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ABSTRACT 

 
AN EFFICIENT STRATEGY FOR RELIABILITY-BASED DESIGN OPTIMIZATION OF 

NONLINEAR SYSTEMS 
 

by 
 

Marcus H. Rademacher 

 

Engineers are constantly challenged with the task of creating better products. 

Design optimization is one of several modern tools that have been developed to meet 

this challenge. A common issue in optimization is that of finding a reliable design. A 

design may nominally pass all requirements, but when it is put into service stochastic 

variations in performance may cause the design to fail more often than is acceptable. 

The preferred solution is to perform reliability-based design optimization (RBDO), which 

accounts for uncertainty. In order to evaluate the reliability of a given design, 

considerable computational cost is necessary.  

The work presented in this thesis outlines a new strategy for performing RBDO 

where local response surfaces are used to reduce the computational burden of 

predicting the reliability. This strategy also takes advantage of the fact that the 

deterministic design optimization (DDO) and RBDO solutions are often spatially nearby 

each other, resulting in the opportunity to use inexpensive and well-worn DDO 

techniques to get a head start on finding the RBDO solution. The DDO study also 

provides ample data that can be used to fit response surfaces during the RBDO stage, 

without the need for additional evaluations. This new strategy is applied to several 

problems, including simple analytical functions and real engineering problems. 
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1 Introduction 

1.1 Motivation 

With rising global competition, engineers are increasingly required to produce 

better products with respect to cost, quality, and other performance measures. 

Simultaneously, they have less time and money to do this. These competing objectives 

of making better products faster and cheaper has forced many industries to change how 

they do product design. In recent years several technological revolutions in computing 

have occurred, facilitating a faster, cheaper, and better design process. 

The first revolution that computing brought was Computer-Aided Design (CAD). 

CAD is used to create 2D and 3D digital representations of products in the computer. 

CAD enabled much more complex products to be designed and evaluated at a 

dramatically more rapid pace than traditional drafting [1]. Eventually this was extended 

to 3D CAD (or solid modeling), which is a prerequisite for the next revolution.  

The second revolution in engineering enabled by computing technology was the 

use of computational simulation in evaluating product designs. Technologies like Finite 

Element Analysis (FEA), Computational Fluid Dynamics (CFD) and Computational 

Multi-Body Dynamics (MBD) allowed engineers to test their ideas virtually, skipping the 

time-consuming and expensive physical prototyping process until much later in the 

design cycle. Broadly, this is known as Computer-Aided Engineering (CAE) [2], which 

includes many sub-disciplines, including CAD and a host of methods for performing 

simulation.  
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The third revolution in engineering is still taking place in some industries and 

disciplines: automated optimization. This is enabled by the large-scale adoption of CAE 

technologies in industry. Automated optimization enhances an engineer’s work in two 

ways: 

1. Automation of time-consuming model building, execution, and post-processing. 

The engineer can identify key parameters that govern the design’s performance, 

and automate the evaluation of many designs with different parameter values. 

2. High quality optimization algorithms which are already implemented in 

commercial optimization tools. These algorithms control an iterative search 

process for the values of design parameters that meet all design goals. 

The engineer now has the ability to spend significantly less time building simulation 

models, executing them, and post-processing the results. Additionally, through the use 

of modern optimization algorithms, the engineer can spend time identifying a promising 

design concept, and let the optimizer find the exact set of parameter values that yield 

the best performing design. 

As the optimization revolution has progressed, one area of interest that remains a 

fertile topic of research is Reliability-Based Design Optimization (RBDO). RBDO is the 

process of optimizing a design with respect to performance criteria that have a reliability 

requirement. No product encounters exactly the environment it is tested in (virtually or 

physically), and no product is manufactured exactly as designed in CAD. This variation 

can be simulated as a stochastic variation on input parameters in the simulation model. 

An example might be the variation of the location of a feature, which is controlled to 
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within some tolerance range. Another example is the variation in loading applied to a 

structure. 

Optimization performed without accounting for stochastic variation is called 

Deterministic Design Optimization (DDO). The standard DDO problem statement is: 

 

 minimize  𝐹(𝑋) 

subject to  𝐺𝑖(𝑋) ≥ 0, 𝑖 = 1,2, … , 𝑛  

   𝐻𝑗(𝑋) = 0, 𝑗 = 1, 2, … ,𝑚 

by varying  𝑋𝐿 ≤ 𝑋 ≤ 𝑋𝑈 

where   𝑋 =  �𝑥1, 𝑥2, … , 𝑥𝑘�
𝑇

 

   𝑋𝐿 =  �𝑥1
𝐿 , 𝑥2

𝐿 , … , 𝑥𝑘
𝐿�
𝑇

 

   𝑋𝑈 =  �𝑥1
𝑈 , 𝑥2

𝑈 , … , 𝑥𝑘
𝑈�
𝑇

 

( 1.1 ) 

 

The objective function, F(X), is being minimized, subject to inequality constraints, Gi(X), 

and equality constraints, Hj(X). This is done by varying the design variables X 

independently in the range XL to XU. Note that while in DDO the convention is to define 

the feasible region such that Gi has negative values, in RBDO this is often reversed. 

The convention of the feasible solutions being those which have Gi which are positive is 

used throughout this thesis in general statements. The example problems solved do not 

necessarily use this convention. 
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A design that meets all of the constraints is said to be feasible, while a design 

that fails to meet one or more constraints is infeasible. For many optimization problems 

solved by engineers, there are no equality constraints, and this type of constraints will 

be ignored from this point on. Commonly, the solution to the above optimization problem 

is one where the value of one or more of the inequality constraints is exactly or nearly 

zero. These are called active constraints. This means that if the design variable values 

or other simulation input parameters were to change by a relatively small amount, the 

design might no longer satisfy the constraint(s). Similarly, if the active constraint(s) were 

relaxed somewhat, the new solution would have a better value for the objective function. 

 

Figure 1.1. Example of a two variable problem which illustrates the concept of active constraints. 

For interpretation of the references to color in this and all other figures, the reader is referred to 

the electronic version of this thesis. 
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As depicted in Figure 1.1, if constraint G1 is applied then Opt1 is the optimum 

design. If this constraint is relaxed to the location of constraint G2, then the objective 

function can be improved to the point Opt2.  

A design that has active constraints, while technically optimal from a DDO 

perspective, may not be good to implement and sell because it could have a higher than 

desired likelihood of failing in circumstances where the service environment is not 

exactly the same as the simulated environment. This design would not be considered 

reliable. 

 

 

Figure 1.2. Example of a two variable problem with variation.  
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As illustrated in Figure 1.2, a deterministic optimum is often found on the limit of an 

active constraint. Once stochastic variation of the variables is accounted for, it is 

obvious that many designs will fail to meet the constraint. 

To account for this, the engineer could set the constraint with a safety factor in 

mind (since Ching [3] showed that the safety factor and probability of failure are 

functionally equivalent), knowing that this will result in a more reliable design. However, 

in many cases it is difficult to determine a suitable safety factor value. In these cases, it 

may be easier and more accurate to specify a number of allowable failures out of a 

population of manufactured products. This can be determined, for example, based on 

known costs for warranties and replacements of failed units. However, typically there is 

no way to equate a desired failure rate to a safety factor. Instead, one must evaluate the 

reliability of a given design directly using one of a number of methods, some of which 

will be described later.  

So, the engineer really wants to find a design that has a failure rate no higher 

than a certain value, but which has a minimum value for the objective function. This is 

described in the sequel, and is called the standard RBDO problem statement: 
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 minimize  𝐹(𝑋,𝐵) 

subject to  𝑃�𝐺𝑖(𝑋,𝐵) ≤ 0� ≤ 𝑃𝑓𝑖 , 𝑖 = 1, 2, … ,𝑛 

by varying  𝑋𝐿 ≤ 𝑋 ≤ 𝑋𝑈 

where   𝑋 =  �𝑥1, 𝑥2, … , 𝑥𝑘�
𝑇

 

   𝑋𝐿 =  �𝑥1
𝐿 , 𝑥2

𝐿 , … , 𝑥𝑘
𝐿�
𝑇

 

   𝑋𝑈 =  �𝑥1
𝑈 , 𝑥2

𝑈 , … , 𝑥𝑘
𝑈�
𝑇

 

( 1.2 ) 

 

where P[*] is the probability operator, and Pf is the maximum allowable probability of 

failure. B is the vector of stochastic parameters that also govern the performance of the 

system, along with the design variables X, which may be stochastic as well. Compared 

to using safety factors, an optimization problem statement of this form has the 

advantage of specifying the desired failure rate directly, which is usually easier to relate 

to real-world data. The main disadvantage, however, is that it requires each design to 

be evaluated for its nominal performance as well as its reliability. Typically, the latter 

calculation is much more computationally expensive than the former. Thus, it usually 

takes much longer to perform RBDO than DDO, sometimes prohibitively so. 

 

1.2 Literature Review 

The review of the relevant literature reveals a strong body of work relating to the 

use of response surfaces (RS), also called surrogate or meta-models. Bucher and Most 

[4] compared least-squares response surfaces with Artificial Neural Networks (ANN) 
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and Radial Basis Functions (RBF) with an eye toward reliability analysis (RA). For low 

numbers of sampling points, the error can be quite high (on order of 1000%). They 

came to the same conclusion as many others, which is that one cannot determine which 

type of response surface to use a priori. Which one is best depends on the problem 

being solved. Additionally, the response surface method was originally developed in the 

fields of chemical and industrial engineering, and so is not always well suited for use 

with RA, where the accuracy of the constraint limit surface is paramount. 

Roux, Stander, and Haftka [5] attempted to use quadratic response surfaces to 

model global behavior of simple trusses. Unfortunately, they found that the accuracy of 

the RS was largely dependent on the regression scheme used and the scaling or 

inverting of variables. They were unable to create a global RS to effectively model the 

entire design space of a simple three-bar truss. Once they reduced the variable ranges 

to a smaller subregion, an acceptable fit could be found. 

Taflanidis and Cheung [6] used a technique for fitting RS called Moving Least 

Squares (MLS). In this method, each support point has a neighborhood created around 

it. Weights are assigned to that point based on other points in the neighborhood. The 

neighborhood size used in this study is twice the minimum needed to fit a surface. The 

resulting surface is one that minimizes the error locally around each support point, and 

can capture a more complex function than standard global least squares fits. It does 

require more support points to do this, however. 

Simpson et al [7] compared a quadratic RS with Kriging for modeling an 

aerospike nozzle modeled with CFD. These two different RS types yielded comparable 

accuracy on this problem, which might be thought to be more challenging initially. 
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Simpson et al [8] surveyed the literature on metamodeling and provide several 

useful recommendations for those applying metamodels to computer-based 

experiments. One key point is these experiments are deterministic. That is, the result of 

a simulation is the same each time it is run, provided the same inputs are used. The 

error in RS generally is made up of systemic error and random error. However, for 

computer-based experiments, the random error term is zero. Therefore, if there is no 

random error, statistical testing is not appropriate. This is significant, since some users 

of metamodels apply the general principles directly, and believe statistical measures of 

the metamodels’ significance to be useful, when in fact they are measuring systemic 

error. This error is simply a measure of how ill-suited the metamodel in use is for 

modeling the underlying data with that particular fitting technique.  

The authors also note that among aerospace engineers D-optimal arrays tend to 

be most popular, while orthogonal arrays are more popular among mechanical 

engineers. No potential reason for this is offered. Optimization seems to be the major 

driver of the use of DOE and RSM, since large FE and CFD models are so time-

intensive. 

The authors next recommend several additional measures of RS accuracy 

beyond the standard R2 measure. These include max(abs(error)), avg(abs(error), and 

the leave-one-out-strategy. This last strategy entails leaving a single point out of the fit, 

and then evaluating the RS error at that point. Repeat this for each point in the set and 

take the maximum or average error. 

In the end the authors recommend using the Kriging metamodel (as an 

alternative to polynomial RS) in situations where the number of factors is moderate to 
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large and/or the response has highly nonlinear behavior, since it is an interpolating 

technique and can have any underlying basis. 

Some researchers focused on studying and adapting standard RS techniques in 

the context of RA. Among them, Rajashekhar and Ellingwood [9] found that including 

information about how the variables are distributed had similar accuracy and efficiency 

to standard RS fitting techniques. Additionally, sampling near the tails of the 

distributions was surmised to work better for RA since failure would typically happen 

“under extreme circumstances”. This also, was not significantly better than standard 

methods. 

Kaymaz and McMahon [10] presented a new technique for fitting RS with the 

intent to use an MPP-based algorithm like FORM. In the case of FORM, the accuracy of 

the RS is most important at the MPP. It is possible that poor RS accuracy elsewhere 

could cause FORM to diverge or converge to another local minimum. That aside, the 

estimation of β is entirely based on the final location in the last FORM iteration, so 

predicting the location of the MPP accurately will have the most influence on Pf 

prediction accuracy. The authors propose weighting the regression in proportion to each 

point’s distance from the constraint limit. Additionally, the FORM or SORM algorithm is 

used within the RS fitting routine to develop points closer to the MPP. This method was 

more accurate than standard RS fitting techniques, though using FORM to estimate the 

MPP, then re-sampling about the approximate MPP and fitting a new RS yielded far 

more increase in accuracy than did the weighted regression technique. 
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Gomes and Awruch [11] compared polynomial RS to ANN in the context of RA. 

Since simple constraint limits with closed form solutions were used in the comparisons, 

it is not surprising that the accuracy of the two were comparable. 

Gayton, Bourinet, and Lemaire [12] proposed a new way to fit an RS called 

CQ2RS (Complete Quadratic Response Surface with ReSampling) which is designed 

for use with MPP based RA. This technique first uses the engineer’s estimate of the 

location of the MPP, then iteratively adds and removes points based on confidence 

intervals of where the MPP is thought to be. One interesting recommendation is that 

when fitting an RS for use with MPP-based RA, the sample matrix should be created in 

U-space, rather than X-space. 

Alliax and Carbone [13] proposed a technique for fitting a RS for use with RA 

which is similar in some ways to other ideas. The first step is to use an MPP-based 

algorithm to estimate the location of the MPP, and then fit points around that. This step 

is similar to Bucher and Bourgund’s idea. These authors also recommend designing the 

array in U-space, as Gayten et al also suggested. Finally, the authors use the 

sensitivities of the response at the MPP to align the DOE array to have one axis normal 

to the constraint limit surface. This method clearly requires more evaluations than a 

standard RS fit, however it was shown to be more accurate on a number of analytical 

examples. 

Guan and Melchers [14] explored some of the potential pitfalls in using RS for 

RA. It is noted that this method of estimation may either under- or over-predict Pf, and 

there is little or no way to know for sure a priori. The paper goes on to show that when 

using standard RS fitting technique, perturbing the location of a sampled point can 
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reveal instability in the prediction of Pf. The authors note that a referee of this paper 

says that the issues with RS are well-known, though this paper attempts to examine the 

consequences of these issues. 

Bucher and Bourgrund [15] note a well-known problem with FORM, that it is not 

well suited to solve many problems. These problems do not respond well to 

linearization, or may have too many variables for FORM to be efficient. They instead 

recommend a technique for fitting an RS where an iterative scheme is developed to 

move and scale the sample array to be more representative of the constraint limit. This 

is shown to give a more accurate prediction of Pf on the RS. While this technique does 

require considerable evaluations (twice as many, in fact, than standard RS fitting 

techniques), it is shown to be more accurate and more efficient than FORM some 

representative problems. 

There has been extensive research into the use of FORM and SORM, much of it 

highlighting these algorithms’ poor performance on a variety of both contrived and real-

world problems. Valdebenito et al [16] studied the influence of the MPP on difficulty of 

calculating Pf. They found that for low numbers of random variables (< 20) the distance 

from the nominal design to the MPP had more influence than the number of variables. 

This distance was not as important for larger numbers of variables. They also found that 

for larger numbers of variables the approximations inherent in FORM and SORM 

produced considerable error. They recommend that for large numbers of variables 

these algorithms should only be used if the key assumptions for FORM are met, e.g. 

linearity (or near linearity) of the constraint and normally distributed variables. 
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Additionally, they looked at this issue with respect to structural analysis including 

nonlinearities. In situations where nonlinearities are included in the model and there are 

many variables, there may be multiple failure regions, which is not accounted for by 

FORM, and can lead to considerable error. 

Huang and Griffiths [17] applied the FORM algorithm to the RA of a 

geomechanics problem. They found reasonably good agreement with direct RA 

methods when the variables were distributed normally, but poor agreement when they 

were distributed log-normally.  

Liu and Der Kiureghian [18] explored several algorithms for performing RA based 

on the most probable point (MPP) approach, which will be explained in section 3.3. 

These included Gradient Projection, Penalty, Augmented Lagrangian, SQP, HL-RF, and 

Modified HL-RF (MHL-RF). Each of these methods is an MPP-based algorithm. These 

were tested on five different problems, and no clear winner emerged. In fact, several 

algorithms failed to converge on one or more of the problems, making them ill-suited for 

general use. 

 

Finally, while many use FORM for RA, some do not fully understand the underlying 

assumptions of that algorithm. Koduru and Haukaas [19] examine those assumptions, 

and explain what the potential consequences are when they are violated. These include 

divergence of the algorithm, poor accuracy of the Pf prediction, and convergence to an 

incorrect MPP. Since it is so easy for FORM’s key assumptions to be violated on real 

problems, FORM is not recommended for general use in RA. 
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Even the Performance Measure Approach (PMA, explained further in section 

3.4.1) has similar pitfalls. Pretorius, Craig, and Haarhoff [20] showed that the HMV[21] 

method, which is a recasting of the problem FORM attempts to solve, is not tolerant of 

noise on the constraint surface. This was shown through work where a Kriging surface 

was used with a submerged entry nozzle analyzed by 2D CFD. 

 

1.3 Obstacles to Using RBDO 

There are two major obstacles to using RBDO in an industrial setting: 

1. It can be difficult and/or expensive to determine how inputs vary stochastically in 

the service environment.[22] 

2. Evaluating the reliability of a design is time-consuming and/or expensive.[14][23] 

Overcoming the first obstacle can be done through reasonable assumptions and 

investing in the necessary data gathering. The second obstacle, however, can be quite 

a challenge even if the engineer has access to the necessary data on the input 

variations and a predictive model. This is because of the double-loop problem. 

A ‘function evaluation’ is defined as the required calculations necessary to fully 

evaluate the deterministic performance of a single design. By this definition, the nominal 

performance of a design requires a single function evaluation. Evaluating the reliability 

of a design, that is, the likelihood of a design failing to meet one or more constraints due 

to stochastic variation of input parameters, often requires many function evaluations. 

The double-loop problem stems from this issue.  

To perform RBDO, two loops are needed.[24][25] The outer loop is an optimization 

of the RBDO problem statement. At each iteration of the optimization search, the 
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nominal performance of the current design is evaluated (at a cost of one function 

evaluation). After that, the reliability of this design must be evaluated. This is performed 

by an inner loop, where many designs are iteratively evaluated (at a cost of one function 

evaluation per design). Once this inner loop has completed the reliability calculation, the 

iteration in the outer loop can end and move on to the next. In this way the many 

function evaluations needed to perform optimization in the deterministic sense are 

compounded by an expensive inner loop when reliability is included in the optimization. 

The double-loop is illustrated as a flow chart in Figure 1.3 
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Figure 1.3. Flowchart illustrating the double-loop required to perform reliability-based design 

optimization. 
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When function evaluations are expensive (e.g., many minutes or hours of CPU 

time), as is common in industry, RBDO can quickly become outrageously expensive 

when executed using this double loop process. Developing a more efficient process for 

RBDO is the main goal of this thesis.  

1.4 The Current Study 

The current study is intended to motivate, develop, and demonstrate an efficient 

way to perform reliability-based design optimization. As discovered by other 

researchers, the main challenge in RBDO is navigating the tradeoffs between the 

necessary computational expense to calculate Pf and the associated accuracy. The 

most accurate way to perform RBDO using millions of function evaluations is completely 

intractable on most industrial problems.  As a result, some loss of accuracy must be 

accepted in return for more computationally feasible solutions.  

One obvious approach is the use of response surfaces in place of the expensive 

inner loop evaluations. Global response surfaces have challenges and issues that are 

well-known, but local response surfaces are much more forgiving and have greater 

potential for generating sufficiently accurate solutions. The current approach will use 

local response surfaces to calculate the probability of failure of each design. 

Moreover, these local response surfaces will be developed based on design data 

available from a previous deterministic design optimization study, which is intended to 

further increase the efficiency of the search by honing in on the general area of the 

reliability-based optimal design. 

In the first chapter the motivation for this work was established, and a review of 

the relevant literature was performed. Key obstacles were also identified. In the second 
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chapter the statistical foundation necessary to understand RA and RBDO is developed. 

In the third chapter a few of the most common ways to perform RA are explained. In the 

fourth chapter the proposed approach for efficiently and accurately solving the RBDO 

problem is detailed. In the fifth chapter this strategy is explored through solving several 

example problems. The sixth chapter summarizes the results and concludes, and 

suggests future related research topics. 
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2 Statistical Foundation 

In this section, the statistical and probabilistic concepts needed to understand 

how to perform reliability analysis will be presented. 

 

2.1 Random Variables 

A random variable, denoted X, can take on any real value x, such that −∞ < 𝑥 <

∞. Herein, random variables are indicated by uppercase letters, and the value of a 

random variable is indicated by a lowercase letter. 

Random variables can be continuous or discrete. Continuous random variables 

may take on any real value that is valid for their distribution. Discrete random variables 

may take on only a prescribed set of values, for example, {x1,x2,x3,x4,…xn}. In the case 

of discrete random variables, each value from the set can have its own variation. For 

instance, the discrete set may be a set of materials, and the variation could be applied 

to multiple aspects of the materials’ definitions. For example, Young’s Modulus and 

yield stress may both have their own variation for a given material. 

 

2.2 Probability Density Function 

If a random variable is sampled a finite number of times, then one can create a 

frequency diagram or histogram that represents the probability that the variable will take 

a particular value. This graph is created by dividing the data into discrete intervals of 

equal size. Each interval is called a bin. A rectangle is drawn which has width equal to 

the bin size and height equal to the number of samples that occur in that bin. The height 
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of the rectangles should be normalized so the sum of all their areas is one. Once this is 

done, the histogram is an approximation of the probability density distribution of the 

data. An example is shown in Figure 2.1. 
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Figure 2.1 A histogram of sampled data with 32 bins. Since box heights are normalized in this 

case, it is also an approximation of the probability density distribution. Plot generated in Minitab 

15.
[26]

 

The probability of a randomly selected sample falling in a particular bin can be 

determined by finding the area of the rectangle for that bin. Note that the height of the 

bin can be seen as the probability density of the bin.  
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 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝐻𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑏𝑖𝑛 × 𝑊𝑖𝑑𝑡ℎ 𝑜𝑓 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑏𝑖𝑛

= 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 × 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑠𝑖𝑧𝑒 
( 2.1 ) 

 

If a very large number of samples were taken and the bin widths were allowed to 

become infinitesimally small, the histogram would become a continuous curve. This is 

the probability density function (PDF), and for the random variable X it is denoted as 

fX(x). The PDF is not defined for discrete random variables. 
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Figure 2.2 Histogram from Figure 2.1 with probability density function fit to the data overlaid. Plot 

generated in Minitab 15. 
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2.3 Cumulative Distribution Function 

The Cumulative Distribution Function (CDF) is another way to describe random 

variables. The CDF is defined for −∞ < 𝑥 < ∞ and varies from 0 to 1. The CDF is 

denoted as FX(x), and is equal to the probability that X is less than or equal to x, see 

Figure 2.3. To calculate FX(x), integrate the PDF for all values of X less than or equal to 

x, as shown below. 

 

 
𝐹𝑋(𝑥) = � 𝑓𝑋(𝑡)𝑑𝑡

𝑥

−∞
 ( 2.2 ) 

 

The probability of X having a value between a and b is thus: 

 

 
𝐹𝑋(𝑎) − 𝐹𝑋(𝑏) = � 𝑓𝑋(𝑥)𝑑𝑥

𝑏

𝑎
 ( 2.3 ) 
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Figure 2.3 Cumulative Distribution Function for data used in Figure 2.1 and Figure 2.2. Plot 

generated in Minitab 15. 

 

2.4 Mean 

The mean of a set of samples, also known as the expected value or average, 

describes the central tendency of a random variable. The mean of a random variable X 

is denoted as μX. This a weighted average of all the values a random variable may take. 

If a set of samples, {x1,x2,x3,x4,…xn}, is created, then the mean is calculated as: 

 

 
𝜇𝑋 =

1
𝑛
� 𝑥𝑖

𝑛

𝑖 = 1
 ( 2.4 ) 
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If a probability density function exists, then the mean of X can be calculated as: 

 

 
𝜇𝑋 = 𝐸(𝑋) = � 𝑥 ∙ 𝑓𝑋(𝑥)𝑑𝑥

∞

−∞
 ( 2.5 ) 

 

From equation 2.5, it can be seen that the mean value is the distance from the origin to 

the centroid of the PDF. Since the mean is the first moment of area of the PDF, the 

mean is also called the first moment. 

Also introduced in equation 2.5 is the expectation operator, E[*], which is the 

defined as “the weighted average of all possible values that the random variable can 

take on” [27]. The expectation operator has several interesting properties, though only 

the linearity of the operator will be shown here for use in the sequel: 

 

 If 𝒁 = 𝑿𝟏 + 𝑿𝟐 + 𝑿𝟑 + 𝑿𝟒 + ⋯+ 𝑿𝒏, 

then 𝐸(𝑍) = 𝐸�𝑋1� + 𝐸�𝑋2� + 𝐸�𝑋3� + 𝐸�𝑋4� + ⋯+ 𝐸(𝑋𝑛) 
( 2.6 ) 

 

2.5 Variance and Standard Deviation 

The variance of a PDF, also called the second central moment, is a measure of 

the variation of the data about the mean. The variance is defined as: 
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 𝑉(𝑋) = 𝐸 ��𝑋 − 𝜇𝑋�
2
� 

= 𝐸 �𝑋2� − 2𝐸(𝑋)𝜇𝑋 + 𝜇2 = 𝐸 �𝑋2� − 2𝜇𝑋
2 + 𝜇𝑋

2 = 𝐸 �𝑋2� − 𝜇𝑋
2  

( 2.7 ) 

 

As a geometric analogy, the variance represents the moment of inertia of the PDF about 

the mean. The standard deviation, σX, is another way to describe the variation about the 

mean, and is more commonly used than the variance because it has the same units as 

X and μX. The standard deviation can be calculated as: 

 

 𝜎𝑋 = �𝑉(𝑋) ( 2.8 ) 

 

The coefficient of variation (COV), δX, is the nondimensionalized form of the standard 

deviation: 

 

 𝛿𝑋 =
𝜎𝑋
𝜇𝑋

 ( 2.9 ) 

 

2.6 Probability Distributions 

The probability density distributions of random variables can take many shapes, 

so there are many analytical probability distributions typically used to model random 

variables. This section describes the characteristics of two of the more commonly used 

distributions. 
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2.6.1 Gaussian Distribution 

The Gaussian distribution (also called the normal distribution) is one of the most 

popular distributions for engineering applications due to its ease of use and the central 

limit theorem (CLT). The ease of use comes from being able to define the distribution by 

only specifying the mean and standard deviation. The CLT states that the sum of a set 

of randomly distributed, independent variables will be distributed normally. This 

accounts, in part, for the large number of phenomena that can be accurately described 

by the normal distribution. The PDF for the normal distribution is expressed as: 

 

 𝑓𝑋(𝑥) =
1

𝜎𝑋√2𝜋
𝑒𝑥𝑝 �−

1
2
�
𝑥 − 𝜇𝑋
𝜎𝑋

�
2
� , −∞ < 𝑥 < ∞

 

( 2.10 )

 

 

where  μX and σX designate the mean and standard deviation of X, respectively. If X is 

described by a normal distribution, the notation N(μX, σX) can be used to express X. 

The PDF is shown in Figure 2.4. 
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Figure 2.4 Normal (or Gaussian) distribution for several values of μX, σX. [28]  

 

Due to the shape of the distribution curve, the PDF of a normally distributed 

variable is known as a bell curve. The normal distribution is symmetric about the mean, 

and has inflection points one standard deviation on either side of the mean, at x = μX ± 

σX. The fraction of values within one through six standard deviations from the mean are 

approximately 68.26%, 95.44%, 99.74%, 99.994%, 99.99994%, and 99.9999998%, 

respectively. The normal distribution has the following properties as a result of the CLT. 

1. Any linear sum of normally distributed random variables will also be normally 

distributed. For example, let X1, X2, …Xn be independent, normally distributed 

random variables. If Z is defined as 
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 𝑍 = 𝑎0 + 𝑎1𝑋1 + 𝑎2𝑋2 + ⋯+ 𝑎𝑛𝑋𝑛 ( 2.11 ) 

 

then Z will be normally distributed. The mean and standard deviation of Z can be 

calculated as 

 

 

𝜇𝑍 = 𝑎0 + � 𝑎𝑖𝜇𝑖

𝑛

𝑖 = 1
, 𝜎𝑍 = � � �𝑎𝑖𝜎𝑖�

2
𝑛

𝑖 = 1
 ( 2.12 ) 

 

2. Conversely, a nonlinear function of normally distributed random variables will not 

necessarily be normally distributed. Also, a function (linear or otherwise) of non-

normally distributed random variables will also not necessarily be normally 

distributed. 

 

A normally distributed random variable can be normalized as follows: 

 

 𝑧 =
𝑥 − 𝜇
𝜎

 ( 2.13 ) 

 

This is sometimes called the z-score or standard score. The normalized Gaussian 

distribution is called the standard normal distribution, N(0,1). The standard normal 

distribution is denoted ϕ(*) and has the PDF: 
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𝜙(𝑧) = 𝑓𝑋(𝑧) =

1
√2𝜋

𝑒𝑥𝑝 �−
𝑧2

2
� , −∞ < 𝑧 < ∞ ( 2.14 ) 

 

The CDF of the standard normal distribution is denoted Φ(*): 

 

 
Φ(𝑧) = 𝐹𝑋(𝑧) = �

1
√2𝜋

𝑒𝑥𝑝 �−
𝑧2

2
�𝑑𝑧

𝑧0

−∞
 ( 2.15 ) 

 

If Φ(zp) = p, then: 

 

 𝑧𝑝 = Φ−1(p) ( 2.16 ) 

 

Furthermore, Φ(z) is only defined for positive values of z. For the case where z < 0, we 

have: 

 

 Φ(−z) = 1 −Φ(z) ( 2.17 ) 

 

The CDF is symmetric about zero, so that: 

 

 𝑧𝑝 = Φ−1(p) = −Φ−1(1 − p) ( 2.18 ) 
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2.6.2 Log-normal Distribution 

The log-normal distribution is also commonly used, especially for quantities that 

cannot be negative. A random variable that is log-normally distributed has a logarithm 

that is normally distributed. The PDF of the log-normal distribution is given below. The 

two parameters of this distribution are typically denoted by μ and σ, however these are 

not the mean and standard deviation of the variable, but of the natural logarithm of the 

variable. This convention is used for this section only. 

 

 
𝑓𝑋(𝑥) =

1

𝑥�2𝜋𝜎2
𝑒𝑥𝑝 �−

(𝑙𝑛(𝑥) − 𝜇)2

2𝜎2 � , −∞ < 𝑥 < ∞ ( 2.19 ) 

PDFs of several log-normal distributions are shown in Figure 2.5. 
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Figure 2.5. Log-normal distributions for several values of μ, σ. [29] 
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3 Measuring Reliability 

There are several methods for performing reliability analysis (RA) on an 

engineering system. All methods have the same goal: the accurate prediction of the 

probability of failure. For purposes of this discussion, the reliability is defined with 

respect to a single constraint. In a system with multiple deterministic constraints, the 

RBDO statement would have multiple stochastic constraints.  

 

3.1 Probability of Failure and the Reliability Index 

The objective of reliability analysis is to determine the probability that a system 

will violate a prescribed set of constraints that govern the system’s behavior. The 

probability that one or more constraints will be violated is called the Probability of 

Failure, Pf. For example, the reliability of a steel bar is measured in terms of the 

probability that the stress in the bar exceeds the maximum allowable level.  

Without loss of generality, the ensuing discussion will consider systems with only 

one constraint. For systems with more than one constraint, simply repeat the indicated 

steps for each constraint, assuming the constraints are statistically independent. 

In a DDO problem, a constraint is defined in terms of a function, G(X), such that 

when G(X) < 0, the constraint is violated and the system fails. In an RBDO problem the 

value of Pf is defined as the probability that the constraint will be violated. So we 

express the constraint on Pf as 𝑃[𝐺(𝑋,𝐵) > 0] ≤ 𝑃𝑓 
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For example, an automotive part designer can use the value of Pf to estimate the 

warranty costs due to anticipated part failures, and adjust the design as called for by the 

product requirements. 

The reliability index, β, is another measure used to evaluate reliability. It is really 

just a different way of expressing Pf: 

 𝛽 =
𝜇𝑔
𝜎𝑔

 

𝑃𝑓 = 1 −Φ(𝛽) = Φ(−𝛽) 

( 3.1 ) 

 

The reliability index is not valid for non-normally distributed constraints, which are quite 

common due to the nonlinear nature of many constraints. Because the reliability index is 

pervasive as the parameter of interest in reliability analysis, a method for locally 

approximating the normal distribution of a random variable with a non-normal 

distribution is desirable. This will be discussed in a later section, but this approach will 

not be used in the current study. 

 

3.2 Sampling Methods 

Sampling methods of RA involve sampling the random variables according to 

their distributions and using frequency of constraint violation to determine the probability 

of failure. 
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3.2.1 Monte Carlo Sampling 

Monte Carlo sampling (MCS) [30] is the most straightforward way to estimate β 

when the constraint is an implicit function. Typically it also takes the greatest amount of 

CPU time and resources. MCS is performed by repeated sampling, where values for the 

random variables are randomly selected and G(X) is evaluated for each sample. The 

set of chosen values for each random variable conforms to the respective distribution. 

The probability of failure, that is, the probability that G will be violated, Pf, is given by: 

 

 
𝑃𝑓 =

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑤ℎ𝑒𝑟𝑒 𝐺 𝑖𝑠 𝑣𝑖𝑜𝑙𝑎𝑡𝑒𝑑
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑

 ( 3.2 ) 

 

If G is normally distributed, then the reliability index, β can be found as: 

 

 𝑃𝑓 = 1 −Φ(𝛽) = Φ(−𝛽) = Φ�𝑃𝑓� ( 3.3 ) 

 

As the number of samples increases, the accuracy of this method increases. In 

order to obtain a useful result, this method typically requires orders of magnitude more 

samples than the methods outlined in later sections. This is because the values of X at 

the tails of the distributions are far less likely to be sampled than those near the mean, 

but often the system in question fails only when X takes on lower probability values. 

Therefore, many evaluations are performed to get a reasonable number of samples 

near the tails of the distribution. 
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MCS is simple to implement, however, and is known to converge to the correct 

value of Pf for any problem given a sufficient number of samples (“sufficient number of 

samples” being problem dependent). If the problem has a very short evaluation time, or 

evaluations are performed on a surrogate model with a short evaluation time, this 

method can be used for reliability prediction in a reasonable timeframe. 

Confidence Intervals (CI) for MCS can be found through a number of means. The 

“exact” formulation for CI bounds using the binomial distribution is known to give 

conservative estimates. That is, the actual CI bounds are known to be inside of the 

bounds given by the “exact” method. This method is considered too conservative, so as 

recommended by Brown [31], the Wilson score test interval is presented here. The CI is 

dependent on the number of simulations performed and the value of the Pf being 

predicted. This is illustrated in Table 3.1. 
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Table 3.1 Table of CI bounds for MCS where 1,000,000 simulations are performed. 

Value of Pf to be 
predicted 

Pf Low 
Bound 

Pf High 
Bound 

Pf Low 
(Percentage) 

Pf High 
(Percentage) 

1.000E-06 1.765E-07 5.665E-06 
-82.35% 466.49% 

1.000E-05 5.432E-06 1.841E-05 
-45.68% 84.09% 

1.000E-04 8.223E-05 1.216E-04 
-17.77% 21.61% 

0.001 9.399E-04 0.001064 
-6.01% 6.39% 

0.0027 0.002600 0.002804 
-3.70% 3.84% 

0.01 0.00981 0.01020 
-1.93% 1.97% 

0.05 0.04957 0.05043 
-0.85% 0.86% 

0.1 0.09941 0.10059 
-0.59% 0.59% 

 

3.2.2 Latin Hypercube Sampling 

Latin Hypercube sampling (LHS) is a modification of MCS that reduces the 

number of samples needed to obtain the reliability index with respectable accuracy. This 

is performed by increasing the likelihood of samples being taken from the low probability 

regions of the distribution compared to MCS, while ensuring that each design is as likely 

to be chosen as all others. 

As first described by McKay, et al [32], in LHS each random variable, Xi, is 

divided up into N strata, where each stratum has equal probability 1/N. Each stratum is 

then randomly sampled once for each variable. The components of each variable are 

matched at random with the other random variables to generate N sets of points where 

the constraint function should be evaluated. 
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The value of Pf can be evaluated using the same formula as in MCS, ( 3.2 ), 

since all of the points sampled have the same probability of being chosen. Stein [33] 

showed that LHS has less variance than MCS, and in the limit MCS and LHS approach 

the same solution. While confidence intervals for MCS can be given via the binomial 

distribution, CI for LHS can only be given through empirical means. This because the 

rate at which LHS converges is dependent on the problem (the shape of the constraint 

limit surface) and the type of LHS used.[34] 

3.3 Most Probable Point Methods 

Most Probable Point (MPP) methods for RA determine reliability by casting the 

problem as an optimization problem in which the objective is to determine the most 

probable point of failure, as described below. 

 

3.3.1 The Hasofer-Lind Transformation and the MPP 

The Hasofer-Lind (HL) transformation [35] is used to transform a normally 

distributed random variable X into a random variable U having a standard normal 

distribution. For normally distributed random variables, the transformation is: 

 

 𝑈 =
𝑋 − 𝜇𝑋
𝜎𝑋

 ( 3.4 ) 

 

This transformation is useful in that the units of distance in U-space are standard 

deviations of the variables. For example, a point in U-space that is three units from the 
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origin is three standard deviations from the mean. This aspect of U-space is often 

utilized to calculate β, as outlined below. 

The Most Probable Point of failure is often used in advanced methods for 

reliability analysis because it directly gives the value of β. The MPP, denoted as U*, is 

the point that lies on the limit-state function (G(U) = 0) and is the minimum distance from 

the origin in U-space. It is sometimes, but not always true, that the MPP will be the 

minimum distance from the mean to the constraint limit in both the X- and U-spaces. 

 

The value of β is calculated using the U-space transformation of the random variables: 

 

 

𝛽 = � � 𝑈𝑖
2

𝑛

𝑖 = 1
 ( 3.5 ) 

 

where n is the number of random variables. This value is the spatial distance (in U-

space) of the MPP from the origin. The MPP is illustrated in Figure 3.1 for a two variable 

problem. 
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Figure 3.1 Hasofer-Lind transformation and location of MPP in U-space.
[36]

 

 

From this, it is clear that the reliability of a system can be calculated by finding the 

location of the MPP, which can be cast as an optimization statement: 

 

 minimize:  β(Ui) 

subject to:  G(Ui)=0 
( 3.6 ) 

 

One notable assumption inherent in MPP-based RA methods is that of a single failure 

region. If there are multiple failure regions, then the whole concept of an MPP breaks 

down. 
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3.3.2 Mean Value First-Order Second Moment Method 

The Mean Value First-Order Second Moment (MVFOSM) method is the starting 

point from which many commonly used reliability analysis methods begin. The basic 

idea for the MVFOSM method is to solve the optimization problem specified in ( 3.6 ) by 

performing a Taylor series expansion about the nominal point [36].  

  

 𝐺�(𝑋) = 𝐺�𝜇𝑋� + ∇𝐺�𝜇𝑋�
𝑇
�𝑋𝑖 − 𝜇𝑋𝑖� ( 3.7 ) 

 

where 𝜇𝑋 = �𝜇𝑥1, 𝜇𝑥2, … , 𝜇𝑥𝑛�
𝑇

, and 

∇𝐺�𝜇𝑋�
T

 is the gradient of G evaluated at μX. The mean and standard deviation of the 

approximate constraint function is given below: 

 

 𝜇𝐺� ≈ 𝐸�𝐺�𝜇𝑋�� = 𝐺�𝜇𝑋� 

𝜎𝐺� = � � �
𝜕𝐺�𝜇𝑋�
𝜕𝑥𝑖

�
2
𝜎𝑥𝑖

2
𝑛

𝑖 = 1
�

1
2

 

( 3.8 ) 

 

and the reliability index is 

 

 𝛽 =
𝜇𝐺�
𝜎𝐺�

 ( 3.9 ) 
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This method only produces accurate results if G(X) is linear or nearly linear. However, it 

is particularly efficient, since it only requires function evaluations for the nominal point 

and its gradient. Notably, it assumes that X is distributed normally. 

 

3.3.3 Hasofer-Lind Algorithm 

The Hasofer-Lind (HL) algorithm [35] further develops the concept from MVFOSM of 

a Taylor-series expansion as surrogate to the actual limit-state function. The concept of 

the HL transformation and the MPP are introduced to facilitate the reliability analysis 

strategy. 

A single HL iteration can be described as Gradient Descent [36] where the step size 

is determined by the linearity assumption inherited from the MVFOSM method, so no 

line search is necessary. The steps proceed as follows: 

1. Initialize the current point, X*, at the mean point. 

2. Calculate the value of G(X*) and the gradients of G at X*. 

3. Calculate the value of β using ( 3.8 ) and ( 3.9 ). 

4. Convert X* to U* using ( 3.4 ). 

5. Calculate the new U* by stepping along the negative gradient of G by a distance 

of β. 

6. Calculate the new value of X*. 

7. Repeat steps 2 through 6 until β converges. 

 

In the linear case, the Taylor-series expansion is exact, and so the computed β is 

the exact (not estimated) distance from the nominal point to the MPP. This is therefore 
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the step size along the steepest descent vector that should be used. In the case where 

G is nonlinear, then iteration is required to converge to the location of the MPP. 

The HL iteration method offers equivalent or better accuracy than the MVFOSM 

method, indeed, the first iteration is equivalent to the MVFOSM method. It can, 

however, converge to the MPP for nonlinear problems. It is not guaranteed to converge 

for all problems, and it is known to diverge or oscillate between two incorrect solutions 

for certain problems. It has also been shown that equivalent problems which are simply 

transformed can get different results[36]. Additionally, it assumes the random variables 

are normally distributed. 

 

3.3.4 Approximating Non-normal Distributions with Equivalent Normal 

Distributions 

The reliability index, β, while pervasive in reliability analysis, is only defined for 

normally distributed random variables. Since many of the most commonly used 

algorithms for reliability analysis try to find β, non-normally distributed random variables 

often cannot be used. This restriction is eased by normal approximations of non-

normally distributed random variables. This is commonly performed using a method 

called the normal tail approximation [38]. As outlined by Choi, et al [36], using this 

method has the following advantages: 

1. It does not require complex integration of the PDF. 

2. When using this in the HL-RF algorithm (see next section), transformation of non-

normal variables into their approximate normal versions takes place before 

solving for the location of the MPP. 
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3. It often yields accurate results compared to the exact solution. 

The transformation takes the following form: 

 

 
𝑈𝑖 =

𝑥𝑖 − 𝜇𝑥𝑖′
𝜎𝑥𝑖′

 ( 3.10 ) 

 

where  

 

 
𝜎𝑥𝑖′

=
𝜙 �Φ−1 �𝐹𝑥𝑖�𝑥𝑖

∗���

𝑓𝑥𝑖�𝑥𝑖
∗�

 

𝜇𝑥𝑖′ = 𝑥𝑖∗ − Φ �𝐹𝑥𝑖�𝑥𝑖
∗�� 𝜎𝑥𝑖′

 

( 3.11 ) 

 

where Fxi(xi) is the CDF of the distribution to be approximated and fxi(xi) is the PDF of 

the distribution to be approximated.  

This method of normal tail approximation effectively generates a normal 

distribution that matches the value of its PDF and CDF to the original non-normal 

distribution at the point xi*. This is often referred to as the Rackwitz and Fiessler (RF) 

algorithm, after the authors of a paper implementing this algorithm for reliability analysis 

of non-normally distributed random variables [39]. 
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Figure 3.2. An illustration of how the RF algorithm approximates a non-normal distribution with a 

normal one.
[36]  

 

This method has a tendency to introduce considerable error into the RA, as shown by 

Huang and Griffiths [17] and Qin et al [40]. 

 

3.3.5 First-Order Reliability Method 

The First-Order Reliability Method (FORM) is the combination of HL iterations 

with the RF transformation. It is also called the HL-RF algorithm, for that reason. FORM 

is one of the most commonly used methods for RA when accurate computational 

models exist. It is relatively accurate for many problems, and is much more efficient 

than both MCS and LHS when the number of random variables is small. Its main cost is 
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in function evaluations when analytical gradients are not available. In these cases, it 

requires n+1 evaluations per iteration, where n is the number of random variables. 

3.3.6 Second-Order Reliability Method 

The Second-Order Reliability Method (SORM)[41] is the natural extension of 

FORM using a second-order Taylor-series expansion about the design point.  In this 

case, the SORM algorithm calculates reliability index of a quadratic g exactly, and can 

capture the curvature of highly nonlinear limit state functions better than FORM. It has 

the downside of requiring second-order derivatives to be calculated at each design 

point. For implicit functions, the finite-difference calculation requires 2n+1 function 

evaluations, versus n+1 for only first-order derivatives, where n is the number of 

variables. 

 

3.4 Modern Methods 

In recent years several advanced methods for performing RA have been 

developed. Two of the more commonly used methods are summarized here. 

 

3.4.1 Performance Measure Approach 

MPP-based approaches for RA described earlier are also called the Reliability 

Index Approach (RIA) to differentiate them from a method named the Performance 

Measure Approach (PMA). Tu and Choi [42] first published this idea, which takes the 

optimization problem statement used in the RIA and inverts it. Recall equation ( 3.6 ), 

which is the RIA problem statement, and is given again in equation ( 3.12 ). 
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 minimize:  β(Ui) 

subject to:  g(Ui)=0 
( 3.12 ) 

 

This problem statement is instead inverted, as shown in equation ( 3.13 ). 

 

 minimize:  g(Ui) 

subject to:  ‖𝑼‖ = 𝜷𝒕 
( 3.13 ) 

where βt is the target reliability. 

 

Tu and Choi first recommended using the Advanced Mean Value algorithm 

(AMV)[43], and later introduced the Conjugate Mean Value algorithm (CMV). These two 

algorithms perform better than RIA on many problems. In particular, they efficiently find 

good solutions to problems where the RIA diverges or oscillates between solutions. 

Later, Choi and Youn [21] proposed combining them into the Hybrid Mean Value (HMV) 

algorithm, which determines which of the two to use based on a measure of the 

convexity of the constraint limit surface. 

While the PMA approach has been shown to be more robust than the RIA 

approach, it still suffers from many of the same potential pitfalls. It assumes a single 

failure region, that the random variables are normally distributed, and can diverge on 

some problems. 
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3.4.2 Sequential Optimization and Reliability Assessment 

The Sequential Optimization and Reliability Assessment (SORA)[44] algorithm is 

a method for performing RBDO (and not strictly a reliability analysis method) which 

makes use of the fact that finding a reliable design is the same thing as finding a design 

with a factor of safety (FOS) applied to the constraint. This was suspected by many in 

the field, and given a sufficient condition for proof by Ching [3]. The challenge is to 

determine a relationship between the two, since any such relationship would be problem 

dependent. The SORA algorithm solves the RBDO problem by iteratively solving the 

DDO problem. First, a FOS is assumed for the constraint, and DDO is performed with 

that FOS applied. Then RA is performed on the best design found to determine how far 

off the FOS estimate was from the desired Pf limit. The FOS is then adjusted using a 

linear approximation of the relationship, and then DDO is performed again with the new 

FOS. This process is repeated until the chosen FOS matches the desired Pf. It is likely 

to be more efficient than performing the full double-loop RBDO, but the many 

evaluations from multiple DDO and RA runs makes this a very expensive strategy still. It 

does have the benefit of good accuracy, assuming the iterative process converges, 

which may not happen for all problems. 



 

48 

 

4 The Proposed Approach 

4.1 Goal 

There is an important class of optimization problems in which the time to 

evaluate a single design is large enough that accounting for the reliability of the system 

being designed would be computationally infeasible. Additionally, for problems of this 

class, the responses are usually implicit functions of the design variables. 

The goal of this research is to develop a strategy that allows reliability-based 

design optimization (RBDO) to be performed on problems of that class with an 

acceptable level of accuracy and in significantly less time than required by standard 

RBDO techniques. These problems are typically the design, with reliability in mind, of 

systems where the analysis response(s) may be nonlinear, and the deterministic design 

optimization (DDO) problem may also be nonlinear. Often these systems are analyzed 

using numerical techniques such as finite element analysis (FEA) or computational fluid 

dynamics (CFD), where solution times for each design evaluation can range from 

several minutes to several days. It is also typical for these problems to have relatively 

low input variability. This means that typically the responses will have low variability as 

well. 

The level of accuracy that is deemed “acceptable” is not easy to quantify. The 

computational model used will have some error, and this strategy cannot overcome an 

inaccurate model. The level of acceptable accuracy must be problem dependent, and is 

that which is accurate enough to allow the development of reliable designs. 
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4.2 Approaches to Solving the RBDO Problem  

While there are many different strategies to solve the RBDO problem, presented 

below are two extremes in terms of accuracy of Pf prediction and overall efficiency. 

 

1. One way to solve the RBDO problem is to perform a RA for each evaluation of 

the nominal values of the design. This was described earlier as the double-loop 

problem. Typically this means running many additional evaluations that are just 

as computationally costly as the standard evaluation, but which have design 

variable values that vary about the nominal design. Regardless of the method of 

RA chosen, the increase in computational cost is significant. 

 

If an MPP-based algorithm like FORM is used then the number of additional 

evaluations for each nominal evaluation is related to the number of variables and 

the nonlinearity of the constraint limit function. As the number of variables 

increases the number of evaluations per FORM iteration goes up linearly. FORM 

also requires a greater number of iterations for constraints with a high degree of 

nonlinearity. Furthermore, in many situations where the constraints are nonlinear, 

FORM has been shown to converge to incorrect solutions, or not converge at all 

[36]. 

 

If instead a sampling approach like MCS or LHS is used, then the accuracy can 

be much better, but the computational cost is typically much larger, unless the 

number of variables is so large that the gradient calculations in FORM require 
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more evaluations than the sampling approaches.  

 

Since this method generates no response surfaces for use in RA, there is no 

error in Pf prediction from a response surface. The accuracy of the reliability 

prediction is wholly dependent on the fidelity of the computational model and the 

suitability of the RA method chosen. 

 

2. An alternative approach to RBDO is to evaluate the nominal designs (all 

deterministic responses in the problem statement) using actual evaluations, but 

perform RA on a response surface. This response surface is generated from 

some sampling performed before the optimization begins, typically by Latin 

Hypercube designs (in the Design of Experiments (DOE) sense, not the RA 

method). As a result, there can be less overall cost, since the RA cost consists 

primarily of the additional evaluations performed before the optimization begins. 

Evaluations on a response surface are typically very efficient compared to actual 

evaluations. However, this approach may result in a considerable loss in 

accuracy of the reliability responses if the response surface is not accurate.  

 

One obvious criticism is why, if the response surface is accurate enough to 

perform RA, is it not accurate enough to perform the entire optimization? 

Performing optimization on a response surface has known issues, a few of which 

are listed below: 
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a. Response surfaces always suffer from some amount of error, and the 

error at any point is unknown until the predicted value is compared against 

the value from an actual evaluation. 

b. In order to fit a responses surface, many points must be evaluated. 

Typically an approach like Latin Hypercube designs is used to determine 

where to sample in the design space. This results in many points being 

evaluated that are in low performing regions of the design space.   

c. Relative to the overall design space, the variation in the high performing 

designs that the analyst is seeking will be small. This means that 

evaluations during RA will only take place in a small neighborhood about 

the nominal design. Therefore, for a given design the accuracy of the 

response surface used to calculate reliability is only important locally 

around the nominal design. Fitting a single RS at the beginning of the 

optimization will give a global RS that hopefully has relatively low 

aggregate error over the entire space. However, this does not mean that it 

will be accurate locally for a given design. In fact, the error in the RS 

usually varies considerably from location to location around the design 

space. 

 

Both of these approaches are valid ways to solve the RBDO problem, but they 

present their own challenges. For some problems, one or both methods may not be 

well-suited. To further complicate the issue, whether a problem can be solved by the 
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latter approach or not often cannot be determined a priori, and the analyst may waste 

time with an attempt and get no solution. 

 

4.3 Intermediate Conclusions about RBDO 

Based on an analysis of the two most common approaches to RBDO, a few 

conclusions can be drawn: 

1. For many problems one cannot perform RA using actual evaluations. It is simply 

too computationally expensive. This is also borne out in the literature.[14][23] 

2. Therefore, if RBDO is to be performed on problems with very expensive function 

evaluations, some form of RS must be used to calculate reliability. 

3. The RS need not be accurate over the entire design space for all designs. 

Instead, it only needs to be locally accurate about the nominal design for which 

the reliability must be calculated. 

4. Since the design variables usually have low variability relative to the range of the 

design space, the RBDO solution will be close to the DDO solution in most 

cases. Typically the DDO solution will lie on or very close to the active constraint 

limit(s), and the RBDO solution will lie along the line parallel to the gradient of the 

objective function a small distance away from the limit(s). 

These conclusions form the basis for the proposed RBDO strategy described in this 

thesis. Similar conclusions regarding response surfaces were found by Jin et al [45]. As 

will be described further, the proposed RBDO strategy uses response surfaces which 

are designed to be accurate locally around the nominal design being evaluated. 

Additionally, a first stage of only DDO is performed to identify high performing regions of 
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the design space. A later stage where RBDO is performed is seeded with useful data 

from the DDO run. 

 

4.4 Attributes of the Proposed RBDO Method 

 1. The strategy proposed here is independent of reliability analysis (RA) method or 

algorithm. Some methods or algorithms may work better or worse with this 

strategy, as will be noted later. 

 2. This strategy is independent of system analysis model. The accuracy of the 

solution can be no better than the accuracy of the system analysis model, 

however. 

 3. This strategy does not require any particular optimization algorithm. However, the 

algorithm should be a multi-point global search method that tends to cluster new 

evaluations near previous designs that are high performing.  

 

4.5 RBDO Strategy 

Based on the assumptions and the goal outlined above, the following aspects will be 

included in the new RBDO strategy: 

 1. A local response surface will be used to calculate reliability. 

 2. The amount of computational effort used to evaluate low performing designs 

(both in the DDO and RBDO sense) will be minimized. 

 3. The strategy will endeavor to not need to evaluate additional design points strictly 
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for the purpose of creating a response surface, since it is not known until after 

RA is performed if the design is good in the RBDO sense. 

The optimization is performed in three stages: 

1. The first stage is DDO only. During this stage only deterministic responses are 

calculated, and for many problems it is expected that the optimization will identify 

some high quality designs that are near one or more constraint limits, meaning 

one or more constraints are active. In some applications, the algorithm may even 

identify the DDO optimum, and if so, will also likely identify many high quality 

designs near it. The data from this run (the design variable values and the 

corresponding constraint values) will be retained for use in later steps. 

 

2. The second stage is an intermediate step to identify which designs identified by 

the DDO solution may also be reliable, and should therefore be explored in the 

third stage. During this stage the best design found in stage one and several 

feasible (in the DDO sense) designs near it are selected. Then, each design is 

reevaluated in an RBDO sense, meaning their respective reliability values are 

calculated using an RS. Nominal response values are already known, so they do 

not need to be calculated again. RA is performed using the steps illustrated in 

Figure 4.1 and Figure 4.2. 

 

If an RS is accepted (because it is sufficiently accurate), then RA is performed for 

this design and a performance value is assigned based on the RBDO problem 

statement. If an RS cannot be found that meets the RS error criteria, the design 
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is marked as an error. The top performing designs are prepared for injection into 

the RBDO optimization study in the third stage. 

 

Figure 4.1. Process for performing reliability analysis on a design. The “Fit RS” process is 
described in Figure 4.2. 
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Figure 4.2. Process for fitting a response surface. 
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3. The third stage is a full RBDO, where the reliability of each (deterministically) 

feasible design is evaluated using a response surface built in a similar fashion as 

in stage two. That is, for each feasible design a RS is built using previous design 

evaluation points in the neighborhood of that design. This results in a RS that is 

accurate locally, which is sufficient for RA about that design. Good design points 

from Stage two are injected into the run at the beginning to give the search a 

“head start”, based on the information obtained by the DDO study. As new 

designs are evaluated, their deterministic response values are saved for potential 

use in building future response surfaces. 

 

In the strategy as outlined above, DDO is performed first for two primary reasons: 

1. To locate an optimal or near optimal DDO design. This is expected to be nearby 

the RBDO optimum. This design and others around it are used to seed the 

RBDO stage with designs near the RBDO optimum. Especially when the design 

space is multi-modal or otherwise complex, the initial DDO study is an efficient 

way to focus the eventual RBDO study on the most relevant region of the space.  

2. As a result of identifying the DDO optimum design, many designs nearby (and 

elsewhere in the design space) will be evaluated and are available to be used to 

fit a local RS in stages two and three. 

 

4.6 Details on Strategy Implementation 

This strategy was implemented in the following way: 
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1. A Genetic Algorithm (GA) was used as the optimization method. GAs are 

commonly used and meet the necessary criteria outlined earlier. 

2. During the DDO stage, designs that were the same as earlier designs were not 

reevaluated, since there would be no benefit to doing so. However, during the 

RBDO stage, it is possible that some designs that were evaluated early in the run 

might have their reliability predicted poorly as a result of not enough local data to 

fit a quality RS. Therefore, those designs that reoccurred during the RBDO run 

were reevaluated, with the hope that they would have more data points nearby 

and thus benefit from a better approximation of Pf. 

3. During stage two, the RS was accepted when the R2 was greater than 0.85. 

4. During stage three, the RS was accepted when the R2 was greater than 0.9. 

Additionally, the R2 RS error was added as a constraint that must be above a 

0.95. This encouraged designs to have more accurate response surfaces. 

5. Polynomial response surfaces of order one or two were used. All interaction 

terms up to the order of the response surface were included. 

6. During stage two, a larger RS error was allowed for RS acceptance than in stage 

three. 

7. In all cases the response surfaces are fit using the least-squares [46] method. 

 

4.7 When to Switch from DDO to RBDO: α 

One key aspect of this strategy was when the switch from DDO to RBDO should 

occur. The parameters E and α are defined, where E is the total number of cycles to be 
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performed, and α is the percentage of completed cycles before RBDO will be 

performed. When a GA is used as the optimizer, the number of cycles is usually 

referred to as the number of generations. Once the DDO has completed αE cycles, then 

stage two begins, as outlined above. Then the RBDO study begins and runs for (1-α)E 

cycles. This is illustrated in Figure 4.3. 

 

Figure 4.3. Illustration of the parameters α and E and how they define the time when the switch 

from DDO to RBDO occurs. 

 

4.8 Desired Outcomes 

The following should be true of the proposed strategy to deem it successful: 

 1. It will be more efficient or more effective than performing RBDO using traditional 

methods for the following reasons. 

(a) Actual evaluations are not used to perform the RA. 

(b) The response surface is calculated using existing data. Additional evaluations 
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are not performed as part of the response surface calculation. 

(c) RA is not performed early in the optimization, since early designs are typically 

lower performing than later designs. Designs that are low performing in the 

deterministic sense are likely to be low performing even after accounting for 

reliability. Additionally, even performing RA on a response surface incurs 

some computational expense. This expense is removed entirely during stage 

1 of the optimization. 

 2. The reliability calculation will be accurate enough to yield a useful final design. A 

“useful design” is one which is significantly more reliable than the DDO solution. 
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4.9 Implementation 

The problems above were solved using the commercial optimization software 

package, HEEDS MDO v6.1[47]. HEEDS MDO was setup to handle the process 

automation and optimization. The calculation of needed response surfaces was 

developed in MATLAB R2011a[48]. The probability of failure calculations were 

performed through a custom C program. Reliability was evaluated using Monte Carlo 

Simulation with 1,000,000 evaluations.  

The selected optimization algorithm used was a genetic algorithm (GA). The 

HEEDS MDO User’s Manual describes a genetic algorithm in this way: 

 

“A genetic algorithm is a stochastic multi-point search method, which is based on the 

evolutionary theory of the survival of the fittest. It searches a space of potential solutions 

(designs) driven by the information it has learned so far during its search. The search 

starts with the evaluation of a set of random designs (i.e., values of all designs are 

chosen randomly within their allowable ranges). Once a set of candidate designs has 

been evaluated, a subset of those designs is picked, based in some way on their 

relative quality (i.e., degree to which they satisfy the problem’s constraints and 

objectives). Good designs are retained while bad designs are gradually eliminated as 

better design candidates are found.  

 

During the run, new designs are created by either mutation or crossover. Mutation 

changes the value of one or more variables, based on previous results. Crossover takes 

a pair of designs and generates a new design by swapping variable values between the 
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selected pair. The creation and evaluation of each new population of designs is called a 

generation.”[49] 

 

The parameters used are as follows in Table 4.1.  

Table 4.1. Genetic algorithm parameters used. 

Genetic Algorithm 

Parameter 
Value 

Population Size 20 

Number of cycles 
Varied during the 

studies (E) 

Generations per cycle 1 

Crossover type Two point 

Mutation type Multi-field 

Selection type Tournament 

Crossover rate 0.5 

Mutation rate 0.2 

Selection parameter 2 

 

4.9.1 Performance-Based Optimization Problem Statement 

HEEDS MDO uses a performance-based optimization problem statement for 

single objective problems.[49] This means that all of the objectives and constraints are 
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combined into a single value, which defines the relative fitness of each design. The 

performance can be calculated using the formula below: 

  

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒

= � �
𝐿𝑖𝑛𝑊𝑡𝑖 ∙ 𝑆𝑖𝑔𝑛𝑖 ∙ 𝑂𝑏𝑗𝑖

𝑁𝑜𝑟𝑚𝑖
�

𝑁𝑜𝑏𝑗

𝑖 = 1

− � �
𝑄𝑢𝑎𝑑𝑊𝑡𝑗 ∙ 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑉𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑗

2

𝑁𝑜𝑟𝑚𝑗
2 �

𝑁𝑐𝑜𝑛

𝑗 = 1
 

( 4.1 ) 

 

Table 4.2. Explanation of variables used in equation ( 4.1 ). 

Variable Definition 
Value 
Used 

Nobj Number of objectives in the optimization 
study. 

1 

LinWti The linear weight for the i
th

 objective. 1 

Signi The sign for the i
th

 objective. The value is -1 
for objectives being minimized and +1 for 
objectives being maximized. 

problem 
dependent 

Obji The response value for the i
th

 objective for a 
given design. 

n/a 

Normi The normalizing value for the i
th

 objective. problem 
dependent 

Ncon The number of constraints in the 
optimization study 

problem 
dependent 

ConstraintViolationj The amount by which the j
th

 constraint is 
violated. 

n/a 

Normj The normalizing value for the j
th

 constraint. problem 
dependent 

QuadWtj The quadratic weight for the j
th

 constraint. 10,000 
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4.9.2 Resolution 

HEEDS MDO discretizes continuous variables using the variable resolution. 

Each design variable is assigned a value that identifies how many values the design 

variable can take on in the range defined. Unless otherwise specified, all problems were 

solved using a resolution of 1,000,001. This means that there were 1,000,001 equally 

spaced increments between (and including) each variable’s minimum and maximum 

values. The intent of this resolution value is to ensure that the variables are treated 

approximately like continuous variables. For typical engineering problems, finding the 

best values of design variables down to small fractions of a percent is not useful. For 

the problems in this study, the selected resolution level should not have an impact on 

the optimization until well beyond this threshold. 
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5 Problem Descriptions and Results 

Several problems were investigated using the strategy outlined above. The 

problems and results are described below. For each problem solved, first DDO was 

performed. Next, an intermediate stage identifies potential high-performing and reliable 

designs. Some of these designs are injected into RBDO, which follows. During RBDO, a 

response surface is fit for each feasible design and RA performed to determine the 

design’s reliability.  

 

5.1 Simple Polynomial Functions 

The first problem solved consists of two simple polynomial functions. 

 

5.1.1 Problem Definition 

This problem has two variables, denoted X1, and X2. The objective function, F, is a 

linear polynomial function. The single constraint, G, is a quadratic polynomial function. 

These functions are defined and plotted below. This problem was developed specifically 

to be of minimal complexity to show that the proposed strategy works on the simplest of 

problems. The coefficients for F and G are selected arbitrarily, with the coefficients of G 

adjusted to give the G = 0 contour varying curvature. 

 

 𝐹 = −1.74 + 4.5𝑋1 − 3.49𝑋2 ( 5.1 ) 
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 𝐺 = 1.9032 + 9.1𝑋1 − 1.2416𝑋2 + 0.87𝑋1𝑋2 − 1.28𝑋1
2 − 0.9673𝑋2

2 ( 5.2 ) 

The DDO optimization problem statement is: 

 

 minimize  F(X1, X2) 

subject to  G(X1, X2) ≥ 0 

by varying  1.0  ≤ X1 ≤ 7.0 

   1.0  ≤ X2 ≤ 7.0 

( 5.3 ) 

 

The corresponding RBDO problem statement is: 

 

 minimize  F(X1, X2) 

subject to  P[(G(X1, X2) < 0] ≤ 0.0027 

by varying  1.0  ≤ X1 ≤ 7.0 

   1.0  ≤ X2 ≤ 7.0 

   X1, X2~ Nor(μ, σ2) 

( 5.4 ) 

X1 and X2 have standard deviations of 4% of their nominal (mean) values. The reliability 

constraint limit corresponds to approximately 3σ reliability. 
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Figure 5.1. Contours of F and the constraint limit G = 0 over [X1, X2]. The green dot represents the 

DDO optimum design, and the blue dot represents the RBDO optimum design. 

 

Recall that this problem is a set of simple polynomial functions. There are two 

variables, X1 and X2, a linear objective, F, and a quadratic constraint, G. In this problem 

G is active, meaning that it drives the solution and is the sole preventer of further gains 

in the objective, F. Since G is active, then the DDO optimum point is found on the 

constraint limit. Since G is close to linear locally around this solution, the probability of 

failure is approximately 50%. Near this solution, the contours of F are tangent to G, so 

the RBDO optimum point is along a vector normal to F and G at the DDO optimum. The 

RBDO optimum point is a sufficient distance from the DDO optimum point along this 

vector to meet the reliability constraint of Pf ≤ 0.0027. 

Contour 

of G=0 

RBDO 

optimum 

DDO 

optimum 
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This problem was solved for six different total numbers of cycles: 8, 12, 16, 32, 

60, and 100. It was also solved for three values of α: 0.25, 0.5, and 0.75. To make this 

clear, the number of cycles performed in each stage of the study is summarized in  

Table 5.1. 

 

Table 5.1. Breakdown of the number of cycles performed in each stage of the studies performed. 

Total 

Number of 

Cycles 

Number of cycles performed in each stage 

α = 0.25 α = 0.5 α = 0.75 

DDO RBDO DDO RBDO DDO RBDO 

8 2 6 4 4 6 2 

12 3 9 6 6 9 3 

16 4 12 8 8 12 4 

32 8 24 16 16 24 8 

60 15 45 30 30 45 15 

100 25 75 50 50 75 25 

 

Each of the 18 optimization runs was replicated 25 times with different random seeds to 

account for the variations inherent in stochastic methods like genetic algorithms. All 

results presented below are the average of these 25 replications, unless otherwise 

stated. 

The reliability of each design was evaluated using MCS with 1,000,000 

evaluations. This was implemented in a custom C program. 

 



 

69 

 

5.1.2 Solution Using a Linear Response Surface 

  

Figure 5.2. Value of F the simple functions for the best design found over the number of cycles 

and values of α studied. This data is the average of 25 runs. The magnitude is the percent 

difference from the actual best design. Pf was calculated using a linear response surface based 

on available solution points. 



 

70 

 

 

Figure 5.3. Same data as presented in Figure 5.2, rearranged to have alpha on the X-axis. 

Note in Figure 5.2 that within 32 cycles the solution has nearly converged. However, 

as shown in Figure 5.4, the error in the Pf calculation on the response surface takes 

longer to converge even after the objective has converged. Regarding the error 

calculation, the percent difference is not shown because of two issues: 

1. Sometimes the actual Pf is equal to zero, resulting in an undefined percent 

difference. 

2. Sometimes the actual Pf is very small. Since no response surface can be perfect 

(unless the response to be fit is actually a polynomial function of the same order), 

there will always be some error. For two designs with different Pf, one similar to 

the constraint limit for this problem and one very small, but which have response 
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surfaces of similar quality, the latter case will have much larger error in the 

calculation of Pf. In these situations, the percent difference does not accurately 

reflect the error. 
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Figure 5.4. Absolute difference of Pf predicted by the linear response surface and the actual Pf for 

the best design found. The height of the colored bar is the average of 25 runs. The whiskers 
represent the range of the actual values. Note that in most cases the average is very close to the 

minimum, and typically only a single run had very high error. The “actual Pf” value compared 

against is the probability of failure as calculated using the same RA method, but with actual 

evaluations instead of a response surface. 
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Figure 5.5. Same data as presented in Figure 5.4, without min and max bars (only average value is 

plotted). Recall that the reliability constraint limit was set to 0.0027. 

From the results it is clear that the error in calculation of Pf is higher for α = 25% 

than for α = 75% across most of the values for number of cycles. This is likely due to 

having fewer local points near the optimal solution when the value of α is low. Higher 

values of α would yield more local points to choose from in calculating the response 

surface, resulting in a more accurate RS (at least locally, where the accuracy is 

needed). 

One interesting result not clear from the plots is that the value of Pf for the best 

design tended to be different as more cycles were allowed. For early numbers of cycles 

the best design tended to be highly reliable, that is, Pf very close or equal to zero. As 

more cycles were allowed, the reliability of the optimal solution moved closer to its 
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constraint limit. So for low numbers of cycles the error in Pf is quite low because it tends 

be in a region that is flat (Pf = 0 everywhere which is feasible and not near the 

constraint limit). As the number of cycles increases, there are more designs available to 

use to fit the response surface, resulting in higher performing but lower reliability 

designs.  

In the figures below, the history plots of five separate runs are overlaid. The runs 

were selected arbitrarily to show a representative sampling. The blue dots are 

evaluations performed during stage one, DDO. The red dots are evaluations performed 

during stage two, RBDO. The lines represent the best design at that point in the 

optimization search. Note that typically the best design at the beginning of the RBDO 

stage is significantly better than the best design at the beginning of the DDO stage. This 

is due to the beneficial influence of designs injected at the beginning of the RBDO 

stage. Also note that the best designs at the end of the RBDO stage have G values that 

are pushed away from the constraint limit a small amount, in order to satisfy the 

reliability constraint. Only plots for E = 32 and 100 are shown, for brevity. 



 

75 

 

 

Figure 5.6. History plot for the simple function problem, objective F from 5 runs, α=0.25, E=32. The 
blue dots are the DDO stage, while the red dots are the RBDO stage.  

 

Figure 5.7. History plot for the simple function problem, constraint G from 5 runs, α=0.25, E=32. 

The blue dots are the DDO stage, while the red dots are the RBDO stage. 
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Figure 5.8. History plot for the simple function problem, objective F from 5 runs, α=0.25, E=100. 

The blue dots are the DDO stage, while the red dots are the RBDO stage. 

 

Figure 5.9. History plot for the simple function problem, constraint G from 5 runs, α=0.25, E=100. 

The blue dots are the DDO stage, while the red dots are the RBDO stage. 
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Figure 5.10. History plot for the simple function problem, objective F from 5 runs, α=0.50, E=32. 

The blue dots are the DDO stage, while the red dots are the RBDO stage. 

 

Figure 5.11. History plot for the simple function problem, constraint G from 5 runs, α=0.50, E=32. 

The blue dots are the DDO stage, while the red dots are the RBDO stage. 
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Figure 5.12. History plot for the simple function problem, objective F from 5 runs, α=0.50, E=100. 

The blue dots are the DDO stage, while the red dots are the RBDO stage. 

 

Figure 5.13. History plot for the simple function problem, constraint G from 5 runs, α=0.50, E=100. 

The blue dots are the DDO stage, while the red dots are the RBDO stage. 
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Figure 5.14. History plot for the simple function problem, objective F from 5 runs, α=0.75, E=32. 

The blue dots are the DDO stage, while the red dots are the RBDO stage. 

 

Figure 5.15. History plot for the simple function problem, constraint G from 5 runs, α=0.75, E=32. 

The blue dots are the DDO stage, while the red dots are the RBDO stage. 
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Figure 5.16. History plot for the simple function problem, objective F from 5 runs, α=0.75, E=100. 

The blue dots are the DDO stage, while the red dots are the RBDO stage. 

 

Figure 5.17. History plot for the simple function problem, constraint G from 5 runs, α=0.75, E=100. 

The blue dots are the DDO stage, while the red dots are the RBDO stage. 
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5.1.3 Solution Using a Quadratic Response Surface 

 

Figure 5.18. Value of F for the simple functions for best design found over the number of cycles 

and values of α studied. This data is the average of 25 runs. The magnitude is the percent 

difference the actual best design. Pf was calculated using a quadratic response surface based on 

available solution points. 
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Figure 5.19. Same data as presented in Figure 5.18, rearranged to have alpha on the X-axis. 

The problem with linear F and quadratic G was solved again with a quadratic 

response surface fit to the constraint G. The process for choosing points and fitting a 

response surface was the same as with the linear response surface. For these runs, the 

error in the Pf calculation was almost always zero, as expected, with a few cases in 

which the absolute error was 10-6 due to round-off error in the least squares fit. 

Effectively, these results are equivalent to the case in which the study is performed with 

actual evaluations for both the nominal and stochastic performance of the designs. It is 

considered here in order to verify the accuracy of the implementation and the validity of 

the approach in cases of high accuracy in the Pf calculations. 
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An important conclusion from this set of results is that convergence is faster for α 

= 25% than α = 75%, which is the reverse of the results using the linear response 

surface. This makes sense, however, since in the linear RS results the trends were due 

to the accuracy of the RS generated. For this set of results, the RS was always exact 

(aside from the round-off error). So, for low α, more cycles are spent performing RBDO 

(with exact values of Pf) than for high α. Because the ultimate goal is to find the RBDO 

solution and not the DDO solution, it makes sense that a lower value of α would result in 

faster convergence of the solution. In fact, were it computationally feasible to perform 

RA using actual evaluations of G (which is essentially equivalent to fitting a quadratic 

response surface to quadratic data, as performed here), then the value of α used should 

be zero to find the RBDO solution most efficiently.  

When comparing Figure 5.2 and Figure 5.18, it should be noted that the rate of 

convergence is faster for the quadratic RS. It is not surprising that a less accurate 

prediction of Pf would result in slower convergence. 
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5.2 Peaks 

5.2.1 Problem Definition 

This problem has two variables, denoted X1, and X2. The objective function, F, is 

a variation on the Peaks problem.[48] This function is continuous and continuously 

differentiable, and has several stationary points. The single constraint, G, is a quadratic 

polynomial function. These functions are defined and plotted below. The resulting DDO 

and RBDO problems are multimodal. The coefficients of G are selected arbitrarily, with 

the coefficients adjusted to give the G = 0 contour varying curvature and make the 

unconstrained optimum point infeasible. This problem was developed to show that the 

proposed strategy could solve multimodal problems. 

 

 𝐹 = −
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( 5.5 ) 

 

 𝐺 = −1.4265 + 0.22334𝑋1 − 0.62499𝑋2 + 0.23294𝑋1
2

+ 0.24135𝑋1𝑋2 + 0.20016𝑋2
2 

( 5.6 ) 

The DDO optimization problem statement is: 
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 minimize  F(X1, X2) 

subject to  G(X1, X2) ≤ 0 

by varying  -3.0  ≤ X1 ≤ 3.0 

   -3.0  ≤ X2 ≤ 3.0 

( 5.7 ) 

 

The corresponding RBDO problem statement is: 

 

 minimize  F(X1, X2) 

subject to  P[(G(X1, X2) > 0] ≤ 0.005 

by varying  -3.0  ≤ X1 ≤ 3.0 

   -3.0  ≤ X2 ≤ 3.0 

   X1, X2 ~ Nor(μ, σ2) 

( 5.8 ) 

X1 and X2 have standard deviations of 0.1. The reliability constraint limit corresponds to 

approximately 2.5σ reliability. 
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Figure 5.20. Contours of F and the constraint limit G = 0 over [X1, X2]. The green dot represents 

the DDO optimum design, and the red dot represents the RBDO optimum design. 

The DDO optimum design has the following approximate values: 

 F = -6.46949 

 G = -6.11652*10-6 

 X1 = 0.244728 

 X2 = -1.549854 

 

The RBDO optimum design has the following approximate values: 

Contour 

of G=0 

RBDO 

Optimum 

DDO 

Optimum 
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F  = -5.02620 

 G  = -0.290869 

P[G > 0] = 0.004999 

 X1  = 0. 315982 

 X2  = -1.29081 

 

This problem was solved for six total numbers of cycles: 8, 12, 16, 32, 60, and 

100. It was also solved for three values of α: 0.25, 0.5, and 0.75 (these are the same 

parameter values as used in the previous example). Table 5.1 summarizes the list of 

runs performed. 

Each optimization run was replicated 25 times with different random seeds to 

account for the variations inherent in stochastic methods like genetic algorithms. All 

results presented below are the average of these 25 replications, unless otherwise 

stated. The reliability of each design was evaluated using MCS with 1,000,000 

evaluations. This was implemented in a custom C program. 

 

5.2.2 Solution Using a Linear Response Surface 

This problem was first solved using a linear response surface to locally 

approximate the constraint. 
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Figure 5.21. Value of F for the peaks problem for best design found over the number of cycles and 

values of α studied. This data is the average of 25 runs. The magnitude is the percent difference 

from the best design. Pf was calculated using a linear response surface based on available 

solution points. 



 

89 

 

 

Figure 5.22. Same data as presented in Figure 5.21, rearranged to have alpha on the X-axis. 
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For the low values of E, the value of α = 75% was more efficient than 25% and 50%. As 

the number of cycles increases this no longer holds, and α = 75% is the least efficient of 

the values of α studied. This reversal may be due to this problem being both multimodal 

and having an RBDO solution which is a significant distance away from the DDO 

solution. So even if the DDO solution finds the global DDO optimum, the RBDO solution 

is still a significant distance away, and so for this type of problem the proposed strategy 

may not accelerate the RBDO search as much as for other problems. There is still 

benefit from the DDO solution providing points for use in fitting response surfaces. The 

history plots shown later bear this out, where the starting best design for the RBDO 

phase is less often (but not always) similar in objective value to the starting best design 

from DDO. 
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Figure 5.23. Absolute difference of Pf predicted by the response surface and the actual Pf for the 

best design found. The height of the colored bar is the average of 25 runs. The whiskers represent 

the range of the actual values. Note that in most cases the average is very close to the minimum, 

and typically only a single run had very high error. The “actual Pf” value compared against is the 

probability of failure as calculated using the same RA method, but with actual evaluations instead 

of a response surface. 

Constraint 

Limit 
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Figure 5.24. Same data as presented in Figure 5.23, without min and max bars (only average value 

is plotted). 

The Pf calculation error is reasonable, and trends downward between 60 and 100 

cycles. As seen in previous problems, often there is a single run which has high error, 

which pushes the average upward. 

In the figures below, the history plots of five runs are overlaid. The runs were 

selected arbitrarily to show a representative sampling. The blue dots are evaluations 

performed during stage one, DDO. The red dots are evaluations performed during stage 

two, RBDO. The lines represent the best design at that point in the optimization. In the 

previous study, the starting best design for the RBDO stage was typically much better 

than the starting best for the DDO stage. This was due to the DDO stage identifying 

high quality, reliable designs to seed the RBDO stage with. For this problem, since the 

Constraint 

Limit 
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DDO solution found may not be the global well, or if it is, is still far from the RBDO 

solution, this seeding process did not always yield a significantly better solution to start 

off the RBDO stage with. This distance from the DDO solution to the RBDO solution can 

also be seen in the large cap between the best RBDO solutions found and the 

constraint limit line. 

Also note the large number of designs clustered around the value of zero for the 

objective F. These designs are actually not necessarily near each other in design 

variable value, and are a result of the problem having a large area near the corners and 

edges where it is relatively flat and has a value of zero.  
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Figure 5.25. History plot for the peaks problem, objective F from 5 runs, α=0.25, E=32. The blue 
dots are the DDO stage, while the red dots are the RBDO stage. 

 

Figure 5.26. History plot for the peaks problem, constraint G from 5 runs, α=0.25, E=32. The blue 

dots are the DDO stage, while the red dots are the RBDO stage. 
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Figure 5.27. History plot for the peaks problem, objective F from 5 runs, α=0.25, E=100. The blue 

dots are the DDO stage, while the red dots are the RBDO stage. 

 

Figure 5.28. History plot for the peaks problem, constraint G from 5 runs, α=0.25, E=100. The blue 

dots are the DDO stage, while the red dots are the RBDO stage. 
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Figure 5.29. History plot for the peaks problem, objective F from 5 runs, α=0.50, E=32. The blue 

dots are the DDO stage, while the red dots are the RBDO stage. 

 

Figure 5.30. History plot for the peaks problem, constraint G from 5 runs, α=0.50, E=32. The blue 

dots are the DDO stage, while the red dots are the RBDO stage. 
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Figure 5.31. History plot for the peaks problem, objective F from 5 runs, α=0.50, E=100. The blue 

dots are the DDO stage, while the red dots are the RBDO stage. 

 

Figure 5.32. History plot for the peaks problem, constraint G from 5 runs, α=0.50, E=100. The blue 

dots are the DDO stage, while the red dots are the RBDO stage. 
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Figure 5.33. History plot for the peaks problem, objective F from 5 runs, α=0.75, E=32. The blue 

dots are the DDO stage, while the red dots are the RBDO stage. 

 

Figure 5.34. History plot for the peaks problem, constraint G from 5 runs, α=0.75, E=32. The blue 
dots are the DDO stage, while the red dots are the RBDO stage. 
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Figure 5.35. History plot for the peaks problem, objective F from 5 runs, α=0.75, E=100. The blue 

dots are the DDO stage, while the red dots are the RBDO stage. 

 

Figure 5.36. History plot for the peaks problem, constraint G from 5 runs, α=0.75, E=100. The blue 

dots are the DDO stage, while the red dots are the RBDO stage. 
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Since this is a 2D problem with multiple local optima it is useful to plot the location of the 

best design found by the RBDO stage.  

 

Figure 5.37. Contours of objective F overlaid with the constraint limit (G = 0, dotted line) for the 

peaks problem. The green dot is the DDO optimum and the red dot is the RBDO optimum. The 
other plotted points are the best design found for each of the 25 runs performed. Only a subset of 

the data is plotted: E = 12 in cyan, E = 60 in white, and E = 100 in black. The results plotted here 

are for α = 0.25. 
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Figure 5.38. Contours of objective F overlaid with the constraint limit (G = 0, dotted line) for the 

peaks problem. The green dot is the DDO optimum and the red dot is the RBDO optimum. The 
other plotted points are the best design found for each of the 25 runs performed. Only a subset of 

the data is plotted: E = 12 in cyan, E = 60 in white, and E = 100 in black. The results plotted here 

are for α = 0.50. 
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Figure 5.39. Contours of objective F overlaid with the constraint limit (G = 0, dotted line) for the 

peaks problem. The green dot is the DDO optimum and the red dot is the RBDO optimum. The 
other plotted points are the best design found for each of the 25 runs performed. Only a subset of 

the data is plotted: E = 12 in cyan, E = 60 in white, and E = 100 in black. The results plotted here 

are for α = 0.75. 

From the plots showing the location of the best design it can be noted that in 

some situations the best design found is not near the global optimum. This is not 

surprising, given that the feasible region near the global optimum which is also lower 

than the local well is rather narrow. 
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5.2.3 Solution Using a Quadratic Response Surface 

Below are the results of using a quadratic response surface to locally approximate the 

constraint. Recall that the constraint in this problem is a quadratic function, so this 

section’s results are effectively exact in terms of Pf calculation. The measured error was 

similar to the round-off error which occurs in the least-squares fit, so effectively 

nonexistent. 

 

Figure 5.40. Value of F for the peaks problem for the best design found over the number of cycles 
and values of α studied. This data is the average of 25 runs. The magnitude is the percent 

difference from the best design. Pf was calculated using a quadratic response surface based on 

available solution points. 
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Figure 5.41. Same data as presented in Figure 5.40, rearranged to have alpha on the X-axis. 
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For these results, it does not appear that higher values of α are of any benefit. 

For low numbers of cycles the efficiency is similar for all values of α, while it is 

significantly better to have low α for higher numbers of cycles. These results are similar 

to those from the Simple Function, and the same conclusion holds. When the Pf 

calculation is exact or near exact, while also being computationally inexpensive, it 

makes sense to spend as much time as possible performing RBDO. So the best value 

of α in this situation is near zero. 

In these results the low numbers of cycles find better designs than with the linear 

RS, but later there appears to be little difference in convergence rate. This may be 

because the accuracy of the linear response surface was “good enough” for the 

optimization to perform well once there are enough evaluations to fit a good local RS. 

In the figures below, the history plots of five runs are overlaid. The runs were 

selected arbitrarily to show a representative sampling. The blue dots are evaluations 

performed during stage one, DDO. The red dots are evaluations performed during stage 

two, RBDO. The lines represent the best design at that point in the optimization. In the 

previous study, the starting best design for the RBDO stage was typically much better 

than the starting best for the DDO stage. This was due to the DDO stage identifying 

high quality, reliable designs to seed the RBDO stage with. For this problem, since the 

DDO solution found may not be the global well, or if it is, is still far from the RBDO 

solution, this seeding process did not always yield a significantly better solution to start 

off the RBDO stage with. This distance from the DDO solution to the RBDO solution can 

also be seen in the large cap between the best RBDO solutions found and the 

constraint limit line. 
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Also note the large number of designs clustered around the value of zero for the 

objective F. These designs are actually not necessarily near each other in design 

variable value, and are a result of the problem having a large area near the corners and 

edges where it is relatively flat and has a value of zero.  
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Figure 5.42. History plot for the peaks problem, objective F from 5 runs, α=0.25, E=32. The blue 
dots are the DDO stage, while the red dots are the RBDO stage. 

 

Figure 5.43. History plot for the peaks problem, constraint G from 5 runs, α=0.25, E=32. The blue 

dots are the DDO stage, while the red dots are the RBDO stage. 
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Figure 5.44. History plot for the peaks problem, objective F from 5 runs, α=0.25, E=100. The blue 

dots are the DDO stage, while the red dots are the RBDO stage. 

 

Figure 5.45. History plot for the peaks problem, constraint G from 5 runs, α=0.25, E=100. The blue 

dots are the DDO stage, while the red dots are the RBDO stage. 
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Figure 5.46. History plot for the peaks problem, objective F from 5 runs, α=0.50, E=32. The blue 

dots are the DDO stage, while the red dots are the RBDO stage. 

 

Figure 5.47. History plot for the peaks problem, constraint G from 5 runs, α=0.50, E=32. The blue 

dots are the DDO stage, while the red dots are the RBDO stage. 
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Figure 5.48. History plot for the peaks problem, objective F from 5 runs, α=0.50, E=100 The blue 

dots are the DDO stage, while the red dots are the RBDO stage. 

 

Figure 5.49. History plot for the peaks problem, constraint G from 5 runs, α=0.50, E=100. The blue 

dots are the DDO stage, while the red dots are the RBDO stage. 
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Figure 5.50. History plot for the peaks problem, objective F from 5 runs, α=0.75, E=32. The blue 

dots are the DDO stage, while the red dots are the RBDO stage. 

 

Figure 5.51. History plot for the peaks problem, constraint G from 5 runs, α=0.75, E=32. The blue 

dots are the DDO stage, while the red dots are the RBDO stage. 
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Figure 5.52. History plot for the peaks problem, objective F from 5 runs, α=0.75, E=100. The blue 

dots are the DDO stage, while the red dots are the RBDO stage. 

 

Figure 5.53. History plot for the peaks problem, constraint G from 5 runs, α=0.75, E=100. The blue 

dots are the DDO stage, while the red dots are the RBDO stage. 
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Since this is a 2D problem with multiple local optima it is useful to plot the 

location of the best design found by the RBDO stage.  

 

Figure 5.54. Contours of objective F overlaid with the constraint limit (G = 0, dotted line) for the 

peaks problem. The green dot is the DDO optimum and the red dot is the RBDO optimum. The 
other plotted points are the best design found for each of the 25 runs performed. Only a subset of 

the data is plotted: E = 12 in cyan, E = 60 in white, and E = 100 in black. The results plotted here 

are for α = 0.25. 
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Figure 5.55. Contours of objective F overlaid with the constraint limit (G = 0, dotted line) for the 

peaks problem. The green dot is the DDO optimum and the red dot is the RBDO optimum. The 
other plotted points are the best design found for each of the 25 runs performed. Only a subset of 

the data is plotted: E = 12 in cyan, E = 60 in white, and E = 100 in black. The results plotted here 

are for α = 0.50. 
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Figure 5.56. Contours of objective F overlaid with the constraint limit (G = 0, dotted line) for the 

peaks problem. The green dot is the DDO optimum and the red dot is the RBDO optimum. The 
other plotted points are the best design found for each of the 25 runs performed. Only a subset of 

the data is plotted: E = 12 in cyan, E = 60 in white, and E = 100 in black. The results plotted here 

are for α = 0.75. 

From the plots showing the location of the best design it can be noted that in 

some situations the best design found is not near the global optimum. This is not 

surprising, given that the feasible region near the global optimum which is also lower 

than the local well is rather narrow. 
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5.3 Cantilevered I-Beam 

5.3.1 Problem Definition 

This problem is a cantilevered beam of length L with a tip load, P. It has an I-

shaped cross-section, defined by four parameters, b1, h1, b2, and H, shown in the 

figure below. The beam is made of aluminum. 

 

Figure 5.57. Analysis and geometric details of the cantilevered I-beam. 

 

The DDO problem statement is described below: 

 minimize  Volume 

subject to  MaxStress ≤ 5000 psi 

   MaxDisp ≤ 0.065 in. 

by varying  2.0 in  ≤ b1 ≤ 12.0 in. 

 0.1 in.  ≤ h1 ≤ 1.0 in. 

 0.1 in   ≤ b2 ≤ 2.0 in. 

 3.0 in.  ≤ H ≤ 7.0 in. 

( 5.9 ) 
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The RBDO problem statement is described below: 

 minimize  Volume 

subject to  P[MaxStress > 5000 psi] ≤ 0.0027 

   P[MaxDisp > 0.065 in.] ≤ 0.0027 

by varying  2.0 in  ≤ b1 ≤ 12.0 in. 

 0.1 in.  ≤ h1 ≤ 1.0 in. 

 0.1 in   ≤ b2 ≤ 2.0 in. 

 3.0 in.  ≤ H ≤ 7.0 in. 

 b1, h1, b2, H ~ Nor(μ, σ2) 

( 5.10 ) 

 

The responses are defined by the formulae below: 

 

 𝑉𝑜𝑙𝑢𝑚𝑒 = (2 ∙ ℎ1 ∙ 𝑏1 + (𝐻 − 2 ∙ ℎ1)𝑏2)𝐿 

𝑀𝑎𝑥𝑆𝑡𝑟𝑒𝑠𝑠 =
𝑃 ∙ 𝐿 ∙ 𝐻

2 ∙ 𝐼
 

𝑀𝑎𝑥𝐷𝑖𝑠𝑝 =
𝑃 ∙ 𝐿3

3 ∙ 𝐸 ∙ 𝐼
 

𝐼 =
1

12
𝑏2(𝐻 − 2 ∙ ℎ1)3 + 2 �

1
12

𝑏1 ∙ ℎ13 +
𝑏1 ∙ ℎ1(𝐻 − ℎ1)2

4
� 

( 5.11 ) 

 

For this problem, the following values were used: Young’s Modulus = 10 Msi, L = 36 in., 

and P = 1000 lbf. The baseline design is given in Table 8.2, along with the assumed 

standard deviation. All design variables are normally distributed and have constant 

standard deviations of 3% of their baseline values. 
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Table 5.2. Baseline design and applied variation for the cantilevered beam problem. 

Variable 
Baseline 

Value 

Standard 

Deviation 

b1 4.0 0.12 

h1 0.1 0.003 

b2 0.25 0.0075 

H 3.5 0.105 

 

The DDO optimum design has the following approximate values: 

 Volume = 92.76 in3. 

 MaxStress = 5000. psi 

 MaxDisp = 0.06172 in. 

 b1  = 9.48387 in. 

 h1  = 0.1 in. 

 b2  = 0.1 in. 

 H  = 7.0 in. 

The RBDO optimum design has the following approximate values: 

Volume   = 98.81 in3. 

 MaxStress   = 4,643 psi 

 P[MaxStress > 5000] = 0.01233 

 MaxDisp   = 0.05731 in. 

P[MaxDisp > 0.065 in.] = 0.001757 

 b1    = 9.510 in. 
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 h1    = 0.1086 in. 

 b2    = 0.1000 in. 

 H    = 7.000 in. 

 

This problem was solved using the same set of values for α and E as in the 

simple function problem, listed in Table 5.1, except for the linear response surface it 

was only run to E = 60. This problem was selected because it had more than two 

variables and more than one constraint, unlike the previous two example problems. 

Additionally, it is an engineering problem, which makes it similar to the types of 

problems this RBDO strategy is intended to solve. 

Each optimization run was replicated 20 times with different random seeds to 

account for the variations inherent in stochastic methods like genetic algorithms. All 

results presented below are the average of these 20 replications, unless otherwise 

stated. The reliability of each design was evaluated using MCS with 1,000,000 

evaluations. This was implemented in a custom C program. 

 

5.3.2 Solution Using a Linear Response Surface 

As in the previous problems, first the problem was solved using a linear RS. In 

this case separate RS were generated for each constraint. 
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Figure 5.58. Value of Volume for the cantilevered beam problem for best design found over the 

number of cycles and values of α studied. This data is the average of 20 runs. The magnitude is 
the percent difference from the best design. 
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Figure 5.59. Same data as presented in Figure 5.58, rearranged to have alpha on the X-axis. 

This problem converged more slowly than the previous two problems, which is 

expected given the additional variables and constraint. It has not yet fully converged 

after 60 cycles. 

For 8 cycles, α = 75% is slightly more efficient than 25%. This holds for 12 cycles 

as well, though α = 50% shows similar efficiency to 75%. For 32 cycles, the trend may 

be reversing so α = 25% is slightly more efficient, though it is unknown if this is a true 

trend or some latent stochastic variation. If the trend is reversing, it would likely be due 

to the longer DDO stage producing enough designs to get RS which are accurate 

enough to avoid hampering the RBDO stage. 
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Figure 5.60. Absolute difference of Pf predicted by the response surface and the actual Pf for the 

best design found for the MaxStress response. The height of the colored bar is the average of 20 

runs. The whiskers represent the range of the actual values. Note that in most cases the average 
is very close to the minimum, because typically only a single run had very high error. The “actual 

Pf” value compared against is the probability of failure as calculated using the same RA method, 

but with actual evaluations instead of a response surface. 

0.00 

0.02 

0.04 

0.06 

0.08 

0.10 

0.12 

0.14 

0.16 

8 12 16 32 60 

D
iff

er
en

ce
 fr

om
 a

ct
ua

l P
f 

Cycles 

Pf Error MaxStress 

25 

50 

75 



 

123 

 

 

Figure 5.61. Same data as presented in Figure 5.60, without min and max bars (only average value 

is plotted). A horizontal line is provided showing the reliability constraint limit value. 

0.000 

0.005 

0.010 

0.015 

0.020 

0.025 

8 12 16 32 60 

D
iff

er
en

ce
 fr

om
 a

ct
ua

l P
f 

Cycles 

Pf Error MaxStress 

25 

50 

75 

Constraint Limit 



 

124 

 

 

Figure 5.62. Absolute difference of Pf predicted by the response surface and the actual Pf for the 

best design found for the MaxDisp response. The height of the colored bar is the average of 20 

runs. The whiskers represent the range of the actual values. Note that in most cases the average 
is very close to the minimum, because typically only a single run had very high error. The “actual 

Pf” value compared against is the probability of failure as calculated using the same RA method, 

but with actual evaluations instead of a response surface. 
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Figure 5.63. Same data as presented in Figure 5.62, without min and max bars (only average value 

is plotted). A horizontal line is provided showing the reliability constraint limit value. 

The trends in the error in Pf with respect to α are not clear, meaning there may 

be some significant stochastic error remaining in the data. Regardless, it is clear that 

the error goes down as the number of cycles increases. The error in Pf for MaxStress 

tends to be lower than that of MaxDisp. The average bars are clearly thrown off by the 

small number of replications which had high error. One indicator of this is that the 

median Pf Error for MaxStress was 0 for cycles 8, 12, and 16. For the Pf error for 

MaxDisp, the median averaged 0.000161 for cycles 8, 12, and 16, and rose to similar 

levels as MaxStress for the higher number of cycles. So it can be stated that typically 

the Pf error is relatively low, except isolated runs where the error can be much larger. 
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This behavior is representative of one risk of using an automatically generated (no 

human intervention) RS. 

In the figures below, the history plots of five runs are overlaid. The runs selected 

were arbitrary to show a representative sampling. The blue dots are evaluations 

performed during stage one, DDO. The red dots are evaluations performed during stage 

two, RBDO. The lines represent the best design at that point in the optimization. Note 

that typically the best design at the beginning of the RBDO stage is significantly better 

than the best design at the beginning of the DDO stage. This is due to the beneficial 

influence of designs injected to the RBDO stage. Also note that the best designs at the 

end of the RBDO stage have constraint values that are pushed away from the constraint 

limit a small amount. 

 

 

Figure 5.64. History plot for the cantilevered beam problem, objective Volume from 5 runs, α=0.25, 

E=32. The blue dots are the DDO stage, while the red dots are the RBDO stage. 



 

127 

 

 

Figure 5.65. History plot for the cantilevered beam problem, constraint MaxStress from 5 runs, 

α=0.25, E=32. The blue dots are the DDO stage, while the red dots are the RBDO stage. 

 

Figure 5.66. History plot for the cantilevered beam problem, constraint MaxDisp from 5 runs, 
α=0.25, E=32. The blue dots are the DDO stage, while the red dots are the RBDO stage. 
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Figure 5.67. History plot for the cantilevered beam problem, objective Volume from 5 runs, α=0.25, 

E=60. The blue dots are the DDO stage, while the red dots are the RBDO stage. 

 

Figure 5.68. History plot for the cantilevered beam problem, constraint MaxStress from 5 runs, 
α=0.25, E=60. The blue dots are the DDO stage, while the red dots are the RBDO stage. 
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Figure 5.69. History plot for the cantilevered beam problem, constraint MaxDisp from 5 runs, 

α=0.25, E=60. The blue dots are the DDO stage, while the red dots are the RBDO stage. 

 

Figure 5.70. History plot for the cantilevered beam problem, objective Volume from 5 runs, α=0.50, 

E=32. The blue dots are the DDO stage, while the red dots are the RBDO stage. 
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Figure 5.71. History plot for the cantilevered beam problem, constraint MaxStress from 5 runs, 

α=0.50, E=32. The blue dots are the DDO stage, while the red dots are the RBDO stage. 

 

Figure 5.72. History plot for the cantilevered beam problem, constraint MaxDisp from 5 runs, 

α=0.50, E=32. The blue dots are the DDO stage, while the red dots are the RBDO stage. 
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Figure 5.73. History plot for the cantilevered beam problem, objective Volume from 5 runs, α=0.50, 

E=60. The blue dots are the DDO stage, while the red dots are the RBDO stage. 

 

Figure 5.74. History plot for the cantilevered beam problem, constraint MaxStress from 5 runs, 

α=0.50, E=60. The blue dots are the DDO stage, while the red dots are the RBDO stage. 
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Figure 5.75. History plot for the cantilevered beam problem, constraint MaxDisp from 5 runs, 

α=0.50, E=60. The blue dots are the DDO stage, while the red dots are the RBDO stage. 

 

Figure 5.76. History plot for the cantilevered beam problem, objective Volume from 5 runs, α=0.75, 

E=32. The blue dots are the DDO stage, while the red dots are the RBDO stage. 
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Figure 5.77. History plot for the cantilevered beam problem, constraint MaxStress from 5 runs, 

α=0.75, E=32. The blue dots are the DDO stage, while the red dots are the RBDO stage. 

 

Figure 5.78. History plot for the cantilevered beam problem, constraint MaxDisp from 5 runs, 

α=0.75, E=32. The blue dots are the DDO stage, while the red dots are the RBDO stage. 
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Figure 5.79. History plot for the cantilevered beam problem, objective Volume from 5 runs, α=0.75, 

E=60. The blue dots are the DDO stage, while the red dots are the RBDO stage. 

 

Figure 5.80. History plot for the cantilevered beam problem, constraint MaxStress from 5 runs, 

α=0.75, E=60. The blue dots are the DDO stage, while the red dots are the RBDO stage. 
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Figure 5.81. History plot for the cantilevered beam problem, constraint MaxDisp from 5 runs, 

α=0.75, E=60. The blue dots are the DDO stage, while the red dots are the RBDO stage. 

 

5.3.3 Solution Using a Quadratic Response Surface 

Below are the results of the cantilever beam study using a quadratic response 

surface to approximate the constraints. 
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Figure 5.82. Value of Volume for best design found over the number of cycles and values of α 

studied. This data is the average of 20 runs. The magnitude is the percent difference from the best 
design. 
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Figure 5.83. Same data as presented in Figure 5.82, rearranged to have alpha on the X-axis. 
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Figure 5.84. Absolute difference of Pf predicted by the response surface and the actual Pf for the 

best design found for the MaxStress response. The height of the colored bar is the average of 20 

runs. The whiskers represent the range of the actual values. Note that in most cases the average 
is very close to the minimum, because typically only a single run had very high error. The “actual 

Pf” value compared against is the probability of failure as calculated using the same RA method, 

but with actual evaluations instead of a response surface. 
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Figure 5.85. Same data as presented in Figure 5.84, without min and max bars (only average value 

is plotted). A horizontal line is provided showing the reliability constraint limit value. 

Constraint Limit 
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Figure 5.86. Absolute difference of Pf predicted by the response surface and the actual Pf for the 

best design found for the MaxDisp response. The height of the colored bar is the average of 20 

runs. The whiskers represent the range of the actual values. Note that in most cases the average 
is very close to the minimum, because typically only a single run had very high error. The “actual 

Pf” value compared against is the probability of failure as calculated using the same RA method, 

but with actual evaluations instead of a response surface. 
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Figure 5.87. Same data as presented in Figure 5.86, without min and max bars (only average value 

is plotted). A horizontal line is provided showing the reliability constraint limit value. 

 

When comparing Figure 5.58 and Figure 5.82 one difference between running 

with linear RS versus quadratic RS is that the quadratic actually performs worse at low 

numbers of evaluations. This is particularly evident at α = 0.25, where the quadratic RS 

run found significantly worse designs than the linear RS run. This is opposite of the 

results from the previous two problems. This is due to this problem having four 

variables, while the others had two, as well as the quadratic RS being exact for the last 

two problems. For this problem, a linear RS requires five points, while a quadratic 

surface requires fifteen points. For low numbers of evaluations, the run using a 

quadratic RS was not able to fit RS with acceptable accuracy until later in the run (when 

there are more points available). As the number of cycles increases, the runs using 

Constraint Limit 
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linear and quadratic response surfaces have comparable performance. This indicates 

that there are enough local points in the larger number of cycle runs to get a local 

quadratic surface of sufficient accuracy, so the optimization is not hampered like it was 

with fewer cycles. 

The trends in α seem to suggest that early on it is better to do more DDO (high α) 

and as the error in Pf decreases this reverses and it is better to do more RBDO (low α). 

The trends in the error in Pf with regard to α are not clear, meaning there may be some 

significant stochastic error remaining in that data. One obvious result is that the error is 

significantly lower for these results than those using the linear RS. Also, the error in Pf 

for MaxStress tends to be lower than that of MaxDisp.  

In the figures below, the history plots of five runs are overlaid. The runs were 

arbitrarily selected to show a representative sampling. The blue dots are evaluations 

performed during stage one, DDO. The red dots are evaluations performed during stage 

two, RBDO. The lines represent the best design at that point in the optimization. Note 

that typically the best design at the beginning of the RBDO stage is significantly better 

than the best design at the beginning of the DDO stage. This is due to the beneficial 

influence of designs injected to the RBDO stage. Also note that the best designs at the 

end of the RBDO stage have constraint values that are pushed away from the constraint 

limit a small amount. 

It’s also clear that for α = 0.25, and 0.5 the DDO solution has not converged for E 

= 32. This is evident from the gap between the best design found during the DDO stage 
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and the constraint limits for the two constraints. For E = 100, the DDO solution is 

against the constraint limits, indicating that it may have found the DDO optimum. 

 

 

Figure 5.88. History plot for the cantilevered beam problem, objective Volume from 5 runs, α=0.25, 

E=32. The blue dots are the DDO stage, while the red dots are the RBDO stage. 
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Figure 5.89. History plot for the cantilevered beam problem, constraint MaxStress from 5 runs, 

α=0.25, E=32. The blue dots are the DDO stage, while the red dots are the RBDO stage. 

 

Figure 5.90. History plot for the cantilevered beam problem, constraint MaxDisp from 5 runs, 

α=0.25, E=32. The blue dots are the DDO stage, while the red dots are the RBDO stage. 
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Figure 5.91. History plot for the cantilevered beam problem, objective Volume from 5 runs, α=0.25, 

E=100. The blue dots are the DDO stage, while the red dots are the RBDO stage. 

 

Figure 5.92. History plot for the cantilevered beam problem, constraint MaxStress from 5 runs, 

α=0.25, E=100. The blue dots are the DDO stage, while the red dots are the RBDO stage. 
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Figure 5.93. History plot for the cantilevered beam problem, constraint MaxDisp from 5 runs, 

α=0.25, E=100. The blue dots are the DDO stage, while the red dots are the RBDO stage. 

 

Figure 5.94. History plot for the cantilevered beam problem, objective Volume from 5 runs, α=0.50, 

E=32. The blue dots are the DDO stage, while the red dots are the RBDO stage. 
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Figure 5.95. History plot for the cantilevered beam problem, constraint MaxStress from 5 runs, 

α=0.50, E=32. The blue dots are the DDO stage, while the red dots are the RBDO stage. 

 

Figure 5.96. History plot for the cantilevered beam problem, constraint MaxDisp from 5 runs, 

α=0.50, E=32. The blue dots are the DDO stage, while the red dots are the RBDO stage. 
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Figure 5.97. History plot for the cantilevered beam problem, objective Volume from 5 runs, α=0.50, 

E=100. The blue dots are the DDO stage, while the red dots are the RBDO stage. 

 

Figure 5.98. History plot for the cantilevered beam problem, constraint MaxStress from 5 runs, 

α=0.50, E=100. The blue dots are the DDO stage, while the red dots are the RBDO stage. 
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Figure 5.99. History plot for the cantilevered beam problem, constraint MaxDisp from 5 runs, 

α=0.50, E=100. The blue dots are the DDO stage, while the red dots are the RBDO stage. 

 

Figure 5.100. History plot for the cantilevered beam problem, objective Volume from 5 runs, 

α=0.75, E=32. The blue dots are the DDO stage, while the red dots are the RBDO stage. 



 

150 

 

 

Figure 5.101. History plot for the cantilevered beam problem, constraint MaxStress from 5 runs, 

α=0.75, E=32. The blue dots are the DDO stage, while the red dots are the RBDO stage. 

 

Figure 5.102. History plot for the cantilevered beam problem, constraint MaxDisp from 5 runs, 

α=0.75, E=32. The blue dots are the DDO stage, while the red dots are the RBDO stage. 
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Figure 5.103. History plot for the cantilevered beam problem, objective Volume from 5 runs, 

α=0.75, E=100. The blue dots are the DDO stage, while the red dots are the RBDO stage. 

 

Figure 5.104. History plot for the cantilevered beam problem, constraint MaxStress from 5 runs, 

α=0.75, E=100. The blue dots are the DDO stage, while the red dots are the RBDO stage. 
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Figure 5.105. History plot for the cantilevered beam problem, constraint MaxDisp from 5 runs, 

α=0.75, E=100. The blue dots are the DDO stage, while the red dots are the RBDO stage. 

5.4 Torque Arm 

5.4.1 Problem Definition 

This problem involves the optimization of a 2D planar torque arm. The torque 

arm has a cutout in the center, the shape of which is controlled by four variables: x1, x2, 

r1, and r2. These and the other dimensions of the torque arm are shown in Figure 

5.106. The torque arm has the following properties: Young’s Modulus = 207.4 GPa, ν = 

0.3, ρ = 7,810 kg/m3, σY = 800 MPa. The thickness of the torque arm is 3 mm. The left-

hand circle is pinned, meaning all displacement degrees of freedom (DOF) are 

constrained. The right-hand circle has loading applied, as shown in Figure 5.106. 
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Figure 5.106. Geometric and loading details of the torque arm. The left-hand circle has pin 
boundary conditions applied (all displacement DOF constrained). 

 

The DDO problem statement is described below: 

 minimize  Mass 

subject to  MaxStress ≤ 800 MPa 

by varying  90 mm ≤ x1 ≤ 140 mm 

 40 mm  ≤ x2 ≤ 210 mm 

 5 mm   ≤ r1 ≤ 40 mm 

 5 mm   ≤ r2 ≤ 35 mm 

( 5.12 ) 
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The RBDO problem statement is described below: 

 minimize  Mass 

subject to  P[MaxStress > 800 MPa] ≤ 0.01 

by varying  90 mm ≤ x1 ≤ 140 mm 

 40 mm  ≤ x2 ≤ 210 mm 

 5 mm   ≤ r1 ≤ 40 mm 

 5 mm   ≤ r2 ≤ 35 mm 

 x1, x2, r1, r2 ~ Nor(μ, σ2) 

( 5.13 ) 

 

The baseline design is given in Table 5.3, with the applied standard deviation. All design 

variables were normally distributed and had constant standard deviations of 2.5% of 

their baseline values. 

Table 5.3. Baseline design and applied variation. 

Variable 
Baseline 

Value 

Standard 

Deviation 

x1 120 3.0 

x2 150 3.75 

r1 10 0.25 

r2 10 0.25 

 

This problem was selected to be representative of a “real-world” RBDO problem. 

It was modeled in the commercial FEA code Abaqus v6.11-1[50]. The CAD and FE pre-

processing was performed in Abaqus/CAE. A linear static step was used, and the model 
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was solved using Abaqus/Standard. CPS4 (linear plane stress continuum elements) 

with a mesh seed of 4 mm were used. Each design was modified through parametric 

CAD, and then remeshed. A new input deck was written for each new design. This 

entire process was automated through a python script, which was modified by HEEDS 

MDO to reflect that design’s design variable values. The FE solver (Abaqus) read the 

input deck and calculated the solution. Finally, a python script was executed that reads 

the FE output file and writes a set of text files containing the pertinent responses for 

HEEDS MDO to read. 

Since the analysis of this problem uses finite elements and each design is 

remeshed, there is some added noise to this problem. This increases the difficulty of 

solving this problem, since the constraint will be less smooth. 

Since each evaluation of this problem takes much longer than for other problems, 

determining the best solution by performing MCS with 1,000,000 evaluations was 

computationally infeasible. Instead, at the end of each optimization run, a LHS RA was 

performed with 500 evaluations. This is the nominal value from which the error in Pf was 

calculated. As stated earlier, the variance in LHS is smaller than MCS. The 95% 

confidence interval for 500 evaluations to predict a Pf of approximately 0.01 is 0.004355 

to 0.02327, if MCS was used. It can be stated that the CI for LHS is significantly tighter, 

but the reduction in variance is problem dependent and can typically only be determined 

by empirical means. 

The DDO optimum design has the following approximate values: 

 Mass  = 0.6879 kg 

 MaxStress = 798.5 MPa 
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 x1  = 91.5 mm 

 x2  = 210. mm 

 r1  = 30.2 mm 

 r2  = 15.2 mm 

These values were determined by running this problem several times for up to 2000 

evaluations. 

Due to the time necessary to run this problem, no long running (full double-loop) 

RBDO studies were performed using actual evaluations. Instead, the best design found 

in any run performed is listed below: 

 Mass   = 0.7131 kg 

 MaxStress  = 776.1 MPa 

 P[MaxStress > 800] =  0.168 

 x1   = 90.00 mm 

 x2   = 205.5 mm 

 r1   = 30.18 mm 

 r2   = 11.66 mm 

 

This problem was solved using a subset of the values of E as in the simple function 

problem. The new set of parametric studies is summarized in Table 5.4. 
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Table 5.4. Breakdown of the number of cycles performed in each stage of the studies performed. 

Total 

Number of 

Cycles (E) 

Number of cycles performed in each stage 

α = 0.25 α = 0.5 α = 0.75 

DDO RBDO DDO RBDO DDO RBDO 

12 3 9 6 6 9 3 

32 8 24 16 16 24 8 

60 15 45 30 30 45 15 

100 25 75 50 50 75 25 

 

Due to the required runtime on this problem, the results below have no replications, only 

a single run was performed at each set of parametric values. 

 

5.4.2 Solution Using a Linear Response Surface 

The plots below show the results of using a linear response surface to 

approximate the constraint for RA purposes. As noted above, the actual best design for 

the RBDO problem is not known due to the time required to run such a problem. So, the 

results below that refer to “best design” are using the best design found out of any of the 

runs performed. 
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Figure 5.107. Value of Mass for best design found over the number of cycles and values of α 

studied. The magnitude is the percent difference from the best design found over all studies. The 
value for α = 0.75, E = 60 is the best design found, so it has a value of zero on this graph. 
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Figure 5.108. Same data as presented in Figure 5.107, rearranged to have alpha on the X-axis. 
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Figure 5.109. Absolute difference of Pf predicted by the response surface and the actual Pf for the 

best design found for the MaxStress response. The dark line at 0.01 is the constraint limit. 

 

5.4.3 Solution Using a Quadratic Response Surface 

The plots below show the results of using a quadratic response surface to 

approximate the constraint for RA purposes. As noted above, the actual best design for 

the RBDO problem is not known due to the time required to run such a problem. So, the 

results below that refer to “best design” are using the best design found out of any of the 

runs performed. 
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Figure 5.110. Value of Mass for best design found over the number of cycles and values of α 

studied. The magnitude is the percent difference from the best design found over all studies. 
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Figure 5.111. Same data as presented in Figure 5.110, rearranged to have alpha on the X-axis. 
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Figure 5.112. Absolute difference of Pf predicted by the response surface and the actual Pf for the 

best design found for the MaxStress response. The dark line at 0.01 is the constraint limit. 

 

The results of this study are difficult to interpret due to the lack of replications and 

sources of noise. One conclusion is that 100 cycles is likely not enough to converge on 

this problem. Additionally, the quadratic RS clearly performs better with regard to Pf 

prediction than the linear RS. The error is still rather large, so for this problem a different 

sort of response surface may give better results, such as a radial basis function or 

Kriging surface. 
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5.4.4 Subset Parametric Study with Replication – Linear RS 

This problem was solved again with a different set of values. This was performed 

using α = 0.75 and E = 60, 120. The additional evaluations from E = 120 are based on 

the previous study not being converged at 100 cycles. For this set of studies, 5 

replications were performed. The results shown are the average of these replications, 

unless otherwise stated. 

 

 

Figure 5.113. Value of Mass for best design found over the number of cycles and values of α 

studied. The magnitude is the percent difference from the best design found over all runs 
performed. 
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Figure 5.114. Absolute difference of Pf predicted by the response surface and the actual Pf for the 

best design found for the MaxStress response. The dark line at 0.01 is the constraint limit. The 

whiskers represent the max and min error values, while the bar is the average value. 
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Figure 5.115. The same data as in Figure 5.114, without the range whiskers (only average over the 

replications is plotted). 

 

For this study, the problem showed slow convergence. Regarding the error, it 

increased between 60 and 120 cycles, but the variation decreased. This difference in 

the mean may not be statistically significant. 

 

5.4.5 Subset Parametric Study with Replication – Quadratic RS 

This problem was solved again with a different set of values. This was performed 

using α = 0.75 and E = 60, 120. The additional evaluations from E = 120 are based on 

the previous study not being converged at 100 cycles. For this set of studies, 5 
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replications were performed. The results shown are the average of these replications, 

unless otherwise stated. 

 

 

Figure 5.116. Value of Mass for best design found over the number of cycles and values of α 

studied. The magnitude is the percent difference from the best design. 
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Figure 5.117. Absolute difference of Pf predicted by the response surface and the actual Pf for the 

best design found for the MaxStress response. The dark line at 0.01 is the constraint limit. The 

whiskers represent the max and min error values, while the bar is the average value. 

 

Again, this problem showed slow convergence. The error in Pf calculation was 

higher for 120 cycles versus 60 again, though this may be due to noise. The quadratic 

RS had lower error than the linear RS.

Constraint Limit 
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6 Summary and Conclusions 

6.1 Summary and Conclusions 

In this study, a new approach for reliability based design optimization was proposed, 

implemented and demonstrated. In this approach the following concepts play a key 

motivating role: 

1. Global response surfaces, especially least-squares, do not always have high 

accuracy for complex functions. However, these response surfaces can be 

accurate locally. 

2. RBDO is too computationally expensive to perform if the full double-loop method 

is employed on problems common to engineering today. 

3. The RBDO optimum design is very often close to the DDO optimum. 

 

This new approach has three stages. In stage one, only DDO is performed. This is to 

identify high-performing regions of the design space, and to provide data for fitting 

response surfaces later. In stage two the best designs are evaluated against the RBDO 

problem statement, using response surfaces created for each design from the existing 

data. The best designs are injected into stage three, RBDO. There, each feasible 

design is evaluated in the same way as in stage two, except as more data is obtained in 

high-performing regions, the accuracy of Pf tends to increase. 

Based on the studies performed, the conclusions from this work are: 

1. The proposed strategy for performing RBDO appears to be much more efficient 

than the traditional “double-loop” method. This is due to the enormous cost 
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associated with the inner loop, where many evaluations would have to be 

performed for each individual outer loop evaluation. 

2. The proposed strategy for performing RBDO is less accurate than the double-

loop method, but provides sufficient accuracy to push the design toward reliable 

alternatives to the DDO solution. 

Regarding the value of α that should be used, this decision is problem dependent. 

The results presented earlier showed that if there are not enough local points to fit a RS 

in high performing regions (which results in those evaluations being marked as errors), 

the optimization will tend toward lower performing, but highly reliable solutions. As more 

local points become available in the high performing regions, the optimization tends to 

produce designs closer to the constraint limit. The trends in α with respect to the 

optimization convergence indicate this as well, showing that it is more efficient to use 

more DDO at low numbers of cycles and more RBDO at high numbers of cycles. The 

number of cycles where this trend inflects is comparable to the time when the Pf error 

begins to drop. So the conclusion to be drawn for when to switch from DDO to RBDO is 

when there is enough data for accurate local response surfaces to be created around 

the highest performing designs found. If this is not possible at a certain stage in the run, 

it is prudent to continue performing DDO. This will continue to identify deterministically 

good designs, and generate more data around them for use in fitting response surfaces 

later.  

Since the value of α that should be used is dependent on both the problem being 

solved and the number of available evaluations, it is recommended that future 

implementations of this strategy endeavor to set α dynamically. 
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6.2 Lessons Learned 

6.2.1 Sensitivity of FORM to RS Error as Compared to MCS 

In earlier studies on the Simple Function problem the runs were performed with 

FORM as the RA method and compared to results using MCS. Since the RA was being 

performed on an RS, the use of FORM was not as important, since the evaluations 

were very fast. It was discovered that FORM was much more sensitive to error in the 

RS than MCS, that is, the error in the Pf calculation was much higher when FORM was 

used than when MCS was used. These were only measures of the error in RS, since 

the comparison of Pf predicted and Pf actual were always compared using the same RA 

method. 

This sensitivity is likely due to differences in how the two RA methods work. The 

accuracy of FORM is a function of far fewer points than MCS, which is the source of its 

efficiency. Least-squares fits are designed to minimize the error of the resulting 

response surface over all of the fitted points. For RA, the only aspect of the constraint 

that needs to be accurate is the surface that defines the constraint limit. FORM attempts 

to locate the nearest point on the constraint limit (the MPP), which may be poorly 

represented by the RS. Using the same response surface, MCS will sample more 

broadly, and thus would not be as sensitive to high error right at the MPP. Both of these 

methods will predict Pf more accurately when using RS fitting methods that favor points 

near the constraint limit, as mentioned in the literature review. 
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6.2.2 Issues Selecting Points for Fitting Local RS 

The process for fitting a local RS, as summarized by Figure 4.2, may seem rather 

complex. Initially the strategy was to just select the points that were closest to the 

nominal design and use those directly. One issue that arose was that commonly these 

points would have some alignment or lack of good spacing. This resulted in the RS fit 

failing due to a poorly conditioned matrix, from the lack of linear independence of the 

equations resulting from aligned points. So the strategy used was to find more local 

points than were needed to fit a surface, that is, expand the size of the neighborhood 

around the nominal design. Then check several randomly selected subsets of points for 

the minimum Euclidian distance between the points in the subset. The subset with the 

maximum minimum distance would be more likely to have more spaced out points, and 

have less alignment. This does not guarantee better spacing, but it does encourage it. 

 

6.2.3 Resolution Matters 

It was noted in early studies of the Simple Function problem that the design 

variable resolution used can have a noticeable effect on the results. See Figure 6.1 and 

Figure 6.2, below. 
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Figure 6.1. Contours of F and the constraint limit G = 0 over [X1, X2]. The green dot represents the 

DDO optimum design, and the blue dot represents the RBDO optimum design. This is a reprinting 

of Figure 5.1 for comparison. For reference, these results use a resolution of 1,000,001. 
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Figure 6.2. Same plot type as Figure 6.1 except they were run with a resolution of 101. Note the 

difference in the position of the best RBDO design (blue point). 

The RBDO solution (blue point) is offset from where one would expect it to be when 

lower resolution is used. The constraint limit surface is not aligned with the design 

variables near the DDO optimum, resulting in the wrong solution being found. This 

illustrates the case where the resolution is coarse enough to cause the solution to be 

shifted noticeably from that where truly continuous variables are used. 
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6.3 Future work 

Below are the suggestions for future work. 

1. Since the recommendation for future use of this strategy is to set α dynamically 

and determining the error in Pf would be very expensive, additional research into 

inexpensive methods for estimating the error should be studied. 

2. The use of surrogate models that can capture more complexity than linear or 

quadratic response surfaces should be examined. Examples include Kriging 

surfaces and radial basis functions. 

3. The value of R2 used to accept the RS during stages two and three was kept 

constant throughout these studies. Further studies could be performed with this 

as a parameter. Additionally, other measures of RS accuracy could be used and 

studied for their effect on efficiency and accuracy of the solution. 

4. No attempt was made to increase the efficiency or accuracy of the solution by 

modifying GA parameters. The RBDO problem has some distinct differences 

from the corresponding DDO problem, and so a study of which parameter values 

work better for each problem could be interesting. 

5. This strategy could be implemented with different ways of fitting the RS which 

take into account that RA will be performed. Usually this is done by somehow 

favoring points near the constraint limit or the MPP, depending on the RA method 

which will be used, to get better RS accuracy at that location. 

6. More sophisticated methods for selecting points used to fit an RS could be used. 

One option is to fit existing data into a Latin Hypercube and sometimes evaluate 

additional points to get a more accurate RS.  
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