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ABSTRACT 

QUANTIFYING SPATIAL RELATIONSHIPS BETWEEN LANDSCAPE PATTERNS 

LINKED TO ANTHROPOGENIC DISTURBANCES AND BURULI ULCER DISEASE 

 

By 

 

Lindsay P. Campbell 

Anthropogenic ecosystem disturbances play an important role in the distribution of 

emerging and re-emerging infectious diseases. Advances in GIS, remote sensing technologies, 

and spatial statistical methods facilitate the observation and quantification of anthropogenic 

landscape disturbances, providing the tools necessary to link these disturbances to disease 

emergence. Investigations into disturbances linked to environmental bacterial infections are an 

underrepresented research area. One such disease is Buruli ulcer disease (BU), caused by the 

environmental pathogen Mycobacterium ulcerans. The ecological drivers behind pathogen 

proliferation and transmission to humans are currently unknown. The main objective of this 

study included using a spatial landscape ecological approach to determine whether land cover 

patches indicative of anthropogenic landscape disturbances surrounded villages with higher BU 

rates. Landscape-level results supported study hypotheses that more fragmented landscapes, with 

more uniform land cover patch shapes, lying within areas more likely to collect water surround 

villages with higher BU rates, but results were not consistent. Class-level results, analyzing 

forest, wetland, and a mixed agriculture/forest class, suggested that more aggregated patches 

with more complex shapes surround villages with higher BU rates. Incorporation of a spatial 

random effects component accounted for spatial autocorrelation and provided a spatial structure 

from which to predict BU rates at unsampled locations.
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INTRODUCTION 
 

Anthropogenic ecosystem disturbances, for example, land use change, human movement, 

encroachment and wildlife translocation, rapid transport, and climate change play an important 

role in the distribution of emerging and re-emerging infectious diseases (Wilcox and Gubler, 

2005; Patz et al., 2000; Foley et al., 2005; Patz and Confalonieri, 2005; Confalonieri, 2005). 

These activities have the potential to disrupt natural community assemblages in ecosystems, 

impacting predator/prey relationships, thereby resulting in an imbalance of population control 

mechanisms that may have prevented disease pathogens from infecting human populations prior 

to disturbance (Wilcox and Gubler 2005; Morse 1995).  

Land use and land cover (LULC) change at multiple scales are one anthropogenic 

disturbance linked to disease incidence. Examples include: 1) changes in dry-season irrigation 

practices at a local scale that created new mosquito-breeding habitats leading to elevated Ross 

River virus cases in Australia; 2) deforestation of hillsides at a regional scale contributing to 

nutrient run-off that proliferated macroalgae growth suitable to bacteria responsible for ciguatera 

fish poisoning; and 3) rainforest degradation at a global scale resulting in new transmission 

opportunities for simian retroviruses such as HIV/AIDS between human and non-human 

primates (Cook et al., 2004).  

Anthropogenic activities with major impacts on LULC are land degradation, including 

agriculture intensification and water projects, urbanization, and deforestation (Patz et al., 2008). 

These activities contribute to habitat fragmentation that can disrupt vector breeding sites and 

reservoir distributions while creating habitats suitable to ecological edge effects that provide 

opportunities for niche invasions that promote disease emergence (Patz and Confalonieri, 2005). 

Further, these activities generate new pathways for humans to interact with environments 
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undisturbed previously, resulting in reduced proximities to potential vectors, reservoirs, and 

isolated pathogens (Patz and Confalonieri, 2005; Morse, 1995; Epstein, 2002; Pongsiri et al., 

2009).  

Landscapes impacted most by widespread anthropogenic ecosystem disturbance are those 

situated within the tropics, which have experienced the largest ecosystem transformations in 

history within the last 60 years (Clark et al., 1990). Agriculture intensification is the major driver 

behind tropical deforestation, and as population growth rates continue to rise, agricultural land is 

expected to increase by approximately 23% by the year 2050 to meet food and fuel demands 

(Patz et al., 2008; Hansen et al., 2008). As these regions continue to transition from natural to 

managed ecosystems, new habitat opportunities suitable to a variety of reservoirs, vectors, and 

pathogens will continue to surface; therefore, identifying landscape patterns favorable to disease 

emergence will be a critical first step in human disease prevention.  

Advances in GIS and remote sensing technologies, along with spatial statistical methods, 

facilitate the observation and quantification of anthropogenic landscape disturbances, providing 

the tools necessary to study location-specific landscape characteristics that might be responsible 

for disease incidence while enabling spatial modeling capabilities to link these characteristics 

and to predict disease risk across a landscape (Kitron, 1998). While current research focuses 

largely on wildlife and vector-borne zoonotic disease emergence, exploring linkages between 

anthropogenically-disturbed landscapes and human bacterial infections is an underrepresented 

area of research, although recent results suggest that these disturbances play an important role in 

spatial distributions of environmental bacteria that pose a human health risk (Goldberg et al., 

2008). Quantifying landscape patterns related to bacterial disease emergence is central to the 
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prediction of present and future public health risk because often the ecological drivers behind 

these diseases are poorly understood.  

One example is Buruli ulcer (BU) disease, caused by the environmental pathogen 

Mycobacterium ulcerans. Although the ecological drivers behind MU growth remain a mystery, 

dramatic increases in BU cases since the 1980s (Merritt et al., 2005) have been linked 

empirically and anecdotally to anthropogenic landscape changes; for example, deforestation, 

habitat fragmentation, aquatic ecosystem disturbances from dam construction and agriculture 

irrigation, farming practices, and mining activities (Merritt et al., 2010).  Although BU is not 

transferred between persons, the mode or modes of transmission is not determined, and no 

vaccine exists (Wansbrough-Jones and Phillips, 2006). Therefore, identifying landscape patterns 

linked to BU incidence will provide a powerful tool for surveillance and prevention while 

affording opportunities to learn more about the disease system. 
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Chapter 1 LITERATURE REVIEW 

 

1.1 Buruli ulcer disease 

 

Mycobacterium ulcerans (MU), the causative agent of BU, is an environmental pathogen 

(Williamson et al., 2008) and the second most common mycobacterium infection in humans after 

tuberculosis and leprosy (Wansbrough-Jones and Phillips, 2006; Walsh et al. 2008; WHO 2000). 

BU presents as a necrotizing skin condition that often causes mobility loss and permanent 

disabilities in patients due to the potential for ulcers to cover large areas of the body. The disease 

is endemic in over 32 countries worldwide, but occurs predominantly in tropical areas of sub-

Saharan Africa and also in more temperate regions; specifically, the Melbourne area of Victoria, 

Australia (WHO, 2007; Walsh et al., 2008). The World Health Organization (WHO) established 

the Global Buruli Ulcer Initiative in 1998 with the goals of raising disease awareness, improving 

treatment access, strengthening surveillance, and providing priority research into disease 

diagnosis, treatment and prevention (WHO, 2007). BU affects all age groups, but children under 

the age of 15 are most at risk for the disease (Merritt et al., 2005).  

MacCallum and colleagues identified MU as the causal agent of BU in Victoria, Australia 

in 1948 (MacCallum et al., 1948), although Sir Albert Cook in Africa in 1897 and Kleinshmidt 

in northeast Congo during the 1920s identified likely BU cases (Johnson et al., 2005). BU has 

had numerous names worldwide, each representing the region from which cases occurred. In 

Australia, it was known as Bairnsdale ulcer after the town in which the identification of MU took 

place and Searls’ ulcer after a physician practicing in Bairnsdale during the same era; the 

infection is named Kumusi in Papua New Guinea and Kakerifu in Zaire (Meyers, 2007). The 

name Buruli is linked to the former Buruli district in Uganda where a large number of cases 
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surfaced between 1950 and 1970 (Clancey et al., 1964), and it is the name adopted by the WHO 

to promote disease awareness (Meyers, 2007). 

1.2 Symptoms and Treatment 

 

Three BU disease stages exist: non-ulcerative or pre-ulcerative disease, ulcerative 

disease, and healing or scarring (Figure 1-1, WHO, 2000). Pre-ulcerative symptoms include 

painless, raised papules that are usually < 1cm in diameter; painless, mobile nodules beneath the 

skin; and firm plaques (WHO 2000). Edema and swelling can also occur, but subsides once an 

ulcer develops (Dobos et al., 1999). An incubation period of approximately three months exists 

before ulcer eruption, but varies by individual (Horsbough and Meyers, 1997) with as little as 

two weeks to as long as one year being reported by individuals in contact with endemic regions 

(Veitch et al., 1997).  

The ulcerative disease stage develops when pre-ulcerative symptoms erupt into necrotic 

skin lesions. Ulcer edges are deeply undermined and necrosis often extends beyond the visible 

infection (Johnson et al., 1999; Hayman J, 1993). Ulcers are usually painless and continue to 

enlarge through necrosis of the underlying epidermis surrounding the initial lesion (Huygen et 

al., 2009). Healing is a slow process that may occur spontaneously, but scarring of affected 

tissues leads to debilitating conditions. Four methods of laboratory diagnosis exist, including 

direct smear, culture, Polymerse Chain Reaction (PCR), and histopathology (Walsh et al., 2008). 
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Figure 1-1. BU stages. (Images Courtesy of Dr. K. Asiedu and Dr.  

A. Chauty <http://www.who.int/buruli/photos/en/index.html>). For  

interpretation of the references to color in this and all other figures,  

the reader is referred to the electronic version of this thesis. 

 

Approximately 80% of ulcers present on the limbs or extremities (Walsh et al., 2008), 

and no significant difference exists between male and female infection rates (Debacker et al., 

2004b). A country-wide case study in Ghana found that women and girls were more likely than 

boys to develop lesions on their arms, but ulcerations on the legs were still dominant in both 

sexes (Amofah et al., 2002).  

Recent treatment advances determined that a combination of Streptomycin-Rifampin 

antibiotics alone had a high success rate for persons presenting with ulcers < 15 cm in diameter 

(Chauty et al., 2007), but larger ulcers must be surgically excised along with a large area of 

surrounding, healthy tissue followed by skin grafting to help prevent disease recurrence, and 

severe cases require amputation of ulcerated limbs (Sizaire et al., 2006). Although BU eventually 

subsides on its own, it is not without devastating, long-term negative effects, and disease 

recurrence rates range between 6.1% and 47% in some endemic regions (Debacker et al., 2005; 

Amofah et al., 2002).  

Although study results suggested that the M. bovis bacilli Calmette-Guérin, or BCG, 

vaccine used commonly to protect against tuberculosis provided partial protection against BU for 

a six month time period (Portaels et al., 2002), a definitive vaccine does not exist (Huygen et al., 

2009). However, the BCG vaccine may prevent more severe infections from developing in 
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patients (Portaels et al., 2002; Noeske et al., 2004) and may decrease disease duration (Amofah 

et al., 1993). While these results are promising, contrasting results also exist, suggesting that the 

BCG vaccination provides no BU protection and may increase infection risk (Nackers et al., 

2006). Persons infected with the human immunodeficiency virus (HIV) are not at a higher risk 

for contracting BU (Raghunathan et al., 2005), but may experience a more severe infection once 

inoculated (Johnson et al., 1999).  

BU complications include mobility loss from surgical treatment and/or scarring of 

affected tissues. Without adequate physical therapy, patients often experience contracture, or the 

inability to straighten or flex muscles in affected areas (Hayman 1993). In severe cases, the 

infection moves into the bone causing osteomyelitis (Johnson et al, 1999). In these cases, the 

bone develops a “moth-eaten” appearance and severe disability may result (WHO, 2007). 

Reactive osteitis, or contiguous osteitis, is another BU complication that results from soft tissue 

destruction above the bone and also creates the potential for mobility loss in patients (WHO, 

2007). A recent study in Ghana found that at least 27% of patients experienced a reduced range 

of motion following treatment and the study suggested that better follow-up care should be a 

priority to help limit disability from the disease (Figure 1-2, Schunk et al., 2009). 

 

     

  

 

 

 

 

      Figure 1-2.  BU Complications (Images Courtesy of the  

      National Buruli ulcer Control Programme, Benin, Professor  

      H. Assé, and Dr. K. Asiedu 

      <http://www.who.int/buruli/photos/en/index.html) 
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1.3 Prevalence and Economic Hardship 

 

BU cases increased steadily and expanded geographically within the past few decades 

(Merritt et al., 2005). Although elevated disease awareness contributed to higher diagnosis rates, 

researchers believe an increase in the exposed population also took place (Debacker et al., 

2004a). The WHO estimated approximately 24,000 cases were recorded between 1978 and 2006 

in Côte d’Ivoire; approximately 7,000 cases were recorded between 1989 and 2006 in Benin; and 

more than 11,000 cases were recorded since 1993 in Ghana (WHO 2007). Underreporting is a 

common problem when estimating BU case numbers because many patients do not have access 

to health care facilities, are misdiagnosed, or live in countries in which BU is not a notifiable 

disease (WHO 2007). 

BU cases increased dramatically in the Melbourne area of Victoria, Australia with only 4 

cases reported in 1999 but 61 cases reported in 2006 (Quek et al., 2007) with an outbreak of 83 

cases occurring in the city of Point Lonsdale on the Bellarine Peninsula in 2002 (Johnson et al., 

2007). Between 1992 and 1995, an outbreak occurred in the city of Cowes located on Phillips 

Island off the mainland of Australia near Melbourne (Veitch, 1997). Although BU cases were 

recorded since the 1930s in Melbourne suburbs, previous BU cases on Phillips Island had not 

been recorded, suggesting that the pathogen expanded its geographic range. BU is also endemic 

to the Daintree Forest region of Northern Queensland along the eastern coast of Australia, 

though fewer cases are reported each year than in the Victoria region (Jenkin et al., 2002). Early 

detection and access to health care, along with fewer overall cases, has prevented BU from 

becoming a more serious public health problem in Australia, but persons living in developing 

countries face greater challenges when seeking treatment, and the majority of cases received at 

medical facilities are in advanced disease stages (WHO, 2000). 
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Persons presenting with BU often require extensive surgery and hospital stays, creating 

economic challenges for families of patients (Aujoulat et al., 2003); for example, patient hospital 

stays average approximately three months in Ghana (Stienstra et al., 2002). The WHO reported 

in Ghana that the cost of treating a pre-ulcerative nodule in a patient is comparable to 16% of the 

average total family income for the work-year; the cost of treating a patient requiring amputation 

is equal to 89% of the average total family income for the work-year; and the average cost of 

treating a patient in 1994-1996 exceeded the per capita government spending on health care 

(WHO, 2007). Compounding the problem is income loss due to incapacitation from the disease 

or from caring for a family member with BU, and families face additional challenges involving 

prolonged care for members permanently disabled. Fear of surgery, long distances to treatment 

facilities, and socioeconomic factors contribute to the rural poor being affected most negatively 

by BU (Raghunathan et al., 2005).      

 Beyond prohibitive treatment costs and access to medical facilities, a stigma associated 

with BU exists in many regions due to a belief that the infection is a result of witchcraft. A case 

controlled study in Ghana determined that 59% of study respondents felt that witchcraft was 

involved in disease development (Stienstra et al., 2002). Persons without BU reported avoiding 

patients suffering from the disease, and patients reported hiding symptoms from community 

members. Many respondents attributed the disease to a lack of hygiene by patients, and patients 

reported a fear of the “evil eye” and did want community members staring at wounds or 

watching dressing changes for fear that these activities would influence healing negatively. 

Importantly, many respondents did not believe that BU was a “hospital disease” because the 

infection was the result of a curse, and therefore, traditional healing methods would be the best 

treatment option.   
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1.4 Mycobacterium ulcerans 

 

MU is a slow-growing, mycolactone-producing environmental mycobacterium (Merritt et 

al., 2005). During the pre-ulcerative stage, acid-fast bacilli localize to fatty tissues under the skin 

where microcolony formation takes place (Dobos et al., 1999). MU is unusual because of its 

extracellular activity and mycolactone secretion, a lipid toxin responsible for fat and 

subcutaneous tissue necrosis (George et al., 1999) The mycolactone secretes an 

immunosuppressive property, indicated by the lack of a granulomatous inflammatory response in 

early lesion stages, allowing the disease to progress with little or no pain in the patient (Johnson 

et al., 1999). Lack of a host immune response leaves the infection undetected by burulin skin 

tests that become positive only after the bacterium ceases to reproduce and healing begins 

(WHO, 2007).  

Additional attributes set MU apart from related mycobacteria. Most notably, MU prefers 

lower temperatures and has a narrower temperature range than its counterparts, preferring 

temperatures between 28-34°C with an optimal growth range between 30-33°C in a laboratory 

setting (Merritt et al., 2010). Although isolates from various regions show differences in 

temperature tolerance, for example, isolates from Africa are more thermo-tolerant than those 

from more temperate regions, survival at higher temperatures takes place without reproduction 

(Edyanni and Portaels, 2007). Further, MU is intolerant to ultra-violet (UV) light because it lacks 

pigments found in related mycobacterium, indicating that MU may be protected from sunlight in 

its natural environment (Stinear et al., 2007). 

Recent technological advances enabled researchers to detect MU DNA in a variety of 

environmental samples ranging from soils to invertebrates (for a complete review see Merritt et 

al., 2010) using PCR probes based on detection of IS2404 (Ross et al., 1997). Although IS2404 
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was believed to be specific to M. ulcerans, it was later determined that other mycobacteria also 

tested IS2404 positive; specifically, M. marinum, M. liflandji, and M. pseudoshottsii (Stragier et 

al., 2007), but the advent of real-time PCR provided the tools necessary to differentiate MU from 

other mycobacteria testing IS2404 positive (Fyfe et al., 2007).  

A significant contribution involving a pure MU culture from an environmental sample 

took place recently in Benin (Portaels et al, 2008). The culture was obtained from a water strider, 

an aquatic insect (Hemiptera: Gerridae, Gerris sp.). This discovery made a substantial 

contribution to BU research because it was the first of its kind and confirmed MU existence in 

aquatic habitats (Merritt et al., 2010). 

1.5 Hypothesized Modes of Transmission 

 

The mode or modes of BU transmission are currently unknown. The occurrence of ulcer 

presentation at the site of previous skin trauma in some patients suggests a direct mode of 

transmission from the environment (Meyers et al., 1974). Ulcer presentation in a patient in Togo, 

Africa was reported at the site of a wound from a large splinter of wood (Meyers et al., 1996), 

and cleaning and covering cuts and abrasions is recommended in Victoria, Australia to help 

prevent inoculation with the disease (Johnson et al., 2007).  

Aerosol transmission is another mechanism proposed for MU inoculation based on the 

ability of Mycobacteria intracellulare to concentrate in air bubbles, suggesting that mycobacteria 

may be propelled into the air and dispersed by wind or waves upon gas bubble bursts occurring 

in water bodies in the natural environment (Hayman, 1991). Further speculation ensued when a 

study in Australia revealed that BU patients did not report having contact with environmental 

water other than the ocean before presenting with the disease, but a need exists for additional 

research to determine the plausibility of this hypothesis (Johnson et al., 2005). 
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Researchers found MU DNA in biofilm of aquatic vegetation in Ghana, and subsequent 

testing determined that MU growth rates increased substantially after two green algae types were 

entered into the medium in a laboratory setting (Marsollier et al., 2004b). Persons may come into 

direct contact with contaminated water and plants while bathing, farming or conducting domestic 

duties, or contaminated insects may act as mechanical vectors of the disease.  

Past studies focused on the possibility of aquatic insects as primary BU vectors. In 1999, 

researchers investigated five aquatic invertebrate species found on the roots of various plants in 

Benin and Ghana and found they were MU positive, but no evidence surfaced of these insects 

passing the pathogen to humans, even though they were known to sometimes bite villagers 

(Portaels et al., 1999). Further research determined that MU could survive and reproduce within 

the salivary glands of biting aquatic bugs (Marsollier et al., 2003), and scientists observed ulcer 

presentation in mice bitten by infected aquatic bugs in the laboratory, although insect species 

native to West Africa were not used in these studies (Marsollier, 2002). Additional research 

demonstrated that aquatic snails may act as passive hosts, harboring MU within their bodies after 

eating contaminated aquatic vegetation, and that MU may be transferred to the salivary glands of 

biting insects after feeding on infected snails (Marsollier et al. 2004a).  

Contrasting results from a field study involving 27 water body sites near BU positive and 

BU negative villages in Ghana determined that biting Hermiptera were not likely BU vectors 

after finding no positive correlation between Hemiptera abundance and endemic sties; MU 

positivity rates and endemic sites; MU positivity rates among Hemiptera versus other aquatic 

insects within endemic sites; or overall MU positivity and vector abundance (Benbow et al., 

2008). However, a recent field study conducted in Cameroon (Marion et al., 2010) supported 

previous laboratory results, finding MU within biting hemiptera salivary glands, and contrary to 
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field results from Ghana, found insect density counts ten times higher in BU endemic study sites 

than in BU non-endemic sites. 

Mosi et al. (2008) investigated MU colonization within the salivary glands of African 

giant water bugs (Belostomatidae) through MU-infected mosquito larvae ingestion in the 

laboratory. Results determined that MU preferred to accumulate on the exoskeleton as opposed 

to the guts or salivary glands, but persistent colonization without replication could occur, and 

therefore, these insects were capable of supporting the trophic transfer of MU within the 

environment.  

Researchers in Australia investigated the role of mosquitoes in potential BU transmission 

after discovering that areas with BU outbreaks also had a large mosquito population (Johnson et 

al., 2007).  Although mosquitoes tested MU positive, it was inconclusive whether they were 

harboring MU within their bodies or whether they had acquired the pathogen externally from the 

environment. A recent study conducted in the laboratory determined that mosquito larvae fed 

MU-contaminated materials accumulated the bacterium in their mouths and midgets over four 

instars, although when fed closely-related M. marinum, bacterium was not detected (Tobias et 

al., 2009). Additional research identified a correlation over a seven year time period between BU 

case notifications and Ross River virus case notifications, a mosquito-transmitted disease in 

Australia, although the authors conceded that suitable environmental conditions promoting both 

diseases may be driving the correlation (Johnson and Lavender, 2009). 

Several investigations into potential MU reservoirs exist. Mammals and marsupials in 

Australia, including koalas, alpaca, a domestic cat, potaroos, two horses, black rats, and brushtail 

and ringtail possums tested MU positive, but these infections were limited within the geographic 

region of Australia (Mitchell et al., 1984; Elsner et al., 2008; van Zyl et al., 2009). A recent 
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study in Australia found that 38% of captured ringtail possums and 24% of captured brushtail 

possums had lesions testing MU positive or feces testing MU positive in a BU endemic region, 

suggesting that these possums contribute to maintenance of the bacterium in the environment 

(Fyfe et al., 2010). An additional study in Benin collected 326 rodents and 222 shrews around 

water bodies and in houses during the dry season and during the wet season in high BU endemic 

and low BU endemic areas, but MU was not identified in any of the collection samples (Durnez 

et al., 2010). Finally, some researchers believe that migratory birds aid in disseminating MU 

between wetlands, but further research is needed to determine the potential of this hypothesis 

(Eddyani et al., 2004). 

1.6 Risk Factors 

 

The greatest risk factor for contracting BU is contact with an endemic area (Johnson et 

al., 2007), although certain behavioral patterns may increase risk. A matched case-control study 

in three endemic districts of Ghana confirmed researchers’ beliefs that BU is an 

environmentally-acquired infection associated with rivers and streams (Raghunathan et al., 

2005). The results also indicated that wading in a river or stream was a risk factor, that using 

certain soap products and wearing long trousers was protective against BU, and that wearing 

clothing that covered the upper body while farming was also protective against the disease. In a 

separate study conducted in Benin, wearing clothing during farming activities was not identified 

as a protective factor against BU infection, contact with stagnant water increased BU risk, while 

contact with flowing water and using soap decreased BU risk (Nackers et al., 2007). Aiga et al. 

(2004) found that swimming in rivers and water use from rivers was a BU risk factor, but water 

use from piped sources was not a protective factor in Ghana, while Marston et al. (1995) found 

that swimming in rivers was not a BU risk factor Côte d’Ivoire. 
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In Cameroon, the use of bed nets was a strongly-associated protective factor against BU, 

but bed nets were not found to be protective in Ghana (Pouillot et al., 2007). Applying insect 

repellant during outdoor activities reduced BU risk in Australia (Quek et al., 2007), although 

mosquito coil use was a behavioral risk factor in Cameroon (Pouillot et al., 2007). An 

association between BU-infected patients and mosquito bites on the arms and legs exists in 

Australia, but a direct link between insect bites and inoculation was not established (Quek et al., 

2007). 

BU cases are known to occur surrounding slow-moving or stagnant water bodies or 

wetlands, and flooding is cited as a risk factor for the disease (CDC, 2005). The first recorded 

BU cases in Bairnsdale, Australia occurred two to three years after a major flooding event during 

Christmas of 1935 (Hayman, 1991). In 1978, Bairnsdale had its wettest year in recorded history, 

and in 1980 BU cases emerged. In 1962 and 1964 severe flooding took place in Uganda, and 

approximately two to three years later, BU cases surfaced (Dobos et al., 1999). The first reported 

BU cases in Togo occurred in two children living near two separate rivers that experienced 

seasonal flooding (Meyers et al., 1996), and in Papua New Guinea, cases occur near the Sepik 

and Kumusi Rivers where a spike in cases emerged following the flooding and widespread 

destruction from the Mount Lamington volcanic eruption in 1951 (WHO, 2000). 

Empirical and anecdotal links exist between landscape alterations, including 

deforestation, agriculture irrigation, mining activities, and artificial dam creation and increased 

BU risk (Hayman 1991; Brou et al., 2009; Duker et al., 2004; Wagner et al., 2008a; Wagner et 

al., 2008b; WHO, 2000; Merritt et al., 2005). Hayman (1991) postulated that closed rainforests 

contain MU, and disruption of the rainforest results in MU-contaminated runoff water, creating 

more concentrated MU quantities in water bodies, resulting in a bacteria bloom under favorable 
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environmental conditions. Deforestation contributes to increased flooding and erosion, creating 

ideal conditions for nutrient introduction into water bodies that contribute to higher water 

temperatures, decreased oxygen levels, and an increase in turbidity, all of which create a habitat 

that may be suitable to MU (Merritt et al., 2005). Duker et al. (2004) found a relationship 

between the spatial distribution of BU cases and distance to gold mining sites and exposure to 

arsenic-contaminated soils in Ghana, and Wagner et al. (2008b) found that villages experiencing 

high BU rates were situated within low-lying areas at risk for flooding and surrounded by an 

agriculture matrix, suggesting that deforestation likely took place.  

Several associations exist between artificial water body creation and river damming and 

increased BU risk. Students on the campus of the University of Ibadan in Nigeria began 

contracting BU after the creation of a dam on a small river running through campus in order to 

create an artificial lake (Oluwasanmi, 1975). BU cases also occurred following the building of 

large dams for agriculture irrigation north of Brisbane, Australia between 1957 and 1958 and in 

1962 (Abrahams, 1964), and a recent study in Côte d’Ivoire found a relationship between disease 

rates and patients’ proximities to dams and irrigated agricultures (Brou et al., 2009). In Liberia, 

cases emerged after the installation of a swamp rice field that replaced an upland rice field and 

also in areas where the creation of dams expanded wetland areas (WHO, 2000). 

Although little is known regarding MU growth and subsequent transmission, linkages 

between human activities and BU emergence suggest that identification of landscapes disturbed 

by anthropogenic activities may provide information needed to characterize risk while 

contributing to a better understanding of potential ecological drivers behind disease emergence. 

1.7 Landscape Epidemiology/Ecology, GIS, and Remote Sensing 
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Landscape epidemiology is a multidisciplinary field focused on abiotic and biotic 

environmental conditions and their relationships to pathogen and vector ecology with an 

emphasis on mapping and predicting potential disease distributions based on ecological 

conditions (Pavlovsky, 1966; Ostfeld, 2005). Landscape epidemiology is nested partially within 

the field of landscape ecology, or the study of spatial and temporal landscape patterns and their 

interactions with ecological processes at multiple scales (Turner et al., 2001). Observing 

landscape heterogeneity and its influences on ecological systems provides a substantial 

advantage when working with environmental data, leading to a better understanding of 

underlying mechanisms contributing ecosystem functions (Pickett and Cadenasso, 1995).  

Emphases on spatial and temporal patterns are unique to landscape ecology in the broader 

ecology discipline because spatial homogeneity across ecological systems was the standard 

assumption until recently (Turner and Gardner, 1991; Wagner and Fortin, 2005). In general, 

landscape ecological studies observe larger spatial extents than those used in more traditional 

ecological studies with an understanding based on scale theory that finer-scale processes can act 

as mechanisms driving landscape dynamics within broader-scale patterns and that these broader-

scale patterns can act as constraints limiting finer-scale processes (Turner et al., 2001). Emphasis 

on neighborhood context is important under this framework and acknowledgement that 

environmental heterogeneity may occur at any spatial scale differentiates landscape ecology 

approaches further from traditional ecology methods (Wagner and Fortin, 2005). 

Landscape epidemiology studies incorporate landscape ecology approaches regularly 

(Kitron, 1998), from identifying vector habitat distributions based on landscape composition to 

determining where anthrax risk from Bacillus anthracis exists in the United States using climate 

and soil variables (Beck et al., 2000; Malone, 2005; Coetzee et al., 2000; Blackburn et al., 2007). 
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Several of these studies utilize geographic information systems (GIS), remote sensing 

technologies, and spatial analyses to identify where disease emergence is likely to take place. 

 GIS and remote sensing technologies provide the foundation from which to collect and 

process data to use in landscape ecological studies. GIS are unique in their ability to combine 

information from multiple sources with a shared location across a large geographic region. GIS 

are techniques to input, store, retrieve, manipulate, analyze, and output data that have spatial 

attributes associated with them (Otsfeld et al., 2005). Common outputs include maps displaying 

features of interest, but the real power of GIS is that it provides a platform from which to 

organize a multitude of data for statistical and pattern analyses, for example natural 

environmental data, such as climate, LULC, and elevation data, along with anthropogenic 

attributes, such as demographic, road network, and socio-economic data.  

GIS facilitates vector and raster data formats (Clarke 2003). A vector data format consists 

of points, lines and polygons to which information about specific attributes are stored, for 

example address locations, road networks, or administrative boundaries, while a raster format 

consists of a grid of equally-sized cells. Cell sizes are referred to as the spatial resolution of the 

grid; for example, a 30m resolution grid consists of cells measuring 30m on each side, 

representing an area equal to 900 square meters total. Each cell contains information such as 

elevation, temperature, or land cover classification values, and the possibility exists for 

calculations between grids when cells correspond to the same geographic locations.  

Satellite sensors that monitor the Earth from space generate remotely-sensed satellite 

imagery (Jensen and Hodgson, 2004). The majority of remotely-sensed satellite products are 

available in raster format. A variety of products exist, each measuring reflectance from the 

Earth’s surface across the electromagnetic spectrum (EMS) (Turner et al., 2003). These images 
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are useful particularly when observing land cover patterns, water turbidity, or when measuring 

elevation.  

Quantitative approaches characterizing landscape patterns often utilize landscape metric 

calculations derived from raster images that are classified into different land cover categories 

(McGarigal and Marks, 1995). Landscape metrics quantify landscape patterns based on 

composition, or the presence of specific landscape components in a geographic area, and 

landscape configuration, or the spatial arrangement of landscape components in an area (Turner, 

2005; McGarigal and Marks, 1995). Outputs from these metrics are then interpreted and 

analyzed statistically to gain a better understanding of patterns that may be influencing 

ecological processes in a geographic area. 

Of particular interest are landscape metrics that identify landscape disturbances linked to 

anthropogenic activities. A disturbance is defined as “any relatively discrete event in time that 

disrupts ecosystem, community, or population structure and changes resources, substrate 

availability, or the physical environment” (Pickett and White, 1985). These disturbances include 

habitat fragmentation, or a disruption in landscape connectivity (With et al., 1997) resulting from 

large land cover expanses transforming into small patch sizes that become isolated by land cover 

types alternative to the natural vegetation (Wilcove et al., 1986), and agriculture intensification, 

which takes place when cultivated land is altered to produce high-yield crops through the use of 

fertilizers and pesticides, increased irrigation methods, or mechanization (Matson et al., 1997).  

Observing land cover patch sizes and shape patterns using landscape metrics, along with 

landscape composition, can provide insight into human activities in a region; for example, 

Krummel et al. (1987) found that deciduous forest patches with more uniform shapes, such as 
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squares or rectangles, indicated managed forest cover and forest cover adjacent to agricultural 

land using a fractal dimension index.   

 A study conducted by Iverson (1988) assessing land cover changes over a160 year 

period in Illinois used several landscape metrics, including number of patches, mean patch area, 

perimeter-to-area ratio, and fractal dimension indices by land cover type, to characterize 

anthropogenic influence on the landscape. Results determined that a relationship existed between 

high perimeter-to-area ratios and the presence of road networks; natural wetlands had highly-

complex shapes because they were not confined to regularly-shaped boundaries imposed by 

human activities; surface mines, quarries, and gravel pits had highly-regular shapes because of 

human management; and forest cover patches often had regular shapes because of adjacency to 

agriculture land cover. 

 A landscape index quantifying the number of landscape patches was used to characterize 

habitat fragmentation in a study area in Iowa (Narumalani et al., 2004), and a study observing 

forest clearing patterns in Oregon used a landscape metric that employed a weighted patch edge 

calculation to compare forest patches in privately-owned land versus in publically-owned land 

between 1972 and 1988 (Spies et al., 1994). Results determined that privately-owned land had a 

smaller percentage of interior forest patch habitat compared to publically-owned land, suggesting 

a more fragmented forest landscape. 

Landscape epidemiology studies use landscape metrics frequently to relate landscape 

patterns to disease incidence. Graham et al. (2004) determined that mean shape index values at 

the landscape-level within concentric polygons surrounding disease incidence locations were 

important when investigating human alveolar echinococossis in China. Brownstein et al. (2005) 

quantified a link between forest fragmentation and tick densities and numbers of infected ticks 



21 

 

responsible for Lyme disease transmission to humans in Connecticut using observations of patch 

size and patch isolation. Results identified a positive relationship between fragmentation and 

entomologic risk, but a negative relationship between fragmentation and human disease 

incidence.  

A study investigating and predicting schistosomiasis-harboring mollusk densities in two 

mountainous regions in China used an integrated approach, quantifying landscape patterns and 

then employing Bayesian spatial modeling methods (Yang et al., 2008). Researchers analyzed 

mean shape index values and Shannon’s evenness index values along with a variety of 

environmental variables. Generation of non-spatial and spatial model results emphasized the 

importance of using spatial statistical approaches when investigating natural phenomena. Final 

results determined a positive relationship existed between mean shape index values and mollusk 

densities, indicating that mollusks clustered in irregularly-shaped land cover patches such as 

irrigation ditches. Using spatial statistical methods to predict mollusk densities took advantage of 

information provided by landscape metric calculations while accounting for spatial 

autocorrelation in the data, an important factor that can introduce bias and that many researchers 

ignore when working with environmental data. 

 1.8 Spatial Autocorrelation 

 

Tobler’s first law of geography states that everything is related to everything else, but 

near things are more related than distant things (Tobler, 1970), or are spatially autocorrelated. 

Ignoring positive spatial autocorrelation, a common phenomenon when working with ecological 

data, can produce falsely-precise model estimates, the most common of which is to overestimate 

regression coefficient significance leading to Type I errors by rejecting null hypotheses when 

they are true (Legendre and Fortin, 1989; Wagner and Fortin, 2005; Lennon, 2000). These errors 
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lead not only to inaccurate parameter estimates contributing to erroneous model prediction, but 

promote a misunderstanding of processes driving ecological patterns (Lennon, 2000).  

Spatial autocorrelation in environmental data can occur for a variety of reasons, including 

processes inherent to the organism under investigation or because of spatial dependency of the 

organism to spatially-structured environmental drivers (de Knegt et al., 2010) Further, the 

processes driving spatial dependence may occur at different scales than which derivation of data 

observations and variables took place (Keitt, 2002). Omission of important covariates will bias 

  estimations, and if these covariates have a spatial structure, spatial autocorrelation in model 

residuals will likely result (Waller and Gotway, 2004). Failure to account for spatially 

autocorrelated model residuals violates the assumption of independently and identically 

distributed errors, leading to inflated degrees of freedom, resulting in the overestimation of 

coefficient significance mentioned above (de Knegt et al., 2010; Legendre and Fortin, 1989; 

Wagner and Fortin, 2005; Lennon, 2000; Keitt, 2002; Waller and Gotway, 2004). 

Spatial modeling approaches, for example the one employed by Yang et al. (2008), 

mitigate spatial dependency problems by accounting for spatial autocorrelation in the modeling 

process. Several spatial modeling approaches exist, each of which was designed to incorporate 

different data formats and to achieve different goals. For a review of spatial statistical models 

and methods see Schabenberger and Gotway (2005). 

1.9 Past BU Landscape Studies 

 

GIS, remote sensing technologies, and statistical analyses were used in several BU 

studies investigating environmental features related to disease incidence, but to our knowledge 

studies quantifying landscape patterns using landscape metrics do not exist, and, with the 
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exception of Duker et al. (2006) and Wagner et al. (2008a, 2008b), these studies failed to 

account for spatial autocorrelation among observations, variables, and model residuals. 

 A study investigating the relationship between arsenic-rich floodplains and BU incidence 

in the Amasie West District of Ghana analyzed several human and environmental variables using 

GIS and satellite imagery (Duker et al., 2004). BU incidence per settlement and settlement 

population were mapped along with stream sediment sample locations and corresponding arsenic 

concentration values. Farmlands lying below a specified elevation threshold were identified, 

along with proximities to arsenic-enriched streams. A land use and land cover map generated 

from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) imagery 

determined that 21% of total farmlands in the study area lie within arsenic-enriched areas. 

Although the results revealed a correlation existed between BU cases and arsenic-enriched, low-

lying farmlands, researchers did not determine whether the flooded lowlands or arsenic levels 

contributed more to BU risk. 

Duker et al. (2006) conducted another analysis in the Amansie West district of Ghana 

targeting spatial patterns of BU incidence in the district. Stream sediment samples from 1992 and 

37 ground water samples from 2003 were related to single year BU incidence reports obtained 

from a 1999 national case search, along with BU average incidence from 2000-2003 for each 

settlement within the district using a conditional autoregressive (CAR) statistical model. This 

approach assumed that covariates from neighboring districts influenced BU prevalence in the 

target district, and districts were defined as regions bordering each other or those that were 

within a fixed 15km distance from one another. Results suggested that a relationship existed 

between mean arsenic levels in soil and BU spatial distributions and distances to gold mining 

sites and BU spatial distributions. 
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The RESPOND Health Mapping Activity Ivory Coast study investigated BU occurrence 

in the Ivory Coast (Côte d’Ivoire) using remote sensing and GIS to identify areas with a high BU 

risk (RESPOND 2006). Landsat satellite imagery along with Moderate Resolution Imaging 

Spectroradiometer (MODIS) data were used to classify vegetation and wetland conditions. A 

digital elevation model using Shuttle Radar Topography Mission (SRTM) data was used to 

search for low-lying areas prone to water accumulation. The results of the study indicated 

definite vegetation trends in the area of interest, but researchers were unable to obtain the 

necessary epidemiological data to complete their analysis.   

A more recent country-wide study by Brou et al. (2008) investigated landscape variables 

related to BU incidence in Côte d’Ivoire. Forest surface area in hectares, irrigated rice 

production, banana production, and dam surface areas were mapped and quantified using GIS in 

preparation for a multivariate statistical analysis. Logistic regression results suggested that closer 

proximities to irrigated rice fields and to dams increased BU risk, but spatial autocorrelation in 

the observed data, the environmental covariates, or the model residuals were not considered.  

A study investigating the role of landscape features related to BU rates at a country-wide 

scale in Benin used satellite imagery and GIS to prepare data for statistical analyses (Wagner et 

al., 2008a). BU case data from 2004 and 2005 were mapped to corresponding village locations. 

Concentric buffers with radii ranging from 100m to 50 km from village centers were generated 

to analyze land cover composition, elevation, and potential wetness patterns, and distances from 

village centers to the nearest river were quantified. A negative binomial statistical analysis 

including random district effects determined that villages lying at low elevations within drainage 

basins with variable wetness patterns that are surrounded by forest cover have a high BU risk. A 

spatial scan statistic identified spatial disease clusters with higher than expected BU rates near 
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the Zou and Ouémé Rivers located toward the eastern side of the country and along the Couffo 

River located toward the western side of the country. Lower than expected BU rates occurred 

near the coastline and toward the northern region of Benin. 

A second study by Wagner et al. (2008b) used LULC variables to construct a probability 

model related to BU infection. Latitude, longitude, distance to nearest river, elevation, total 

population and seven LULC class percentages were analyzed statistically using a multilevel 

Bayesian logistic regression model with district-level random effects. This modeling approach 

used data derived at different scales and the district-level random effects mitigated correlation in 

residuals due to unknown covariates at the district-level. Model residual plots revealed that 

spatial autocorrelation was no longer present in the data set. The results indicated that the 

probability of BU incidence increased with percentage surrounding agricultural land cover, and 

the probability of BU incidence decreased as the percentage of surrounding urban land use 

increased at large scales. A set of “best” models predicted BU rates from the mean posterior 

distribution of each model at validation sites in Benin and also in Ghana. The models predicted 

BU positive sites more accurately than BU negative sites. 

A study investigating BU incidence in Victoria, Australia from 1980 to 2009 performed a 

network analysis to determine whether BU cases occurred randomly before the analysis of 

climate, landscape, and socioeconomic data (van Ravensway et al., IN PREP). Network analysis 

results determined that BU cases did not occur randomly; therefore, administrative data 

equivalent to U.S. census tract-level data demarcated town boundaries from which derivation of 

several environmental and sociological data variables took place. Statistical analyses used 

multilevel Poisson regression models with random effects for endemic locations. Two model sets 

were produced, one investigating an approximate lag time between human infection and 
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symptom presentation, with the assumption that mosquitoes play a direct role in transmission and 

that infection occurred during high mosquito abundance periods, and referred to as the mosquito 

abundance prediction (MAP) model. The second model set investigated landscape, occupational, 

and climate (LOC) variables related to BU incidence in the study region.  

The MAP models used climate variables as a proxy for high mosquito abundance periods, 

wetland land cover and low elevations represented mosquito habitats, and outdoor occupation 

variables represented proportion of humans at risk within each town. MAP model results 

suggested that towns with high percentages of water and low elevations with increased 

precipitation and minimum temperatures nine months prior to BU symptom presentation with 

large proportions of the population working in agriculture, mining, or parks and gardens 

professions were at a higher BU risk, but direct links to mosquitoes as vectors are still under 

investigation. The LOC model results indicated that towns at lower elevations with high 

percentages of forest and agriculture land cover, along with decreased maximum temperatures 14 

months prior to symptom presentation, followed by increased precipitation 11 months prior to 

symptom presentation are at a higher BU risk. This study was the first of its kind to incorporate 

climate, social, and landscape variables into its analyses and the first to investigate a specific 

vector habitat in relation to BU incidence. 

While these studies investigated important environmental features related to BU risk, 

landscape components focused on compositional features, rather than exploring landscape 

configurations. Further, many of these studies investigated relationships between specific 

anthropogenic activities, for example proximity to dams or percentage of surrounding 

agriculture, while insight into overall landscape disturbance was not gained.  
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Additionally, although these studies observed variables spatial in nature, with the 

exception of Duker et al. (2006) and Wagner et al. (2008a, 2008b), quantified relationships 

failed to account for potential spatial autocorrelation in model residuals, and while several 

studies included random effects to help account for unobserved variables contributing to BU 

prevalence, no studies incorporated spatial random effects that identify whether a spatial 

structure exists for these unobserved covariates. Incorporating spatial random effects into the 

modeling process while accounting for spatial autocorrelation among model residuals provides a 

powerful tool from which to predict BU risk at new locations and to identify potential covariates 

through observations of spatial characteristics related to unknown covariates.  

1.10 Objectives 

 

This study builds upon knowledge gain from previous studies in Benin by relating BU 

occurrence to landscape patterns (Wagner et al., 2008a; Wagner et al., 2008b). Previous research 

in this region related specific land cover composition to BU risk across large spatial extents. The 

primary objective of this research is to observe landscape configurations in addition to landscape 

composition related to BU rates at a medium spatial extent, ranging from 400m to 2k from 

village centers. Observing closer proximities allowed quantification of habitats traversed 

regularly by village residents, while maintaining study areas large enough to quantify landscape 

patterns. 

The specific objectives of this thesis were to  

1) determine whether landscape patch configurations, quantified using landscape metrics 

and used as indicators of potential anthropogenic-related landscape disturbances, are related to 

BU rates in Benin, West Africa,  
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2) whether specific land cover configurations specific to individual land cover 

composition types are related to BU rates,  

3) whether compound topographic index values using 30m resolution data were 

consistent with previous research outcomes implicating a relationship between stagnant water 

and BU rates.  

4) identify whether a spatial structure exists for underlying processes contributing to BU 

rates and finally 

5) create a BU risk surface based on identified contributing landscape characteristics and 

underlying spatial processes in the study area. 

Further, the goal of this study is not to identify specific ecological processes contributing 

to MU growth and BU transmission in Benin, but to determine whether human disturbance 

indicators as characterized by landscape patterns are linked to and can be used to identify high 

BU risk landscapes. 

1.11 Hypotheses 

 

Previous research suggesting that a relationship exists between anthropogenic landscape 

disturbances and BU risk (Merritt et al., 2005; Hayman 1991; Brou et al. 2009; Wagner et al., 

2008; Duker et al., 2004; WHO, 2000) provided the basis for the first set of hypotheses. The first 

hypothesis is that disturbed landscapes characterized by uniformly-shaped land cover patches 

and low aggregation levels, representative of potential anthropogenic landscape disturbances, 

surround villages with higher BU rates. The second hypothesis is that a positive relationship 

exists between BU rates and land cover patch configurations representative of potential 

anthropogenic landscape disturbances corresponding to specific land cover composition types; 

for example, uniformly-shaped agriculture or forest patches. Previous research findings 
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demonstrating that BU cases occur near slow-moving or stagnant bodies of water or in low-lying 

areas within drainage basins (CDC, 2005; WHO, 2007; Wagner et al., 2008) provided the basis 

for the final hypothesis that landscapes with higher average compound topographic, or wetness 

index, values surround villages with higher BU rates.  

A strong inference approach, involving the exploration of multiple, biologically plausible 

hypotheses followed by identification of the model that provides the best approximation of the 

data, will provide the basis from which inference may be drawn to predict disease risk across the 

study domain (Plowright et al., 2008).  
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Chapter 2 MATERIALS AND METHODS 
 

2.1 Study Area 

 

The southern regions of Benin and Togo, West Africa comprise the study area for this 

investigation. The study area falls within a 185 x 185 km area that is equal to one Landsat 

satellite image extent located in WRS path 192 row 55, with latitudes ranging from 

approximately 8.167 N to 6.300 N and longitudes ranging from approximately 0.842 E to 2.482 

E. The study area encompasses all or parts of several administrative districts, including 

Atlantique, Mono, Plateau, Couffo, Zou, and Collines located in Benin and Centre, Plateaux, and 

Maritime in Togo. Four major rivers flow through the study area, including the Couffu, Oueme 

and Zou Rivers in Benin, and the Mono River which delineates the border between Togo and 

Benin in the southern regions of the countries (Figure 2-1).  

Buruli ulcer is endemic in Benin and Togo, but limitations exist regarding data 

corresponding to disease incidence in Togo. Therefore, this study used BU case data and 

corresponding environmental data from Benin to predict BU risk across the landscape, into 

regions within the boundary of Togo.  

The Republic of Benin is a coastal country located in West Africa along the Gulf of 

Guinea, bounded by the countries of Togo, Burkina Faso, Niger, and Nigeria. Benin is a former 

French colony that gained independence on August 1, 1960. The country encompasses a total 

surface area of 112,622 sq km, with 110,622 sq km of land and 2,000 sq km of water (CIA). The 

2010 estimated population is 9,056,010 people, and the average life expectancy at birth is 62.3 

years for women and 60.1 years for men (United Nations Statistical Division). French is the 

official language in Benin, but several groups speak local, indigenous languages, including the 

Fon, Yorouba, Boun, Bariba, Somba, Aizo, Mina, and Dendi (United Nations Benin, 2010). 
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          Figure 2-1. Togo and Benin administrative districts included in study area 

 

Subsistence farming is the main form of agriculture production, but for-profit agriculture 

products include cotton, corn, cassava, yams, beans, palm oil, peanuts, cashews and livestock 

(CIA). Benin’s landscape consists primarily of woodland and savannas, followed by cultivated 

woodland and shrub savanna, then fallow fields mixed with cultivated fields; semi-deciduous 
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forests are present in the southern region of the country and occupied an estimated 1-2% of the 

land surface in 2007 (USAID, 2007). Deforestation and environmental degradation is an ongoing 

problem in Benin, and the landscape continues to change rapidly. Food-crop and cotton 

cultivation expanded by 265% and 79% between 1986 and 1997, while firewood extraction and 

charcoal production contributed to a 30,000 ha per year deforestation rate, along with additional 

deforestation taking place to construct fish corrals (USAID, 2007).  

Southern Benin falls within an a sub-equatorial climate zone, often referred to as the 

Dahomey Gap, with bimodal seasonal distributions; two rainy seasons extend from April to July 

and from September to November, while two dry seasons extend from December to March and 

in the month of August each year (Dossou and Gléhouenou-Dossou, 2007).  

2.2 BU Case Data 

 

The Programme National de Lutte contre la Lèpre et l’ulcère de Buruli (PNLLUB) 

provided a subset of Benin 2004 and 2005 BU positive and BU negative villages to use in this 

analysis. Processing of these data included three levels. Initially, volunteers and trained 

personnel reported cases at the village level under the supervision of  health care workers from 

nearby facilities, and then a trained nurse reported cases at the regional level using BU02 

standardized forms, which were then summed quarterly at the national level (Sopah et al. 2007).  

A total of 292 villages, 183 positive and 109 negative, from the data subset were located 

within the study area (Figure 2-2); 558 cases occurred total, ranging between 1 case per village 

to 29 cases per village. A village was identified as positive if at least one case occurred in 2004 

or 2005. The data set consisted of BU case counts, population counts, and latitude and longitude 

coordinates of villages. No correlation between population and BU incidence existed. 
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              Figure 2-2. Benin 2004 and 2005 BU case data subset 

Wagner et al. (2008a) identified disease clusters with higher than expected and lower 

than expected BU rates located across southern Benin using the same data set. A primary cluster 

comprised of higher than expected BU rates was located across the Atlantic, Zou, and Couffo 

districts and falls within the study area for this analysis.  

2.3 Satellite imagery and derivatives 
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Land use and land cover data was derived from December 13, 2000 Landsat ETM+ 

imagery obtained from the University of Maryland Global Land Cover Facility 

(http://glcf.umiacs.umd.edu/index.shtml). The imagery was geometrically rectified and projected 

(UTM Zone 31N) before performing an unsupervised classification (Lillesand and Kiefer, 2000) 

using an ISODATA algorithm with100 initial classes on the principal axis, set to approximate 

true color for 10 iterations or 0.95 convergence in Erdas Imagine software program. The initial 

100 classes were then reduced to 22 classes, which were then reduced further to 10 classes, 

following Anderson’s Level I classification scheme, with the exception of a mixed class and the 

agriculture class (Table 2-1; Figure 2-3; Anderson, 1976). The final classification consisted of 

three mixed agriculture classes because a dominant agriculture class did not emerge from the 

classification algorithm and a mixed class that included pixels classified with greater than two 

categories. Execution of a 5x5 statistical majority filter helped to eliminate classification noise 

(Mather, 2004). 

Lack of ground truth data points from this region and during this time period limited the 

ability to assign spectral signatures to specific land cover categories; therefore, visual 

interpretation methods were used to delineate land cover classes and aggregated land cover 

classes were intended to help mitigate classification error.  
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Table 2-1. Land use and cover classification categories 

Land Use and Land Cover Classes 

Class 

Number 
Class Name Class Description 

1 Urban 
Mixed Urban or Built-up Land, Other Urban or Built-up 

Land, Transportation 

2 Not Present Agriculture: see classes 9, 10, and 11 

3 Rangeland Shrub and Brush Rangeland: Shrub and Shrubland 

4 Forest Riparian Forest, Evergreen Forest, Forest 

5 

 
Water Streams and Canals, Lakes, Reservoirs, Bays and Estuaries 

6 Wetland 

Wetland and Forested and Non-forested Wetland: 

Water/Wetland, Wetland/Shrub, Wetland/Riparian 

Vegetation 

7 Barren Sand/Salt 

8 Mixed 
Evergreen/Ag/Shrub, Shrub/Ag/Wetland, 

Wetland/Shrub/Urban, Shrub/Ag/Urban 

9 Agriculture 1 Shrub/Agriculture 

10 Agriculture 2 Agriculture/Forest 

11 Agriculture 3 Agriculture/Urban 

Class categories correspond to Level I classification scheme except for class 8 (Mixed) 

and classes 9-11 (Mixed Agriculture) (Anderson et al., 1976) 

 

Quantifying landscape patterns within concentric polygons is a common approach in 

landscape analyses (see Condeso and Meentemeyer, 2007; Graham et al., 2004; Danson et al., 

2004; Brownstein et al., 2005; Wagner et al., 2008a, Wagner et al., 2008b). Concentric polygons 

with radii set at 100m intervals, from 400m to 2k, from village centroids acted as buffers from 

which LULC classification data was obtained for pattern analysis (Figure 2-4). 
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       Figure 2-3. Land use and land cover classification. 

The LULC within each buffer was clipped and reformatted for compatibility within 

FRAGSTATS software package. A total of 292 individual buffers representing each village 

location were created at each distance interval, with 16 distance intervals total. 
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         Figure 2-4. Concentric buffers example 

Compound topographic index, or wetness index, derivation was completed using 30m 

resolution ASTER Global Digital Elevation Model data (https://wist.echo.nasa.gov/wist-

bin/api/ims.cgi?mode=MAINSRCH&JS=1). DEM sinks were filled, and elevation slope was 

calculated in degrees using ArcGIS software program. Flow direction was modeled using a D-8 
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algorthim (O’Callaghan and Mark, 1984) from which flow accumulation and the wetness index 

were calculated using the following equation (Equation 2-1; Beven and Kirby, 1979): 

Equation 2-1 

ln( / tan )wi A
s

  

where sA is the catchment area at a point, or flow accumulation, and tan is the local slope 

gradient (Figure 2-5; Schmidt and Persson, 2003). Wetness index averages within each buffer 

were calculated using the Zonal Statistics function within Hawth’s Tools in ArcGIS.  

 

       Figure 2-5. Wetness index map. 
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2.4 Statistical Modeling 

 

Model sets were created at the landscape level, characterizing landscape configuration for 

all classes across the study area, and at the class level, characterizing landscape configuration for 

specific classes across the study area.  

Following the integrated approach of Yang et al. (2008), a landscape analysis approach 

and a hierarchical Bayesian spatial modeling approach employing Markov Chain Monte Carlo 

(MCMC) simulation were used to identify important covariates and to predict the spatial 

distribution of BU risk across the study domain. Figure 2-6 outlines the methods and approaches 

used to generate the final predictive surface. 

2.5 Landscape-level Configuration Analysis 

 

A variety of landscape-level metrics were calculated within FRAGSTATS software 

package using the clipped LULC data. These calculations employed an 8-neighbor rule that 

included neighboring cells with flat adjacencies and those with diagonal adjacencies to the focal 

cell (Gergel and Turner, 2002). The ability to characterize potential human disturbances to the 

landscape expressed through relatively high fragmentation values, potential for ecological edge 

effects, and potential biodiversity loss provided the basis for landscape metric selection (Table 

2-2). 
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Figure 2-6. Methods and approaches used for final model generation 
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Table 2-2.Initial landscape metrics calculations. 

Landscape-level Initial Landscape Metrics 

Metric Abreviation Description Interest 

Landscape Shape 

Index 
LSI 

Standardized aggregation 

index based on total edge 
Fragmentation 

Shape Index Mean SHAPE_MN 

Standardized land cover 

patch edge complexity 

measurement 

Altered land 

cover shapes 

Fractal Dimension 

Index Mean 
FRAC_MN 

Land cover patch edge 

complexity measurement 

Altered land 

cover shapes 

Perimeter-to-area 

Ratio Mean 
PARA_MN 

Land cover shape 

complexity measurement 

Altered land 

cover shapes 

Percent Land Cover 

Adjacency 
PLANDJ 

Land cover type 

aggregation measurement 
Fragmentation 

Patch Richness 

Density 
PRD 

Standardized landcover 

diversity measurement 
Heterogeneity 

Shannon's Diversity 

Index 
SHDI 

Land cover diversity 

measurement 
Heterogeneity 

Number of Patches NP 

Measures number of 

individual patches present 

in area 

Fragmentation 

 

Redundancy among landscape metrics is a common problem (Riitters et al., 1995); 

therefore, a Spearman’s rank order correlation matrix identified mulitcolinearity between 

metrics, and only those metrics that exhibited an r < 0.60 with one another across all distance 

intervals were selected for candidate regression models. Correlation matrices generated for this 

study are available in Appendix A.  

Metrics were divided into groups representing shape complexity, potential fragmentation, 

and land cover diversity. Candidate model generation used non-spatial binomial generalized 

linear regression models (GLMs) with BU rates as the response variable and landscape metric 

values and average wetness index values as independent variables. BU rates were derived by 

dividing BU counts by the total population at each location. The binomial GLM model 
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distribution is | ~ ( , )y p binomial n p
i i i i

 where p
i
is the success probability and links to the 

regression covariate x
i

through a logit transformation (Equation 2-2; SAS/STAT(R)): 

Equation 2-2 

log ( ) log( )
1

p
iit p x

i ip
i

   
  

                            

 

  Nested models were generated at 100m distance intervals from 400m to 2k; data was not 

combined across distances. High leverage points were identified using Cook’s distance measure, 

and data locations with a value > 1.0 that impacted sign direction and model results substantially 

were removed from the data set (Cook, 1977). Fourteen high leverage points were removed from 

the landscape-level analysis, and removal of high leverage points at the class-level occurred on 

an individual model basis (Appendix B). Final candidate models consisted of data points that 

were never high leverage points at any distance interval between 400m and 2k. Observations of 

Akaike Information Criterion (AIC) values (Akaike, 1974) determined the “best model” to use in 

the final analysis. Two “best” model sets were created at the landscape-level because metrics 

representing diversity and fragmentation were correlated with one another, but both model sets 

demonstrated explanatory potential. Complete non-spatial candidate model results are available 

in Appendix C. 

2.6 Landscape-level Configuration Analysis Predictor Variables 

 

Characterization of land cover shape complexity used the shape index mean. Selection of 

the shape index mean over the fractal dimension index mean occurred because the fractal 

dimension index mean has the potential to introduce bias when working with small areas, as was 
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the case when working with buffers with shorter radii from village centers (Turner, 2005). Shape 

index mean values characterize land cover patch shape complexity using an equation that adjusts 

for a square standard, thereby eliminating problems introduced from changing perimeter-to-area 

ratios (McGarigal and Marks, 1995). The shape index mean is calculated in FRAGSTATS 

software package as follows (Equation 2-3): 

Equation 2-3 

min

p
ij

SHAPE
p
ij


 

where p
ij
  perimeter of patch ij in terms of number of cell surfaces and p

ij
 minimum 

perimeter of patch ij in terms of number of cell surfaces. Values closer to 1.0 indicate more 

uniformly-shaped land cover patches with complexity increasing as values increase. A plot of the 

shape index mean surface at the landscape level plotted areas with more uniform patch shapes in 

blue and more complex shapes in red (Figure 2-7). 
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             Figure 2-7. Shape index mean surface 

Number of patches is a measurement of potential habitat fragmentation. Number of 

patches is calculated within FRAGSTATS as follows (Equation 2-4): 

Equation 2-4 

NP N  

where NP is equal to the number of patches in a landscape and N is equal to the number of 

patches in the landscape (McGarigal and Marks, 1995). High numbers of patches correspond to 

greater fragmentation potential, while lower numbers of patches indicate a more aggregated 

landscape. No background or border cells were included in the calculation, and patch attributes, 

for example total area or land cover type, were not described in this metric (Figure 2-8).          
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                         Figure 2-8. Number of patches surface 

 

Average wetness index value was the third landscape-level predictor variable. As 

outlined above, a wetness index identifies areas in a landscape where water is likely to 

accumulate during a precipitation event (See Equation 1; Bevin and Kirby, 1979). High wetness 

index values indicate greater accumulation potential, while low wetness index values indicate a 

lower accumulation potential. A plot of wetness index values across the study region highlights 

areas of high accumulation potential in blue and areas with low accumulation potential in red 

(Figure 2-9).      
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             Figure 2-9.Wetness index average surface 

Limitations of mean approaches include the possibility of unusually high or low values 

within a buffer distance affecting the mean value disproportionately, although using a large 

number of data locations and the elimination of high leverage points was intended to help 

mitigate this problem. 

The patch richness density metric quantifies the number of different land cover types in a 

landscape and then standardizes this measurement in order to facilitate comparison across 

landscapes (McGarigal and Marks, 1995). Patch richness density was calculated in 

FRAGSTATS as follows (Equation 2-5): 
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Equation 2-5 

(10,000)(100)
m

PRD
A


                     

 

where m   number of patch types present in the landscape, excluding the landscape border if 

present and A  total landscape area 
2m (McGarigal and Marks, 1995). Higher values represent 

more diverse landscapes, while lower values represent more homogeneous landscapes. Regions 

with higher numbers of land cover types were plotted in red and those with lower numbers of 

land cover types were plotted in blue in Figure 2-10. 

 
             Figure 2-10. Patch richness density surface 
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2.7 Class-level Configuration Analysis 

 

Additional model generation at the class-level included predictor variables characterizing 

land cover patch configurations corresponding to specific land cover types. Shape index mean 

values and an additional variable group characterizing class-level fragmentation were calculated 

in FRAGSTATS (Table 2-3).  

Table 2-3. Class-level initial landscape metric candidates 

Class-level Initial Landscape Metrics 

Metric Abbreviation Description Interest 

Shape Index 

Mean 
SHAPE_MN 

Standardized land cover 

patch edge complexity 

measurement 

Altered land cover 

shapes 

Landscape Shape 

Index 
LSI 

Standardized aggregation 

index based on total edge 
Fragmentation 

Percent Land 

Cover Adjacency 
PLANDJ 

Land cover type 

aggregation measurement 
Fragmentation 

Number of 

Patches 
NP 

Measures number of 

individual patches present 

in area 

Fragmentation 

Clumpiness 

Index 
CLUMPY 

Land cover type 

aggregation measurement 
Fragmentation 

Aggregation 

Index 
AI 

Land cover type 

aggregation measurement 
Fragmentation 

 

As outlined in the landscape-level analysis, a Spearman’s rank order correlation matrix 

identified potential multicolinearity between variables (Appendix A), and non-spatial binomial 

GLMs were generated for land cover types using BU rates as the response variable and 

landscape metric values corresponding to specific land cover classes as independent variables. 

Three land cover classes were explored: agriculture/forest, forest, and wetland because these land 

cover classes represented land cover types or uses noted in the literature as having anecdotal or 

empirical links to BU incidence in past studies. 
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Data sets changed as distance increased from village centers because a buffer at a 400m 

distance did not necessarily contain forest patches, while a buffer at 2k might contain several 

forest patches. Therefore, models were produced individually for each land cover type within 

buffers at 800m, 1_2k, 1_6k, and 2k distances. Identification of high leverage points occurred on 

an individual model basis using Cook’s distance measure (Appendix B); therefore, a “best” 

model for each distance interval was not identified using lowest AIC values, but was determined 

by variable significance values. 

2.8 Class-level Configuration Analysis Predictor Variables 

 

Shape index mean acted as a predictor variable to quantify relationships between land 

cover patch shape complexity and BU rates. Calculation of this metric was identical to the 

landscape-level shape index mean (Equation 3) with the exception of quantifying individual 

classes rather than all classes encompassing the landscape across the study region.  

Percent land cover adjacency measured land cover class aggregation (Equation 2-6)

             

 

Equation 2-6 

1

g
ij

PLADJ
m

g
ik

k

 
 
 

  
 
 

 

 

where g
ij   the number of like adjacencies (joins) between pixels of patch type (class) i based 

on a double-count method, and g
ik   the number of adjacencies (joins) between pixels of patch 

types (classes) i  and k are based on a double-count method (McGarigal and Marks, 1995). 



50 

 

High PLADJ values represent a more aggregated land cover class, while low PLADJ values 

represent a more fragmented land cover class. An example of  PLADJ for the 2k wetland class 

demonstrates high aggregation values in the northern study area plotted in red, and low 

aggregation in the southeastern corner of the study area plotted in blue (Figure 2-11). 

 

Figure 2-11. Percent land cover adjacency surface 2k wetland class 

 

The landscape shape index (LSI) is another land cover patch aggregation measurement. 

LSI was calculated within FRAGSTATS using the following equation (Equation 2-7): 
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Equation 2-7 

min

e
iLSI
e
i


 

where ei
 total length of edge (or perimeter) of class i in terms of number of cell surfaces, 

includes all landscape boundary and background edge segments involving class i , and 

min e
i
minimum total length of edge (or perimeter) of class i in terms of number of cell 

surfaces (Figure 2-12; McGarigal and Marks, 1995). 

 

 Figure 2-12. 1_2k agriculture/forest class landscape shape index surface 
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2.9 Spatial GLM 

 

The binomial GLMs used to identify significant BU rate predictor variables assumed 

model residuals were independent and identically distributed across the study domain (Keitt et 

al., 2002). While this approach is adequate in the absence of spatial autocorrelation in model 

residuals, this assumption was unrealistic given the spatial structure of the observations and the 

heterogeneity of the environmental covariates (Boyd et al., 2005).  

In order to mitigate this problem, a hierarchical modeling approach was used to adapt the 

non-spatial GLM with a correlation matrix based on the spatial structure of the model residuals, 

adding a spatial random effects component that accounted for missing, spatially-structured 

covariates (Waller and Gotway, 2004).  

 Our interest was in modeling the number of cases ( )Y s at n observed locations. Here, 

s denotes the geographic location, assuming 
2s D  .  A set of p spatially referenced 

predictors ( )x s were calculated at each location. Given the population at each location, ( )N s , 

we assumed ( )Y s followed a binomial distribution. For the i -th location 

( ( ) | ( ) ~ ( ( ), ( ( )))Y s s Binomial N s p s
i i i i

  where ( ( ))p s
i

  is the success probability at s
i  

and ( ) ( ) ( )s x s w s
i i i

   . A logit link function 

( ( )) exp( ( )) / (1 exp( ( )))p s s s
i i i

    was assumed for this model. 

 The process specification for ( )w s  is a mean 0 Gaussian Process with covariance 

function, ( , )
1 2

C s s , denoted (0, ( , ))
1 2

GP C s s . In application, we specify 

2( , ) ( , ; )
1 2 1 2

C s s p s s   where ( ; )p  is a correlation function and  is the spatial decay 
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parameter. The exponential spatial correlation was assumed for ( )p  . Prior distributions on the 

remaining parameters complete the hierarchical model. Customarily, the regression effect   is 

assigned a multivariate Gaussian prior, (i.e. ~ ( , )N  


 , while the latent variance 

component 2  is assigned ( , )IG   priors. The process correlation parameter, , was assigned an 

informative prior (e.g., uniform over a finite range) based upon the underlying spatial domain. 

 Model parameter distributions were estimated using Markov Chain Monte Carlo 

(MCMC) methods employing an adaptive Metropolis (AM) algorithm with a 43% acceptance 

rate. MCMC employs an iterative sampling process, the goal of which is to converge to a 

stationary state representing the target distribution, or in the Bayesian approach, the true 

distribution of the model parameters, from which inference may be drawn (Brooks and Gelman, 

1998).  

The AM algorithm differs from a traditional Metropolis algorithm because accumulated 

information from all previous chains are incorporated into each sampling iteration as opposed to 

only the prior chain’s information contributing to the calculation (Brooks and Gelman, 1998). 

This sampling method speeds convergence, or the point at which equilibrium between parameter 

mean and variance commences.  

Starting values were obtained from non-spatial models and posterior inference was based 

on 3 chains at 500,000 post burn-in iterations measured at 1_2k, 1_6k, and 2k for landscape-level 

models, and 3 chains at 50,000 to 100,000 iterations measured at 800m, 1_2k, 1_6k, and 2k for 

the class-level models, depending on the individual model. Burn-in occurred at 10,000 iterations 

and thinning took place at every 100 samples. All model generation was completed using the 
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spGLM function in spBayes R package, and summaries are available in Appendix D of this 

document.  

The Gelman-Rubin diagnostic measure assessed model convergence within 5,000 

MCMC sample iterations. This diagnostic observed within chain and between chain variance 

with values closer to 1.0 indicating that convergence likely took place (Brooks and Gelman, 

1998).  

Comparison of deviance information criterion (DIC) values from non-spatial models and 

from spatial models determined whether the spatial models achieved a better fit. A similarity 

exists between DIC values and AIC values; a lower DIC value indicates a better model fit, but 

DIC value are used with Bayesian hierarchical models because they can be calculated from 

MCMC samples directly (Spiegelhalter et al., 2002). 

2.10 Model Verification 

 

A random sample consisting of 10% of village locations was withheld from each model 

data set for verification purposes. Spatial GLMs were calculated at the landscape-level at 1_2k, 

1_6k, and 2k distance intervals using 90% of the data set as training locations, and at the class-

level at 800m, 1_2k, 1_6k, and 2k distance intervals using 90% of the data set as training 

locations. Training model results predicted BU rates at the remaining 10% verification data set 

locations using the spPredict function in spBayes R. Predicted values were compared to actual 

values at these locations, and a root mean squared error (RMSE) determined the model that 

achieved the best fit (Figure 2-8). 
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Equation 2-8 

2ˆ( ( ) ( )) /

1

m
RMSE y s y s m

i i
i

 
 


 

where ˆ( )y s
 are the estimated rates, ( )y s


 are the actual rates, and m is equal to the number of 

data points (Bolstad, 2005). The model exhibiting the lowest RMSE value was chosen as the 

“best” model from which to predict to new, unsampled data locations. 

2.11 Risk Surface 

 

A BU risk surface was created employing Bayesian, or model-based, kriging methods 

using samples drawn from the mean posterior distribution of the predictor variables from the best 

spatial binomial GLM to predict BU rates at new, unsampled locations. Incorporation of the 

random spatial effects component accounted for unknown predictor variables and spatial 

autocorrelation, improving prediction accuracy. 

Kriging is a geostatistical interpolation method that uses data from observed locations to 

predict to new, unsampled locations (Schabenberger and Gotway, 2005). Kriging is a 

probabilistic approach; therefore, it has standard errors associated with model predictions, 

enabling quantification of uncertainty related to model outputs (Waller and Gotway, 2004). 

Several kriging approaches exist. A Bayesian kriging approach differs from traditional kriging 

approaches because model parameters are treated as random variables rather than estimated 

(Helbert et al., 2009), and while traditional kriging methods ignore uncertainty introduced when 

estimating the covariance structure, Bayesian kriging incorporates parameter uncertainty into 

model predictions (Moyeed and Papritz, 2002). 
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A total of 1030 new locations generated at 5km intervals within the boundary of the study 

area represent locations to which BU rates were predicted (Figure 2-13). Gaps in new location 

points represent areas where derivation of predictor variables could not occur because a lack of 

data existed corresponding to the “best” model covariates and distance interval.  

 

Figure 2-13. New locations and observed locations used to create risk surface 
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Circular buffers with radii equal to the best-fitting spatial model were created 

surrounding each new location, and a polygon created at approximately 5k inside the study area 

boundary prevented the introduction of uncertainty due to potential edge effects (Haase, 1995). 

Derivation of predictor variables followed methods outlined in section 2.4, and a surface based 

on the mean posterior predictive distribution and associated uncertainty was created across the 

entire study area using the spPredict function in spBayes R. 

A population of 100,000 persons was assumed at each location to calculate meaningful 

rates, although these locations were not necessarily occupied by villages or residents. These 

location points were generated to characterize risk associated with landscape variables across the 

study region, but do not suggest that BU transmission is taking place. Unreliable and incomplete 

population data and villages with questionable coordinate information prompted pseudo-location 

generation. 
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Chapter 3 RESULTS 
 

3.1 Non-Spatial vs. Spatial Model Results 

 

Spatial model results determined that several non-spatial models overestimated the 

significance of one or more predictor variables, indicating that spatial autocorrelation was 

present in model residuals. Lower DIC values corresponding to the spatial GLMs compared to 

the non-spatial GLMs demonstrated that the spatial models achieved a better fit in every 

circumstance (Table 3-1). 

Table 3-1. Non-spatial and spatial GLM DIC values.  

        DIC Value 

Scale Model Variables 

Post 

Burn-in 
Non-

Spatial Spatial 

Landscape-

level 

1_2k 

WIAVG + SHAPE_MN + 

PRD 500,000 7542.948 6774.835 

1_2k 

WIAVG + SHAPE_MN + 

NP 500,000 7558.832 6775.580 

1_6k 

WIAVG + SHAPE_MN + 

PRD 500,000 7526.302 6775.539 

1_6k 

WIAVG + SHAPE_MN + 

NP 500,000 7558.955 6777.154 

2k 

WIAVG + SHAPE_MN + 

PRD 500,000 7533.240 6776.804 

2k 

WIAVG + SHAPE_MN + 

NP 500,000 7539.006 6777.211 

Class-level 

800 Forest SHAPE_MN + PLADJ 100,000 1927.261 1780.473 

800 Wetland SHAPE_MN + PLADJ 50,000 3918.085 3483.809 

800 Ag/Forest SHAPE_MN + LSI 50,000 2000.561 1859.042 

1_2k Forest SHAPE_MN + LSI 100,000 3661.611 3289.170 

1_2k Wetland SHAPE_MN + LSI 100,000 5335.240 4781.834 

1_2k Ag/Forest SHAPE_MN + LSI 100,000 3901.120 3644.391 

1_6k Forest SHAPE_MN 50,000 3668.271 3257.107 

1_6k Wetland SHAPE_MN + LSI 100,000 5937.132 5218.884 

1_6k Ag/Forest SHAPE_MN + LSI 50,000 4344.966 4071.081 

2k Forest PLADJ 50,000 4394.660 3883.277 

2k Wetland PLADJ 50,000 6558.870 5780.372 

2k Ag/Forest SHAPE_MN + LSI 50,000 4712.282 4316.881 
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 Table 3-2 provides a comparison of non-spatial and spatial model variable significance 

results, with full model results available in Appendices C and D. 

Table 3-2. Non-spatial vs. spatial binomial GLM variable significance. 

          Significance 

     Model Variable 
Non-Spatial 

Model 

Spatial 

Model 

     

1_2k LS 

Wetness index average Y N 

    Shape Index Mean Y N 

    Number of Patches Y N 

    

1_2k LS 

Wetness index average Y N 

    Shape Index Mean Y N 

    Patch Richness Density Y Y 

    

1_6k LS 

Wetness index average Y N 

    Shape Index Mean Y N 

Landscape-

level 

  Number of Patches Y Y 

 

1_6k LS 

Wetness index average Y N 

    Shape Index Mean Y N 

    Patch Richness Density Y N 

    

2k LS 

Wetness index average Y Y 

    Shape Index Mean Y Y 

    Number of Patches Y N 

    

2k LS 

Wetness index average Y Y 

    Shape Index Mean Y N 

     Patch Richness Density Y N 

      

800m Forest 

Shape Index Mean Y N 

     

Percent Land Cover 

Adjacency Y N 

     800m Wetland Shape Index Mean Y Y 

     800 

Agriculture/Forest 

Shape Index Mean Y Y 

     Landscape Shape Index Y Y 

    
1_2k Forest 

Shape Index Mean Y Y 

Class-Level 
  Landscape Shape Index Y N 

  
1_2k Wetland 

Shape Index Mean Y N 

     Landscape Shape Index Y N 

     1_2k 

Agriculture/Forest 

Shape Index Mean Y Y 

     Landscape Shape Index Y Y 

     1_6k Forest Shape Index Mean Y N 

     
1_6k Wetland 

Shape Index Mean Y N 

     Landscape Shape Index Y N 

     1_6k 

Agriculture/Forest 

Shape Index Mean Y Y 

     Landscape Shape Index Y Y 

     
2k Forest 

Percent Land Cover 

Adjacency Y Y 
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       Significance     Significance 

Class-Level 

 

 

 

 

 

 

Model Variable 
Non-Spatial 

Model 

Spatial 

Model   

Spatial 

Model 

2k Wetland 
Percent Land Cover 

Adjacency Y N 

2k 

Agriculture/Forest 

Shape Index Mean Y Y 

Landscape Shape Index Y Y 

 

3.2 Model Output Interpretation 

 

Model results contain two components. The first component consists of a table reporting 

variable significance for each model under the Bayesian credible interval approach. Similarities 

exist between credible interval interpretations used in Bayesian statistical analyses and 

confidence interval interpretations used in frequentist statistical approaches, although exact 

meanings vary between the two approaches (Bland and Altman, 1998). The Bayesian approach 

determines that a 95% probability exists that a value lies within a distribution, while the 

frequentist approach assumes that a population value is fixed and then constructs a 95% 

confidence interval around the fixed value.  

Under a Bayesian approach, when parameter value directions do not change between the 

lower 2.5% and the upper 97.5% credible tails, the variable may be interpreted as significant at a 

95% confidence level; for example, in this study, patch richness density maintained a positive 

direction in both tails at a 1_2k distance (Table 3-3), indicating that BU rates increased as patch 

richness density increased. The output tables also include the effect range which is the distance at 

which the spatial correlation drops to 0.05 (i.e., -log(0.05)/phi). 

The second model output component consists of a Gelman-Rubin diagnostic table that 

outlines the likelihood that convergence took place within 5,000 MCMC sample iterations. 

Values close to 1.0 indicate that convergence likely took place.  
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3.3 Landscape-level Configuration Analysis Results 

 

The following tables and figures outline spatial GLM landscape-level results. No models 

maintained significance in all variables under the spatial modeling framework, but four out of six 

models maintained significance in at least one variable. The first model to maintain a significant 

variable was the 1_2k patch richness density model mentioned above. Results indicated that as 

patch richness density increased, BU rates increased, although wetness index average and shape 

index mean values were no longer significant under the spatial modeling framework (Table 3-3). 

Table 3-3. 1_2k number of patches spatial binomial GLM model summary  

Summary 1_2k Landscape-level 3 Chains at 500,000 

Parameters 50.0% 2.5% 97.5% 

Intercept -12.94 -14.991 -7.244 

Wetness Index Average 0.151 -0.035 0.223 

Shape Index Mean 0.913 -2.765 2.487 

Patch Richness Density 2.397 1.458 2.89 

sigma.sq 3.285 3.097 3.922 

Phi 24.388 13.647 29.623 

effective range 3/phi 0.123 0.101 0.224 

max intersite distance  1.254   

 

The Gelman-Rubin diagnostic measure determined that convergence likely took place 

with values presenting close to 1.0 in all parameters (Table 3-4). 

Table 3-4. Gelman diagnostic 1_2k patch richness density model 

Gelman-Rubin Diagnostic 1_2k Landscape-level 

  

Point 

est. 

97.5 

quantile 

Intercept 1.13 1.39 

Wetness Index Average 1.00 1.01 

Shape Index Mean 1.12 1.34 

Patch Richness Density 1.01 1.03 

sigma.sq 1.00 1.00 

phi 1.03 1.03 

Multivariate psrf = 1.08   



62 

 

The second model that maintained significance in one variable was at a 1_6k distance 

(Table 3-5). Results indicated that a relationship exists between high BU rates and a higher 

number of patches surrounding villages within a 1_6k distance. Wetness index average and 

shape index mean values were no longer significant.  

Table 3-5. 1_6k number of patches spatial binomial GLM model summary 

Summary 1_6k Landscape-level 3 Chains at 500,000 

Parameters 50.0% 2.5% 97.5% 

Intercept -11.107 -12.728 -9.653 

Wetness Index Average 0.077 -0.004 0.241 

Shape Index Mean 1.586 -0.645 2.052 

Number of Patches 0.007 0.004 0.009 

sigma.sq 3.41 2.698 4.21 

Phi 21.639 21.517 46.297 

effective range 3/phi 0.139 0.067 0.139 

max intersite distance 1.254   

 

The Gelman-Rubin diagnostic calculation determined that convergence likely took place 

in all model parameters (Table 3-6). 

Table 3-6. Gelman diagnostic 1_6k numbers of patches model 

Gelman-Rubin Diagnostic 1_6k Landscape-level 

  

Point 

est. 

97.5 

quantile 

Intercept 1.05 1.15 

Wetness Index Average 1.01 1.03 

Shape Index Mean 1.06 1.16 

Number of Patches 1.01 1.02 

sigma.sq 1.00 1.01 

Phi 1.02 1.02 

Multivariate psrf = 1.03   

 

Results from the spatial model including wetness index average, shape index means, and 

numbers of patches at a 2k distance maintained significance in two variables (Table 3-7). Results 
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suggested that higher wetness index averages and more uniformly-shaped land cover patches 

surrounded villages with higher BU rates within a 2k distance of village centers.  

Table 3-7. 2k numbers of patches spatial binomial GLM model summary 

Summary 2k Landscape-level 3 Chains at 500,000 

Parameters 50.0% 2.5% 97.5% 

Intercept -9.084 -10.252 -7.187 

Wetness Index Average 0.254 0.213 0.268 

Shape Index Mean -1.021 -1.996 -0.095 

Number of Patches 0.000 -0.001 0.006 

sigma.sq 3.411 3.109 3.430 

Phi 24.873 17.339 29.020 

effective range 3/phi 0.121 0.104 0.174 

max intersite distance 1.254   

 

A Gelman-Rubin diagnostic calculation determined that convergence likely took place in 

all model parameters (Table 3-8). 

Table 3-8. Gelman diagnostic 2k number of patches model 

Gelman-Rubin Diagnostic 2k Landscape-level 

  

Point 

est. 

97.5 

quantile 

Intercept 1.09 1.27 

Wetness Index Average 1.00 1.01 

Shape Index Mean 1.10 1.30 

Number of Patches 1.01 1.04 

sigma.sq 1.00 1.01 

phi 1.03 1.03 

Multivariate psrf = 1.07   

 

The final model to maintain significance in at least one variable also occurred at a 2k 

distance (Table 3-9). This model included wetness index averages, shape index means, and patch 

richness density values. Results suggested that a positive relationship exists between higher BU 

rates and higher wetness index values within a 2km distance of village centers, but shape index 

mean values were not significant.  
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Table 3-9. 2k patch richness density spatial binomial GLM summary 

Summary 2k Landscape-level 3 Chains at 500,000 

Parameters 50.0% 2.5% 97.5% 

Intercept -8.986 -9.983 -7.754 

Wetness Index Average 0.126 0.111 0.283 

Shape Index Mean -0.942 -1.411 0.711 

Patch Richness Density -0.273 -1.831 2.954 

sigma.sq 3.251 3.010 3.886 

Phi 22.260 21.599 26.227 

effective range 3/phi 0.135 0.115 0.139 

max intersite distance 1.254   

 

The Gelman-Rubin diagnostic measure determined that convergence likely took place in 

all parameters with the exception of the shape index mean, which had a value of 2.10 (Table 

3-10). 

Table 3-10. Gelman diagnostic 2k patch richness density model 

Gelman-Rubin Diagnostic 2k Landscape-level 

  

Point 

est. 

97.5 

quantile 

Intercept 1.38 2.10 

Wetness Index Average 1.00 1.00 

Shape Index Mean 1.38 2.10 

Patch Richness Density 1.00 1.01 

sigma.sq 1.02 1.06 

phi 1.05 1.08 

Multivariate psrf = 1.26   

 

3.4 Class-level Composition and Configuration Analysis 

 

Seven out of twelve class-level candidate models maintained significance in all model 

variables under the spatial modeling framework, the results of which are outlined in following 

tables. 
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Results from the 800m wetland class model (Table 3-11) indicated that a relationship 

exists between high BU rates and wetland patches with high patch shape complexity.  

    Table 3-11. 800m wetland class spatial model results 

Summary 800m Wetland 3 Chains at 50,000 

Parameters 50.0% 2.5% 97.5% 

Intercept -10.022 -10.095 -8.918 

Shape Index Mean 0.986 0.722 1.096 

sigma.sq 3.503 3.158 3.869 

Phi 15.224 12.006 21.354 

effective range 3/phi 0.197 0.141 0.251 

max intersite distance = 1.260    

 

The Gelman-Rubin diagnostic (Table 3-12) indicated that convergence likely took place 

in all model parameters with values presenting close to 1.0. 

     Table 3-12. 800m wetland class convergence diagnostic 

Gelman-Rubin Diagnostic 800m Wetland 

  

Point 

est. 97.5 quantile 

Intercept 1.02 1.07 

Shape Index Mean 1.01 1.02 

sigma.sq 1.00 1.01 

Phi 1.02 1.02 

Multivariate psrf = 1.03   

 

   

Results summarizing the 800m agriculture/forest class model (Table 3-13) 

suggested that a relationship exists between mixed agriculture/forest land cover patches with 

more complex shapes that are highly aggregated with one another and higher BU rates.  
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     Table 3-13. 800m agriculture/forest class spatial model results 

Summary 800m Agriculture/Forest 3 Chains at 50,000 

Parameters 50.0% 2.5% 97.5% 

Intercept -8.868 -9.844 -8.245 

Shape Index Mean 2.319 1.774 2.500 

Landscape Shape Index -0.549 -0.776 -0.192 

sigma.sq 1.345 1.142 2.309 

Phi 283.921 234.639 551.114 

effective range 3/phi 0.011 0.006 0.013 

 

The Gelman-Rubin diagnostic (Table 3-14) indicated that convergence likely took place 

with all values presenting close to 1.0. 

     Table 3-14. 800m agriculture/forest class convergence diagnostic 

Gelman-Rubin Diagnostic 800m Agriculture/Forest 

  

Point 

est. 97.5 quantile 

Intercept 1.01 1.01 

Shape Index Mean 1.01 1.02 

Landscape Shape Index 1.00 1.00 

sigma.sq 1.00 1.00 

phi 1.00 1.00 

Multivariate psrf = 1.00   

 

The 1_2k forest model (Table 3-15) indicated that more complex forest shapes and more 

aggregated forest patches surround villages with higher BU rates within a 1_2k distance from 

village centers. 
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      Table 3-15. 1_2k forest spatial model results 

Summary 1_2k Forest 3 Chains at 100,000 

Parameters 50.0% 2.5% 97.5% 

Intercept 11.411 15.723 -8.792 

Shape Index Mean 3.439 1.076 6.52 

Landscape Shape Index -0.31 -0.45 -0.07 

sigma.sq 4.392 4.304 4.449 

Phi 75.14 18.076 189.105 

effective range 3/phi 0.04 0.017 0.191 

Max intersite distance = 1.260    

 

Gelman-Rubin diagnostic results indicated that convergence likely took place in all 

parameters with the exception of the shape index mean, which had a value of 2.15 (Table 3-16). 

   Table 3-16. 1_2k forest class convergence diagnostic 

Gelman-Rubin Diagnostic 1_2k Forest 

  

Point 

est. 97.5 quantile 

Intercept 1.46 2.34 

Shape Index Mean 1.41 2.15 

Percent Land Cover Adjacency 1.03 1.11 

sigma.sq 1.00 1.01 

Phi 1.02 1.08 

Multivariate psrf = 1.28   

 

The 1_2k mixed class agriculture/forest model indicated that a relationship exists 

between villages with high BU rates and agriculture/forest land cover patches with complex 

shapes that are highly aggregated within a 1_2k distance from village centers (Table 3-17).  
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     Table 3-17. 1_2k agriculture/forest spatial model results 

Summary 1_2k Agriculture/Forest 3 Chains at 100,000 

Parameters 50.0% 2.5% 97.5% 

Intercept -9.096 -10.403 -6.957 

Shape Index Mean 2.240 0.555 3.582 

Landscape Shape Index -0.255 -0.424 -0.242 

sigma.sq 1.547 1.112 1.733 

Phi 449.736 319.780 592.320 

effective range 3/phi 0.007 0.005 0.009 

max intersite distance = 1.230    

 

The Gelman-Rubin diagnostic measure (Table 3-18) indicated that convergence likely 

took place with all values presenting close to 1.0. 

     Table 3-18. 1_2k agriculture/forest class convergence diagnostic  

Gelman-Rubin Diagnostic 1_2k Agriculture/Forest 

  

Point 

est. 97.5 quantile 

Intercept 1.04 1.14 

Shape Index Mean 1.05 1.15 

Landscape Shape Index 1.00 1.01 

sigma.sq 1.00 1.00 

Phi 1.00 1.00 

Multivariate psrf = 1.04   

 

Results corresponding to the 1_6k agriculture/forest model (Table 3-19) suggested that a 

relationship exists between higher BU rates and more complexly-shaped agriculture/forest land 

cover patches that are aggregated with one another within a 1_6k distance from village centers. 
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      Table 3-19.1_6k agriculture/forest spatial model results 

Summary 1_6k Agriculture/Forest 3 Chains at 50,000 

Parameters 50.0% 2.5% 97.5% 

Intercept 10.739 11.111 10.168 

Shape Index Mean 3.635 3.004 3.741 

Landscape Shape Index -0.248 -0.319 -0.208 

sigma.sq 1.921 1.334 2.199 

Phi 16.864 10.402 33.195 

effective range 3/phi 0.178 0.093 0.292 

max intersite distance = 1.224    

 

The Gelman-Rubin diagnostic model indicated that convergence likely took place with 

all parameter values presenting close to 1.0 (Table 3-20). 

     Table 3-20. 1_6k agriculture/forest class convergence diagnostic 

Gelman-Rubin Diagnostic 1_6k Agriculture/Forest 

  

Point 

est. 97.5 quantile 

Intercept 1.10 1.31 

Shape Index Mean 1.09 1.27 

Landscape Shape Index 1.01 1.02 

sigma.sq 1.01 1.02 

Phi 1.01 1.02 

Multivariate psrf = 1.08   

 

The 2k forest model indicated that a relationship exists between higher BU rates and 

higher percentages of adjacent forest land cover patches within a 2k distance of village centers 

(Table 3-21).  
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     Table 3-21. 2k forest class spatial model results 

Summary 2k Forest 3 Chains at 50,000 

Parameters 50.0% 2.5% 97.5% 

Intercept -10.811 -11.266 -9.358 

Percent Land Cover Adjacency 0.024 0.014 0.029 

sigma.sq 5.164 4.708 5.165 

Phi 18.343 15.803 23.018 

effective range 3/phi 0.164 0.131 0.190 

max intersite distance = 1.174    

 

The Gelman-Rubin diagnostic model suggested that convergence likely took place in all 

model parameters (Table 3-22). 

      Table 3-22. 2k forest class model convergence diagnostic 

Gelman-Rubin Diagnostic 2k Forest 

  

Point 

est. 97.5 quantile 

Intercept 1.04 1.06 

Percent Land Cover Adjacency 1.04 1.08 

sigma.sq 1.00 1.00 

Phi 1.04 1.04 

Multivariate psrf = 1.01   

 

Results corresponding to the 2k agriculture/forest model indicated that a relationship 

exists between high BU rates and more complexly-shaped agriculture/forest land cover patches 

that are aggregated with one another within 2k distances of village centers (Table 3-23).  
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      Table 3-23. 2k agriculture/forest class spatial model results 

Summary 2k Agriculture/Forest 3 Chains at 50,000 

Parameters 50.0% 2.5% 97.5% 

Intercept -9.434 -11.430 -8.954 

Shape Index Mean 2.448 1.700 4.771 

Landscape Shape Index -0.253 -0.492 -0.120 

sigma.sq 2.232 1.873 2.707 

Phi 366.493 334.177 489.995 

effective range 3/phi 0.008 0.006 0.009 

max intersite distance = 1.256     

 

The Gelman-Rubin diagnostic indicated that convergence likely took place, although the 

shape index mean value exhibited a higher value at 1.67 (Table 3-24). 

     Table 3-24. 2k agriculture/forest model convergence diagnostic 

Gelman-Rubin Diagnostic 2k Agriculture/Forest 

  

Point 

est. 97.5 quantile 

Intercept 1.19 1.61 

Shape Index Mean 1.21 1.67 

Landscape Shape Index 1.06 1.21 

sigma.sq 1.01 1.03 

Phi 1.00 1.00 

Multivariate psrf = 1.08 1.15  

 

3.5 Model Verification 

 

Withheld data equal to 10% of each significant model’s data set acted as locations for 

model verification. Predicted values were compared to observed values and calculation of the 

RMSE for each model determined the “best” model to use to predict to new locations.  

Table 3-25 outlines the RMSE results for the landscape-level and class-level models with 

models with the lowest RMSE values from each model set highlighted in bold text. 
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Table 3-25. Root mean square error results 

Root Mean Square Error (RMSE) 

Scale Model Variables RMSE 

Post-Burn-

In 

Iterations 

Landscape-

level 

1_2k  WI+SHAPE_MN+NP 333.780 500,000 

1_2k  WI+SHAPE_MN+PRD 347.565 500,000 

1_6k WI+SHAPE_MN+NP 311.843 500,000 

1_6k WI+SHAPE_MN+PRD 294.507 500,000 

2k WI+SHAPE_MN+NP 274.337 500,000 

2k WI+SHAPE_MN+PRD 291.361 500,000 

Class-level 

800m forest SHAPE_MN+PLADJ 559.395 100,000 

800m wetland SHAPE_MN 396.001 50,000 

800m 

agriculture/forest SHAPE_MN+LSI 552.751 50,000 

1_2k forest SHAPE_MN+LSI 332.261 100,000 

1_2k wetland SHAPE_MN+LSI 160.557 100,000 

1_2k 

agriculture/forest SHAPE_MN+LSI 311.324 100,000 

1_6k forest SHAPE_MN 485.752 50,000 

1_6k wetland SHAPE_MN+LSI 251.310 100,000 

1_6k 

agriculture/forest SHAPE_MN+LSI 361.176 50,000 

2k forest PLADJ 213.547 50,000 

2k wetland PLADJ 420.077 50,000 

2k agriculture/forest SHAPE_MN+LSI 231.294 50,000 

 

RMSE values determined that the landscape-level 2k model including BU rates as the 

response variable and wetness index averages, shape index means, and number of patches as 

independent variables was the best-fitting landscape-level model with an RMSE of 274.337. The 

best-fitting class-level model, also the overall best-fitting model, was the 1_2k wetland model 

that included BU rates as the response variable and shape index means and landscape shape 

index values as independent variables with an RMSE of 160.557. Fitted rates are similar to 

observed rates across Benin (Figure 3-1, Figure 3-2). 
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 Figure 3-1. 1_2k wetland class observed rates, 90% data 
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Figure 3-2. 1_2k wetland class fitted model, 90% data 

The random spatial effects component contributed a large amount to the overall model 

fit; areas plotted in red represent higher spatial random effects, while areas plotted in blue 

represent lower spatial random effects (Figure 3-3). Areas exhibiting high spatial random effects 

correspond to areas with higher predicted rates, demonstrating their presence in the overall 

model fit. 
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 Figure 3-3. 1_2k wetland class spatial random effects  

 

3.6 Predictive Surface Model 

 

Predicted BU rates at new locations across the study region identified areas at risk for BU 

cases based on landscape configuration metrics and unknown, spatially-structured covariates 

characterized by random spatial effects generated from the 1_2k wetland spatial binomial GLM 

(Figure 3-4). Although this surface represents predictive BU rates, this model does not account 

for population absences in a region or for any socio-behavioral activities leading to transmission; 

therefore, although areas might be identified as high-risk areas, it does not necessarily mean that 

transmission will take place.  
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  Figure 3-4. Predictive BU rates surface across the study domain 

The highest predicted rates occurred within the boundary of Benin along the southern 

portions of the Oueme and Couffu Rivers. These predictions were consistent with observed rates 

in these areas. Low risk areas consisted of the northern region and areas along the southern coast 

in Benin. Moderate risk was identified across large portions of the study area located within the 

boundary of Togo and along the Oueme River, north of high risk areas. 
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Chapter 4 DISCUSSION AND LIMITATIONS 
 

4.1 Discussion 

  

This study was a first attempt to quantify relationships between land cover patch patterns 

indicative of anthropogenic disturbances and BU incidence in Benin. The methods used and the 

approach taken to quantify these attributes were novel to BU research and highlighted the 

importance of using spatial statistical methods when investigating environmental phenomena.  

The first set of results demonstrated that using non-spatial statistical methods when 

investigating positively, spatially-autocorrelated ecological variables can lead to overestimations 

in variable significance. Non-spatial binomial GLMs inflated the influence of predictor variables 

for all landscape-level models and for several class-level models. Although non-spatial models 

exhibited significance in all covariates, these methods failed to account for spatial 

autocorrelation among model residuals, leading to false assumptions regarding their 

contributions to BU rates. Spatial binomial GLMs mitigated these effects, while identifying 

important variables related to BU rates at observed locations. The addition of a random spatial 

effects component partitioned unobserved covariates contributing to BU rates while identifying a 

spatial structure associated with these covariates, promoting more accurate predictions at new, 

unsampled locations. 

Model sets constructed at a landscape-level and at a class-level enabled an in depth 

analysis of land cover patch configuration relationships to BU rates within the study region. 

Several model results determined that land cover patch configurations related to high BU rates at 

the landscape-level supported study hypotheses that more fragmented landscapes with more 

uniformly-shaped land cover patches, lying within areas more likely to accumulate water during 

precipitation events surround villages with higher BU rates, although no models supported all 
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three scenarios simultaneously, and no variables emerged as dominant indicators of BU risk 

across all distance intervals. These results were not surprising considering the complexity of 

factors involved in determining variable selection and when deciding the scale at which to 

measure natural environmental variables.  

Although consistency in variable significance lacked across distances at the landscape 

level, significance direction in individual variables did not change between models. Further, the 

best-fitting model in the landscape-level set supported two components of the study hypotheses, 

and although not the primary focus of this study, additional model results provided several 

opportunities for a glimpse into potential ecological connections between land cover patch 

configurations and BU rates.  

Notable results included a positive relationship between patch richness density 

surrounding villages with high BU rates at a 1_2k distance. Variable significance occurred at a 

1_2k distance only, but the outcome suggested that a relationship exists between more diverse 

landscapes closer to village centers and higher BU rates. A positive relationship between 

numbers of patches at a 1_6k distance and BU rates supported the hypothesis that more 

fragmented landscapes, potentially disturbed by anthropogenic activities, surround villages with 

higher disease rates. Although variable significance took place at a 1_6k distance only, these 

results warrant further investigation at larger distance intervals to determine whether this 

phenomenon is indicative of BU risk across broader geographic regions.  

Models generated at a 2k distance produced differing results, but both models indicated 

that a relationship exists between higher average wetness index values and higher BU rates, 

supporting the hypothesis that areas more likely to accumulate water during a precipitation event 

surround villages with higher BU rates.  Interestingly, average wetness index value variable 
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significance did not occur at distances closer to village centers, suggesting that a sufficient 

distance may be needed to encounter rivers and tributaries of a magnitude large enough to create 

local flooding events on a seasonal basis or during extreme weather events.  

Two models created at 2k distances from village centers exhibited different results related 

to shape index mean values. Low shape index mean values were significant at a 2km distance 

when paired with numbers of patches and wetness index averages as model covariates, although 

shape index mean values were not significant at a 2km distance when paired with patch richness 

density and wetness index averages. One contributing factor to this difference was that shape 

index mean convergence likely did not take place in the model including patch richness density 

values; therefore, this model was not representative of the shape index mean distribution at a 2k 

distance from village centers. 

Results from the 2k model including wetness index averages, shape index means, and 

numbers of patches had the lowest RMSE value of all models produced at the landscape-level 

and supported the hypothesis that more uniformly-shaped land cover patches, a characteristic of 

anthropogenically-disturbed landscapes, located in areas more likely to accumulate water during 

a precipitation event surround villages with higher BU rates. Further investigation into these 

factors at greater distances from village centers could reveal important trends in larger-scale 

processes constraining finer-scale phenomena related to BU ecology in the study region. 

Class-level models exhibited several consistent results at various distances and across 

individual class types, fulfilling the second objective of this study to determine whether a 

relationship exists between land cover patch configurations indicative of potential anthropogenic 

disturbances corresponding to specific land cover types and high BU rates. While several 

significant model outcomes occurred, these results did not support the study hypotheses. 
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Significant forest, wetland, and mixed agriculture/forest patch shape index mean values 

suggested that more natural or undisturbed patch shapes corresponding to these classes surround 

villages with higher BU rates, and consistent model outcomes occurred across all distance 

intervals.  

While results corresponding to patch shape complexity did not support the study 

hypothesis, these results were particularly interesting when observing the mixed 

agriculture/forest class because the composition of this class included some level of 

anthropogenic disturbance inherently; therefore, model outcomes provided insight into potential 

disturbance patterns. Natural patch shape complexities corresponding to this land cover class 

suggested characteristics representative of natural forest cover because vegetation planted by 

humans could not likely produce this pattern, indicating that agriculture plots likely intrude into 

forest patches undisturbed previously. The agriculture/forest class models maintained 

significance at all distance intervals, signifying that a need exists for further investigation into 

agriculture planting practices within forested areas and relationships to BU emergence. 

Additionally, individual forest, wetland or mixed agriculture/forest class aggregation 

values related to higher BU rates did not support the study hypothesis that more fragmented land 

cover corresponding to these classes surrounds villages with higher BU rates. Significant model 

outcomes reported lower landscape shape index values and higher percent land cover adjacency 

values consistently, suggesting that more aggregated land cover patches corresponding to these 

classes surround villages with higher BU rates across all distance intervals.  

Several potential reasons may explain class-level model outcomes. One possibility is that 

anthropogenic disturbance patterns related to the individual classes investigated in this study may 

not follow patterns recognized previously. Studies demonstrating uniformly-shaped land cover 
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patches as those created by anthropogenic activities took place largely in European countries and 

within the United States where access to heavy farming machinery was readily available and 

long-standing property boundaries may demarcate land cover patches more abruptly.  

While disturbance patterns may not follow those quantified in western studies, a more 

likely explanation has to do with the scale at which the quantification of the study area took 

place. Ikonos 4m resolution satellite imagery from January 2009 revealed several anthropogenic 

landscape disturbances demarcated by uniform shapes across a 10k x 10k BU endemic area in 

the mid-western portion of the study region. Of particular interest were partitioned rice paddy 

plots within natural wetland boundaries (Figure 4-1). These areas appeared undisturbed until 

observed at a finer resolution, suggesting that 30m resolution Landsat imagery could not identify 

within patch anthropogenic disturbance revealed at a finer resolution, and this factor may have 

influenced class-level results.  

 

      Figure 4-1. Anthropogenic disturbance within wetland land cover patch 
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A third possible explanation may have to do with MU pathogen abundance in the 

environment. To date, unknown ecological factors drive MU abundance, but landscapes 

experiencing early disturbance stages may experience elevated pathogen levels. As residents 

begin to intrude into habitats undisturbed previously to plant agriculture or to collect fuel wood, 

their activities likely follow natural land cover boundaries before significant landscape 

alterations take place. Future quantitative PCR applications have the potential to provide 

knowledge related to pathogen abundance in the environment, the results of which could provide 

critical information linking MU presence and abundance to specific land cover types and uses 

during multiple succession stages (Merritt et al., 2005).   

Finally, landscape-level model results differed from class-level model results and 

supported the study hypotheses, suggesting that important land cover categories may not have 

been included at the class-level in this study. Alternatively, while uniformly-shaped patches 

corresponding to specific classes did not exhibit significance, when measurement of these patch 

shapes took place in conjunction with measurements from the entire landscape, uniformly-

shaped patches emerged as an important predictor variable; therefore, the importance of this 

phenomenon may be unrelated to specific class types. 

The “best” model with the lowest RMSE value from both model sets corresponded to the 

1_2k wetland class model with BU rates as the response variable and shape index mean values 

and landscape shape index values as the independent variables. Interestingly, the independent 

variables did not maintain significance in the spatial GLM; therefore, the spatial random effects 

component contributed to the majority of the model fit. These results confirmed that a spatial 

structure exists for processes driving BU rates in Benin, although at the end of this study, these 

covariates remain unknown.  
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Although measuring the contribution of land cover composition alone was not the 

primary objective behind class-level model construction, the fact that the “best” model 

corresponded to the wetland class while land cover configuration variables corresponding to this 

class and at this distance were not significant is an important development. These results suggest 

that wetland land cover composition within relatively close distances from village centers may 

play an important role in the distribution of BU rates in Benin because additional models at 1_2k 

distances, even those maintaining significant variables, exhibited higher RMSE values. These 

results supported previous studies implicating close proximities to slow-moving or stagnant 

water bodies as a BU risk factor; consequently, a need exists for further investigation into 

wetland characteristics at multiple scales near villages experiencing high BU rates. 

The creation of a continuous risk surface map across the study region fulfilled the final 

study objective. Although “best” model predictor variables alone could not predict BU rates 

effectively, the incorporation of the random spatial effects component enabled accurate 

predictions at new, unsampled locations while accounting for uncertainty across the study 

domain. To our knowledge, this study was the first to produce a continuous risk surface based on 

environmental covariates and the only study to account for and to utilize unknown, spatial 

covariates driving disease incidence in model predictions. 

Predicted rates derived from the mean posterior predictive distribution of the “best” 

model produced a BU risk surface map from which to identify high risk regions across the study 

domain (Figure 3-4). Predicted rates in Benin followed a similar pattern to the observed case data 

with higher rates along the Oueme River in the east and along the Couffu River in the western 

section of the country. A large floodplain exists in the eastern portion of the country where the 

Oueme and Zou Rivers join before draining into the Gulf of Guinea. Land cover consists of 
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mixed agriculture, forest, and shrubland with wetlands situated in the south where the river flows 

into Lake Nokoué before emptying into the Bight of Benin. Several wetlands extend from the 

Couffu River with one group situated near the town of Tandji, located within a high predicted 

rate area, around which BU cases occur regularly. Land cover within this region consists 

primarily of mixed agriculture/shrub, forest, mixed agriculture/forest, and wetlands. 

Low prediction rates along the southern coast coincided with few observed cases in the 

region, where brackish waters may impact environmental conditions suitable to the MU 

pathogen, and toward the northern portion of the study region where higher elevations separate 

the two endemic regions and farther north where climate conditions begin to change to a dryer, 

less humid environment. 

Predicted rates in the study area within the boundary of Togo exhibited moderate values 

with less variability than rates predicted within the boundary of Benin. This may be due to 

increased distance from observed locations. As distance from known values exceeds the effective 

range determined by the spatial structure of the observed data set, predicted rates have a 

tendency to move toward a mean predictive value, and although this phenomenon may have 

impacted predicted rates within Togo, the results were still interesting and relevant. 

Southern Togo shares a similar climate to southern Benin, falling within the Dahomey 

Gap. Swampy floodplains reside along the southern portion of the Mono River beginning at an 

approximate latitude of 6.9333 N, stretching to the southern coast, while an additional wetland 

consisting of herb swamp, swampy forest, and grassy floodplain lies across the border with 

Benin (Hughes and Hughes, 1992). The lagoon system in Togo does not experience tidal flow 

except during periods of high rainfall, and therefore, is considered a freshwater system. 
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Most notable were moderate-to-high rates predicted along the Mono River west of the 

Tandji foci in Benin at the border between the two countries. Although located within a wetland 

system, few reported BU cases exist in this region following construction of the Nangbeto dam 

in 1987 (R. Christian Johnson, personal communication, March 24, 2009). One hypothesis is that 

a reduction in cases occurred because of controlled fluctuations in water levels, reducing 

seasonal flooding impacts in the region. While the environmental conditions may be comparable 

to those identified as high risk environments in Benin, the model could not account for 

anthropogenic interference with river flow and identified this area as having a moderate-to-high 

BU risk.  

The region south of the Nangbeto dam may prove to be an important surveillance area. 

Although the dam construction reduced seasonal flooding risk in the Mono River region, 

unusually high rainfall contributed to tragedy when the opening of a sluice gate relieved water 

pressure in the reservoir behind the dam, causing the river to burst its banks, wiping away houses 

and farms on November 2, 2010 (Ghana News Link, 2010). While troubling, these flooding 

events may provide a unique control from which to observe whether BU cases emerge, providing 

an opportunity to gain a better understanding of the role in which flooding contributes to BU 

incidence. 

While multiple, unknown, environmental variables must interact for the bacterium to 

flourish and transmission to humans likely requires specific socio-behavioral factors 

unaccounted for in this model, a risk surface incorporating the spatial structure of these unknown 

variables provided an ideal tool from which to identify high BU risk regions despite little 

knowledge regarding environmental factors contributing to the disease. Further, BU disease does 

not observe administrative boundaries; therefore, the creation of a continuous surface 
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transcending artificial borders eliminated areal data set constraints, the benefits of which were 

demonstrated in predicted rates across Togo where little case data exists.  

Although a temptation exists to observe this risk surface as absolute, the natural 

environment is not a static phenomenon, nor is BU incidence. This risk surface represents one 

snapshot in time, based on land cover configurations derived from one satellite image during one 

season and from the spatial structure of factors contributing to BU incidence in 2004 and 2005. 

However, observing where BU transmission could likely take place if persons encountered 

similar environments provides a first step toward surveillance and prevention, while creating a 

framework from which to target future environmental sampling and research efforts.  

4.2 Limitations 

 

 Several limitations existed in this study, some of which related directly to data used in the 

analysis. LULC data derived from 2000 satellite imagery was used to analyze 2004 and 2005 BU 

case data. Challenges existed in acquiring suitable satellite imagery from the study region 

because of the presence of cloud cover in a large proportion of the imagery; therefore, this study 

assumed that the LULC within the study region did not change substantially within a 3-4 year 

time period. Suitable ground truth data were not available to validate the LULC classification. A 

10 year gap between image acquisition and limited ground truth data existed; therefore, this 

study relied on visual interpretation methods along with aggregated land cover classes to create 

the land cover classification. 

Characterization of land cover configurations took place at one scale using 30m 

resolution data. Important organism responses may be linked to these variables, but could occur 

at scales differing from those at which variable measurement took place. A 30m resolution may 

not be the appropriate resolution to characterize processes driving MU growth and BU 
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emergence; therefore, a need exists for additional investigation into land cover configuration 

patterns related to BU rates at different spatial resolutions. 

Although active surveillance by government health officials identified BU cases within 

the study region, underreporting may have impacted study results. Further, identification of BU 

negative villages corresponded to a 2004 and 2005 time period; these villages may have had 

positive cases in previous or subsequent years. Additionally, this study assumed that BU 

transmission occurred near the village of residence. Travel between regions and migration was 

not known and therefore, was not incorporated into this study. 

Environmental variables with a seasonal or a highly temporal nature were not included in 

this study; for example, precipitation, temperature, or relative humidity factors. Six weather 

stations with incomplete inventories exist within the study region, making data interpolation 

across the study domain questionable. Beyond data quality issues, unknown lag times between 

suitable environmental conditions and pathogen proliferation, inoculation and ulcer presentation, 

and ulcer presentation and hospital treatment make linking BU cases to specific environmental 

events challenging. Coarser resolution climate data were considered and an exploratory analysis 

of several BioClim 30 year average variables did not reveal significant relationships between 

these variables and BU rates. Likely, the data was too coarse both spatially and temporally to 

identify important relationships. A need exists for further investigation into the relationship 

between climate variables and BU cases in West Africa. 

Finally, scaling of model coordinates to correspond to a one-to-one surface area may 

have introduced uncertainty, although the location of the study area close to the equator reduced 

the impact of this phenomenon. 



88 

 

4.3 Conclusions and Future Directions 

 

The role of anthropogenic ecosystem disturbances in the emergence of environmental 

bacterial infections is poorly understood. This study was a first attempt to link land cover 

configurations representative of anthropogenic disturbances to the environmental bacterial 

infection Buruli ulcer disease. Although mixed results did not suggest a definite trend toward 

positive linkages between land cover patch configurations representative of anthropogenic 

disturbances and BU rates, study results identified several significant variables, warranting future 

investigations into these factors at different scales.  

Beyond the novel exploratory analysis outlined above, a major contribution of this study 

included the incorporation of a modeling component that partitioned the spatial structure of 

missing variables, providing a structure from which to predict BU rates to new locations without 

strong knowledge of environmental factors contributing to disease distribution. The resulting 

continuous BU risk surface is the first of its kind and marks the potential to develop and to target 

surveillance efforts. The ability to predict potential risk adequately to locations where little data 

availability exists provided a first step toward prevention, while creating a tool from which a 

more systematic and controlled site selection process may be used to target future environmental 

sampling research.  

Future directions include model refinement and comparisons of model outcomes 

generated from this study with additional modeling approaches, for example those using an 

extreme value link function that accounts for data sets where the number of zeros is vastly 

greater than the number of ones. Acquisition of climate variables corresponding to endemic 

regions may reveal valuable linkages between weather events and landscape attributes related to 

disease incidence, and future studies into wetland land cover using higher resolution satellite 
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imagery in conjunction with environmental samples could identify relevant links between 

anthropogenic wetland disturbances and BU disease emergence. 

Finally and most importantly, continued acquisition of accurate, and georeferenced case 

data along with georeferenced pathogen data will provide the best opportunity for robust 

empirical studies of linkages between ecological factors, anthropogenic activities, and BU 

transmission. Combining these data with the continued efforts of multidisciplinary research 

teams, international governments, and aid agencies will provide the tools necessary to one day 

understand the mystery behind Buruli ulcer disease. 
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Appendix A  

 

Correlation Matrices 
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Table A-1. Landscape-level 400m correlation matrix 

400m Spearman Rank Order Correlation Matrix 

  

BU 

RATE 
NP LSI 

SHAPE 

MN 

FRAC 

MN 

PARA 

MN 
PLADJ PRD SHDI WIAVGG 

BU RATE 1.000 0.048 0.056 0.138 0.137 0.028 -0.050 0.008 0.033 0.042 

NP 0.048 1.000 0.906 -0.073 0.000 0.514 -0.910 0.642 0.814 0.072 

LSI 0.056 0.906 1.000 0.263 0.272 0.302 -0.992 0.554 0.870 0.048 

SHAPE MN 0.138 0.073 0.263 1.000 0.899 -0.278 -0.255 0.105 0.181 -0.071 

FRAC MN 0.137 0.000 0.272 0.899 1.000 -0.318 -0.263 0.022 0.205 -0.034 

PARA MN 0.028 0.514 0.302 -0.278 -0.318 1.000 -0.317 0.345 0.169 -0.007 

PLADJ -0.050 0.910 0.992 -0.255 -0.263 -0.317 1.000 0.548 0.868 -0.047 

PRD 0.008 0.642 0.554 -0.105 -0.022 0.345 -0.548 1.000 0.660 0.096 

SHDI 0.033 0.814 0.870 0.181 0.205 0.169 -0.868 0.660 1.000 0.131 

WIAVGG 0.042 0.072 0.048 -0.071 -0.034 -0.007 -0.047 0.096 0.131 1.000 
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Table A-2. Landscape-level 500m correlation matrix 

 

500m Spearman Rank Order Correlation Matrix 

  

BU 

RATE 
NP LSI 

SHAPE 

MN 

FRAC 

MN 

PARA 

MN 
PLADJ PRD SHDI WIAVGG 

BU RATE 1.000 0.005 0.035 0.123 0.142 -0.099 -0.028 0.001 0.043 0.068 

NP 0.005 1.000 0.900 -0.036 0.015 0.463 -0.902 0.669 0.791 0.100 

LSI 0.035 0.900 1.000 0.321 0.306 0.229 -0.991 0.573 0.853 0.068 

SHAPE MN 0.123 0.036 0.321 1.000 0.913 -0.395 -0.322 -0.045 0.277 -0.054 

FRAC MN 0.142 0.015 0.306 0.913 1.000 -0.448 -0.309 0.007 0.289 0.024 

PARA MN 0.099 0.463 0.229 -0.395 -0.448 1.000 -0.229 0.287 0.067 -0.022 

PLADJ 0.028 0.902 0.991 -0.322 -0.309 -0.229 1.000 -0.571 -0.853 -0.071 

PRD 0.001 0.669 0.573 -0.045 0.007 0.287 -0.571 1.000 0.688 0.152 

SHDI 0.043 0.791 0.853 0.277 0.289 0.067 -0.853 0.688 1.000 0.139 

WIAVGG 0.068 0.100 0.068 -0.054 0.024 -0.022 -0.071 0.152 0.139 1.000 
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Table A-3. Landscape-level 600m correlation matrix 

600m Spearman Rank Order Correlation Matrix 

  

BU 

RATE 
NP LSI 

SHAPE 

MN 

FRAC 

MN 

PARA 

MN 
PLADJ PRD SHDI WIAVGG 

BU RATE 1.000 0.014 0.029 0.057 0.032 -0.087 -0.022 0.014 0.057 0.089 

NP 0.014 1.000 0.908 -0.081 -0.010 0.393 -0.910 0.613 0.773 0.078 

LSI 0.029 0.908 1.000 0.255 0.258 0.168 -0.991 0.512 0.831 0.069 

SHAPE MN 0.057 0.081 0.255 1.000 0.903 -0.452 -0.255 0.085 0.229 -0.011 

FRAC MN 0.032 0.010 0.258 0.903 1.000 -0.479 -0.257 0.027 0.245 0.006 

PARA MN 0.087 0.393 0.168 -0.452 -0.479 1.000 -0.180 0.195 0.015 -0.021 

PLADJ 0.022 0.910 0.991 -0.255 -0.257 -0.180 1.000 0.518 0.837 -0.072 

PRD 0.014 0.613 0.512 -0.085 0.027 0.195 -0.518 1.000 0.629 0.131 

SHDI 0.057 0.773 0.831 0.229 0.245 0.015 -0.837 0.629 1.000 0.143 

WIAVGG 0.089 0.078 0.069 -0.011 0.006 -0.021 -0.072 0.131 0.143 1.000 
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Table A-4. Landscape-level 700m correlation matrix 

700m Spearman Rank Order Correlation Matrix 

  

BU 

RATE 
NP LSI 

SHAPE 

MN 

FRAC 

MN 

PARA 

MN 
PLADJ PRD SHDI WIAVGG 

BU RATE 1.000 0.016 0.022 0.088 0.044 0.057 -0.013 0.060 0.065 0.111 

NP 0.016 1.000 0.897 -0.049 0.021 0.440 -0.902 0.572 0.745 0.073 

LSI 0.022 0.897 1.000 0.316 0.268 0.201 -0.991 0.469 0.806 0.044 

SHAPE MN 0.088 0.049 0.316 1.000 0.896 0.466 -0.307 0.096 0.270 -0.042 

FRAC MN 0.044 0.021 0.268 0.896 1.000 0.507 -0.261 0.034 0.257 0.004 

PARA MN -0.057 0.440 0.201 -0.466 0.507 1.000 -0.209 0.209 0.039 -0.047 

PLADJ -0.013 0.902 0.991 -0.307 0.261 0.209 1.000 0.478 0.814 -0.045 

PRD 0.060 0.572 0.469 -0.096 0.034 0.209 -0.478 1.000 0.621 0.185 

SHDI 0.065 0.745 0.806 0.270 0.257 0.039 -0.814 0.621 1.000 0.137 

WIAVGG 0.111 0.073 0.044 -0.042 0.004 0.047 -0.045 0.185 0.137 1.000 
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Table A-5. Landscape-level 800m correlation matrix 

800m Spearman Rank Order Correlation Matrix 

  

BU 

RATE 
NP LSI 

SHAPE 

MN 

FRAC 

MN 

PARA 

MN 
PLADJ PRD SHDI WIAVGG 

BU RATE 1.000 0.009 0.024 0.118 0.073 0.142 -0.013 0.052 0.074 0.131 

NP 0.009 1.000 0.910 -0.110 0.073 0.472 -0.914 0.556 0.741 0.091 

LSI 0.024 0.910 1.000 0.232 0.202 0.270 -0.989 0.447 0.782 0.045 

SHAPE MN 0.118 0.110 0.232 1.000 0.909 0.511 -0.225 0.126 0.236 -0.024 

FRAC MN 0.073 0.073 0.202 0.909 1.000 0.598 -0.196 0.054 0.234 0.019 

PARA MN 0.142 0.472 0.270 -0.511 -0.598 1.000 -0.280 0.231 0.094 -0.012 

PLADJ 0.013 0.914 0.989 -0.225 -0.196 -0.280 1.000 0.459 0.794 -0.051 

PRD 0.052 0.556 0.447 -0.126 -0.054 0.231 -0.459 1.000 0.621 0.206 

SHDI 0.074 0.741 0.782 0.236 0.234 0.094 -0.794 0.621 1.000 0.161 

WIAVGG 0.131 0.091 0.045 -0.024 0.019 -0.012 -0.051 0.206 0.161 1.000 
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Table A-6. Landscape-level 900m correlation matrix 

900m Spearman Rank Order Correlation Matrix 

  

BU 

RATE 
NP LSI 

SHAPE 

MN 

FRAC 

MN 

PARA 

MN 
PLADJ PRD SHDI WIAVGG 

BU RATE 1.000 0.013 0.025 0.122 0.071 -0.137 -0.013 0.070 0.076 0.135 

NP -0.013 1.000 0.901 -0.108 0.037 0.421 -0.907 0.545 0.732 0.076 

LSI 0.025 0.901 1.000 0.249 0.239 0.200 -0.987 0.438 0.767 0.050 

SHAPE MN 0.122 0.108 0.249 1.000 0.889 -0.484 -0.238 0.130 0.221 -0.002 

FRAC MN 0.071 0.037 0.239 0.889 1.000 -0.558 -0.231 0.057 0.262 0.009 

PARA MN -0.137 0.421 0.200 -0.484 0.558 1.000 -0.217 0.200 0.011 -0.034 

PLADJ -0.013 0.907 0.987 -0.238 0.231 -0.217 1.000 0.450 -0.783 -0.057 

PRD 0.070 0.545 0.438 -0.130 0.057 0.200 -0.450 1.000 0.611 0.199 

SHDI 0.076 0.732 0.767 0.221 0.262 0.011 -0.783 0.611 1.000 0.169 

WIAVGG 0.135 0.076 0.050 -0.002 0.009 -0.034 -0.057 0.199 0.169 1.000 
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Table A-7. Landscape-level 1k correlation matrix 

1k Spearman Rank Order Correlation Matrix 

  

BU 

RATE 
NP LSI 

SHAPE 

MN 

FRAC 

MN 

PARA 

MN 
PLADJ PRD SHDI WIAVGG 

BU RATE 1.000 0.005 0.030 0.112 0.080 -0.083 -0.016 0.083 0.084 0.133 

NP 0.005 1.000 0.906 -0.084 0.004 0.431 -0.911 0.541 0.706 0.061 

LSI 0.030 0.906 1.000 0.257 0.278 0.228 -0.986 0.445 0.751 0.048 

SHAPE MN 0.112 0.084 0.257 1.000 0.910 -0.497 -0.249 0.087 0.266 0.036 

FRAC MN 0.080 0.004 0.278 0.910 1.000 -0.565 -0.271 0.010 0.324 0.059 

PARA MN 0.083 0.431 0.228 -0.497 -0.565 1.000 -0.244 0.201 0.000 -0.033 

PLADJ 0.016 0.911 0.986 -0.249 -0.271 -0.244 1.000 0.461 0.767 -0.055 

PRD 0.083 0.541 0.445 -0.087 0.010 0.201 -0.461 1.000 0.597 0.236 

SHDI 0.084 0.706 0.751 0.266 0.324 0.000 -0.767 0.597 1.000 0.165 

WIAVGG 0.133 0.061 0.048 0.036 0.059 -0.033 -0.055 0.236 0.165 1.000 
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Table A-8. Landscape-level 1_1k correlation matrix 

1_1k Spearman Rank Order Correlation Matrix 

  

BU 

RATE 
NP LSI 

SHAPE 

MN 

FRAC 

MN 

PARA 

MN 
PLADJ PRD SHDI WIAVGG 

BU RATE 1.000 0.000 0.038 0.120 0.100 -0.143 -0.024 0.127 0.095 0.133 

NP 0.000 1.000 0.906 -0.088 0.043 0.438 -0.913 0.543 0.698 0.051 

LSI 0.038 0.906 1.000 0.254 0.313 0.234 -0.985 0.474 0.744 0.039 

SHAPE MN 0.120 -0.088 0.254 1.000 0.907 -0.468 -0.244 -0.033 0.282 0.039 

FRAC MN 0.100 0.043 0.313 0.907 1.000 -0.478 -0.303 0.083 0.382 0.052 

PARA MN 0.143 0.438 0.234 -0.468 -0.478 1.000 -0.249 0.158 0.006 -0.058 

PLADJ 0.024 -0.913 -0.985 -0.244 -0.303 -0.249 1.000 -0.491 -0.762 -0.049 

PRD 0.127 0.543 0.474 -0.033 0.083 0.158 -0.491 1.000 0.616 0.282 

SHDI 0.095 0.698 0.744 0.282 0.382 0.006 -0.762 0.616 1.000 0.174 

WIAVGG 0.133 0.051 0.039 0.039 0.052 -0.058 -0.049 0.282 0.174 1.000 
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Table A-9. Landscape-level 1_2k correlation matrix 

1_2k Spearman Rank Order Correlation Matrix 

  

BU 

RATE 
NP LSI 

SHAPE 

MN 

FRAC 

MN 

PARA 

MN 
PLADJ PRD SHDI WIAVGG 

BU RATE 1.000 0.006 0.044 0.094 0.029 -0.072 -0.029 0.137 0.093 0.141 

NP 0.006 1.000 0.908 -0.090 0.007 0.453 -0.914 0.532 0.684 0.039 

LSI 0.044 0.908 1.000 0.252 0.280 0.248 -0.985 0.473 0.734 0.036 

SHAPE MN 0.094 -0.090 0.252 1.000 0.895 -0.502 -0.245 0.004 0.296 0.058 

FRAC MN 0.029 0.007 0.280 0.895 1.000 -0.550 -0.278 0.073 0.344 0.066 

PARA MN 0.072 0.453 0.248 -0.502 -0.550 1.000 -0.260 0.188 0.038 -0.077 

PLADJ 0.029 -0.914 -0.985 -0.245 -0.278 -0.260 1.000 -0.490 -0.750 -0.047 

PRD 0.137 0.532 0.473 0.004 0.073 0.188 -0.490 1.000 0.607 0.302 

SHDI 0.093 0.684 0.734 0.296 0.344 0.038 -0.750 0.607 1.000 0.178 

WIAVGG 0.141 0.039 0.036 0.058 0.066 -0.077 -0.047 0.302 0.178 1.000 
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Table A-10. Landscape-level 1_3k correlation matrix 

1_3k Spearman Rank Order Correlation Matrix 

  

BU 

RATE 
NP LSI 

SHAPE 

MN 

FRAC 

MN 

PARA 

MN 
PLADJ PRD SHDI WIAVGG 

BU RATE 1.000 0.020 0.053 0.126 0.075 -0.062 -0.038 0.144 0.094 0.145 

NP 0.020 1.000 0.913 -0.088 0.014 0.462 -0.923 0.509 0.686 0.020 

LSI 0.053 0.913 1.000 0.237 0.277 0.268 -0.985 0.457 0.728 0.018 

SHAPE MN 0.126 -0.088 0.237 1.000 0.907 -0.478 -0.227 0.022 0.287 0.038 

FRAC MN 0.075 0.014 0.277 0.907 1.000 -0.520 -0.267 0.111 0.360 0.046 

PARA MN 0.062 0.462 0.268 -0.478 -0.520 1.000 -0.288 0.143 0.049 -0.076 

PLADJ 0.038 -0.923 -0.985 -0.227 -0.267 -0.288 1.000 -0.472 -0.744 -0.029 

PRD 0.144 0.509 0.457 0.022 0.111 0.143 -0.472 1.000 0.603 0.338 

SHDI 0.094 0.686 0.728 0.287 0.360 0.049 -0.744 0.603 1.000 0.172 

WIAVGG 0.145 0.020 0.018 0.038 0.046 -0.076 -0.029 0.338 0.172 1.000 
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Table A-11. Landscape-level 1_5k correlation matrix 

1_5k Spearman Rank Order Correlation Matrix 

  

BU 

RATE 
NP LSI 

SHAPE 

MN 

FRAC 

MN 

PARA 

MN 
PLADJ PRD SHDI WIAVGG 

RATE 1.000 0.029 0.055 0.110 0.057 -0.069 -0.040 0.142 0.093 0.146 

NP 0.029 1.000 0.915 -0.107 0.013 0.526 -0.925 0.490 0.665 0.011 

LSI 0.055 0.915 1.000 0.215 0.267 0.356 -0.985 0.431 0.710 0.010 

SHAPE MN 0.110 -0.107 0.215 1.000 0.880 -0.442 -0.200 0.030 0.280 0.073 

FRAC MN 0.057 0.013 0.267 0.880 1.000 -0.508 -0.252 0.122 0.345 0.086 

PARA MN 0.069 0.526 0.356 -0.442 -0.508 1.000 -0.377 0.182 0.136 -0.065 

PLADJ 0.040 -0.925 -0.985 -0.200 -0.252 -0.377 1.000 -0.446 -0.725 -0.022 

PRD 0.142 0.490 0.431 0.030 0.122 0.182 -0.446 1.000 0.588 0.341 

SHDI 0.093 0.665 0.710 0.280 0.345 0.136 -0.725 0.588 1.000 0.175 

WIAVGG 0.146 0.011 0.010 0.073 0.086 -0.065 -0.022 0.341 0.175 1.000 
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Table A-12. Landscape-level 1_6k correlation matrix 

1_6k Spearman Rank Order Correlation Matrix 

  

BU 

RATE 
NP LSI 

SHAPE 

MN 

FRAC 

MN 

PARA 

MN 
PLADJ PRD SHDI WIAVGG 

BU RATE 1.000 0.028 0.055 0.079 0.030 0.030 -0.039 0.118 0.089 0.146 

NP 0.028 1.000 0.915 -0.057 0.089 0.508 -0.925 0.476 0.671 0.011 

LSI 0.055 0.915 1.000 0.257 0.323 0.343 -0.987 0.409 0.706 0.011 

SHAPE MN 0.079 0.057 0.257 1.000 0.875 0.390 -0.245 0.040 0.303 0.067 

FRAC MN 0.030 0.089 0.323 0.875 1.000 0.458 -0.313 0.139 0.386 0.068 

PARA MN 0.030 0.508 0.343 -0.390 -0.458 1.000 -0.363 0.186 0.144 -0.082 

PLADJ 0.039 0.925 0.987 -0.245 -0.313 0.363 1.000 0.426 0.718 -0.020 

PRD 0.118 0.476 0.409 0.040 0.139 0.186 -0.426 1.000 0.595 0.317 

SHDI 0.089 0.671 0.706 0.303 0.386 0.144 -0.718 0.595 1.000 0.182 

WIAVGG 0.146 0.011 0.011 0.067 0.068 0.082 -0.020 0.317 0.182 1.000 
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Table A-13. Landscape-level 1_7k correlation matrix 

1_7k Spearman Rank Order Correlation Matrix 

  
RATE NP LSI 

SHAPE 

MN 

FRAC 

MN 

PARA 

MN 
PLADJ PRD SHDI WIAVGG 

RATE 1.000 0.028 0.054 0.097 0.081 -0.042 -0.039 0.112 0.090 0.146 

NP 0.028 1.000 0.914 -0.086 0.042 0.497 -0.924 0.451 0.666 0.006 

LSI 0.054 0.914 1.000 0.232 0.289 0.331 -0.988 0.399 0.702 0.009 

SHAPE MN 0.097 -0.086 0.232 1.000 0.877 -0.413 -0.219 0.055 0.282 0.065 

FRAC MN 0.081 0.042 0.289 0.877 1.000 -0.484 -0.275 0.138 0.360 0.066 

PARA MN 0.042 0.497 0.331 -0.413 -0.484 1.000 -0.350 0.159 0.140 -0.086 

PLADJ 0.039 -0.924 -0.988 -0.219 -0.275 -0.350 1.000 -0.416 -0.714 -0.018 

PRD 0.112 0.451 0.399 0.055 0.138 0.159 -0.416 1.000 0.592 0.337 

SHDI 0.090 0.666 0.702 0.282 0.360 0.140 -0.714 0.592 1.000 0.190 

WIAVGG 0.146 0.006 0.009 0.065 0.066 -0.086 -0.018 0.337 0.190 1.000 
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Table A-14. Landscape-level 1_8k correlation matrix 

1_8k Spearman Rank Order Correlation Matrix 

  
RATE NP LSI 

SHAPE 

MN 

FRAC 

MN 

PARA 

MN 
PLADJ PRD SHDI WIAVGG 

RATE 1.000 0.035 0.058 0.089 0.054 -0.040 -0.045 0.118 0.093 0.148 

NP 0.035 1.000 0.914 -0.102 0.023 0.520 -0.922 0.462 0.658 -0.004 

LSI 0.058 0.914 1.000 0.218 0.271 0.357 -0.988 0.404 0.698 0.005 

SHAPE MN 0.089 -0.102 0.218 1.000 0.889 -0.444 -0.208 0.050 0.289 0.058 

FRAC MN 0.054 0.023 0.271 0.889 1.000 -0.512 -0.259 0.127 0.376 0.068 

PARA MN 0.040 0.520 0.357 -0.444 -0.512 1.000 -0.373 0.168 0.125 -0.093 

PLADJ 0.045 -0.922 -0.988 -0.208 -0.259 -0.373 1.000 -0.418 -0.710 -0.012 

PRD 0.118 0.462 0.404 0.050 0.127 0.168 -0.418 1.000 0.586 0.340 

SHDI 0.093 0.658 0.698 0.289 0.376 0.125 -0.710 0.586 1.000 0.193 

WIAVGG 0.148 -0.004 0.005 0.058 0.068 -0.093 -0.012 0.340 0.193 1.000 
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Table A-15. Landscape-level 1_9k correlation matrix 

1_9k Spearman Rank Order Correlation Matrix 

  
RATE NP LSI 

SHAPE 

MN 

FRAC 

MN 

PARA 

MN 
PLADJ PRD SHDI WIAVGG 

RATE 1.000 0.034 0.058 0.088 0.064 -0.028 -0.044 0.129 0.091 0.150 

NP 0.034 1.000 0.912 -0.083 0.068 0.526 -0.920 0.453 0.642 -0.021 

LSI 0.058 0.912 1.000 0.241 0.320 0.355 -0.989 0.403 0.689 -0.005 

SHAPE MN 0.088 -0.083 0.241 1.000 0.885 -0.423 -0.229 0.094 0.310 0.082 

FRAC MN 0.064 0.068 0.320 0.885 1.000 -0.467 -0.307 0.171 0.398 0.064 

PARA MN 0.028 0.526 0.355 -0.423 -0.467 1.000 -0.369 0.191 0.156 -0.106 

PLADJ 0.044 -0.920 -0.989 -0.229 -0.307 -0.369 1.000 -0.418 -0.703 -0.002 

PRD 0.129 0.453 0.403 0.094 0.171 0.191 -0.418 1.000 0.594 0.344 

SHDI 0.091 0.642 0.689 0.310 0.398 0.156 -0.703 0.594 1.000 0.197 

WIAVGG 0.150 -0.021 -0.005 0.082 0.064 -0.106 -0.002 0.344 0.197 1.000 
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Table A-16. Landscape-level 2k correlation matrix 

2k Spearman Rank Order Correlation Matrix 

  

BU 

RATE 
NP LSI 

SHAPE 

MN 

FRAC 

MN 

PARA 

MN 
PLADJ PRD SHDI WIAVGG 

BU RATE 1.000 0.033 0.055 0.091 0.056 -0.042 -0.042 0.121 0.089 0.149 

NP 0.033 1.000 0.913 -0.092 0.088 0.555 -0.920 0.447 0.636 -0.029 

LSI 0.055 0.913 1.000 0.226 0.330 0.394 -0.990 0.388 0.681 -0.017 

SHAPE MN 0.091 -0.092 0.226 1.000 0.866 -0.390 -0.214 0.099 0.309 0.089 

FRAC MN 0.056 0.088 0.330 0.866 1.000 -0.422 -0.317 0.191 0.410 0.056 

PARA MN 0.042 0.555 0.394 -0.390 -0.422 1.000 -0.406 0.173 0.176 -0.087 

PLADJ 0.042 -0.920 -0.990 -0.214 -0.317 -0.406 1.000 -0.402 -0.694 0.009 

PRD 0.121 0.447 0.388 0.099 0.191 0.173 -0.402 1.000 0.580 0.344 

SHDI 0.089 0.636 0.681 0.309 0.410 0.176 -0.694 0.580 1.000 0.198 

WIAVGG 0.149 -0.029 -0.017 0.089 0.056 -0.087 0.009 0.344 0.198 1.000 
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Table A-17. 800m forest class correlation matrix 

800m Forest Class Spearman Rank Order Correlation Matrix 

  
NP LSI 

SHAPE 

MN 
CLUMPY PLADJ AI 

NP 1.000 0.853 -0.003 -0.463 0.019 -0.442 

LSI 0.853 1.000 0.444 -0.335 0.257 -0.305 

SHAPE MN -0.003 0.444 1.000 0.247 0.606 0.271 

CLUMPY -0.463 -0.335 0.247 1.000 0.709 0.998 

PLADJ 0.019 0.257 0.606 0.709 1.000 0.727 

AI -0.442 -0.305 0.271 0.998 0.727 1.000 

 

 

 

Table A-18. 800m wetland class correlation matrix 

800m Wetland Class Spearman Rank Order Correlation Matrix 

  
NP LSI 

SHAPE 

MN 
CLUMPY PLADJ AI 

NP 1.000 0.772 -0.238 -0.445 0.036 -0.354 

LSI 0.772 1.000 0.347 -0.247 0.373 -0.112 

SHAPE MN -0.238 0.347 1.000 0.450 0.699 0.514 

CLUMPY -0.445 -0.247 0.450 1.000 0.719 0.971 

PLADJ 0.036 0.373 0.699 0.719 1.000 0.804 

AI -0.354 -0.112 0.514 0.971 0.804 1.000 

 

 

 

Table A-19. 800m agriculture/forest class correlation matrix 

800m Agriculture/Forest Class Spearman Rank Order Correlation Matrix 

  
NP LSI 

SHAPE 

MN 
CLUMPY PLADJ AI 

NP 1.000 0.880 0.075 -0.426 0.188 -0.379 

LSI 0.880 1.000 0.472 -0.170 0.525 -0.110 

SHAPE MN 0.075 0.472 1.000 0.456 0.851 0.482 

CLUMPY -0.426 -0.170 0.456 1.000 0.614 0.992 

PLADJ 0.188 0.525 0.851 0.614 1.000 0.648 

AI -0.379 -0.110 0.482 0.992 0.648 1.000 
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Table A-20. 1_2k forest class correlation matrix 

1_2k Forest Class Spearman Rank Order Correlation Matrix 

  
NP LSI 

SHAPE 

MN 
CLUMPY PLADJ AI 

NP 1.000 0.946 0.182 -0.441 0.232 -0.409 

LSI 0.946 1.000 0.433 -0.396 0.328 -0.363 

SHAPE MN 0.182 0.433 1.000 0.253 0.660 0.275 

CLUMPY -0.441 -0.396 0.253 1.000 0.630 0.998 

PLADJ 0.232 0.328 0.660 0.630 1.000 0.650 

AI -0.409 -0.363 0.275 0.998 0.650 1.000 

 

 

 

Table A-21. 1_2k wetland class correlation matrix 

1_2k Wetland Class Spearman Rank Order Correlation Matrix 

  
NP LSI 

SHAPE 

MN 
CLUMPY PLADJ AI 

NP 1.000 0.842 -0.095 -0.287 0.267 -0.166 

LSI 0.842 1.000 0.374 -0.122 0.496 0.026 

SHAPE MN -0.095 0.374 1.000 0.413 0.623 0.465 

CLUMPY -0.287 -0.122 0.413 1.000 0.705 0.967 

PLADJ 0.267 0.496 0.623 0.705 1.000 0.786 

AI -0.166 0.026 0.465 0.967 0.786 1.000 

 

 

 

Table A-22. 1_2k agriculture/forest class correlation matrix 

1_2k Agriculture/Forest Class Spearman Rank Order Correlation Matrix 

  
NP LSI 

SHAPE 

MN 
CLUMPY PLADJ AI 

NP 1.000 0.955 0.322 -0.433 0.374 -0.395 

LSI 0.955 1.000 0.535 -0.364 0.490 -0.323 

SHAPE MN 0.322 0.535 1.000 0.160 0.728 0.184 

CLUMPY -0.433 -0.364 0.160 1.000 0.479 0.997 

PLADJ 0.374 0.490 0.728 0.479 1.000 0.505 

AI -0.395 -0.323 0.184 0.997 0.505 1.000 
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Table A-23. 1_6k forest class correlation matrix 

1_6k Forest Class Spearman Rank Order Correlation Matrix 

  
NP LSI 

SHAPE 

MN 
CLUMPY PLADJ AI 

NP 1.000 0.954 0.158 -0.196 0.311 -0.160 

LSI 0.954 1.000 0.364 -0.178 0.351 -0.142 

SHAPE 

MN 0.158 0.364 1.000 0.390 0.604 0.407 

CLUMPY -0.196 -0.178 0.390 1.000 0.779 0.998 

PLADJ 0.311 0.351 0.604 0.779 1.000 0.799 

AI -0.160 -0.142 0.407 0.998 0.799 1.000 

 

 

 

Table A-24. 1_6k wetland class correlation matrix 

1_6k Wetland Class Spearman Rank Order Correlation Matrix 

  
NP LSI 

SHAPE 

MN 
CLUMPY PLADJ AI 

NP 1.000 0.901 0.137 -0.289 0.348 -0.159 

LSI 0.901 1.000 0.471 -0.177 0.507 -0.023 

SHAPE MN 0.137 0.471 1.000 0.346 0.666 0.395 

CLUMPY -0.289 -0.177 0.346 1.000 0.635 0.963 

PLADJ 0.348 0.507 0.666 0.635 1.000 0.717 

AI -0.159 -0.023 0.395 0.963 0.717 1.000 

 

 

 

Table A-25. 1_6k agriculture/forest class correlation matrix 

1_6k Agriculture/Forest Class Spearman Rank Order Correlation Matrix 

  
NP LSI 

SHAPE 

MN 
CLUMPY PLADJ AI 

NP 1.000 0.956 0.415 -0.321 0.389 -0.284 

LSI 0.956 1.000 0.600 -0.238 0.492 -0.198 

SHAPE MN 0.415 0.600 1.000 0.298 0.799 0.325 

CLUMPY -0.321 -0.238 0.298 1.000 0.537 0.997 

PLADJ 0.389 0.492 0.799 0.537 1.000 0.557 

AI -0.284 -0.198 0.325 0.997 0.557 1.000 

 

 

 



111 

 

Table A-26. 2k forest class correlation matrix 

2k Forest Class Spearman Rank Order Correlation Matrix 

  
NP LSI 

SHAPE 

MN 
CLUMPY PLADJ AI 

NP 1.000 0.945 0.143 -0.226 0.449 -0.186 

LSI 0.945 1.000 0.342 -0.268 0.432 -0.228 

SHAPE MN 0.143 0.342 1.000 0.225 0.514 0.239 

CLUMPY -0.226 -0.268 0.225 1.000 0.617 0.998 

PLADJ 0.449 0.432 0.514 0.617 1.000 0.639 

AI -0.186 -0.228 0.239 0.998 0.639 1.000 

 

 

 

 

Table A-27. 2k wetland class correlation matrix 

2k Wetland Class Spearman Rank Order Correlation Matrix 

  
NP LSI 

SHAPE 

MN 
CLUMPY PLADJ AI 

NP 1.000 0.923 0.170 -0.255 0.344 -0.143 

LSI 0.923 1.000 0.457 -0.185 0.452 -0.053 

SHAPE MN 0.170 0.457 1.000 0.306 0.643 0.352 

CLUMPY -0.255 -0.185 0.306 1.000 0.655 0.968 

PLADJ 0.344 0.452 0.643 0.655 1.000 0.718 

AI -0.143 -0.053 0.352 0.968 0.718 1.000 

 

 

 

 

Table A-28. 2k agriculture/forest class correlation matrix 

2k Agriculture/Forest Class Spearman Rank Order Correlation Matrix 

  
NP LSI 

SHAPE 

MN 
CLUMPY PLADJ AI 

NP 1.000 0.969 0.425 -0.165 0.457 -0.134 

LSI 0.969 1.000 0.575 -0.114 0.515 -0.079 

SHAPE MN 0.425 0.575 1.000 0.405 0.765 0.429 

CLUMPY -0.165 -0.114 0.405 1.000 0.638 0.997 

PLADJ 0.457 0.515 0.765 0.638 1.000 0.653 

AI -0.134 -0.079 0.429 0.997 0.653 1.000 
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Appendix B  

 

Non-Spatial Binomial Model Scatterplots 
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           Figure B-1. Landscape-level “best model” variable scatterplots 
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                  Figure B-2. 800m “best model” variable scatterplot 
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       Figure B-3. 800m wetland “best model” variable scatterplot 
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    Figure B-4. 800m agriculture/forest class “best model” variable scatterplot 
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       Figure B-5. 1_2k forest class “best model” variable scatterplot 
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       Figure B-6. 1_2k wetland class “best model” variable scatterplot 
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       Figure B-7. 1_2k agriculture/forest class “best model” variable scatterplot 
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       Figure B-8. 1_6k forest class “best model” variable scatterplot 

 

           

 

 

           



121 

 

 
       Figure B-9. 1_6k wetland class “best model” variable scatterplot 
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       Figure B-10. 1_6k agriculture/forest class “best model” variable scatterplot 
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       Figure B-11. 2k forest class “best model” variable scatterplot 
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       Figure B-12. 2k wetland class “best model” variable scatterplot 
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       Figure B-13. 2k agriculture/forest class “best model” variable scatterplot 
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Appendix C  

 

Non-Spatial Binomial Models 
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Table C-1. Landscape-level non-spatial binomial GLMs 

Non-Spatial Landscape-level Models 

  INTERCEPT WIAVGG SHAPE_MN 

Buffer 

Distance Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) 

400m -10.178 0.593 -17.163 < 2e-16 0.080 0.013 6.062 0.000 1.327 0.461 2.882 0.004 

500m -10.900 0.653 -16.694 < 2e-16 0.097 0.013 7.261 0.000 1.904 0.501 3.796 0.000 

600m -9.931 0.663 -14.971 < 2e-16 0.108 0.014 7.948 0.000 1.083 0.539 2.010 0.045 

700m -10.739 0.711 -15.111 < 2e-16 0.121 0.014 8.810 < 2e-16 1.603 0.564 2.844 0.004 

800m -12.630 0.770 -16.409 < 2e-16 0.127 0.014 9.267 < 2e-16 3.061 0.593 5.164 0.000 

900m -13.317 0.823 -16.182 < 2e-16 0.131 0.014 9.311 < 2e-16 3.597 0.631 5.700 0.000 

1k -12.374 0.818 -15.120 < 2e-16 0.131 0.015 8.817 < 2e-16 2.797 0.634 4.410 0.000 

1_1k -12.125 0.930 -13.040 < 2e-16 0.141 0.015 9.529 < 2e-16 2.522 0.728 3.466 0.001 

1_2k -10.845 0.933 -11.628 < 2e-16 0.151 0.015 10.079 < 2e-16 1.422 0.730 1.949 0.051 

1_3k -12.529 0.973 -12.880 < 2e-16 0.150 0.015 9.904 < 2e-16 2.724 0.761 3.577 0.000 

1_4k -11.218 1.025 -10.949 < 2e-16 0.161 0.015 10.371 < 2e-16 1.616 0.802 2.015 0.044 

1_5k -11.316 1.128 -10.032 < 2e-16 0.163 0.016 10.137 < 2e-16 1.704 0.891 1.911 0.056 

1_6k -10.841 1.214 -8.927 < 2e-16 0.168 0.016 10.219 < 2e-16 1.303 0.965 1.350 0.177 

1_7k -9.654 1.210 -7.982 0.000 0.176 0.017 10.381 < 2e-16 0.324 0.966 0.336 0.737 

1_8k -11.802 1.248 -9.454 < 2e-16 0.171 0.017 10.029 < 2e-16 2.014 0.990 2.034 0.042 

1_9k -9.983 1.300 -7.680 0.000 0.182 0.017 10.469 < 2e-16 0.538 1.040 0.517 0.605 

2k -11.231 1.347 -8.339 < 2e-16 0.181 0.018 10.346 < 2e-16 1.520 1.071 1.419 0.156 
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Non-Spatial Landscape-level Models 

  LSI AIC 

Buffer 

Distance Est. 

Std. 

Error z-value Pr(>|z|)   

400m 0.202 0.085 2.371 0.018 1872.800 

500m 0.110 0.073 1.501 0.133 1856.100 

600m 0.116 0.065 1.796 0.073 1853.400 

700m 0.109 0.057 1.900 0.057 1833.800 

800m 0.070 0.051 1.394 0.163 1805.200 

900m 0.049 0.046 1.049 0.294 1798.100 

1k 0.078 0.043 1.828 0.068 1809.300 

1_1k 0.088 0.041 2.138 0.033 1811.000 

1_2k 0.108 0.038 2.812 0.005 1812.500 

1_3k 0.093 0.037 2.535 0.011 1796.300 

1_4k 0.104 0.034 3.026 0.002 1801.600 

1_5k 0.093 0.033 2.822 0.005 1802.800 

1_6k 0.093 0.032 2.928 0.003 1806.100 

1_7k 0.097 0.030 3.209 0.001 1808.700 

1_8k 0.084 0.029 2.879 0.004 1803.500 

1_9k 0.089 0.028 3.179 0.001 1806.700 

2k 0.079 0.027 2.941 0.003 1803.000 
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Table C-2. Landscape-level non-spatial binomial GLMs 

 

Non-Spatial Landscape-level Models 

  INTERCEPT WIAVGG SHAPE_MN 

Buffer 

Distance Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) 

400m -10.564 0.612 -17.271 < 2e-16 0.080 0.013 5.996 0.000 1.758 0.441 3.989 0.000 

500m -11.158 0.673 -16.574 < 2e-16 0.096 0.013 7.211 0.000 2.194 0.484 4.531 0.000 

600m -10.284 0.667 -15.424 < 2e-16 0.108 0.014 7.904 0.000 1.434 0.498 2.879 0.004 

700m -11.232 0.728 -15.427 < 2e-16 0.119 0.014 8.641 8.641 2.032 0.535 3.796 0.000 

800m -13.003 0.801 -16.234 < 2e-16 0.126 0.014 9.146 9.146 3.396 0.583 5.824 0.000 

900m -13.612 0.853 -15.957 < 2e-16 0.130 0.014 9.236 9.236 3.855 0.622 6.197 0.000 

1k -12.879 0.855 -15.070 < 2e-16 0.129 0.015 8.678 8.678 3.244 0.631 5.143 0.000 

1_1k -12.735 0.952 -13.384 < 2e-16 0.140 0.015 9.430 9.430 3.093 0.708 4.371 0.000 

1_2k -11.555 0.954 -12.117 < 2e-16 0.150 0.015 9.997 9.997 2.144 0.710 3.018 0.003 

1_3k -13.263 0.999 -13.282 < 2e-16 0.149 0.015 9.811 9.811 3.409 0.746 4.570 0.000 

1_4k -12.048 1.050 -11.478 < 2e-16 0.159 0.016 10.282 10.282 2.433 0.787 3.090 0.002 

1_5k -12.166 1.138 -10.688 < 2e-16 0.161 0.016 9.994 9.994 2.535 0.863 2.936 0.003 

1_6k -11.820 1.211 -9.759 <2e-16 0.166 0.016 10.077 10.077 2.247 0.923 2.433 0.015 

1_7k -10.790 1.204 -8.963 < 2e-16 0.174 0.017 10.226 10.226 1.392 0.920 1.513 0.130 

1_8k -12.940 1.256 -10.307 < 2e-16 0.169 0.017 9.899 9.899 3.035 0.954 3.182 0.001 

1_9k -11.270 1.282 -8.791 < 2e-16 0.180 0.017 10.378 10.378 1.716 0.980 1.751 0.080 

2k -12.440 1.342 -9.273 < 2e-16 0.179 0.018 10.232 10.232 2.617 1.023 2.557 0.011 
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Non-Spatial Landscape-level Models 

  NP AIC 

Buffer 

Distance Est. 

Std. 

Error z-value Pr(>|z|)   

400m 0.023 0.008 2.959 0.003 1869.800 

500m 0.010 0.006 1.619 0.105 1855.700 

600m 0.010 0.005 2.250 0.024 1851.700 

700m 0.010 0.004 2.693 0.007 1830.200 

800m 0.005 0.003 1.733 0.083 1804.100 

900m 0.003 0.003 1.300 0.194 1797.500 

1k 0.005 0.002 2.234 0.026 1807.700 

1_1k 0.004 0.002 2.260 0.024 1810.500 

1_2k 0.004 0.002 2.464 0.014 1814.500 

1_3k 0.004 0.001 2.665 0.008 1795.700 

1_4k 0.003 0.001 2.777 0.005 1803.100 

1_5k 0.003 0.001 2.548 0.011 1804.400 

1_6k 0.003 0.001 2.605 0.009 1808.000 

1_7k 0.003 0.001 3.001 0.003 1810.100 

1_8k 0.002 0.001 3.039 0.002 1802.700 

1_9k 0.002 0.001 2.992 0.003 1807.900 

2k 0.002 0.001 2.861 0.004 1803.500 
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Table C-3. Landscape-level non-spatial binomial GLMs 

 

Non-Spatial Landscape-level Models 

  INTERCEPT WIAVGG SHAPE_MN 

Buffer 

Distance Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) 

400m -7.749 1.143 -6.780 0.000 0.080 0.013 6.061 0.000 1.313 0.461 2.847 0.004 

500m -9.313 1.237 -7.529 0.000 0.097 0.013 7.272 0.000 1.892 0.503 3.759 0.000 

600m -7.821 1.363 -5.738 0.000 0.109 0.014 7.959 0.000 1.052 0.541 1.944 0.052 

700m -8.578 1.394 -6.152 0.000 0.121 0.014 8.818 < 2e-16 1.597 0.564 2.830 0.005 

800m -11.026 1.382 -7.978 0.000 0.127 0.014 9.269 < 2e-16 3.058 0.593 5.158 0.000 

900m -12.082 1.437 -8.406 < 2e-16 0.131 0.014 9.314 < 2e-16 3.596 0.631 5.696 0.000 

1k -10.212 1.439 -7.095 0.000 0.131 0.015 8.822 < 2e-16 2.800 0.634 4.416 0.000 

1_1k -9.434 1.619 -5.828 0.000 0.141 0.015 9.536 < 2e-16 2.521 0.728 3.463 0.001 

1_2k -7.307 1.627 -4.492 0.000 0.151 0.015 10.087 < 2e-16 1.427 0.730 1.955 0.051 

1_3k -9.222 1.683 -5.479 0.000 0.150 0.015 9.909 < 2e-16 2.731 0.761 3.588 0.000 

1_4k -7.270 1.716 -4.236 0.000 0.161 0.015 10.374 < 2e-16 1.632 0.801 2.038 0.042 

1_5k -7.540 1.844 -4.089 0.000 0.163 0.016 10.134 < 2e-16 1.728 0.889 1.944 0.052 

1_6k -6.904 1.963 -3.517 0.000 0.168 0.016 10.214 < 2e-16 1.346 0.962 1.400 0.161 

1_7k -5.251 1.993 -2.635 0.008 0.176 0.017 10.376 < 2e-16 0.371 0.962 0.386 0.699 

1_8k -7.762 2.035 -3.813 0.000 0.171 0.017 10.026 < 2e-16 2.051 0.988 2.076 0.038 

1_9k -5.450 2.134 -2.554 0.011 0.182 0.017 10.464 < 2e-16 0.589 1.036 0.569 0.570 

2k -7.038 2.146 -3.279 0.001 0.181 0.018 10.340 < 2e-16 1.567 1.067 1.468 0.142 

 

 

 

 

 



132 

 

 

Non-Spatial Landscape-level Models 

  PLADJ AIC 

Buffer 

Distance Est. 

Std. 

Error z-value Pr(>|z|)   

400m -0.023 0.009 -2.484 0.013 1872.300 

500m -0.015 0.010 -1.510 0.131 1856.000 

600m -0.020 0.011 -1.899 0.058 1853.000 

700m -0.021 0.011 -1.913 0.056 1833.800 

800m -0.016 0.011 -1.412 0.158 1805.100 

900m -0.012 0.011 -1.057 0.290 1798.000 

1k -0.021 0.012 -1.806 0.071 1809.400 

1_1k -0.026 0.012 -2.134 0.033 1811.000 

1_2k -0.035 0.013 -2.757 0.006 1812.800 

1_3k -0.033 0.013 -2.483 0.013 1796.600 

1_4k -0.039 0.013 -2.944 0.003 1802.000 

1_5k -0.038 0.014 -2.766 0.006 1803.100 

1_6k -0.039 0.014 -2.830 0.005 1806.700 

1_7k -0.044 0.014 -3.119 0.002 1809.300 

1_8k -0.040 0.014 -2.787 0.005 1804.100 

1_9k -0.045 0.015 -3.102 0.002 1807.200 

2k -0.042 0.015 -2.852 0.004 1803.500 
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Table C-4. Landscape-level non-spatial binomial GLMs 

Non-Spatial Landscape-level Models 

  INTERCEPT WIAVGG SHAPE_MN 

Buffer 

Distance Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) 

400m -10.124 0.586 -17.269 < 2e-16 0.081 0.014 5.963 0.000 1.570 0.449 3.499 0.000 

500m -10.818 0.653 -16.575 < 2e-16 0.094 0.014 6.897 0.000 1.936 0.495 3.914 0.000 

600m -9.764 0.676 -14.441 < 2e-16 0.103 0.014 7.479 0.000 1.002 0.535 1.874 0.061 

700m -10.619 0.716 -14.822 < 2e-16 0.114 0.014 8.186 0.000 1.542 0.555 2.778 0.005 

800m -12.503 0.783 -15.974 < 2e-16 0.121 0.014 8.621 < 2e-16 2.953 0.600 4.925 0.000 

900m -13.228 0.844 -15.670 < 2e-16 0.124 0.015 8.551 < 2e-16 3.457 0.643 5.377 0.000 

1k -12.197 0.833 -14.643 < 2e-16 0.123 0.015 8.076 0.000 2.627 0.646 4.067 0.000 

1_1k -11.894 0.954 -12.461 < 2e-16 0.131 0.015 8.560 < 2e-16 2.316 0.742 3.120 0.002 

1_2k -10.612 0.953 -11.132 < 2e-16 0.140 0.015 9.030 < 2e-16 1.267 0.743 1.705 0.088 

1_3k -12.381 0.986 -12.562 < 2e-16 0.141 0.016 9.016 < 2e-16 2.654 0.768 3.455 0.001 

1_4k -10.970 1.033 -10.618 <2e-16 0.150 0.016 9.387 <2e-16 1.494 0.809 1.848 0.065 

1_5k -11.042 1.137 -9.707 < 2e-16 0.153 0.017 9.234 < 2e-16 1.541 0.897 1.719 0.086 

1_6k -10.634 1.232 -8.630 < 2e-16 0.156 0.017 9.202 < 2e-16 1.192 0.972 1.226 0.220 

1_7k -9.443 1.227 -7.697 0.000 0.161 0.017 9.230 < 2e-16 0.203 0.970 0.209 0.834 

1_8k -11.497 1.267 -9.073 < 2e-16 0.157 0.018 8.979 < 2e-16 1.815 1.001 1.814 0.070 

1_9k -9.576 1.327 -7.219 0.000 0.166 0.018 9.238 < 2e-16 0.252 1.054 0.239 0.811 

2k -10.797 1.370 -7.879 0.000 0.166 0.018 9.143 < 2e-16 1.206 1.086 1.110 0.267 
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Non-Spatial Landscape-level Models 

  SHDI AIC 

Buffer 

Distance Est. 

Std. 

Error z-value Pr(>|z|)   

400m 0.105 0.135 0.776 0.437 1877.900 

500m 0.197 0.136 1.450 0.147 1856.200 

600m 0.333 0.140 2.381 0.017 1850.900 

700m 0.368 0.142 2.594 0.009 1830.600 

800m 0.309 0.143 2.161 0.031 1802.400 

900m 0.329 0.145 2.271 0.023 1793.900 

1k 0.421 0.147 2.858 0.004 1804.300 

1_1k 0.488 0.150 3.249 0.001 1804.800 

1_2k 0.538 0.150 3.590 0.000 1807.300 

1_3k 0.456 0.152 3.003 0.003 1793.600 

1_4k 0.514 0.152 3.389 0.001 1799.100 

1_5k 0.502 0.155 3.250 0.001 1800.100 

1_6k 0.533 0.157 3.399 0.001 1802.900 

1_7k 0.605 0.159 3.801 0.000 1804.200 

1_8k 0.548 0.164 3.343 0.001 1800.500 

1_9k 0.632 0.167 3.779 0.000 1802.200 

2k 0.589 0.169 3.496 0.000 1799.200 
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Table C-5. Landscape-level non-spatial binomial GLMs 

Non-Spatial Landscape-level Models 

  INTERCEPT WIAVGG SHAPE_MN 

Buffer 

Distance Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) 

400m -9.975 0.595 -16.762 < 2e-16 0.084 0.013 6.358 0.000 1.663 0.421 3.953 0.000 

500m -10.624 0.650 -16.353 < 2e-16 0.100 0.013 7.517 0.000 2.091 0.462 4.522 0.000 

600m -10.024 0.663 -15.109 < 2e-16 0.108 0.014 7.859 0.000 1.453 0.480 3.026 0.002 

700m -10.919 0.734 -14.885 < 2e-16 0.120 0.014 8.579 < 2e-16 1.982 0.516 3.837 0.000 

800m -12.617 0.801 -15.748 < 2e-16 0.128 0.014 8.958 < 2e-16 3.252 0.569 5.715 0.000 

900m -13.495 0.890 -15.161 < 2e-16 0.129 0.015 8.731 < 2e-16 3.812 0.624 6.105 0.000 

1k -13.211 0.865 -15.280 < 2e-16 0.117 0.016 7.355 0.000 3.326 0.625 5.323 0.000 

1_1k -13.431 0.985 -13.629 < 2e-16 0.119 0.016 7.388 0.000 3.317 0.717 4.624 0.000 

1_2k -12.599 0.988 -12.748 < 2e-16 0.120 0.017 7.275 0.000 2.486 0.721 3.450 0.001 

1_3k -13.995 1.009 -13.871 < 2e-16 0.116 0.017 6.756 0.000 3.584 0.743 4.824 0.000 

1_4k -12.449 1.051 -11.848 < 2e-16 0.134 0.017 7.727 0.000 2.457 0.779 3.157 0.002 

1_5k -13.048 1.162 -11.227 < 2e-16 0.122 0.019 6.561 0.000 2.720 0.869 3.130 0.002 

1_6k -12.760 1.238 -10.307 < 2e-16 0.121 0.019 6.415 0.000 2.343 0.933 2.510 0.012 

1_7k -11.471 1.224 -9.371 < 2e-16 0.129 0.020 6.542 0.000 1.379 0.926 1.489 0.137 

1_8k -13.687 1.272 -10.759 < 2e-16 0.118 0.020 5.911 0.000 2.984 0.958 3.113 0.002 

1_9k -11.825 1.287 -9.188 < 2e-16 0.137 0.020 6.858 0.000 1.663 0.977 1.703 0.089 

2k -12.979 1.349 -9.619 < 2e-16 0.136 0.021 6.615 0.000 2.606 1.020 2.555 0.011 
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Non-Spatial Landscape-level Models 

  PRD AIC 

Buffer 

Distance Est. 

Std. 

Error z-value Pr(>|z|)   

400m -0.032 0.026 -1.247 0.212 1876.900 

500m -0.062 0.039 -1.587 0.113 1855.800 

600m -0.019 0.056 -0.337 0.736 1856.600 

700m 0.013 0.080 0.160 0.873 1837.400 

800m -0.012 0.099 -0.120 0.905 1807.100 

900m 0.059 0.128 0.458 0.647 1799.000 

1k 0.424 0.151 2.801 0.005 1804.700 

1_1k 0.706 0.190 3.714 0.000 1801.500 

1_2k 1.109 0.225 4.926 0.000 1795.800 

1_3k 1.244 0.272 4.573 0.000 1781.500 

1_4k 1.181 0.322 3.669 0.000 1797.100 

1_5k 1.853 0.389 4.763 0.000 1787.800 

1_6k 2.464 0.456 5.409 0.000 1784.900 

1_7k 2.608 0.525 4.966 0.000 1793.900 

1_8k 3.252 0.595 5.471 0.000 1781.700 

1_9k 3.019 0.644 4.688 0.000 1794.900 

2k 3.082 0.715 4.313 0.000 1793.200 
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Table C-6. 800m forest class non-spatial binomial GLMs  

800m Forest Class 

High Leverage Points: 1,3,5,6,31,34,64,76 

INTERCEPT SHAPE_MN CLUMPY   

Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) AIC 

-11.736 0.733 -16.010 < 2e-16 2.157 0.384 5.626 0.000 2.302 0.806 2.857 0.004 421.46 

  

INTERCEPT SHAPE_MN LSI   

Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) AIC 

-10.078 0.489 -20.612 < 2e-16 2.687 0.355 7.565 0.000 -0.199 0.123 -1.613 0.107 427.66 

  

INTERCEPT SHAPE_MN AI   

Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) AIC 

-11.644 0.721 -16.157 < 2e-16 2.137 0.388 5.501 0.000 0.022 0.008 2.746 0.006 422.14 

  

INTERCEPT SHAPE_MN PLADJ   

Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) AIC 

-

10.803 0.562 -19.228 < 2e-16 1.533 0.470 3.261 0.001 0.025 0.007 3.831 0.000 413.67 
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Table C-7. 800m wetland class non-spatial binomial GLMs 

 

800m Wetland Class 

High Leverage Points: 9,36,47,52,71,112,114,123,128,152 

INTERCEPT SHAPE_MN CLUMPY   

Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) AIC 

-9.524 0.551 -17.302 < 2e-16 0.885 0.185 4.800 0.000 1.204 0.671 1.793 0.073 1049.1 

  

INTERCEPT SHAPE_MN LSI   

Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) AIC 

-8.382 0.258 -32.467 < 2e-16 1.158 0.177 6.557 0.000 -0.213 0.071 -2.997 0.003 1044.5 

  

INTERCEPT SHAPE_MN AI   

Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) AIC 

-9.211 0.533 -17.279 < 2e-16 0.908 0.187 4.843 0.000 0.008 0.007 1.171 0.241 1052.3 

  

INTERCEPT SHAPE_MN PLADJ   

Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) AIC 

-8.866 0.336 -26.359 < 2e-16 0.894 0.202 4.435 0.000 0.004 0.005 0.914 0.361 1053 
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Table C-8. 800m agriculture/forest class non-spatial binomial GLMs 

 

800m Agriculture/Forest Class 

High Leverage Points: 19,59,62 

INTERCEPT SHAPE_MN CLUMPY   

Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) AIC 

-8.889 0.490 -18.133 < 2e-16 1.456 0.378 3.856 0.000 -0.127 0.381 -0.333 0.739 460.12 

  

INTERCEPT SHAPE_MN LSI   

Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) AIC 

-7.750 0.453 -17.096 < 2e-16 1.826 0.320 5.703 0.000 -0.760 0.133 -5.717 0.000 423.04 

  

INTERCEPT SHAPE_MN AI   

Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) AIC 

-8.713 0.519 -16.790 < 2e-16 1.568 0.393 3.992 0.000 -0.005 0.006 -0.892 0.372 459.5 

  

INTERCEPT SHAPE_MN PLADJ   

Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) AIC 

-8.740 0.421 -20.752 < 2e-16 2.143 0.397 5.403 0.000 -0.016 0.005 -3.164 0.002 451.87 
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Table C-9. 1_2k forest class non-spatial binomial GLMs 

 

1_2k Forest Class 

High Leverage Points: 6,26,45,102 

INTERCEPT SHAPE_MN CLUMPY   

Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) AIC 

-9.734 0.720 -13.527 < 2e-16 0.787 0.544 1.447 0.148 2.139 0.662 3.230 0.001 796.43 

High Leverage Points: 26,45,102 

INTERCEPT SHAPE_MN LSI   

Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) AIC 

-10.022 0.595 -16.836 < 2e-16 3.258 0.506 6.442 0.000 -0.452 0.070 -6.480 0.000 773.27 

High Leverage Points: 6,26,45,102 

INTERCEPT SHAPE_MN AI   

Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) AIC 

-9.586 0.706 -13.569 < 2e-16 0.798 0.551 1.448 0.148 0.019 0.007 2.937 0.003 798.3 

High Leverage Points: 6,26,45,85,102 

INTERCEPT SHAPE_MN PLADJ   

Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) AIC 

-9.413 0.668 -14.082 < 2e-16 2.126 0.655 3.248 0.001 -0.004 0.005 -0.851 0.395 777.71 
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Table C-10. 1_2k wetland class non-spatial binomial GLMs 

 

1_2k Wetland Class 

INTERCEPT SHAPE_MN CLUMPY   

Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) AIC 

-8.485 0.429 -19.772 < 2e-16 0.498 0.180 2.775 0.006 0.642 0.514 1.251 0.211 1240.8 

  

INTERCEPT SHAPE_MN LSI   

Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) AIC 

-7.386 0.236 -31.359 < 2e-16 0.852 0.159 5.351 0.000 -0.311 0.044 -7.040 0.000 1190.4 

  

INTERCEPT SHAPE_MN PLADJ   

Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) AIC 

-7.532 0.298 -25.245 < 2e-16 0.761 0.181 4.204 0.000 -0.011 0.004 -2.692 0.007 1236.1 
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Table C-11. 1_2k agriculture/forest class non-spatial binomial GLMs 

 

1_2k Agriculture/Forest Class 

High Leverage Points: 21,27,75,83 

INTERCEPT SHAPE_MN CLUMPY   

Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) AIC 

-11.687 0.757 -15.450 < 2e-16 1.305 0.458 2.847 0.004 3.929 0.638 6.163 0.000 672.61 

High Leverage Points: 21,73,83 

INTERCEPT SHAPE_MN LSI   

Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) AIC 

-9.196 0.555 -16.576 < 2e-16 2.651 0.457 5.806 0.000 -0.374 0.055 -6.848 0.000 691.12 

High Leverage Points: 21,27,75,83 

INTERCEPT SHAPE_MN AI   

Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) AIC 

-11.561 0.735 -15.720 < 2e-16 1.208 0.460 2.626 0.009 0.039 0.006 6.186 0.000 675.41 

High Leverage Points: 21,27,40,75,83 

INTERCEPT SHAPE_MN PLADJ   

Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) AIC 

-9.146 0.593 -15.425 <2e-16 1.564 0.573 2.732 0.006 0.006 0.004 1.445 0.149 688.36 
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Table C-12. 1_6k forest class non-spatial binomial GLMs 

1_6k Forest Class 

High Leverage Points: 29,36,50,97,101 

INTERCEPT SHAPE_MN CLUMPY   

Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) AIC 

-9.228 0.580 -15.919 < 2e-16 1.335 0.499 2.677 0.007 0.428 0.369 1.159 0.247 949.23 

  

INTERCEPT SHAPE_MN LSI   

Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) AIC 

-9.161 0.557 -16.436 < 2e-16 1.702 0.443 3.840 0.000 -0.068 0.046 -1.478 0.140 948.4 

  

INTERCEPT SHAPE_MN AI   

Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) AIC 

-9.220 0.579 -15.930 < 2e-16 1.348 0.500 2.695 0.007 0.004 0.004 1.081 0.280 949.42 

  

INTERCEPT SHAPE_MN PLADJ   

Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) AIC 

-9.142 0.583 -15.684 < 2e-16 1.351 0.513 2.633 0.008 0.003 0.003 0.990 0.322 949.62 

  

INTERCEPT SHAPE_MN           

Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|)   

  

  AIC 

-9.142 0.583 -15.684 < 2e-16 1.351 0.513 2.633 0.008         949.62 
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Table C-13. 1_6k wetland class non-spatial binomial GLMs 

 

1_6k Wetland Class 

INTERCEPT SHAPE_MN CLUMPY   

Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) AIC 

-7.784 0.331 -23.524 < 2e-16 0.463 0.160 2.889 0.004 -0.218 0.351 -0.620 0.535 1412.8 

  

INTERCEPT SHAPE_MN LSI   

Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) AIC 

-7.697 0.208 -36.957 < 2e-16 0.681 0.151 4.500 0.000 -0.140 0.029 -4.852 0.000 1388.9 

  

INTERCEPT SHAPE_MN AI   

Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) AIC 

-7.421 0.392 -18.955 < 2e-16 0.505 0.161 3.142 0.002 -0.007 0.005 -1.556 0.120 1410.9 

  

INTERCEPT SHAPE_MN PLADJ   

Est. 

Std. 

Error 

z-

value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) AIC 

-7.004 0.266 -26.288 < 2e-16 0.738 0.157 4.689 0.000 -0.018 0.004 -5.008 0.000 1392.3 
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Table C-14. 1_6k agriculture/forest class non-spatial binomial GLMs 

1_6k Agriculture/Forest Class 

High Leverage Points: 24,32,68,85,94,101 

INTERCEPT SHAPE_MN CLUMPY   

Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) AIC 

-8.669 0.690 -12.563 <2e-16 0.854 0.532 1.605 0.108 0.878 0.495 1.775 0.076 821.61 

High Leverage Points: 24,32,85,94,101 

INTERCEPT SHAPE_MN LSI   

Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) AIC 

-9.128 0.581 -15.716 < 2e-16 2.681 0.511 5.244 0.000 -0.328 0.044 -7.478 0.000 787.29 

High Leverage Points: 24,32,68,85,94,101 

INTERCEPT SHAPE_MN AI   

Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) AIC 

-8.601 0.680 -12.640 <2e-16 0.842 0.537 1.567 0.117 0.008 0.005 1.642 0.101 822.1 

High Leverage Points: 24,32,47,68,85,94,98,101 

INTERCEPT SHAPE_MN PLADJ   

Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) AIC 

-8.769 0.690 -12.711 <2e-16 1.590 0.752 2.114 0.035 -0.001 0.006 -0.170 0.865 766.23 
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Table C-15. 2k forest class non-spatial binomial GLMs 

2k Forest Class 

High Leverage Points: 1,2,33,57,73,109 

INTERCEPT SHAPE_MN CLUMPY   

Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) AIC 

-9.379 0.714 -13.140 < 2e-16 0.022 0.456 0.049 0.961 2.508 0.666 3.766 0.000 1062.4 

  

INTERCEPT SHAPE_MN LSI   

Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) AIC 

-8.017 0.530 -15.124 <2e-16 0.672 0.428 1.572 0.116 -0.015 0.037 -0.414 0.679 1080.6 

  

INTERCEPT SHAPE_MN AI   

Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) AIC 

-9.300 0.704 -13.210 < 2e-16 0.007 0.459 0.015 0.988 0.024 0.007 3.691 0.000 1063.2 

  

INTERCEPT SHAPE_MN PLADJ     

Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) AIC 

-8.464 0.597 -14.187 < 2e-16 -0.407 0.504 -0.808 0.419 0.023 0.005 4.686 0.000 1054.7 

 

 

 

 

 

 

 

 

 



147 

 

Table C-16. 2k wetland class non-spatial binomial GLMs 

2k Wetland Class 

High Leverage Points: 2,3,39,54,75,96,203 

INTERCEPT SHAPE_MN CLUMPY   

Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) AIC 

-5.895 0.476 -12.394 <2e-16 -0.693 0.270 -2.565 0.010 -0.674 0.493 -1.367 0.172 1552.5 

  

INTERCEPT SHAPE_MN LSI   

Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) AIC 

-6.406 0.340 -18.821 <2e-16 -0.583 0.274 -2.126 0.034 -0.039 0.023 -1.734 0.083 1551.2 

  

INTERCEPT SHAPE_MN AI   

Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) AIC 

-5.838 0.459 -12.731 <2e-16 -0.662 0.271 -2.442 0.015 -0.008 0.005 -1.640 0.101 1551.7 

High Leverage Points: 2,3,39,54,75,96,177,203 

INTERCEPT SHAPE_MN PLADJ   

Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) AIC 

-5.837 0.376 -15.512 <2e-16 -0.635 0.302 -2.102 0.036 -0.009 0.004 -2.000 0.046 1537.1 
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Table C-17. 2k agriculture/forest class non-spatial binomial GLMs 

2k Agriculture/Forest Class 

High Leverage Points: 25,34,52,93,104 

INTERCEPT SHAPE_MN CLUMPY   

Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) AIC 

-9.431 0.608 -15.520 < 2e-16 0.607 0.466 1.304 0.192 2.247 0.466 4.821 0.000 900.78 

High Leverage Points: 25,34,93,104 

INTERCEPT SHAPE_MN LSI   

Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) AIC 

-9.382 0.496 -18.911 < 2e-16 2.633 0.430 6.128 0.000 -0.227 0.033 -6.858 0.000 918.08 

High Leverage Points: 25,34,52,93,104 

INTERCEPT SHAPE_MN AI   

Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) AIC 

-9.350 0.600 -15.570 < 2e-16 0.550 0.469 1.175 0.200 0.022 0.005 4.765 0.000 901.54 

  

INTERCEPT SHAPE_MN PLADJ   

Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) Est. 

Std. 

Error z-value Pr(>|z|) AIC 

-7.833 0.614 -12.750 < 2e-16 -0.738 0.624 -1.182 0.237 0.026 0.005 5.244 0.000 897.88 
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Appendix D  

 

 

Spatial Binomial Models 
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Table D-1. 800m forest class spatial binomial GLM 

Summary 800m Forest 3 Chains at 100,000 

Parameters 50.0% 2.5% 97.5% 

Intercept -8.621 

-

11.906 -8.192 

Shape Index Mean 0.703 -1.772 1.903 

Percent Land Cover 

Adjacency 0.034 0.009 0.045 

sigma.sq 2.628 1.853 4.305 

Phi 350.850 26.887 387.372 

effective range 3/phi 0.009 0.008 0.185 

max intersite distance = 1.174    

 

 

Table D-2. 800m wetland class spatial binomial GLM 

Summary 800m Wetland 3 Chains at 50,000 

Parameters 50.0% 2.5% 97.5% 

Intercept 

-

10.022 

-

10.095 -8.918 

Shape Index Mean 0.986 0.722 1.096 

sigma.sq 3.503 3.158 3.869 

Phi 15.224 12.006 21.354 

effective range 3/phi 0.197 0.141 0.251 

max intersite distance = 1.260    

 

 

Table D-3. 800m agriculture/forest class spatial binomial GLM 

Summary 800m Agriculture/Forest 3 Chains at 50,000 

Parameters 50.0% 2.5% 97.5% 

Intercept -8.868 -9.844 -8.245 

Shape Index Mean 2.319 1.774 2.500 

Landscape Shape Index -0.549 -0.776 -0.192 

sigma.sq 1.345 1.142 2.309 

Phi 283.921 234.639 551.114 

effective range 3/phi 0.011 0.006 0.013 
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Table D-4. 1_2k forest class spatial binomial GLM 

Summary 1_2k Forest 3 Chains at 100,000 

Parameters 50.0% 2.5% 97.5% 

Intercept 

-

11.411 

-

15.723 -8.792 

Shape Index Mean 3.439 1.076 6.52 

Landscape Shape Index -0.31 -0.45 -0.07 

sigma.sq 4.392 4.304 4.449 

Phi 75.14 18.076 189.105 

effective range 3/phi 0.04 0.017 0.191 

Max intersite distance = 1.260    

 

 

Table D-5. 1_2k wetland class spatial binomial GLM 

Summary 1_2k Wetland 3 Chains at 100,000 

Parameters 50.0% 2.5% 97.5% 

Intercept -7.448 -8.688 -7.447 

Shape Index Mean 0.368 -0.401 1.16 

Landscape Shape Index -0.184 -0.295 0.011 

sigma.sq 2.495 2.194 2.897 

Phi 22.312 16.076 33.448 

effective range 3/phi 0.134 0.09 0.188 

max intersite distance = 1.277    

 

 

Table D-6. 1_2k agriculture/forest class spatial binomial GLM 

Summary 1_2k Agriculture/Forest 3 Chains at 100,000 

Parameters 50.0% 2.5% 97.5% 

Intercept -9.096 -10.403 -6.957 

Shape Index Mean 2.240 0.555 3.582 

Landscape Shape Index -0.255 -0.424 -0.242 

sigma.sq 1.547 1.112 1.733 

Phi 449.736 319.780 592.320 

effective range 3/phi 0.007 0.005 0.009 

max intersite distance = 1.230    
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Table D-7. 1_6k forest class spatial binomial GLM 

Summary 1_6k Forest 3 Chains at 50,000 

Parameters 50.0% 2.5% 97.5% 

Intercept -9.490 -9.759 -6.676 

Shape Index Mean -0.111 -2.042 0.629 

sigma.sq 6.166 4.735 6.917 

Phi 9.049 6.944 13.169 

effective range 3/phi 0.332 0.229 0.434 

max intersite distance = 1.260    

 

 

Table D-8. 1_6k wetland class spatial binomial GLM 

Summary 1_6k Wetland 3 Chains at 100,000 

Parameters 50.0% 2.5% 97.5% 

Intercept -9.375 -9.485 -8.770 

Shape Index Mean 0.870 -0.060 1.127 

Landscape Shape Index 0.051 -0.028 0.080 

sigma.sq 3.969 3.623 6.301 

Phi 17.402 11.701 20.866 

effective range 3/phi 0.172 0.144 0.259 

max intersite distance = 1.250    

 

 

Table D-9. 1_6k agriculture/forest spatial binomial GLM 

Summary 1_6k Agriculture/Forest 3 Chains at 50,000 

Parameters 50.0% 2.5% 97.5% 

Intercept 

-

10.739 

-

11.111 

-

10.168 

Shape Index Mean 3.635 3.004 3.741 

Landscape Shape Index -0.248 -0.319 -0.208 

sigma.sq 1.921 1.334 2.199 

Phi 16.864 10.402 33.195 

effective range 3/phi 0.178 0.093 0.292 

max intersite distance = 1.224    
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Table D-10. 2k forest class spatial binomial GLM 

Summary 2k Forest 3 Chains at 50,000 

Parameters 50.0% 2.5% 97.5% 

Intercept 

-

10.811 

-

11.266 -9.358 

Percent Land Cover 

Adjacency 0.024 0.014 0.029 

sigma.sq 5.164 4.708 5.165 

Phi 18.343 15.803 23.018 

effective range 3/phi 0.164 0.131 0.190 

max intersite distance = 1.174    

    

 

Table D-11. 2k wetland class spatial binomial GLM 

Summary 2k Wetland 3 Chains at 50,000 

Parameters 50.0% 2.5% 97.5% 

Intercept -7.522 -8.621 -6.267 

Percent Land Cover 

Adjacency -0.004 -0.020 0.002 

sigma.sq 3.376 2.859 4.107 

Phi 25.083 21.627 63.926 

effective range 3/phi 0.120 0.049 0.139 

max intersite distance =     

 

 

Table D-12. 2k agriculture/forest class spatial binomial GLM 

Summary 2k Agriculture/Forest 3 Chains at 50,000 

Parameters 50.0% 2.5% 97.5% 

Intercept -9.434 -11.430 -8.954 

Shape Index Mean 2.448 1.700 4.771 

Landscape Shape Index -0.253 -0.492 -0.120 

sigma.sq 2.232 1.873 2.707 

Phi 366.493 334.177 489.995 

effective range 3/phi 0.008 0.006 0.009 

max intersite distance = 1.256    
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