean is calculated in FRAGSTATS
software package as follows (Equation 2-3):

Equation 2-3
p..

SHAPE =— Y
min pij

where pij = perimeter of patch IJ in terms of number of cell surfaces and pij = minimum

perimeter of patch IJ in terms of number of cell surfaces. Values closer to 1.0 indicate more

uniformly-shaped land cover patches with complexity increasing as values increase. A plot of the
shape index mean surface at the landscape level plotted areas with more uniform patch shapes in

blue and more complex shapes in red (Figure 2-7).
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Figure 2-7. Shape index mean surface

Number of patches is a measurement of potential habitat fragmentation. Number of
patches is calculated within FRAGSTATS as follows (Equation 2-4):

Equation 2-4
NP =N

where NP is equal to the number of patches in a landscape and N is equal to the number of
patches in the landscape (McGarigal and Marks, 1995). High numbers of patches correspond to
greater fragmentation potential, while lower numbers of patches indicate a more aggregated
landscape. No background or border cells were included in the calculation, and patch attributes,

for example total area or land cover type, were not described in this metric (Figure 2-8).
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Figure 2-8. Number of patches surface

Average wetness index value was the third landscape-level predictor variable. As
outlined above, a wetness index identifies areas in a landscape where water is likely to
accumulate during a precipitation event (See Equation 1; Bevin and Kirby, 1979). High wetness
index values indicate greater accumulation potential, while low wetness index values indicate a
lower accumulation potential. A plot of wetness index values across the study region highlights
areas of high accumulation potential in blue and areas with low accumulation potential in red

(Figure 2-9).
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Figure 2-9.Wetness index average surface

Limitations of mean approaches include the possibility of unusually high or low values
within a buffer distance affecting the mean value disproportionately, although using a large
number of data locations and the elimination of high leverage points was intended to help
mitigate this problem.

The patch richness density metric quantifies the number of different land cover types in a
landscape and then standardizes this measurement in order to facilitate comparison across
landscapes (McGarigal and Marks, 1995). Patch richness density was calculated in

FRAGSTATS as follows (Equation 2-5):
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Equation 2-5
m
PRD ==(10,000)(100)

where 71 = number of patch types present in the landscape, excluding the landscape border if

present and A =total landscape area m2 (McGarigal and Marks, 1995). Higher values represent
more diverse landscapes, while lower values represent more homogeneous landscapes. Regions
with higher numbers of land cover types were plotted in red and those with lower numbers of

land cover types were plotted in blue in Figure 2-10.
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Figure 2-10. Patch richness density surface

47



2.7 Class-level Configuration Analysis

Additional model generation at the class-level included predictor variables characterizing
land cover patch configurations corresponding to specific land cover types. Shape index mean
values and an additional variable group characterizing class-level fragmentation were calculated

in FRAGSTATS (Table 2-3).

Table 2-3. Class-level initial landscape metric candidates

Class-level Initial Landscape Metrics

Metric Abbreviation Description Interest
Shape Index Standardized land cover Altered land cover
p SHAPE MN patch edge complexity
Mean shapes
measurement
Landscape Shape Standardized aggregation .
Index LS index based on total edge Fragmentation
Percent Land 1}y \\pyy  Land covertype Fragmentation
Cover Adjacency aggregation measurement
Measures number of
Number of NP individual patches present Fragmentation
Patches . p p &
in area
Clumpiness CLUMPY Land cover type Fragmentation
Index aggregation measurement
Aggregation Al Land cover type Fragmentation
Index aggregation measurement

As outlined in the landscape-level analysis, a Spearman’s rank order correlation matrix
identified potential multicolinearity between variables (Appendix A), and non-spatial binomial
GLMs were generated for land cover types using BU rates as the response variable and
landscape metric values corresponding to specific land cover classes as independent variables.
Three land cover classes were explored: agriculture/forest, forest, and wetland because these land
cover classes represented land cover types or uses noted in the literature as having anecdotal or

empirical links to BU incidence in past studies.
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Data sets changed as distance increased from village centers because a buffer at a 400m
distance did not necessarily contain forest patches, while a buffer at 2k might contain several
forest patches. Therefore, models were produced individually for each land cover type within
buffers at 800m, 1 2k, 1 6k, and 2k distances. Identification of high leverage points occurred on
an individual model basis using Cook’s distance measure (Appendix B); therefore, a “best”
model for each distance interval was not identified using lowest AIC values, but was determined

by variable significance values.

2.8 Class-level Configuration Analysis Predictor Variables

Shape index mean acted as a predictor variable to quantify relationships between land
cover patch shape complexity and BU rates. Calculation of this metric was identical to the
landscape-level shape index mean (Equation 3) with the exception of quantifying individual
classes rather than all classes encompassing the landscape across the study region.

Percent land cover adjacency measured land cover class aggregation (Equation 2-6)

Equation 2-6

%ij
PLADJ =| ————
m
2 &y
k=1
where &-: _ the number of like adjacencies (joins) between pixels of patch type (class) I based

U =
on a double-count method, and & ik = the number of adjacencies (joins) between pixels of patch

types (classes) I and k are based on a double-count method (McGarigal and Marks, 1995).
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High PLADJ values represent a more aggregated land cover class, while low PLADJ values
represent a more fragmented land cover class. An example of PLADIJ for the 2k wetland class
demonstrates high aggregation values in the northern study area plotted in red, and low

aggregation in the southeastern corner of the study area plotted in blue (Figure 2-11).
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Figure 2-11. Percent land cover adjacency surface 2k wetland class

The landscape shape index (LSI) is another land cover patch aggregation measurement.

LSI was calculated within FRAGSTATS using the following equation (Equation 2-7):
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Equation 2-7
e.

LSI=—+—
min €l.

where ei — total length of edge (or perimeter) of class [ in terms of number of cell surfaces,

includes all landscape boundary and background edge segments involving class I, and

min ei = minimum total length of edge (or perimeter) of class [ in terms of number of cell

surfaces (Figure 2-12; McGarigal and Marks, 1995).
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Figure 2-12. 1_2k agriculture/forest class landscape shape index surface
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2.9 Spatial GLM

The binomial GLMs used to identify significant BU rate predictor variables assumed
model residuals were independent and identically distributed across the study domain (Keitt et
al., 2002). While this approach is adequate in the absence of spatial autocorrelation in model
residuals, this assumption was unrealistic given the spatial structure of the observations and the
heterogeneity of the environmental covariates (Boyd et al., 2005).

In order to mitigate this problem, a hierarchical modeling approach was used to adapt the
non-spatial GLM with a correlation matrix based on the spatial structure of the model residuals,
adding a spatial random effects component that accounted for missing, spatially-structured
covariates (Waller and Gotway, 2004).

Our interest was in modeling the number of cases Y (s)at 7 observed locations. Here,

S denotes the geographic location, assuming s € D < 9?2 . A setof P spatially referenced
predictors X(S) were calculated at each location. Given the population at each location, N(s),

we assumed Y (s) followed a binomial distribution. For the I -th location

¥ (Si) | 77(51-) ~ Binomial(N (Si ),P(U(Sl- ) where p(77(Sl. ) is the success probability at $ ;
and 77(Sl-) = X(Sl-)',B + W(Sl-) . A logit link function
p((s ; )) =exp(7(s ; N/ A+ eXP(’?(Sl- ))) was assumed for this model.

The process specification for W(ss) is a mean 0 Gaussian Process with covariance

function, C (S1 ) S2) , denoted GP(0,C (Sl ) S2 )) . In application, we specify
C(Sl S 2) =0 2 p(Sl, S 2; @) where p(:; ¢) is a correlation function and @ is the spatial decay
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parameter. The exponential spatial correlation was assumed for p(-) . Prior distributions on the
remaining parameters complete the hierarchical model. Customarily, the regression effect f is

assigned a multivariate Gaussian prior, (i.e. 8~ N(u B 2. [3) , while the latent variance

component 02 is assigned /G(:,-) priors. The process correlation parameter, @ , was assigned an

informative prior (e.g., uniform over a finite range) based upon the underlying spatial domain.

Model parameter distributions were estimated using Markov Chain Monte Carlo
(MCMC) methods employing an adaptive Metropolis (AM) algorithm with a 43% acceptance
rate. MCMC employs an iterative sampling process, the goal of which is to converge to a
stationary state representing the target distribution, or in the Bayesian approach, the true
distribution of the model parameters, from which inference may be drawn (Brooks and Gelman,
1998).

The AM algorithm differs from a traditional Metropolis algorithm because accumulated
information from all previous chains are incorporated into each sampling iteration as opposed to
only the prior chain’s information contributing to the calculation (Brooks and Gelman, 1998).
This sampling method speeds convergence, or the point at which equilibrium between parameter
mean and variance commences.

Starting values were obtained from non-spatial models and posterior inference was based
on 3 chains at 500,000 post burn-in iterations measured at 1 2k, 1 6k, and 2k for landscape-level
models, and 3 chains at 50,000 to 100,000 iterations measured at 800m, 1 2k, 1 6k, and 2k for
the class-level models, depending on the individual model. Burn-in occurred at 10,000 iterations

and thinning took place at every 100 samples. All model generation was completed using the
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spGLM function in spBayes R package, and summaries are available in Appendix D of this
document.

The Gelman-Rubin diagnostic measure assessed model convergence within 5,000
MCMC sample iterations. This diagnostic observed within chain and between chain variance
with values closer to 1.0 indicating that convergence likely took place (Brooks and Gelman,
1998).

Comparison of deviance information criterion (DIC) values from non-spatial models and
from spatial models determined whether the spatial models achieved a better fit. A similarity
exists between DIC values and AIC values; a lower DIC value indicates a better model fit, but
DIC value are used with Bayesian hierarchical models because they can be calculated from

MCMC samples directly (Spiegelhalter et al., 2002).

2.10 Model Verification

A random sample consisting of 10% of village locations was withheld from each model
data set for verification purposes. Spatial GLMs were calculated at the landscape-level at 1 2k,
1_6k, and 2k distance intervals using 90% of the data set as training locations, and at the class-
level at 800m, 1_2k, 1 6k, and 2k distance intervals using 90% of the data set as training
locations. Training model results predicted BU rates at the remaining 10% verification data set
locations using the spPredict function in spBayes R. Predicted values were compared to actual
values at these locations, and a root mean squared error (RMSE) determined the model that

achieved the best fit (Figure 2-8).
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Equation 2-8

mo. 2
RMSE = 2 \|(3;(s )=y, (s )" /m
i=1

where )A/ (S o) are the estimated rates, (S, ) are the actual rates, and 771 is equal to the number of

data points (Bolstad, 2005). The model exhibiting the lowest RMSE value was chosen as the

“best” model from which to predict to new, unsampled data locations.

2.11 Risk Surface

A BU risk surface was created employing Bayesian, or model-based, kriging methods
using samples drawn from the mean posterior distribution of the predictor variables from the best
spatial binomial GLM to predict BU rates at new, unsampled locations. Incorporation of the
random spatial effects component accounted for unknown predictor variables and spatial
autocorrelation, improving prediction accuracy.

Kriging is a geostatistical interpolation method that uses data from observed locations to
predict to new, unsampled locations (Schabenberger and Gotway, 2005). Kriging is a
probabilistic approach; therefore, it has standard errors associated with model predictions,
enabling quantification of uncertainty related to model outputs (Waller and Gotway, 2004).
Several kriging approaches exist. A Bayesian kriging approach differs from traditional kriging
approaches because model parameters are treated as random variables rather than estimated
(Helbert et al., 2009), and while traditional kriging methods ignore uncertainty introduced when
estimating the covariance structure, Bayesian kriging incorporates parameter uncertainty into

model predictions (Moyeed and Papritz, 2002).
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A total of 1030 new locations generated at Skm intervals within the boundary of the study

area represent locations to which BU rates were predicted (Figure 2-13). Gaps in new location
points represent areas where derivation of predictor variables could not occur because a lack of

data existed corresponding to the “best” model covariates and distance interval.

observed locations
new locations

[ | study area

A
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Figure 2-13. New locations and observed locations used to create risk surface




Circular buffers with radii equal to the best-fitting spatial model were created
surrounding each new location, and a polygon created at approximately Sk inside the study area
boundary prevented the introduction of uncertainty due to potential edge effects (Haase, 1995).
Derivation of predictor variables followed methods outlined in section 2.4, and a surface based
on the mean posterior predictive distribution and associated uncertainty was created across the
entire study area using the spPredict function in spBayes R.

A population of 100,000 persons was assumed at each location to calculate meaningful
rates, although these locations were not necessarily occupied by villages or residents. These
location points were generated to characterize risk associated with landscape variables across the
study region, but do not suggest that BU transmission is taking place. Unreliable and incomplete
population data and villages with questionable coordinate information prompted pseudo-location

generation.
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Chapter 3 RESULTS

3.1 Non-Spatial vs. Spatial Model Results

Spatial model results determined that several non-spatial models overestimated the

significance of one or more predictor variables, indicating that spatial autocorrelation was

present in model residuals. Lower DIC values corresponding to the spatial GLMs compared to

the non-spatial GLMs demonstrated that the spatial models achieved a better fit in every

circumstance (Table 3-1).

Table 3-1. Non-spatial and spatial GLM DIC values.

DIC Value
Post Non-
Scale Model Variables Burn-in  Spatial Spatial

WIAVG + SHAPE _MN +

1 2k PRD 500,000 | 7542.948 | 6774.835
WIAVG + SHAPE _MN +

1 2k NP 500,000 | 7558.832 | 6775.580
WIAVG + SHAPE _MN +

Landscape- |1 6k PRD 500,000 | 7526.302 | 6775.539
level WIAVG + SHAPE MN +

1_6k NP 500,000 | 7558.955 | 6777.154
WIAVG + SHAPE_MN +

2k PRD 500,000 | 7533.240 | 6776.804
WIAVG + SHAPE _MN +

2k NP 500,000 | 7539.006 | 6777.211

800 Forest SHAPE MN + PLADJ 100,000 | 1927.261 | 1780.473

800 Wetland SHAPE _MN + PLADJ 50,000 | 3918.085 | 3483.809

800 Ag/Forest SHAPE MN + LSI 50,000 | 2000.561 | 1859.042

1 2k Forest SHAPE _MN + LSI 100,000 | 3661.611 | 3289.170

1 2k Wetland SHAPE MN + LSI 100,000 | 5335.240 | 4781.834

Class-level 1 2k Ag/Forest SHAPE _MN + LSI 100,000 | 3901.120 | 3644.391

1_6k Forest SHAPE MN 50,000 | 3668.271 | 3257.107

1_6k Wetland SHAPE MN + LSI 100,000 | 5937.132 | 5218.884

1_6k Ag/Forest SHAPE MN + LSI 50,000 | 4344.966 | 4071.081

2k Forest PLADJ 50,000 | 4394.660 | 3883.277

2k Wetland PLADJ 50,000 | 6558.870 | 5780.372

2k Ag/Forest SHAPE MN + LSI 50,000 | 4712.282 | 4316.881
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Table 3-2 provides a comparison of non-spatial and spatial model variable significance

results, with full model results available in Appendices C and D.

Table 3-2. Non-spatial vs. spatial binomial GLM variable significance.

Significance
Non-Spatial  Spatial
Model Variable Model Model
Wetness index average Y N
1 2k LS Shape Index Mean Y N
Number of Patches Y N
Wetness index average Y N
1 2k LS Shape Index Mean Y N
Patch Richness Density Y Y
Wetness index average Y N
1 6k LS Shape Index Mean Y N
Landscape- Number of Patches Y Y
level Wetness index average Y N
1 6k LS Shape Index Mean Y N
Patch Richness Density Y N
Wetness index average Y Y
2k LS Shape Index Mean Y Y
Number of Patches Y N
Wetness index average Y Y
2k LS Shape Index Mean Y N
Patch Richness Density Y N
Shape Index Mean Y N
800m Forest Percent Land Cover
Adjacency Y N
800m Wetland Shape Index Mean Y Y
800 Shape Index Mean Y Y
Agriculture/Forest | Landscape Shape Index Y Y
1 7k Forest Shape Index Mean Y Y
Class-Level - Landscape Shape Index Y N
1 7k Wetland Shape Index Mean Y N
- Landscape Shape Index Y N
1 2k Shape Index Mean Y Y
Agriculture/Forest | Landscape Shape Index Y Y
1 6k Forest Shape Index Mean Y N
Shape Index Mean Y N
1_6k Wetland Lanl()iscape Shape Index Y N
1 6k Shape Index Mean Y Y
Agriculture/Forest | Landscape Shape Index Y Y
Percent Land Cover
2k Forest v v

Adjacency
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Significance
Class-Level Non-Spatial Spatial
Model Variable Model Model
Percent Land Cover
2k Wetland Adjacency Y N
2k Shape Index Mean Y Y
Agriculture/Forest Landscape Shape Index Y Y

3.2 Model Output Interpretation

Model results contain two components. The first component consists of a table reporting
variable significance for each model under the Bayesian credible interval approach. Similarities
exist between credible interval interpretations used in Bayesian statistical analyses and
confidence interval interpretations used in frequentist statistical approaches, although exact
meanings vary between the two approaches (Bland and Altman, 1998). The Bayesian approach
determines that a 95% probability exists that a value lies within a distribution, while the
frequentist approach assumes that a population value is fixed and then constructs a 95%
confidence interval around the fixed value.

Under a Bayesian approach, when parameter value directions do not change between the
lower 2.5% and the upper 97.5% credible tails, the variable may be interpreted as significant at a
95% confidence level; for example, in this study, patch richness density maintained a positive
direction in both tails at a 1 2k distance (Table 3-3), indicating that BU rates increased as patch
richness density increased. The output tables also include the effect range which is the distance at
which the spatial correlation drops to 0.05 (i.e., -log(0.05)/phi).

The second model output component consists of a Gelman-Rubin diagnostic table that
outlines the likelihood that convergence took place within 5,000 MCMC sample iterations.

Values close to 1.0 indicate that convergence likely took place.
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3.3 Landscape-level Configuration Analysis Results

The following tables and figures outline spatial GLM landscape-level results. No models
maintained significance in all variables under the spatial modeling framework, but four out of six
models maintained significance in at least one variable. The first model to maintain a significant
variable was the 1 2k patch richness density model mentioned above. Results indicated that as
patch richness density increased, BU rates increased, although wetness index average and shape
index mean values were no longer significant under the spatial modeling framework (Table 3-3).

Table 3-3. 1 2k number of patches spatial binomial GLM model summary

Summary 1 2k Landscape-level 3 Chains at 500,000

Parameters 50.0% 2.5% 97.5%
Intercept -12.94  -14.991 -7.244
Wetness Index Average 0.151 -0.035 0.223
Shape Index Mean 0.913 -2.765  2.487
Patch Richness Density 2.397 1.458 2.89
sigma.sq 3.285 3.097 3.922
Phi 24388  13.647 29.623
effective range 3/phi 0.123 0.101 0.224
max intersite distance 1.254

The Gelman-Rubin diagnostic measure determined that convergence likely took place
with values presenting close to 1.0 in all parameters (Table 3-4).

Table 3-4. Gelman diagnostic 1 2k patch richness density model

Gelman-Rubin Diagnostic 1 2k Landscape-level

Point 97.5

est. quantile
Intercept 1.13 1.39
Wetness Index Average 1.00 1.01
Shape Index Mean 1.12 1.34
Patch Richness Density 1.01 1.03
sigma.sq 1.00 1.00
phi 1.03 1.03

Multivariate psrf = 1.08
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The second model that maintained significance in one variable was ata 1 6k distance
(Table 3-5). Results indicated that a relationship exists between high BU rates and a higher
number of patches surrounding villages within a 1 6k distance. Wetness index average and
shape index mean values were no longer significant.

Table 3-5. 1 6k number of patches spatial binomial GLM model summary

Summary 1 6k Landscape-level 3 Chains at 500,000

Parameters 50.0% 2.5% 97.5%
Intercept -11.107  -12.728 -9.653
Wetness Index Average 0.077  -0.004  0.241
Shape Index Mean 1.586  -0.645  2.052
Number of Patches 0.007 0.004 0.009
sigma.sq 341 2.698 4.21
Phi 21.639  21.517 46.297
effective range 3/phi 0.139 0.067  0.139
max intersite distance 1.254

The Gelman-Rubin diagnostic calculation determined that convergence likely took place
in all model parameters (Table 3-6).

Table 3-6. Gelman diagnostic 1 6k numbers of patches model

Gelman-Rubin Diagnostic 1 6k Landscape-level

Point 97.5

est. quantile
Intercept 1.05 1.15
Wetness Index Average 1.01 1.03
Shape Index Mean 1.06 1.16
Number of Patches 1.01 1.02
sigma.sq 1.00 1.01
Phi 1.02 1.02

Multivariate psrf = 1.03

Results from the spatial model including wetness index average, shape index means, and

numbers of patches at a 2k distance maintained significance in two variables (Table 3-7). Results
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suggested that higher wetness index averages and more uniformly-shaped land cover patches
surrounded villages with higher BU rates within a 2k distance of village centers.

Table 3-7. 2k numbers of patches spatial binomial GLM model summary

Summary 2k Landscape-level 3 Chains at 500,000

Parameters 50.0% 2.5% 97.5%
Intercept -9.084 -10.252 -7.187
Wetness Index Average 0.254 0.213  0.268
Shape Index Mean -1.021  -1.996 -0.095
Number of Patches 0.000  -0.001  0.006
sigma.sq 3411 3.109  3.430
Phi 24.873  17.339 29.020
effective range 3/phi 0.121 0.104 0.174
max intersite distance 1.254

A Gelman-Rubin diagnostic calculation determined that convergence likely took place in
all model parameters (Table 3-8).

Table 3-8. Gelman diagnostic 2k number of patches model

Gelman-Rubin Diagnostic 2k Landscape-level

Point 97.5

est. quantile
Intercept 1.09 1.27
Wetness Index Average 1.00 1.01
Shape Index Mean 1.10 1.30
Number of Patches 1.01 1.04
sigma.sq 1.00 1.01
phi 1.03 1.03

Multivariate psrf=1.07

The final model to maintain significance in at least one variable also occurred at a 2k
distance (Table 3-9). This model included wetness index averages, shape index means, and patch
richness density values. Results suggested that a positive relationship exists between higher BU
rates and higher wetness index values within a 2km distance of village centers, but shape index

mean values were not significant.
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Table 3-9. 2k patch richness density spatial binomial GLM summary

Summary 2k Landscape-level 3 Chains at 500,000

Parameters 50.0%  2.5% 97.5%
Intercept -8.986 -9.983 -7.754
Wetness Index Average 0.126 0.111 0.283
Shape Index Mean -0942 -1.411 0.711
Patch Richness Density -0.273  -1.831 2.954
sigma.sq 3251 3.010 3.886
Phi 22260 21.599 26.227
effective range 3/phi 0.135 0.115 0.139
max intersite distance 1.254

The Gelman-Rubin diagnostic measure determined that convergence likely took place in
all parameters with the exception of the shape index mean, which had a value of 2.10 (Table
3-10).

Table 3-10. Gelman diagnostic 2k patch richness density model

Gelman-Rubin Diagnostic 2k Landscape-level

Point 97.5

est. quantile
Intercept 1.38 2.10
Wetness Index Average 1.00 1.00
Shape Index Mean 1.38 2.10
Patch Richness Density 1.00 1.01
sigma.sq 1.02 1.06
phi 1.05 1.08

Multivariate psrf=1.26

3.4 Class-level Composition and Configuration Analysis

Seven out of twelve class-level candidate models maintained significance in all model
variables under the spatial modeling framework, the results of which are outlined in following

tables.
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Results from the 800m wetland class model (Table 3-11) indicated that a relationship
exists between high BU rates and wetland patches with high patch shape complexity.

Table 3-11. 800m wetland class spatial model results

Summary 800m Wetland 3 Chains at 50,000

Parameters 50.0% 2.5% 97.5%
Intercept -10.022  -10.095 -8.918
Shape Index Mean 0.986 0.722  1.096
sigma.sq 3.503 3.158  3.869
Phi 15.224  12.006 21.354
effective range 3/phi 0.197 0.141 0.251
max intersite distance = 1.260

The Gelman-Rubin diagnostic (Table 3-12) indicated that convergence likely took place
in all model parameters with values presenting close to 1.0.

Table 3-12. 800m wetland class convergence diagnostic

Gelman-Rubin Diagnostic 800m Wetland

Point

est. 97.5 quantile
Intercept 1.02 1.07
Shape Index Mean 1.01 1.02
sigma.sq 1.00 1.01
Phi 1.02 1.02

Multivariate psrf = 1.03

Results summarizing the 800m agriculture/forest class model (Table 3-13)
suggested that a relationship exists between mixed agriculture/forest land cover patches with

more complex shapes that are highly aggregated with one another and higher BU rates.
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Table 3-13. 800m agriculture/forest class spatial model results

Summary 800m Agriculture/Forest 3 Chains at 50,000

Parameters 50.0% 2.5% 97.5%
Intercept -8.868 -9.844 -8.245
Shape Index Mean 2.319 1.774 2.500
Landscape Shape Index -0.549 -0.776 -0.192
sigma.sq 1.345 1.142 2.309
Phi 283.921 234.639 551.114
effective range 3/phi 0.011 0.006 0.013

The Gelman-Rubin diagnostic (Table 3-14) indicated that convergence likely took place

with all values presenting close to 1.0.

Table 3-14. 800m agriculture/forest class convergence diagnostic

Gelman-Rubin Diagnostic 800m Agriculture/Forest

Point

est. 97.5 quantile
Intercept 1.01 1.01
Shape Index Mean 1.01 1.02
Landscape Shape Index 1.00 1.00
sigma.sq 1.00 1.00
phi 1.00 1.00

Multivariate psrf = 1.00

The 1_2k forest model (Table 3-15) indicated that more complex forest shapes and more
aggregated forest patches surround villages with higher BU rates within a 1 2k distance from

village centers.
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Table 3-15. 1 2k forest spatial model results

Summary 1 2k Forest 3 Chains at 100,000

Parameters 50.0% 2.5% 97.5%
Intercept 11.411 15.723  -8.792
Shape Index Mean 3439 1.076 6.52
Landscape Shape Index -0.31  -0.45 -0.07
sigma.sq 4392 4304 4.449
Phi 75.14 18.076 189.105
effective range 3/phi 0.04 0.017 0.191

Max intersite distance = 1.260

Gelman-Rubin diagnostic results indicated that convergence likely took place in all
parameters with the exception of the shape index mean, which had a value of 2.15 (Table 3-16).

Table 3-16. 1 2k forest class convergence diagnostic

Gelman-Rubin Diagnostic 1 2k Forest

Point
est. 97.5 quantile
Intercept 1.46 2.34
Shape Index Mean 1.41 2.15
Percent Land Cover Adjacency 1.03 1.11
sigma.sq 1.00 1.01
Phi 1.02 1.08

Multivariate psrf=1.28

The 1_2k mixed class agriculture/forest model indicated that a relationship exists
between villages with high BU rates and agriculture/forest land cover patches with complex

shapes that are highly aggregated within a 1 2k distance from village centers (Table 3-17).
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Table 3-17. 1 2k agriculture/forest spatial model results

Summary 1 2k Agriculture/Forest 3 Chains at 100,000

Parameters 50.0% 2.5%  97.5%
Intercept -9.096 -10.403  -6.957
Shape Index Mean 2.240 0.555 3.582
Landscape Shape Index -0.255 -0.424  -0.242
sigma.sq 1.547 1.112 1.733
Phi 449.736  319.780 592.320
effective range 3/phi 0.007 0.005 0.009

max intersite distance = 1.230

The Gelman-Rubin diagnostic measure (Table 3-18) indicated that convergence likely

took place with all values presenting close to 1.0.

Table 3-18. 1_2k agriculture/forest class convergence diagnostic

Gelman-Rubin Diagnostic 1 2k Agriculture/Forest

Point

est. 97.5 quantile
Intercept 1.04 1.14
Shape Index Mean 1.05 1.15
Landscape Shape Index 1.00 1.01
sigma.sq 1.00 1.00
Phi 1.00 1.00

Multivariate psrf = 1.04

Results corresponding to the 1 _6k agriculture/forest model (Table 3-19) suggested that a
relationship exists between higher BU rates and more complexly-shaped agriculture/forest land

cover patches that are aggregated with one another within a 1 6k distance from village centers.
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Table 3-19.1 6k agriculture/forest spatial model results

Summary 1 6k Agriculture/Forest 3 Chains at 50,000

Parameters 50.0% 2.5% 97.5%
Intercept 10.739 11.111 10.168
Shape Index Mean 3.635 3.004 3.741
Landscape Shape Index -0.248  -0.319 -0.208
sigma.sq 1.921 1.334  2.199
Phi 16.864 10.402 33.195
effective range 3/phi 0.178  0.093  0.292

max intersite distance = 1.224

The Gelman-Rubin diagnostic model indicated that convergence likely took place with
all parameter values presenting close to 1.0 (Table 3-20).

Table 3-20. 1_6k agriculture/forest class convergence diagnostic

Gelman-Rubin Diagnostic 1 6k Agriculture/Forest

Point

est. 97.5 quantile
Intercept 1.10 1.31
Shape Index Mean 1.09 1.27
Landscape Shape Index | 1.01 1.02
sigma.sq 1.01 1.02
Phi 1.01 1.02

Multivariate psrf = 1.08
The 2k forest model indicated that a relationship exists between higher BU rates and

higher percentages of adjacent forest land cover patches within a 2k distance of village centers

(Table 3-21).
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Table 3-21. 2k forest class spatial model results

Summary 2k Forest 3 Chains at 50,000

Parameters 50.0% 2.5% 97.5%
Intercept -10.811 -11.266 -9.358
Percent Land Cover Adjacency 0.024 0.014  0.029
sigma.sq 5.164 4708 5.165
Phi 18.343  15.803 23.018
effective range 3/phi 0.164 0.131 0.190

max intersite distance = 1.174

The Gelman-Rubin diagnostic model suggested that convergence likely took place in all
model parameters (Table 3-22).

Table 3-22. 2k forest class model convergence diagnostic

Gelman-Rubin Diagnostic 2k Forest

Point

est. 97.5 quantile
Intercept 1.04 1.06
Percent Land Cover Adjacency 1.04 1.08
sigma.sq 1.00 1.00
Phi 1.04 1.04

Multivariate psrf = 1.01

Results corresponding to the 2k agriculture/forest model indicated that a relationship
exists between high BU rates and more complexly-shaped agriculture/forest land cover patches

that are aggregated with one another within 2k distances of village centers (Table 3-23).
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Table 3-23. 2k agriculture/forest class spatial model results

Summary 2k Agriculture/Forest 3 Chains at 50,000

Parameters 50.0% 2.5% 97.5%
Intercept -9.434  -11.430 -8.954
Shape Index Mean 2.448 1.700 4.771
Landscape Shape Index -0.253 -0.492 -0.120
sigma.sq 2.232 1.873 2.707
Phi 366.493  334.177 489.995
effective range 3/phi 0.008 0.006 0.009

max intersite distance = 1.256

The Gelman-Rubin diagnostic indicated that convergence likely took place, although the

shape index mean value exhibited a higher value at 1.67 (Table 3-24).

Table 3-24. 2k agriculture/forest model convergence diagnostic

Gelman-Rubin Diagnostic 2k Agriculture/Forest

Point

est. 97.5 quantile
Intercept 1.19 1.61
Shape Index Mean 1.21 1.67
Landscape Shape Index 1.06 1.21
sigma.sq 1.01 1.03
Phi 1.00 1.00
Multivariate psrf=1.08 1.15

3.5 Model Verification

Withheld data equal to 10% of each significant model’s data set acted as locations for
model verification. Predicted values were compared to observed values and calculation of the
RMSE for each model determined the “best” model to use to predict to new locations.

Table 3-25 outlines the RMSE results for the landscape-level and class-level models with

models with the lowest RMSE values from each model set highlighted in bold text.
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Table 3-25. Root mean square error results

Root Mean Square Error (RMSE)

Post-Burn-
In
Scale Model Variables RMSE Iterations
1 2k WI+SHAPE MN-+NP 333.780 500,000
1 2k WI+SHAPE MN+PRD 347.565 500,000
Landscape- |1 6k WI+SHAPE MN+NP 311.843 500,000
level 1_6k WI+SHAPE MN-+PRD 294.507 500,000
2k WI+SHAPE_MN+NP 274.337 500,000
2k WI+SHAPE MN+PRD 291.361 500,000
800m forest SHAPE MN+PLADJ 559.395 100,000
800m wetland SHAPE MN 396.001 50,000
800m

agriculture/forest SHAPE MN+LSI 552.751 50,000
1 2k forest SHAPE MN+LSI 332.261 100,000
1_2k wetland SHAPE_MN-+LSI 160.557 100,000

1 2k
Class-level | agriculture/forest SHAPE MN+LSI 311.324 100,000
1 6k forest SHAPE MN 485.752 50,000
1_6k wetland SHAPE MN+LSI 251.310 100,000

1_6k
agriculture/forest SHAPE MN+LSI 361.176 50,000
2k forest PLADJ 213.547 50,000
2k wetland PLADJ 420.077 50,000
2k agriculture/forest SHAPE MN-+LSI 231.294 50,000

RMSE values determined that the landscape-level 2k model including BU rates as the

response variable and wetness index averages, shape index means, and number of patches as

independent variables was the best-fitting landscape-level model with an RMSE of 274.337. The

best-fitting class-level model, also the overall best-fitting model, was the 1 2k wetland model

that included BU rates as the response variable and shape index means and landscape shape

index values as independent variables with an RMSE of 160.557. Fitted rates are similar to

observed rates across Benin (Figure 3-1, Figure 3-2).
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Figure 3-1. 1 _2k wetland class observed rates, 90% data
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Figure 3-2. 1 2k wetland class fitted model, 90% data

The random spatial effects component contributed a large amount to the overall model
fit; areas plotted in red represent higher spatial random effects, while areas plotted in blue
represent lower spatial random effects (Figure 3-3). Areas exhibiting high spatial random effects
correspond to areas with higher predicted rates, demonstrating their presence in the overall

model fit.
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Figure 3-3. 1 2k wetland class spatial random effects

3.6 Predictive Surface Model

Predicted BU rates at new locations across the study region identified areas at risk for BU
cases based on landscape configuration metrics and unknown, spatially-structured covariates
characterized by random spatial effects generated from the 1 2k wetland spatial binomial GLM
(Figure 3-4). Although this surface represents predictive BU rates, this model does not account
for population absences in a region or for any socio-behavioral activities leading to transmission;
therefore, although areas might be identified as high-risk areas, it does not necessarily mean that

transmission will take place.

75



500

400

- 300

Northing

- 200

100

Easting

Figure 3-4. Predictive BU rates surface across the study domain

The highest predicted rates occurred within the boundary of Benin along the southern
portions of the Oueme and Couffu Rivers. These predictions were consistent with observed rates
in these areas. Low risk areas consisted of the northern region and areas along the southern coast
in Benin. Moderate risk was identified across large portions of the study area located within the

boundary of Togo and along the Oueme River, north of high risk areas.
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Chapter 4 DISCUSSION AND LIMITATIONS

4.1 Discussion

This study was a first attempt to quantify relationships between land cover patch patterns
indicative of anthropogenic disturbances and BU incidence in Benin. The methods used and the
approach taken to quantify these attributes were novel to BU research and highlighted the
importance of using spatial statistical methods when investigating environmental phenomena.

The first set of results demonstrated that using non-spatial statistical methods when
investigating positively, spatially-autocorrelated ecological variables can lead to overestimations
in variable significance. Non-spatial binomial GLMs inflated the influence of predictor variables
for all landscape-level models and for several class-level models. Although non-spatial models
exhibited significance in all covariates, these methods failed to account for spatial
autocorrelation among model residuals, leading to false assumptions regarding their
contributions to BU rates. Spatial binomial GLMs mitigated these effects, while identifying
important variables related to BU rates at observed locations. The addition of a random spatial
effects component partitioned unobserved covariates contributing to BU rates while identifying a
spatial structure associated with these covariates, promoting more accurate predictions at new,
unsampled locations.

Model sets constructed at a landscape-level and at a class-level enabled an in depth
analysis of land cover patch configuration relationships to BU rates within the study region.
Several model results determined that land cover patch configurations related to high BU rates at
the landscape-level supported study hypotheses that more fragmented landscapes with more
uniformly-shaped land cover patches, lying within areas more likely to accumulate water during

precipitation events surround villages with higher BU rates, although no models supported all
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three scenarios simultaneously, and no variables emerged as dominant indicators of BU risk
across all distance intervals. These results were not surprising considering the complexity of
factors involved in determining variable selection and when deciding the scale at which to
measure natural environmental variables.

Although consistency in variable significance lacked across distances at the landscape
level, significance direction in individual variables did not change between models. Further, the
best-fitting model in the landscape-level set supported two components of the study hypotheses,
and although not the primary focus of this study, additional model results provided several
opportunities for a glimpse into potential ecological connections between land cover patch
configurations and BU rates.

Notable results included a positive relationship between patch richness density
surrounding villages with high BU rates at a 1 2k distance. Variable significance occurred at a
1 2k distance only, but the outcome suggested that a relationship exists between more diverse
landscapes closer to village centers and higher BU rates. A positive relationship between
numbers of patches at a 1 6k distance and BU rates supported the hypothesis that more
fragmented landscapes, potentially disturbed by anthropogenic activities, surround villages with
higher disease rates. Although variable significance took place at a 1 6k distance only, these
results warrant further investigation at larger distance intervals to determine whether this
phenomenon is indicative of BU risk across broader geographic regions.

Models generated at a 2k distance produced differing results, but both models indicated
that a relationship exists between higher average wetness index values and higher BU rates,
supporting the hypothesis that areas more likely to accumulate water during a precipitation event

surround villages with higher BU rates. Interestingly, average wetness index value variable
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significance did not occur at distances closer to village centers, suggesting that a sufficient
distance may be needed to encounter rivers and tributaries of a magnitude large enough to create
local flooding events on a seasonal basis or during extreme weather events.

Two models created at 2k distances from village centers exhibited different results related
to shape index mean values. Low shape index mean values were significant at a 2km distance
when paired with numbers of patches and wetness index averages as model covariates, although
shape index mean values were not significant at a 2km distance when paired with patch richness
density and wetness index averages. One contributing factor to this difference was that shape
index mean convergence likely did not take place in the model including patch richness density
values; therefore, this model was not representative of the shape index mean distribution at a 2k
distance from village centers.

Results from the 2k model including wetness index averages, shape index means, and
numbers of patches had the lowest RMSE value of all models produced at the landscape-level
and supported the hypothesis that more uniformly-shaped land cover patches, a characteristic of
anthropogenically-disturbed landscapes, located in areas more likely to accumulate water during
a precipitation event surround villages with higher BU rates. Further investigation into these
factors at greater distances from village centers could reveal important trends in larger-scale
processes constraining finer-scale phenomena related to BU ecology in the study region.

Class-level models exhibited several consistent results at various distances and across
individual class types, fulfilling the second objective of this study to determine whether a
relationship exists between land cover patch configurations indicative of potential anthropogenic
disturbances corresponding to specific land cover types and high BU rates. While several

significant model outcomes occurred, these results did not support the study hypotheses.
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Significant forest, wetland, and mixed agriculture/forest patch shape index mean values
suggested that more natural or undisturbed patch shapes corresponding to these classes surround
villages with higher BU rates, and consistent model outcomes occurred across all distance
intervals.

While results corresponding to patch shape complexity did not support the study
hypothesis, these results were particularly interesting when observing the mixed
agriculture/forest class because the composition of this class included some level of
anthropogenic disturbance inherently; therefore, model outcomes provided insight into potential
disturbance patterns. Natural patch shape complexities corresponding to this land cover class
suggested characteristics representative of natural forest cover because vegetation planted by
humans could not likely produce this pattern, indicating that agriculture plots likely intrude into
forest patches undisturbed previously. The agriculture/forest class models maintained
significance at all distance intervals, signifying that a need exists for further investigation into
agriculture planting practices within forested areas and relationships to BU emergence.

Additionally, individual forest, wetland or mixed agriculture/forest class aggregation
values related to higher BU rates did not support the study hypothesis that more fragmented land
cover corresponding to these classes surrounds villages with higher BU rates. Significant model
outcomes reported lower landscape shape index values and higher percent land cover adjacency
values consistently, suggesting that more aggregated land cover patches corresponding to these
classes surround villages with higher BU rates across all distance intervals.

Several potential reasons may explain class-level model outcomes. One possibility is that
anthropogenic disturbance patterns related to the individual classes investigated in this study may

not follow patterns recognized previously. Studies demonstrating uniformly-shaped land cover
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patches as those created by anthropogenic activities took place largely in European countries and
within the United States where access to heavy farming machinery was readily available and
long-standing property boundaries may demarcate land cover patches more abruptly.

While disturbance patterns may not follow those quantified in western studies, a more
likely explanation has to do with the scale at which the quantification of the study area took
place. Ikonos 4m resolution satellite imagery from January 2009 revealed several anthropogenic
landscape disturbances demarcated by uniform shapes across a 10k x 10k BU endemic area in
the mid-western portion of the study region. Of particular interest were partitioned rice paddy
plots within natural wetland boundaries (Figure 4-1). These areas appeared undisturbed until
observed at a finer resolution, suggesting that 30m resolution Landsat imagery could not identify
within patch anthropogenic disturbance revealed at a finer resolution, and this factor may have

influenced class-level results.

Figure 4-1. Anthropogenic disturbance within wetland land cover patch
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A third possible explanation may have to do with MU pathogen abundance in the
environment. To date, unknown ecological factors drive MU abundance, but landscapes
experiencing early disturbance stages may experience elevated pathogen levels. As residents
begin to intrude into habitats undisturbed previously to plant agriculture or to collect fuel wood,
their activities likely follow natural land cover boundaries before significant landscape
alterations take place. Future quantitative PCR applications have the potential to provide
knowledge related to pathogen abundance in the environment, the results of which could provide
critical information linking MU presence and abundance to specific land cover types and uses
during multiple succession stages (Merritt et al., 2005).

Finally, landscape-level model results differed from class-level model results and
supported the study hypotheses, suggesting that important land cover categories may not have
been included at the class-level in this study. Alternatively, while uniformly-shaped patches
corresponding to specific classes did not exhibit significance, when measurement of these patch
shapes took place in conjunction with measurements from the entire landscape, uniformly-
shaped patches emerged as an important predictor variable; therefore, the importance of this
phenomenon may be unrelated to specific class types.

The “best” model with the lowest RMSE value from both model sets corresponded to the
1 2k wetland class model with BU rates as the response variable and shape index mean values
and landscape shape index values as the independent variables. Interestingly, the independent
variables did not maintain significance in the spatial GLM; therefore, the spatial random effects
component contributed to the majority of the model fit. These results confirmed that a spatial
structure exists for processes driving BU rates in Benin, although at the end of this study, these

covariates remain unknown.
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Although measuring the contribution of land cover composition alone was not the
primary objective behind class-level model construction, the fact that the “best” model
corresponded to the wetland class while land cover configuration variables corresponding to this
class and at this distance were not significant is an important development. These results suggest
that wetland land cover composition within relatively close distances from village centers may
play an important role in the distribution of BU rates in Benin because additional models at 1 2k
distances, even those maintaining significant variables, exhibited higher RMSE values. These
results supported previous studies implicating close proximities to slow-moving or stagnant
water bodies as a BU risk factor; consequently, a need exists for further investigation into
wetland characteristics at multiple scales near villages experiencing high BU rates.

The creation of a continuous risk surface map across the study region fulfilled the final
study objective. Although “best” model predictor variables alone could not predict BU rates
effectively, the incorporation of the random spatial effects component enabled accurate
predictions at new, unsampled locations while accounting for uncertainty across the study
domain. To our knowledge, this study was the first to produce a continuous risk surface based on
environmental covariates and the only study to account for and to utilize unknown, spatial
covariates driving disease incidence in model predictions.

Predicted rates derived from the mean posterior predictive distribution of the “best”
model produced a BU risk surface map from which to identify high risk regions across the study
domain (Figure 3-4). Predicted rates in Benin followed a similar pattern to the observed case data
with higher rates along the Oueme River in the east and along the Couffu River in the western
section of the country. A large floodplain exists in the eastern portion of the country where the

Oueme and Zou Rivers join before draining into the Gulf of Guinea. Land cover consists of
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mixed agriculture, forest, and shrubland with wetlands situated in the south where the river flows
into Lake Nokoué before emptying into the Bight of Benin. Several wetlands extend from the
Couffu River with one group situated near the town of Tandji, located within a high predicted
rate area, around which BU cases occur regularly. Land cover within this region consists
primarily of mixed agriculture/shrub, forest, mixed agriculture/forest, and wetlands.

Low prediction rates along the southern coast coincided with few observed cases in the
region, where brackish waters may impact environmental conditions suitable to the MU
pathogen, and toward the northern portion of the study region where higher elevations separate
the two endemic regions and farther north where climate conditions begin to change to a dryer,
less humid environment.

Predicted rates in the study area within the boundary of Togo exhibited moderate values
with less variability than rates predicted within the boundary of Benin. This may be due to
increased distance from observed locations. As distance from known values exceeds the effective
range determined by the spatial structure of the observed data set, predicted rates have a
tendency to move toward a mean predictive value, and although this phenomenon may have
impacted predicted rates within Togo, the results were still interesting and relevant.

Southern Togo shares a similar climate to southern Benin, falling within the Dahomey
Gap. Swampy floodplains reside along the southern portion of the Mono River beginning at an
approximate latitude of 6.9333 N, stretching to the southern coast, while an additional wetland
consisting of herb swamp, swampy forest, and grassy floodplain lies across the border with
Benin (Hughes and Hughes, 1992). The lagoon system in Togo does not experience tidal flow

except during periods of high rainfall, and therefore, is considered a freshwater system.
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Most notable were moderate-to-high rates predicted along the Mono River west of the
Tandji foci in Benin at the border between the two countries. Although located within a wetland
system, few reported BU cases exist in this region following construction of the Nangbeto dam
in 1987 (R. Christian Johnson, personal communication, March 24, 2009). One hypothesis is that
a reduction in cases occurred because of controlled fluctuations in water levels, reducing
seasonal flooding impacts in the region. While the environmental conditions may be comparable
to those identified as high risk environments in Benin, the model could not account for
anthropogenic interference with river flow and identified this area as having a moderate-to-high
BU risk.

The region south of the Nangbeto dam may prove to be an important surveillance area.
Although the dam construction reduced seasonal flooding risk in the Mono River region,
unusually high rainfall contributed to tragedy when the opening of a sluice gate relieved water
pressure in the reservoir behind the dam, causing the river to burst its banks, wiping away houses
and farms on November 2, 2010 (Ghana News Link, 2010). While troubling, these flooding
events may provide a unique control from which to observe whether BU cases emerge, providing
an opportunity to gain a better understanding of the role in which flooding contributes to BU
incidence.

While multiple, unknown, environmental variables must interact for the bacterium to
flourish and transmission to humans likely requires specific socio-behavioral factors
unaccounted for in this model, a risk surface incorporating the spatial structure of these unknown
variables provided an ideal tool from which to identify high BU risk regions despite little
knowledge regarding environmental factors contributing to the disease. Further, BU disease does

not observe administrative boundaries; therefore, the creation of a continuous surface
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transcending artificial borders eliminated areal data set constraints, the benefits of which were
demonstrated in predicted rates across Togo where little case data exists.

Although a temptation exists to observe this risk surface as absolute, the natural
environment is not a static phenomenon, nor is BU incidence. This risk surface represents one
snapshot in time, based on land cover configurations derived from one satellite image during one
season and from the spatial structure of factors contributing to BU incidence in 2004 and 2005.
However, observing where BU transmission could likely take place if persons encountered
similar environments provides a first step toward surveillance and prevention, while creating a

framework from which to target future environmental sampling and research efforts.

4.2 Limitations

Several limitations existed in this study, some of which related directly to data used in the
analysis. LULC data derived from 2000 satellite imagery was used to analyze 2004 and 2005 BU
case data. Challenges existed in acquiring suitable satellite imagery from the study region
because of the presence of cloud cover in a large proportion of the imagery; therefore, this study
assumed that the LULC within the study region did not change substantially within a 3-4 year
time period. Suitable ground truth data were not available to validate the LULC classification. A
10 year gap between image acquisition and limited ground truth data existed; therefore, this
study relied on visual interpretation methods along with aggregated land cover classes to create
the land cover classification.

Characterization of land cover configurations took place at one scale using 30m
resolution data. Important organism responses may be linked to these variables, but could occur
at scales differing from those at which variable measurement took place. A 30m resolution may

not be the appropriate resolution to characterize processes driving MU growth and BU
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emergence; therefore, a need exists for additional investigation into land cover configuration
patterns related to BU rates at different spatial resolutions.

Although active surveillance by government health officials identified BU cases within
the study region, underreporting may have impacted study results. Further, identification of BU
negative villages corresponded to a 2004 and 2005 time period; these villages may have had
positive cases in previous or subsequent years. Additionally, this study assumed that BU
transmission occurred near the village of residence. Travel between regions and migration was
not known and therefore, was not incorporated into this study.

Environmental variables with a seasonal or a highly temporal nature were not included in
this study; for example, precipitation, temperature, or relative humidity factors. Six weather
stations with incomplete inventories exist within the study region, making data interpolation
across the study domain questionable. Beyond data quality issues, unknown lag times between
suitable environmental conditions and pathogen proliferation, inoculation and ulcer presentation,
and ulcer presentation and hospital treatment make linking BU cases to specific environmental
events challenging. Coarser resolution climate data were considered and an exploratory analysis
of several BioClim 30 year average variables did not reveal significant relationships between
these variables and BU rates. Likely, the data was too coarse both spatially and temporally to
identify important relationships. A need exists for further investigation into the relationship
between climate variables and BU cases in West Africa.

Finally, scaling of model coordinates to correspond to a one-to-one surface area may
have introduced uncertainty, although the location of the study area close to the equator reduced

the impact of this phenomenon.
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4.3 Conclusions and Future Directions

The role of anthropogenic ecosystem disturbances in the emergence of environmental
bacterial infections is poorly understood. This study was a first attempt to link land cover
configurations representative of anthropogenic disturbances to the environmental bacterial
infection Buruli ulcer disease. Although mixed results did not suggest a definite trend toward
positive linkages between land cover patch configurations representative of anthropogenic
disturbances and BU rates, study results identified several significant variables, warranting future
investigations into these factors at different scales.

Beyond the novel exploratory analysis outlined above, a major contribution of this study
included the incorporation of a modeling component that partitioned the spatial structure of
missing variables, providing a structure from which to predict BU rates to new locations without
strong knowledge of environmental factors contributing to disease distribution. The resulting
continuous BU risk surface is the first of its kind and marks the potential to develop and to target
surveillance efforts. The ability to predict potential risk adequately to locations where little data
availability exists provided a first step toward prevention, while creating a tool from which a
more systematic and controlled site selection process may be used to target future environmental
sampling research.

Future directions include model refinement and comparisons of model outcomes
generated from this study with additional modeling approaches, for example those using an
extreme value link function that accounts for data sets where the number of zeros is vastly
greater than the number of ones. Acquisition of climate variables corresponding to endemic
regions may reveal valuable linkages between weather events and landscape attributes related to

disease incidence, and future studies into wetland land cover using higher resolution satellite
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imagery in conjunction with environmental samples could identify relevant links between
anthropogenic wetland disturbances and BU disease emergence.

Finally and most importantly, continued acquisition of accurate, and georeferenced case
data along with georeferenced pathogen data will provide the best opportunity for robust
empirical studies of linkages between ecological factors, anthropogenic activities, and BU
transmission. Combining these data with the continued efforts of multidisciplinary research
teams, international governments, and aid agencies will provide the tools necessary to one day

understand the mystery behind Buruli ulcer disease.
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Table A-1. Landscape-level 400m correlation matrix

400m Spearman Rank Order Correlation Matrix

BU

SHAPE FRAC

PARA

RATE NP LSI MN MN MN PLADJ PRD SHDI  WIAVGG
BU RATE 1.000 0.048 0.056 0.138 0.137 0.028  -0.050 0.008 0.033 0.042
NP 0.048 1.000 0.906 -0.073 0.000 0.514 -0910 0.642 0.814 0.072
LSI 0.056 0.906 1.000 0.263 0.272 0302 -0.992 0.554 0.870 0.048
SHAPE MN 0.138 0.073  0.263 1.000 0.899 -0.278 -0.255 0.105 0.181 -0.071
FRAC MN 0.137  0.000 0.272 0.899 1.000 -0.318 -0.263 0.022  0.205 -0.034
PARA MN 0.028 0514 0302 -0.278 -0.318 1.000 -0.317 0.345 0.169 -0.007
PLADIJ -0.050 0910 0992 -0.255 -0.263 -0.317 1.000 0.548 0.868 -0.047
PRD 0.008 0.642 0.554 -0.105 -0.022 0.345 -0.548 1.000 0.660 0.096
SHDI 0.033 0.814 0.870 0.181 0.205 0.169 -0.868 0.660 1.000 0.131
WIAVGG 0.042 0.072 0.048 -0.071 -0.034 -0.007 -0.047 0.096 0.131 1.000
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Table A-2. Landscape-level 500m correlation matrix

500m Spearman Rank Order Correlation Matrix

BU SHAPE FRAC PARA
RATE NP LSI MN MN MN PLADJ  PRD SHDI  WIAVGG
BU RATE 1.000 0.005 0.035 0.123 0.142  -0.099  -0.028 0.001  0.043 0.068
NP 0.005 1.000 0.900 -0.036 0.015 0.463  -0.902 0.669  0.791 0.100
LSI 0.035 0.900 1.000 0.321 0.306 0.229  -0.991 0.573  0.853 0.068
SHAPE MN 0.123  0.036  0.321 1.000 0913  -0.395 -0.322  -0.045 0.277 -0.054
FRAC MN 0.142 0.015 0.306 0.913 1.000  -0.448  -0.309 0.007  0.289 0.024
PARA MN 0.099 0463 0229 -0.395  -0.448 1.000  -0.229 0.287  0.067 -0.022
PLADJ 0.028 0902  0.991 -0.322 -0309  -0.229 1.000  -0.571 -0.853 -0.071
PRD 0.001 0.669 0.573  -0.045 0.007 0.287  -0.571 1.000  0.688 0.152
SHDI 0.043 0.791  0.853 0.277 0.289 0.067  -0.853 0.688 1.000 0.139
WIAVGG 0.068 0.100 0.068  -0.054 0.024  -0.022  -0.071 0.152  0.139 1.000
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Table A-3. Landscape-level 600m correlation matrix

600m Spearman Rank Order Correlation Matrix

BU SHAPE FRAC PARA
RATE NP LSI MN MN MN PLADJ] PRD SHDI WIAVGG
BU RATE 1.000 0.014 0.029 0.057  0.032 -0.087 -0.022  0.014 0.057 0.089
NP 0.014 1.000 0.908 -0.081 -0.010  0.393 -0.910 0.613 0.773 0.078
LSI 0.029  0.908 1.000 0.255  0.258 0.168 -0.991 0.512 0.831 0.069
SHAPE MN | 0.057 0.081 0.255 1.000  0.903 -0.452 -0.255 0.085 0.229  -0.011
FRAC MN 0.032 0.010 0.258 0.903 1.000 -0.479 -0.257  0.027 0.245 0.006
PARA MN 0.087 0.393 0.168 -0.452  -0.479 1.000 -0.180  0.195 0.015  -0.021
PLADJ 0.022 0910 0.991 -0.255  -0.257 -0.180 1.000 0.518 0.837 -0.072
PRD 0.014 0.613 0.512 -0.085  0.027 0.195 -0.518 1.000 0.629 0.131
SHDI 0.057 0.773  0.831 0.229  0.245 0.015 -0.837  0.629 1.000 0.143
WIAVGG 0.089 0.078  0.069 -0.011 0.006 -0.021 -0.072  0.131 0.143 1.000
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Table A-4. Landscape-level 700m correlation matrix

700m Spearman Rank Order Correlation Matrix

BU SHAPE FRAC PARA
RATE NP LSI MN MN MN PLADJ PRD SHDI WIAVGG
BU RATE 1.000 0.016 0.022 0.088 0.044 0.057 -0.013 0.060 0.065 0.111
NP 0.016 1.000 0.897 -0.049  0.021 0440 -0.902 0.572 0.745 0.073
LSI 0.022 0.897 1.000 0316 0.268 0.201  -0.991 0.469 0.806 0.044
SHAPE MN 0.088 0.049 0.316 1.000 0.896 0466 -0.307 0.096 0.270 -0.042
FRAC MN 0.044 0.021 0.268 0.896 1.000 0.507 -0.261 0.034 0.257 0.004
PARA MN -0.057 0.440 0.201 -0.466  0.507 1.000 -0.209 0.209 0.039 -0.047
PLADIJ -0.013  0.902 0.991 -0.307  0.261  0.209 1.000 0478 0.814 -0.045
PRD 0.060 0.572 0.469 -0.096  0.034 0.209 -0.478 1.000 0.621 0.185
SHDI 0.065 0.745 0.806 0.270 0.257 0.039 -0.814 0.621 1.000 0.137
WIAVGG 0.111 0.073 0.044  -0.042 0.004 0.047 -0.045 0.185 0.137 1.000
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Table A-5. Landscape-level 800m correlation matrix

800m Spearman Rank Order Correlation Matrix

BU

SHAPE FRAC PARA

RATE NP LSI MN MN MN PLADJ] PRD SHDI WIAVGG
BU RATE 1.000 0.009 0.024 0.118 0.073  0.142  -0.013 0.052 0.074 0.131
NP 0.009 1.000 00910 -0.110  0.073 0472  -0914 0.556 0.741 0.091
LSI 0.024 0910 1.000 0.232 0202 0270 -0989 0.447 0.782 0.045
SHAPEMN | 0.118 0.110 0.232 1.000 0909  0.511 -0.225 0.126  0.236 -0.024
FRAC MN 0.073  0.073  0.202 0909 1.000 0.598  -0.196 0.054 0.234 0.019
PARA MN 0.142 0.472 0.270 -0.511  -0.598 1.000  -0.280 0.231 0.094 -0.012
PLADJ 0.013 0914 0.989 -0.225  -0.196  -0.280 1.000 0.459 0.794 -0.051
PRD 0.052 0.556 0.447 -0.126  -0.054  0.231 -0.459 1.000 0.621 0.206
SHDI 0.074 0.741 0.782 0.236 0234 0.094 -0.794 0.621 1.000 0.161
WIAVGG 0.131 0.091 0.045 -0.024  0.019 -0.012  -0.051 0.206 0.161 1.000
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Table A-6. Landscape-level 900m correlation matrix

900m Spearman Rank Order Correlation Matrix

BU

SHAPE FRAC PARA

RATE NP LSI MN MN MN PLADJ PRD SHDI WIAVGG
BU RATE 1.000 0.013  0.025 0.122  0.071 -0.137  -0.013  0.070 0.076 0.135
NP -0.013  1.000  0.901 -0.108  0.037 0.421 -0.907  0.545 0.732 0.076
LSI 0.025 0.901 1.000 0.249  0.239 0.200  -0.987 0.438 0.767 0.050
SHAPE MN 0.122  0.108  0.249 1.000 0.889 -0.484 -0.238 0.130 0.221 -0.002
FRAC MN 0.071 0.037  0.239 0.889  1.000 -0.558  -0.231  0.057 0.262 0.009
PARA MN -0.137  0.421 0.200 -0.484  0.558 1.000  -0.217  0.200 0.011 -0.034
PLADIJ -0.013  0.907  0.987 -0.238  0.231  -0.217 1.000 0.450 -0.783 -0.057
PRD 0.070  0.545  0.438 -0.130  0.057 0.200  -0.450 1.000 0.611 0.199
SHDI 0.076  0.732  0.767 0.221  0.262 0.011 -0.783  0.611 1.000 0.169
WIAVGG 0.135 0.076  0.050 -0.002  0.009 -0.034  -0.057 0.199 0.169 1.000
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Table A-7. Landscape-level 1k correlation matrix

1k Spearman Rank Order Correlation Matrix

BU SHAPE FRAC PARA
RATE NP LSI MN MN MN PLADJ PRD SHDI  WIAVGG
BU RATE 1.000  0.005  0.030 0.112 0.080  -0.083 -0.016  0.083  0.084 0.133
NP 0.005 1.000  0.906 -0.084 0.004 0.431 -0911  0.541  0.706 0.061
LSI 0.030  0.906  1.000 0.257 0.278 0.228 -0986  0.445 0.751 0.048
SHAPE MN 0.112  0.084  0.257 1.000 0910  -0.497 -0.249  0.087  0.266 0.036
FRAC MN 0.080  0.004 0.278 0.910 1.000  -0.565 -0.271  0.010  0.324 0.059
PARA MN 0.083 0431  0.228 -0.497  -0.565 1.000 -0.244  0.201  0.000 -0.033
PLADIJ 0.016 0911 0.986 -0.249  -0.271 -0.244 1.000 0.461  0.767 -0.055
PRD 0.083 0541  0.445 -0.087 0.010 0.201 -0.461 1.000  0.597 0.236
SHDI 0.084 0.706  0.751 0.266 0.324 0.000 -0.767  0.597  1.000 0.165
WIAVGG 0.133  0.061  0.048 0.036 0.059  -0.033 -0.055  0.236  0.165 1.000
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Table A-8. Landscape-level 1 1k correlation matrix

1 1k Spearman Rank Order Correlation Matrix

BU SHAPE FRAC PARA
RATE NP LSI MN MN MN PLADJ  PRD SHDI  WIAVGG
BU RATE 1.000 0.000 0.038 0.120 0.100  -0.143 -0.024 0.127 0.095 0.133
NP 0.000 1.000 0.906 -0.088 0.043 0.438 -0.913 0.543 0.698 0.051
LSI 0.038 0.906 1.000 0.254 0.313 0.234 -0.985 0.474 0.744 0.039
SHAPE MN 0.120  -0.088 0.254 1.000 0.907 -0.468 -0.244  -0.033 0.282 0.039
FRAC MN 0.100 0.043 0.313 0.907 1.000 -0.478 -0.303 0.083 0.382 0.052
PARA MN 0.143 0.438 0.234 -0.468  -0.478 1.000 -0.249 0.158 0.006 -0.058
PLADIJ 0.024 -0913 -0.985 -0.244  -0.303  -0.249 1.000 -0.491 -0.762 -0.049
PRD 0.127 0.543 0.474 -0.033 0.083 0.158 -0.491 1.000 0.616 0.282
SHDI 0.095 0.698 0.744 0.282 0.382 0.006 -0.762 0.616 1.000 0.174
WIAVGG 0.133 0.051 0.039 0.039 0.052  -0.058 -0.049 0.282 0.174 1.000
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Table A-9. Landscape-level 1 2k correlation matrix

1 2k Spearman Rank Order Correlation Matrix

BU SHAPE FRAC PARA
RATE NP LSI MN MN MN PLADJ  PRD SHDI  WIAVGG
BU RATE 1.000  0.006  0.044 0.094 0.029 -0.072 -0.029  0.137  0.093 0.141
NP 0.006 1.000  0.908 -0.090  0.007  0.453 -0914  0.532  0.684 0.039
LSI 0.044  0.908 1.000 0.252  0.280  0.248 -0.985 0.473 0.734 0.036

SHAPEMN | 0.094 -0.090 0.252 1.000  0.895 -0.502 -0.245  0.004  0.296 0.058
FRAC MN 0.029  0.007  0.280 0.895 1.000 -0.550 -0.278  0.073 0.344 0.066
PARA MN 0.072  0.453 0.248 -0.502  -0.550 1.000 -0.260  0.188  0.038 -0.077

PLADIJ 0.029 -0.914 -0.985 -0.245  -0.278  -0.260 1.000 -0.490 -0.750 -0.047
PRD 0.137 0532 0473 0.004 0.073 0.188 -0.490 1.000  0.607 0.302
SHDI 0.093 0.684  0.734 0296 0.344  0.038 -0.750  0.607 1.000 0.178

WIAVGG 0.141 0.039  0.036 0.058  0.066 -0.077 -0.047 0302  0.178 1.000
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Table A-10. Landscape-level 1 3k correlation matrix

1 3k Spearman Rank Order Correlation Matrix

BU SHAPE FRAC PARA
RATE NP LSI MN MN MN PLADJ  PRD SHDI  WIAVGG
BU RATE 1.000 0.020  0.053 0.126 0.075  -0.062 -0.038 0.144  0.094 0.145
NP 0.020 1.000 0913 -0.088 0.014 0.462 -0.923 0.509 0.686 0.020
LSI 0.053 0.913 1.000 0.237 0.277 0.268 -0.985 0.457 0.728 0.018
SHAPE MN 0.126  -0.088 0.237 1.000 0.907 -0.478 -0.227 0.022 0.287 0.038
FRAC MN 0.075 0.014  0.277 0.907 1.000 -0.520 -0.267 0.111 0.360 0.046
PARA MN 0.062 0.462 0.268 -0.478  -0.520 1.000 -0.288 0.143 0.049 -0.076
PLADJ 0.038 -0.923  -0.985 -0.227  -0.267  -0.288 1.000 -0.472 -0.744 -0.029
PRD 0.144 0.509 0.457 0.022 0.111 0.143 -0.472 1.000  0.603 0.338
SHDI 0.094 0.686  0.728 0.287 0.360 0.049 -0.744 0.603 1.000 0.172
WIAVGG 0.145 0.020  0.018 0.038 0.046  -0.076 -0.029 0.338 0.172 1.000



Table A-11. Landscape-level 1 Sk correlation matrix

1 5k Spearman Rank Order Correlation Matrix

BU SHAPE FRAC PARA
RATE NP LSI MN MN MN PLADJ  PRD SHDI  WIAVGG
RATE 1.000  0.029  0.055 0.110  0.057 -0.069 -0.040  0.142  0.093 0.146
NP 0.029 1.000 0915 -0.107  0.013 0.526 -0.925 0490  0.665 0.011
LSI 0.055 0915 1.000 0.215  0.267 0.356 -0.985 0431 0.710 0.010

SHAPEMN | 0.110 -0.107  0.215 1.000  0.880 -0.442 -0.200  0.030  0.280 0.073
FRAC MN 0.057  0.013 0.267 0.880 1.000 -0.508 -0.252  0.122  0.345 0.086
PARA MN 0.069  0.526  0.356 -0.442  -0.508 1.000 -0377  0.182  0.136 -0.065

PLADJ 0.040 -0.925 -0.985 -0.200 -0.252  -0.377 1.000 -0.446 -0.725 -0.022
PRD 0.142 0490 0.431 0.030  0.122  0.182 -0.446 1.000  0.588 0.341
SHDI 0.093  0.665 0.710 0.280  0.345 0.136 -0.725  0.588 1.000 0.175

WIAVGG 0.146  0.011 0.010 0.073  0.086 -0.065 -0.022  0.341 0.175 1.000
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Table A-12. Landscape-level 1 6k correlation matrix

1 6k Spearman Rank Order Correlation Matrix

BU

SHAPE

FRAC

PARA

RATE NP LSI MN MN MN PLADJ  PRD SHDI  WIAVGG
BU RATE 1.000 0.028 0.055 0.079  0.030 0.030 -0.039  0.118 0.089 0.146
NP 0.028 1.000 0.915 -0.057  0.089 0.508 -0.925 0476 0.671 0.011
LSI 0.055 0.915 1.000 0.257  0.323 0.343 -0.987  0.409 0.706 0.011
SHAPE MN 0.079 0.057 0.257 1.000  0.875 0.390 -0.245  0.040 0.303 0.067
FRAC MN 0.030 0.089 0.323 0.875 1.000 0.458 -0.313  0.139 0.386 0.068
PARA MN 0.030 0.508 0.343 -0.390  -0.458 1.000 -0.363  0.186 0.144 -0.082
PLADIJ 0.039 0.925 0.987 -0.245  -0.313 0.363 1.000  0.426 0.718 -0.020
PRD 0.118 0.476 0.409 0.040  0.139 0.186 -0.426  1.000 0.595 0.317
SHDI 0.089 0.671 0.706 0.303 0.386 0.144 -0.718  0.595 1.000 0.182
WIAVGG 0.146 0.011 0.011 0.067  0.068 0.082 -0.020  0.317 0.182 1.000
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Table A-13. Landscape-level 1 7k correlation matrix

1 7k Spearman Rank Order Correlation Matrix

SHAPE FRAC PARA

RATE NP LSI MN MN MN PLADJ  PRD SHDI ~ WIAVGG
RATE 1.000  0.028 0.054 0.097 0.081 -0.042 -0.039  0.112 0.090 0.146
NP 0.028 1.000 0.914 -0.086 0.042 0.497 -0.924  0.451 0.666 0.006
LSI 0.054 0914 1.000 0.232 0.289 0.331 -0.988 0.399 0.702 0.009

SHAPE MN 0.097 -0.086 0.232 1.000 0.877 -0.413 -0.219  0.055 0.282 0.065
FRAC MN 0.081 0.042 0.289 0.877 1.000 -0.484 -0.275 0.138 0.360 0.066
PARA MN 0.042  0.497 0.331 -0.413  -0.484 1.000 -0.350  0.159 0.140 -0.086

PLADJ 0.039 -0.924 -0.988 -0.219  -0.275  -0.350 1.000 -0.416 -0.714 -0.018
PRD 0.112  0.451 0.399 0.055 0.138 0.159 -0.416 1.000 0.592 0.337
SHDI 0.090  0.666 0.702 0.282 0.360 0.140 -0.714  0.592 1.000 0.190
WIAVGG 0.146  0.006 0.009 0.065 0.066  -0.086 -0.018 0.337 0.190 1.000
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Table A-14. Landscape-level 1 8k correlation matrix

1 8k Spearman Rank Order Correlation Matrix

SHAPE FRAC PARA
RATE NP LSI MN MN MN PLADJ PRD SHDI  WIAVGG
RATE 1.000 0.035 0.058 0.089 0.054  -0.040 -0.045 0.118 0.093 0.148
NP 0.035 1.000 0.914 -0.102 0.023 0.520 -0.922 0.462 0.658 -0.004
LSI 0.058 0.914 1.000 0.218 0.271 0.357 -0.988 0.404 0.698 0.005
SHAPE MN 0.089  -0.102 0.218 1.000 0.889  -0.444 -0.208 0.050 0.289 0.058
FRAC MN 0.054 0.023 0.271 0.889 1.000  -0.512 -0.259 0.127 0.376 0.068
PARA MN 0.040 0.520 0.357 -0.444  -0.512 1.000 -0.373 0.168 0.125 -0.093
PLADJ 0.045 -0.922  -0.988 -0.208  -0.259  -0.373 1.000 -0.418 -0.710 -0.012
PRD 0.118 0.462 0.404 0.050 0.127 0.168 -0.418 1.000 0.586 0.340
SHDI 0.093 0.658 0.698 0.289 0.376 0.125 -0.710 0.586 1.000 0.193
WIAVGG 0.148  -0.004 0.005 0.058 0.068  -0.093 -0.012 0.340 0.193 1.000
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Table A-15. Landscape-level 1 9k correlation matrix

1 9k Spearman Rank Order Correlation Matrix

SHAPE FRAC PARA

RATE NP LSI MN MN MN PLADJ PRD SHDI  WIAVGG
RATE 1.000 0.034 0.058 0.088 0.064  -0.028 -0.044 0.129 0.091 0.150
NP 0.034 1.000 0.912 -0.083 0.068 0.526 -0.920 0.453 0.642 -0.021
LSI 0.058 0.912 1.000 0.241 0.320 0.355 -0.989 0.403 0.689 -0.005
SHAPE MN 0.088  -0.083 0.241 1.000 0.885  -0.423 -0.229 0.094 0.310 0.082

FRAC MN 0.064 0.068 0.320 0.885 1.000  -0.467 -0.307 0.171 0.398 0.064
PARA MN 0.028 0.526 0.355 -0.423  -0.467 1.000 -0.369 0.191 0.156 -0.106

PLADIJ 0.044  -0.920 -0.989 -0.229  -0.307  -0.369 1.000 -0.418 -0.703 -0.002
PRD 0.129 0.453 0.403 0.094 0.171 0.191 -0.418 1.000 0.594 0.344
SHDI 0.091 0.642 0.689 0.310 0.398 0.156 -0.703 0.594 1.000 0.197
WIAVGG 0.150 -0.021  -0.005 0.082 0.064 -0.106 -0.002 0.344 0.197 1.000
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Table A-16. Landscape-level 2k correlation matrix

2k Spearman Rank Order Correlation Matrix

BU SHAPE FRAC PARA
RATE NP LSI MN MN MN PLADJ PRD SHDI  WIAVGG
BU RATE 1.000 0.033 0.055 0.091 0.056 -0.042 -0.042 0.121 0.089 0.149
NP 0.033 1.000 0.913 -0.092 0.088 0.555 -0.920 0.447 0.636 -0.029
LSI 0.055 0.913 1.000 0.226 0.330 0.394 -0.990 0.388 0.681 -0.017

SHAPE MN 0.091  -0.092 0.226 1.000 0.866  -0.390 -0.214 0.099 0.309 0.089
FRAC MN 0.056 0.088 0.330 0.866 1.000  -0.422 -0.317 0.191 0.410 0.056
PARA MN 0.042 0.555 0.394 -0.390  -0.422 1.000 -0.406 0.173 0.176 -0.087

PLADIJ 0.042  -0.920  -0.990 -0.214  -0.317  -0.406 1.000  -0.402 -0.694 0.009
PRD 0.121 0.447 0.388 0.099 0.191 0.173 -0.402 1.000 0.580 0.344
SHDI 0.089 0.636 0.681 0.309 0.410 0.176 -0.694 0.580 1.000 0.198
WIAVGG 0.149  -0.029  -0.017 0.089 0.056  -0.087 0.009 0.344 0.198 1.000
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Table A-17. 800m forest class correlation matrix

800m Forest Class Spearman Rank Order Correlation Matrix

NP LSI S?/IAI\? E CLUMPY PLADJ Al
NP 1.000 0.853 -0.003 -0.463 0.019 -0.442
LSI 0.853 1.000 0.444 -0.335 0.257 -0.305
SHAPE MN -0.003 0.444 1.000 0.247 0.606 0.271
CLUMPY -0.463 -0.335 0.247 1.000 0.709 0.998
PLADJ 0.019 0.257 0.606 0.709 1.000 0.727
Al -0.442 -0.305 0.271 0.998 0.727 1.000

Table A-18. 800m wetland class correlation matrix

800m Wetland Class Spearman Rank Order Correlation Matrix

NP LSI Siﬁ\? E CLUMPY PLADJ Al
NP 1.000 0.772 -0.238 -0.445 0.036 -0.354
LSI 0.772 1.000 0.347 -0.247 0.373 -0.112
SHAPE MN -0.238 0.347 1.000 0.450 0.699 0.514
CLUMPY -0.445 -0.247 0.450 1.000 0.719 0.971
PLADJ 0.036 0.373 0.699 0.719 1.000 0.804
Al -0.354 -0.112 0.514 0.971 0.804 1.000

Table A-19. 800m agriculture/forest class correlation matrix

800m Agriculture/Forest Class Spearman Rank Order Correlation Matrix

NP LSI SPK/IAI}; E CLUMPY PLADIJ Al
NP 1.000 0.880 0.075 -0.426 0.188 -0.379
LSI 0.880 1.000 0.472 -0.170 0.525 -0.110
SHAPE MN 0.075 0.472 1.000 0.456 0.851 0.482
CLUMPY -0.426 -0.170 0.456 1.000 0.614 0.992
PLADJ 0.188 0.525 0.851 0.614 1.000 0.648
Al -0.379 -0.110 0.482 0.992 0.648 1.000
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Table A-20. 1 2k forest class correlation matrix

1 2k Forest Class Spearman Rank Order Correlation Matrix

NP LSI S};ﬁ\}; E CLUMPY PLADJ Al
NP 1.000 0.946 0.182 -0.441 0.232 -0.409
LSI 0.946 1.000 0.433 -0.396 0.328 -0.363
SHAPE MN 0.182 0.433 1.000 0.253 0.660 0.275
CLUMPY -0.441 -0.396 0.253 1.000 0.630 0.998
PLADJ 0.232 0.328 0.660 0.630 1.000 0.650
Al -0.409 -0.363 0.275 0.998 0.650 1.000

Table A-21. 1 _2k wetland class correlation matrix
1 2k Wetland Class Spearman Rank Order Correlation Matrix
NP LSI SHAPE CLUMPY PLADJ Al
MN

NP 1.000 0.842 -0.095 -0.287 0.267 -0.166
LSI 0.842 1.000 0.374 -0.122 0.496 0.026
SHAPE MN -0.095 0.374 1.000 0.413 0.623 0.465
CLUMPY -0.287 -0.122 0.413 1.000 0.705 0.967
PLADJ 0.267 0.496 0.623 0.705 1.000 0.786
Al -0.166 0.026 0.465 0.967 0.786 1.000

Table A-22. 1 2k agriculture/forest class correlation matrix

1 2k Agriculture/Forest Class Spearman Rank Order Correlation Matrix

NP LSI SP;?I\}I)E CLUMPY  PLADJ Al
NP 1.000 0.955 0.322 -0.433 0.374 -0.395
LSI 0.955 1.000 0.535 -0.364 0.490 -0.323
SHAPE MN 0.322 0.535 1.000 0.160 0.728 0.184
CLUMPY -0.433 -0.364 0.160 1.000 0.479 0.997
PLADJ 0.374 0.490 0.728 0.479 1.000 0.505
Al -0.395 -0.323 0.184 0.997 0.505 1.000
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Table A-23. 1 6k forest class correlation matrix

1 6k Forest Class Spearman Rank Order Correlation Matrix

NP LSI S}&Aﬁ E CLUMPY PLADJ Al

NP 1.000 0.954 0.158 -0.196 0.311 -0.160
LSI 0.954 1.000 0.364 -0.178 0.351 -0.142
SHAPE

MN 0.158 0.364 1.000 0.390 0.604 0.407
CLUMPY -0.196 -0.178 0.390 1.000 0.779 0.998
PLADJ 0.311 0.351 0.604 0.779 1.000 0.799
Al -0.160 -0.142 0.407 0.998 0.799 1.000

Table A-24. 1_6k wetland class correlation matrix
1 6k Wetland Class Spearman Rank Order Correlation Matrix
NP LSI S};ﬁ\? E CLUMPY PLADJ Al
NP 1.000 0.901 0.137 -0.289 0.348 -0.159
LSI 0.901 1.000 0.471 -0.177 0.507 -0.023
SHAPE MN 0.137 0.471 1.000 0.346 0.666 0.395
CLUMPY -0.289 -0.177 0.346 1.000 0.635 0.963
PLADJ 0.348 0.507 0.666 0.635 1.000 0.717
Al -0.159 -0.023 0.395 0.963 0.717 1.000
Table A-25. 1 6k agriculture/forest class correlation matrix
1 6k Agriculture/Forest Class Spearman Rank Order Correlation Matrix
NP LSI SHAPE CLUMPY PLADJ Al
MN

NP 1.000 0.956 0.415 -0.321 0.389 -0.284
LSI 0.956 1.000 0.600 -0.238 0.492 -0.198
SHAPE MN 0.415 0.600 1.000 0.298 0.799 0.325
CLUMPY -0.321 -0.238 0.298 1.000 0.537 0.997
PLADJ 0.389 0.492 0.799 0.537 1.000 0.557
Al -0.284 -0.198 0.325 0.997 0.557 1.000
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Table A-26. 2k forest class correlation matrix

2k Forest Class Spearman Rank Order Correlation Matrix

NP LSI ng/ﬁ\li E CLUMPY PLADJ Al
NP 1.000 0.945 0.143 -0.226 0.449 -0.186
LSI 0.945 1.000 0.342 -0.268 0.432 -0.228
SHAPE MN 0.143 0.342 1.000 0.225 0.514 0.239
CLUMPY -0.226 -0.268 0.225 1.000 0.617 0.998
PLADIJ 0.449 0.432 0.514 0.617 1.000 0.639
Al -0.186 -0.228 0.239 0.998 0.639 1.000
Table A-27. 2k wetland class correlation matrix
2k Wetland Class Spearman Rank Order Correlation Matrix
NP LSI S%E CLUMPY PLADJ Al
NP 1.000 0.923 0.170 -0.255 0.344 -0.143
LSI 0.923 1.000 0.457 -0.185 0.452 -0.053
SHAPE MN 0.170 0.457 1.000 0.306 0.643 0.352
CLUMPY -0.255 -0.185 0.306 1.000 0.655 0.968
PLADIJ 0.344 0.452 0.643 0.655 1.000 0.718
Al -0.143 -0.053 0.352 0.968 0.718 1.000
Table A-28. 2k agriculture/forest class correlation matrix
2k Agriculture/Forest Class Spearman Rank Order Correlation Matrix
NP LSI SP;/?I\II) E CLUMPY PLADJ Al
NP 1.000 0.969 0.425 -0.165 0.457 -0.134
LSI 0.969 1.000 0.575 -0.114 0.515 -0.079
SHAPE MN 0.425 0.575 1.000 0.405 0.765 0.429
CLUMPY -0.165 -0.114 0.405 1.000 0.638 0.997
PLADJ 0.457 0.515 0.765 0.638 1.000 0.653
Al -0.134 -0.079 0.429 0.997 0.653 1.000
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Appendix B

Non-Spatial Binomial Model Scatterplots
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Landscape-level “Best Model” Variables
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Figure B-1. Landscape-level “best model” variable scatterplots
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Figure B-2. 800m “best model” variable scatterplot
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Figure B-3. 800m wetland “best model” variable scatterplot
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Figure B-4. 800m agriculture/forest class “best model” variable scatterplot
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Figure B-5. 1 2k forest class “best model” variable scatterplot

117
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Figure B-6. 1 2k wetland class “best model” variable scatterplot
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Figure B-7. 1 2k agriculture/forest class “best model” variable scatterplot
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1 6k Forest Class

SHAPE_MN

(0] °
3, T
o
o
o
= o
~
a
o o
o [
< o i °o
£ & i@ o " o
-— =] ks =
o o 9
o o
3 o
' ° e
| o o 2 2 o
o0 o
e o > o <
° o Q OD o
@ @ @ @
= [ o o = o ° o o®
o =5 o o ®
- ) o o
~— e e ° o
o ©
o e o
a :;
o
o o
— 8 e o o ©
- o o
o0
— o a &
o
o
-- o o o o
~
T T T T T T T T

Figure B-8. 1_6k forest class “best model” variable scatterplot
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1 6k Wetland Class
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Figure B-9. 1_6k wetland class “best model” variable scatterplot
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1 6k Agriculture/Forest Class
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Figure B-10. 1_6k agriculture/forest class “best model” variable scatterplot
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Figure B-11. 2k forest class “best model” variable scatterplot
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Figure B-12. 2k wetland class “best model” variable scatterplot
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Appendix C

Non-Spatial Binomial Models
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Table C-1. Landscape-level non-spatial binomial GLMs

Non-Spatial Landscape-level Models

INTERCEPT WIAVGG SHAPE MN

Buffer Std. Std. Std.

Distance Est.  Error z-value Pr(>|z|) Est.  Error z-value Pr(>|z|) Est. Error z-value Pr(>|z|)
400m -10.178  0.593 -17.163 <2e-16 0.080 0.013 6.062 0.000 | 1.327 0.461 2.882 0.004
500m -10.900  0.653 -16.694 <2e-16 0.097 0.013 7.261 0.000 | 1.904 0.501 3.796 0.000
600m -9.931  0.663 -14.971 <2e-16 0.108 0.014 7.948 0.000 | 1.083 0.539 2.010 0.045
700m -10.739  0.711 -15.111 <2e-16 0.121 0.014 8.810 <2e-16| 1.603 0.564 2.844 0.004
800m -12.630  0.770 -16.409 <2e-16 0.127 0.014 9.267 <2e-16| 3.061 0.593 5.164 0.000
900m -13.317  0.823 -16.182 <2e-16 0.131 0.014 9311 <2e-16| 3.597 0.631 5.700 0.000
1k -12.374  0.818 -15.120 <2e-16 0.131 0.015 8.817 <2e-16| 2.797 0.634 4.410 0.000
1 1k -12.125  0.930 -13.040 <2e-16 0.141 0.015 9.529 <2e-16| 2.522 0.728 3.466 0.001
1 2k -10.845 0.933 -11.628 <2e-16 0.151 0.015 10.079 <2e-16| 1.422 0.730 1.949 0.051
1 3k -12.529  0.973 -12.880 <2e-16 0.150 0.015 9904 <2e-16| 2.724 0.761 3.577 0.000
1 4k -11.218  1.025 -10.949 <2e-16 0.161 0.015 10.371 <2e-16| 1.616 0.802 2.015 0.044
1 5k -11.316  1.128 -10.032 <2e-16 0.163 0.016 10.137 <2e-16| 1.704 0.891 1.911 0.056
1 6k -10.841 1.214  -8.927 <2e-16 0.168 0.016 10.219 <2e-16| 1.303 0.965 1.350 0.177
1 7k -9.654  1.210  -7.982 0.000 | 0.176 0.017 10381 <2e-16| 0.324 0.966 0.336 0.737
1 8k -11.802 1.248  -9.454 <2e-16 0.171 0.017 10.029 <2e-16| 2.014 0.990 2.034 0.042
1 9k -9.983  1.300  -7.680 0.000 | 0.182 0.017 10.469 <2e-16| 0.538 1.040 0.517 0.605
2k -11.231  1.347  -8.339 <2e-16 0.181 0.018 10.346 <2e-16| 1.520 1.071 1.419 0.156
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Non-Spatial Landscape-level Models

LSI AIC

Buffer Std.

Distance Est. Error z-value Pr(>|z|)

400m 0.202  0.085 2371 0.018 | 1872.800
500m 0.110  0.073 1.501 0.133 | 1856.100
600m 0.116  0.065 1.796  0.073 | 1853.400
700m 0.109  0.057 1.900  0.057 | 1833.800
800m 0.070  0.051 1.394  0.163 | 1805.200
900m 0.049  0.046  1.049  0.294 | 1798.100
1k 0.078  0.043 1.828  0.068 | 1809.300
1 1k 0.088  0.041  2.138  0.033 | 1811.000
1 2k 0.108  0.038 2.812  0.005 | 1812.500
1 3k 0.093  0.037 2535  0.011 | 1796.300
1 4k 0.104  0.034 3.026  0.002 | 1801.600
1 5k 0.093  0.033 2.822  0.005 | 1802.800
1 _6k 0.093  0.032 2928  0.003 | 1806.100
1 7k 0.097  0.030 3.209  0.001 | 1808.700
1 8k 0.084  0.029 2.879  0.004 | 1803.500
1 9k 0.089  0.028 3.179  0.001 | 1806.700
2k 0.079  0.027  2.941 0.003 | 1803.000
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Table C-2. Landscape-level non-spatial binomial GLMs

Non-Spatial Landscape-level Models
INTERCEPT WIAVGG SHAPE MN
Buffer Std. Std. Std.

Distance Est.  Error z-value Pr(>[z|) Est. Error z-value Pr(>|z) Est. Error z-value Pr(>z))
400m -10.564 0.612 -17.271 <2e-16 | 0.080 0.013 5.996 0.000 | 1.758 0.441 3.989 0.000
500m -11.158 0.673 -16.574 <2e-16 | 0.096 0.013 7.211 0.000 | 2.194 0.484 4.531 0.000
600m -10.284 0.667 -15.424 <2e-16 | 0.108 0.014 7.904 0.000 | 1.434 0.498 2.879 0.004
700m -11.232 0.728 -15.427 <2e-16 | 0.119 0.014 8.641 8.641 | 2.032 0.535 3.796 0.000
800m -13.003 0.801 -16.234 <2e-16 | 0.126 0.014 9.146 9.146 | 3.396 0.583 5.824 0.000
900m -13.612 0.853 -15.957 <2e-16 | 0.130 0.014 9.236 9.236 | 3.855 0.622 6.197 0.000
1k -12.879 0.855 -15.070 <2e-16 | 0.129 0.015 8.678 8.678 | 3.244 0.631 5.143 0.000
1 1k -12.735 0.952 -13.384 <2e-16 | 0.140 0.015 9.430 9.430 | 3.093 0.708 4.371 0.000
1 2k -11.555 0954 -12.117 <2e-16 | 0.150 0.015 9.997 9.997 | 2.144 0.710 3.018 0.003
1 3k -13.263 0999 -13.282 <2e-16 | 0.149 0.015 9.811 9.811 | 3.409 0.746 4.570 0.000
1 4k -12.048 1.050 -11.478 <2e-16 | 0.159 0.016 10.282  10.282 | 2.433 0.787 3.090 0.002
1 5k -12.166  1.138 -10.688 <2e-16 | 0.161 0.016 9.994 9.994 | 2.535 0.863 2.936 0.003
1_6k -11.820  1.211  -9.759 <2e-16 0.166 0.016 10.077 10.077 | 2.247 0.923 2.433 0.015
1 7k -10.790 1204 -8963 <2e-16 | 0.174 0.017 10.226 10.226 | 1.392 0.920 1.513 0.130
1 8k -12.940 1256 -10.307 <2e-16 | 0.169 0.017 9.899 9.899 | 3.035 0.954 3.182 0.001
1 9k -11.270 1.282  -8.791 <2e-16 | 0.180 0.017 10.378 10.378 | 1.716 0.980 1.751 0.080
2k -12.440 1342 -9.273 <2e-16 | 0.179 0.018 10.232  10.232| 2.617 1.023 2.557 0.011
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Non-Spatial Landscape-level Models

NP AIC
Buffer Std.

Distance Est. Error z-value Pr(>|z|)

400m 0.023  0.008 2.959  0.003 | 1869.800
500m 0.010  0.006 1.619  0.105 | 1855.700
600m 0.010  0.005 2.250  0.024 | 1851.700
700m 0.010  0.004 2.693  0.007 | 1830.200
800m 0.005  0.003 1.733  0.083 | 1804.100
900m 0.003  0.003 1.300  0.194 | 1797.500
1k 0.005  0.002 2.234  0.026 | 1807.700
1 1k 0.004  0.002 2260  0.024 | 1810.500
1 2k 0.004  0.002 2464 0.014 | 1814.500
1 3k 0.004  0.001 2.665  0.008 | 1795.700
1 4k 0.003  0.001  2.777  0.005 | 1803.100
1 5k 0.003  0.001 2548  0.011 | 1804.400
1 6k 0.003  0.001  2.605  0.009 | 1808.000
1 7k 0.003  0.001  3.001 0.003 | 1810.100
1 8k 0.002  0.001  3.039 0.002 | 1802.700
1 9k 0.002  0.001 2992  0.003 | 1807.900
2k 0.002  0.001  2.861 0.004 | 1803.500
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Table C-3. Landscape-level non-spatial binomial GLMs

Non-Spatial Landscape-level Models

INTERCEPT WIAVGG SHAPE MN
Buffer Std. Std. Std.

Distance Est.  Error z-value Pr(>|z|) Est.  Error z-value Pr(>|z|) Est. Error z-value Pr(>|z|)
400m -7.749  1.143  -6.780 0.000 | 0.080 0.013 6.061 0.000 | 1.313 0.461 2.847 0.004
500m -9.313  1.237  -7.529 0.000 | 0.097 0.013 7.272 0.000 | 1.892 0.503 3.759 0.000
600m -7.821 1363  -5.738 0.000 | 0.109 0.014 7.959 0.000 | 1.052 0.541 1.944 0.052
700m -8.578 1394  -6.152 0.000 | 0.121 0.014 8.818 <2e-16 | 1.597 0.564 2.830 0.005
800m -11.026  1.382 -7.978 0.000 | 0.127 0.014 9269 <2e-16 | 3.058 0.593 5.158 0.000
900m -12.082 1.437 -8.406 <2e-16 | 0.131 0.014 9314 <2e-16 | 3.596 0.631 5.696 0.000
1k -10.212  1.439 -7.095 0.000 | 0.131 0.015 8.822 <2e-16 | 2.800 0.634 4.416 0.000
1 1k -9.434 1.619 -5.828 0.000 | 0.141 0.015 9.536 <2e-16 | 2.521 0.728 3.463 0.001
1 2k -7.307  1.627  -4.492 0.000 | 0.151 0.015 10.087 <2e-16 | 1.427 0.730 1.955 0.051
1 3k -9.222  1.683 -5.479 0.000 | 0.150 0.015 9909 <2e-16 | 2.731 0.761 3.588 0.000
1 4k -7.270  1.716  -4.236 0.000 | 0.161 0.015 10.374 <2e-16 | 1.632 0.801 2.038 0.042
1 5k -7.540 1.844 -4.089 0.000 | 0.163 0.016 10.134 <2e-16 | 1.728 0.889 1.944 0.052
1_6k -6.904 1963 -3.517 0.000 | 0.168 0.016 10.214 <2e-16 | 1.346 0.962 1.400 0.161
1 7k -5.251 1993 -2.635 0.008 | 0.176 0.017 10376 <2e-16 | 0.371 0962 0.386 0.699
1 8k -7.762  2.035 -3.813 0.000 | 0.171 0.017 10.026 <2e-16 | 2.051 0.988 2.076 0.038
1 9k -5.450 2.134  -2.554 0.011| 0.182 0.017 10.464 <2e-16 | 0.589 1.036 0.569 0.570
2k -7.038 2.146 -3.279 0.001 | 0.181 0.018 10.340 <2e-16 | 1.567 1.067 1.468 0.142
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Non-Spatial Landscape-level Models

PLADJ AIC
Buffer Std.

Distance Est. Error z-value Pr(>|z|)

400m -0.023  0.009 -2.484  0.013 | 1872.300
500m -0.015  0.010 -1.510  0.131 | 1856.000
600m -0.020  0.011 -1.899  0.058 | 1853.000
700m -0.021  0.011 -1.913 0.056 | 1833.800
800m -0.016  0.011 -1.412  0.158 | 1805.100
900m -0.012  0.011 -1.057  0.290 | 1798.000
1k -0.021  0.012 -1.806  0.071 | 1809.400
1 1k -0.026  0.012 -2.134  0.033 | 1811.000
1 2k -0.035  0.013 -2.757  0.006 | 1812.800
1 3k -0.033  0.013 -2.483 0.013 | 1796.600
1 4k -0.039  0.013 -2.944  0.003 | 1802.000
1 5k -0.038  0.014 -2.766  0.006 | 1803.100
1 _6k -0.039  0.014 -2.830  0.005 | 1806.700
1 7k -0.044  0.014 -3.119  0.002 | 1809.300
1 8k -0.040  0.014 -2.787  0.005 | 1804.100
1 9k -0.045  0.015 -3.102  0.002 | 1807.200
2k -0.042  0.015 -2.852  0.004 | 1803.500
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Table C-4. Landscape-level non-spatial binomial GLMs

Non-Spatial Landscape-level Models

INTERCEPT WIAVGG SHAPE MN
Buffer Std. Std. Std.

Distance Est. Error z-value Pr(>|z) Est. Error z-value Pr(>[z|) Est. Error z-value Pr(>[z|)
400m -10.124  0.586 -17.269 <2e-16 | 0.081 0.014  5.963 0.000 | 1.570 0.449  3.499 0.000
500m -10.818  0.653 -16.575 <2e-16 | 0.094 0.014  6.897 0.000 | 1.936 0.495 3.914 0.000
600m -9.764 0.676 -14.441 <2e-16 | 0.103 0.014  7.479 0.000 | 1.002 0.535 1.874 0.061
700m -10.619 0.716 -14.822 <2e-16 | 0.114 0.014  8.186 0.000 | 1.542 0.555  2.778 0.005
800m -12.503  0.783 -15.974 <2e-16 | 0.121 0.014  8.621 <2e-16| 2.953 0.600  4.925 0.000
900m -13.228 0.844 -15.670 <2e-16 | 0.124 0.015 8.551 <2e-16| 3.457 0.643 5.377 0.000
1k -12.197  0.833 -14.643 <2e-16 | 0.123 0.015 8.076 0.000 | 2.627 0.646  4.067 0.000
1 1k -11.894  0.954 -12.461 <2e-16 | 0.131 0.015 8.560 <2e-16| 2.316 0.742  3.120 0.002
1 2k -10.612  0.953 -11.132 <2e-16 | 0.140 0.015 9.030 <2e-16| 1.267 0.743 1.705 0.088
1 3k -12.381  0.986 -12.562 <2e-16 | 0.141 0.016  9.016 <2e-16| 2.654 0.768  3.455 0.001
1 4k -10.970 1.033 -10.618 <2e-16 0.150 0.016 9387 <2e-16| 1.494 0.809 1.848 0.065
1 5k -11.042  1.137  -9.707 <2e-16 | 0.153 0.017  9.234 <2e-16| 1.541 0.897 1.719 0.086
1 6k -10.634 1.232  -8.630 <2e-16 | 0.156 0.017 9202 <2e-16| 1.192 0.972 1.226 0.220
1 7k -9.443  1.227  -7.697 0.000 | 0.161 0.017  9.230 <2e-16| 0.203 0970  0.209 0.834
1 8k -11.497  1.267 -9.073 <2e-16 | 0.157 0.018 8979 <2e-16| 1.815 1.001 1.814 0.070
1 9k -9.576 1327 -7.219 0.000 | 0.166 0.018  9.238 <2e-16| 0.252 1.054  0.239 0.811
2k -10.797 1.370  -7.879 0.000 | 0.166 0.018  9.143 <2e-16| 1.206 1.086 1.110 0.267
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Non-Spatial Landscape-level Models

SHDI AIC
Buffer Std.

Distance Est. Error z-value Pr(>|z|)

400m 0.105 0.135 0.776  0.437 | 1877.900
500m 0.197  0.136 1450  0.147 | 1856.200
600m 0333  0.140  2.381 0.017 | 1850.900
700m 0368  0.142  2.594  0.009 | 1830.600
800m 0309 0.143  2.161 0.031 | 1802.400
900m 0329 0.145 2271 0.023 | 1793.900
1k 0.421 0.147  2.858  0.004 | 1804.300
1 1k 0488  0.150 3.249  0.001 | 1804.800
1 2k 0.538  0.150  3.590  0.000 | 1807.300
1 3k 0456  0.152  3.003  0.003 | 1793.600
1 4k 0.514  0.152  3.389  0.001 | 1799.100
1 5k 0.502  0.155 3.250  0.001 | 1800.100
1 6k 0.533  0.157  3.399  0.001 | 1802.900
1 7k 0.605  0.159  3.801 0.000 | 1804.200
1 8k 0.548  0.164 3343  0.001 | 1800.500
1 9k 0.632 0.167 3.779  0.000 | 1802.200
2k 0.589  0.169  3.496  0.000 | 1799.200
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Table C-5. Landscape-level non-spatial binomial GLMs

Non-Spatial Landscape-level Models

INTERCEPT WIAVGG SHAPE MN
Buffer Std. Std. Std.

Distance Est. Error z-value Pr(>z|) Est. Error z-value Pr(>|z|) Est. Error z-value Pr(>|z|)
400m -9.975 0.595 -16.762 <2e-16 | 0.084 0.013 6.358 0.000 | 1.663 0.421 3.953 0.000
500m -10.624  0.650 -16.353 <2e-16 | 0.100 0.013 7.517 0.000 | 2.091 0.462  4.522 0.000
600m -10.024 0.663 -15.109 <2e-16 | 0.108 0.014  7.859 0.000 | 1.453 0.480  3.026 0.002
700m -10.919 0.734 -14.885 <2e-16 | 0.120 0.014 8.579 <2e-16 | 1.982 0.516 3.837 0.000
800m -12.617 0.801 -15.748 <2e-16 | 0.128 0.014 8.958 <2e-16 | 3.252 0.569 5.715 0.000
900m -13.495 0.890 -15.161 <2e-16 | 0.129 0.015 8.731 <2e-16 | 3.812 0.624  6.105 0.000
1k -13.211  0.865 -15.280 <2e-16 | 0.117 0.016 7.355 0.000 | 3.326 0.625 5.323 0.000
1 1k -13.431 0985 -13.629 <2e-16 | 0.119 0.016 7.388 0.000 | 3.317 0.717  4.624 0.000
1 2k -12.599 0988 -12.748 <2e-16 | 0.120 0.017 7.275 0.000 | 2.486 0.721 3.450 0.001
1 3k -13.995 1.009 -13.871 <2e-16 | 0.116 0.017 6.756 0.000 | 3.584 0.743 4.824 0.000
1 4k -12.449  1.051 -11.848 <2e-16 | 0.134 0.017 7.727 0.000 | 2.457 0.779 3.157 0.002
1 5k -13.048 1.162 -11.227 <2e-16 | 0.122 0.019 6.561 0.000 | 2.720 0.869 3.130 0.002
1 _6k -12.760  1.238 -10.307 <2e-16 | 0.121 0.019 6.415 0.000 | 2.343 0.933 2.510 0.012
1 7k -11.471  1.224 -9371 <2e-16 | 0.129 0.020 6.542 0.000 | 1.379 0.926 1.489 0.137
1 8k -13.687 1.272 -10.759 <2e-16 | 0.118 0.020 5911 0.000 | 2.984 0.958 3.113 0.002
1 9k -11.825  1.287 -9.188 <2e-16 | 0.137 0.020 6.858 0.000 | 1.663 0.977 1.703 0.089
2k -12.979 1349 -9.619 <2e-16 | 0.136 0.021 6.615 0.000 | 2.606 1.020  2.555 0.011
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Non-Spatial Landscape-level Models

PRD AIC
Buffer Std.

Distance Est. Error z-value Pr(>|z|)

400m -0.032  0.026 -1.247  0.212 | 1876.900
500m -0.062  0.039 -1.587  0.113 | 1855.800
600m -0.019  0.056 -0.337  0.736 | 1856.600
700m 0.013  0.080 0.160  0.873 | 1837.400
800m -0.012  0.099 -0.120  0.905 | 1807.100
900m 0.059  0.128  0.458  0.647 | 1799.000
1k 0.424  0.151 2.801 0.005 | 1804.700
1 1k 0.706  0.190  3.714  0.000 | 1801.500
1 2k 1.109  0.225 4926  0.000 | 1795.800
1 3k 1.244 0272  4.573 0.000 | 1781.500
1 4k 1.181  0.322  3.669  0.000 | 1797.100
1 5k 1.853  0.389  4.763 0.000 | 1787.800
1_6k 2464 0456 5409  0.000 | 1784.900
1 7k 2.608  0.525 4966  0.000 | 1793.900
1 8k 3.252 0595  5.471 0.000 | 1781.700
1 9k 3.019 0.644  4.688  0.000 | 1794.900
2k 3.082 0.715 4313 0.000 | 1793.200

136



Table C-6. 800m forest class non-spatial binomial GLMs

800m Forest Class
High Leverage Points: 1,3,5,6,31,34,64,76
INTERCEPT SHAPE MN CLUMPY
Std. Std. Std.
Est. Error z-value Pr(>|z|) | Est. Error z-value Pr(>|z|) Est. Error  z-value Pr(>|z|) AIC
-11.736  0.733  -16.010 <2e-16|2.157 0.384 5.626 0.000 | 2.302  0.806 2.857  0.004 | 421.46
INTERCEPT SHAPE MN LSI
Std. Std. Std.
Est. Error z-value Pr(>Jz]) | Est. Error z-value Pr(>|z|) Est. Error  z-value Pr(>|z|) AIC
-10.078 0.489 -20.612 <2e-16|2.687  0.355 7.565 0.000 -0.199  0.123 -1.613  0.107 | 427.66
INTERCEPT SHAPE MN Al
Std. Std. Std.
Est. Error z-value Pr(>|z]) | Est. Error z-value Pr(>|z|) Est. Error  z-value Pr(>|z|) AIC
-11.644 0.721  -16.157 <2e-16|2.137  0.388 5.501 0.000 | 0.022  0.008 2.746  0.006 | 422.14
INTERCEPT SHAPE MN PLADJ
Std. Std. Std.
Est.  Error z-value  Pr(>|z|) | Est. Error  z-value Pr(>|z|) Est. Error  z-value Pr(>|z|) AIC
10.803 0.562  -19.228 <2e-16 | 1.533  0.470 3.261 0.001 | 0.025  0.007 3.831  0.000 | 413.67
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Table C-7. 800m wetland class non-spatial binomial GLMs

800m Wetland Class
High Leverage Points: 9,36,47,52,71,112,114,123,128,152
INTERCEPT SHAPE MN CLUMPY
Std. Std. Std.
Est. Error z-value Pr(>|z]) | Est.  Error z-value Pr(>|z|) Est. Error  z-value Pr(>|z|) AIC
-9.524 0.551 -17.302 <2e-16]0.885 0.185 4.800  0.000 | 1.204 0.671 1.793  0.073 | 1049.1
INTERCEPT SHAPE MN LSI
Std. Std. Std.
Est. Error z-value Pr(>|z])| Est.  Error z-value Pr(>|z|) Est.  Error  z-value Pr(>|z|) AIC
-8.382 0.258 -32.467 <2e-16|1.158 0.177 6.557 0.000 | -0.213  0.071 -2.997  0.003 | 1044.5
INTERCEPT SHAPE MN Al
Std. Std. Std.
Est. Error z-value Pr(>Jz]) | Est. Error  z-value Pr(>[z|) Est. Error  z-value Pr(>|z|) AIC
-9.211 0.533 -17.279 <2e-16 | 0.908 0.187 4.843  0.000 | 0.008 0.007 1.171  0.241 | 1052.3
INTERCEPT SHAPE MN PLADJ
Std. Std. Std.
Est. Error z-value Pr(>|z|)| Est. Error  z-value Pr(>|z|) Est. Error  z-value Pr(>|z|) AIC
-8.866 0.336 -26.359 <2e-16 | 0.894 0.202 4.435  0.000 | 0.004 0.005 0914  0.361 1053
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Table C-8. 800m agriculture/forest class non-spatial binomial GLMs

800m Agriculture/Forest Class

High Leverage Points: 19,59,62

INTERCEPT SHAPE MN CLUMPY
Std. Std. Std.
Est. Error z-value Pr(>|z|) | Est. Error  z-value Pr(>|z|) Est. Error z-value Pr(>|z|) AIC
-8.889 0.490 -18.133 <2e-16 | 1.456 0.378 3.856  0.000 | -0.127 0381 -0.333  0.739 | 460.12
INTERCEPT SHAPE MN LSI
Std. Std. Std.
Est. Error z-value Pr(>|z])| Est. Error  z-value Pr(>|z|) Est. Error  z-value Pr(>|z|) AIC
-7.750 0.453 -17.096 <2e-16 | 1.826 0.320 5.703  0.000 | -0.760 0.133  -5.717  0.000 | 423.04
INTERCEPT SHAPE MN Al
Std. Std. Std.
Est. Error z-value Pr(>Jz]) | Est. Error  z-value Pr(>|z|) Est. Error  z-value Pr(>|z|) AIC
-8.713 0.519 -16.790 <2e-16 | 1.568 0.393 3.992  0.000 | -0.005 0.006 -0.892  0.372| 459.5
INTERCEPT SHAPE MN PLADJ
Std. Std. Std.
Est. Error z-value Pr(>|z|)| Est. Error z-value Pr(>|z|) Est. Error z-value Pr(>|z|) AIC
-8.740 0.421 -20.752 <2e-16|2.143 0.397 5.403  0.000 | -0.016 0.005 -3.164 0.002 | 451.87
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Table C-9. 1 2k forest class non-spatial binomial GLMs

1 2k Forest Class

High Leverage Points: 6,26,45,102

INTERCEPT SHAPE MN CLUMPY
Std. Std. Std.
Est.  Error z-value Pr(>|z|) Est.  Error z-value Pr(>|z|) Est.  Error z-value Pr(>|z|) AIC
-9.734  0.720 -13.527 <2e-16| 0.787 0.544 1.447  0.148 | 2.139  0.662 3.230  0.001 | 796.43
High Leverage Points: 26,45,102
INTERCEPT SHAPE MN LSI
Std. Std. Std.
Est. Error z-value Pr(>z)) Est.  Error z-value Pr(>|z|) Est. Error z-value Pr(>[z|) AIC
-10.022 0.595 -16.836 <2e-16| 3.258 0.506 6442  0.000| -0.452 0.070  -6.480  0.000 | 773.27
High Leverage Points: 6,26,45,102
INTERCEPT SHAPE MN Al
Std. Std. Std.
Est.  Error z-value Pr(>[z)) Est.  Error z-value Pr(>|z|) Est. Error z-value Pr(>[z|) AIC
-9.586  0.706 -13.569 <2e-16| 0.798 0.551 1.448  0.148 0.019 0.007 2937 0.003| 798.3
High Leverage Points: 6,26,45,85,102
INTERCEPT SHAPE MN PLADJ
Std. Std. Std.
Est.  Error z-value Pr(>|z|) Est.  Error z-value Pr(>[z)) Est. Error z-value Pr(>|z|) AIC
-9.413  0.668 -14.082 <2e-16| 2.126 0.655 3248 0.001 | -0.004 0.005 -0.851 0.395| 777.71
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Table C-10. 1 2k wetland class non-spatial binomial GLMs

1 2k Wetland Class

INTERCEPT SHAPE MN CLUMPY
Std. Std. Std.
Est. Error z-value Pr(>|z|) Est. Error z-value Pr(>|z|) Est.  Error z-value Pr(>|z|) AIC
-8.485 0.429 -19.772 <2e-16 0.498 0.180 2.775  0.006 0.642 0.514 1.251  0.211 | 1240.8
INTERCEPT SHAPE MN LSI
Std. Std. Std.
Est. Error z-value Pr(>z)) Est.  Error z-value Pr(>|z) Est.  Error z-value Pr(>|z) AIC
-7.386 0.236 -31.359 <2e-16| 0.852 0.159 5351 0.000| -0.311 0.044 -7.040 0.000 | 1190.4
INTERCEPT SHAPE MN PLADJ
Std. Std. Std.
Est. Error z-value Pr(>z)) Est. Error  z-value Pr(>|z|) Est.  Error z-value Pr(>|z|) AIC
-7.532 0.298 -25.245 <2e-16| 0.761 0.181 4204 0.000| -0.011 0.004 -2.692 0.007 | 1236.1
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Table C-11. 1 2k agriculture/forest class non-spatial binomial GLMs

1 2k Agriculture/Forest Class

High Leverage Points: 21,27,75,83

INTERCEPT SHAPE MN CLUMPY
Std. Std. Std.

Est. Error  z-value Pr(>|z)) Est. Error z-value Pr(>|z) Est. Error z-value Pr(>|z) AIC
-11.687  0.757 -15450 <2e-16| 1305 0.458 2.847  0.004 3.929  0.638 6.163  0.000 | 672.61
High Leverage Points: 21,73,83

INTERCEPT SHAPE MN LSI
Std. Std. Std.
Est. Error z-value Pr(>|z)) Est. Error z-value Pr(>|z)) Est. Error z-value Pr(>|z) AIC
-9.196  0.555 -16.576 <2e-16| 2.651 0.457 5.806 0.000 | -0.374 0.055 -6.848  0.000 | 691.12
High Leverage Points: 21,27,75,83
INTERCEPT SHAPE MN Al
Std. Std. Std.

Est. Error z-value Pr(>[z|) Est. Error z-value Pr(>|z|) Est. Error z-value Pr(>|z|) AIC
-11.561 0.735  -15.720 <2e-16| 1.208 0.460 2.626  0.009 0.039  0.006 6.186  0.000 | 675.41
High Leverage Points: 21,27,40,75,83

INTERCEPT SHAPE MN PLADJ
Std. Std. Std.
Est. Error z-value Pr(>z)) Est. Error z-value Pr(>|z|) Est. Error z-value Pr(>|z|) AIC
-9.146  0.593  -15425 <2e-16| 1.564 0.573 2.732  0.006 0.006 0.004 1.445  0.149 | 688.36
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Table C-12. 1 6k forest class non-spatial binomial GLMs

1 6k Forest Class

High Leverage Points: 29,36,50,97,101

INTERCEPT SHAPE MN CLUMPY
Std. Std. Std.
Est.  Error z-value Pr(>|z|) Est.  Error z-value Pr(>|z|) Est.  Error z-value Pr(>|z|) AIC
-9.228  0.580 -15919 <2e-16| 1.335 0.499 2,677  0.007 0.428  0.369 1.159  0.247 | 949.23
INTERCEPT SHAPE MN LSI
Std. Std. Std.
Est.  Error z-value Pr(>z)) Est.  Error z-value Pr(>|z) Est. Error  z-value Pr(>|z|) AIC
-9.161  0.557 -16.436 <2e-16 1.702  0.443 3.840  0.000 | -0.068 0.046 -1.478 0.140 | 9484
INTERCEPT SHAPE MN Al
Std. Std. Std.
Est.  Error z-value Pr(>z|) Est.  Error z-value Pr(>|z) Est.  Error z-value Pr(>|z|) AIC
-9.220  0.579 -15.930 <2e-16| 1.348 0.500 2.695  0.007 0.004  0.004 1.081  0.280 | 949.42
INTERCEPT SHAPE MN PLADJ
Std. Std. Std.
Est. Error z-value Pr(>|z|) Est.  Error z-value Pr(>|z) Est.  Error z-value Pr(>z|) AIC
-9.142 0.583 -15.684 <2e-16| 1351 0.513 2.633  0.008 0.003  0.003 0.990  0.322 | 949.62
INTERCEPT SHAPE MN
Std. Std.
Est.  Error z-value Pr(>|z|) Est. Error z-value Pr(>|z) AIC
-9.142  0.583 -15.684 <2e-16 1.351 0.513 2.633  0.008 949.62
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Table C-13. 1_6k wetland class non-spatial binomial GLMs

1 6k Wetland Class

INTERCEPT SHAPE MN CLUMPY
Std. Std. Std.
Est. Error z-value Pr(>|z|) Est. Error z-value Pr(>|z|) Est. Error z-value Pr(>|z|) AIC
-7.784 0.331 -23.524 <2e-16 0.463 0.160  2.889 0.004 | -0.218 0.351 -0.620 0.535 | 1412.8
INTERCEPT SHAPE MN LSI
Std. Std. Std.
Est. Error z-value Pr(>z)) Est. Error z-value Pr(>|z|) Est. Error z-value Pr(>|z|) AIC
-7.697 0.208 -36.957 <2e-16 0.681 0.151  4.500 0.000 | -0.140 0.029 -4.852 0.000 | 1388.9
INTERCEPT SHAPE MN Al
Std. Std. Std.
Est. Error z-value Pr(>|z)) Est. Error z-value Pr(>|z|) Est. Error  z-value Pr(>|z|) AIC
-7.421 0.392 -18.955 <2e-16 0.505 0.161 3.142 0.002 | -0.007 0.005 -1.556 0.120 | 1410.9
INTERCEPT SHAPE MN PLADJ
Std. z- Std. Std.
Est. Error value  Pr(>|z)) Est. Error z-value Pr(>|z|) Est. Error z-value Pr(>|z|) AIC
-7.004 0.266 -26.288 <2e-16 0.738 0.157  4.689 0.000 | -0.018 0.004 -5.008 0.000 | 1392.3
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Table C-14. 1 6k agriculture/forest class non-spatial binomial GLMs

1 6k Agriculture/Forest Class

High Leverage Points: 24,32,68,85,94,101

INTERCEPT SHAPE MN CLUMPY
Std. Std. Std.

Est. Error z-value Pr(>|z|) Est. Error  z-value Pr(>|z|) Est. Error  z-value Pr(>|z|) AIC
-8.669 0.690 -12.563 <2e-16| 0.854 0.532 1.605 0.108 | 0.878 0.495 1.775  0.076 | 821.61
High Leverage Points: 24,32,85,94,101
INTERCEPT SHAPE MN LSI
Std. Std. Std.

Est. Error z-value Pr(>z|) Est. Error  z-value Pr(>|z|) Est. Error  z-value Pr(>|z|) AIC
-9.128 0.581 -15.716 <2e-16| 2.681 0.511 5.244  0.000 | -0.328 0.044 -7.478 0.000 | 787.29
High Leverage Points: 24,32,68,85,94,101
INTERCEPT SHAPE MN Al
Std. Std. Std.

Est. Error z-value Pr(>z)) Est. Error  z-value Pr(>|z|) Est. Error  z-value Pr(>|z|) AIC
-8.601 0.680 -12.640 <2e-16| 0.842 0.537 1.567 0.117 | 0.008 0.005 1.642  0.101 822.1
High Leverage Points: 24,32,47,68,85,94,98,101

INTERCEPT SHAPE MN PLADJ
Std. Std. Std.
Est. Error z-value Pr(>|z|) Est. Error  z-value Pr(>|z|) Est. Error  z-value Pr(>|z|) AIC
-8.769 0.690 -12.711 <2e-16| 1.590 0.752 2.114  0.035] -0.001 0.006 -0.170  0.865 | 766.23
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Table C-15. 2k forest class non-spatial binomial GLMs

2k Forest Class
High Leverage Points: 1,2,33,57,73,109
INTERCEPT SHAPE MN CLUMPY
Std. Std. Std.
Est. Error  z-value Pr(>|z|) Est. Error  z-value Pr(>|z|) Est. Error z-value Pr(>|z|) AIC
-9.379 0.714 -13.140 <2e-16| 0.022 0.456 0.049 0.961 | 2.508 0.666 3.766  0.000 | 1062.4
INTERCEPT SHAPE MN LSI
Std. Std. Std.
Est. Error  z-value Pr(>|z|) Est. Error  z-value Pr(>|z|) Est. Error  z-value Pr(>|z|) AIC
-8.017 0.530 -15.124 <2e-16| 0.672 0.428 1.572  0.116 | -0.015 0.037 -0.414 0.679 | 1080.6
INTERCEPT SHAPE MN Al
Std. Std. Std.
Est. Error  z-value Pr(>|z|) Est. Error  z-value Pr(>|z|) Est. Error  z-value Pr(>|z|) AIC
-9.300 0.704 -13.210 <2e-16| 0.007 0.459 0.015 0.988 | 0.024 0.007 3.691  0.000 | 1063.2
INTERCEPT SHAPE MN PLADJ
Std. Std. Std.
Est. Error  z-value Pr(>|z|) Est. Error  z-value Pr(>|z|) Est. Error  z-value Pr(>|z|) AIC
-8.464 0.597 -14.187 <2e-16 | -0.407 0.504  -0.808 0.419| 0.023 0.005 4.686  0.000 | 1054.7
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Table C-16. 2k wetland class non-spatial binomial GLMs

2k Wetland Class
High Leverage Points: 2,3,39,54,75,96,203
INTERCEPT SHAPE MN CLUMPY
Std. Std. Std.
Est. Error  z-value Pr(>|z|) Est. Error z-value Pr(>|z)) Est. Error z-value Pr(>|z|) AIC
-5.895 0476 -12.394 <2e-16 | -0.693 0270  -2.565 0.010 | -0.674 0493 -1367 0.172 | 1552.5
INTERCEPT SHAPE MN LSI
Std. Std. Std.
Est. Error z-value Pr(>|z|) Est. Error  z-value Pr(>|z) Est. Error  z-value Pr(>[z|) AIC
-6.406 0.340 -18.821 <2e-16| -0.583 0274 -2.126  0.034 | -0.039 0.023 -1.734 0.083 | 1551.2
INTERCEPT SHAPE MN Al
Std. Std. Std.

Est. Error z-value Pr(>|z|) Est. Error  z-value Pr(>|z) Est.  Error z-value Pr(>|z|) AIC
-5.838 0.459 -12.731 <2e-16| -0.662 0.271  -2.442  0.015] -0.008 0.005 -1.640  0.101 | 1551.7
High Leverage Points: 2,3,39,54,75,96,177,203

INTERCEPT SHAPE MN PLADJ

Std. Std. Std.
Est. Error z-value Pr(>|z|) Est. Error  z-value Pr(>|z) Est.  Error  z-value Pr(>|z|) AIC
-5.837 0376 -15.512 <2e-16 | -0.635 0302 -2.102  0.036 | -0.009 0.004 -2.000  0.046 | 1537.1
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Table C-17. 2k agriculture/forest class non-spatial binomial GLMs

2k Agriculture/Forest Class

High Leverage Points: 25,34,52,93,104
INTERCEPT SHAPE MN CLUMPY
Std. Std. Std.

Est. Error z-value Pr(>|z|) Est. Error  z-value Pr(>|z|) Est. Error z-value Pr(>|z|) AIC
-9.431 0.608 -15.520 <2e-16| 0.607 0.466 1.304  0.192 | 2.247 0.466 4.821  0.000 | 900.78
High Leverage Points: 25,34,93,104

INTERCEPT SHAPE MN LSI
Std. Std. Std.
Est. Error z-value Pr(>|z|) Est. Error z-value Pr(>|z|) Est. Error z-value Pr(>|z|) AIC
-9.382  0.496 -18911 <2e-16| 2.633 0.430 6.128  0.000 | -0.227 0.033 -6.858 0.000 | 918.08
High Leverage Points: 25,34,52,93,104
INTERCEPT SHAPE MN Al
Std. Std. Std.
Est. Error  z-value Pr(>|z|) Est. Error  z-value Pr(>|z|) Est. Error z-value Pr(>|z|) AIC
-9.350 0.600 -15.570 <2e-16| 0.550 0.469 1.175  0.200 | 0.022 0.005 4.765  0.000 | 901.54
INTERCEPT SHAPE MN PLADJ
Std. Std. Std.
Est.  Error z-value Pr(>z) Est. Error  z-value Pr(>|z|) Est.  Error z-value Pr(>|z|) AIC
-7.833  0.614 -12.750 <2e-16| -0.738 0.624  -1.182  0.237 0.026  0.005 5.244  0.000 | 897.88

148




Appendix D

Spatial Binomial Models
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Table D-1. 800m forest class spatial binomial GLM

Summary 800m Forest 3 Chains at 100,000

Parameters 50.0% 2.5%  97.5%
Intercept -8.621 11.906  -8.192
Shape Index Mean 0.703 -1.772 1.903
Percent Land Cover

Adjacency 0.034  0.009 0.045
sigma.sq 2.628  1.853 4.305
Phi 350.850 26.887 387.372
effective range 3/phi 0.009  0.008 0.185
max intersite distance = 1.174

Table D-2. 800m wetland class spatial binomial GLM

Summary 800m Wetland 3 Chains at 50,000

Parameters 50.0% 2.5% 97.5%
Intercept 10.022 10.095 -8.918
Shape Index Mean 0.986  0.722 1.096
sigma.sq 3.503  3.158  3.869
Phi 15.224 12.006 21.354
effective range 3/phi 0.197  0.141  0.251
max intersite distance = 1.260

Table D-3. 800m agriculture/forest class spatial binomial GLM

Summary 800m Agriculture/Forest 3 Chains at 50,000

Parameters 50.0% 2.5%  97.5%
Intercept -8.868  -9.844  -8.245
Shape Index Mean 2.319 1.774 2.500
Landscape Shape Index -0.549  -0.776  -0.192
sigma.sq 1.345 1.142 2.309
Phi 283.921 234.639 551.114
effective range 3/phi 0.011 0.006 0.013
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Table D-4. 1 2k forest class spatial binomial GLM

Summary 1 2k Forest 3 Chains at 100,000

Parameters 50.0% 2.5%  97.5%
Intercept 11.411 15.723  -8.792
Shape Index Mean 3.439 1.076 6.52
Landscape Shape Index -0.31 -0.45 -0.07
sigma.sq 4392 4304 4.449
Phi 75.14 18.076 189.105
effective range 3/phi 0.04 0.017 0.191
Max intersite distance = 1.260
Table D-5. 1 2k wetland class spatial binomial GLM
Summary 1 2k Wetland 3 Chains at 100,000
Parameters 50.0% 2.5% 97.5%
Intercept -7.448  -8.688  -7.447
Shape Index Mean 0.368 -0.401 1.16
Landscape Shape Index -0.184 -0.295  0.011
sigma.sq 2495  2.194  2.897
Phi 22.312 16.076 33.448
effective range 3/phi 0.134 0.09  0.188

max intersite distance = 1.277

Table D-6. 1 2k agriculture/forest class spatial binomial GLM

Summary 1 2k Agriculture/Forest 3 Chains at 100,000

Parameters 50.0% 2.5%  97.5%
Intercept -9.096 -10.403  -6.957
Shape Index Mean 2.240 0.555 3.582
Landscape Shape Index -0.255  -0424  -0.242
sigma.sq 1.547 1.112 1.733
Phi 449.736  319.780 592.320
effective range 3/phi 0.007 0.005 0.009

max intersite distance = 1.230
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Table D-7. 1 6k forest class spatial binomial GLM

Summary 1 6k Forest 3 Chains at 50,000

Parameters 50.0% 2.5% 97.5%
Intercept -9.490 -9.759 -6.676
Shape Index Mean -0.111  -2.042  0.629
sigma.sq 6.166 4735 6917
Phi 9.049 6944 13.169
effective range 3/phi 0.332 0.229 0434

max intersite distance = 1.260

Table D-8. 1 _6k wetland class spatial binomial GLM

Summary 1 6k Wetland 3 Chains at 100,000

Parameters 50.0% 2.5% 97.5%
Intercept -9375 -9.485 -8.770
Shape Index Mean 0.870  -0.060 1.127
Landscape Shape Index 0.051 -0.028  0.080
sigma.sq 3969  3.623  6.301
Phi 17.402 11.701 20.866
effective range 3/phi 0.172  0.144  0.259

max intersite distance = 1.250

Table D-9. 1 6k agriculture/forest spatial binomial GLM

Summary 1 6k Agriculture/Forest 3 Chains at 50,000

Parameters 50.0% 2.5% 97.5%
Intercept 10.739 11.111 10.168
Shape Index Mean 3.635 3.004 3.741
Landscape Shape Index -0.248 -0.319 -0.208
sigma.sq 1.921 1.334  2.199
Phi 16.864 10.402 33.195
effective range 3/phi 0.178  0.093  0.292

max intersite distance = 1.224
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Table D-10. 2k forest class spatial binomial GLM

Summary 2k Forest 3 Chains at 50,000

Parameters 50.0% 2.5% 97.5%
Intercept 10.811 11.266 -9.358
Percent Land Cover
Adjacency 0.024  0.014  0.029
sigma.sq 5.164 47708  5.165
Phi 18.343 15.803 23.018
effective range 3/phi 0.164  0.131 0.190
max intersite distance = 1.174

Table D-11. 2k wetland class spatial binomial GLM

Summary 2k Wetland 3 Chains at 50,000

Parameters 50.0% 2.5% 97.5%
Intercept -7.522 -8.621 -6.267
Percent Land Cover
Adjacency -0.004  -0.020  0.002
sigma.sq 3376 2.859  4.107
Phi 25.083 21.627 63.926
effective range 3/phi 0.120  0.049  0.139

max intersite distance =

Table D-12. 2k agriculture/forest class spatial binomial GLM

Summary 2k Agriculture/Forest 3 Chains at 50,000

Parameters 50.0% 2.5%  97.5%
Intercept -9.434  -11.430 -8.954
Shape Index Mean 2.448 1.700 4.771
Landscape Shape Index -0.253  -0.492  -0.120
sigma.sq 2.232 1.873 2.707
Phi 366.493 334.177 489.995
effective range 3/phi 0.008 0.006 0.009

max intersite distance = 1.256
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