MA: INFLURNCE OP VARIOUS
INGR的IENTE UPON COHESION
AND BODY CHARACTIRISTICS
OF ICE CREAM
Thesis for the Dogres of M. §.
NICHIGAN STATE COLLEGB
Mavion Price Lanlford1948

This is to certify that the

```
                    thesis entitled
        *
"The Influence of Various Ingredients
Upon Cohesion and Body Characteristics
                of Ice Cream"
                        presented by
```

 Marion Price Lankford
 has been accepted towards fulfillment
 of the requirements for
 M.S. degree in_Agriculture

Date Ray 20,1948

PLACE IN RETURN BOX
to remove this checkout from your record.
TO AVOID FINES return on or before date due.
MAY BE RECALLED with earlier due date if requested.

DATE DUE	DATE DUE
MAR 1112006	
0912405	

by

Marion Price Lankford

A Thesis

Eabmitted to the Graduate school of Michigan
State College of Agriculture and Applied Science in partial falfillment of the requiramont for the degree of

MASTHR OF SCIHIOS

Dopartment of Dairy Inebandry

THI INFLUENCE OF VARIOUS INGREDIENTS UPON COHESION AND BODY CHARACTERISTICS OF ICE CRBAM

ACKNOWLEDGMENTS

The writer wishes to express his sincere appreciation to Professor P. S. Lucas for his kindness in planning and directing this investigation and for his careful guidance of this manuscript.

The writer also expresses his appreciation to Doctor G. M. Trout and Professor J. M. Jensen for their valued cooperation in certain phases of the study, and to Doctor Earl Weaver, Head of the Dairy Department for making this study possible.
page
InIRODUCTI OT 1
BTIIM OF LITHRATURE 3
Milk-solide-not-fat 3
Senrces of fat 5
groetoning agent. 6
8tabilisers. 9
Porcent of overrun 12
Panctration tests. 13
Moltdown exalinations. 14
Body and texture 15
PUBPOSE OF THE INVESTIGATIOM 17
sCOPE OI THR INTBSTICATIOM 18
THE MATURE OS THE IMGBDIGTTS 20
PROCHDUR1. 23
Composition of the mix. 23
Mix proparation and freesing. 23
scoring of body 28
Testing ice orean for hardness. 28
Moltdom testing. 29
Dotermination of aweotening raike. 30
RESULTS 32
The effect of varying milk-solids-mot-fat upon moltdown and body acore 32
The effect of 12 percent engar equivalent upon meltdom and coore value of body 35
The offect of 15 percent magar equivalent upon meltdown and score value of body 37
The offect of various commercial stabilisers apon the moltdom
and body acore 40
The offect of varying milk-solide-not-fat and Frodex replacementof magar mpon meltdown and body eeore.42
Results of penetration teste on ice oream. 44
The effect of age upon the score value for body of ice orean. 45
COMCIUSIONS. 51
LITHRATURE CITTB. 53
APPETIDIX. 59

ISTRODUCTION

Ice cream is a frosen food product manufactured from a blend of various milk products, sugars, stabilisers, and flavor. The manufacturer is limited in his choice of ingredients only by quality, cost, and sapply.

Conganer proferonce of the various types of ice crean exerts itself to the extent that manufacturers produce the type of product that is demanded.

Recognising that consumer demand for bulk ice cream in many parts of the country is influenced by the fact that hand packed ice cream, pressed with considerable force into the container, contains low overrun. Considerable effort has been made by ice cream manufacturers to build up consmer demand for factory filled packages containing low overrun, heavy 1ee crean.

Within the lant jear many firme have placed a low overrun product on the market in a effort to oncourage consumer preference to the factory filled package rather than the hand packed package and thus eliminate some of the expense and muisance involved in hand packing. This practice has given rise to manufacturing problene which are more difficult to solve than many realise.

The practice of blending the standard or legal quantity of fat with a serum-solids-not-fat content which is well above that proviously used has resulted in the devolopment of mandiness after atorage. The milk solids of comercial ice crean comonly vary from eight percent to 14 percont and the source may be from fresh fluid cream, milk, or skimilk combined with ome of the many sources of concentrated producte adapted to
long time storace. The milk solids carry lactose which may crystallise during etorage and cance a eandy product. The higher the content of milk solids used the more likely is this condition to ecour.

The engar content of ice crean vill commonly vary from 12 percent to 16 percont and the soarces of magar are by no moans limited. These mweteners are, for the most part, not as aweet as cane sagar, thorefore a creater weight mast be used to roplace agiven amount of cane sugar thas increasing the carbohydrate content of the ice orean. The increased addition of magar mabetitutes further decreases the moisture content by increasing the total solids content. This redaction of moisture further increases the hasard of sandiness bat the increase in total solids increases the heary character of the body.

Manufacturers have set standards of orerrun for hoary ice crean which, aco rding to their belief and experionce, will yield the product desired. A curvey of coveral manufacturers shows this to range from 45 percont to 75 percont overrun. The hand packed package $v i l l$ 11kely have 40 porcent orerran aince 20 quarte of buik ice orean containing 100 percent overrun may be hand packed inte 14 quarts. The practice of nsing an arbitrary standard for overfun is orroneone since a desirable overran will rary depending on the total solids and moisture content.

BEVIEW OF LITGRATURE

Tery fow reports of research investigations which were primarily cencerned with."chewy" ice oream have been publighed. However there is occasional montion of "chery" or gamm ice cream and many investigations are indirectly related to this topic. Josophson and Dahle (28) observed chowiness in ice crean containing carboxymethylcellulose, and Tracy (60) suggests that excess air be pressed out of standard ice crean in order to simulate the hand packed ice cream. Tracy also points out that producing low ororiva ice oroan aauses greater atrain upon processing and refrigorating equipment as well as upon manpower. Irb (18) observed that, Mine finer the diepersion of fat the emaller will be the dispersion of air celle and the more 'chery' the body of the finished ice cream."

Observations and data concerning the merits of the different types of dry milk-solids-not-fat are in many cases controveraial. Combs (6) reports that, Mhen drum process dried milk of good quality is used in ice crean as a source of milk-nolids-not-fat and compared with an ice orean made containing aproy process milk of like quality it is impossible to detect any difference in the finished ice cream." Jensen (27) found that, Whe body and texture of the ice cream made from akimill powder and condensed akimnilk apparently were unaffected by the source of serva solide," bat Dahle (11) and Dahle, Walts and Koith (16) contend that spras process and racuan roller procese powders are superior to atmospheric roller powder in 100 oream from the standpoint of overrun, freesing time, and quality. Carithers and Combs (4) show that the re is little difference
in the quality of ice crean containing spray process or atmospheric roller process powders, and Dahle (11) reports that, Wrom the standpoint of freesing time, the apray powder and vacuum drum powder proved very aatisfactory and ware superior to the condensed milk control." Jensen (27). and Incas and Jensen (35) state that condensed skimmilk and spray procese ekimailk powder are equally aatisfactory for use in the ice cream mix. Coulter (8) clarifies the situation considerably in reporting, "Atmospheric roller procese dry ukimilk has in general been less catiafactory for use in ice cream than epray or vacaum drum powder. This is trae not because of the process itself, but because in many cases less care was taken in its manufacture. Much of the roller powder today, however, is excellent, and it is somewhat cheaper than the eame grade of epray or vacune drue powder."

The question of solubility of milk powder is many times relied upon as an important consideration in using these producte, but Combs (6) points out that no appreciable losses occur as a result of solids which fail to so into solution. "gince this question of solubility may confuse the ice erean manufacturer it should be pointed out that the method commonly need in deternining solubility of dried milks does not parallel the practice to which the dry milk is subjected in actual practice." sommer (52) states almost this same opinion in his text. Price and Whitaker (43) report that, Mra most important consideration in selecting dry akimmilk for nse in ice orean is to obtain a product with the best possible flavor. These experiments have emphasised the fact that flavor of the dry akimailk has more influence on the quality of the ice crean than has any other characteristic of the powder, with the posible exception of the solubility." Roberts (50) observed that the percent of overran obtained was not aignificantly affected
by the milk solidm-not-fat content, and Roid and Decker (48) found that, MA two percent increase in the serwn solids content was more effective in raducing air cell sise than a two percont increase in fat content. ${ }^{(1)}$ Incas, Matsui, and Mook (36) conclude that increases in milk-solids-not-fat from eix to 12 percant results in a corresponding increase in the score value of body and texture. It has been pointed out by Dahle (11) that mixes consisting of dry milk deteriorate less in storage than the condensed milk mixes. He continues with the atatement that, Wine atmospheric roller prosess canses greater viscosity in the mix than any of the other powder or the condensed milk control. The degree of fat cimping is also greatest whon this powder is used." Masuroveky (40) reported that a reduction of milk-solids-not-fat, especially in chocelate mix, and a subsequent replacemont with corn syrup solids aided materially in bringing out the true chocolate flavor. Thomas and Combs (57) found that, Wattermilk powder tends to impart a richer flavor to ice cream than roller process kimailk powder," but Coulter (8) reports that, Wry skimilk Irequentiy hat been objected to because it was said to impart a powdery flavor. This is not true of high quality Iresh dry skimilk.".

Sommer (52) states that MButter used in ice crean mixes should be rade from oream of $10 w$ acidity, thoroughly washed, worked and left unsalted. Such mweet unsalted butter when made with other necessary procantions ench as aroiding solution of iron and copper in the crean fron which the crean 1s made, pasteurising the crean thoroughly, and aroiding orermorining, has been found to have exeellent keoping quality in atorage at 0 to $-15^{\circ} \mathrm{F}$. It is generally recognised that sweet, unsalted butter, properly made, under-
goes less deterioration in storage than any other butter." Incas and Jonsen (35) fomed that by using butter to mupply 80-100 percent of the fat content it was possible to incorporate overrun more swiftly and to a alightly greater degree, and Dahle, Walts and Keith (16), go further in stating that, Mhen butter and water were used together in the same mix, a large smount of dry skimmilk is needed. The eamples containing the atmospheric roller process powder in conection with water and butter were decidediy inferior in freesing tine and quality." Mack (37) observed in an investigation of high solide mixes that the use of butter, frosen oream, or plastic cream in place of all or part of the aveet oream needed to upply the butterfat produced a erumbly ice cream possessing an undesirable melting appearance. Schied, Incas and Trout (51) found that whipping ability of mix is greatly retarded by the ase of frosen crean as the source of fat.

The eagars in an ice crean are undoubtediy one of the very inportant ingrediente because of their influence on flavor, body, and texture. Ioighton and Willians (31) stoted that, MThe sone of satiafactory eroetness of from 13 to 16 percont sugar represente mixes containing sagar in the ratio to vater of l-5 to 1-4." Fouts (20) concluded that the degree of sweotness in ice cream is influenced by the amount of water in the ice cream mix, "aince eugar is dissolved in the water." Irb (33) states that, "The relative sweetness depends upon the concentration being compared and also the supplementary effect noted when two or more sugars are present in the same solution."

Dextrose sugar may be used to replace as much as 33 percent of sucrose, as stated by Iracas (33) who also points out that this sugar de-
presses the freesing point about 0.75 of one degree. Dahlberg and Penczek (9), and Leighton (30) also point out that corn syrups and dextrose depress the freesing point of mixes. Sommer (52) states that the composition of hydrous corn magar is almost pure dextrose and contains about eight percent moisture.

Corn syrap solids have a freesing point above that of sucrose, report: Hellvig and Buchonan (24), which means that the resultant ice cream would not be softened by its use. Dahlberg and Penczok (9) reports that the relative areetaing value of Frodex is 49. Dahle, Hankinson, and Meiser (15) found that mgare containing the largest anount of monosaccarides usually are associated with shrinkage. Frodex would be placed in that category and because of this manafacturers are hesitant to use large quantities of Frodex to replace sucrose. However, Dahle (12) reports that a plant with which he is familiar is using 44.4 percent Frodex replacenent anccescfally. Several investigators, Hollwig and Bachanan (24), Frb (19), and Dahle (12), do not agree upon the composition of corn syrap solids. These report as follows.

Hellwig and Buchanan:
$\begin{array}{ll}\text { Dextrose } & 15 \\ \text { Maltose } & 43 \\ \text { Bdible dextrines } & \frac{42}{} \\ & 100.0\end{array}$

Dextrose 20.8
Maltose $\quad 32.9$
Dextrine: 42.8
Moisture $\frac{3.8}{100.0}$

Dahle:

Dextrose	22.0
Maltose	20.8
Dextrine	37.0
Higer sugars	$\frac{20.2}{100.0}$

Sweetose, sometimes referred to as an enzyme converted corn syrup, dopresses the freesing point alightiy. Brb (12) rates it as 77 percent as weet as merose and states that it may be used to replace 33 percent of the total magar. Horrall (26) rates it as 67 percent as sweet as sucrose. Irb (12) reports that its composition is 34.4 percent dertrose, 19.9 percent maltose, 27.4 percont dextrines, 0.3 percent ash, and 18 percent water. The percent corn meetener replacements recommended by investigatore are varied to some extent, but most of them come within the range of 25 to 33 pereent. Gould (23) recommends 20 to 30 percent replacement and adds that, Mreplacemont of sucrose with corn sweeteners yields a closer textured ice crean and one in which the solids content may be appreciably increased without danger of sandinese." Inechtges and Sommer (29) recommend the nae of 25 to $331 / 3$ percent corn syrup solids replacement. Dahlberg and Pencsek (9) recommend 25 percent augar replacement and state further that more than 25 percent replacement adrersely affected the hardness of the ice cream and its melting rate. Their report incudes table of molecular weights of agars. They are: Frodex, 404.7: Sucrose, 342.17; Sweetose, 258.4; and Dextrose, 180.1. Ramsey, Drusendahl and Ieider (45) conclude that, Wrigh sugar concentrations are conducite to shrinkage, as are the use of too moch corn sagar or corn syrup, or in some cases invert sugar." This condition is apt to result in an ice crean which is reasonably soft even at hardening roon temperatures. Matsui (42) found that a mugar content of 15 percent or more produced a moother and closer texture than a suger content of 13 percent or less. Dahlberg and Pencsek (9) report that engyme converted corn syrup epparently possesses anti-oxidative properties and that both corn syrap solids and
dextrose developed an oxidized flavor in eight weeks of storage and the color was bleached. Knechtges and Somer (29) in a survey noted no consamer proference of any significance in 16 percent sucrose ice cream compared to 12 percent ancrose and five percent corn yrap solids ice cream. However, Masurovely (40) reports that a reduction of sorum solids in chocolate mix and the subsequent replacement with corn syrup solids will aid materially in bringing out the true chocolate flavor.

Stabilisers, even though used in very amall quantities, are by no means unimportant in an ice cream. Ice creal made with too mach atabilizer, as well as one which has no stabilisor, has undesirable characteristics. Masurovaky (41) states that, Mrithoat gelatin or other atabilisers the texture of ice crean would be coarse and the air cells notuniform in aise thas cansing quick melting when subjected to room temperature." qurnbov and Milner (63) found that, "Gelatin seems to be the most important ingredient in obtaining viscosity as deternined by the MacMichael Viscosimeter. Tracy, (59) in onumerating some of the functions of gelatin, reports that it holde the water of the mix in sach a manner that mild heat shocking does not soriously effect the texture of the ice cream and there is less ice aoparation in the contimuous freeser than when some other types of atabilisers are nsed. Bendicen (2) points out that, Mrhe proper amount of gelatin to be used dopends upon the amount of water in the mix, the gel strength of the colatin, and to cortain extent the original sise of the ice orystals as influenced by homogeniser officiency and the speed of the freesing and hardening of the ice crean." Dahle (13) found that the proper anome of gelatin to use dopend largely on Bloom strongth and recomends:

> 0.50 percent for 150 Bloom strength gelatin 0.42 percent for 200 Bloom strength gelatin 0.35 percont for 250 Bloom strength gelatin.

Vesterine is the comercial name for a product on the market containing gelatin as well as monoglycerides and diglycerides (59). This type of stabilizer has the advantages of a good quality gelatin, and the amulsifying properties of the glycerides. Josephson and Dahle (28) report that carbocymethylcellulose onhances the whipping properties of ice crean mix; a characteristic which is extremely desirable when butter or frosen erean are among the mix constituents. They found that a concentration of 0.15 percent of carboxymethycellulose was as officient a tabilizer as 0.4 percont of 250 Bloom celatin and observed that, "Ice crean containing carboxymethylcellulose invariably exhibited a 'chewiness' and firmnese not found in the control ice crean." They were using a formula consisting of 11 percont fat, 8.8 percent serwn solids, and 15 percont sagar equivalent. Frodex was used to roplace 40 percent of the sugar. Dahle and Collins (30) recomend that 0.15 to 0.18 percent carboxymethyl cellulose be used in ice crean and cantion that this stabiliser may cause whey separation after long etorage.

Tracy (59) states that sodium alginate is a colloidal carbohydrate found in kelp that grows on the Pacific Coast of this country. Several investigators, Anderson, Dowd, and Hemboldt (1), and Mack (39) agree essentially with Stebnits and somer (39) who conclude that, "Sodivm alginate as an ice crean stabiliser appears to possess all of the desirable properties of gelatin and in addition has some distinct advantages. Hotably among these advantages are the uniformity of viscosity of the mix, the faster whipping, and desirable melt down of the ice orman."

Goodran (21) shares the opinion with others, Bendixen (2): Mock (38): Stebnits, and somer (55); and Tracy and Tuckey (62) that, "Sodiwa alginate does not form a gel structure but merely binds the water by hydram tion. The mix acquires its maxime viscosity quickly, noually in about one hour after cooling, and will exhibit good whipping ability even when frozen fresh from the cooler." Stebnitg and somer (54) report that mix stabilised with sodiva alginate has no tendoncy toward shrinkage. Tracy (59) states that 0.2 to 0.3 percent sodive alginate will provide sufficient otabilisation. Dahle (13) recomends 0.22 to 0.3 percent, and later Dahle and Colline (14) found that 0.275 percent is most desirable. Anderson, Dowd, and Hemboldt (1) prefor the use of 0.3 percent, and Incas and Gould (34) report that Dariloid used at the rate of 0.3 percont and gelatin at the rate of 0.4 percent produced ice crean of practically the same acore value for body and texture. The mannfacturers of Dariloid recommend that it be used according to the total solids of the mix. The following table shows the recomended neage.

30	percent	TS	-0.35
33	n	percent	Dariloid
36	n	$=0.3$	n
39	n	n	$=0.23$

Pectin is most comonly used in ices and shorbets and Dahle (13) recomends 0.2 percent for this parpose. Dahle and Colling (14) recommend 0.15 to 0.18 percent for use in ice oream mix. Thoy also report that mix made with pectin has a very low viscosity.

Tracy (59) found that when Irish moss vas used alone, about 0.12 percent is necessary to etabilise. Two tenths percent of extracted Irish moss, comercially called Krageleen is sufficient to stabilise a mix. Irish
mose mixes well with other stabilizers and eliminates some of the serious objections to the pure product.

Canlfield and Martin (5) reported that, Mrhere was almost no differonce in the quality of finished ice crean stebilised with the vegetable etabiliser used in this study as compared with that atabilised with selatin," but that, Meixes containing the vegetable stabilisers did not freese or whip as rapidiy as the mix stabilised with gelatin."

Schied, Lacas, and Trout (51) found that the use of 0.35 percent egs yolk largely overcomes the whippability retarding effect of mix containing frosen cresin as the sole source of fat. Reid (47) reveals that the use of oge yolk solids produces smaller air cells, gives a moother texture and body than whole egg solids.

Knochtges and Sommor (29) reporte that, MCorn syrup solids do not exert a stabiliser eparing action in ice creans with modorate stabiliser content, but in heavily atabilised ice cresme the content may have to be reduced as muk as 25 percent whon four percent of the sucrose is replaced by five percent syrap solids."

The anount of overrion whipped inte an ice cram materially affocts the body and texture of the finished product. Remsey, Drusonduhl, and Ieider (45) published findings which are essentially the same as those proFiously pablished by Remeey (44) atating that overran is directiy related to ghrinkage inasmach as this problem involves primarily the contraction and the escape of air. High overrans are apt to give a veak air cell structure which later on may canse collapsing and oscaping of air and consequant shrinkage. Tracy and McCown (61) reports that, "Variations in overrun result

In difforences in drawing temperature and amount of vater per unit volume to be frosen. There vas little difference in the hardening time of ice crean containing 85 to 115 percent overrun due to the balancing effect of differences in initial temperature and emount of water present per unit volwa." Incas (32) found that milk-solide-not-fat content of an ice cream mix or the viscosity do not aignificantly affect the percentage of overrun obtained, and Knechtges and sommer (29) report that, "rine whipping ability of mixes is not affected by replacement of sucrose by corn syrup solids." Thomas and Combs (57) conclude, after a stady of battermilk powder in ice crean, that the ice cream is characterized by a foamy melt down. The foam is finer in structure and more stable when the ice croan contains roller procese matermilk powder thea when it contains ekimmilk powder.

The nee of a penetrometer to establish data on body characteristica is not now. The work of four provious investigators using this type of apparatus is cited here. The penetrometers wore all used under sifghty different conditions so it must be pointed out that this equipnont may supply only an inder or relative relationship.

011 of the previous investigators used penetrometers which wore activated by a magnetic release. Gould's (22) penetrometer had a $1 / 8$ inch needle, adjustable hoight and woight, and the work was performed at $36-40^{\circ}$ 5. The penctrometor used by Holdaway and Roymolds (25) had three interchangeable needles, one of which was $1 / 4$ inch in diancter. This piece of equipment was adjustable in both height and weight. The tests were performed at 0^{0} F. Reid (46) usod a penetrometer having a $1 / 4$ inch noedle which was constructed to allow adjustment in height and weight. The tests were performed
at 0.7 to -10.1° F. Somer (53) used a New York testing laboratory atandard type penetrometer, with the standard needle and with a load of 200 grams. The tests were made at epproximately $-8^{\circ} \mathrm{J}$. Sommer found that there was little correlation between the measurement and the melting behavior of ice oream. This lack of correlation may involve differences in overrun and in the augar concontration and frecsing points of the mamples, bat the main factor was probably the manner in which alr was retained at the sarface of the melting ice cream. Reid (46) reported that there was a gradual increase in the depth of penetration with each additional two percent of sugar. The depth of penetration when 16 percent sagar was added to the mixture was nearly double that eecured when eight percent sugar was used. Gould (22) concluded that variations were so great in many cases, and there was moch a lack of correlation between sinilar seaples, that results obtained by the use of the penetrometer eppear to be of little value. Indications are that comparative firnness of ice area cannot be measured accurately by apparatus of this type.

Molt down examinations are frequently used in experiments with ice crean since the results may be used as a standard to compare rosults and may be used as indication of resistance to melting. Jonsen (27) found that, "The amount of melting during the first 60 minutes of exposure showed the most direct difforences in melting resistance." Ice cream containing butter as a major fat source had low melting resistance as compared with the eamples from the cream mixes. Mat the end of the 120 minute period no relationchip could be detected in regard to melting resistance and the fatsource by considering the leakage record." Mack (37) reported that increasing the magar content to 16 to 17 percent improves the meltdown appearance of high fat ice
crean and redmees the nolting resistance of cuch ice creane. MA partial replacoment of encrose with different increnonte of doxtrose and the application of different drawinc temperatures had little effect upon the meltdown characteristice of 1 ce crean, "acording to Roid (48).

Incas and Jensen (35) found that when 50 to 100 percent of the vatterfat was mpplied by batter there was an increasing tondency toward coarsoness in texture because butter mizes how greater oluping of the fat clobules. Doid (49) points ont that increased homogenising pressares reant In a corresponding increse in smoothness, bods resistance, and closer texture. small air celle in an 100 crean are closely related to anooth body and Reid (48) concludes that, Hithe average air cell sise tands to deorease with an increase in the lat or serwn colids contant or with a dearease in the drawing tomperature." Corbett and Pracy (7) report that partial replacement of merose with dextrose improved the body and texture and moltdown of high fat and high total solids ice crean. The use of corn sueeteners increases total molids content with an accompanying improvenent in the body and toxture of the finishod ice erean, reports Ieighton (30). Dohlbere and Pencsel (9) report that the corn ayrupe possessed definite qualities which gave eubstance to the bods and moothness to texture.

Conlter (8) states. Mandines does not normall develop in ice erean if the temperature is maintained at 0 to - 10° F. regardiese of the lactone contont, but will appear quite rapidiy at highor temperatnres if the lactose in vater concontration of the 1 in is high onough. ${ }^{(1)}$ Usince five to coven dare are required for sandinese to appear eron under nafarorable conditiona. mamafactarer able to regalate the turnoter in the dealer' cabinots can use a high serm solids mix without trouble." Ieichton and Millians
(31) feand that. "about one part of milk-solido-not-fat to five parts of water is the most that could possibly be used under the most ideal conditions if sandiness were to be avoided." The developnent of sandinese was nd materially affected by the corn sweeteners, according to Dablberg and Penczok (9).

PORPOSE OF THE INVESTIGATION

Previous investigations have shown results wich pointed toward a solution of the problem resulting from the need of an ice crean which compares favorably with the hand packed product. This investigation was began with the intention of answering some of the complex problems resulting in attempts to menufacture heary ice cream. The parpose of this investigation has been:

1. To find the ingredient of ice crean which contributes the most toward a "chewy" body in an ice cream mamofactured and packed at the freeser, similar to that found in the hond packed package.
2. Te determine the optimm overrun for the development of "chewy" charactoristics in a heavy type of ice cream.
3. To determine the adaptability of the penetrometer for use as an indicator of desirable body.

SCOPE OF INVESTIGATION

This investigation includes a study of the effects of varying quantities of serve solids, various meeteners, and various stabilising agents upon the overrun, resistance to penetration, meltdom, and body characteristics of ice cream.

Mixes were compounded to contain 8, 10, 11, 12, and 14 percent seram solids respectively. This portion of the investigation was to deternine the effect of serum solids upon the charscter of the finished product when the milk-solids-not-fat content was varied from the lowest to the highest reasonable limits of concentration.

Comercial eweeteners or sugar substitutes were studied, as completely as facilitiea permitted, to determine their influence on the derelopmont of a cohosivo or "chory" bodied ice cream. The total augar equivalent of each areotoner used was 12 percont and 15 percent. Mhenever it was posed ble, the deterainations of previous investigators of eweetening value or roplacenent ration were used. Iwo excoptions to this rale were made becance of no known provious doteminations. The areeteners usiod in the investigation ware cane mar (sucrose). Cerelose (dextrose, hydrate), sweetose (engye converted corn syrup). Frodex (corn ayrup solids), Paritose, and super sweet syrup.
stabilising agents of various types were used. The reports of previous investigators were used to dotermine the correct momis to use. In the absence of such information the recomendations of the manufacturer
were used. The stabilizers used were gelatin (275 Bloom strength), Vesterine, sodiun carboxymethylcellulose (C.M.C.), sodium alginate (Dariloid), Polycoid, pectin, Krageleen, and Gelox.

A final series of experiments were conducted, utilizing information found during the progress of this work. The total sugar equivalent used was 15 percent and the substitute sugar was Frodex. The milk-solids-not-fat of the mixes was varied using percentages of $8,10,12$, and 14 .

THE WATURE OF INGREDIENTS

The flaid portion of the mixes was fresh pasteurized whole milk containing 3.6 percont buttorfat. In some cases a mall anount of water vas need in order to avoid material changes in mix constituents that vore not being raried in that series.

The dry milt-solidemot-fat used was freshly made by the atmoopheric reller drun process on a 120 inch roller from frech erin milk. The cin milk need tested $0.16-0.17$ percent acid and was preheated to $185^{\circ} \mathrm{F}$. before drying.

Butter was the cource of fat not provided by the fluid milk. The butter was taken from fresh churnings without salting and stored for short periods of tine, at $-10^{\circ} \mathrm{F}$. until used.

Grenteners

Rofined cranulated cane wagar was used as the source of ucrose and is universally used as the standard for determining the eweetening power of other moeteners.

Dextrese as comercially made is about 99.5 to 99.8 percent pure dextrose. It is manufactured by hydrolysis of corn starch by the action of acid and heat under atean pressure. The sweetening ralue used for this cugar in this study was placed at 83, based on the work of Tracy (58) who entablished the weotening ralue at 83 - 100 .

Trodex is a epray dried form of corn eyrup, honce the term corn syrap solids. A weetening value of 49 (26) (9) was used for this agar.

Sweetose is a high convorsion corn syrap made by applying ongye hydrolysis. Because of ite higher dextrose content, ite meetening value is higher than that of corn syrup, from which it is made. Sreetose han a aweotening value of 67 according to Horrall (26) and Dahlberg and Pencsek (9).

Seper sweet syrrap and Puritose are products which have not beon studied extensively as yet. The swoetness of both of these syrups was placed at 50 as a restit of examinations conducted by the author. The procedure of examining used was the "threshold taste test" described by Biestor, Wood, and Maklin (3). The mothod described by Dahlberg and Poncsek (10) in which wreetnose was doterianod by chocking the unknown with a known concontration of sucrose was also nsed. The results of both teste indicated that each angar had a aroetoaing value of about 50.

Stabiliser

Gelatin is a water imbibing protein prodaced by processing calf ekin, pork akin, trimaings, and bones. The processing includos hydrolyais of the proteins, collagon and ossein, and eabsequent ovaporation and drying of the product.

Testerine, a commercial product, is produced by combining a good grade of gelatin with monoglycerides and diglycerides.

Sodive carboxgmethylcellulose is a collulose binding agent made by processing collulose materials, expecially cotton and rood.

Dariloid is a cw which is manufactured from Macrocystis pyrifore, the giant kelp of the Pacific Ocean. This prodract undoabtedly is the lead-
ing gan stabiliser used in ice oream.
Polycoid is the commercial name for a atabilizer which is a combination of carborymethylcellulose, Carrageenin (Irish moss), Sorbitan Monostearate, and a corn sagar carrier. The stabilising agente are the gums, carborynethylcellulose and Carrageenin. The Sorbitan Monostearate is a stearic monoglyceride emalsifier.

Pectin is chiefly a commercial by-product of the citrue fruit industry. This product is usaally considered as belonging in the broad classification of gums. It is not a very aatisfactory stabilizer for ice orean, but finds extensive use in ices and sherbets.

Krageleen is a comercial product extracted by boiling water from Irish mose or carrageon, a red alga, Chondrus crispus, which grows along the rocky sections of the Atlantic coast of Iurope and Horth America. The dried moss contains about 55 percent carrageenin.

Gelox is a combination of celatin, regetable colloids, monoglycerides, and diglycerides. This product has just recently been introduced to the ice orean trade and little is known of it as yet.

PROCRDURR

Composition of the Mix

Iee cream mixes containing 12 percent fat were used for the experiments reported herein. Composition of the 29 mixes used is given in Table I, and the factor being studied in each series is underlined in the table. Substitute sugars were used to replace 30 percent of the sucrose in all samples in order to simulate comercial mixes which utilise corn aweeteners regularly and to make an adequate comparison to amples in which the awceteners were being studied. Dextrose and Sweetose vere used to replace a total of 30 percent of the augar equivalent in the samples which were not need for sugar studies. The dextrose and Sweetose each supplied 15 percent of the sugar equivalent.

Table II lists the meeteners used in this investigation, the relative replacement value used in this atudy, and the authors of these roplacemont values.

Table III is presented to show the stabilisers used and an authority's recomendation of proper quantitios to use. In the absence of a research recomendation the manufacturers recomendation is ahown.

Mix Preparation and Ireesing

Thirty-nine batches of ice cream nix composed of the componente shown in Table I, and the ingredients shown in the appendix wore made in ten gallon leta.

The ingredients not being studied in the series were mixed and

Table I. Composition of Mixes

No.	Sugar equivalent	Percent replacement by sweetener	M.S.N.F. content	Stabilizer and amount used	Total solid content
1	15%	15 \% dextrose 15% Sweetose	8\%	0.35% Vesterine	36.22 \%
2	15%	15% dextrose 15% Sweetose	10\%	0.35 \% Vesterine	38.22 \%
3	15 思	15 \% dextrose 15 : Sweetose	11\%	0.35 \% Vesterine	38.80\%
4	15%	15% dextrose 15 \% Sweetose	12\%	0.35% Vesterine	40.27 \%
5	15%	15% dextrose 15% Sweetose	14\%	0.35 \% Vesterine	42.53%
6	12%	none (sucrose)	11 \%	0.35% Vesterine	35.48\%
7	12%	30\% dextrose	11%	0.35 \% Vesterine	35.90\%
8	12\%	30\% Frodex	11%	0.35 图 Vesterine	38.96\%
9	12\%	30\% Sweetose	11 \%	0.35 \% Vesterine	36.29%
10	12 \%	30% Puritose	11%	0.35% Vesterine	37.72%
11	12%	$\begin{aligned} & 30 \text { \% Super } \\ & \text { Sweet Syrup } \end{aligned}$	11%	0.35 \% Vesterine	37.50\%
12	1.5%	none (sucrose)	11%	0.35 \% Vesterine	40.64%
13	15%	30\% dextrose	11%	0.35 \% Vesterine	39.01%
14	15\%	30\% Frodex	11%	0.35% Vesterine	42.88%
15	15%	30\% Sweetose	11%	0.35\% Vesterine	39.48%
16	15%	30\% Puritose	11%	0.35 \% Vesterine	41.27%
17	15\%	$\begin{aligned} & 30 \text { \& Super } \\ & \text { Sweet Syrup } \end{aligned}$	11%	0.35 \% Vesterine	40.10%

Table I - continued

Ho.	Sugar equiralent	Percent replacement by eweetener	M. 8. N. P. content	Stabilizer and amount used	Total solids content
18	158	15 \% dextrose 15 \% sweetose	118	0.35 \% gelatin	38.90 \%
19	15%	15 \% dextrose 15 \% Sweetose	11%	0.35 \% Vesterine	38.90\%
20	15%	15% dextrose 15 \% Sweetose	11%	0.15\% C.M.C.	38.55 \%
21	15%	15 \% dextrose 15 \% 8reatose	11%	0.22 \% Dariloid	38.72 \%
22	15\%	15 \% dextrose 15 \% Sweetose	11 \%	0.35 \% Polycoid	38.90 \%
23	15\%	15 \% dextrose 15 \% Sweetose	11%	0.15 8pectin	38.65 \%
24	158	15 \% dextrose 15 \% Sweetose	11%	0.15 \% Krageleen	38.65 \%
25	15%	15 \% dextrose 15 \% sreetose	11 \%	0.30 \% Gol0x	38.35 \%
26	15%	30 \% Irodex	88	0.35 \% Vesterine	39.79 \%
27	15%	30\% Trodex	10\%	0.35 \% Vesterine	41.83%
28	158	30\% Irodex	128	0.35 \% Vesterine	44.07 \%
29	15%	30\% Irodex	14\%	0.35 \% Vesterine	46.28 \%

* The underifined component was the one investigated.

Table II. Sweeteners Used and Their Relative Sweetness

Sreetener	Helative Sweetness	Authority
Cane sugar	100	-
Dextrose	$83-100$	Tracy
Frodex	49	Dahlberg and Penczek
Sroetose	67	Horrall
Puritose	50	Lankford
Super 8weet Syrup	50	Lankford

Table III. Stabilizers and quantity Used

Stabiliser	Quantity	Authority
Gelatin (275 Bloom)	0.35%	-
Vesterine	0.35%	Manufacturer
C. M. C.	0.15%	Josephson \& Dahle
Dariloid	0.22%	Dahle
Polycoid	0.35%	Manufacturer
Pectin	0.15%	Dahle and Collins
Iragelean	0.15%	Manufacturer
Gelox	0.35%	Manufacturer

heated in a large vat to a temperatare of $110^{\circ} \mathrm{F}$. to facilitate dissolving dry portions. In the series of stabilizers part of the dry sugar was kept out of the basic mix and added later, mixed with the stabilizer. After the basic mix was hoated and completely dissolved, the required amounts were weighed into ton gallon milk cans.

The additional ingredients vere atirred into the mix and pasteurisation was completed by the use of a water driven agitator and hot water spraving on the outside of the cans. After pasteurising at 150° F. for 30 mingtes the mix was homogenized in a 200 gallon, single stage Union Stean Pup Company Viscoliser at a pressure of 2500 pounds and immediately cooled to 45° F. to 50° F. by ranning over a tubular murface cooler.

The completed mixes were tored at 40° F. for 24 hours and then frosen. Forty-five pounds of each mix was frozen in a 40 quart Creamery Package direct expansion batch freeser. The freesing of varying overrun ice crean camples was accomplished by Iirst freezing to maximum overrun. Two pint packages were filled at this point. The overrun was then reduced in progressite steps by intermittent application of freesing mediun which cansed part of the overrun to be frosen out of the ice cream. At each step In the progreseive reduction of orerrun two pint samples were taken directiy Irom the freezer. The Ireezer was rinsed out with cold water between each batch inorder that all batches would be frozen under as identical conditions as poseible.

Immediately after samples were taken fran the freezer they were placed in a hardening room where the temperature was maintained at $-5^{0} \mathrm{~F}$. to
$-10^{\circ} \mathrm{F}$. When the ice cream was completely hardened, each sample was weighed to determine the percent overmun.

Scoring of Body

The samples of ice cream were scored 48 hours after freezing and again two weeks after freezing. Scoring was done on the basis of 30 being perfect. The samples to be scored were renoved from the hardening roon and allowed to temper for a few minutes before judging. The opinion of two judges was used to establish the score value and criticisms. The judges made no attempt to score flavor since the primary interest of this project was body

Testing the Ice Cream for Hardness
Hardness or firmness of the body was determined by the use of a penetrometer shown in plates 1, 2, and 3.

The operation of this equipment is based upon the physical laws of falling bodies. The depth of penetration depends upon the height of the falling body, the weight of the falling body, the size of the penetrating needle, resistance acting upon the body while falling, and temperature.

The penetrometer guide used consisted of a heavy glass casing, one inch in diameter, which acted as a drop tube. The tube was firmly held in a ring stand and adjusted so that the heicht of fall was maintained at 72 centimeters.

The penetroneter was constructed of steel and had an outside diameter of $15 / 16$ of an inch. This provides a $1 / 16$ inch clearance between the penetrometer and the glass tube. The possibility of error by friction was
rodnced by the nee of three bearing sarfaces, which may come into contact with the oasing daring falling instead of the full length of the mechanisa makiac contact. These bearing marfaces obviously do not eliminate all friction but do reduce it aince the maxime surface aroa which may come in contact is matorially reduced. The friction is a material consideration and the constraction of this apparatus does not oliminate all of it. Howover, it should be pointed out that the results of this equipmont wore used as an index of comparison, and that friction exists in every trial. Thorefore the orror due to friction is thas materially eliminated. The penotrating needle, attachod to the falling body had a dianeter of $1 / 4 \mathrm{inch}$, and the total woight of the falling body vas 785 grans. The meedle was calibrated in millimoters on the aide to provide for direet readings of dopth of penetration. This mothod of releasing the falling body was manal. A koy, shown in photographs, mpported the penetrometer at the top of the glass casing. Thon a trial was to be made the key mas romored in a direction perpendicular to the penetrometer, this allowing the ponotrometer to drop through the casing. The eamples to be tested wore hold in a hardening roon where the temperature was -7.8° F. ($-22^{\circ} \mathrm{C}$.) to -9.6° F. (-23° C.). The piat packacea wore placod beneath the penotrometor and three penetratione made of each eample.

Meltdown Penting

The molt dow teste were performed with a Cenco forced ventilation incabator with the temperature regalated at $70^{\circ} \mathrm{F}$. , plas or minne one degree. A pint of cach ample of ice croan was cut in half with a eharp cheese lnife
before removal from the hardening rocm and one half reserved for meltdown testing. Wen melting was to begin all semples were removed from the hardening roon at once, by the ase of a tray and each sample was placed on a wire screen in the incubator, which ras supported by a six inch glase funnel. A large nail was soldered to each ecreen so that it could be forced into the sample of ice cream and prevent the mample from eliding during melting. the drippings were funneled into glass cylinders during the melting period of sixty minutes and then weighed for final results which was sermed grem of meltdown.

The temperature of 70° F. was used in preference to higher temperatures because it wan considered more representative of room temperature.

The forced ventilation incubator was used because the temperatare changes vere less than might occur if testing in an open roon. The forced rentilation provided a constant, mild, indirect circulation of air and thus provented an accumalation of cool air around each ample and elininated the possible factor of undetermined air currents wich may occur in an open room.

Dotermination of groctening Talue

The sweetening value of the sweoteners, Puritose and Super sweet Syrap, was deternined by two different methods.

In the first determination of sweeteners a dilution of the unknown syrap was prepared to equal the eweetness of a 15 percent sucrose dilution or simple ayrup. Snall quantities of the unknown was weighed into 100 grans of distilled water and after each addition the two syraps were tasted to determine if equal in wretness. When the concontration of the unkown was great
enough to equal the sweetners of the known, the percent of concentration was calculated, msing the total veight of the additions. A second dilution of the unknown was made to the percent concentration found necessary in the preVious determinations. This syrap was tasted once again to verify its correlation in ewoetness to the encrose dilution. When the oheck dilution corresponded to sacrose dilution the relative areetness was determined by dividing the weight of cane magar used into the veight of mbstitute aweetener required.

The second method of determining aveetening value was to find the wicht of areetenor required in 100 grams of water to prodace the first trace of eweotness. These two weights were then used to calculate the erretening value as described previously. The most desirable method of tasting the diIutions was to first rinse the mouth with distilled water and then place a drop of solution on the tongle by the use of a medicine dropper. This mothod prevented confusion of flavors and helped make the firat occurronce of aweet flavor apparent.

RRSULTS

The Fffect of Varying Milk-Solids-Not-Fat Uoon Meltdorn and Body Score

The first series of iamples consisted of ice creans containing 8, 10, 11, 12, and 14 percent mil-solids-not-fat. The sagar content was 15 percont sugar equivalent. Dextrose and Sweetose were each used to supply 15 percent of the total sweetness so that the ice crean would correspond with comercial composition. Vesterine was used as the standard stabiliser.

Charts 1 and 2 show that the use of oight or 10 percent milk-solids-not-fat is not as desirable as the nse of higher percentages of serve solids. The score value of ireahly frozen ice crean containing oight and 10 percent milk solids had maximun body score values of 28.50 and 29.25 , respectively. The ice creams containing 11,12 , and 14 percent serrm solids had maxime score values of 29.50 ine ach case.

Table IV shows the comparison between percent overruns and the arerage score ralues of fresh samples taken within each range of orerrun. This table shows that the maximm score values of all groups occur at overruns betweon 50 and 79 percent. The maximan of overrun of ice cream containing 12 and 14 percent milk-solids-not-fat occurs at sightis lese overrun than camples containing 8, 10 , or 11 percont overrun.

Table ∇ shows the comparison of meltdown and percent overrun. The meltdown values were averaged in cases where more than one sample was taken within the range of overrun. There was no regalarity in the meltdown of
this series and thas no indication that any increased or decreased percentage of M.S.F.F. camses increased or decreased melting. However it is noted in this, as vell as other series, that the grams of melted ice cream collected increased as the overrun was increased. This condition undoubtedly was due to a greator mass of ice oream and less air in a low overrun product and thes more heat energy was required to induce melting. Also, the foam adhering to the arface of high overrun samples was more abundant and acted as an insalator against the transfor of heat. The table also shows no indication of increased or decreased rate of overrun resulting from ohanges in the milk-solids-not-fat content.

Table IV. Optimum Overrun with Varied M.S.N.F. Mix 12 Porcent Fat, 11.5 Percent Sucrose, 2.25 Percent Sweetose, 2.25 Percent Dextrose (Rquivalent).
$\left.\begin{array}{lllllllll}\hline & & \text { Scores at various overruns* }\end{array}\right]$

The judges noted that the ontire series of eight percent serus solids samples were coarse and icy. The group of 10 percent servim solids
samples, while more desirable than eight percent samples, still had a tendency to be coarse and icy. The 11 percent serum solids samples were an improvement over the previons group. The samples of 12 percent serve solids vere found to be the most desirable. This ice cream was largely free of the criticisme preTiously found. The 14 percent serwe solids ice cream had a more chery and resistant body bat was criticised for a powdery flevor, which covered the richmess of the fat, and some sandiness. Also, these eamples wore not as mooth as the 12 percent seram solids samples.

The reader may note that the score value of body in most series studied was lower aftor two weeks storage than when the sample was fresh. This was not the case, hovever, for all eamples.

Table V. Average Meltdom with Varied M.s. H. F. Mix 12 Percent Fat, 11.5 Percent Sucrose, 2.25 Percent Sweetose, 2.25 Percent Dextrose (Equivalent).

Meltdown at Various Overruns							
M.8.1.F. Content	$40-49$	$50-59$	$60-69$	$70-79$	$80-89$	$90-99$	$100-109$
8%	13	11	27.5	34	40	46	
10%		38	57.5	37	35	46.5	
11%	13	26.5		49	55.5	49	48
12%	24	28.5		29	33		40
14%	12	17.5	26	33	18	33	34

The Effect of 12 Percent Sugar Equivalent Opon Meltdom and Score Value of Body.

In this series various comercial sugar substitutes were used in sufficient quantities to supply 30 percent of the sweetening power in a 12 percent sagar equivalent mix. The source and nature of the substitute sweotener was the only variable in this series. The milk-solids-not-fat content was 11 percent and all other constituents were the ame as described in the previous series.

A comparison between percent overrun and average body acore value of fresh eamples of ice cream is shown in Table VI. The maximum body acore value of these amples ranged from 28.50 to 29.25 . The sample having maximan score value occurred at overruns between 50 and 89 percent.

Table VI. Optimu Overrin with Various Sweetener Used in Conjunction with Sacrose, 12 Percent Sugar Equivalent.

Sveeteners	Scores at Various Orerruns*							
	40-49	50-59	60-69	70-79	80-89	90-92	100-109	110-119
Sucrose	27.75	28.00	28.5	28.25	28.00	27.50	27.25	
Dextrose	28.12	28.75	29.25.		29.00	28.75	27.50	
Frodex	28.00	28.12	29.0	28.75	28.50	28.25		
Sweetose	28.50	29.0	28.25	17.62				27.00
Super Sweet Syrup	27.25	27.75	28.25	28.50	27.75		27.25	
Paritose	27.62		28.25		28.50		27.37	

01112 percent sugar equivalent samples yielded hard icy body and an undesirable product. The score ralues of the body were consequently lower than would be expected in a good comercial ice crean. The mix containing Frodex was noticeably more chewy than any of the other ice creams, and the mix with Paritose was critized for a syrupy flavor. The mix containing Super Sweot syrup was criticized for a syrupy flavor, and for a caramel flavor, which is typical of the syrap itself.

Table VII shows that the ice creans containing dextrose and super Greet syrup had no meltdown. The samples containing all sucrose and those containing sweetose melted at a rather slow rate. Puritose samples melted at an average rate and samples containing Frodex melted very rapidly. This nas be noted again in the last series.

Table VII. Maximun Meltdown with Various Sweeteners Used in Conjunction with Sucrose, 12 Percent Sugar (Equivalent).

Sreeteners	30-39	Meltdown at Various Overruns							
		40-49	50-52	60-69	70-72	80-89	90-99	100-109	110-119
Sucrose	0	0	4	7	10	8	14	12	
Dextrose	0	0	0	0		0	0	0	
Irodex	38	40	43	54	57	58	65		
Sweetose		6	7	12	18	12			14
Super sweet Syrap	5	0	0	0	0	0		0	
Paritose		20.5		18		18	20	30	29

The Iffect of 15 Percent Sugar Equivalent Upon Meltdown
 and Score Value of Body

In this series various comercial sugar aubstitutes vere used in sufficient quantities to cupply 30 percent of the aweotening power in a 15 percont sagar equivalent mix. The ingredients studied in this ice cream were mbititute moeteners. All other ingredients remainod the mame. This series was the same as the previous except that this one made use of 15 percent sugar equivalent instead of 12 percent sugar equivalent.

Charts 12 to 17 show that 15 percent eagar equivalent produced a mach euperior product to the 12 percent product, shown in charte 6 to 11. The use of 15 percent areetener increased the maximus score value of the same ice cream from $1 / 4$ to $1-1 / 4$ pointe above the 12 percent augar series. Table VIII show that maximu body score value of ice oream in the 15 percent sugar equivalent series was in no case below 29.00. The amples containing all marose and those containing Frodex had maximum acore values of 29.75, which is almost a perfect score.

The increased score value is a result of a finer and moother body which resulted from the use of 15 percent swoetener. The samples containing Frodex aweetener showed the largest increase in body score due to the marked increase in firmess and chewiness or cohesion of the body. sucrose and Puritose produced ice cream of equal score value. The judges found that the Trodex samples were gumy and had body characteristics which confused any attempt to estimate ovorrun. This is further illustrated in Table VIII which show the maximu body ecore of fresh ice cream containing Frodex occurred at
an overran between 80 and 99 percent. The actual overruns of these amples were 83 and 93 percent, respectively. These two samples wore placed higher In score value than ony others in the entire investigation which contained an equal amount of overrun. This saggests the possibility of obtaining a smooth, cherg product which has an overrun of 80 to 90 percent overrun by the use of sweeteners such as Frodex. Sweetose and Puritose were found to produce some chewiness bat not to the extent of Frodex. The ice cream containing cane sugar and no substitute was criticised for shrinkage. These samples were very smooth and some were slightly chewy.

Table VIII. Optimum Overran with Various Sweeteners Used in Conjunction with Sucrose 15 Percent Sugar Equivalent

Scores at Various Overruns*								
Sueetenors	30-39	40-49	50-59	60-69	70-79	80-89	90-99	100-109
sucrose	28.50	28.75	28.62	29.75		29.50		29.00
Dextrose		28.25	29.00	29.50	28.75		28.50	
Irodex		29.00	29.25	29.50		29.75	29.75	
Sweotose		29.00	22.00	29.00	28.00		28.50	
Super sweet Syrup	28.50	28.75	29.00	29.25	28.50		28.00	27.75
Puritese	27.75	28.00	28.62	29.25		28.50		27.50

The meltdown resalte of this series, presented in Table Ix, shows that ice cream containing 15 percent augar equivalent melted at a more rapid rate than when sagar content was 12 percent. The basis for this statement
is given in Charts 7 and 9. The increased rate of melting of the 15 percent sugar manples was due in part to the reduced freesing tomperature resulting Iron the use of some sugare. Also, the use of three percent more sugar equivalent lowered the freesing point and resulted in a softer ice cream.

Table IX. Maximun Overrun with Varlous Sweeteners Used in Conjunction with fucrose, 15 Percent Sugar Equivalent

Sweetener:	30-39	40-49	50-59	Meltdown at Varione Overruns					110-119
				60-69	70-79	80-89	90-99	100-109	
sucrose	5	2	9	14		12		20	
Dextrose		0	0	0	0		0		
Irodex		40	58	55		60	72		
Sweetose		0	5	7	4		6		13
Super Sweet Syrup	10	8	7	6	4	2		3	
Puritose	16	10	10	14		9		15	

The samples containing dextrose did not melt at all during the 60 minute melting period, However, this cannot be considored an indication of stabilizer paring action on the part of dextrose since previous experimental investigations show conclusively that dextrose has no tabilizer sparing action. The ice crean samples containing 15 percent sugar equivalent with Super greet syrup melted a mall amount during the meltdown test period. The 1ce srean containing all sucrose, Sweetose, and Puritose melted at a moderate rate. The samples containing Frodex melted Fery rapidly compared to other trials. Hewever, the rapid rate of melting displayed by this product was not extensive enough to be considered objeotionable from the Fiewpoint of conmmer accoptanee.

The Effect of Varions Commercial Stabilizors Upon the
 Meltdown and Body Score

In this series various comercial stabilisers were used as the only varied ingredient of the mix. The remainder of the mix composition was 12 percent fat, 11 percent milk-solide-not-fat, and 15 percent sugar equivalent. Dextrose and sweetose were each used to roplace 15 percent of the total eveotness required.

The ice cream containing gelatin was found to be considerably better than any other etabiliser investigated. Table X shows that the maximum body score value of freah. ice crean containing 275 Bloom strength gelatin was 29.75. This score occurred at an overrun of 70-79 percent and the acore value was higher than for any other aample in the atabiliser series of atudy. 1 ll samples stabilised with gelatin were very mooth and in some cases slightiy chowg.

Table X. Optiman Overrun with Varions Stabilisers Used in Mix with 12 Percent Fat and 15 Percent Sugar Iquivalent

Scores at Verious Overrune									
Stabilizer	30-39	40-49	50-59	60-69	70-79	80-89	90-99	100-109	110-112
Gelatin		28.50	28.75	29.50	29.25	29.50	28.75		28.25
Vesterine		28.75	29.00		28.25	27.75		27.50	
C.M.C.	27.50	27.50		28.50	28.25	28.00	27.50	27.25	
Dariloid		27.75	28.50	27.50	27.50	27.37		27.00	
Polycoid	28.00	29.25	28.50	28.00	28.00	27.50	27.00		
Peotin			27.00		27.87	27.50	27.00		27.00
Trageleon	27.25	27.66	28.50		28.25	27.50		27.50	
Gelox		28.62	29.00		27.75	28.75		28.50	

Vesterine compared favorably with the gelatin gamples. The maximum body score value of Vesterine samples was 29.00. The use of Vesterine resulted in ice cream which was somewhat chowy but had a tendency to be coarse. The nse of Gelox was criticized the same as Vesterine. It had maximum score value of 29.00 as shown in Table X.

The use of sodive carboxymethlcellulose (C.M.C.) as a stabiliser resulted in an ice cream which was chow at very low overruns and slighty chevy at overrans of 60 to 79 percent.

The use of Dariloid, Polycoid, or Krageleen as stabilizers resulted in ice creams which showed no unusual advantages or disadvantages.

Pectin proved poorest in producing good body scores, as may be expeoted of this type of stabilizer. de proviously pointed out, pectin is better adapted to use in therbets and ices than in ice cream. The criticisms of the samples were iciness and coarse body.

Ice cream samples containing gelatin and Vesterine stabilisers melted less than did any other amples as shown in Table XI. One posible explanation is the wator imbibing action of gelatin.

Further inspection of Table II reveals that the only evident correlation between meltdown and overrun is that the r ate of meltdown increases as overrun is increased. The average meltdown of amples containing other stabilisers, except pectin, shows no significance, Melting of samples in the pectin group occurred more repidy than with other etabilisers. This is to be expected because of the poor stabilising qualities of pectin.

Table XI. Grame of Meltdown with Various Stabilizers Used in Mix with 12 Percent Fat and 15 Percent Sugar Equivalent

Average at Various Overrun									
tabilizer	30-39	40-49	50-59	60-69	70-72	80-89	90-99	100-109	110-112
Gelatin		0	7	9	9	8	10		12
Vesterine		3	5		4	7		9	
C.M.C.	14	19		32	41	27	29	41	
Dariloid		10	14	8	12	25.5		36	
Polycoid	7	8	11.5	10	33	34	49		
Pectin			32		43	42	44		54
Erageleen	6	20	32		18	30		53	
Gelox		7	19		10	21		14	

The Effect of Varying Milk-Solide-Mot-Fat and Frodex

Roplacement of Sagar Uoon Meltdown and Body Score

The results of previous series indicated that Frodex was responsible for chow and smooth body. Consequently, Frodex was used with varying milk-solide-not-fat in further observations. Mixes containing 15 percent sugar equivalent vere made and Frodex used to supply 30 percent of the total aweetening value. The mires contained serum solids in mounts of 8, 10,12, and 14 percent. The remaining constituente were 12 percent fat, 11 percent milk-solide-not-fat, and 0.35 percent Veaterine.

The body score value, presented in Table XII, shows that the maximan acore value of all croupa, except the 14 percent M.S.B.F. group, occarred an an overran of 70 to 79 percent. The maximum acore value of the 14 percent
M.8.耳.F. group occurred at an overrin of 70 to 89 percent.

Table III. Optimum Overrun with Varied M.S.N.F. Mix 12 Percent Tat, 11.5 Percent Sucrose, and 4.5 Percent Frodex (Equivalent).

Scores at Various Overruns*

M.S.耳.F. Content	$30-39$	$40-49$	$50-59$	$60-69$	$70-79$	$80-89$	$90-99$	100-109	210-119
8%	28.00	28.37	28.75	$\frac{29.00}{}$	28.00		27.00		
10%	28.50	28.75		29.37	28.00		27.75	27.25	
12%	28.25	29.00		29.50	28.50	27.75			
14%	28.25		28.75	29.50	29.50		29.00		

* Maximan score value is underlined

The body of the oight percent serum solids eamples was quite satisfactory but not quite as high as the other samples. The 10 percent serum solids ice cream had a score value for body which was as high as oither the 12 or 14 percent groups. This group was atisfactory in every was including flavor. The 12 percent serum solids samples compared equally with those containing 10 percent milk-solids-not-fat and was quite mooth. These two groups were thought to be the most desirable in every respect. The 14 percent seram solide group was chewy and mooth but had a tendency to be too heavy and to have a powdery flavor.

The meltdown record of the eamples presented in Table XIII, shows that they melted more rapidy than the previous series of 15 porcent sugar equivalent. This cannot be attributed to a lower freezing point since Frodex has a freesing point slightly above that of sucrose. However, the use of

Frodex greatly increases the carbohydrate content since two times as mach Frodex is required to equal the wreetness of sucrose. Hien though the use of Frodex lowers the freezing point of a mix slightly lese then sucrose, it will lower the freesing point of a water solution and as more carbohydrate is added the freesing point is farther reduced. Another factor which increases the rate of melting is the increased total solids which occurs when Frodex is used. The increased total solids results in lese moisture which will be held in a frozen state.

Table XIII. Maximum Meltdown with Varied M.s. F. F. Mix 12 Percent Fat. 11.5 Percent Sucrose and 4.5 Percent Irodex (Fquivalent).

M.S. T. T. Content	40-49	50-59	60-69	70-79	80-89	90-99	100-109	110-119
8 \%	19	19	30	28		21		22
10 \%	46	50		59	53		67	69
12 \%	34.5	35		47		37	38	
148	40	57	60	49	52		46	

Results of Penetration Tests on Ice Cream

Ponetrations were mode three times on each of the 212 different camples of ice cream made for this study. The cumalative results show that the depth of penetration is directly related to the percent of overrin. A low orerran ice cream results in a shallow depth of penotration and a high overrun ice cream results in greater depth of penetration. Charts 30 to 33 are presented as typical examples of this relationahip. This correlation
was not so close that the percent of overrun could be determined by the use of a penetrometer.

Thore is no apparent correlation between maximum score value of body and any optimum ponetration index. In fact there seems to be no relation to body of an ice cream. This is contrary to the theory held at the outset of this work.

There was evidently no correlation between total solids and depth of penetration. The total solids of each of the mixes shown in charts 30 , 31. 32 , and 33 were $38.90,38.90,39.79$, and 46.28 percents, respectively.

The Effect of Age Upon the Score Valne for Body of Ice Cream

The score value for body of all series of ice creams when fresh and after two weeks storage were averaged for comparison to determine the effect of two weeks storage upon ice cream. The resulte are presented in Table IIV.

The results show that the difference in composite average body score value was very mall. This indicates that the storage of ice creans for two weeks causes only slight decreases in the score value of body. Comparison of the first five samples shows that the average body core value increased progressively as the milk-solids-not-fat is increased up to 12 percent. The average score value of the 14 percent milk-solids-not-fat croup deelined slightly. The table shows that the average score values of asmples containing 12 percent sugar equivalent was lower than those containing 15 percont magar equivalent. The 15 percent sugar eamples containing Frodex had an arerage score value above all other groups of mamples. Ice cream con-
taining gelatin had the highest averege body score value in the stabilizer series. Gelox and Vesterine ranked second and third, respectively. The last four croups of samples show that the average body score value of ice cream with Frodex replacement, increased progressively as the milk-solids-not-fat vas increased.
Table XIV: Average Body Score Value of Ice Cream When Fresh and After Two Weeks Storage

Series	Group	Age when scored	Percent overrun									Average		$\begin{array}{\|l\|} \text { Differ- } \\ \text { ence } \end{array}$
			30-39	40-49	50-59	60-69	70-79	80-89	90-99	100-109	110-119	Fresh	Aged	
M.S.N.F.	8\%	Fresh Aged		$\begin{aligned} & 27.00 \\ & 27.00 \\ & \hline \end{aligned}$	$\begin{array}{r} 27.25 \\ 27.25 \\ \hline \end{array}$	$\begin{aligned} & 27.62 \\ & 27.62 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} 28.25 \\ 27.87 \\ \hline \end{array}$	$\begin{aligned} & 27.75 \\ & 27.50 \\ & \hline \end{aligned}$	$\begin{aligned} & 27.50 \\ & 27.25 \\ & \hline \end{aligned}$			27.66	27.50	-. 16
	10\%	Fresh Aged			$\begin{aligned} & 27.50 \\ & 27.12 \\ & \hline \end{aligned}$	$\begin{aligned} & 28.50 \\ & 28.42 \end{aligned}$	$\begin{aligned} & 28.87 \\ & 28.75 \end{aligned}$	$\begin{aligned} & 28.25 \\ & 28.00 \\ & \hline \end{aligned}$	$\begin{aligned} & 27.87 \\ & 27.37 \\ & \hline \end{aligned}$			28.23	27.98	-. 25
	11\%	Fresh Aged		$\begin{array}{r} 27.00 \\ 27.00 \\ \hline \end{array}$	$\begin{array}{r} 28.00 \\ 27.75 \\ \hline \end{array}$		$\begin{aligned} & 29.25 \\ & 29.12 \\ & \hline \end{aligned}$	$\begin{aligned} & 28.75 \\ & 28.50 \\ & \hline \end{aligned}$	$\begin{aligned} & 28.00 \\ & 27.75 \\ & \hline \end{aligned}$	$\begin{aligned} & 27.50 \\ & 27.25 \\ & \hline \end{aligned}$		28.28	28.08	-. 20
	12\%	Fresh Aged		$\begin{aligned} & 29.50 \\ & 29.00 \\ & \hline \end{aligned}$	$\begin{aligned} & 29.12 \\ & 28.87 \end{aligned}$		$\begin{array}{r} 29.00 \\ 28.75 \\ \hline \end{array}$	$\begin{aligned} & 28.50 \\ & 28.00 \\ & \hline \end{aligned}$	$\begin{aligned} & 27.00 \\ & 27.00 \\ & \hline \end{aligned}$			28.71	28.42	-. 29
	14\%	Fresh Aged		$\begin{aligned} & 28.00 \\ & 28.00 \\ & \hline \end{aligned}$	$\begin{aligned} & 28.62 \\ & 28.37 \\ & \hline \end{aligned}$	$\begin{aligned} & 29.25 \\ & 29.25 \\ & \hline \end{aligned}$	$\begin{aligned} & 28.75 \\ & 28.50 \\ & \hline \end{aligned}$	$\begin{aligned} & 28.50 \\ & 28.25 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 28.50 \\ 28.25 \\ \hline \end{array}$		$\begin{aligned} & 28.00 \\ & 27.50 \\ & \hline \end{aligned}$	28.61	28.42	-. 19
14\% suga equivalent	cane sugar	Fresh Aged	$\begin{aligned} & 27.50 \\ & 27.50 \\ & \hline \end{aligned}$	$\begin{aligned} & 27.75 \\ & 27.50 \\ & \hline \end{aligned}$	$\begin{array}{r} 28.00 \\ 27.75 \\ \hline \end{array}$	$\begin{aligned} & 28.50 \\ & 28.50 \\ & \hline \end{aligned}$	$\begin{aligned} & 28.25 \\ & 28.00 \\ & \hline \end{aligned}$	$\begin{aligned} & 28.00 \\ & 27.75 \\ & \hline \end{aligned}$	$\begin{aligned} & 27.50 \\ & 27.50 \end{aligned}$	27.25 27.00		27.84	27.66	-. 18
	Dex trose	Fresh Aged		$\begin{array}{\|} 28.12 \\ 28.12 \end{array}$	$\begin{aligned} & 28.75 \\ & 28.75 \\ & \hline \end{aligned}$	$\begin{array}{r} 29.25 \\ 29.25 \\ \hline \end{array}$		$\begin{array}{r} 29.00 \\ 29.00 \\ \hline \end{array}$	$\begin{aligned} & 28.75 \\ & 28.75 \end{aligned}$	$\begin{array}{r} 27.50 \\ 27.50 \\ \hline \end{array}$		28.50	28.50	0

Table XIV: (Cont'd)

Series	Group	Age when scored	Percent overrun									Average		Differ ence
			30-39	40-49	50-59	60-69	70-79	80-89	90-9,9	100-109	110-119	Fresh	Aged	
14\% sugar equivalent	Frodex	Fresh Aged	$\begin{aligned} & 27.50 \\ & 27.50 \\ & \hline \end{aligned}$	$\begin{aligned} & 28.00 \\ & 27.75 \\ & \hline \end{aligned}$	$\begin{aligned} & 28.50 \\ & 28.25 \end{aligned}$	$\begin{aligned} & 29.00 \\ & 28.50 \\ & \hline \end{aligned}$	$\begin{array}{r} 28.75 \\ 28.00 \\ \hline \end{array}$	$\begin{aligned} & 28.50 \\ & 27.75 \end{aligned}$	$\begin{aligned} & 28.25 \\ & 27.50 \\ & \hline \end{aligned}$			28.36	27.89	-. 47
	Sweetose	Fresh Aged		$\begin{aligned} & 28.50 \\ & 28.25 \\ & \hline \end{aligned}$	$\begin{aligned} & 29.00 \\ & 29.00 \\ & \hline \end{aligned}$	$\begin{aligned} & 28.25 \\ & 28.00 \end{aligned}$	$\begin{aligned} & 27.62 \\ & 27.50 \\ & \hline \end{aligned}$				$\begin{aligned} & 27.00 \\ & 27.00 \\ & \hline \end{aligned}$	28.07	27.93	-. 14
	Puritose	Fresh Aged		$\begin{array}{r} 27.62 \\ 27.50 \\ \hline \end{array}$		$\begin{array}{r} 28.25 \\ 28.00 \\ \hline \end{array}$		$\begin{aligned} & 28.50 \\ & 28.25 \end{aligned}$		$\begin{aligned} & 27.37 \\ & 27.25 \\ & \hline \end{aligned}$		27.89	27.71	-. 18
	Super Sweet Syrup	Fresh Aged	$\begin{aligned} & 27.00 \\ & 27.00 \end{aligned}$	$\begin{aligned} & 27.25 \\ & 27.25 \end{aligned}$	$\begin{aligned} & 27.75 \\ & 27.50 \end{aligned}$	$\begin{aligned} & 28.25 \\ & 28.00 \end{aligned}$	$\begin{aligned} & 28.50 \\ & 28.50 \end{aligned}$	$\begin{aligned} & 27.75 \\ & 27.75 \end{aligned}$		$\begin{aligned} & 27.25 \\ & 27.25 \\ & \hline \end{aligned}$		27.68	27.61	-. 07
15% sugar equivalent	Cane sugar	Fresh Aged	$\begin{aligned} & 28.50 \\ & 28.50 \\ & \hline \end{aligned}$	$\begin{aligned} & 28.75 \\ & 28.75 \\ & \hline \end{aligned}$	$\begin{aligned} & 28.62 \\ & 28.62 \\ & \hline \end{aligned}$	$\begin{array}{r} 29.75 \\ 29.75 \\ \hline \end{array}$		$\begin{aligned} & 29.50 \\ & 29.50 \end{aligned}$		$\begin{array}{r} 29.00 \\ 29.00 \\ \hline \end{array}$		28.96	28.96	0
	Dextrose	Fresh Aged		$\begin{aligned} & 28.25 \\ & 28.25 \\ & \hline \end{aligned}$	$\begin{array}{r} 29.00 \\ 29.00 \\ \hline \end{array}$	$\begin{aligned} & 29.50 \\ & 29.50 \\ & \hline \end{aligned}$	$\begin{aligned} & 28.75 \\ & 28.75 \\ & \hline \end{aligned}$		$\begin{aligned} & 28.50 \\ & 28.50 \\ & \hline \end{aligned}$			28.71	28.71	0
	Frodex	Fresh Aged		$\begin{array}{r} 29.00 \\ 29.00 \\ \hline \end{array}$	$\begin{aligned} & 29.25 \\ & 29.25 \end{aligned}$	$\begin{array}{r} 29.50 \\ 29.50 \\ \hline \end{array}$		$\begin{aligned} & 29.75 \\ & 29.75 \\ & \hline \end{aligned}$	$\begin{aligned} & 29.75 \\ & 29.75 \\ & \hline \end{aligned}$			29.38	29.38	0
	Sweetose	Fresh Aged		$\begin{aligned} & 29.00 \\ & 28.00 \end{aligned}$	$\begin{aligned} & 29.00 \\ & 28.50 \end{aligned}$	$\begin{aligned} & 29.00 \\ & 29.00 \end{aligned}$	$\begin{aligned} & 28.00 \\ & 28.00 \end{aligned}$		$\begin{aligned} & 28.50 \\ & 28.50 \end{aligned}$		$\begin{aligned} & 27.50 \\ & 27.50 \end{aligned}$	28.50	28.25	-. 25

Table XIV: (Cont'd)

Series	Group	Age when scored	Percent overrun									Average		Difference
			30-39	40-49	50-59	60-69	70-79	80-89	90-99	100-109	110-119	Fresh	Aged	
15% sugar equivalent	Puri- tose	Fresh Aged	$\begin{aligned} & 27.75 \\ & 27.75 \end{aligned}$	$\begin{aligned} & 28.00 \\ & 28.00 \end{aligned}$	$\begin{array}{\|l} 28.62 \\ 28.62 \\ \hline \end{array}$	$\begin{array}{r} 29.25 \\ 29.25 \\ \hline \end{array}$		$\begin{aligned} & 28.50 \\ & 28.50 \\ & \hline \end{aligned}$		$\begin{aligned} & 27.50 \\ & 27.50 \end{aligned}$		28.34	28.34	0
	Super Sweet Syrup		$\begin{aligned} & 28.50 \\ & 28.00 \end{aligned}$	$\begin{aligned} & 28.75 \\ & 28.50 \\ & \hline \end{aligned}$	$\begin{array}{r} 29.00 \\ 28.75 \end{array}$	$\begin{aligned} & 29.25 \\ & 29.00 \\ & \hline \end{aligned}$	$\begin{aligned} & 28.50 \\ & 28.50 \\ & \hline \end{aligned}$		$\begin{aligned} & 28.00 \\ & 28.00 \\ & \hline \end{aligned}$	$\begin{aligned} & 27.75 \\ & 27.75 \\ & \hline \end{aligned}$		28.54	28.36	-. 18
$\left\lvert\, \begin{gathered} \text { Stabil- } \\ \text { izer } \end{gathered}\right.$	Gelatin	Fresh Aged		$\begin{aligned} & 28.50 \\ & 28.00 \\ & \hline \end{aligned}$	$\begin{aligned} & 28.75 \\ & 28.62 \end{aligned}$	$\begin{aligned} & 29.50 \\ & 29.25 \\ & \hline \end{aligned}$	$\begin{aligned} & 29.75 \\ & 29.50 \\ & \hline \end{aligned}$	$\begin{aligned} & 29.50 \\ & 29.00 \\ & \hline \end{aligned}$	$\begin{aligned} & 28.75 \\ & 28.50 \\ & \hline \end{aligned}$		$\begin{aligned} & 28.25 \\ & 28.00 \\ & \hline \end{aligned}$	28.97	28.69	-. 28
	Vesterine	Fresh Aged		$\begin{aligned} & 28.75 \\ & 28.75 \\ & \hline \end{aligned}$	$\begin{array}{r} 29.00 \\ 29.00 \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline 28.75 \\ 28.75 \\ \hline \end{array}$	$\begin{aligned} & 27.75 \\ & 27.75 \\ & \hline \end{aligned}$		$\begin{aligned} & 27.50 \\ & 27.50 \end{aligned}$		28.22	28.22	0
	C.M.C.		$\begin{aligned} & 27.00 \\ & 27.00 \\ & \hline \end{aligned}$	$\begin{aligned} & 27.50 \\ & 27.25 \end{aligned}$		$\begin{aligned} & 28.50 \\ & 28.00 \\ & \hline \end{aligned}$	$\begin{array}{r} 28.25 \\ 28.00 \\ \hline \end{array}$	$\begin{aligned} & 28.00 \\ & 27.00 \\ & \hline \end{aligned}$	$\begin{aligned} & 27.50 \\ & 27.25 \\ & \hline \end{aligned}$	$\begin{aligned} & 27.25 \\ & 27.00 \\ & \hline \end{aligned}$		27.69	27.34	-. 35
	$\left\lvert\, \begin{aligned} & \text { Dari- } \\ & \text { loid } \end{aligned}\right.$	Fresh Aged		$\begin{aligned} & 27.75 \\ & 27.50 \\ & \hline \end{aligned}$	$\begin{aligned} & 28.50 \\ & 28.00 \\ & \hline \end{aligned}$	$\begin{array}{r} 27.50 \\ 27.25 \\ \hline \end{array}$	$\begin{aligned} & 27.50 \\ & 27.25 \\ & \hline \end{aligned}$	$\begin{aligned} & 27.37 \\ & 27.25 \\ & \hline \end{aligned}$		$\begin{array}{r} 27.00 \\ 27.00 \\ \hline \end{array}$		27.57	27.36	-. 21
	Polycoid	Fresh Aged	$\begin{aligned} & 28.00 \\ & 28.00 \\ & \hline \end{aligned}$	$\begin{aligned} & 28.25 \\ & 28.25 \\ & \hline \end{aligned}$	$\begin{array}{r} 28.50 \\ 28.50 \\ \hline \end{array}$	$\begin{array}{r} 28.00 \\ 28.00 \\ \hline \end{array}$	$\begin{array}{r} 28.00 \\ 28.00 \\ \hline \end{array}$	$\begin{aligned} & 27.50 \\ & 27.50 \\ & \hline \end{aligned}$	$\begin{aligned} & 27.00 \\ & 27.00 \\ & \hline \end{aligned}$			27.97	27.97	0
	$\begin{aligned} & \text { Pec- } \\ & \text { tin } \end{aligned}$	Fresh Aged			$\begin{aligned} & 27.00 \\ & 27.00 \\ & \hline \end{aligned}$		$\begin{aligned} & 27.87 \\ & 27.87 \\ & \hline \end{aligned}$	$\begin{aligned} & 27.50 \\ & 27.50 \\ & \hline \end{aligned}$	$\begin{aligned} & 27.00 \\ & 26.60 \\ & \hline \end{aligned}$		$\begin{aligned} & 27.00 \\ & 26.50 \\ & \hline \end{aligned}$	27.32	27.11	-. 21
	Krageleen	Fresh Aged	$\begin{aligned} & 27.25 \\ & 27.00 \\ & \hline \end{aligned}$	$\begin{aligned} & 27.57 \\ & 27.17 \end{aligned}$	$\begin{aligned} & 28.50 \\ & 28.00 \end{aligned}$		$\begin{aligned} & 28.25 \\ & 27.50 \\ & \hline \end{aligned}$	$\begin{aligned} & 27.50 \\ & 27.50 \end{aligned}$		$\begin{aligned} & 27.50 \\ & 27.00 \end{aligned}$		27.75	27.31	-. 44

Table XIV: (Cont'd)

Series	Group	Age when scored	Percent overrun									Average		Differ ence
			30-39	40-49	50-59	60-69	70-79	80-89	90-99	100-109	110-119	Freah	Azed	
$\begin{array}{\|l} \text { Stabil- } \\ \text { izer } \end{array}$	Gelox	Fresh Aged		28.62 28.12	$\begin{array}{\|c} 29.00 \\ 28.50 \\ \hline \end{array}$		$\begin{aligned} & 27.75 \\ & 27.25 \end{aligned}$	$\begin{aligned} & 28.75 \\ & 27.50 \\ & \hline \end{aligned}$		$\begin{array}{r} 28.50 \\ 27.50 \\ \hline \end{array}$		28.54	27.83	-. 71
Frodex and M.S.N.F.	8\%	Fresh Aged		$\begin{aligned} & 28.00 \\ & 27.50 \end{aligned}$	$\begin{aligned} & 28.37 \\ & 28.12 \end{aligned}$	$\begin{array}{r} 28.75 \\ 28.50 \end{array}$	$\begin{aligned} & 29.00 \\ & 28.75 \\ & \hline \end{aligned}$		$\begin{aligned} & 28.00 \\ & 28.00 \end{aligned}$		$\begin{aligned} & 27.00 \\ & 27.00 \end{aligned}$	28.21	28.00	-. 21
	10\%	Fresh Aged		$\begin{array}{r} 28.50 \\ 28.00 \end{array}$	$\begin{array}{r} 28.75 \\ 28.50 \end{array}$		29.37 29.12	$\begin{aligned} & 28.00 \\ & 28.00 \end{aligned}$		$\begin{aligned} & 27.75 \\ & 27.50 \end{aligned}$	$\begin{aligned} & 27.25 \\ & 27.00 \\ & \hline \end{aligned}$	28.43	28.18	-. 25
	12\%	Fresh Aged		28.25 28.25	$\begin{array}{r} 29.00 \\ 29.00 \\ \hline \end{array}$		29.50 29.50		28.50 28.00	$\begin{aligned} & 27.75 \\ & 27.75 \\ & \hline \end{aligned}$		28.54	28.46	-. 08
	14\%	Fresh Aged		28.25 27.75		28.75 28.62	$\begin{array}{r} 29.50 \\ 29.50 \end{array}$	29.50 29.25		$\begin{array}{r} 29.00 \\ 28.50 \\ \hline \end{array}$		28.86	28.57	-. 29

Composite average $\quad 28.26728 .075$-. 20

1. The milk-solids-not-fat of normal commercial ice cream proved a minor factor in the development of unusuaily cohesive body.
2. A milk-solids-not-fat content of 8 or 10 percent did not produce as desirable body as 11 and 12 percent. The use of 14 percent milk-solids-not-fat produced a desirable body bat tended to add powdery flaror.
3. A agar content of 15 percent produced an ice cream with higher score value for body than one containing 12 percent sugar.
4. Ice oream mix containing 15 percent angar equivalent had the most desirable body when the milk-molids-not-fat content was 11 or 12 percent.
5. Frodex produced a chewy body in ice cream when used to supply 30 percont of the aweotness in a 15 percent sugar equivalent mix.
6. When Frodex was used to replace 30 percent of the weetness in a 15 percent mugar equivalent mix, the ice cream was chery at overrons as high as 80 to 90 percent.
7. The optimum overrin of a heavy bodied ice cream containing 12 percent fat, 11 percent milk-solids-not-fat, and 15 percent sugar equivalent was 60 to 75 percent.
8. Gelatin was found to produce a finer textured ice cream than any other stabiliser studied.
9. The rate of meltdown increased as overrun was increased because, it is believed, the thicker layer of foam insulates high overrun ice cream from heat changes.
10. Penetration by the penetrometer was correlated only to the percent overrun in ice cream. The depth of penetration increased as the percent overiun was increased.

LITERATURE CITED

(1) Andorsen, B. O., Dord, I. R., and Homboldt, H. 1937 Sodive Alginate as atabiliser for Ice Cream Ice Orean Reviov 20 (11): 88. 90-1.
(2) Bondixen, H. A.

1940 Function of Stabiliser:
Ice Orean Field 36 (4): 25-8, 84-7.
(3) Biester, Alice, Vood, Milidred Veigley, and Maklin, Cecile stone 1925 Carbohydrate Studies
I. The Relative Sweetness of Pare Sugars

American Journal of Phyaiology 73: 387-96.
(4) Carithers, R. L., and Combe, W. B.

1936 Dran Fs. Spray Procese Dry Milk in Ice Grean Ice Crean Reviov 19 (8): 46, 60-2.
(5) Canlifield, W. J. and Martin, W. H. 1993 The Use of Vegetable stabilisers in Ice Orean Journal of Dairy Science 16: 265-70.
(6) Combs, X. B.

1943 Drun Procese Dry Milk in Ice Orean Ice Crean Review 26 (6): 14-5, 40-1.
(7) Corbett, M. J. and Tracy, P. H. 1939 The Use of Dextrose in Ice Cream

Ice Crean Trade Journal 35 (12): 11-2, 49.
(8) Coalter, 8. T.

1942 Economy Through serve Solid Changes Ice Orean Field 40 (4): 18, 74-6.
(9) Dahlberg, A. C. and Poncsok, E. S. 1940 Daxtrose and Corn Syrap for Frosen Deserts I. Y. Agr. Ex. Sta. Bal. 696.

1941 Iee Crean Field 37 (3): 36-7, 40-6, 50.
(10) Dahlberg, A. C. and Ponczek, E. S.

1941 The Relative Sveetness of Sagars as dffected by Concentration I. I. (Geneva) Agr. Expt. Sta. Fech. Bul. 258. Ice Orean Review 24 (12): 42-8, 50.
(11) Dahle, O. D.

1939 Dry Stim Milk in Ice Crean
Ice Orean Field 33 (4): 32-6, 52-3.
(12) Dahle, C. D.

1942 Sweotening Agents
Ice Cream Field 40 (4): 26, 85-7.
1942 Sagars in Ice Cream
Ice Cream Review 25 (9): 24-5, 44.
(13) Dahle, C. D.

1946 Analyais of Stabilizers
Ice Cream Field 48 (4): 62-6, 122-3.
(14) Dahle, C. D. and Colling, W. P. 1947 Basic Ice Cream Industry Stabilizers

Ice Cream Field 50 (6): 24-6, 35.
(15) Dahle, C. D., Hankinson, D. J. and Meiser, J. A. Jr.

1947 Shrinkage in Ice Cream
Ice Cream Reviev 31 (6): 41-2, 80-7.
(16) Dahle, C. D., Walts, C. C. and Keith, J. I. 1931 Dry Skimmilk in Ice Cream

Penn. State Agr. Rxp. Sta. Tech. Bul. 271.
(17) Erb, J. Hoffman

1942 Sweetening Agent:
Ice Crean Field 34 (2): 16-7.
(18) Erb , J. H.

1944 Conserving Milk Solide
Ice Crean Trade Journal 40 (3): 20.
(19) Irb, J. H.

1947 Quality Packaged Product
Ice Cream Field 49 (3): 30-2.
(20) Fouts, E. L.

1946 Ice Cream With Less Sugar
Ice Cream Review 29 (8): 52-6.
(21) Goodman, Clark

1935 Technical Control of Ice Cream with Sodium Alginate Ice Cream Review 18 (7): 42-8.
(22) Gould, Ira

1933 M. S. Thesis, Michigan State College Proposed Stabilizers in Ice Cream.
(23) Gould, Ira

1947 Research for Practical Problems Ice Cream Field 50 (4): 90-3.
(24) Hellvig, A. P. and Buchanan, B. F. 1940 Freezing-Point Data of Corn Syrup Solids Ice Cream Trade Journal 36 (2): 49, 63.
(25) Holdaway, C. W. and Reynolds, R. R. 1916 Effects of Binders Upon the Melting and Hardness of Ice Cream Virginia Agr. Ryp. Sta. Bul. 211.
(26) Horrall, B. I.

1942 Sweoteners Used in Ice Cream Ice Cream Field 34 (2): 28.
(27) Jensen, Jewell M. 1930 M. S. Thesis, Michigan State College The Influence of the Source of Pat and Serum Solids on the Overrun and Quality of Ice Cream.
(28) Josephson, D. V. and Dahle, C. D. 1945 A New Cellulose Gum Stabilizer for Ice Cream Ice Cream Reviev 28 (11): 32, 76-80.
(29) Knechtges, John W. and Sommer, H. H. 1942 Corn Syrup Solide - Their Use in Ice Cream Ice Cream Trade Journal 38(7): 14-5, 42-5.
(30) Leighton, Alan

1942 Sugar is More Than a Sweetening Agent
Ice Crean Trade Journal 38 (5): 14-5, 48-50.
(31) Leighton, Alan and Williams, Owen F. 1942 Saving Sugar in Ice Cream Ice Cream Trade Journal 38 (9): 12-3, 32-1.
(32) Iucas, P. S. 1927 The Relation of Milk-Solide-Mot-Fat to Overrun and Quality of Ice Cream
Michigan Agr. Exp. Sta. Tech. Bul. 861.
(33) Incas, P. S. 1942 Working Directions for Ice Cream Sweeteners Ice Cream Field 40 (3): 31, 38, 46.
(34) Incas,P. S. and Gould, Ira. 1938 Studies of Two Substitutes for Gelatin in Ice Cream Michigan Agr. Kxp. Sta. Quar. Bul. 20 (4): 263-9.

(35) Incas, P. S. and Jensen, Jewell
1939 Limitations to the Use of Skimmilk Powder and Butter in Ice Cream Mix Michigan Agr. Exp. Sta. Quar. Bul. 19. 3.
(36) Lacas, P. S., Matsui, Toshihide, and Mook, D. F.
1930 The Influence of Sugar and Butterfat on Quality of Ice Crean Michigan State Agr. Fixp. Sta. Spec. Bul. 201.
(37) Mack, M. J.
1934 Controlling Physical Properties of High Solids Mixes Journal of Dairy Science 17: 781-9.
(38) Mack, M. J.
1936 Sodium Alginate as a Stabilizer in Manufacturing Ice Cream Ice Cream Trade Journal 32 (11): 33-4.
(39) Mack, M. J.
1936 Sodium Alginate as a Stabilizer
Ice Cream Review 20 (4): 60-4.
(40) Masuroveky, B. I.
1942 The Why of Serum Solids in Ice Crean Ice Crean Trade Journal 38(3): 30, 46.
(41) Masurovsky, B. I.
1946 Fdible Gelatin and Its Use in Ice Cream Ice Cream Trade Journal 42 (5): 60.
(42) Matsui, Toshihide 1926 M. S. Thesis, Michigan State College The Relation of Sugar Content of the Ice Cream Mix to Overrun and quality of Ice Cream.
(43) Price, M. V. and Whitaker, Randall
1931 Dry Skimmilk in Ice Cream
Cornell Univ. Agr. Exp. Sta. Bul. 516.
(44) Ramsey, R. J.
1946 Factors Affecting the Shrinkege of Ice Cream
Forty-Second Annual Convention of the International
Association of Ice Crean Manufacturers Vol. 2: 63-4.
(45) Ramsey, R. J., Drusenduhl, L. G. and Leider, J. G.
1947 Factors Affecting the Shrinkage of Ice Cream Ice Crean Review 30 (7): 71-8.
1
(46) Roid, V. H. E.

1924 The Rffect of the Sigar Content in the Menufacture of Commercial Ice Cream Missouri Agr. Kxp. Sta. Res. Bul. 69.
(47) Roid, M. H. E.

1938 Factors Influencing the Body and Texture of Ice Cream Ice Cream Trade Journal 34 (5): 20-4.
(48) Reid, W. H. E. and Decker, C. W.

1943 The Effect of Different Increments of Sucrose and Dextrose on the Freezing Procedures, Mix Compositions, Stability, and Internal Structure of Ice Cream. Ice Cream Field 43 (3): 12-3, 86-95.
(49) Reid, W. H. F. and Shinner, G. R.

1929 The Effect of Homogenisation at Different Pressures on the Physical Properties of an Ice Cream Mixture and the Resulting Ice Cream Missouri Agr. Hxp. Sta. Res. Bul. 127.
(50) Roberts, William Joseph

1925 M. S. Thesis, Michigan State College The Relation of Milk-Solids-Not-Fat Content of Mix to Overrun and Quality of Ice Cream.
(5I) Schied, M. V., Incas, P. S. and Trout, G. M. 1942 Frozen Cream as a Source of Fat in Ice Cream Michigan Agr. Exp. Sta. Quar. Bul. 25 (2): 125-32.
(52) Sommer, H. H.

1946 Ice Cream Making Fifth Rdition The Olsen Publishing Co.
(53) Sommer. H. H.

1937 Physical and Bacteriological Tests on Commercial Ice Cream Ice Cream Review 20 (6): 38-9.
(54) Stebnitz, V. C. and Sommer, H. H. 1937 What Should Ice Cream Stabilizers Do? Ice Cream Reviev 20 (8): 51-2. 73.
(55) Stebnitz, V. C. and Sommer, H. H. 1938 Sodium Alginate - A Stabilizer Ice Cream Field 32 (3): 48-9, 55. Ice Cream Field 32 (4): 52-3.
(56) Stebaits, V. C. and Sommer, H. H.

1938 Stabilization of Ice Cream with Sodium Alginate Ice Cream Trade Journal 34 (3) 14-5, 38-46. Ice Cream Review 21 (7): 36-8, 64-72.
(57) Thomas, R. L. and Combs, W. B.

1944 Observations on the Use of Roller Process Sweet Cream Buttermilk Powder in Ice Cream Jour. Dairy Sci. 28: 419-43.
(58) Tracy, P. H.

1940 Ose of Enzyme Converted Corn Syrup in the Manufacture of Ice Cream, Sherbets, and Ices
Proc. Int. Association Ice Cream Manufecturers Vol. 2, p31.
(59) Tracy, P. H.

1947 Mix Stabilizers and Whipping Agents
Ice Cream Review 31 (2): 80-6.
(60) Tracy, P. H.

1947 Overrun Control in Ice Cream
Ice Cream Field 50 (4): 88-9.
(61) Tracy, P. H. and McCown, C. Y. 1934 A Study of Factors Related to the Hardening of Ice Cream Journal of Dairy Science 17: 47-60.
(62) Tracy, P. H. and Tuckey, S. I. 1939 A Comparison of Gelatin and Sodiun Alginate as Stabilizers in Ice Cream Food Research 4 (4): 335.
(63) Turnbow, C. D. and Milner, F. W. 1927 The Role of Gelatin in Ice Cream Journal of Dairy Science 10: 202-9.

APPENDIX

Plate 2. Penetrometer Support and Manual Release

Plate 1. Complete
 Penetration Assembly

Plate 3. Penetronetor and limnual Faleare Y fey

$$
1
$$

Table XV : Results of Verying Cverrun Using an
Eight Per Cent S. S. Iix

Sam- ple No.	Per cent overrun	Ave. mm of penetration	Meltdown in gms	Judging bodv- fresh		Judging body- 2 wks old	
				Score	Description	Score	Description
1	47	17.6	13	27.00	Solid Coarse ICJ	27.00	$\begin{aligned} & \text { Solid } \\ & \text { Icy } \\ & \hline \end{aligned}$
2	56	19.6	11	27.25	Solid Coarse IC-	27.25	$\begin{aligned} & \text { Solidd } \\ & \text { Icy } \end{aligned}$
3	60	18.3	28.	27.00	Solid Coarse ICy	27.50	Solid Icy
4	67	22.6	27	28.25	Sl. Icy S7. Coarse	27.75	Icy
5	70	20.3	30	28.50	SI. Ic_{V} S.l. Coarse	28.00	Icy
6	75	23.0	33	28.00	Licht Sl. ICr	27.75	Lignt S.l. Icy
7	80	27.0	40	27.75	Lignt S1. Icy	27.50	Li ht V. Icr
8	95	28.0	46	27.50	V. Licht Sl. Icy	2.25	$\begin{aligned} & \text { V. Iight } \\ & \text { V. Ic } \end{aligned}$

Penetrations in mm

Composition
Fat - - - - . 12 界 Sugar - - 15 男 Serum solids- - $\% \%$ Stabilizer- $.35 \%$ Total solids - - 30.22%

Ingredients per 100 pounds
Butter 85%. 12.15 pounds
iilk 3.5\% - . . . - - 40.41 "
Dry milk solids not fat - 3.90 "
Sweeteners
Cane sugar - - - - - 10.50 "
Dextrose - - 2.71 "
Sveetose - - 3.30́ "
Stabilizer -

Table XVI: Resul.ts of Varying Overrun Using
A Ten Per Cent S.S. Mix

$\begin{aligned} & \text { Sam- } \\ & \text { ple } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Per } \\ & \text { cent } \\ & \text { over- } \\ & \text { run } \end{aligned}$	Ave. min of penetration	$\begin{gathered} \text { Melt- } \\ \text { down } \\ \text { im gms } \end{gathered}$	Judging body- fresh		Judging body- 2 wks old	
				Score	Description	Score	Description
1	53	17.6	40	27.50	Heavy S7. Icy	27.00	Heav: Sl. Icr
2	56	17.0	35	27.50	Heavy Sl. Icy	27.25	S.. Heavy Sl. Icy
3	60	19.6	48	28.00	Sl. Heavy 3ooth	28.00	Sl. Ieavy
4	63	16.6	23	28.50	Smooth	28.50	Smooth
5	67	21.0	44	29.00	Sl. Chewy Snooth	28.75	Sl. Chewy Sroooth
6	70	20.0	32	29.25	SI. Chewy Salooth	29.00	SI. Chewy Snooth
	75	22.0	42	28.50	Smooth	28.50	S:nooth
	85	24.3	35	28.25	Sl. Coarse	23.00	S1. Icy
	90	24.3	45	128.00	Sl. Light Sl. Coarse	27.50	SI. Light SI. Coarse SI. Iey
	95	25.6	48	27.75	V. Light	27.25	V. Light SI. Coarse

Penetrations in ma
$\left.\begin{array}{rr}\left.1-\begin{array}{r}17 \\ 18 \\ 18\end{array}\right] 17.6 & 6-20 \\ -17 \\ 17 \\ 17\end{array}\right] 17 \quad 20$

Composition
Fat - - . - 12 \% Sugar - - . 15% Serum solids - - 10% Stabilizer - . 35 \% Total solids - 38.22%

Ingredients per 100 pounds Butter 85\% - - - - - - - 11.80 pounds Milk 3.5\% — - 60.00 " Dry milk solids not fat - - 4.80 " Sweeteners Cane sugar - 10.50 " Dextrose -.... 2.71 " Stabilizers

$$
\overline{100.02} \text { pounds }
$$

Table XVII: Results of Varying Cverrua Using

$\begin{aligned} & \text { Sam- } \\ & \text { ple } \\ & \text { No. } \end{aligned}$	Per cent overrun	Ave. mm of penetration	Meltdown in gms	Judging body- fresh		Judging body- 2 wks old	
				Score	Description	Score	Description
1	49	13.3	13	27.00	$\begin{aligned} & \text { SI. Herd } \\ & \text { So, } \end{aligned}$	27.00	31. Iard v. Ic
2	56	9.3	9	27.50	Sl. ilard S1. So gir	27.25	Sl. Hard S. . Ic:r
3	59	9.3	38	28.50	$\begin{aligned} & \text { S1. Kard } \\ & \text { SI. Soz } y \end{aligned}$	28.25	SI. Icy Sl. Sorger
4	74	10.3	58	29.00	Siizooth	29.00	Swooth
5	78	12.6	40	29.50	Srooth	29.25	S:nooth
6	83	14.6	61	29.00	Shooth	29.00	Smooth
7	88	14.6	50	28.50	Smooth Sl. Coarse S.1. Lizht	28.00	S1. Coarse Sl. Lisht
8	98	15.3	49	28.00	Sl. Light	27.75	S1. Coarse S1. LiEht
9	109	19.6	48	27.50	SI. Coarse V. Light	27.25	51. Coarse V. Li ht
10							

Penetrations in mm
1-
$\left.\begin{array}{l}13 \\ 13 \\ 14\end{array}\right] 13.3$
$\left.\begin{array}{rr}2- & 9 \\ & 9\end{array}\right) 9.3$
$3-$
9
10 9.3
$4-\begin{aligned} & 10 \\ & 10 \\ & 11\end{aligned} 10.3$
5-
いぃ~ 3 . 12

6- $\left.\begin{array}{r}14 \\ 15 \\ 15\end{array}\right] 14.0$
7- $\left.\begin{array}{r}14 \\ 15 \\ 15\end{array}\right\} 14.6$
8- 15

| 15 |
| :--- | :--- |
| 15 |
| 16 | 15.3

9-10?
20
20 19.6
10$\xrightarrow{\square}$

Composition
Fat - 12 \% Sugar . . . 15 \% Serum solids - - 11% Stabilizer - . 35% Total solids - - 38.80 \%

Ingredients per 100 pounds Butter 85\% — - - - - - 1.2 .40 pounds Milk 3.5\% —. - 66.41 " Dry milk solids not fat - - 5.30 " Sweeteners
Cane sugar $\quad . \quad . \quad .-10.50 \quad "$ Dextrose - . . - 2.71 Sweetose - - - - 3.36 " Stabilizers
(Vestenine)- - . 35 "
Water _ 35 "

Table XVIII: Results of Varyring Overrun Using a
Twelve Per Cent S. S. Iix

Sam-	Per cent	Ave. mm of	Melt-	Judging body- fresh		Judging body-2 wks old	
No.	run	penetion	in gms	Score	Description	Score	Description
1	47	19.6	24	29.50	Heaver Chewy Sinooth	29.00	Heavy Chewy Sl. Icy
2	56	20.3	29	29.25	Chewy Smooth	29.00	Chewy S7. Icy
3	59	21.6	28	29.00	Icy Coarse	28.75	IC: Coarse
4	70	24.0	29	29.00	Icy Coarse	28.75	ICr Corrse
5	83	26.0	33	23.50	V. Light Coarse	28.00	$\begin{aligned} & \text { V. Light } \\ & \text { Coarse } \end{aligned}$
6	109	25.6	40	27.00	V. Light Coarse	27.00	V. Light Coarse
7							
8							.

Penetrations in mm

Fat - - - . . 12% Sugar - . 15
Serum solids- - 12% Stabilizer- . 35 Total solids - - 40.27%

Ingredients per 100 pounds
Eutter 85\% — 11.44 pounds
iilk 3.5\% — 65.15 "
Dry milk solids not fat - 6.53 "
Sweeteners - " Cane sugar — . . - 10.50 " Dextrose - - 2.71 " Sweetose - - 3.36 "
.Stabilizer

- 64 -

Table XIX: Results of Varying Overrun Using a Fourteen
Per Cent S. S. Iix

Penetrations in mm
1- $\left.\begin{array}{r}13 \\ 13 \\ 13\end{array}\right] 13$

2- $\left.\begin{array}{l}14 \\ 14 \\ 15\end{array}\right] 24.3$

$$
\left.\begin{array}{c}
3-15 \\
15 \\
16
\end{array}\right] 15.3
$$

7- 25
25
25
25

8- 24
$\left.\begin{array}{l}24 \\ 25 \\ 25\end{array}\right] 24.6$
4-
$\left.\begin{array}{l}15 \\ 16 \\ 16\end{array}\right] 25.6$
$\left.\begin{array}{r}9-26 \\ 26 \\ 27\end{array}\right\} 26.3$
5-188 18.18
10-

Composition
Fat - . . . - 12 \% Sugar - . - 15 \%
Serum solids - - 14% Stabilizer - . 35% Total solids - - 42.53%

Ingredients per 100 pounds
Butter 85\% - - - . - - - 11.80 pounds
Milk 3.5 有 62.48 "
Dry milk solids not fat — - 8.80 "
Sweeteners

Cane sugar $\ldots \ldots$	\ldots		
Dextrose	\ldots	\ldots	
Sweetose	\ldots	\ldots	2.71

Stabilizers
(Vesterine $)$
Vater $-\ldots-\ldots$
Vater

Table XX: Results of Varying Overrun Using Nix
Containing Twelve Per Cent Cane Sugar

Penetrations in mm

6- 16
10́ 16.3
$17!$
$\left.\left.\begin{array}{rr}10 \\ 10 \\ 10\end{array}\right\} \begin{array}{ll}10 & 7- \\ 15 \\ 15\end{array}\right] 14.6$
4- 127 8- 10°

Composition
Fat - 12% Sugar - . $\quad 12 \%$ Serum solids- - 11% Stabilizer- . 35% Total solids - - 35.48%

Ingredients per 100 pounds
Butter 85\% - 11.64 pounds
ilk 3.5:\% - . . . - 60.28 "
Dry milk solids not fat - 5.54
Sweeteners
Cane sugar 1200

Stabilizer
Pl
(Vesterine)- - . 35 "
Water
. 73

Table XXI: Results of Varering Overrun Using lix Containing
Twelve Per Cent Sugar Equivalent With Dextrose

Composition
 Total solids - $⿰ 氵 5.90 \%$

Ingredients per 100 pounds
Butter 85%. $11.0 u^{4}$ pounds
Milk 3.5\% —...... 60.2% "
Dry milk solids not fat - 5.54 "
Sweeteners
$\begin{array}{llll}\text { Cane sugar } \quad \ldots \ldots & 8.40 & " 1 \\ \text { Dextrose } & \ldots & 4.34 & " 1\end{array}$
Stabilizer

Table XXII: Results of Varying Overrun Usincg Vix Containing
Twelve Per Cent Sugar Eruivalent iitio Froiex

Sam- ple No.	Per cent overrun	Ave. mm of penetration	Meltdown in gms	Judging body- fresh		Judging body-2 wks old	
				Score	Description	Score	Description
1	36	6.6	38	27.50	Heav Soooth Sl. Cumy	27.50	$\begin{aligned} & \text { IIeavy } \\ & \text { Icy } \\ & \text { Gu., } \end{aligned}$
2	47	8.3	48	28.00	$\begin{aligned} & \text { Heav: } \\ & \text { SI. Guy } \end{aligned}$	27.75	$\begin{aligned} & \text { Heavr } \\ & \text { Gu my } \\ & \text { Icy } \\ & \hline \end{aligned}$
3	52	8.3	43	28.50	Heavy Sl. Furmy	28.25	Heavy SI. Gu
4	62	11.0	45	29.00	V. S rooth S1. Guray	28.50	$\begin{aligned} & \text { V. Smooth } \\ & \text { ST. Gu my } \end{aligned}$
5	74	11.0	52	28.75	Sinooth	28.00	Smooth
6	88	14.0	58	28.50	Smooth Sl. Light	27.75	Smooth Sl. Tutht
7	98	27.0	65	28.25	Light	27.50	Licht
8							

Penetrations in mm
$\left.\left.1-\begin{array}{l}6 \\ 7 \\ 7\end{array}\right\} 6.0 \quad 5-\quad \begin{array}{ll}11 \\ 11\end{array}\right\} 11$

6- 13
$8.3 \quad 14>14$
9
$\left.\left.\begin{array}{rr}3- & 8 \\ 8 \\ 9\end{array}\right] \begin{array}{ll} & 7-3\end{array} \begin{array}{ll}17 \\ 17 \\ 17\end{array}\right] 17$

Composition
Fat - 12% Sugar . . - 12 Serum solids- - 11% Stabilizer- . 35 Total solids - - $3 \mathrm{~d} .96 \%$

Ingredients per 100 pounds
Butter 85 — 11.64 pounds Kilk 3.5\% - . . . - 60.2% " Dry milk solids not fat - 5.97 " Sweeteners
"
Cane sugar - . - - 8.40 "
Frodex
——. 7.35 "
Stabilizer

(Vesterine
Water $\ldots \ldots$
100.00

Table XXIII: Vesults of Varying Cvermun Using Iix Conteining
Twelve Per Cent Sugar Equivalent bith Sweetose

Sam- ple No.	Per cent overrun	Ave. mm of penetratio	Meltdown in gms	Judging body- fresh		Judging body-2 wks old	
				Score	Description	Score	Description
1	41	7.0	6	28.50	Snooth Gumany V. Hard	28.00	S.]. Icy Guanny V. Hard
2	47	8.0	10	28.50	Snooth Guruy Hara	28.50	$\begin{aligned} & \text { Guyny } \\ & \text { Hard } \end{aligned}$
3	52	7.6	7	29.00	S]. Light	29.00	S1. Licht
4	66	11.0	12	28.25	Light	28.00	Lisht
5	70	11.6	18	28.00	Sinooth Sl. Liegnt	27.75	$\begin{aligned} & \text { S.rooth } \\ & \text { SI. Light } \end{aligned}$
6	78	12.0	12	27.25	Snooth Light	27.25	Si:ooth Licht
7	115	18.0	14	27.00	Snooth V. Licht	27.00	S.iooth V. Licht
8							

Penetrations in mm
1- $\left.\begin{array}{r}7 \\ 7 \\ 7\end{array}\right\} 7$

5- $\quad 11$ i 12 11.6 12」

$\left.\begin{array}{cc}2- & 8 \\ 8 \\ 8\end{array}\right] 8$

6- 12 12 12 12.

7- $\left.\begin{array}{r}18 \\ 18 \\ 18\end{array}\right]$
4-
$8-$

Composition
Fat - 12% Sugar - - 12% Serum solids- - 11% Stabilizer- 35% Total solids - - 36.29%

Ingredients per 100 pounds
Butter $85 \% \ldots \ldots$. 11.64 pounds Milk 3.5\% \quad - $-\cdots-60.28 \quad "$ Dry milk solids not fat - 5.97 " Sweeteners " Cane sugar - . . - 8.40 " Sweetose - - 5.38 " Stabilizer -

Table XXIV: Results of Varfing Overrun Using Vix Containing
Thelve Per Cent Sugar Equivalerit with Puritose

$\begin{aligned} & \text { Sam- } \\ & \text { ple } \\ & \text { No. } \end{aligned}$	Per cent overrun	Ave. mm of penetration	Meltdown in gms	Judging body- fresh		Judging body-2 wks old	
				Score	Description	Score	Description
1	41	13.0	21	27.50	Heary Herci Gumer	27.25	$\begin{aligned} & \text { Heavy } \\ & \text { Hard } \\ & \text { Cur } \end{aligned}$
2	49	13.6	20	27.75	$\begin{aligned} & \text { Heavy } \\ & \text { Hard } \\ & \text { Guiven } \end{aligned}$	27.75	
3	66	17.6	18	28.25	Sl. Heavy Gunciy	23.00	Sl. Heavy Gu:x.y
4	83	21.3	18	28.50	S1. Guaniy	28.50	S]. Guay
5	88	21.0	20	28.50	S1. Ioy Sl. Coarse	28.00	SI. ICr S]. Coarse
6	100	27.3	30	27.75	Icy Coarse Light	27.50	Icy Coarse Light
7	109	27.0	29	27.00	$\begin{aligned} & \text { Icy } \\ & \text { Coarse } \\ & \text { V. Light } \\ & \hline \end{aligned}$	27.00	Icy Coarse V. Lisht
8							

Penetrations in mm
1- $\left.\begin{array}{l}13 \\ 13 \\ 13\end{array}\right\} \left.13 \quad 5-\quad \begin{array}{ll}21 \\ 21 \\ 21\end{array} \right\rvert\, \geqslant 21$
2- 13
$14: 13.3$
14
3- $\left.\begin{array}{r}17 \\ 18 \\ 18\end{array}\right] 17.3$
$\left.\begin{array}{rr}4- & 21 \\ 21 \\ 22\end{array}\right] 21.3$ 8-

Composition
Fat - 12 \% Sugar . . . 12 Serum solids- - 11% Stabilizer- . 35% Total solids - - 37.72%

Ingredients per 100 pounds
Butter $85 \% \ldots11 .64$ pounds
Milk 3.5; —. 60.28 " Dry milk solids not fat - 5.57 " Sweeteners

Stabilizer -
 Water $\ldots \frac{6.16}{100.00}$ pounds

$$
1
$$

Table XXV: Results of Varying Overmun Using Fix Containing
Twelve Per Cent Sues Equivalent iilh
Super Sweet Syrup

Sam- ple No.	Per cent overrun		Meltdown in gms	Judging body- fresh		Judging body-2 wks old	
				Score	Description	Score	Description
1	39	11.3	5	27.00	Guanny Hard	27.00	Cu: my Eard
2	43	11.0	0	27.25	Gunuy Hard	27.25	Guruny Hard
3	52	16.3	0	27.75	Gurdy	27.50	$\begin{aligned} & \text { Gumy } \\ & \text { Hard } \end{aligned}$
4	66	16.0	0	25.25	Gurany Hard	28.00	Guery Hard
5	74	17.6	0	28.50	Sl. Guimar	28.50	Sl. Guay
6	88	20.6	0	27.75	Lisht	27.75	Licht
7	109	25.0	0	27.25	V. Iight	27.25	V. Iight
18							

Penetrations in mm

2- 117
11) 11
11)
$\left.\left.\begin{array}{lll}3- \\ 10 \\ 17\end{array}\right\} \begin{array}{lll}10.6 & 7- & 25 \\ 25\end{array}\right] 25$
4- $\left.\begin{array}{l}16 \\ 16 \\ 16\end{array}\right\} 16$

Composition
Fat - - - - $\quad 12 \%$ Sugar - - - 12% Serum solids- - 11% Stabilizer- 35% Total solids - - 37.50%

Ingredients per 100 pounds
Butter 85 11.64 pounds Milk 3.5\% $\ldots \ldots$ Dry milk solids not fat - 5.97 " Sweeteners

| Cane sugar $-\ldots .20$ | " | |
| :--- | :--- | :--- | :--- |
| Super Sweet Syrup - - | 7.20 | $" 1$ |

Stabilizer -

$\begin{array}{ccc}\text { (Vesterine } \\ \text { Water }-\ldots-\ldots & .35 & "\end{array}$
$\overline{100.00}$ pounds

Table XXVI: Results of Varring Overmm Using IX Containing
Fifteen Per Cent Cane Suear

$\begin{aligned} & \text { Sam- } \\ & \text { ple } \\ & \text { No. } \end{aligned}$	Per cent overrun	$\left.\left\lvert\, \begin{array}{c}\text { Ave. } \\ \text { mm of } \\ \text { penet } \\ \text { ration }\end{array}\right.\right]$	Meltdown in gms	Judging body- fresh		Judging body-2 wks old	
				Score	Description	Score	Description
1	37	7.3	5	28.50	V. Eeav: Siooth	28.50	V. Hecivy Smooth
2	43	7.3	2	28.75	V. Heav, Sh:ooth	28.75	V. Leavy Gooth
3	56	10.0	2	28.00	Heavy S: ooth	28.00	Heav: Smooth
4	59	10.3	16	29.25	Heavy Smooth	29.25	Heavy S: iooth
5	66	12.0	14	29.75	Sinooth - S.l. Chew-	29.75	Sno, th Sl. Chetre
6	83	13.6	12	29.50	Snooth ill. Chewry	29.50	Sooth Sl. Chew
7	100	15.0	20	29.00	$\begin{aligned} & \text { Coarse } \\ & \text { BI. Light } \end{aligned}$	29.00	Coarse Light
18							

Penetrations in mm
$\left.1-\begin{array}{r}7 \\ 7 \\ 8 j\end{array}\right\} 7.3$
2-

5- $\quad \begin{aligned} 12 \\ 12\end{aligned} 12$ 12]
6-
$\left.\begin{array}{rll}\left.3-\begin{array}{l}10 \\ 10 \\ 10\end{array}\right] 10 & 7- & 15 \\ 150 \\ 15\end{array}\right]$
$\left.4-\begin{array}{l}10 \\ 10 \\ 11\end{array}\right] 10.3$

Composition

Fat - - - -. $\quad 12 \%$ Sugar - - $\quad 15 \%$ Serum solids- - 11% Stabilizer- $.35 \%$ Total solids - - 40.64%

Ingredients per 100 pounds
Butter 85 11.64 pounds
Milk 3.5\% 60.28 "
Dry milk solids not fat - 5.97 "
Sweeteners
Cane sugar $15.00 \quad "$
Stabilizer

Table XXVII: Fesults of Varying Overme Using lia Containing
Finteen Per Cent Sugar Equivalent With Dextrose

Sample No.	Per cent overrun	$\left[\begin{array}{c}\text { Ave. } \\ \text { mm of } \\ \text { penet } \\ \text { ration }\end{array}\right]$	Meltdown in gns	Judging body- fresh		Judging body-2 wks old	
				Score	Description	Score	Description
1	41	14.0	0	28.00	Sl. Icy Heavy	28.00	Sl. Icy Heavy
2	49	15.6	0	28.50	Sinooth Sl. Heav.	28.50	S:inoth Sl. Hec:vy
3	52	17.0	0	29.00	Smooth S7. Heavy	29.00	Sirooth Sl. Heavy
4	66	21.0	0	29.50	Sl:ooth	29.50	Si.ooth
5	78	22.0	0	28.75	Sinooth Sl. Coarse	28.75	Smooth S.l. Cocrse
6	98	27.0	0	28.50	Sl. Coarse Light	28.50	Sl. Coarse Light
7							
18							

Penetrations in mm
1- $\left.\begin{array}{r}14 \\ 14 \\ 14 j\end{array}\right\} 14 \quad 5-\quad 22 \vdots+22$
2- 159 6- $\quad 27$
16) 15.6

27 27
27 !

$7-$

3-17
17917
17
4-

Composition
Fat - 12 \% Sugar - - 15
Serum solids- - 11% Stabilizer- . 35 Total solids - - 39.01%

Ingredients per 100 pounds
Butter 85\% - 11.69 pounds
IIilk 3.5\% — 60.28 "
Dry milk solids not fat - 5.97 ""
Sweeteners
$\begin{array}{llrl}\text { Cane sugar } & \ldots & 10.50 & \text { " } \\ \text { Dextrose } & \ldots & 5.42 & "\end{array}$
Stabilizer -
 $\overline{100.00}$ pounds

Table XXVIII: Results of Varying Overman Using lix Containing
Fifteen Per Cent Sugar Equivalent With Frodex

Sample No.	Per cent overrun	Ave. mm of penetration	Meltdown in gms	Judging body- fresh		Judging body-2 wks old	
				Score	Description	Score	Description
1	41	11.0	35	29.00	Gunmy Heavy	29.00	Guay Heavy
2	43	10.3	42	29.00	Guiuny Siouth V. Heavy	29.00	Guiky Silooth V. Heavy
3	56	11.6	58	29.25	Guay Snowth V. Heavy	29.25	Gureny Sooth V. Heavy
4	66	12.3	55	29.50	$\begin{aligned} & \text { Gurny } \\ & \text { S:rooth } \end{aligned}$	29.50	Gumive S:nooth
5	83	15.0	60	29.75	Gu:uy Smooth	29.75	Gurny Srooth
6	93	16.6	72	29.75	Gunity Shooth	20.75	Guney Smooth
7							
18							

Penetrations in mm

Composition
$\begin{array}{llll}\text { Fat - - - - } & 12 \% & \text { Sugar - - } & 15 \% \\ \text { Serum solids- - } & 11 \% & \text { Stabilizer- } & .35 \%\end{array}$ Total solids - - 42.08%

Ingredients per 100 pounds
Butter 85:8 - . - . - - 11.64 pounds
Milk 3.5: — - 60.28 "
Dry milk solids not fat - 5.07 "
Sweeteners
Cane sugar

- - - - 10.50
"
Frodex
- - -

Stabilizer -

Table XXIX: Results of Varying Overıun Usirg lix Contairing
Fifteen Per Cent Sugar Equivalent With Sweetose

Sam- ple No.	Per cent overrun		Meltdown in gms	Judging body- fresh		Judging body-2 wks old	
				Score	Description	Score	Description
1	47	8.9	0	29.00	Guinay Sinooth	28.00	Gury V . Icy
2	52	9.3	5	29.00	Gunvy S.outh	28.50	$\begin{aligned} & \text { Gustiy } \\ & \text { Icy } \end{aligned}$
3	66	12.0	7	29.00	Gunny Sinooth	29.00	Guany Sunoth
4	70	12.0	4	28.00	SI. Coarse Sl. Gurmy	28.00	Sl. Coarse S1. Guarry
5	93	14.6	6	28.50	Smooth Chewy	28.50	Si:ooth Chow
6	115	18.3	13	27.50	Swooth V. Light	27.50	Sinooth \forall. Light
7							
18							

Penetrations in mm

2- $\left.\left.\begin{array}{r}9 \\ 9 \\ 10\end{array}\right\} 9.3 \quad 6-\quad \begin{array}{ll}13 \\ 18 \\ 19\end{array}\right] l 8.3$

3- 12
 12
 12

4- $\left.\begin{array}{l}12 \\ 12 \\ 12\end{array}\right\} 12 \quad 8-$

Composition
Fat - 12 \% Sugar - . - 15
Serum solids- - 11 \% Stabilizer- . 35
Total solids - - 39.49%
Ingredients per 100 pounds
Butter 85\% - . . . - - . 11.0 pounds
Pilk 3.5\%

- - . . . - 60.28

Dry milk solids not fat - 5.57 "
Sweeteners

Cane sugar $\quad \ldots$	\ldots	10.50	$"$
Sweetose	\ldots	6.72	$"$
	\ldots		

Stabilizer

Table XXX: Results of Varying Overrun Using lix Containing
Fifteen Per Vent Sugar Equivalent with Puritose

Penetrations in mm
1- $\left.\begin{array}{l}15 \\ 15 \\ 15\end{array}\right\}\left[\begin{array}{ll}215 \\ 21 \\ 22\end{array}\right\} 21.3$

2- $\begin{array}{r}16 \\ 16 \\ 17\end{array}$
3- $\left.\left.\begin{array}{r}18 \\ 10 \\ 18\end{array}\right]\left[\begin{array}{ll}18\end{array}\right] \quad \begin{array}{l}20 \\ 20 \\ 27\end{array}\right] 20.3$
4- 18 8- 30
$\left.\begin{array}{l}19 \\ 19\end{array}\right\} 18.0$
6- 25
16.3
$\begin{aligned} & 25 \\ & 25 \\ & 20\end{aligned}>25.3$

Fat - 12 \% Sugar - . - 15%
Serum solids- - 11% Stabilizer- 35%
Total solids -- 41.27%
Ingredients per 100 pounds
Butter 85\% - 17 .of 4 pounds
Milk 3.5\% - - $00.2 E \quad "$
Dry milk solids not fat - 5.97 "
Sweeteners
Cane sugar- 10.50
Puritose
Stabilizer -
$\begin{array}{llll}\text { (Vesterine })-\ldots & .35 & " \\ \text { " }\end{array}$
30.6 Water $2 \cdot 26$
$\overline{100.00}$ pounds

Table XXXI: Results of Varying Overman Using Via Containing
Fifteen Per Cent Sugar Equivalerit !.isth Super Sweet Syrup

Penetrations in mm

2- 15
15 :15 15

3- 17 17
18

4- 19 19.3
$8-$

Composition
Fat 12 \% Sugar25 Serum solids- - 11 \% Stabilizer- . 35 Total solids - - 41.00%

Ingredients per 100 pounds
Butter 85%. 11.64 pounds
Milk 3.5; —. . . . - 60.28 " Dry milk solids not fat - 5.97 " Sweeteners 10.50 "

Stabilizer -
(Vesterine) $\ldots . .35 \quad "$
Water

$\overline{100.00}$ pounds

Table XXXII: Results of Varying Overrun Using i ix
Containing Gelatin Stabilizer

Penetrations in mm
$\left.1-\begin{array}{l}13 \\ 13 \\ 13\end{array}\right\} 13$

2- 13
$13 \geqslant 13.3$
14
3-
$\left.\begin{array}{l}14 \\ 15 \\ 15\end{array}\right\} 14.6$

6- 20 ?
21
$7-$
$8-$

5- $18{ }^{\circ} \quad$ Fat - ------
19 k18. 6
19」
$21>20.6$

$\left.\begin{array}{l}23 \\ 23 \\ 23\end{array}\right]-23$

Sweeteners

Stabilizer -

Composition
Serum solids- - 11% Stabilizer- $.35 \%$ Total solids - - 38.90%

Ingredients per 100 pounds
Butter 85%. 11.40 pounds
1:ilk 3.5\% 66.46 "
Dry milk solids not fat - 5.30 "

Cane sugar	\ldots	\ldots	10.50
Dextrose	\ldots	$"$	
Sweetose	\ldots	2.71	$"$

Table XXXIII: Results of Varying Cverrun Using Iix
Containing Vesterine Stabilizer

Sam- ple No.	Per cent overrun	$\|$Ave. mm of penet. ration	Meltdown in gms	Judging body- fresh		Judging body-2 wks old	
				Score	Description	Score	Description
1	41	10.0	0	28.50	Sl. Heavy Sl. Sogy	26.50	S.7. Heavy
2	47	11.0	3	29.00	SI. Chewy Heavy	29.00	V. Chewry
3	52	13.3	5	29.00	Sl. Chewy SI. Heavy	29.00	V. Chewy
4	70	15.3	6	28.50	Coarse	28.50	S]. Chewy
5	74	16.6	2	28.00	Sl. Coarse	28.00	Coarse
6	88	24.0	7	27.75	Sl. Coarse	27.75	Sl. Coarse
7	180	23.0	8	27.50	V. Light Snooth	27.50	V. Licht Sl. Coarse
18	109	25.3	10	27.50	V. Light Snooth	27.50	$\begin{aligned} & \text { V. Light } \\ & \text { SI. Coarse } \end{aligned}$

Penetrations in mm

$$
\left.1-\begin{array}{lll}
10 \\
10 \\
10
\end{array}\right\}_{10} \quad 5-\quad 16{ }_{10} 1716.6
$$

$$
2-\quad 117
$$

$$
11 \geqslant 11
$$

$$
11
$$

$$
\left.\left.\begin{array}{rl}
3- & 13 \\
13 \\
14
\end{array}\right] 13.3 \quad \begin{array}{cc}
23 \\
& 23 \\
23
\end{array}\right] 23
$$

$$
\left.\begin{array}{lll}
15 \\
15 \\
16
\end{array}\right\} 15.3080250
$$

Composition
Fat - 12% Sugar - - 15% Serum solids- - 11% Stabilizer- . 35 \% Total solids - - 38.85%

Ingredients per 100 pounds

Butter 85%. 11.40 pounds lilk 3.5; $\quad \ldots \ldots$. . . 66.41 " Dry milk solids not fat - 5.30 " Sweeteners - " Cane sugar — . . . 10.50 " Dextrose | \ldots | | |
| :---: | :---: | :---: |
| \ldots | 2.71 | $"$ | Stabilizer -

(Vesterine)- - . 35 " Water
$\overline{100.03}$ pounds

Table XXXIV: Results of Varying Cverrun Using Rix Containing
Carboxymethylcellulose Stabilizer

$\begin{aligned} & \text { Sam- } \\ & \text { ple } \\ & \text { No. } \end{aligned}$	Per cent overrun	Ave. mm of penetration	Meltdown in gms	Judging body- fresh		Judging body- 2 wks old	
				Score	Description	Score	Description
1	39	1520	14	27.00	Smooth Powdery Heavy	27.00	Coarse Powdery
2	43	15.3	20	27.25	V. Chewy Heavy	27.00	Coarse Powdery
3	49	18.3	18	27.75	Chewy Heavy	27.50	Coarse Powdery
4	62	20.6	32	28.50	Sl. Chewy	28.00	SI. Shewy V. Sl. Coarse
5	78	24.3	41	28.25	Sl. Chewy	28.00	S1. Chewy V. Sl. Coarse
6	88	25.6	27	23.00	Sl Light Resistant	27.00	Sl. Light Resistant
7	98	28.3	29	27.50	Light	27.25	Licht
18	109	29.6	41	27.25	V. Light	27.00	V. Light

Table XXXV: Results of Varying Overrun Using Kix
Containing Dariloid Stajilizer

Sample No.	Per cent overrun	Ave. menet penetio rati	Meltdown in gms	Judging body- fresh		Judging body-2 wks old	
				Score	Description	Score	Description
1	47	17.3	10	27.75	Hard Coarse	27.50	Hard Coarse
2	59	19.3	14	28.50	Snooth Sl. Hard	28.00	Smooth S1. Hari
3	62	20.3	8	27.50	Sl. Coarse Sl. liord	27.25	S]. Coarse Sl. Hard
4	74	25.0	12	27.50	81. Coarse	27.25	Sl. Coarse
5	84	24.6	21	27.50	Sl. Coarse	27.25	S.]. Coarse
6	88	21.6	30	27.25	Sl. Coarse	27.25	Sl. Coarse
7	109	28.0	36	27.00	Coarse V. Light	27.00	Coarse V. Light
18							

Penetrations in mm

1- $\left.\begin{array}{c}17 \\ 17\end{array}\right\rangle 17.3$
 18ز

5$24{ }_{25}{ }_{24.6}$ 25」

6- 21 2221.6

7- $\quad 27$ $28 \quad 28$ 29
$8-$

Composition
Fat 12 \% Sugar - . - 15
Serum solids- - 11% Stabilizer- . 22
Total solids - - 38.72%
Ingredients per 100 pounds
Butter 85%. 11.40 pounds
rilk 3.5\% — . . . - 66.46 "
Dry milk solids not fat - 5.30
Sweeteners
Cane sugar - - - 10.50 "

Dextrose
2.71
"
Swe ctose - - 3.36
Stabilizer -

Table XXXVI: Results of Varying Overrun Using Iix Containing
Polycoid Stabilizer

Sample No.	Per cent overrun	Ave. mm of penetration	Meltdown in gms	Judging body- fresh		Judging body-2 wks old	
				Score	Description	Score	Description
1	39	9.3	7	28.00	Snooth Sogey	28.00	Smooth Socer
2	47	10.0	8	28.25	Sozey Heavy	28.25	Sog y lleavy
3	52	15.3	5	28.50	Sl. Soriy	28.50	Sl. Soggy
4	56	15.6	18	28.50	V. Smooth	28.50	V. Si:ooth
5	66	18.0	10	28.00	Smooth	28.00	Snooth
6	70	18.6	33	28.00	V. Sl. Light	28.00	V. SI. Light
7	88	24.3	34	27.50	Light Fluffy	27.50	Light Flusfy
8	93	25.6	49	27.00	Light Fluffy	27.00	Light Fluffy

Penetrations in mm

Table XXXVII: Results of Var, ing Overrun Using lix
Containing Pectin Stabilizer

Penetrations in mm
1- 11
11 11. 3
12
5- 18°

2- 17)
17リ17
17
3-

6- 21
$7-$

4- 17
17 17.3
18
8-

19 19」 21
21
21
22
22
23 $\left.\begin{array}{ll}21 \\ 21 \\ 21 \\ 22 \\ 22 \\ 23\end{array}\right] 22.3$
18.6

Composition
Fat - 12% Sugar . . - 15
Serum solids- - 11 \% Stabilizer- . 15 Total solids - 38.05%

Ingredients per 100 pounds
Butter 85 , 11.40 pounds
i ilk 3.5;6 66.46 " Dry milk solids not fat - 5.30 "
Sweeteners
Cane sugar \ldots " 10.50
Dextrose - - 2.71 "
Sweetose - - 3.36 "
Stabilizer -
(Pectin) - - . 15
Water $\ldots \ldots$ "............

Table XXXVIII: Results of Varying Cverrun Using Vix Containing
Krageleen Stabilizer

Sample No.	Per cent overrun	$\left\|\begin{array}{c}\text { Ave. } \\ \text { mm of } \\ \text { penet. } \\ \text { ration }\end{array}\right\|$	Meltdown in gms	Judging body- fresh		Judging body-2 wks old	
				Score	Description	Score	Description
1	39	11.3	6	27.25	Heavy Powdery	27.00	Coarse
2	41	12.0	10	27.50	Heavy Powdery	27.00	Coarse
3	43	13.0	29	27.50	Heavy Powdery	27.25	Heavy Coarse
4	49	13.3	22	28.00	S1. Chewy Sl. Powdery	27.25	Sl. Chewy Sl. Powdery
5	59	18.0	32	28.50	S1. Chewy	28.00	Sl. Coarse
6	78	20.0	18	28.25	S1. Light	27.50	Sl. Light
7	88	21.3	30	27.50	Light	27.50	Light
8	100	24.3	53	27.50	V. Light	27.00	V. Light

- 84 -

Table NXXIX: Results of Varying Overriun Using Iix
Contairing Gelox Stabilizer

5- $\quad 16 \left\lvert\, \begin{array}{ll} \\ & 76.3\end{array}\right.$ 17」
$6-$
18718.3

19
$7-$

$8-$
$\begin{array}{llll}\text { Fat - - - - . } & 12 \% & \text { Sugar - - } & 15 \% \\ \text { Serum solids- } & 11 \% & \text { Stabilizer- } & 35 \%\end{array}$ Total solids - - 38.85%

Ingredients per 100 pounds
Butter 85\% 11.40 pounds
Milk 3.5; - - 66.46 "
Dry milk solids not fat - 5.30 "
Sweeteners

Cane sugar	\ldots	\ldots	10.50
Dextrose	\ldots	$"$	
Swertose	\ldots	2.71	$" 1$
		3.36	$"$

Stabilizer -
(Gelox
Water $\ldots ~$

Table XXXX: Results of Varrin; Overmun Using lix Conteinirg
Wisht Per Cent S. S. and Fifteen Per Cent Suear
Equivalent Vith Fro: :

$\begin{aligned} & \text { Sam- } \\ & \text { ple } \\ & \text { No. } \end{aligned}$		$\begin{aligned} & \text { Per } \\ & \text { cent } \\ & \text { over- } \\ & \text { run } \end{aligned}$	$\|$Ave. nm of penet ration	Meltdown in gms	Judging body- fresh		Judging body-2 wks old		
		Score			Description	Score	Description		
	1		47	11.6	19	23.00	V. Heaver	27.50	$\begin{aligned} & \text { V. lieavy } \\ & \text { Icy } \end{aligned}$
	2	52	12.3	20	28.25	V. Heavy	28.00	V. Heavy $\mathrm{ICy}_{\mathrm{Cy}}$	
	3	59	13.3	18	23.50	V. Heavy Sl. Guray	28.25	V. Heavy Sl. Icy	
4	4	66	15.0	30	28.75	$\begin{aligned} & \text { Heavy } \\ & \text { Gu:yyy } \end{aligned}$	28.50	$\begin{aligned} & \text { Heavy } \\ & \text { Cuang } \end{aligned}$	
5		74	18.6	28	20.00	S. ooth Chery	28.75	S: :ooth Chew	
6		93	18.0	21	28.00	Light Sl. Coarse	28.00	Licht Coarse	
7		15	22.0	22	27.00	V. Light Coarse	27.00	V. Licht Coarse	

Penetrations in mm

2- $\left.\begin{array}{c}12 \\ 12 \\ 13\end{array}\right] 12.3$
3- $\left.\begin{array}{r}13 \\ 13 \\ 14\end{array}\right\} 13.3$

4-

6- le
1818
18!
$7-$
$\left.\begin{array}{l}22 \\ 22 \\ 22\end{array}\right] 22$

Composition
Fat … 12 \% Sugar . . - 15% Serum solids- - 11% Stabilizer- 35% Total solids - - 39.79%

Ingredients per 100 pounds
Butter 85 12.15 pounds
Milk 3.5\% - - 48.45 "
Dry milk solids not fat - 3.90 "
Sweeteners
Cane sugar
10.50

Frodex
Stabilizer
(Vesterine) - - $\quad .35 \quad$ " water $\overline{100.00}$ pounds

Table XXXXI:
Results of Varying Overrun Using lix Containing Ten Per Cent
S. S. and Fifteen Per Cent Sugar Equivalent Iiith Frodex

Sam- ple No.	Per cent overrun	$\left\|\begin{array}{c}\text { Ave. } \\ \text { mm of } \\ \text { penet. } \\ \text { ration }\end{array}\right\|$	Meltdown in gms	Judging body- fresh		Judging body-2 wks old	
				Score	Description	Score	Description
1	49	14.0	46	28.50	Guruny V. Heavy	28.00	Gumny V. Heavy
2	59	14.0	50	28.75	Gumny Heavy	28.50	Guamy Heavy
3	70	17.0	60	29.25	Gumny Snooth	28.75	Gununy Smooth
4	74	18.0	58	29.50	S1. Gunmy Smooth	29.50	Sl. Guingy Smooth
5	83	18.6	53	28.00	Chewy Smooth	28.00	Chewy Snooth
6	100	20.0	67	27.75	Chewy Sl. Licht	27.50	Chewy Sl. Coarse S1. Itight
7	115	21.6	69	27.25	Chewy V. Light	27.00	Chewy SI. Coarse V. Light
8							

Penetrations in mm

Composition
Fat - - - . . 12% Sugar - - 15% Serum solids- - 10% Stabilizer- . 35% Total solids - - 41.83%

Ingredients per 100 pounds
Butter 85%. 11.80 pounds
Milk 3.5,
Dry milk solids not fat - 4.80 "
Sweeteners
Cane sugar - - - - 10.50 "
Frodex - - 9.18 "
Stabilizer
(Vesterine) - - . 35 "
Water ——. - 3.37 "

Table XXXXII: Results of Varying Overrun
Using Mix Containing Twelve Per Cent S. S. and Fifteen Per Cent
Sugar Equivalent With Frodex

$\begin{aligned} & \text { Sam- } \\ & \text { ple } \\ & \text { No. } \end{aligned}$	Per cent overrun	Ave. mm of penetration	Meltdown in gms	Judging body- fresh		Judging body-2 wks old	
				Score	Description	Score	Description
1	43	12.3	35	28.00	V. Gumny V. Heavy	28.00	V. Gumriy V. Heavy
2	47	12.3	34	28.50	V. Gurniy V. lieavy	28.50	V. Gummy V. Heavy
3	59	13.3	35	29.00	Gurny	29.00	Gurny
4	78	18.6	47	29.50	Gumy	29.50	Cunny
5	93	20.0	37	28.50	Cunny Sl. Light	28.00	Gurnis Sl. Licht
6	100.	18.0	38	27.75	$\begin{aligned} & \text { Chewy } \\ & \text { Sl. Licht } \end{aligned}$	27.75	Chewy Sl. Light
7							
8							

Penetrations in mm

Composition

Fat - - - -	12	$\%$	Sugar - -
Serum solids-	12%		
$\%$	Stabilizer-		

Ingredients per 100 pounds
Butter 85 \% 11.69 pounds
rilk 3.5\% - - - - $-61.25 \quad "$
Dry milk solids not fat - 7.03 "
Sweeteners - . . . - . . "
$\begin{array}{lrrr}\text { Cane sugar } \ldots \\ \text { Frodex } & \ldots & 10.50 & " \\ \text { " }\end{array}$
Stabilizer -

Fourteen Per Cent S. S. and Fifteen Per Cent
Sugar Equivalent With Frodex

Penetrations in mm
1-
13
13

$\left.2-\begin{array}{r}15 \\ 15 \\ 16\end{array}\right\} \quad 15.3$
$\left.\left.\begin{array}{r}17 \\ 18 \\ 18\end{array}\right\} \begin{array}{lll}17.6 & 7- & 20 \\ 20 \\ 20\end{array}\right\} 20$

Composition

Fat - - - -	12	$\%$	Sugar - . -	15
Serum solids-	\%			

Ingredients per 100 pounds Butter 85% - . - . - . 11 . 69 pounds Milk 3.5\% - - . - - - 59.13 Dry milk solids not fat - 9.15 Sweetertors

Cane sugar			
Frodex	\ldots	\ldots	$10 \cdot 50$
n			

.Stabilizer

Qig. ". The nefoct ? ? ? Fer cent sugar enuivilent dith 30 per cent "weetnse ponlacement snd tar cent overrun unon the body score of ice creat: and ther rete of mostdnem.

