ESTIMATING NONLINEAR CROSS SECTION AND PANEL DATA MODELS WITH
ENDOGENEITY AND HETEROGENEITY

by

Hoa Bao Nguyen

A DISSERTATION
Submitted
to Michigan State University
in partia fulfillment of the requirements
for the degree of
DOCTOR OF PHILOSOPHY
ECONOMICS

2011



ABSTRACT

ESTIMATING NONLINEAR CROSS SECTION AND PANEL DATA MODELS WITH
ENDOGENEITY AND HETEROGENEITY

by

Hoa Bao Nguyen

The dissertation consists of three chapters that consider the estimation of nonlinear cross sec-
tion and panel data models. This study contributes to the literature by developing new estimation
methods for estimating models with limited dependent variable and endogenous regressors in the
presence of unobserved heterogeneity. It also makes contribution to the field of labor economics
by applying my new estimators to the study of female labor supply.

In the first chapter, a fractional response model with a count endogenous regressor is con-
sidered. A new estimation method is proposed to handle discrete endogeneity in the presence
of unobserved heterogeneity and non-linear setting. The two-step Quasi-Maximum Likelihood
and Nonlinear Least Squares estimators using the Adaptive Gauss Hermite quadrature are pro-
posed. Average partial effects for discrete endogenous variables are obtained given its difficulty
of approximation based on a non-closed form conditional mean with a non-normal heterogeneity.
Monte Carlo simulations verify that the new estimators are the least biased and the most efficient
among examined estimators including existing estimators. This is the first research that supports
the necessity and significance of count endogeneity. The proposed estimators are applied to an-
alyze the US female labor supply. The result shows diminishing marginal effects of additional
children on female's working hours. This novel finding is consistent with a story of fertility and
presents an evidence of economies of scale that mothers become more efficient after raising the
first kids, devote more time to work and bal ance between working time and family time.

In the second chapter, a dynamic Tobit panel data model that allows for an endogenous re-
gressor (besides the lagged dependent variable) is developed. | also permit the presence of unob-

served heterogeneity and serial correlation of transitory shocks. A correlated random effect Tobit



approach, a computationally attractive estimation method, is proposed. The estimation method
employs the control function approach to account for endogeneity and to consistently estimate av-
erage partia effects. In addition, serial correlation in the reduced form is corrected which makes
the estimator more robust. This method isreadily applied to Panel Study of Income Dynamics data
from 1980 to 1992. | find a strong evidence of persistencein US white female labor working hours
and theinitial condition of female labor supply is statistically significant.

Thethird chapter considersthe estimation of apanel datamodel with acorner solution response
and the presence of adummy endogenous variable aswell as heterogeneity. The main contribution
isto allow ajoint distribution of the binary endogenous regressor and the unobserved factors that
affect both the amount and participation equations. A bivariate probit model is suggested in the
first stage. An exponential type Il Tobit (ET2T) model is exploited for the amount equation to en-
sure that the predicted value for the response variableis positive; and thereis a correl ation between
unobserved effectsin both the amount and participation equations. The two-step estimation proce-
dureinspired by Heckman’sidea of adding correction termsfor endogenous switching and a corner
solution outcome is used to analyze the impact of fertility on female labor force participation and
labor supply using the Vietnamese Household Living Standard Surveys data 2004-2008. The pro-
posed approach gives a statistically significant negative effect of having a newborn on women who
areworking and remain in the labor market. It corrects remarkably the biasin estimating the effect

of a newborn on mother’s working hours compared to other alternative estimation methods.
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Chapter 1
ESTIMATING A FRACTIONAL RESPONSE MODEL WITH A COUNT ENDOGENOUS
REGRESSOR

1.1 Introduction

Many economic models employ afraction or a percentage, instead of level values, as a dependent
variable. In these models, economic variables of interest occur in fractions such as employee
participation rates in 401(k) pension plans, firm market shares and fractions of total weekly hours
spent working. Thesefractional response variablestake valuesin the unit interval [0,1], which have
both continuous and discrete characteristics. As suggested in Papke & Wooldridge (1996, 2008),
we can model fractional response variables based on a correctly specified conditional mean and use
a simple quasi-maximum likelihood estimator or nonlinear least squares (QMLE/NLS) method
with the Bernoulli distribution. This method is more attractive than other standard approaches
such as the ML E method with beta distribution or the |og-odd transformation because it will givea
direct estimate of the original dependent variable and ensure that the predicted value isin the unit
interval.

Fractional response models (FRMs) with continuous or binary endogenous variables have been
studied (see more in Papke & Wooldridge (2008) and Wooldridge (2010)). However, there has
not been any well-devel oped estimation method and procedure to deal with count endogeneity in
FRMs. Traditionally, a count endogenous explanatory variable (CEEV) is treated as a continuous
endogenous variable and it is written in a linear fashion of covariates including instruments and
additive error. A common approach such as the two stage least squares (2SLS) using the linear
approximation always gives a constant marginal effect. This approach ignores the fact that the
marginal effect of having one more unit of the CEEV on the outcome of interest might be more
or less than the marginal effect of having the previous unit on the outcome. In order to acknow!-

edge this fact, we should study FRMs and count endogeneity with the nonlinear approximation



in the first stage. Specifically, we can handle a CEEV by allowing a Poisson distribution of the
count variable in the reduced form. The heterogeneity term in the Poisson model is assumed to be
correlated with the error term in the structural conditional mean. It is standard to allow the het-
erogeneity to follow a gamma distribution (which leads to the gamma error in the reduced form)
because it results in a closed form solution, the Negative Binomial (NB) model. The key to cor-
rect for the endogeneity problem in this case is how we are willing to make an assumption on the
joint distribution of errors. One strategy is to allow a linear correlation between the transforma-
tion of the gamma, which is now normally distributed, and the error in the structural conditional
mean (see further discussion in Weiss (1999)). However, this assumption does not alow a direct
relationship between the two errors which governs the endogeneity problem. The choice of the
transformation function is the inverse of the standard normal and depends on unknown parameters
in the distribution of the heterogeneity of the Poisson model. This strategy can be used to test
for endogeneity of the count explanatory variable but it will make the evaluation of the likelihood
function more computational and obtaining the conditional maximum likelihood estimator as well
as its asymptotic covariance matrix is nontrivial and time-consuming. An aternative strategy is
that we still allow the gamma heterogeneity in the Poisson model and alinear, direct correlation of
this heterogeneity and the error term in the structural conditional mean. We then need to integrate
out this heterogeneity in the structural conditional mean. As discussed in Winkelmann (2000), the
heterogeneity in a Poisson model can be presented in terms of an additive correlated error or a
multiplicative correlated error. However, the multiplicative correlated error has some advantage
over the additive correlated error on grounds of consistency. Asaresult, amultiplicative correlated
error isused in this model.

Because nonlinearity is allowed in both the reduced form and the main structural equations,
a two-step estimation procedure is more attractive. In a ssmultaneous nonlinear equations model
with a count dependent variable and a binary endogenous variable, Terza (1998) proposed a two-
stage method estimation method using a joint normal distribution of the error terms. He did not

carry out the estimation of the Poisson Full-Information Maximum Likelihood (FIML) or explore



its properties even though this approach was introduced in his paper. Thisis due to the computa-
tion burdensome of the FIML estimator. It emphasizes the advantage of the two-step estimation
procedure that we can employ in this model. However, the joint normal distribution of the error
terms is no longer appropriate in this case because a normal error term in the Poisson model will
not lead to a closed form solution. Therefore, we have discussed the strategy on assuming the error
terms as above. Besides an easier computational task, the two-step estimation procedure ensures
that the predicted value lying in the rational range. Moreover, we do not need to find a conditional
probability for each value of the CEEV without knowing in advance specific values of a general
count explanatory variable, and avoid computing a conditional MLE which must be very difficult.

Other estimation method for a FRM with a CEEV can be considered. For example, semipara-
metric and nonparametric method can be used (see more in Das (2005)). However, this approach
does not give estimates of the partial effects or the average partial effects of interest. If we are
interested in estimating both parameters and average partial effects (APES), a parametric approach
will be preferred. In addition, in a nonlinear model, the quantity of interest is the APE which
can be comparable to a linear model’s estimate. Therefore, it is necessary and useful for applied
economists and practitioners to obtain the APE and use the parametric model.

In this chapter, | show how to specify and estimate FRMs with a CEEV and an unobserved
heterogeneity. Based on the work of Papke & Wooldridge (1996, 2008), | also use models for the
conditional mean of the fractional response in which the fitted value is always in the unit interval.
| focus on the probit response function since the probit mean function is less computationally
demanding in obtaining the average partial effects. | suggest a new estimation method to handle
discrete endogeneity in the presence of unobserved heterogeneity and non-linear setting. The two-
step Quasi-Maximum Likelihood and Nonlinear Least Squares estimators using Adaptive Gauss
Hermite quadrature are proposed. Average partial effects for discrete endogenous variables are
obtained given its difficulty of approximation based on a non-closed form conditional mean with
a non-normal heterogeneity. Monte Carlo ssimulations verify that the new estimators are the least

biased and the most efficient among examined estimators including existing estimators. Using



these robust and efficient estimators, | applied my proposed estimators to analyze the US female
labor supply. The empirical result gives an evidence to show that this is the first research that
supports the necessity and significance of count endogeneity.

This chapter is organized as follows. Section 2 introduces the specifications and estimations of
a FRM with a CEEV and shows how to estimate parameters and the average partial effects using
the two-step QMLE and NLS approaches. Section 3 presents Monte Carlo simulations and an
application to the fraction of total working hours for a female per week will follow in Section 4.

Section 5 concludes.

1.2 Theoretical Model - Specificatio and Estimation

For al x K vector of explanatory variablesz, the conditional mean model is expressed asfollows:

E(y1ly2,z,a1) = ®(a1y2 + 2161 + may), (1.1)
where @(-) is a standard normal cumulative distribution function (cdf), y1 is a response variable
(0<yq <1), and a; is aheterogeneous component or an omitted factor assumed to be correlated
with y,> but independent of exogenous variables z. In equation (1.1), | focus on the fractional
probit conditional mean because it gives a computationally simple estimator when we deal with
unobserved heterogeneity and endogenous regressors, as well as a convenient way to obtain aver-
age partial effects later on. The exogenous variables are z = (z1,z2) where we need exogenous
variables z, to be excluded from (1.1). zisal x L vector where L > K, z5 is a vector of instru-
ments. y» is a count endogenous variable where we assume that the endogenous regressor has a
Poisson distribution:

yo|z,a1 ~ Poisson[exp(zd, +a1)], (1.2)
then the conditional density of y» is specified as:

[exp(z82 + 1) Y2 exp[—exp(z82 + 2]
y2!
where a1 is assumed to be independent of z, and exp(ay ) is distributed as Gamma( g, 1/8g) using

f(y2‘27 al) = ) (13)

asingle parameter &g, with E(exp(a;)) = 1 and Var (exp(ay)) = 1/ 8.



The presence of a1 in both equations (1.1) and (1.2) is what makes y, potentially endogenous
in the equation of interest, (1.1). To illustrate this point, we could use, for example, u, instead
of a7 in the reduced form and u4 instead of nqa; in the structural conditional mean and assume a
linear function: u; = nquy + e;. Substitute the right-hand-side of this function into the structural
conditional mean and then omit e; through multiplying all the coefficients by the scale factor
1/1/1+ 02, we will see nqu, and u, appear in the places of a; and nqa; in equations (1.1) and
(1.2), respectively. Hence, rather than using uq and up, we simply use a; and n1a1 as stated in the
reduced form and the structural conditional mean to govern the endogeneity of yo.

After atransformation (see Appendix D.4. for the derivation), the distribution of a; is derived

asfollows: s
8o [exp(aq)] %0 exp(— o exp(ay))
I'(p) '

In order to get the conditional mean E(y;]y2,z), | specify the conditional density function of

f(aq;60) = (1.4)

a;. Using Bayes' rule, it is:

f (al‘y27 Z) _ f (yZI?]&;:Z)’;)(al’Z> )

Sinceyy|z,a; hasaPoisson distribution and exp(a1) has agammadistribution, y,|z is Negative
Binomial 1l distributed, as a standard result (see the Poisson and Negative Binomial 11 modelsin
Cameron & Trivedi (1986) and a specific derivation of this result from equations (D.1) to (D.3) in
Appendix D).

After some algebra, the conditional density function of a; is:

exp[P] [8o -+ exp(z5,)] V21%)

f(a1ly2,z) = , 15
where P = —exp(z82 +a1) +ai(y2 + dg) — dpexp(ay).
The conditional mean E(y1|y»,z) therefore will be obtained as:
—+oo
E(y1ly2,2) = /_oo O(aay2+2161+may) f(ag]yz,z)dag = u(6;y2,2), (1.6)

where f(az]y»,z) isgivenin (1.5) and 6 = (o1, 81, 1n1).



The key to obtain the conditional mean of interest is to get the conditional density function
of a;. Therefore, we need to assume the distribution of a; and specify f(a;|y»,z) as above. For
estimating purpose, it is necessary to compute f(a1|y»,z) in (1.5) based on the parameters in the
reduced form (1.2). These parameters can be estimated using a Negative Binomial 11 regression.
And henceforth, they can be viewed as first-step estimated parameters. In the second step, we are
interested in estimating conditional mean parameters, 6, in the FRMs.

For FRMs, we can consider a beta distribution or log-odds transformation of the fractional
dependent variable. However, Wooldridge (2010) shows that these two approaches have some
drawbacks. First, they rule out the case when the fractional response variable has some pileup
at zero and/or one. Second, specifying a beta distribution is not robust and produces inconsistent
estimators if any aspect of the distribution is misspecified. Third, the log-odds approach does not
give adirect estimate of the conditional mean which is of interest; since this approach offers only
the estimate of the transformed dependent variable (see more discussion in Papke & Wooldridge
(1996)). Therefore, for the dependent variable which has some mass point at 0 and/or 1, and
continuous in (0,1), we can focus on estimating the conditional mean of the fractional response
(as stated in equation 1.1) that keeps the predicted value in the unit interval, and obtain robust
estimators using the QMLE/NLS under the correctly specified conditional mean function. See
Papke & Wooldridge (1996, 2008) for further details.

Given thefractional probit conditional mean model asin equation (1.1), there are many waysto
estimate 6 consistently. One possibility isto adopt the NLS estimator. This estimator is consistent
and /N asymptotically normal. However, this estimator is unlikely to be asymptotically efficient
because homoskedasticity is unlikely to hold for y;, even if we ignore the conditional Poisson
distribution for y,. It might also be computationally intensive to obtain the weighting matrix for
the NL S estimator. Hence, we can use a simpler, robust and efficient estimator, that is, the quasi-
maximum likelihood estimator (QMLE).

One can consider the QMLE using the Bernoulli distribution or the Poisson distribution of y.

The QMLE is simple and strongly consistent even if the true distribution of y1 is not Bernoulli



once the first moment is assumed to be correctly specified. There are other reasons that make the
Bernoulli QMLE more attractive. First, maximizing the Bernoulli log likelihood is easy. Sec-
ond, the Bernoulli distribution is a member of the linear exponential family (LEF) and it does not
have any restriction as other distributions (see further discussion in Papke & Wooldridge (1996)).
Moreover, it has some advantage over the Poisson distribution. For example, it is consistent with
the nature of afractional response variable which has both continuous and discrete characteristics.
The Poisson distribution is consistent with a non-negative response variable but does not take into
account mass pointsat 0 and/or 1. In addition, even though the Poisson distribution isa member of
the LEF, it is chosen if we want the variance to be proportional to the mean, which isnot realistic
for a fractional response variable. It is unlikely that the variance is monotonically increasing in
the mean. Another attraction of the Bernoulli QMLE is that it is efficient in a class of estimators
containing all QMLESs in the LEF as long as the conditional mean is correctly specified and the
variance assumption holds. The assumption that the variance associated with the quasi-log like-
lihood in equation (1.6) is the Bernoulli generalized linear models (GLM) variance will hold if
the number of Bernoulli draws is independent of z;. This assumption still holds in an empirical
example of this chapter. However, in other applications, there is no guarantee that this assumption
holds and it is recommended to obtain fully robust sandwich standard errors (see more discussion
in Papke & Wooldridge (1996) and (Wooldridge, 2010, section 18.6)).

Therefore, in what follows, we use the QMLE or NL S with the Bernoulli quasi-log likelihood
function to estimate 6 of equation (1.6) in the second step.

The Bernoulli quasi-log likelihood function is given by:

1i(6) = ygi Inuj + (1 —yqi) In(1 — wj). (1.7)

The QMLE of 6 in the second step is obtained from the maximization problem (see more

detailsin Appendix D.1.):
n
Max " 1;(0). (1.8)

€07

The NLS estimator of 0 inthe second step is attained from the minimization problem (see more



detailsin Appendix D.3.):
N
NS v~ (03va1, )]/ 2 (1.9)

After we obtained the estimated parameters from the first-step and approximate the conditional
mean (the detailed approximation procedure is discussed below), we estimate 6 using the QMLE
and NLS estimators as described in the above maximization and minimization problems. These
estimators are the so-called two-step M-estimators that are consistent and asymptotically normal
(see further discussion of these estimatorsin Newey & McFadden (1994) and (Wooldridge, 2002,
chapter 12)).

Since uj = E(y1|y2,z) does not have a closed form solution, it is necessary to use a numerical
approximation. The numerical routine for integrating out the unobserved heterogeneity in the con-
ditional mean equation (1.6) is based on the Adaptive Gauss-Hermite quadrature. This adaptive
approximation has proven to be more accurate with fewer points than the ordinary Gauss-Hermite
approximation. The quadrature locations are shifted and scaled to be under the peak of the inte-
grand. Therefore, the adaptive quadrature is performed well with an adequate amount of points
(see more in Skrondal & Sophia (2004)).

Using the Adaptive Gauss-Hermite approximation, the above integral (1.6) can be obtained as:

—00

oo M ) o
Hi = / hi(vai, zi,a1)dag ~ V26, Y- winexp{ (i)} hi(y2.zi, V2Giam + W), (1.10)
m=1

where 6; and W; are the adaptive parameters for observation i, wi, are the weights and aj;, are the
evaluation points, and M isthe number of quadrature points. The approximation procedure follows
Skrondal & Sophia (2004). The adaptive parameters 6; and W; are updated in the KM iteration of

the optimization for y; with:

M
Wik~ Y V26 k. 1Winexp{ (ai)2}hi(yai zi, V26; k_18m+ @i k1),

m=1
M 26i 1 TWE.ex V2V N (Vo 2 T ey
Bix= S (k1) V26 k_1Wh p{(%) i (Yai i, T mk 1)7
m=1 Hi k



. M V26, k_1Winexp{(ain) 1 (Y2i Zis Timk—1)
Gik= Y, (Ti,m,k—l)2 : m ™ R L —(ah,k)za
m=1 ("

where

Timk—1= V28 k_18m+ @ k_1.

This process is repeated until 6;  and @;  have converged for thisiteration at observation i of
the maximization algorithm. This adaptation is applied to every iteration until the log-likelihood
difference from the last iteration is less than a relative difference of 1e~>; after this adaptation, the
adaptive parameters are fixed.

Once the evaluation of the conditional mean has been done for al observations, the numerical
values can be passed on to amaximizer in order to find the QMLE or NLS 6.

| summarize the method for estimating 6 with the following procedure:

1.2.1 Estimation Procedure

(i) Estimate 6, and 8g by using maximum likelihood of y;j> on z;j in the Negative Binomia

model. Obtain the estimated parameters 32 and 30.

(ii) Usethefractiona probit QMLE (or NLS) of y;1 onyis, zj; to estimate o1, 67 and 11 with the
approximated conditional mean. The conditional mean is approximated using the estimated

parameters in the first step and using the Adaptive Gauss-Hermite method.

After getting all the estimated parameters 6 = (éy, 51.M1), the standard errors in the second
stage should be adjusted for the first stage estimation and obtained using the delta method. The

standard errors obtained by using the delta method can be derived with the following formula:

N 1 A __ _ N A A ~ __
Avar (6) = A7 1 (N 1zlri1ri’1> A7t (1.12)
1=

For more details, see the derivation and matrix notation from equation (D.6) to equation (D.20)

in Appendix D.1.



1.2.2 Average Partial Effects

Econometricians are often interested in estimating the average partial effects of explanatory vari-
ablesin non-linear modelsin order to get comparable magnitudes with other nonlinear models and
linear models. The Average Partial Effects (APE) can be obtained by taking the derivatives or the
differences of a conditional mean equation with respect to the explanatory variables of interest.
The APE cannot be estimated with the presence of unobserved factor. It is necessary to "integrate
out" the unobserved variable in the conditional mean or average the partial effects across the dis-
tribution of the unobservable. Then we will obtain a single factor by taking the average across the
samplein order to compare with the corresponding linear estimate.

| begin by reviewing the calculation of APES when the explanatory variables are exogenous,
following Papke & Wooldridge (2008), and then show how to identify the APES with a count

endogenous explanatory variable.

1.2.2.1 The Case with Exogenous Covariates and a Normally Distributed Heterogeneity

InaFRM with all exogenous covariates, model (1.1) with y, exogenous and anormally distributed
aj is considered (for a general discussion of a FRM with all exogenous covariates, see Papke &
Wooldridge (2008)).

Let w = (Y, z1), dropping observation index i, equation (1.1) is rewritten as:
E(yilw,a1) = ®(wp +a1),

where w is the fixed terms and a;j is the random term. We can aso alow elements of w to be
any function of (y, z7), including nonlinear functions, such as quadratic or cubic forms, and

interactions. If wq is continuous, then the partial effect with respect to w is:
JE(y1lw,a1)/dwy = 1o (wp +ay).
If wy isadummy variable, we compute:
(W' +ag) - O(wOB +ay),
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where wl and w0 are two different values of the covariatesincluding w;=1 and w; =0, respectively.
Since a is not observed but we assume a;|w ~ Normal (0, 62), we can obtain the APE by

averaging the partial effects across the distribution of a;:

Ea, [B1¢ (WS +ay)],
Eay [®(w'B +a1) — D(WB +ay)],

and these are equivalent to getting: B1¢ (W) and [®@(w!Ba) — @ (w°Ba)] where subscript a stands

for division by \/1+ o3.
Then we can obtain a single number to compare with the linear estimates by averaging the

derivative or the difference across the sample.

For a continuous z11, the APE is estimated by:
5 IN-13-0(a 5|
011a (N7 ¢(0aaY2i +21i01a) | -
& J
For acount variable y,, the APE is estimated by:

N—l

=

|©(Baay3 + 21 81a) — P(81aY3 +2101a)] -

=1

For example, if we are interested in obtaining the APE when y, changes from 0 to 1, it is
necessary to predict the difference in mean responses with y, = 1 and y, = 0 and average the

difference across al units.

1.2.2.2 The Case with a Count Endogenous Covariate and a Non-normally Distributed Het-
erogeneity

In afractional response model with a count endogenous variable, model (1.1) is considered with
the estimation procedure provided in the previous section. The APEs are obtained by taking the

derivatives or the differencesin:

Eay [®(01y5+ 2981 +m1ay)], (1.12)
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with respect to the elements of (y2, zl) In the argument of the expectations operator, (yg, z?) are
fixed terms and a; is arandom term.

The partial effect (PE) is obtained for a continuous variable z;1:
PE(y3,29,a1) = 8119 (01y3 + 2381 + may), (1.13)
and for a discrete variable y,, we compute:
D (0qys +298 — gy +296 1.14
(cays +2z761 +mag) — P(oayy +2161 +Mmay), (1.14)

which is the difference in mean responses with two fixed points: y, = y3 and y, = yJ that we are
interested in.

To obtain the APES, we need to average the above partial effects across the distribution of a;:
APEC = Ea, (8119 (00Y3 +238; +may)], (1.15)

for the continuous case, and
APEq = Eq, [®(0t1y5 + 298 — ®(0gy3+298 1.16
d = Bay [@(0ay; +2761 + may) — P(eay; +2761 + mag)], (1.16)

for the discrete case.

Thisisequivalent to integrate out a; and we respectively receive:
—+o0
y =APEc= [ 8110(0ay3+ 2081 +man) f (caly3, 23: 0) e, (1.17)

foo +oo
J=APEg = [ 0(g'0)f(auly3,23:0)dan — [ (g°0)f(aalyd. 2 0)den,  (L18)

where gy isadummy argument in the integration, g* = (y3,23,q1), and g° = (v3,29, q1).

These APEs are estimated by:
+o0 0. A
APE. = 511/ 0(61y9 +2951 + A1) T (culyd. 29; 6)day, (1.19)

— o0 oo A A
APEq= [ o(g"0)f(auh3A:0)de— [ o(e®0)f(ah3 Ai0)da, (120
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Since equations (1.19) and (1.20) cannot be obtained in a closed form, we need to use the
Adaptive Gauss-Hermite method to approximate the density of f(ql\y‘é,zg; 0); k=0,1. Thisis
equivalent to obtain:

R M )
l/‘/zAPEcwéniﬁ@iZ{\Af&exp( an)?1}10(2%0) 1 (y3, 29, (V2685 + W); >}, (1.21)
m=1

A =APEg=211-29, (1.22)
where
M
= V26, Y {Winexp|(ain)?}0(2“0) F (8, 23, (v2Gian+W); 6), (1.23)
m=1

in addition to gk = (y&,2%, (v2Gia, +W;)); k= 0,1 and 6 = (a1,81,1m1)’. For a comparison
between the linear model estimates and the fractional probit estimates, it is useful to have asingle
factor. Thissinglefactor can be obtained by averaging out z1; acrossall individualsin the formula
of ¥ and A. For example, in order to get the APE when y, changesfrom 0 to 1, it is necessary to
predict the difference in the mean responses with y, = 0 and y» = 1 and take the average of the
differences acrossall units. This APE givesus anumber comparableto the linear model’s estimate.

The standard errors for the APEs will be obtained using the delta method. The detailed deriva-

tion is provided from equation (D.21) to equation (D.40) in Appendix D.1.

1.3 Monte Carlo Simulations

This section examines the finite sample properties of the two-step QML and NL S estimators of the
population averaged partial effect in afractional response model with a count endogenousvariable.
Some Monte Carlo experiments are conducted to compare these estimators with other estimators
under different scenarios. These estimators are evaluated under correct model specification with
different degrees of endogeneity; with strong and weak instrumental variables; and with different
sample sizes. The behavior of these estimators is also examined with respect to a choice of a

particular distributional assumption.
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1.3.1 Estimators

Two sets of estimators under two corresponding assumptions are considered: (1) y» is assumed
to be exogenous, and (2) y» is assumed to be endogenous. Under the former assumption, three
estimators are used: the ordinary least squares (OLS) estimator in a linear model, the maximum
likelihood estimator (MLE) in aTobit model and the quasi-maximum likelihood estimator (QMLE)
in afractional probit model. Under the latter assumption, five estimators are examined: the two-
stage least squares (2SL S) estimator, the two-step maximum likelihood estimator (MLE) in a Tobit
model using the Blundell-Smith estimation method (hereafter the Tobit BS), thetwo-step QMLE in
afractional probit model using the Papke-Wooldridge's estimation method (hereafter the QMLE-
PW; see more discussion of handling endogeneity in Papke & Wooldridge (2008)), the two-step
QMLE and the two-step NL S estimators in a fractional probit model using the estimation method

proposed in the previous section.

1.3.2 Data Generating Process

The count endogenous variable is generated from a conditional Poisson distribution:

exp(—A) A2
f(yai X1, %20, %, a1i) = p(—_',)', (1.24)
vk
with a conditiona mean:
Ai = E(Y2i(Xqi, X2i, Zi, 1)) = €Xp(81X1j + 620Xpj + 623% + p12y;), (1.25)

using independent draws from normal distributions: z~ N(0,0.32), x; ~ N(0,0.22), xo ~ N(0,0.22)
and exp(ay) ~ Gamma(1,1/8g) where 1 and 1/ &g are the mean and variance of agammadistribu-

tion. Parameters in the conditional mean model are set to be:
(521, 522, 523, P1, 50) = (0.0l, 0.01,1.5,1, 3).

The dependent variable is generated by first drawing abinomial random variable x with ntrials

and a probability p and then y; = x/n. In thissimulation, n = 100 and p comes from a conditional
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normal distribution with the conditional mean:

P = E(y1i|Yai, X1i. Xai, a1i) = P(811X1i + S12X0j + 1Yo + N1ay1i), (1.26)

and parameters in this conditional mean are set at: (011, 012, 1,1m1) = (0.1,0.1,—1.0,0.5).

In order to compare the magnitudes between a nonlinear model and a linear model, we are
interested in computing APEs. Based on the population values of the parameters set above, the
so-called true value of the APE with respect to each variable is reported as the mean of the APEs
approximated via the simulations with the standard procedure described bel ow.

First, when y, is treated as a continuous variable, the so-called true value of the APE with
respect to y, is approximated from simulations by first computing the derivative of the conditional
mean with respect to y,, and then taking the average across the distribution of a;:

N

1
APE = —1.0% 13 $(0.1xq +0.14Xp — LOxYp +0.5xay). (1.27)

i=1
Now when y» is allowed to be a count variable, the so-called true values of the APEs with

respect to y, are computed by first taking differences in the conditional mean. These true values
of the APEs are computed at interesting values. In this chapter, | will take the first three examples
when y, increasesfrom 0to 1, 1 to 2 and 2 to 3, respectively and the corresponding true val ues of
the APEs are:

®(0.1xx7+0.1xxp—1.0% 14+ 0.5%ay;)

N
> , (128)
i=1| —®(0.1xx7+0.1xxp—1.0x0+0.5%ay;)

APEOQ1 =

2|~

LN | ®0.1%xX7+0.1%xX—1.0%2+0.5%ay;
APEL2= 3" (0-Lxx 2 1) , (1.29)
i=1| —®(0.1%xx7+0.1xXp—1.0x1+0.5%ay;)

N DP(0.1%X7+0.1%%X>—1.0%x3+0.5xay;
APE23= =Y (0Lxx 2 2 (1.30)

i=1| —®(0.1%xX7+0.1%Xp—1.0%x2+0.5%ay;)

These so-called true values of the APEs (which are approximated through simulations) with
respect to y, and other exogenous variables are reported in Tables A.1-A.4. The experiment is

conducted with 500 replications and the sample size is normally set at 1000 observations.
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1.3.3 Experiment Results

| report sample means, sample standard deviations (SD) and root mean squared errors (RM SE)
of these 500 estimates. In order to compare estimators across linear and non-linear models, | am

interested in comparing the APE estimates from different models.

1.3.3.1 Simulation Result with a Strong Instrumental Variable

Tables A.1-A .4 report the ssimulation outcomes of the APE estimates for the sample size N = 1000
with a strong instrumental variable (V) and different degrees of endogeneity, where nq = 0.1,
N1 =0.5,and 1 = 0.9. ThelV isstrong in the sense that the coefficient on zis d,3 = 1.5 inthefirst
stage and the F-statistics on the significance test of z in the first-stage are large. These F-statistics
have average values equivalent to 91.75, 107.57 and 133.56 in 500 replications for three designs
of 11: 11 =0.1, n1 = 0.5, and n1 = 0.9, respectively. Three different values of 14 are selected
which corresponds to low, medium and high degrees of endogeneity. Columns 2-10 contain the
true values of the APE estimates and the means, SD and RM SE of the APE estimatesfrom different
models with different estimation methods. Columns 3-5 consist the means, SD and RM SE of the
APE estimates for al variables from 500 replications with y» assumed to be exogenous. Columns
6-10 include the means, SD and RM SE of the APE estimatesfor all variablesfrom 500 replications
with y, allowed to be endogenous.

| first report the simulation outcomes for the sample size N = 1000 and 11 = 0.5 (see Table
A.1). The APE estimates using the proposed methods of QMLE and NLS in columns 9-10 are
closest to the true values of the APEs when ys is discrete (—.3200,—.1273 and —.0212). It is
typical to get these three APES for a discrete y, (when yo, goesfrom0to 1, 1to 2 and 2 to 3) as
examplesin order to see the pattern of the means, SD and RM SE of the APE estimates. The APE
estimateis also very closeto the true value of the APE (—.2347) when y, istreated as a continuous
variable. Table A.1 shows that the OLS estimate is about a half of the true value of the APE.
The first source of large bias in the OLS estimate comes from the ignorance of the endogeneity

in the count variable yo (with n1 = 0.5). The second source of bias in the OLS estimate is due
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to the neglect of the non-linearity in both the structural and reduced-form equations (1.1) and
(1.2). The 2SLS approach also produces a biased estimator of the APE because of the second
reason mentioned above even though the endogeneity is taken into account. The MLE estimators
in the Tobit model have smaller bias than the estimators in the linear model but larger bias than
the estimators in the fractional probit model because they do not consider the functional form
of the fractional response variable and the count explanatory variable. When the endogeneity is
corrected, the MLE estimator in the Tobit model using Blundell-Smith method has a smaller bias
than the counterpart where y, isassumed to be exogenous. Among the fractional probit models, the
two-step QMLE estimator, where y» is assumed to be exogenous, (column 5) has the largest bias
because it ignores the endogeneity of y>. However, it still has a smaller bias than other estimators
of the linear and Tobit models. The two-step QMLE-PW estimator (column 8) provides useful
result because its estimates are also very close to the true values of the APEs but it produces a
larger bias than the two-step QMLE and NLS estimators proposed in this chapter. Similar to the
two-step MLE estimator in Tobit model using Blundell-Smith method, the two-step QMLE-PW
estimator adopts the control function approach. This approach utilizes the linearity in the first
stage equation. Asaresult, it ignores the discreteness in y» which leads to the larger bias than the
two-step QMLE and NL S estimators proposed in this chapter.

Thefirst set of estimatorswith y, assumed to be exogenous (columns 3-5) hasrelatively smaller
SDs than the second set of estimators with y, allowed to be endogenous (columns 6-10) because
the methods that correct for endogeneity using I'Vs have more sampling variation than their coun-
terparts without endogeneity correction. This results from the less-than-unit correlation between
the instrument and the endogenous variable. However, the SDs of the two-step QMLE and NLS es-
timators (columns 9-10) are no worse than the QM LE estimator where y, assumed to be exogenous
(column 5).

Among all estimators, the two-step QMLE and NL S estimators proposed in this chapter have
the smallest RMSE, not only for the case where y» is allowed to be a discrete variable but also

for the case where y, is treated as a continuous variable using the correct model specification. As
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discussed previoudly, the two-step QMLE estimator using Papke-Wool dridge method has the third
smallest RMSE since it also uses the same fractional probit model. Comparing columns 3 and 6, 4
and 7, 5 and a set of al columns 8-10, the RM SEs of the methods correcting for endogeneity are
smaller than those of their counterparts.

Table A.2 reports simulation result for coefficient estimates. The coefficient estimates are use-
ful in the sense that it gives the directions of the effects. For studies which only require exploring
the signs of the effects, the coefficient tables are necessary. For studies which require comparing
the magnitudes of the effects, we essentially want to estimate the APES. Table A.2 shows that the
means of point estimates are close to their true values for all parameters using the two-step QML
(or NLS) approach (—1.0, 0.1 and 0.1). The biasislarge for both 2SL. S method and OL S method.
These results are as expected because the 2SL S method uses the predicted value from the first stage
OLS so it ignores the distributional information of the right-hand-side (RHS) count variable, re-
gardless of the functional form of the fractional response variable. The OL S estimates do not carry
the information of endogeneity. Both the 2SL S and OL S estimates are biased because they do not
take into account the presence of unobserved heterogeneity. The bias for a Tobit Blundell-Smith
model is similar to the bias with the 2SLS method because it does not take into account the dis-
tributional information of the right-hand-side count variable and it employs a different functional
form given the fact that the fractional response variable has a small number of zeros. The biases
for both the QM LE estimator treating y, as an exogenous variable and for the two-step QM LE-PW
estimator are larger than those of the two-step QMLE and NL S estimatorsin this chapter. 1n short,
simulation results indicate that the means of point estimates are close to their true values for all
parameters using the two-step QMLE and the NL S approach mentioned in the previous section.

Simulations with different degrees of endogeneity through the coefficient n; = 0.1 and nq =
0.9 are also conducted (see Table A.3 and A.4). Not surprisingly, with less endogeneity, 11 = 0.1,
the set of the estimatorstreating y, as an exogenous variable produces the APE estimates closer to
the true values of the APE estimates; the set of the estimatorstreating y» as an endogenous variable

has the APE estimates further from the true values of the APE estimates. With more endogeneity,

18



n1 = 0.9, the set of the estimators treating y, as an endogenous variable has the APE estimates
getting closer to the true values of the APE estimates; and the set of the estimators treating y» as
an exogenous variable gives the APE estimates further from the true values of the APE estimates.
As an example, it is noted that, as 11 increases, the APE estimates of the 2SL S method are less
biased while the APE estimates of the QMLE estimator treating y» as an exogenous variable are
more biased and the difference between these two APE estimates is smaller since the endogeneity
IS corrected.

All other previousdiscussionson the bias, SD and RM SE till hold with 1 =0.1and n; = 0.9.
It confirms that the two-step QMLE and NL S estimators perform very well under different degrees

of endogeneity.

1.3.3.2 Simulation Result with a Weak Instrumental Variable

Table A.5 reports the simul ation outcomes of the APE estimates for the sample size N = 1000 with
aweak 1V and n1 = 0.5. Using the rule of thumb on a weak instrument (suggested in Staiger &
Stock (1997)), the coefficient on zis chosen as 623 = 0.3 which corresponds to a very small first-
stage F-statistic (the mean of the F-statistic is6.97 in 500 replications). Columns 2-10 contain the
true values of the APE estimates, the means, SD and RM SE of the APE estimates from different
models with different estimation methods. Columns 3-5 consist the means, SD and RM SE of the
APE estimates for al variables from 500 replications with y» assumed to be exogenous. Columns
6-10 include the means, SD and RM SE of the APE estimatesfor all variablesfrom 500 replications
with y, allowed to be endogenous. The simulation results show that, even though the instrument is
weak, the set of estimators assuming y, endogenous still has smaller bias than the set of estimators
assuming y, exogenous. The two-step QMLE and NLS APE estimates are still very close to the
true values of the APEs for both cases in which y, is treated to be a continuous variable and y»
is alowed to be a count variable. Their SD and RMSE are till the lowest among the estimators
considering y, endogenous. Table A.11 also providesthis evidence.

Simulation results from my proposed procedure show that the two-step QMLE and NLS APE
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estimates are less biased and more efficient compared with the linear model’s and other models
estimates. However, at the first glance, we can notice the standard deviation in Table A.5 is less
than the standard deviation from Table A.1 under columns of QMLE and NLS, which is contrary
to the pattern of standard deviationsin the linear model (under the column with 2SL S estimation
method). The standard deviation from my proposed procedure (under the columns of QMLE and
NLS) is smaller in the case of a weak 1V than the case of a strong 1V, which seems odd at first
if we judge that exclusion restrictions are driving identification. If we look at the result from the
column of 2SLS, the bias and inefficiency of 2SLS estimates may arise because a linear model
may provide a poor approximation for the count and fractional response variable. It suggests that
nonlinearities have larger contributions than exclusion restriction to identification in the nonlin-
ear models. In other words, functional form assumptions are mainly responsible for identification
rather than the exclusion restriction. Therefore, it is worth investigating the reason why the esti-
mates in my proposed procedure tend to be closer to the true value of the APES and are aways
efficient without increasing the standard deviation in the case of weak instrument. We design the
experiment similar to ssimulated experiment in Table A.5 but the coefficient on the instrument is
0 (693 = 0). Thisis equivalent to the case of no instruments. The results in Table A.6 show that
standard deviations under columns of QMLE and NLS are still smaller suggesting nonlinearity is

responsible for identification since there is no exclusion restriction here.

1.3.3.3 Simulation Result with Different Sample Sizes

Four sample sizes are chosen to represent those commonly encountered sizes in applied research.
Theserange from small to large sample sizes: 100, 500, 1000 and 2000. TablesA.7-A.10report the
simulation outcomes of the APE estimates with a strong 1V, n1 = 0.5, for sample sizes N = 100,
500, 1000, and 2000 respectively. Table A.8 is equivalent to Table A.1. Columns 2-10 contain the
true values of the APE estimates and the means, SD and RM SE of the APE estimates from different
models with different estimation methods. Columns 3-5 consist the means, SD and RM SE of the

APE estimates for al variables from 500 replications with y» assumed to be exogenous. Columns
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6-10 include the means, SD and RM SE of the APE estimatesfor all variablesfrom 500 replications
with y, allowed to be endogenous. In general, the simulation results indicate that the SD and
RMSE for all estimators are smaller for larger sample sizes. Previous discussion asin 3.3.1 is still
applied. The two-step QMLE and NLS estimators perform very well in all sample sizes with the
smallest SD and RMSE. They are also the least biased estimators among all the estimatorsin this

discussion.

1.3.3.4 Simulation Result with a Misspecifie Distribution

The original assumption is that exp(a;) ~ Gamma(1,1/8g). However, misspecification is dealt
with in this part. The distribution of exp(ay) is no longer gamma, instead, a; ~ N(O, 0.12) is
assumed. The finite sample behavior of all the estimators in this incorrect specification is exam-
ined. Table A.11 shows the simulation results for the sample size N = 1000 with a strong IV and
n1 = 0.5 under misspecification. All of the previous discussion under the correct specification as
in 1.3.3.1 is not affected. The APE estimates under the fractional probit model are still very close
to the true values of the APEs.

Table A.12 shows the ssimulation results of the APE estimates with the sample size N = 1000
and 1 = 0.5. The estimates are close to true values of the APEs , with very small MSE and
rejection rates close to 0.05.

We should note from all tables in the section of Monte Carlo simulations that the standard
deviations under the columns of QMLE and NLS using the proposed procedure are not directly
comparable as standard errors. However, we can see from the simulation result of Table A.13
that the proposed procedure’s analytical variance is quite reliable because estimates of mean of

standard errors using analytical computation is quite close to those using bootstrapping method.

1.3.4 Conclusion from the Monte Carlo Simulations

This section examined the finite sample behavior of the estimators proposed in the FRM with

an endogenous count variable. The results of some Monte Carlo experiment show that the two-

21



step QMLE and NLS estimators have smallest standard deviations, RM SE and |east biased when
the endogeneity is presented. The two-step QMLE and NLS methods also produce least biased

estimates in terms of both parameters and the APEs compared to other aternative methods.

1.4 Application and Estimation Results

My proposed estimators can be applied in amodel of female labor supply. The dependent variable
refers to the allocation of total hours per week mothers spent on working. Hereafter, we name
the dependent variable as weekly fractional working hours. The data in this chapter were used in
Angrist & Evans(1998) toillustrate alinear model with a dummy endogenous variable: more than
two kids. They estimate the effect of additional children on female labor supply, considering the
number of children as endogenous and using the instruments. same sex and twins at the first two
births. They found that married women who have the third child reduce their labor supply, and
their 2SL S estimates are roughly a half smaller than the corresponding OL S estimates.

In this application, the fractional response variable is the fraction of total weekly hours that
a woman spends working. This variable is generated from the number of working hours, which
was used in Angrist & Evans (1998), divided by the maximum hours per week (168). There isa
substantial number of women who do not spend any hours working, 13068 observations at zero.
Therefore, a Tobit model might be a choice.

In this application, we are interested in estimating a model of weekly fractional working hours
(FrHour) for women who take into consideration of having the number of children as a count

endogenous factor. We begin with the linear model as follows:
FrHour = onKidno+ 61Educ+ 6oAge+ d3Agefb -+ d4Hispan+ dsNminc+ ay. (1.31)

The count variable in this application is the number of children beyond two, between 0 and 10,
instead of an indicator for having more than two kids which was used in Angrist & Evans (1998).
The number of kidsis considered endogenous, which isin line with the recent existing empirical

literature. First, the number and timing of children born are controlled by a mother makes fertility
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decisionscorrelated with the number of children. Second, somewomen have preference for family-
based activity or market-based work, so fertility is correlated with women’s heterogeneity. The
estimation sample contains 31,824 women, more than 50% is childless, 31% have one kid, 11%
have two kids and the rest have more than two kids. Table A.14 givesthe frequency distribution of
the number of children and it appearsto have excess zeros and long tailswith the average number of
children is around one. Other explanatory variables which are exogenous, including demographic
and economic variables of the family, are also described in Table A.15.

The current research on parent’s preferences over the sex mixture of their children using US
data shows that most familieswould prefer at least one child of each sex. For example, Ben-Porath
& Welch (1976) found that 56% of families with either two boys or two girls hasathird birth while
only 51% families with one boy and one girl had athird child. Angrist & Evans (1998) found that
only 31.2% of women with one boy and one girl have athird child whereas 38.8% and 36.5% of
women with two girls and two boys have a third child, respectively. With the evidence that women
with children of the same sex are more likely to have additional children, the instruments that we
can use are same sex and twins. Table A.16 illustrates the result of first-stage estimates with the
significant statistics of same sex and twins.

Table A.17 showsthe estimation results of the OLSin alinear model, the MLE in a Tobit model
and the QMLE in afractional probit model wheny» is assumed exogenous. The estimation results
of the2SLSin alinear model, the MLE in a Tobit BS model, the QMLE-PW, the QMLE and NLS
estimation in a fractional probit model are shown in Table A.18 when y, is assumed endogenous.

Since | aso analyze the model using the Tobit BS model, its model specification and derivation
of the conditional mean, the average partia effects and the estimation approach are included in
Appendix D.2. The two-step NLS method with the same conditional mean used in the two-step
QMLE method is also presented in Appendix D.3.

Ordinary least squares
The OLS estimation often plays a role as a benchmark since its computation is simple, its

interpretation is straightforward and it requires fewer assumptions for consistency. The estimates
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of alinear model in which the fraction of total working hours per week is the response variable
and the number of kids is considered exogenous are provided in Table A.17. Asdiscussed in the
literature of women'’slabor supply, the coefficient of the number of kidsis negativeand statistically
significant. The linear model with the OLS estimation ignores functional form issues that arise
from the excess-zeros nature of the dependent variable. In addition, the predicted value of the
fraction of the total weekly working hours for women always lies in the unit interval. The use of
the linear model with the OLS estimation will not make any sense if the predicted value occurs

outside thisinterval.

A Tobit model with an exogenous number of Kids

There are two reasonsthat a Tobit model might be practical. First, the fraction of working hours
per week has many zeros. Second, the predicted value needs to be nonnegative. The estimates
are given in Table A.17. The Tobit coefficients have the same signs as the corresponding OLS
estimates, and the statistical significance of the estimates is similar. For magnitude, the Tobit
partial effects are computed to make them comparable to the linear model estimates. First of al,
the partial effect of a discrete explanatory variable is obtained by estimating the Tobit conditional
mean. Second, the differences in the conditional mean at two values of the explanatory variable
that are of interest is computed (for example, we should first plug in yo; = 1 and then yp; = 0).
Asimplied by the coefficient, having the first child reduces the estimated fraction of total weekly
working hours by about 0.023, or 2.3 percentage points, a larger effect than 1.9 percentage points
of the OLS estimate. Having the second child and the third child make the mother work less by
about 0.021 or 2.1 percentage points and 0.018 or 1.8 percentage points, respectively. All of the
OLS and Tobit statistics are fully robust and statistically significant. Comparing with the OLS
partial effect, which is about 0.019 or 1.9 percentage points, the Tobit partial effects are larger
for having the first kid but almost the same for the second and the third kid. The partial effects of
continuous explanatory variables can be obtained by taking the derivatives of the conditional mean;
or we can practically get the adjustment factors to make the adjusted Tobit coefficients roughly

comparable to the OL S estimates. All of the Tobit coefficients givenin Table A.17 for continuous
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variables are larger than the corresponding OL S coefficients in absolute values. However, the Tobit
partial effects for continuous variables are dlightly larger than the corresponding OL S estimatesin

absolute values.

A Fractional response model (FRM) with an exogenous number of kids

Following Papke & Wooldridge (1996), | also use the fractional probit model assuming the
number of children exogenous for a comparison purpose. The FRM'’s estimates are similar to
the Tobit’s estimates, but they are even closer to the OLS estimates. The statistical significance
of QML estimates is amost the same as that of the OLS estimates (see Table A.17). Having the
second child reduces the estimated fraction of total weekly working hoursby 1.9 percentage points,
which is roughly the same as the OLS estimate. However, having the first and third child result
in different partial effects. Having the first kid makes a mother work much less by 2.0 percentage

points, and having the third kid makes a mother work less by 1.6 percentage points.

Two-stage least squares

In the literature on female labor supply, Angrist & Evans (1998) consider fertility endogenous.
Their remarkable contribution is to use two binary instruments: genders of the first two births are
the same (samesex) and twins at the first two births (multi2nd) to account for an endogenous third
child. The 2SLS estimates are replicated and reported in Table A.18. The first stage estimates
using the OL S method and assuming a continuous number of children, given in Table A.16, show
that women with higher education are estimated to be 6.5 percentage points less likely to have
kids. In magnitude, the 2SL S estimates are less than the OLS estimates for the number of kids
but roughly the same for other explanatory variables. With IV estimates, having children leads a
mother to work less by about 1.6 percentage points, which is smaller than the corresponding OLS
estimates of about 1.9 percentage points. These findings are consistent with Angrist and Evans

result.

A Tobit BS model with an endogenous number of kids
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A Tobit BS model is used with the number of children endogenous (see Table A.18). Only
the Tobit average partial effect of the number of kids have statistically slightly larger effect than
that of the 2SL S estimates. The APES of the Tobit estimates are amost the same as those of the
corresponding 2SL S estimates for other explanatory variables. Having the first, second and third
kid reduce the fraction of hours a mother spends working per week by around 1.8, 1.7 and 1.5
percentage points, respectively. Having the third kid reduces a mother’s fraction of working hours
per week by the same amount asthe 2SL S estimates. The statistical significance isamost the same
for the number of kids. The Tobit BS method is similar to the 2SL S method in the sense that the
first stage uses a linear estimation and it ignores the discrete nature of the number of children. It

explainswhy the Tobit BS result gets very close to the 2SL S estimates,

A FRM with an endogenous number of kids

Now let us consider the FRM with the number of kids endogenous. The fractional probit model
with Papke-Wooldridge method (2008) has dealt with the problem of endogeneity. However, this
method has not taken into account the problem of count endogeneity. The endogenous variable
in this model is treated as a continuous variable, hence, the partial effects at discrete values of
the count endogenous variable are not considered. In this chapter, the APES of the QMLE-PW
estimates are also computed in order to be comparable with other APE estimates. Having the
first kid reduces a mother’s fraction of weekly working hours by the same amount as the 2SLS
estimates. Treating the number of children continuous also gives the same effect as the 2SLS
estimate on the number of kids. As the number of children increases, the more working hours a
mother has to sacrifice. Having the second and third kids reduce the fraction of hours a mother
spendsworking per week by around 1.6, 1.5 and 1.4 percentage points, respectively. The statistical
significance isthe same asthe Tobit BS estimatesfor the number of kids. The APEs of the two-step
QMLE-PW estimates are almost the same as those of the corresponding 2SL S estimates for other
explanatory variables.

The fractional probit model with the methods proposed in this chapter is attractive because

it controls for endogeneity, functional form issues and the presence of unobserved heterogeneity.
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More importantly, the number of children is considered a count variable instead of a continuous
variable. Both the two-step QMLE and NLS are considered and the two-step NL S estimates are
quite the same as the two-step QML estimates. The two-step QML and NLS's coefficients and
robust standard errors are given in Table A.18 and the first-stage estimates are reported in Table
A.16.

In the first stage, the Poisson model for the count variable is preferred because of two reasons.
First, the distribution of the count variable with along tail and excess zeros suggests an appropriate
model of gamma heterogeneity instead of normal heterogeneity. Second, adding the unobserved
heterogeneity with the standard exponential gamma distribution to the Poisson model transforms
the model to the Negative Binomia model, which can be estimated by the maximum likelihood
method. The OLS and Poisson estimates are not directly comparable. For instance, increasing
education by one year reduces the number of kids by 0.065 asin the linear coefficient and by 7.8%
as in the Poisson coefficient.

The fractional probit’s estimates have the same signs as the corresponding OLS and 2SL S es-
timates. In addition, the result shows that the two-step QMLE is more efficient than the OLS and
2SL S estimators. For magnitude, the fractional probit’s APES are computed to make them com-
parable to the linear model’s estimates. Similar to the Tobit model, the partial effect of a discrete
explanatory variable is obtained by estimating the conditional mean and taking the differences at
the values we are interested in. Regarding the number of kids, having more kids reduces the frac-
tion of hoursthat a mother works weekly. Having thefirst child cuts the estimated fraction of total
weekly working hours by about 0.017, or 1.7 percentage points, which is similar to the 2SL S esti-
mates, and less than the OL S estimates. Having the second child and the third child make a mother
work less by about 1.5 percentage points and 1.4 percentage points, respectively. Even though
having the third kid reduces a mother’s fraction of weekly working hours compared to having the
second kid, the marginal reduction isless, since a marginal reduction of 0.2 percentage points for
having the second kid now goes down to 0.1 percentage points for having the third kid. This can

be seen as the "adaptation effect” as the mother adapts and works more effectively after having
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thefirst kid. The partial effects of continuous explanatory variables can be obtained by taking the
derivatives of the conditional mean so that they would be comparable to the OLS, 2SL S estimates
and other alternative estimates.

All of the estimates in Table A.18 tell a consistent story about fertility. Statistically, having
any children reduces significantly a mother’s working hours per week. In addition, the more kids
awoman has, the more hours that she needs to forgo. The FRM treating the number of kids as
endogenous and as a count variable gives an evidence that the marginal reduction of women’s
working hours per week is less as women have additional kids. In addition, the FRM’s estimates,
taking into account the endogeneity and count nature of the number of children, are statistically
significant and more significant than the corresponding linear model’s and Tobit BS's estimates.

One advantage of the fractional probit model with the two-step QMLE (NLS) method that we
arediscussing in this part isthat it fits the data better than alternative models or methods. Either R-
squered (S = SSE/SST = 1 | 3% (v~ §1)2/ 3% (v~ 1)2]) orthe correation squared (S =

i=1
{Corr|yz, E(ylyyz,z)]}z) can be used to compare the goodness-of-fit among these models. The

statisticson fractional probit-QMLE, NLS, Tobit BS, and Linear 2SLSare 0.116, 0.114, 0.090, and
0.088, respectively. This shows that the fractional probit model using the two-step QMLE(NLYS)
methods has larger goodness-of-fit statistic(s) than that of the Tobit model using Blundell-Smith's
procedure and the linear model using the 2SL S method.

It seems questionable that the standard errors under the columns of QMLE and NL S methods
(see Table A.18) are unexpectedly smaller than alternative methods’ standard errorsif we compare
with the simulation results in Table A.1. There are two things we need to make clear: i) In the
simulation results, they are standard deviations instead of standard error estimates; and ii) Table
A.1 show the case of astrong IV whereas our empirical resultsdoesnot haveastrong IV. Therefore,
we need to look closely at Tables A.5 and A.6 where we have aweak IV or no V. We a so see the
pattern that standard deviationsin Tables A.5 and A.6 are much smaller than alternative methods’
standard deviations and they are quite the same as what we observed in Table A.18. In addition,

we also note that the standard errorsin Table A.18 use analytical variance instead of bootstrapping
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variance which is not directly comparable to other methods' variances which are bootstrapping
variances. However, the ssmulation result in Table A.13 implies that the analytical variance used
in Table A.18 is quite reliable. For these reasons, we can conclude that the linear approximation
may provide apoor approximation for the count and fractional response variablein asimultaneous
model. It is also worth noting that standard deviations of nonlinear estimators are not increasing
when we go from a strong to weak 1V case. In this particular fractional probit model, too much of
the identification appears to be off of the nonlinearity. Exclusion restriction seems not necessary
when a nonlinear model is used for the first stage, instead of the linear model. In other words,
nonlinearity is responsible for identification. However, it is widely considered preferable to have
an identification strategy that is robust to using a linear first stage regression. Thisisrealy a
matter of one's judgment and identification off the nonlinearity is still identification. We only need

to worry about assumptions on functional form and the distribution of an error term.

1.5 Conclusion

| present the two-step QMLE and NLS methodology to estimate the fractional response model
with a count endogenous explanatory variable. The unobserved heterogeneity is assumed to have
an exponential gamma distribution, and the conditional mean of the fractional response model
is estimated numerically. The two-step QMLE and NLS approaches are more efficient than the
2SLS and Tobit with 1V estimates. They are more robust and less difficult to compute than the
standard MLE method. This approach is applied to estimate the effect of fertility on the fraction
of working hours for afemale per week. Allowing the number of kids to be endogenous, using the
data provided in Angrist & Evans (1998), | find that the marginal reduction of women’'s working
hours per week is less as women have an additional kid. In addition, the effect of the number of
children on the fraction of hours that a woman spends working per week is statistically significant
and more significant than the estimates in all other linear and nonlinear models considered in this

chapter.
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Chapter 2
ESTIMATION OF A DYNAMIC TOBIT PANEL DATA WITH AN ENDOGENOUS
VARIABLE AND AN APPLICATION TO FEMALE LABOR SUPPLY

2.1 Introduction

This chapter considers the estimation of a dynamic Tobit model with an endogenous regressor in
the presence of unobserved heterogeneity in both stages and serial correlation in the first stage.
Practical issue motivating this study is concerned with the dynamics of female annual |abor sup-
ply where we have a corner solution outcome and it is affected by its previous state and another
source of endogeneity. The estimation method proposed in this chapter is established based on a
combination of practical methods proposed in the literature. To deal with the first source of endo-
geneity, estimation methods of dynamic nonlinear models with a lagged dependent variable have
been proposed with fixed effects or random effects. The first method is case-specific, computation-
aly complex and often leads to estimators that do not converge at the usual /n rate. In addition,
partial effects for nonlinear model using this approach are not identified. Therefore, an appealing
and robust method which solves for unobserved effects and the well-known initial condition prob-
lem has been proposed by Wooldridge (2005). To correct for the second source of endogeneity, we
can use a control function approach, especially convenient and computationally easy proposed by
Smith & Blundell (1986) for limited dependent variables (LDV). As state dependence in adynamic
nonlinear model can be overestimated without taking into account serial correlation, we also need
to correct for serial correlation.

The contribution of this chapter is to provide a computationally attractive estimation method
for a dynamic censored model with an endogenous regressor (besides the lagged dependent vari-
able) and serially correlated error terms. This method is readily applied to Panel Study of Income
Dynamics (PSID) data using the years 1980 to 1992. Based on the estimation result, | find the

evidence of persistence in US white female labor working hours over the period 1980-1992. It
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suggests that the current labor supply of US women is affected by their past labor supply and
their initial condition of labor supply. Both observed and unobserved individual heterogeneity, and
serial correlation play an important role in the persistence of US female labor supply.

This chapter is organized as follows. The second section reviews: i) approaches to estimation
of a dynamic Tobit panel data model; ii) a control function approach to govern the endogeneity
problem and iii) methods to deal with seria correlation. It also discusses related issues on the
dynamics of the US female annual labor supply. The third section develops a model for dynamic
Tobit panel datawith an endogenous regressor and the fourth section obtains average partial effects
(APE) estimates. The fifth section discusses how to correct for serial correlation in the first stage.

Empirical example followsin the next section. The last section is summarization and conclusion.

2.2 Literature Review

The approach and framework of this chapter are most closely related to the work proposed by
Giles & Murtazashvili (2010). They allow continuous, endogenous contemporaneous regressors
in a dynamic panel data model but their outcome of interest is a binary variable. Their estimator
is applied to analyze the impact of migrant labor markets on reducing the probability of falling
into poverty. Since the outcome variable in this chapter is continuous with a positive probability
as well as has a pileup at zero, the framework for a dynamic binary response model in Giles &
Murtazashvili (2010) has to be adjusted. A dynamic Tobit panel data model should be appropriate
in this case.

There have recently been many studies on a dynamic Tobit panel data model which allows for
unobserved heterogeneity and dynamic feedback. These two features of the dynamic panel data
model, however, often create difficulties in estimation. The main difficulty is that with nonlin-
earity, it is not obvious how to “difference away” the individual specific effects and how to use
instrumental variable type techniques.

Some developments have been made on estimating certain nonlinear dynamic models using

the “fixed-effects’ approach, for example, the censored regression models (Honore (1993); Hon-
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ore & Hu (2001)), the sample selection models (Kyriazidou (2001)), the discrete choice models
(Honore & Kyriazidou (2000)), and the modelswith multiplicativeindividual effects (Chamberlain
(1992); Wooldridge (1997)). In particular, Honore (1993) proposed some solutions for estimating
a censored regression panel data model with individual fixed effects and lagged censored depen-
dent variables. Honore & Hu (2001) provided identification results for this approach under certain
conditions. And Honore & Hu (2004) alowed a lagged dependent variable and a set of strictly
exogenous variables. They constructed moment conditions for the panel data model with fixed
effects and lagged (censored) dependent variable with a restrictive assumption of non-negative co-
efficient on the lagged dependent variable. In addition, their approach will not result in estimates
for APEs. Even though semiparametric approaches do not make any assumptions on either unob-
served effects or initial conditions but they are case-sensitive and often lead to estimators that do
not converge at the usual /n rate (Arellano & Honore (2001)). For example, Honore & Kyriazi-
dou (2000) assumed that transitory errors areiid over time (c; is arbitrary dependent on Xt). If the
regressors are continuous or have high dimension then the estimator will have a convergence rate
dower than \/n. The estimator will over-difference the data and understate the role of the initial
value of dependent variable, y;g. This causes downward biased coefficient on the lagged dependent
variable in finite samples and this bias will not decrease as T increases. More importantly, par-
tial effects on the conditional mean are not identified. The amount of state dependence therefore
cannot be determined.

An alternative of estimation method in nonlinear dynamic models is to use the “random-
effects’ approach. Thisapproach isfaced with anotably difficult issue of initial condition problem.
Wooldridge (2005), Chay & Hyslop (1998), and Hsiao (1986) have an excellent summarization on
how this problem istreated in the literature. There are three aternative assumptionson initial con-
ditions. The first approach treats the initial condition as exogenous (Heckman (1978a,b, 1981b)).
Initial conditions are independent of the individual effects and can be ignored when estimating the
structural model. However, if either ¢; or X;; isadetermining factor intheinitial sample conditions,

then this approach will overstate the amount of state dependence in the process. Moreover, thisisa
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very strong assumption and may not make sense. For example, ability isallowed to be uncorrelated
with initial earnings. The second approach treats the initial condition as in equilibrium (Card &
Sullivan (1988)). Thisrestriction is unlikely to hold when observable covariates are time-varying
and important determinants of the outcome. The initial condition is allowed to be random and the
distribution of the initial condition given unobserved heterogeneity is specified. This model does
not allow for additional covariates (Bhargava & Sargan (1983); Hsiao (1986)). The third way isto
adopt a flexible reduced form specification: approximating initial sample observation (Heckman
(1981b)). This approach is computationally difficult to obtain estimates of parameters and APEs.

The first approach is viewed as “pure” random effect approach where ¢; is independent of z;
and yjp. In addition, unobserved effect is independent of exogenous variables. One can obtain
the density of (yi1,...,YiT) diven yig and z; by integrating out ¢;. This method requires a strong
assumption of independence between the initial condition and the unobserved effect. The fourth
approach which is proposed by Wooldridge (2005) is the most unrestricted random effect model,
which was named "correlated” random effect. Compared with the fixed effect model, it may pro-
vide substantial efficiency gain (Hausman (1978)) given the correctly specified distribution of c;
and yjp. It recommends to obtain a joint distribution of (yj1,...,YiT) conditional on yjg and z;;
rather than a distribution of (yjg,...,YiT) conditiona on z; as in Heckman's approach. However,
we need to specify a density of ¢; given yjg and z; (motivated by the original idea from Cham-
berlain (1980)). The relationship between ¢; and z; makes this model named “ correlated” random
effects where we alow a linear relationship between ¢; and z; and yjg. This approach requires
fewer computational efforts than Heckman’s technique and gives nice APES. It also leads to sev-
eral advantages, we can choose a flexible conditional distribution of the initial condition instead of
approximation which results in computational difficulty. As a consequence, estimates are readily
computed and partial effects can be easily determined.

The study of limited dependent variables models with an endogenous regressor (instead of
lagged dependent variable) has a fairly long history. Most papers in the literature have assumed a

reduced form for the endogenous variable. Examples of thisinclude the papers by Nelson & Olson
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(1978); Heckman (1978a); Amemiya (1979); Newey (1985, 1986); Blundell & Smith (1989); Vella
(1993); Blundell & Powell (2004); Das (2002) for cross sections and Vella & Verbeek (1999);
Labeaga (1999); Giles & Murtazashvili (2010) for panel data. In alinear model, such a reduced
form (or the “first stage”) can be thought of as a linear projection, and as such it is essentialy
aways well-defined and consistently estimated by the OLS estimator. This is not the case in a
nonlinear model where it is typically assumed that the first stage is a conditional expectation and
that the error is independent of the instruments. Smith & Blundell (1986) considered a static
Tobit model to analyze female labor supply in the UK in 1981 treating other household income as
endogenous. Theinsight of their paper is to substitute a consistent estimator for the residua in the
reduce-form equation into the structural model to control for the endogeneity. And this approach
is named control function approach which produces a two-step estimator based on the conditional
likelihood for the equation of interest. As this chapter studies a source of endogeneity not coming
from the lagged dependent variable, we will employ the control function approach that allows
for a correlation between unobserved effect and regressors, as well as between regressors and the
structural error.

Asin Baltagi & Li (1991) and Baltagi & Wu (1999), estimation of a panel data model with
AR(1) disturbances is based on a feasible generalized least squares procedure. This method is
simpleto compute and provides natural estimates of the serial correlation and variance components
parameters. Thetest for zero first-order seria correlation isaso easily implemented. However, this
estimation procedure works very well for alinear panel data model but has not been executed in a
nonlinear panel datamodel. In order to deal with serial correlation in a dynamic nonlinear model,
Lee (1999) has proposed the simulated maximum likelihood method. This method is robust in
time-series context, however, it is quite computationally intensive. We will exploit the method
similar to Baltagi & Li (1991) to handle our first stage serial correlation.

One of the possible applications for this model is to study the persistence of the US female
labor supply taking into account endogenous features of observed covariates. The literature on

labor supply has examined female labor supply in many studies. Women's labor supply is one
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of long-standing labor supply research (Heckman (1974); Heckman & Macurdy (1980)). Studies
of women labor supply is growing rapidly due to the increasing availability of panel data and
improved computational power and techniques. According to Heckman (1981a), state dependence
may arise if working leads to accumulation of human capital — skills, know-how, work ethic, etc.,
and not working leads to depreciation of human capital. Women who prefer work to leisure, who
are highly motivated and have high ability tend to stay in thework force for their entireworking life
and their high labor supply persistence is exhibited. Differencesin “search costs’ associated with
different labor market states may also cause state dependence (Eckstein & Wolpin (1990); Hyslop
(1999)). There might be fixed cost to enter the labor market, raising the cost for individuals who
are not employed, relative to those already in the labor market.

Shaw (1994) studies the persistence of the US white female labor supply from 1967 to 1987
using alinear dynamic model with age stratification and she found persistence in their labor supply
because as women entered the labor force, they tended to become continuous workers. She also
found that the extent of persistence changed little over the 20 year period studied after controlling
for individual circumstances which are influential for early and late life periods such as number of
children, health status, age, and wages. However, she does not take into account the nature of the
working hours as a limited dependent variable. And she does not examine whether the persistence

comes from transitory shocks that might be serially correlated.

2.3 Model
| consider a panel data model with the latent variable as follows:
Y]k.it :pyli,t—1+ay2it+xitﬁ + Cqj + Ugit, t= l;"'aT7 (21)

y1it = max(0, i), (2.2)
where y,j; is observed and equal to zero with a positive probability while continuously distributed

over strictly positive values, y;j 1 is alagged dependent variable and the dynamics are assumed

first order, yoj; isan endogenousvariable, xj; isal x K vector of time-varying explanatory variables
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which can contain a constant term, ¢;q is a time-constant unobserved heterogeneity and ujt1 is an
idiosyncratic error. B isaK x 1 vector of parameters, p and o are scalar parameters. i indexes
a random draw from the cross section with sample size N and t denotes a particular time period
within a number of fixed time periods T. For simplicity, we assume a balanced panel. In the
followings,wehavei =1,...,N,andt=1,...,T.

We assume that model (2.1) is correctly specified dynamically and the error term is serialy
uncorrelated:

Usit|Y1i t—1, - > Y1i0 Xi, C1i ~ Normal (0, o, ). (23)

If we allow the error term to be serially correlated, for example, allowing for an AR(1) process,
we would want to include not only a lagged dependent variable but also lags of x aswell. In this
case, weinclude asingle lag of y;, contemporaneous y» and possibly of x's.

In model (2.1), x;j; is assumed to be strictly exogenous and y»;; is alowed to be endogenous.
Let zj; = (xjt,z1jt) beaset of strictly exogenousvariables, al x L vector of instrumental variables,
where L > K and zyj; is excluded from (2.1). Using the control function approach to model the
endogeneity (see Smith & Blundell (1986); Rivers & Vuong (1988)), we can assume a linear

reduced form for y»i; asfollows:
Y2it = Zit Y+ Cpj + Wit, (2.4)

where uyj; isan idiosyncratic serially uncorrelated error with Var (ugjt) = 632 and cy; is an unob-

served effect. Using Mundlak (1978)'s device, we allow ¢y = Z; § + agj and rewrite yyj; as.
Yoit = ZitY +Zi6 + Vait, (2.5)

where Vyit = agj + Upjt; Zj = T~ 1 {j zjt and ay;|z ~ Normal (0, Gazz). We can also add time dum-
miesinto this reduced form. -

Now it boils down to the assumption that we need to make for the conditional distributions of
uqit and cqj. We will discuss first about u4j;. Asin the cross-sectiona case discussed in Smith &
Blundell (1986), we can alow a joint normality between u4j; and voj;. However, vyt is serialy

correlated because of the presence of the heterogeneity, ay;, therefore, this will make the serial
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correlation issue in the estimation with dynamics difficult to handle. As aresult, we will start with
the assumption of joint normality of u4jt and uyj; as suggested in Giles & Murtazashvili (2010)
since upjt can be naturally assumed to be serially uncorrelated. As we will see in the discussion
below, this assumption is reasonable in our context of dynamics in the structural equation. We
write:
Uit = B1Ugit + €ijt, (2.6)

where 61 = Cov(uyjt, Upit) /Var (Upjt) and eyt ~ Normal (O, c;ezl).

(u1jt, Ugjt ) isallowed to have a zero mean, bivariate normal distribution; z; is strictly exogenous
in both equation (2.1) and (2.5) or in other words, usj; and uyj; are independent of z;.

e1it Is independent of z; and uyj;. We can assume that eqj; serially uncorrelated because uoit
is serially uncorrelated and independent of z; in addition to the fact that uq;; is free of serial cor-
relation. Even if uyj is serially correlated, we can correct for this serial correlation without any
hardship. We will discuss about thisissue in more details | ater.

Regarding the issue of the endogeneity of y»i;, let us rewrite equation (2.6):

Ugjt = 6O1Voit — B1a; + €4jt. (2.7)

We will see now the direct relation between usj; and vyi;, through that we can account for
endogeneity of y»i; in period t. In addition, uyj; is free of serial correlation, then from equation
(2.6), €4t isnot correlated with upj 11 and vy 11, as aresult. With the same idea for past values
of vit, Yoit Will become sequentially exogenous in the estimating equation. With equation (2.7),
we now have to handle the heterogeneity issues, not only cq; but also ag;. Rewrite the structural

eguation under the assumption from equation (2.7), we have:

Yiit = PY1it—1+ aait +Xit + Caj + O1Voit — O1ag +egir, t=1,....T,

or
Yiit = PY1it—1+ @tyait + Xit B+ + O1voir +€15t, t=1,....T, (2.8)

where 5 = ¢q; — 61ayj, which is acomposite error.

37



Using Wooldridge-Chamberlain’s device (2005, 1980), with the motivation of "correlated” ran-
dom effects dynamic model proposed by Wooldridge (2005) to handle the initial condition prob-
lem, we can specify s asalinear function of y4;o and z; in order to use the standard random effects
Tobit software without approximating the density function of s;. However, now our regressorsin
equation (2.8) extends to include vo;; (which is not in z;), therefore, we will include vy; into the
linear function that describe the relationship of s; and the initial condition as well as explanatory

variablesin all time periods.
S = O2y1i0 +2i03+ v 04+ ay;, (2.9)

where

a1 (Yaio, 7, vai) ~ Normal (0, 6%, ). (2.10)

This is a reasonable assumption because unobserved effect (such as motivation, ambition) is
correlated with the initial condition of the outcome of interest (working hours). In addition, asthe
model has a lagged dependent variable, y3j ;1 and c3; has some source of correlation. In order to
conserve the degree of freedom or to reduce the time of computation which will be important in
some applied work with asubstantial number of explanatory variables, we can assumethat different
time periods of explanatory variables have equal impactson s; and using Mundlak’ s device, we can
restrict our assumption (2.9) to: s; = 02y1j0 +Zj 63 + V204 + ay;.

We can see that now vqjt = 02Yig + zj 03 + vo; 04 + 01Voit + a1 + €1jt . Substitute that into equa-

tion (2.1), hence, we readily obtain:
Y1it = PY1it—1+ ayoit +XitB + 02Y1i0 +Zi 03+ V2 04+ O1voit +-agi +e1t, t=1,...,T, (211)
and in a shorter version, we have:
yiit = max(0, wijtAg + 62y1i0 + Zi 63+v2i 04 + O1voir + a3 +€1t), t=1,....T, (2.12)

where wjt = (yai t—1, Yait, Xit) and A= (p, o, ')’

38



Based on the estimating equation (2.11), with the framework suggested in (Wooldridge, 2002,

section 13.9) and Wooldridge (2005), we can write the density as follows:

fe(yatly1t—1,Y2t:¥10,2, V2,815 4) = for fyy, (2.13)

where
for = {1—@[(W1tAq + O2y10+263+ V204 + 01V +21) /ey |} [y1t=0] 7

and

f1t = (1/0e)®[(yat — WA — O2y10 — 203 — V264 — O1vpt — ay) /0y | V110,

Thusthe density of (y1i1,Yai2:---.Y1iT) 9iven (Yiio = Y10,2i = 2,V = V2,81 = &1) IS!
T
IT fe(yatlyre—1. Yat- Xt, Y102, v2,a1; 1), (2.14)
t=1
and since we do not observe aj;, in order to estimate A, we need to integrate out a; from this den-
sity. Given ay;|(y1i0,2i, V2i) ~ Normal (0, 6%, ), we can obtain the density of (Y11, Y12, Y1iT)
given (Y1io = Y10,% = Z,V = V2) &S
T ™
/ [H ft(Y1t\Y1,t—1,y2t,Xt,Y1o,Z,V2,al,l)J (1/0ay)¢(a1/ 03y )day, (2.15)
R Lt=1
which has exactly the same structure as in the standard random effects Tobit model, but the ex-

planatory variables at time periodt are:

Wit = (Y1i t—1, Y2it» Xit, Y1i0- Zi» V2i , V2it ) - (2.16)

Now we can exploit the standard random effects Tobit software for estimation. We add yig, zj, Vo
and Voj; as additional explanatory variables in each time period and estimate A, 63,604 and Gezl,
where vy = (V2i1,V2i2, - -, V2iT)-

Based on the above model development, the estimation procedure for "correlated random ef-
fect” dynamic Tobit model is proposed as follows.

Estimation Procedure;
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(i) Estimatethereduced form for yo;; using the pooled OL S of y»;; on z;; , Zj, and time dummies.

Obtain the residuals, voi and Vjt.

(i) Use the random effect Tobit of y4;; on wi; and get all the estimates of interest, A, where
Wit = (Y1i t—1,Y2its Xit, Y1i0, Zi> V2i, V2it ) -
2.4 Average Partial Effects

In order to compare the magnitude of the estimate obtained in anonlinear model from the previous
section with a linear estimate, we need to obtain the margina effect or the average partia effect
(APE) of the explanatory variable of interest. Following Wooldridge (2002, 2005), the APEs are

computed as the derivatives or differences of:
E[m(witAa + 02Y1i0+ 2 03+V2i 04+ O1voi + a9, 08 )], t=1,....T, (2.17)
where m(g, 6, ) = ®[g/Ge; |8 + Ce; #[g/ e, ] Under the notation that
g = witA1 + 62y1i0 +Zi 63+v2i 64 + O1Vair + i,

and in the argument of the expectation operator, variables with a subscript i are random and all
others are fixed.

Using iterated expectation, expression (2.17) can be rewritten as:
E{E[M(wtA1 + 62Y1i0 +2i 63+v2i 64 + O1Vait +81i, 0§ ) Y10, %, Vail }, (2.18)

where wq; are fixed values here and the conditional expectation is with respect to the distribution
of (Y1io,2i,Voi,a1i). Since ay; and (Yy1jo,zi, voi) are independent, and aj; ~ Normal (0, o§1>, the

conditional expectation in equation (2.18) is obtained by integrating
(w1t A1 + 02Y1i0+ 2 03-+V2i 04+ O1Voit + a1, 05, ),

over ajj with respect to the Normal (O, Gazl) distribution.
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Since
M(watA1 + O2y1i0 + 2 03+V2i 04 + 61 Vait + a;, Gezl)

is obtained by integrating
max (0, Wit A1 + 02Y1i0 + 2 034V 04 + O1Voit + &g + €1t )

with respect to e;j; over the Normal (O, Ggl) distribution, the conditional expectation in equation
(2.18) is:

M(W1A1 + 02Y1i0+ 2 63+V2i 04+ 61Vait, 0% + 0G,)- (2.19)
For agiven value of wy; (w?), a consistent estimator for expression (2.19) can be obtained by
replacing unknown parameters by consistent estimators:

N
N~ m(w9As + Bzy1io+ 7 O3+92i04 + 6102, 62 + 68, (2.20)
i=1

where Vy;; are the first stage pooled OLS residuals from yoj; on zjt, zj and time dummies, and
Vi = (V2i1, V2i2, - ., Vi)

The APEs are obtained by taking derivatives or differences of expression (2.19) (in which w(l)
is replaced with wq;) with respect to wq; and the estimator of these APEs will be obtained based
on those derivatives and differences and estimated parameters.

For example, APE of Y1t—11S:

( N T )
p i (NT)_li;tZ:lq)[(Wltil + 6y1i0 +2i03+92104+ 6102it) /(65 + 6] } : (2.21)
and APE of Yot IS:
( N T )

o i(NT)_lz > @[(waths + boy1io+2i03+92 04 + 6101) / (65, + 68 )] } : (222)
i=it=1

2.5 Serial Correlation Correction

Asdiscussed in the previous part, the essential assumption that we made in equation (2.6) requires

Uyt free of serial correlation. If uyj; is seriadly correlated, then we must correct for the serial
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correlation in ey, otherwise our estimator will not be consistent. For simplicity, assume that us;

followsan AR(1) process, similar to the discussionin Giles & Murtazashvili (2010):
Uit = nUZi,t—1+e2it7 t= la"'aT7 (223)

and eyj; isawhite noise error with Var (eyjt) = 6622.
We have:
Yoit = Wit Y2 + a&gi + Uit (2.24)

where woyir = (zjt,Zj) and y, = (7, 8')’ or we can write;

Yoi = Woi Y2 +Vyi. (2.25)

Since uyjt has serial correlation, eyt is serially correlated as we can see below:

nNe = Cov(ejt, 1 t—1) = Cov(Uygjt — By Ui, Uj 1 — B t—1),

Ne = Cov(Uyjt — B3Nt 1 — O1€0it, Uit —1— O1Ugit—1),

Ne = N6FVar (Ui 1),

Ne#0unlessn =0o0r 61 =0.

To remove serial correlationin eyjt, our strategy isto use atransformation procedure and obtain

the first-stage residual free of serial correlation. Define the variance-covariance matrix of vy; as:
T = E(vaivy) = 0&,itiT + 0%, % (), (2.26)

whereT"isaT x T positive definite matrix when —1 < n < 1 and | assume that in what follows.
This matrix is necessarily the same for al i because of the random sampling assumption in the

cross section. jt isaT x 1 vector of ones, and (7)) is defined as below:

1 n nz nT—S TIT_Z nT—l
n 1 n nT—4 nT—S nT—z
2 T-5 ,T-4 .T-3
n n 1 | n n
Y(n) = . . . _ _ . . (2.27)
nT—Z nT—3 nT—4 n 1 n
_ nT—l nT—Z nT—3 n2 n 1 |




Wealso notethat o7, = 0§, /(1—n?). After obtaining consistent estimates of 1, 0%, o5, (and
Gezz), we can transform vyt into v, which isfree of serial correlation. With this new serially un-
correlated error (v, ), we can transform uyjt to anew serially uncorrelated us;, using this equation:
U5 = V3 — agj. Thiswill guarantee that our new eyt (€];;) isfree of serial correlation as aresult
of: €}t = Uit — B1U%;. €] is now serialy uncorrelated, independent of zj and u3;, and has a
normal distribution: Normal (0, 5&?).

We will briefly describe the transformation procedure as follows:

Using the fact that jTjt = T, T isrewritten as:

. /e« \—1.
I =Togjr (irit) it +06,%¥(n) = Tog,P1 +of, ¥(n), (2.28)

where Pt = I — Qr;Qr = It — jr (4j1) " 'if Define 7 = g, (n)/[Tok, + o, ¥(n)], we
can write:
T = [Tog,+og,¥(n)] (Pt +1Qr). (2.29)
After some algebra, we can show that: (P +11Q7) /2= (1— 1)~ 1[It — P1] where 7 =
1- /10
Hence,

~1/2

I 2= [T +62¥(m)] 21— Yty —epr] = [od¥(m)] Y2 [r 1), (230

1/2
where 7 = 1— {02 ¥(n) /[ToZ, + o2, ¥(m)]} /~.
DefineCt = [\P(n)]_l/ 2 [IT — 7P| and transform equation (2.25) into:
Y2i = W2iY2 + Vo, (2.31)

by multiplying Ct to both sides of equation (2.25).

Now the variance matrix of Vy; is:
E(V2i%;) = CTTCr = 0, I7. (2.32)

Therefore we have transformed vy; into v3; (= Vpi) which is serially uncorrelated and ho-
moskedastic by using:
Voi = C1vy;. (2.33)
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The estimator of C is:
Cr =Gy, V2. (2.34)

We can see that, in the special case when n = 0 (no serial correlation), ¥(n) = It and Ct =

[IT — tPT].

Now we can adjust equation (2.9) under the adjusted assumption that:
S = 6ay1i0 + 263+ v5 64+ ay;, (2.35)
where a; (Yo, zi, v5;) ~ Normal (0, 657) and obtain:

Yiit = PY1it—1+ OYoit +Xit + 02y1i0 + 2034 V504 + 01V +-af; +-€, t=1,...,T, (2.36)
where v5 = (v51,V5i0,...,Vai1) and we will estimate all parameters in the second stage using
standard random effects Tobit software, based on the density of (y1i1,Y1i2,---,Y1iT) given (Y1io =
y]_O,Zi = Zvvéi = VE) as.

T
/ {H fi (Y1t!yl,t—l,Yz,Xt,ylo,Z,VE,ai;l*)} (1/0a,)¢(a1/ 03, )day, (2.37)
R Lt=1

which has exactly the same structure as in the standard random effects Tobit model, but the ex-

planatory variables at time periodt are:

Wit = (Y1i t—1, Y2it, Xit> Y1i0: Zi» Vai» V3it) - (2.38)

Now we can propose an estimation procedure for “correlated random effect” dynamic Tobit

model with first-stage residual serial correlation correction.

2.5.1 Estimation Procedure

(1) Run therandom effect linear regression with an AR(1) disturbance of yo;t on wo;; (with time
dummies) and obtain the residuals Voj; and vo;. Obtain Ct and transform Voit and vy into

V5, and v3; based on the above transformation procedure.

(if) Use the random effect Tobit of y1;y on wi; and get all the estimates of interest, A*, where

Wit = (Y1i t—1, Y2it» Xit> Y100, Zi, V5;, Vo) -



2.5.2 Average Partial Effects

Astheerrorsin thefirst stage are serially correlated, we also need to adjust the estimates of APEs.
Instead of equation (2.18), we start with:

E[M(waeAa + 62y1io+7i 03-+v5 64+ O1v5¢ + 835, 08)], t=1,...T, (2:39)

and following the same discussion as the case with no serial correlation, we can obtain APEs with
respect toy1 1, Yat, and x¢ by taking derivatives or differences of:

N_lzN:lm(Wltil +62Y1io+2i03+9% 04+ 6105, 65, + 65, (2.40)
i—

If the null hypothesis of no endogeneity and no serial correlation in the first stage is rejected,
the standard errors in the second stage should be adjusted for the first stage estimation by using
delta method or bootstrapping. In addition, we also need to obtain asymptotic standard errors
for the APEs. Appendix E shows how to obtain adjusted standard errors in the second stage and

asymptotic standard errors for the APEs using delta method.

2.5.3 Comparison

We will compare the methods proposed in the previous section with the traditional linear model
and the model without serial correlation correction.

1. Linear Dynamic Model with an endogenous explanatory variable

We estimate model (2.1) using a generalized method of moments (GMM) system approach
(Arellano & Bover (1995)) using both level and differenced instruments.

2. Correlated Random Effect model (without serial correlation correction)

We estimate model (2.1) with a correlated random effect model:

Y1it = PY1it—1+ ayit +XitB + 02Y1i0 + 2z 03+ V2 04+ O1Voit +-ag + €1, t=1,...,T.

Estimation Procedure;
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(i) Estimate the reduced form for ys;; using the pooled OL S of y»;; on zjt, zj and time dummies.

Obtain the residuals, vo; and Vy;;.

(i) Use the random effect Tobit of y4;; on wi; and get all the estimates of interest, A, where

Wit = (Y1i t—1, Y2it» Xit> Y1i0, Zi» V2i, Voit ) using the notation introduced in the previous section.

Using Mundlak’s simpler version of Chamberlain’s device (1980), in those estimating equa-
tions above, we can use vy, instead of vo; since the Mundlak’s model can conserve on degrees of

freedom, which isimportant especially when T islarge in adynamic model.

2.6 Empirical Example

The estimation procedure described above can be used in many applications. Here we apply to
anayzethe USfemalelabor supply. In apanel datastudy, working hours exhibit a dynamic behav-
ior and the persistence may be contaminated by heterogeneity, endogeneity and serial correlation.
According to Heckman and MaCurdy’s labor supply model, the censored model should be appro-
priate. The challengeisto invent a new econometric device to estimate a dynamic censored model
with an endogenous variable besides the lagged dependent variable. And this new device has been
developed in the previous section.

Endogeneity of experienceisapotential problem because there are two sources of endogeneity
here. First, experience is correlated with ability. Second, experience is constructed based on
working hours and exogenous shock to working hours in the past (through wages) is correlated
with the number of years of experience we observe today. Therefore, experience is not viewed as
strictly exogenous after conditioning on unobserved heterogeneity.

Having controlled for unobserved effects does not follow that we have unbiased estimates of
state dependence, for two reasons. First, women with high average lifetime hours of work, and
thus high xjt, may have become permanent workers because their early experience in the market
demonstrated to them the need for continuous hours of work to build and maintain their human

capital investment. The result is that "human capital acquired through work experience raises
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the future probability of participation” (see Heckman & Willis (1974), initial definition of state
dependence). In this case, the estimated state dependence parameter is biased downward towards
0, because state dependence operates entirely through a high lifetime ¢;. State dependence is the
coefficient on lagged hours: a positive coefficient on lagged hours implies that past hours have
a positive impact on future hours. If ¢; is omitted from the regression, the coefficient on lagged
hours will be biased upward by the omitted variable bias, and therefore the importance of state
dependence will be over-estimated.

The second problem is that state dependence cannot be separated from serially correlated er-
rors. In other words, if shocks to hours are correlated over time, they will be picked up by the
lagged hours variable, and state dependence will be biased. Hyslop (1999) found that transitory
errors negatively correlated over time, suggesting failing to control for serially correlated transitory

errors would lead to underestimation of state dependence.

2.6.1 Data

One application of the model introduced in the previous part is to study the dynamics of female
labor supply. We can use the data from the Panel Study of Income Dynamics (PSID) for the
years 1980-1992. In this study, we only focus on 864 white female who were either heads of
households or spouses and their ageisfrom 18 to 65. Women who are self-employed, in army and
agricultural workers are excluded. Observations with inconsistent or missing data are dropped.
More specificaly, if one of the following happened in at least one year between 1976-1992, then
the person will be dropped: self-reported age exceeded the age constructed using information on
the year of birth by more than two years or self-reported age was smaller than constructed age by
more than one year; the person was |ess than 18 or more than 65 years old; the person had missing
experience; the person’s age exceeded her/his experience by less than six years; spouse’s weeks
of unemployment was missing; the person reported positive work hours and zero earnings; the
change in years of schooling between 1976-1985 was negative and exceeded one year in absolute

value. In cases when the reported decrease in years of schooling was on year, the minimum of the
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two reported values was assigned in all periods. The final sample consists of 11,232 observations.

The dependent variable in the structural equation (2.1), y1jt, is female annual working hours.
The vector of explanatory variables includes the lagged dependent variable (y3it—1), an endoge-
nous variable, experience, (y»it), and a set of exogenous variables (xjt): education (measured in
years of schooling), number of small children ages in 3 categories. 0-2, 3-5, and 6-17, marital
status, husband’'s employment status, and non-wife income. Experience is constructed by taking
the information about prior experience from 1976 survey year or from the year when the indi-
vidual entered the sample for the first time, and then updating this information annually. In each
year, experience was increased by one if the annual work hours were 2000 or more, and it was
increased by the number of hours worked divided by 2000 if the annual work hours were less than
2000. Education is considered to be strictly exogenous conditional on the unobserved effect while
experience is considered endogenous.

The set of instruments, zj;, contains years of schooling, age and its square, an indicator of
marital status, number of children with three categories of ages in the family, husband’'s employ-
ment status, and non-wife income; their time averages and time dummies. Table B.1 reports the
summary statisticsfor all variables used in the analysis.

Figure B.1 shows the distribution of women’s working hours during the period 1980-1992.
Around 27 percent of women did not work at the time of the survey. On average, women work for
1124 hours per year, which is about 21 hours per week (including women who do not work). The
next largest group consists of women who work for 2000 hours per year, which is equivalent to 40
hours per week, accounting for 12 percent. The pattern with some pile up at zero hour and 2000
hours suggests that hours of work are sensitive to changes in the structure of both observed and
unobserved individual heterogeneity. Figures B.2-B.5 illustrate the relationship between women’s
working hours and her experience, and her children number with 3 groups of ages, respectively.
All of these relationships appear to fit our prior expectations.

In our sample, there are 2,978 women worked zero hours, opposed to 8,053 women worked

for wage during the year with positive hours, ranging from 2 to 5,168. Hence, annual hoursis a
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reasonable candidate for a Tobit modd!.

2.6.2 Estimation and Result

We are interested in estimating the dynamic Tobit model of working hoursfor awomani at timet:
Hoursy = max(0, pHours; 1 + oExperienceit + xijt 8 + Cqj + Ugjt), (2.41)

where Hours;; isannual working hoursfor awomanii at timet, which are determined by her annual
working hours in the previous period, Hours; ;_1, her experience, Experience;, and a vector of
her characteristics including age, education, number of children, marital status and her husband’s
characteristics. The lagged dependent variable isincluded to capture the dynamic feature of work-
ing hours, in the sense that current working hours may also depend on past working hours, all
others held constant. This dependence is due to things such as the accumulation of skills derived
from past work. From this model, we are interested in estimating the coefficients on Hours; {_1
and Experience;. The coefficient on Hours; 1 will shed light on the US female labor supply
persistence over the period 1980-1992.

As women'’s experience is considered endogenous in this model, we will instrument the en-
dogenous regressor with her age and its square because there is a positive significant correlation
between experience and age and age is strictly exogenous in the structural equation. The first-
stage regression estimates and their statistics are reported in Table B.2. Theinstrumentsare jointly
significant on experience with the F-statistics are 196.26.

Wefirst test for the endogeneity of fertility using the Hausman (1978) test. Because experience
and working hours are simultaneously determined, the exogeneity assumption of experience hasto
be tested. A test for endogeneity of y»i; can be obtained by adding the first-stage residuals to the
second stage estimation and obtain the t-statistic on V5;;. Table B.3 shows the significance of Vi
and V;; suggests that the hypothesis of an exogenous experience is rejected.

Table B.4 reports estimation results (of average partial effects) using the correlated random ef-

fect approach with and without serial correlation correction. The estimation result for the dynamic
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linear model using GMM method is aso shown for comparison. Since the result in Table B.4 is
consistent with the result in Table B.3, we are going to discuss more about the results in Table
B.3. In al models (columns (1)-(3)), the coefficients for lagged working hours are significant and
positive, suggesting positive state dependence of labor supply for women. The positive sign of the
lagged working hours shows that women are likely to continue to be workers if they are already
workers or continue to be unemployed if she does not work. The decline in the value of the co-
efficient on lagged working hours from model (1) to model (3) explains the upward bias of state
dependence in women’s working hours without taking into account the censored and unobserved
heterogeneity issues as well as the serial correlation of unobserved factors. Unobserved hetero-
geneity which correlates with women characteristics contributes the largest to this upward bias,
next is the ignorance of zero working hours issues and last is the seria correlation of unobserved
factors.

In these models, from column (1) to column (3), in general, experience has positive influence
on working hours. The magnitude is larger when we controlled for serial correlation. It shows
that if women work continuously and accumulate a substantial amount of experience, the more
experience they have, the more hours they work.

Compare to columns (1) and (2), we control for an extra source of serial correlation (the transi-
tory shock) in experience besides unobserved heterogeneity (the permanent shock). The coefficient
on experience is quite larger and its standard error issmaller. Theintuitionis asfollows. Consider
a positive (transitory) shock to experience. With a high degree of positive serial correlation and a
rise of experiencein thefirst period, experience will continue to risein the next period and become
very large over along time period. This explains a higher coefficient on experience compared to
those on (1) and (2). After correcting for the serial correlation in (3), even though in the first stage,
CRESC estimates are more efficient than CRE estimates and we can see that the standard error on
experience is smaller than those on (1) and (2).

Other explanatory variables might be affected using CRESC (for example, number of children)

because when a lagged dependent variable entered into the equation, which is the proxy of the
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dependent variable, in the presence of the serial correlation of the endogenous variable, the higher
effect of experience may pick up some of the effects of unmeasured variables as well as observed
covariates. As aresult, the coefficients on the lagged dependent variable and children (as well as
mother’s education) are reduced and the significance of children might change. Even though a
linear model does not require any serial correlation assumption of experience, the coefficient of
children is more appealing in a nonlinear model where we use CRESC. We also note that children
is dlowed to be correlated with heterogeneity but not with the shocks to labor supply so this
assumption is not conflicting with the endogeneity assumption in Chapter 1 where we deal with the
cross section and allow correlation between children and heterogeneous preference. In this chapter,
we treat children exogenous with respect to shocks rather than with respect to heterogeneity.

It isalso indicated from the coefficients on small children from 0-2 and 3-5 that small kids have
statistically significant negative effects on mothers' working hours. There is an evidence from the
result that children aged 6 to 17 do not affect negatively to women working hours and the statistics
are not significant in models (2) and (3).

Theinitial value of working hoursillustrates the correl ation between the unobserved effect and
theinitial condition. The coefficient on theinitial value of working hoursis statistically significant
in both models (2) and (3). It suggests a strong state dependence of labor supply for women for a

long period.

2.7 Conclusion

In this chapter, an attractive and easy-to-compute method for estimating dynamic Tobit panel data
models with endogenous regressors (besides the lagged dependent variable) is proposed. This
approach requires fewer computational efforts than Heckman's technique and gives nice APEs. It
also leads to several advantages, for example, we can choose a flexible conditional distribution
of the initial condition instead of approximation which results in computational difficulty. As
a conseguence, estimates are readily computed and partial effects can be easily determined. In

addition, the control function approach is used to control for the endogeneity which is not coming
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from the lagged dependent variable. This approach alows for correlation between unobserved
effect and regressors, aswell as between regressors and the structural error. To handle the presence
of heterogeneity that causes serial correlation, the correction procedure is added and the serially
uncorrelated residual in the first stage is obtained.

This proposed method discussed in this chapter provides useful tool for applied economic re-
search. The method can be applied to various economic applications, such as estimation of labor
supply models, housing expenditure models, or children’s educational expenditure models, etc.
The proposed estimation procedure is readily applied to Panel Study of Income Dynamics data
from 1980 to 1992. Based on the estimation result, | find a strong evidence of persistence in the
US white female labor working hours after controlling for censoring, endogeneity and serial cor-
relationissues. | also find that the initial condition of female labor supply is statistically significant
and has positive impact on women working history. It suggests that the current labor supply of US

women is affected by their past labor supply and their initial condition of labor supply.
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Chapter 3
AN EXPONENTIAL TYPE II TOBIT PANEL DATA MODEL WITH BINARY
ENDOGENOUS REGRESSOR - APPLICATION TO ESTIMATING THE EFFECT OF
FERTILITY ON MOTHERS’ LABOR FORCE PARTICIPATION AND LABOR SUPPLY

3.1 Introduction

There has been a growing interest in the estimation of nonlinear panel data models with discrete
endogenous variables. Most of the studies focus on binary response or count models with an
endogenous dummy variable. However, there has not been any method suggested in a panel data
model with a corner solution response. Moreover, there is a correlation between the probability
of a positive outcome and itself. Heterogeneity is also present in the model. Therefore, the goal
of this chapter is to develop a panel data estimation method for a model with a corner solution
response and a binary endogenous variable in the presence of heterogeneity and the mentioned
correlation.

Many approaches have been proposed to handle switching endogeneity in models with lim-
ited dependent variables. In a limited dependent variable panel data model, the main difficulty
lieswith the nonlinear functional form and we cannot difference away the unobserved effect. Full-
information maximum likelihood can be used but this approach isintensively computational which
makes it unattractive. Semiparametric or nonparametric estimators are based on distributional
weaker assumptions; nevertheless, these estimators give scaled index coefficients and not aver-
age partial effects. The simplest approach is 2SL S, however, this method ignores nonlinearity in
both the first and second stage. It might provide a good approximation but the two assumptions
that a binary endogenous variable is expressed as a linear function and a binary or censored de-
pendent variable is a linear function of a binary endogenous variable are unrealistic. Especialy,
this approach ignores the distribution of a censored variable where there is a massive pile of ze-

ros. Econometricians came up with the control function approach to handle endogeneity so that
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nonlinearity is present in the second stage but linearity is still endured in the first stage. In this
chapter, | propose a ssimple two-step estimator that keeps the nonlinearity assumption in both the
first and second stage, and this method is more computationally attractive than the full-information
maximum likelihood approach.

The model and estimation can be used in various economic applications. For example, we can
apply it to study the effects of union status on labor market outcomes, the effects of childbearing
on women'’s labor supply and many studies on health economics, business or epidemiology where
binary endogeneity and the corner solution response occur. There are enormous studies on the
effect of fertility on women’'s labor force participation (LFP) and labor supply. It isimportant to
understand how the childbearing decision affects female participation in the labor force and how
much she will work in a system of related equations. In this chapter, | will consider the fertility
decision an endogenous dummy variable that influences both women’s LFP and hours of work.
The labor supply equation is the amount equation with a corner solution response while the LFP
equation isthe so-called participation equation. Using this system of equations, we can correct for
both corner solution and endogenous problems in the study of women's labor supply.

The contribution of this chapter is to propose a simple two-step estimator which is robust and
can be easily implemented for a Tobit panel data model in the presence of discrete endogeneity and
heterogeneity. The main estimation strategy isto add correction terms so that the endogeneity and
corner solution bias will be removed. This approach allows ajoint distribution of the endogenous
dummy regressor and the unobserved factors that affect both the amount and participation equa-
tions. | propose a two-step estimation method in which the first stage exploits a bivariate probit
model for the relationship between the dummy endogenous variable and the participation decision.
For the amount equation, by using an Exponential Type |l Tobit (ET2T) model (see more of Typell
Tobit modelsin (Wooldridge, 2010, chapter 17)), we can ensure that predicted value of log(hours)
is positive, and there is a correlation between unobserved effects in both the amount and partici-
pation equation. In addition, exclusion restriction is used in order to identify the parametersin the

structural equation. In other words, we allow some variables in the participation equation which



are not determinants in the amount equations. Explanatory variables are permitted to be correlated
with the heterogeneity. Finaly, on the empirical side, it also contributes to the study on the effect
of having a newborn on women’s LFP and labor supply, taking into account their unique culture
and characteristics, using Viethamese Household datain recent years.

This chapter is organized as follows: The second section reviews approaches to the estima-
tion of a model with a binary endogenous explanatory variable and a limited dependent variable.
It also discusses the literature on the effect of fertility on female labor supply and female labor
participation. The third section develops a model for Tobit panel data with a dummy endogenous
regressor in the presence of correlated participation and heterogeneity. An estimation procedureis
proposed and average treatment effects are obtained. The next section gives an overview of data

and estimation resultsfor an empirical example. The last section is summarization and conclusion.

3.2 Literature Review

There have been many studies on limited dependent variable models with a dummy endogenous
variable. These modelswere first pioneered by Heckman (1978a) using joint normal distributional
assumptions and maximum likelihood (ML) method. Many other works use the conditional ML
framework such as Amemiya (1978, 1979); Newey (1986, 1987); Blundell & Smith (1989) but with
different procedures. generalized least squares (GL S) estimators, minimum Chi-sgquared estimators
or two-step estimators. The disadvantage of this canonical method is that it is hard to implement
and very computationally expensive.

In a panel data framework, most papers assume a reduced form for an endogenous variable
or use a control function approach with generalized residuals (Vella & Verbeek (1999); Labeaga
(1999)). Many studies also use this approach for cross-sectional cases (Vella (1993); Smith &
Blundell (1986); Rivers & Vuong (1988)). Even though this approach produces consistent estima-
tors, it would be unrealistic to assume a linear function for adummy variable.

In order to avoid distributional assumptionsintraditional ML framework asin Heckman (19784),

some studies have proposed nonparametric or semiparametric estimators (Newey (1985); Lee
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(1996); Vytlacil (2002); Vytlacil & Yildiz (2007)). However, these estimators are quite difficult to
implement in the case where both the corner solution and binary endogeneity occur. Moreover, in
apanel data framework, the semiparametric fixed-effect approach cannot identify average partia
effects.

Angrist (2001) discussed other aternative methods for estimating dummy endogenous vari-
ables (including 2SLS, IV for an exponential conditional mean, minimum mean squared error
approximation or quantile treatment effects approach). He prefers 1V an estimation strategy (simi-
lar to Mullahy (1997) and Abadie (2000)) for nonlinear models with covariates and a nonstructural
approach since it gives similar average treatment effects. However, he did not give any evidence
for not using the structural approach.

In this chapter, | focus on the simple two-step estimation method (Terza (1998); Kim (2006))
since our model has both corner solution and binary endogeneity problems. It would be attractive
to use this method that incorporates a method similar to Heckman (1979) to correct for sample
selection. In addition, in our panel dataframework, we would like to use correlated random effects
to handle heterogeneity in the presence of endogeneity and correlated participation (smilar to
Semykina & Wooldridge (2010)). Both IV strategies and the bivariate probit method are utilized
to handle the binary endogeneity.

The proposed method is very applicable in many economic models since switching endogene-
ity is of interest to many applied economists and policy makers. One interesting application is
estimating the effect of having a newborn on women'’s labor supply in the presence of acorner so-
lution response and unobserved heterogeneity. Hence, the following part will consist of aliterature
review on the relationship between fertility and female labor supply.

A remarkable number of studies have examined the effect of fertility on female labor supply
and labor force participation. These studies can be divided into four major groups, depending on
how they handle the endogeneity problem of the fertility decision. The first group is presented
by the studies of Gronau (1973), Heckman (1974), and Heckman & Willis (1977) who assumed

exogenous fertility and established a strong negative correlation between female labor supply and
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fertility. However, as Browning (1992) commented, very few credible inferences can be drawn
from them even though we have a number of robust correlations. Their main methodology is to
use OL S to estimate the effects of fertility on labor supply.

A second group of studiesled by Cain & Dooley (1976), Schultz (1978), and Fleisher & Rhodes
(1979) acknowledged endogenous fertility. They handled the endogeneity problem by estimating
simultaneous equations models. Smaller estimates on fertility are found when treating it as an en-
dogenous variable than when treating it as an exogenous variable. The problem with this approach
isthat it is hard to find plausible exclusion restrictions that could identify the underlying structural
parameters.

A third group of studies, pioneered by the work of Nakamura & Nakamura (1992), added the
lagged dependent variable (i.e. hours of work) to control for unobserved heterogeneity across
women. This approach has been used subsequently by a number of authors (Even (1987); Lehrer
(1992)). Although adding the lagged dependent variable can help control for unobserved hetero-
geneity, it still does not address the problem of the endogeneity of the fertility decision.

Last but not least, a fourth group of studies solved the endogeneity problem of fertility by
exploiting exogenous sources of variation in family size. Rosenzweig & Wolpin (1980) first used
this strategy by comparing the labor supply of women who had twins at their first birth with that of
women who had a single child. Then Bronars & Grogger (2001); Jacobsen et al. (1999) used the
same strategy but managed to obtain more precise estimates. Other studies (Bloom et a. (2009);
Kim & Aassve (2006)) exploit abortion legislation or the contraceptive choice of couples as an
IV for fertility. In the same spirit as the twins studies mentioned above, Angrist & Evans (1998)
estimated the effect of athird or higher order child on female labor supply by exploiting the fact
that parentstypically prefer mixed-sex siblings. For a sample of coupleswith at |east two children,
they instrumented further childbearing (i.e. having more than two children) with adummy variable
for whether the sex of the second child matched the sex of the first. Because sex mix is virtualy
random, this strategy allowsfor identification of the effect of athird or higher order child.

Nguyen (2010) emphasized the negative significant impact of the number of children on female
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labor supply. The paper found diminishing impacts of having children on female labor supply and
the first child always has the largest adverse effect on a mother’s labor supply. This implies that
children do not have equal impacts on a mother’s labor supply. This finding is similar to the idea
from Browning (1992) that having a newborn has more significant impact on a mother’s labor
supply than having a general number of kids. However, the paper does not view the problem
in terms of a two-part model acknowledging the fact that people who decide to work will have
positive working hours. This chapter will consider the issue of female labor force participation in
arelation with female labor supply and the impact of having a newborn on both a mother’s amount

and participation decision, which calls again for a discrete endogeneity of having children.

3.3 Model and Estimation

| consider a panel data model with a corner solution response and a binary endogenous variablein

the presence of correlated participation decision and heterogeneity as follows:

Y1it = Yoit €Xp(Xajt B1 + Yait 01 + C1i + Usit ), (3.1

or

log(yait) = Xqit B + Yait 04 + Caj + Uajt if yait > 0 or yoir = 1(iff y5i; > 0),

Yait = Xait B2+ Y3it 02 ++ Coi + Uait, (3.2
Yait = XgitB3 + Cai + Usit, (3.3)

yait = L[yt > 0, (34)

yait = 1[yait > 0], (35)

where yyjt iscontinuous with strictly positive valueswhen y;; > 0 and equal to zero wheny,, < 0
with positive probability, hereafter i = 1,2,....,Nandt =1,2,..., T. We assume that we observe
y1it only when y5,. > 0 or yoit = 1. Xpjt are 1 x K vectors of exogenous explanatory variables
(for m= 1,2, 3) which can contain a constant term. fBm are Ky x 1 vectors of parameters. Cp

are time-constant unobserved heterogeneity and upyt are idiosyncratic errors. o4 and o are scalar
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parameters. 1[-] is an indicator function which has a value of one when the expression inside the
bracket is true, otherwise has a value of zero. Both y»;; and y3j; are dummy variables. We assume
a balanced panel for simplicity soi=1,2,...,Nandt=1,2,...,T is assumed throughout this
chapter. A novel feature of this panel data model is that the common endogenous variable ys;t
appears in both the amount and participation equations: (3.1) and (3.2). We therefore need to
handle both endogeneity and the corner solution problem in equation (3.1).

Following the work of Heckman et al. (1999) and Heckman (1979), a1 and o are identified if
Xz includes at least one variable which is excluded from Xy or X4; under the correct assumption
of joint distribution of the error terms. That variableisusually referred to as (an) instrumental vari-
able(s). Xy should include at least one variable which is not in X4;. Those instrumental variables
are assumed strictly exogenous conditional on unobserved heterogeneity. With that in mind, and
using the modeling device in Mundlak (1978), we can model the relationship between unobserved

effects ¢y and Xyt for each m. Let us rewrite equations (3.1)-(3.3) asfollows:

Y1it = Yoit €Xp(Xajt B1 + Yait 01 + C1i + Usit ), (3.6)
Yait = X1it B21 + Xo2it B2z + Y3it 02 + Coj + Uit (3.7)
Yair = XaitBa1 + Xa2it Ba2 + Cai + Usit, (3.8)

where Xaoit and Xoojt are instrumental variables.
Now we assume that:
Cmi = Zém + Ami, M= 17 27 37 (39)
_ T
where a [ Xm ~ Normal (0,62,); Zi = T~ 3 Z; Z contains both explanatory variables Xj,
t=1
Xaoit, and Xogit. Zj isal x L vector where L = Ky + K3 — K.

And now we can rewrite equations (3.1)-(3.3) as:

log(y1it) = Wait Y1+ Yait 01 + Vait if yait > 0 or yoir = LWt = (Xait, Z), (3.10)
Yait = Wit Y2 + Yait 02 + Vit ; Wait = (Xoit, Zi), (3.11)
Yair = Wit ¥3 + Vair; Wait = (Xait, Zi), (3.12)
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where Vit = ami + Umit; m=1,2,3.

As discussed in (Wooldridge, 2010, section 17.6.3), we model the corner solution using the
ET2T model. First, we can ensure that the predicted value of the response variable is positive.
Second, it is noticeable that we can allow a correlation between unobserved factors that affect the
amount equation and unobserved factors that affect the participation equation, that is, v4j; and Vst
are correlated. Thisassumption is exploited to relax the assumption in the usual lognormal hurdle
model. Moreover, it is a reasonable assumption in empirical study. For example, in the model
for married women'’s labor supply, unobserved factors can influence both women’s LFP and |abor
supply or the unobserved effects determining both decisions are related. Therefore, we can assume
that:

E(vait Wi, Vait) = nVait, (3.13)

in addition to Var (voit) = 1; Var (vyit) = 62; Cov(vijt, Voit) = wo = 1 where v is the correlation
between v4j; and vo;;.

We are interested in deriving E (log(y1it) W, Yait, Yai; > 0).
E(log(yait) W, Yait, it > 0) = WAt 71 + Yait 01 + E(Vait W, y3it, Yait > 0). (3.14)
Now,

E (vait W, y3it, Yait > 0) = YaitE(vait W, Yaie > 0, Y55 > 0) + (1 —yait) E(v1it W, y3ir < 0,55 > 0),

or
E (v1it W, yait, Y5it > 0) = yaitE1 + (1—yait) Eo.
We will derive E4 first and apply the similar strategy for Eg.
E1 = E(vait W, Y3t > 0,5 > 0) = n1E (vt W, yaie = Lyt = 1), (3.15)
E1 = n12E12 + N13E13, (3.16)
where

Ex2 = 0(Wait73)®@ | (Wairy2 + o — pWaie 1) (1— p?) ™ 2| 5 L (Waip 1, Wit 12 + 02 ), (3.17)
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and

Exz = 0 (Wait)2 + 02)® [(Waitys — p (Wait 12 + @2)) (1 — p2) /2] 05 (Waip 13, Wai 1o + 023 p),
(3.18)
under the assumption that Cov(Vyit, Vajt) = p and Var (vgjt) = 1; we can alsowrite: vojt = pVait + it

where g¢|Z;, vgit ~ Normal (0, 62).

Eo = no2Eo2 + no3Eos, (3.19)

where

Egz = 0 (—Wait 1)@ [ (Waity2 — pWit13) (1— p2) /2| @1 (—Waipy, Wit 12, —p),  (3.20)

and

Egs = 0 (Wait72)® [(—Wait 1 + pWbity2) (1— p2) /2] @1 (—Waipys, Wait 2, —p). (3:21)

Using these two regimes of ys;; and correlated participation, we can handle both endogenous
switching and corner solution problems. Instead of proceeding with the full information maximum
likelihood, we estimate parameters of interest using a two-step estimation procedure based on
Heckman's idea of correcting a selection problem using the correction functions (which is the
inverse Mill’s ratio in Heckman's model). For each regime corresponding to either ysi; = 0 or
y3it = 1, we add two correction terms which comprise one part for fixing an endogeneity problem
and the other part for correcting correlated unobserved effects bias from the participation equation.

The conditional mean of interest with positive outcome, yit = 1, is:

Wiity1 + Yait 01 + N12Y3itE12(61) + N13Y3itE13(61)
E(log(y1it) W, Yait, Yoit > 0) = , (3.22)
+(1—Y3it)N02E02(601) + 1M03(1 — Y3it)Eo3(61)
where W, = Wj; UWs; UWa; and 4 correction terms E1o, E13, Egp and Egg are stated as above.
We can identify 61 = (a2, 13,75, p)’, aQ x 1 vector, (Q = 14 Ky + Kz + 2L + T) using maxi-

mum likelihood estimation for pooled bivariate probit model in thefirst stage. Similar to Heckman
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(19784), Greene (1997), and Carrasco (2001), the log likelihood function in the first stage that

solvesfor estimates of 61 is:

1—vyait)(1—VYait ) INPyg + Vait (1 — Yoit ) INP:
InLi(6y) = (1—y3it) (1= Yait) INPog + y3it (1 — Yait) INPyg | (323

+Yoit (1 —Y3it) InPog + Y3itYait INP11

where
P11 = Pr(ysit = 1 and yoit = 1) = @2(Wait 13, Wait 12 + a2; p ), (3.29)
Poo = Pr(ysit = 0 and yoit = 0) = @2(—Wait 13, —Wait 12, p), (3.25)
Pio = Pr(ysit = 1 and y5it = 0) = ®o(Wait 13, —Wait Y2 — 02, —p), (3.26)
Po1 = Pr(ysit = 0 and yoit = 1) = ®o(—Wsit 13, Wait 12, —p)- (3.27)

We can estimate parameters in the first stage to obtain §1 (and its standard errors as shown in
thefirst-stage technicalities of Appendix F) and get 4 correction termsin equation (3.22) to plugin
the second stage. In the second stage, we estimate the following equation on the selected sample

with yoit = 1 or a positive dependent variable using POLS:

Wait 71 + Yait 01 + M12Y3it E12(01) + n13ysicEas(61)
log(yait) = A R . (3.28)
+(1—y3it) No2Eo2(61) + no3(1 — Yait)Eo3(61) + it
Hence, with a similar idea of adding the inverse Millsratio to correct for the sample selection
bias, we can add 4 correction terms to control for a corner solution problem with a correlated
participation decision and binary endogeneity. We can rewrite the estimating equation above as:

4 .
log(y1it) =Whitya +Yaitoa + Y, Njhitj + &it (3.29)

=1

where dit1 = y3itE12(81); Aito = YaitEra(61); Aits = (1—yait)Eo2(81); and Aira = (1—yait) Eoa(61).
Even though the two-step estimator is easy to implement and numerically robust, we need to

adjust the second-stage standard errors, taking into account the first-stage estimation. | show how

to obtain 51 and derive the asymptotic variance of this two-step estimator (éz) in the technical

section of Appendix F.
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3.4 Average Partial Effect

The quantity of interest in this study is average treatment effect (ATE) of the binary endogenous
variable. We can also obtain average partial effects (APES) for exogenous explanatory variables.

First we rewrite model (3.1) to (3.3) in the conditional mean forms as follows:

E(log(yit) = X1itB1+ Yait o1 + C1j + Ugjt if ygit > 0, (3.30)
E(Y2it | Xait  Yait, C2i» Unit) = P (Xait B2 + Yait 02 + Coj + Uit ), (3.31)
E(yait|Xait, C3i» Usit) = P(Xajt B3 + C3j + U3t ). (3.32)

Our main interest liesin the treatment effect of a binary endogenous variable in both equations
(3.30) and (3.31). We can evaluate the effect at values of exogenous explanatory variables of
interest. But first, we need to handle the correlated unobserved effects using Mundlak’s device
as shown in equation (3.9) and follow the estimation procedure that is clarified in the previous

section. Now (3.30) and (3.31) have been previously derived as.

4

E(log(y1it)|Zi, Yait: Yait > 0) = XaitB1+Yait01 +Zid1+ Y njhitj, (3.33)
i=1

E(Yait|Zi, Vst agi, Ugit) = P(Xit B2+ Yait 02 + Z 62 + apj + Uait). (3.34)

ATE for the amount equation:
For y3; as a binary variable, the ATE at timet can be obtained by averaging equation (3.30)
over the distribution of cq; and uy;; or take a differencein:

4
Ez 3 XatBr+Yaton +Zi61+ 3 njhijl, (3.35)
j=1

where in the argument of the expectation operator, variables with a subscript i are random and all
others are fixed.
With the definition from equation (3.17) - equation (3.21), plus equation (3.29), (3.35) isrewrit-

ten as.

Eg;; [01 + M12E12(61) + M13E13(61) — No2Eo2(61) — No3Eos(61)]- (3.36)
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Given consistent estimator of 61 and 6,, the ATE of the binary variable y3; in equation (3.33)

can be estimated as;

N
ATE =N~157 [G1 + N12E12(61) + N13E13(61) — No2E02(61) — TozEo3(61)] , (3.37)
i—1

where for each unit we predict the difference in mean responses with and without “treatment” (for
yat = 1 and y3 = 0), and then average the difference in these estimated mean responses across all
units.

ATE for the participation equation:

We rewrite model (3.34) with the scaled coefficients using a standard mixing property of the

normal distribution of ej;:

E(Yait|Zi, Y3it, Vait, €t ) = P(Xoit B2 + Y3it 02 + Zi 52 + pVait + &t ), (3.38)

or
E(Yait|Zi, Yait, Vait, 6it) = P (Xoit Boe + Y3it Oe + Zi O2e + PeVait ), (3.39)

where the subscript e denotes division by /1 + o3.
Note that we can write (3.38) - equation (3.39) in terms of bivariate probit model as in the

technical section and the procedure to obtain APE or ATE is the same as described below. That

means we average out Z; and then take derivatives or changes with respect to the elements of

(Xat,Yat)-

The APEs are obtained by computing derivatives, or obtaining differences, in:

Bz va) [P(XatPoe+Y3t02e + Zi S2e + pevit)], (3.40)
or
E 7 [@(Xatf2y + Y302y + Zi 62v)], (3.41)

where the subscript v denotes division by pe,/1+ G\,23 and Var (vgjt) = G\,23 = 1. In order to obtain

partial effects, we average out Z; and then take derivatives or changes with respect to the elements



of (Xat,Y3t). Across the sample for a chosen t, we can obtain the estimators for APE with respect

to one element Xo1 of Xot as:

— —~ N —~ o~
APE = Bo\1 [N_l > o (XotPoy + YarOoy + Z5ZV>-| : (3.42)
i |
i—1

The estimator for ATE with respect toyy; is:
1 N 2 >3 . .S
ATE=N""% |©(XatBay + Oy + ZiS2v) — P(XatBoy + Zi62y) | (3.43)

which we are interested in.

3.5 Empirical Example

3.5.1 Overview of Data

Over the past two decades, fertility has decreased as the labor force participation rates of women
in most developing and advanced countries have increased (Kim & Aassve (2006)). This change
impliesthe changing roles of women and changesin the time all ocation anong household members
in both work activities and fertility behavior. We also observed this pattern in Vietnam.

For the last two decades, the fertility rates of Viethamese women fell while the labor force
participation rates for the whole population did not change very much. A decline in fertility also
accompanied an increase in income. During the period from 1986 to 2006, while fertility dra-
matically decreased, GDP per capita increased 2.9 times to 587.4 USD per capita. This pattern
is consistent with microeconomic predictions: higher income leads to a reduction in fertility and
the inverse relationship of fertility and labor force participation (Becker & Lewis (1973); Willis
(1973)). Thus, it isimportant to analyze the data on fertility and labor market behavior of working
women.

The data used in this paper came from the Viethamese Household Living Standard Surveys
(VHLSS) 2004, 2006, and 2008, which were conducted by the Viethamese General Statistical

Office (GSO) with technical support from The World Bank. The survey sample was randomly
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selected to represent the whole country, taking into account urban and rural structures, geographical
conditions, regional issues, ethnic differences, and provincial representation. The sample used in
this chapter has 665 women. The survey collected information about the following: household
information, education, health, employment, migration, housing, fertility and family planning,
incomes, expenditures, borrowing, lending, and savings.

Only households with children under 18 years old and households with a mother and father
younger than 60 and 65 years of age, respectively, at the time of the interview are included in this
research. There are 1,995 households in the sample used for this research. Table C.1 provides a
summary of the descriptive statistics for the whole sample. The dependent variables are working
status and hours worked per day for a woman (being either head of household or spouse). Ac-
cording to Table C.1, 95% of mothers worked in the interview year, and on average, they worked
7.8 hours per day. The explanatory variables are whether mother has a newborn, mother’s educa-
tion, age, non-labor income, father’s education, age; and other household characteristics such as
whether they live in an urban area, they work on a farm and their ethnicity. In this sample, each
household had an average of 2.5 children; 10% of the sample women had newborns; 55% and 56%
women in the sample had a boy first and their first two kids had the same gender, respectively. In
general, the husband’s education is higher than wife’'s education. Income from other sources for
women in the sample is about 8 million VND per year (approximately 400-450 USD per year).
Table C.1 also shows that around 84% of working wives worked on farms and 18% of households
were located in urban areas.

Table C.2 shows the summary statistics for each year in the panel data. There is no obvious
pattern for women working hours and labor force participation (LFP). However, we can observe
that the fertility rate declines over time. The percentage of having a newborn goes down from 16%

in 2004 to 9% in 2006 and 6% in 2008. On the contrary, non-wife income increases over time.
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3.5.2 Estimation and Result

The main contribution of this chapter and its following application is to allow the correlation be-
tween women'’s decision to participate in the labor market and their amount of working hours; to
acknowledge the nature of having a newborn as a dummy variable and to consider the influence
of having a newborn on both women'’s participation and labor supply. As shown in the literature,
newborns have negative effect on women'’s labor force entry. This means that women who are not
working are unlikely to take part in the labor market after delivering babies. This raises the ques-
tion of how newborns affect their mothers' labor supply for those women who are participating
and stay in the market.

When a mother has a newborn, she will decide how many working hours she will spend after
deliver a baby. If endogeneity of fertility is not accounted for, we will not obtain consistent esti-
mates of labor supply conditional on fertility. In order to draw robust and credible estimates of the
effects of newborns on women'’s labor supply and participation, we need to take into account this
endogeneity. Another important point is both amount and participation decisions are jointly de-
termined because preferences for working or work time somehow are positively correlated. In the
same way, preferences for having a baby and for working are negatively correlated. Therefore, we
should model these decisions with ajoint relationship. Using the panel data VVHL SSs 2004-2008,
we study women’s labor supply in a system of equations where fertility decision is an endoge-
nous dummy variable occurred in both labor supply and participation equations, and this system
of equations are jointly correlated. We are interested in estimating a panel data model of working
hours for awoman i at timet, who takes having a newborn into consideration as an endogenous

factor, as follows:

Newbor njt a1 +Meduit B11 + Mageit f12 + Magesat f13

Log(Hours;;) = , (3.44)

+NMincomejt B14 + €1 + Uyt if Hoursiy > 0

Meduit 821 + Mageit S22 + Magestjit B23 + Heduit B24 -+ Haget Bos+
Hagesg;t Bog + NMincome; Bo7 -+ Newbor njt o + Coj + Uit

LFP} = . (3.45)
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Samesex 332 + Medug; + Ma
Newborn, — B32 0it B33 geit B34 . (3.46)

+Magesg;t B35 + NMincomej B3 + C3j + Usit
These equations correspond to equation (3.1) to equation (3.3) in the model section. Hoursj;

is annual working hours for a woman i at timet, which is determined by her education, Medu,
her age, Mage, her age square, Magesq, her other income not from her wage, NMincome, other
variables such as whether shelivesin an urban area, whether her ethnicity is majority, whether she
works on a farm, and whether she has a newborn, Newborn, with the age from 0 to 1. A woman’s
LFP is influenced by her characteristics (the same variables in equation (3.44), her husband’'s
characteristics including education, age, age square, Hedu, Hage, Hagesqg, non-mom income as
well as whether she has a newborn. The fertility decision equation has right-hand-side variables
including an instrumental variable: whether the first two children have the same gender and other
exogenous variables including mom'’s characteristics and non-mom income. We also alow some
explanatory variables to be correlated with heterogeneity and take care of this relationship by
adding time averages of explanatory variablesinto each equation.

With the new procedure to control for a corner solution, we can allow unobserved factors that
affect both amount and participation equations to be correlated. In addition, to ensure that the
predicted value of labor supply is positive, we need to apply Type Il Tobit model to log(hours)
rather than hours. That is why we use the specification of Exponential Type Il Tobit model (ET2T)
(see morein (Wooldridge, 2010, Chapter 17)). In addition, the ET2T model is applicable when we
have exclusion restrictions. The participation equation contains many more variables which are
not in the amount equation so that the parameters in the amount equation will be identified.

The choice of appropriate instrumental variablesisimportant because these can affect the reli-
ability of estimates and inferences. Valid and strong instrumental variables must satisfy two con-
ditions: an instrumental variable should be uncorrelated with the error term and it should be highly
correlated with the right-hand-side endogenous regressor(s). In this research, that means that the
instrumental variables have no correlation with factors that directly affect parental LFP and labor

supply and that the instruments are correlated with fertility. Whether the first two children have
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the same gender is used to generate exogenous variationsin fertility in this research.

Normally, the gender of a child is arandom variable, and it is uncorrelated with parental LFP
and labor supply. In addition, we found that the boy-to-girl ratio of the first child was 1.05 in our
sample, which is close to the natural ratio. Thus, the gender of thefirst child isavalid instrumental
variable. However, thisinstrumental variable is not significant in the first stage. Angrist & Evans
(1998) found that parents prefer a mixed sibling-sex composition, and parents who first had two
girls or boys had a higher probability of having additional children. Carrasco (2001) also found
same sex instrumental variableisastrong instrument in the US data. In this dataset, among women
with more than two children, the likelihood of another birth was 28% if they had a son, 34%
if they had two sons and 11% if they had three sons. This evidence implies that siblings with
mixed genders are desirable among Vietnamese families. The same gender of thefirst two children
variables meets the two conditions required of a valid and strong instrument, and it can serve as
an instrumental variable to generate exogenous variations in fertility. The same gender of the first
two children equals 1 if the first two children have the same gender, and 0 otherwise. According to
Table C.1, 55% of sampled households had a male first child and 56% of households had the first
two children with the same gender. The t-test isimplemented to see if the same gender instrument
isstrong or not. Theresult is-3.2, implying that this instrument can be used for this study.

Table C.3 shows the estimation result for the bivariate probit model in the first stage. The co-
efficient on samesex is positive and it is statistically significant implying samesex is a good and
significant instrument in our study. The coefficient on a newborn in the LFP equation is also neg-
ative and statistically significant. The effect of a newborn reduces the mother’s probability of LFP
by 13.6%. In terms of the average treatment effect, compared to women without newborn babies,
mothers with newborns have lower probability to continue to work by 12.7%. The coefficient on
p, -0.165, shows us that there is a negative correlation between unobserved effects that affect both
fertility and women’s LFP. This brings more evidence to empirical studies of developing countries
that having an additional child will negatively influence the probability of working women who

just delivered a child to come back to work.
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Table C.4 reports the coefficient estimates from six different estimation methods. Pooled OLS
(POLS) assumesthat all explanatory variables are uncorrel ated with unobserved heterogeneity and
are also strictly exogenous. The estimates based on POL S show that having a newborn reduces the
mother’ sworking hours by 13.4%. The POLS estimates have the largest bias because they do not
take into account endogeneity of fertility, the presence of heterogeneity which might be correlated
with explanatory variables, and the correl ation between work participation and the amount of work.

Pooled 2SL S takes into account endogeneity of a newborn but does not remove an unobserved
effect. Controlling for endogeneity of a newborn reduces the bias by 10%. Now having a newborn
will make a mother reduce her working hours by 23%. Fixed effects (FE) allows for correlation
between the explanatory variables and unobserved heterogeneity and FE-2SL S further allows a
newborn to be correlated with the idiosyncratic errors. Columns (3) and (4) show that mothers’
working hours are diminished by 16.4% and 27.7% using the FE and FE-2SLS. However, FE-
2SL S ignores the correlation between women's decision to participate and how much to work. In
addition, all methodsfrom (1) to (4) do not consider a newborn a dummy variable.

To take into account the correlated participation, we can aso use Heckman type 1V correction
(see Semykina & Wooldridge (2010)) method and hereafter, we call this estimator SW (under
column 5 of Table C.4). This estimator allows correlated participation and heterogeneity in the
presence of endogeneity. However, this method ignores the binary nature of the endogeneity and
assumes a linear reduced form (using pooled 2SL S in the second stage after obtaining the inverse
Millsratio in the first stage). The result shows that mothers’ working hours are reduced by 30.8%
using the SW, which is more than the reduction in mothers’ working hours using the FE and FE-
2SLS. It suggests that correlated participation does matter. However, this decrease is still smaller
than the reduction in mothers' working hours using the new proposed procedure since we need to
take care of the binary endogeneity.

The new proposed procedure corrects for endogeneity of anewborn, plusits dummy nature and
its influence on both women'’s participation and amount of work. It also reduces another source

of bias from correlated heterogeneity by adding time averages of explanatory variables into al
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equations and time dummies. However, the standard errors are larger once these corrections are
accounted for. After controlling for all these sources of bias, women who are still working will
decrease their working hours by 34.5%.

The result shows that having a new child in Vietnamese households has a negative effect on
maternal hours for working women. Women will have to give up their working hours by 34.5% to

take care of her newborn or use such forgone time as an input of home production.

3.6 Conclusion

This chapter studies the nonlinear panel data model with an endogenous dummy variable and a
corner solution response. The main contribution isto allow a joint distribution of the endogenous
dummy regressor and unobserved factors that affect both the amount and participation equations. |
propose a two-step estimation method in which the first stage exploits a bivariate probit model for
the relationship between the endogenous dummy variable and the participation decision. For the
amount equation, by using an ET2T model, we can ensure that the predicted value of log(hours) is
positive; and thereis a correlation between unobserved effects in both the amount and participation
equations. In addition, we need to alow exclusion restrictions in order to identify the parameters
in the amount equation. In other words, we allow a set of explanatory variablesin the participation
eguation which contains the set of explanatory variables in the amount equations. | also allow
some explanatory variables to be correlated with heterogeneity.

This estimation method is applied to analyze the effect of fertility on women’s working hours
and |labor force participation. The proposed approach givesa statistically significant negative effect
of having a newborn on a woman who is working and remain in the labor market. Having a
newborn has a significant negative impact on a woman's taking part into the labor force and her
working hours. The proposed estimation method corrects remarkably the bias in estimating the

effect of anewborn on amother’sworking hours compared to other alternative estimation methods.

71



APPENDICES

72



Appendix A
TABLES FOR CHAPTER 1

73



Table A.1: Simulation Result of the Average Partia Effects Estimates (N=1000, 4 = 0.5, 500 replications)

Model True Linear Tobit  Fractional | Linear Tobit Fractional Fractional Fractional
value Probit BS Probit Probit Probit
Estimation Method | APE OLS MLE QOMLE 2SLS MLE OQMLE-PW NLS QOMLE
Yy IS assumed exogenous Yo is assumed endogenous
Yo continuous -0.2347 | -0.1283 -0.1591 -0.2079 | -0.1583 -0.1754 -0.2295 -0.2368 -0.2371
(0.0046) (0.0042) (0.0051) | (0.0110) (0.0064) (0.0077) (0.0051)  (0.0050)
[.0034] [.0024] [.0008] [.0024] [.0019] [.0002] [.00008] [.00008]
yo discrete 0-1 -0.32 -0.2014  -0.2763 -0.2262 -0.3109 -0.3201 -0.3204
(0.0046) (0.0051) (0.0082) (0.0099) (0.0041)  (0.0030)
[.0038] [.0014] [.0030] [.0003] [.00005] [.00001]
y, discrete 1-2 -0.1273 -0.161 -0.1193 -0.1716 -0.1258 -0.128 -0.1278
(0.0027) (0.0017) (0.0031)  (0.0023) (0.0020)  (0.0016)
[.0011] [.0002] [.0014] [.00005] [.00004] [.00001]
yo discrete 2-3 -0.0212 -0.0388  -0.0259 -0.0317 -0.0224 -0.0214 -0.0212
(0.0030) (0.0012) (0.0031) (0.0014) (0.0014) (0.0010)
[.0006] [.0001] [.0003] [.00004] [.00001] [.000001]
X1 0.0235 | 0.0224 0.021 0.0223 0.0237 0.0212 0.0231 0.024 0.0238
(0.0181) (0.0125) (0.0130) | (0.0189) (0.0131) (0.0142 (0.0159)  (0.0140)
X2 0.0235 | 0.0218 0.0214 0.0195 0.023 0.0218 0.0241 0.0243 0.0244
(0.0181) (0.0128) (0.0129) | (0.0192) (0.0131) (0.0134) (0.0153) (0.0136)

Note: Figuresin brackets ()[] are standard deviation and RM SE respectively.
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Table A.2: Simulation Result of the Coefficient Estimates (N=1000, 1 = 0.5, 500 replications)

Model True | Linear Tobit  Fractional | Linear Tobit Fractional  Fractional Fractional

value Probit BS Probit Probit Probit

Estimation Method | Coef. OLS MLE QMLE 2SLS MLE OQMLE-PW NLS QMLE

Y7 IS assumed exogenous yo is assumed endogenous

Yo -1 -0.1283 -0.2024 -0.8543 | -0.1583 -0.2275 -0.9387 -1.045 -1.044
(0.0044) (0.0046) (0.0146) | (0.0089) (0.0084)  (0.0255) (0.0483)  (0.0424)

X1 0.1 0.0224  0.0267 0.0917 0.0237  0.0275 0.0945 0.1061 0.1052
(0.0181) (0.0160) (0.0534) | (0.0190) (0.0171) (0.0578) (0.0702)  (0.0619)

X2 0.1 0.0218 0.0272 0.0956 0.0231 0.0282 0.0987 0.1071 0.1073
(0.0181) (0.0163) (0.0534) | (0.0192) (0.0170) (0.0548) (0.0681)  (0.0600)

Note: Figuresin parenthesis () are standard deviations.
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Table A.3: Simulation Result of the Average Partia Effects Estimates (N=1000, 1 = 0.1, 500 replications)

Model True Linear Tobit  Fractional | Linear Tobit Fractional  Fractiona Fractiona

value Probit BS Probit Probit Probit

Estimation Method | APE OLS MLE QMLE 2SLS MLE OMLE-PW NLS QMLE

Y7 IS assumed exogenous Yo is assumed endogenous

y2 continuous -0.2461 | -0.1507 -0.1854  -0.2402 -0.16 -0.1887 -0.2442 -0.249 -0.2491
(0.0042) (0.0037) (0.0046) | (0.0102) (0.0053) (0.0056) (0.0044)  (0.0043)

[.0031] [.0019] [.0002] [.0027] [.0018] [.0001] [.0001] [.0001]

y discrete 0-1 -0.3383 -0.239 -0.3289 -0.2445 -0.3355 -0.3384 -0.3385
(0.0042) (0.0031) (0.0066)  (0.0051) (0.0019)  (0.0020)
[.0032] [.0003] [.0030] [.00009] [.000005] [.000007]

y, discrete 1-2 -0.1332 -0.2001  -0.1319 -0.2022 -0.1331 -0.1332 -0.1332
(0.0018) (0.0011) (0.0025) (0.0013) (0.0008)  (0.0010)
[.0021] [.00004] [.0022] [.000004] [.000001] [.000001]

y discrete 2-3 -0.0208 -0.0193  -0.0219 -0.0177 -0.0212 -0.0208 -0.0208
(0.0029) (0.0007) (0.0032)  (0.0008) (0.0007)  (0.0007)
[.00005] [.00003] [.0001] [.00001] [.000001] [.000001]

X2 0.0246 | 0.0267 0.021 0.025 0.0265 0.0234 0.025 0.0255 0.0253
(0.0168) (0.0089) (0.0063) | (0.0170) (0.0090) (0.0065) (0.0072)  (0.0066)

X9 0.0246 | 0.0241 0.0214 0.0246 0.0242 0.0222 0.0246 0.0252 0.0249
(0.0178) (0.0100) (0.0070) | (0.0182) (0.0100) (0.0070) (0.0077)  (0.0072)

Note: Figuresin brackets ()[] are standard deviation and RM SE respectively.
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Table A.4: Simulation Result of the Average Partia Effects Estimates (N=1000, 1 = 0.9, 500 replications)

Model True Linear Tobit  Fractional | Linear Tobit Fractional  Fractiona Fractiona
value Probit BS Probit Probit Probit
Estimation Method | APE OLS MLE QMLE 2SLS MLE OMLE-PW NLS QMLE
Y7 IS assumed exogenous Yo is assumed endogenous
y2 continuous -0.2178 | -0.1104 -0.1368 -0.1777 | -0.1548 -0.1637 -0.2144 -0.2208 -0.2205

(0.0042) (0.0039) (0.0054) | (0.0148) (0.0096) (0.0124)  (0.0052)  (0.0045)
[0034] [.0026] [.0013] | [.0020] [.0017]  [.0001] [0001]  [.0001]

y, discrete 0-1 -0.2973 -0.1706  -0.2307 021  -0.2871 0.3 -0.2994
(0.0049)  (0.0069) (0.0136) (0.0196)  (0.0054)  (0.0040)

[.0040]  [.0021] [.0028]  [.0003]  [.00008]  [.00006]

v, discrete 1-2 -0.1281 -0.1303  -0.111 -01491  -01232  -0.1288  -0.1291
(0.0031)  (0.0024) (0.0060) (0.0047)  (0.0025)  (0.0020)

[.00007]  [.0005] [0007]  [0002]  [.00002] [.00003]

y, discrete 2-3 -0.0253 -0.0532  -0.0319 -0.0452  -0.0258  -0.0247  -0.0249
(0.0022)  (0.0019) (0.0030) (0.0023)  (0.0021)  (0.0015)

[.0009]  [.0002] [.0006]  [.00002]  [.00002]  [.00001]

X1 00218 | 00327 00276 00291 | 00263 00273  0.0305 00318  0.0313
(0.0222) (0.0176) (0.0182) | (0.0169) (0.0184) (0.0201)  (0.0237)  (0.0208)

Xp 00218 | 0.0215 00212 00236 | 00244 00199  0.0233 0.02 0.0203

(0.0201) (0.0170) (0.0179) | (0.0184) (0.0187) (0.0206)  (0.0216)  (0.0187)

Note: Figuresin brackets ()[] are standard deviation and RM SE respectively.
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Table A.5: Simulation Result of the Average Partial Effects Estimates (N=1000, n; = 0.5, 500 replications, dy3 = 0.3)

Model True Linear Tobit  Fractional | Linear Tobit Fractional Fractional Fractional
value Probit BS Probit Probit Probit
Estimation Method | APE OLS MLE QOMLE 2SLS MLE OQMLE-PW NLS QOMLE
Yy IS assumed exogenous yo is assumed endogenous
Yo continuous -0.2402 | -0.1352 -0.1618 -0.2094 | -0.1661 -0.1823 -0.2327 -0.2405 -0.2407
(0.0047) (0.0037) (0.0050) | (0.0621) (0.0363) (0.0366) (0.0046)  (0.0043)
[.0033] [.0025] [.0010] [.0023] [.0023] [.0002] [.00001] [.00001]
yo discrete 0-1 -0.3202 -0.1992  -0.2724 -0.2301 -0.3157 -0.3199 -0.3202
(0.0044) (0.0055) (0.0522)  (0.0799) (0.0037)  (0.0029)
[.0038] [.0015] [.0018] [.0001] [.00001] [.000001]
y> discrete 1-2 -0.1275 -0.1605  -0.1195 -0.1676 -0.1248 -0.128 -0.1279
(0.0026) (0.0016) (0.0189)  (0.0087) (0.0016) (0.0015)
[.0010] [.0003] [.0029] [.00009] [.00002] [.00001]
y, discrete 2-3 -0.0213 -0.0386  -0.0268 -0.0332 -0.0227 -0.0215 -0.0214
(0.0027) (0.0011) (0.0108)  (0.0066) (0.0012) (0.0010)
[.0005] [.0002] [.0013] [.00005] [.000001] [.000003]
X1 0.024 | 0.0224 0.0114 0.0117 0.0237  0.0235 0.0253 0.0261 0.0252
(0.0181) (0.0118) (0.0130) | (0.0189) (0.0225) (0.0142 (0.0146)  (0.0127)
X2 0.024 | 0.0218 0.0104 0.0109 0.023 0.0227 0.0227 0.0244 0.025
(0.0181) (0.0123) (0.0129) | (0.0192) (0.0244) (0.0134) (0.0135) (0.0119)

Note: Figuresin brackets ()[] are standard deviation and RM SE respectively.

Thistable presents the case of weak 1V (d23 = 0.3).
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Table A.6: Simulation Result of the Average Partial Effects Estimates (N=1000, n1 = 0.5, 500 replications, 63 = 0)

Model True Linear Tobit  Fractional Tobit Fractional  Fractional Fractiona
value Probit BS Probit Probit Probit
Estimation Method | APE OoLS MLE OQOMLE MLE OMLE-PW NLS QOMLE
Y7 IS assumed exogenous Yy is assumed endogenous
y» continuous -0.2441 | -0.1382 -0.1652 -0.2117 | -0.1827 -0.2625 -0.2436 -0.2441
(0.0045) (0.0034) (0.0049) | (0.0424) (0.0427) (0.0045)  (0.0044)
[.0033] [.0024] [.0010] [.0020] [.0002] [.00001]  [.00001]
y discrete 0-1 -0.3194 -0.2019 -0.2708 | -0.2284 -0.3513 -0.3186 -0.3194
(0.0039) (0.0053) | (0.0562)  (0.0931) (0.0036)  (0.0030)
[.0038] [.0014] [.0018] [.0001] [.00001] [.000001]
y discrete 1-2 -0.1269 -0.1605 -0.1189 | -0.1697 -0.1294 -0.1274 -0.127
(0.0025) (0.0021) | (0.0211) (0.0101) (0.0016)  (0.0015)
[.0010] [.0002] [.0015] [.00007] [.00001] [.00001]
y, discrete 2-3 -0.0211 -0.036 -0.0269 | -0.0267 -0.0175 -0.0213 -0.021
(0.0026) (0.0020) | (0.0129) (0.0074) (0.0011) (0.0010)
[.0004] [.0002] [.0010] [.00004] [.000001] [.000002]

Note: Figuresin brackets ()[] are standard deviation and RM SE respectively.

This table presents the case of no instrument (623 = 0).
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Table A.7: Simulation Result of the Average Partial Effects Estimates (N=100, n1 = 0.5, 500 replications)

Model True Linear Tobit  Fractional | Linear Tobit Fractional  Fractional Fractional
value Probit BS Probit Probit Probit
Estimation Method | APE OLS MLE QOMLE 2SLS MLE OQMLE-PW NLS QOMLE
Y7 IS assumed exogenous Yo is assumed endogenous
Yo continuous -0.235 | -0.1419 -0.1695 -0.218 -0.1688 -0.1837 -0.234 -0.2371 -0.2366

(0.0221) (0.0193) (0.0216) | (0.0667) (0.0356) (0.0253)  (0.0166)  (0.0162)
[.094] [.0066] [.0017] | [.0066] [.0051]  [.0001] [.0002]  [.00017]

y, discrete 0-1 -0.3281 02173  -0.3 -02386  -0.3277  -0.3288  -0.3281
(0.0253)  (0.0339) (0.0492) (0.0457)  (0.0137) (0.0122)
[0111]  [.0028] [.0090]  [.00004]  [.00005]  [.00004]
y, discrete 1-2 -0.1308 -0.1767  -0.1252 -0.184  -0.1305 013 -0.1306
(0.0222)  (0.0096) (0.0257)  (0.0139)  (0.0073)  (0.0063)
[.0046]  [.0006] [0053]  [.00004]  [.00009] [.00004]
v, discrete 2-3 -0.0214 -0.0316  -0.0243 -0.0286  -0.0217  -00211  -0.0213
(0.0129)  (0.0034) (0.0134) (0.0041)  (0.0036)  (0.0027)
[.0010]  [.0003] [.0007] [.00003]  [.00003] [.00001]

Note: Figuresin brackets ()[] are standard deviation and RM SE respectively.
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Table A.8:

Simulation Result of the Average Partial Effects Estimates (N=500, i1 = 0.5, 500 replications)

Model True Linear Tobit  Fractional | Linear Tobit Fractional  Fractional Fractional
value Probit BS Probit Probit Probit
Estimation Method | APE OLS MLE QOMLE 2SLS MLE OQMLE-PW NLS QOMLE
Y7 IS assumed exogenous Yo is assumed endogenous
Yo continuous -0.2358 | -0.1415 -0.171 -0.2201 | -0.1617 -0.1815 -0.2334 -0.2379 -0.2376
(0.0177) (0.0157) (0.0163) | (0.0175) (0.0114) (0.0119 (0.0051)  (0.0086)
[.0046] [.0034] [.0007] [.0041] [.0029] [.0001] [ .0001] [.0001]
y, discrete 0-1 -0.3285 -0.219 -0.3026 -0.2351 -0.3241 -0.3293 -0.329
(0.0219) (0.0311) (0.0153) (0.0192) (0.0109)  (0.0106)
[.0059] [.0012] [.0052] [.0002] [.00001] [.00002]
yo discrete 1-2 -0.1309 -0.1782  -0.1259 -0.1847 -0.13 -0.131 -0.1311
(0.0205) (0.0082) (0.0158)  (0.0058) (0.0044)  (0.0043)
[.0028] [.0002] [.0031] [.00004] [.00001] [.000004]
y> discrete 2-3 -0.0214 -0.0309 -0.024 -0.0267 -0.0219 -0.0212 -0.0213
(0.0109) (0.0025) (0.0084) (0.0018) (0.0017) (0.0014)
[.0004] [.0001] [.0002] [.00002] [.00001] [.000004]

Note: Figuresin brackets ()[] are standard deviation and RM SE respectively.
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Table A.9: Simulation Result of the Average Partia Effects Estimates (N=1000, 11 = 0.5, 500 replications)

Model True Linear Tobit  Fractional | Linear Tobit Fractional  Fractional Fractional
value Probit BS Probit Probit Probit
Estimation Method | APE OLS MLE QOMLE 2SLS MLE OQMLE-PW NLS QOMLE
Y7 IS assumed exogenous Yo is assumed endogenous
Yo continuous -0.2347 | -0.1283 -0.1591 -0.2079 | -0.1583 -0.1754 -0.2295 -0.2368 -0.2371

(0.0046) (0.0042) (0.0051) | (0.0110) (0.0064) (0.0077)  (0.0051)  (0.0050)
[.0034] [.0024] [.0008] | [.0024] [.0019]  [.0002]  [.00008]  [.00008]

y, discrete 0-1 -0.32 -0.2014  -0.2763 02262 -03109  -03201  -0.3204
(0.0046)  (0.0051) (0.0082) (0.0099)  (0.0041)  (0.0030)
[.0038]  [.0014] [0030]  [0003]  [.00016] [.00001]

v, discrete 1-2 -0.1273 -0.161  -0.1193 01716  -0.1258  -0.128  -0.1278
(0.0027)  (0.0017) (0.0031) (0.0023)  (0.0020)  (0.0016)
[0011]  [.0002] [.0014] [.00005]  [.00004] [.00001]

v, discrete 2-3 -0.0212 -0.0388  -0.0259 -00317 -0.0224  -00214  -0.0212
(0.0030)  (0.0012) (0.0031) (0.0014)  (0.0014)  (0.0010)
[.0006]  [.0001] [.0003]  [.00004]  [.00001] [.000001]

Note: Figuresin brackets ()[] are standard deviation and RM SE respectively.
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Table A.10:

Simulation Result of the Average Partial Effects Estimates (N=2000, 11 = 0.5, 500 replications)

Model True Linear Tobit  Fractional | Linear Tobit Fractional  Fractional Fractional
value Probit BS Probit Probit Probit
Estimation Method | APE OLS MLE QOMLE 2SLS MLE OQMLE-PW NLS QOMLE
Y7 IS assumed exogenous Yo is assumed endogenous
Yo continuous -0.2347 | -0.1286 -0.1591 -0.208 -0.1591 -0.1755 -0.2293 -0.2369 -0.2371
(0.0028) (0.0028) (0.0031) | (0.0082) (0.0044) (0.0050) (0.0031)  (0.0030)
[.0024] [.0017] [.0006] [.0017] [.0013] [.0001] [.00005] [.00006]
y, discrete 0-1 -0.3201 -0.2014  -0.2766 -0.2263 -0.3106 -0.3201 -0.3204
(0.0034) (0.0036) (0.0059) (0.0074) (0.0029) (0.0021)
[.0027] [.0010] [.0021] [.0002] [.000001] [.000007]
yo discrete 1-2 -0.1275 -0.1609  -0.1194 -0.1717 -0.1258 -0.1281 -0.1278
(0.0020) (0.0012) (0.0024)  (0.0017) (0.0015)  (0.0011)
[.0008] [.0002] [.0010] [.00004] [.00001] [.000009]
y> discrete 2-3 -0.0213 -0.039 -0.0259 -0.0317 -0.0224 -0.0214 -0.0212
(0.0020)  (0.0008) (0.0021) (0.0010) (0.0010)  (0.0007)
[.0004] [.0001] [.0002] [.00003] [.000002] [.000001]

Note: Figuresin brackets ()[] are standard deviation and RM SE respectively.
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Table A.11: Simulation Result of the Average Partia Effects Estimates (N=1000, nq = 0.5, al isnormally distributed, 500 replications)

Model True Linear Tobit  Fractional | Linear Tobit Fractional Fractional Fractional
value Probit BS Probit Probit Probit
Estimation Method | APE OLS MLE QOMLE 2SLS MLE OQMLE-PW NLS QOMLE
Y7 IS assumed exogenous Yo is assumed endogenous
Yo continuous -0.2379 | -0.1599 -0.1876 -0.2369 | -0.1625 -0.1885 -0.2375 -0.239 -0.239

(0.0053) (0.0041) (0.0050) | (0.0088) (0.0051) (0.0056)  (0.0049)  (0.0048)
[0025] [.0015] [.00003] | [.0024] [.0016] [.00001]  [.00003]  [.00003]

v, discrete 0-1 -0.3409 -02431  -0.3393 -02445  -0.3403  -0.3401  -0.3401
(0.0040)  (0.0028) (0.0063) (0.0050)  (0.0023)  (0.0018)

[.0031]  [.00005] [0031] [.00002] [.00003] [.00003]

v, discrete 1-2 -0.1361 -02032 -0.1358 -02037  -0.136 0136  -0.136
(0.0019)  (0.0010) (0.0026) (0.0012)  (0.0011)  (0.0010)

[.0021] [.000007] [0021] [.000002] [.000002] [.000002]

v, discrete 2-3 -0.0215 -0.0195  -0.0217 -00192  -0.0216  -00216  -0.0216
(0.0027)  (0.0006) (0.0032) (0.0007)  (0.0008)  (0.0006)

[.00006]  [.000005] [.00007] [.000003] [.000003] [.000003]

X1 00238 | 0.0265 00223 0024 | 00237 00224 0024 00242 0024
(0.0165) (0.0084) (0.0059) | (0.0189) (0.0084) (0.0059)  (0.0064)  (0.0061)

Xo 00238 | 0.0234 00217 0024 | 0023 00218 0024 00239  0.0239

(0.0179) (0.0103) (0.0064) | (0.0192) (0.0104)  (0.0064) (0.0064)  (0.0061)
Note: Figuresin brackets ()[] are standard deviation and RM SE respectively.

Table A.12: Simulation Result of the Average Partial Effects Estimates (N=1000, n1 = 0.5, 500 replications)

APE (QMLE) TrueAPE Mean SD MSE Rejection rate
yo continuous  -0.2347 -0.2371 0.005 0.0051 0.046
yo discrete 0-1 -0.32 -0.3204 0.003 0.0029 0.045
yo discrete 1-2  -0.1273 -0.1278 0.0016 0.0014 0.046
yo discrete2-3  -0.0212 -0.0212 0.001 0.0009 0.048




Table A.13: Comparison of analytical and bootstrapping mean of standard errors (N=1000, 177 = 0.5, 200 replications)

Model Fractional Probit

Estimation Method QMLE NLS

Standard error analytical bootstrapping analytical bootstrapping

Yo continuous -0.2406 -0.2406 -0.2405 -0.2405
(0.0043) (0.0041) (0.0046) (0.0043)

y, discrete 0-1 -0.3203 -0.3203 -0.32 -0.32
(0.0030) (0.0028) (0.0038) (0.0034)

y discrete 1-2 -0.1279 -0.1279 -0.128 -0.128
(0.0015) (0.0013) (0.0016) (0.0014)

y> discrete 2-3 -0.0214 -0.0214 -0.0215 -0.0215

(0.0010)  (0.0010)  (0.0012)  (0.0012)

Note: Figuresin parenthesis () are mean of standard errors. Figuresnot in
parenthesis () are APES' estimates. Bootstrapping standard errors are
obtained by bootstrapping method using 100 bootstrap replications.
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Table A.14: Frequencies of the Number of Children

Number Frequency Percent Cumulative

of kids relative frequency
0 16,200 50.9 50.9
1 10,000 31.42 82.33
2 3,733 11.73 94.06
3 1,373 4.31 98.37
4 323 1.01 99.39
5 134 0.42 99.81
6 47 0.15 99.96
7 6 0.02 99.97
8 4 0.01 99.99
9 2 0.01 99.99
10 2 0.01 100

Total 31,824 100

Table A.15: Descriptive Statistics

Variable  Description Mean SD. Min Max
frhour Women's weekly fractional working hours 0126 0116 0 0589
kidno Number of kids 0.752 0977 0 10
age Mother'sagein years 20742 3613 21 35
agefstm  Mother’s age in years when first child was born 20.118 2889 15 32
hispan =1if raceishispanic; = 0 if race is black 0593 0491 O 1
nonmomi  Non-mom’s labor income 31806 20375 O 1574
edu Education = Number of schooling years 11.005 3305 O 20
samesex  =1if the 1st 2 kids have the same sex; = 0 otherwise  0.503 0.5 0 1
multi2nd =1 if the 2nd birth is twin; =0 otherwise 0.009 0.093 0 1
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Table A.16: First-stage Estimates using Instrumental Variables

Dependent Variable - Kidno Linear model (OLS) Negative Binomial [I model (MLE)

edu -0.065 -0.078
(0.002) (0.002)
age 0.096 0.119
(0.002) (0.002)
agefstm -0.114 -0.156
(0.002) (0.003)
hispan 0.036 0.045
(0.010) (0.015)
nonmomi -0.002 -0.003
(0.000) (0.000)
samesex 0.075 0.098
(0.010) (0.013)
multi2nd 0.786 0.728
(0.052) (0.045)
constant 0.911 0.013
(0.042) (0.067)

Note: Figuresin parentheses are robust standard errors.
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Table A.17: Estimates Assuming Number of Kidsis Conditionally Exogenous

Model Linear Tobit Fractional Probit
Estimation Method OoLS MLE QMLE
Coefficient Coefficient  APE Coefficient APE
kidno (continuous) -0.019 -0.034 -0.0225 -0.099 -0.0202
(0.0007) (0.0013) (0.0008)  (0.0040) (0.0008)
0-1 -0.0231 -0.0207
(0.0008) (0.0008)
1-2 -0.0207 -0.0185
(0.0007) (0.0007)
2-3 -0.0183 -0.0163
(0.0005) (0.0005)
edu 0.004 0.008 0.005 0.022 0.005
(0.0002) (0.0004) (0.0002) (0.0010) (0.0002)
age 0.005 0.008 0.006 0.024 0.005
(0.0002) (0.0003) (0.0002) (0.0010) (0.0002)
agefstm -0.006 -0.01 -0.007 -0.03 -0.006
(0.0003) (0.0004) (0.0003) (0.0010) (0.0003)
hispan -0.032 -0.052 -0.034 -0.15 -0.031
(0.0010) (0.0022) (0.0014) (0.0070) (0.0013)
nonmomi -0.0003 -0.0006 -0.0004 -0.002 -0.0004

(0.0000)  (0.0001) (0.0000) (0.0002)  (0.0000)

Note: Figuresin parentheses under the Coefficient columns are robust standard errors.
Figures in parentheses under the APE columns are bootstrapped standard errors.
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Table A.18: Estimates Assuming Number of Kidsis Endogenous

Model Linear Tobit (BS) Fractiona Probit Fractiona Probit Fractional Probit
Estimation Method 2SL.S MLE QMLE-PW QMLE NLS
Kidno is assumed cont.
Coef. Cosf. APE Cosf. APE Cosf. APE Cosf. APE
kidno (continuous) -0.016 -0.027 -0.018 -0.078 -0.016 -0.081 -0.017 -0.081 -0.017
(0.0070) (0.0130) (0.0080) (0.0370)  (0.0080) (0.0070) (0.0010) (0.0070) (0.0010)
0-1 -0.018 -0.016 -0.017 -0.017
(0.0080) (0.0080) (0.0010) (0.0010)
1-2 -0.017 -0.015 -0.015 -0.015
(0.0070) (0.0070) (0.0010) (0.0010)
2-3 -0.015 -0.014 -0.014 -0.014
(0.0060) (0.0050) (0.0010) (0.0010)
edu 0.004 0.009 0.006 0.024 0.005 0.024 0.005 0.024 0.005
(0.0005) (0.0009) (0.0006) (0.0020) (0.0005)  (0.0010) (0.0005) (0.0010) (0.0005)
age 0.005 0.008 0.005 0.022 0.004 0.021 0.004 0.021 0.004
(0.0007) (0.0010) (0.0008) (0.0040) (0.0008) (0.0010) (0.0008) (0.0010) (0.0008)
agefstm -0.006 -0.01 -0.006 -0.028 -0.006 -0.027 -0.005 -0.027 -0.005
(0.0008) (0.0010) (0.0010) (0.0040) (0.0009) (0.0020) (0.0008) (0.0020) (0.0008)
hispan -0.032 -0.052 -0.034 -0.15 -0.031 -0.151 -0.031 -0.151 -0.031
(0.0010) (0.0020) (0.0010) (0.0070) (0.00100 (0.0070) (0.0010) (0.0070) (0.0010)
nonmomi -0.0003 -0.0005  -0.0004 -0.002 -0.0003 -0.002 -0.0003 -0.002 -0.0003
(0.00004) (0.00006) (0.00004) (0.00002) (0.00004) (0.00020) (0.00004) (0.00020) (0.00004)

Note: Figuresin parentheses under the Coefficient columns are robust standard errors. Figuresin parentheses under the APE
columns are bootstrapped standard errors; those under the APEs for a count endogenous variable with the QMLE and NLS
methods are computed standard errors.
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Appendix B
TABLES AND FIGURES FOR CHAPTER 2

Table B.1: Summary Statistics

Variable Description Mean  Standard deviation
Annual Hours 1105.7 886.52
Experience (years) 11.89 7.71
Education (years) 12.94 2.27
Age (years) 41.42 10.18
Number of children aged 0-2 0.13 0.37
Number of children aged 3-5 0.18 0.42
Number of children aged 6-17 0.84 101
Married (= 1 if married) 0.88 0.32
Husband’s employment status (=1 if working) 0.82 0.39
Non-wife income (thousand dollars) 36,622.4 41,704
Number of observations 11,232

Number of women 864

Number of years 13
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Table B.2: Determinants of Female Working Experience - First stage regressions

Dependent variable: Female Working Experience

Number of children aged 0-2 -0.442**
[0.200]
Number of children aged 3-5 -0.707***
[0.169]
Number of children aged 6-17 -1.207***
[0.162]
Years of schooling 0.470***
[0.096]
Married -1.191
[1.186]
Husband’s work participation -1.256
[0.913]
Non-wife income -0.00003***
[0.00001]
Age 1.174%**
[0.138]
Age squared -0.010***
[0.002]
n 0.958
Number of observations 11,232
Number of women 864
R-squared 0.37
F-Statisticson 1Vs 196.26

Note: *, ** ***: ggnificant at 10%, 5% and 1% level respectively. Other explanatory
variables include time dummies and time averages of all explanatory variables.
Standard errors robust to heteroskedasticity and serial correlation are inside

square brackets. Instrumental variables (1Vs) are age and age squared.
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Table B.3: Estimating Dynamic Female Labor Supply, Second Stage Regressions, Experienceis
Treated as an Endogenous Variable

Model Dynamic Linear Tobit
Estimation Method GMM Correlated CRE with serial
RE (CRE) correlation correction
[1] [2] [3]
Lagged Hours 0.857*** 0.542+** 0.492***
[0.012] [0.009] [0.025]
Experience 4.683*** 4.964** 13.207***
[1.514] [2.381] [1.582]
Children 0-2 -37.657** -73.537*** -148.978***
[15.718] [15.884] [18.038]
Children 3-5 0.371 -44.292* ** -97.080***
[12.932] [13.66] [15.628]
Children 6-17 29.820*** 46.139*** 7.103
[5.81] [8.108] [8.364]
Education 7.979** -6.849 3.975
[3.147] [9.415] [9.577]
Married -134.671*** -253.253** -234.204**
[33.576] [124.741] [117.946]
Husband’s work status 136.438*** 205.205% ** 195.717%**
[26.787] [25.982] [28.254]
Non-wife income -0.001*** 0.001*** -0.001***
[0.0004] [0.0002] [0.0002]
Initial Condition 0.161*** 0.102***
[0.038] [0.011]
v2it -59.413***
[3.643]
V2it* 427.820% **
[47.673]
Observations 10368 10368 10368
Number of women 864 864 864

Note: *, ** ***: ggnificant at 10%, 5% and 1% level respectively. z; and vy;
areincluded in (2) and (3) but not reported in the table. The first stage residual
in (3) isfree of serial correlation. Standard errors corrected for the first

stage estimation are inside square brackets.
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Table B.4: Average Partia Effects on Female Labor Supply

Model Dynamic Linear Tobit
Estimation Method GMM CRE CRE-SC
[1] [2] [3]
Lagged Hours 0.857*** 0.469*** 0.434***
[0.012] [0.012] [0.011]
Experience 4.683*** 4.294 11.481***
[1.514] [3.074] [2.662]
Children 0-2 -37.657** -63.616*** -122.552***
[15.718] [17.612] [14.848]
Children 3-5 0.371 -38.317** -80.443***
[12.932] [12.932] [10.343]
Children 6-17 29.820*** 39.914*** 6.262
[5.81] [10.10] [8.722]
Education 7.979** -5.925 3.504
[3.147] [12.38] [9.669]
Married -134.671*** -219.09 -251.11
[33.576] [278.695] [244.441]
Husband’s work status 136.438*** 177.521*** 161.88***
[26.787] [58.886] [35.728]
Non-wife income -0.001*** 0.001*** -0.001***
[0.0004] [0.0003] [0.0004]
Replications 100 100

Note: *, ** ***: ggnificant at 10%, 5% and 1% level respectively. The figures
inside square brackets are bootstrapped standard errors with 100 replications.
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Figure B.1: Distribution of Women's Annual Hours of Work in 1980-1992
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Figure B.2: Hours of Work vs. Experience
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Figure B.3: Hours of Work vs. Number of Children 0-2
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Figure B.4: Hours of Work vs. Number of Children 3-5
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Figure B.5: Hours of Work vs. Number of Children 6-17
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Appendix C
TABLES FOR CHAPTER 3

Table C.1: Summary Statistics for the Whole Sample

Variable Description Mean S.D.
Female labor participation 0.95 0.21
Annual Hours 1938.02 755.29
Education (years) 7.29 3.88
Age (years) 39.18 7.21
Newborn aged 0-2 0.1 0.3
Spouse's age (years) 41.9 7.48
Spouse's education (years) 8.2 3.86
Non-wife income (millions) 8.44 16.13
First child’s gender 0.55 0.5

(=1if aboy, =0if agirl)
First two children has same sex (=1 if yes, =0 if not)  0.56 0.5

Livein urban 0.18 0.38
Live with grandparent 0.09 0.29
Work on farm 0.84 0.37
Ethnic (=1 if major, =0 if minor) 0.79 04
Number of women 665
Number of observation 1995

Note: N=665 women. Years = 2004, 2006, 2008.
S.D. stands for standard deviation.
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Table C.2: Summary Statistics for Each Year in the Panel

Variable Description 2004 2006 2008
Mean SD. Mean SD. Mean SD.
Annual Hours (hours) 1818.47 826.48 1842.79 839.42 1792.62 869.48
Female labor participation (=1 if work, =0 if not) 0.96 0.19 0.96 0.2 0.94 0.23
Newborn aged 0-1 (=1 if yes, =0 if not) 0.16 0.36 0.09 0.28 0.06 0.25
Education (years) 7.23 381 7.31 3.85 7.32 3.98
Age (years) 37.23 7.03 39.16 7 41.13 7.09
Non-wife income (million dongs) 6.32 14.77 7.89 13.05 11.1 19.53
Spouse’s age (years) 39.97 7.32 419 7.32 43.83 7.3
Spouse's education (years) 8.12 3.81 8.18 3.8 8.3 3.96
First two children hassame sex (=1 if yes, =0if not)  0.59 0.49 0.57 0.5 0.52 0.5
Livein urban (=1 if yes, =0 if not) 0.17 0.38 0.18 0.38 0.19 0.39
Work on farm (=1 if yes, =0 if not) 0.86 0.35 0.83 0.38 0.82 0.38
Ethnic (=1 if mgor, =0 if minor) 0.8 04 0.8 04 0.79 0.41
Number of observations 665 665 665
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Table C.3: Bivariate Probit Estimates of Fertility and LFP in the First Stage

Fertility Equation LFP Equation
Dependent Variable Newborn LFP
[1] [2] (3]
Explanatory Variable Coefficient APE/ATE
Newborn - -0.136*** -0.127***
[0.05] [0.03]
Samesex 1.024*** - -
[0.374]
Non-wife income 0.008* ** -0.001*** -0.001***
[0.003] [0.0002] [0.0002]
Age -0.302 -0.031* -0.019*
[0.204] [0.017] [0.011]
Age squared 0.002 0.0001* 0.0001
[0.002] [0.00006] [0.0001]
Education -0.06 -0.005 -0.003
[0.08] [0.03] [0.03]
Husband's age - -0.007* -0.005*
[0.004] [0.003]
Husband's age squared - 0.0001 -0.0001
[0.0003] [0.0002]
Husband’s education - -0.07* -0.05*
[0.05] [0.03]
Cov(v2it,v3it) = p -0.165
[0.04]
Log likelihood -866.48
Number of observations 1995

Note: N=665, T=3. Time averages of explanatory variables and year dummies for 2006
and 2008 are included. Figuresin square brackets are clustered standard errors

to control for serial correlation acrosstime.

* xx kxkggnificant at 10%, 5% and 1% level respectively.
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Table C.4: Estimates for Log(Female Working Hours) Equation

Explanatory Variable Pooled Pooled Fixed Fixed SW Proposed
OLS 29LS Effect Effect 2SLS Procedure Procedure
[1] (2] (3] [4] [5] [6]
Newborn -0.134***  -0.232*** -0.164***  -0.277*** -0.308*** -0.345%**
[0.04] [0.053] [0.044] [0.082] [0.117] [0.108]
Education 0.023***  0.024*** 0.018* 0.014 0.019* 0.016**
[0.004] [0.006] [0.01] [0.011] [0.012] [0.008]
Age -0.014 0.003 0.039 -0.002 0.035 -0.02**
[0.017] [0.046] [0.033] [0.067] [0.037] [0.01]
Age squared 0.0001 -0.0001 -0.001 0.0002 -0.0005 0.0001**
[0.0002] [0.0004] [0.0004] [0.001] [0.0005] [0.0001]
Non-wife income 0.001 0.001 0.001* 0.002* 0.002** 0.002* **
[0.001] [0.001] [0.001] [0.001] [0.001] [0.0006]
Urban 0.090** 0.088** 0.077 0.053 0.091** 0.095* **
[0.039] [0.04] [0.085] [0.197] [0.038] [0.037]
Work on Farm -0.318*** -0.317***  -0.101* -0.104 -0.329*** -0.328***
[0.037] [0.037] [0.054] [0.066] [0.033] [0.034]
Ethnic -0.143***  -0.138*** -0.176 -0.195 -0.142* ** -0.143***
[0.034] [0.037] [0.161] [0.235] [0.028] [0.028]
R-square 0.1 0.08 0.07 0.03 0.1 0.11
Number of observations 1904 1904 1904 1904 1904 1904

Note: The dependent variable islog(hours), with 1904 observations of positive hours. Year dummy
variables and time averages of explanatory variables are included. Standard errors are robust to
seria correlation and heteroskedasticity. Standard errors in the SW and proposed procedure are
corrected for the first-step estimation. *, **, ***: ggnificant at 10%, 5% and 1% level respectively.

102



Appendix D
TECHNICALITIES FOR CHAPTER 1

D.1 Details of the QML Estimator

D.1.1 Asymptotic Variance for the Two-step Estimator

This section derives asymptotic standard errors for the QML estimator in the second step. The

adjusted asymptotic standard errors for the NL S estimator can be derived in asimilar way. In the

first stage, we have: y,|z a; ~Poisson[exp(zd, + a1)] with the conditional density function:

[exp(z85 +a1)]Y2 exp[—exp(z82 +ay)]
yo! '

f(y2lz,a1) =

(D.1)

The unconditional density of y, conditioned only on z is obtained by integrating a; out of the

joint density. That is:
f(yal2) = [ f(yolz,a)f(an)dan,
1

50—1

inwhich f(ay) =6§O exp(ay) %0~ Lexp(—dgexp(ag)) T 1(8p).

Let m= exp(zd,) and ¢ = exp(a;), then the conditional density is:

[mc]2 exp[—mc]
TC(y2+1)

f(yolz,a1) =

Y

and the unconditional density is:

oo

2 ITE]yZ exp[—mc] 530050_16Xp(—50C))
fly2 / (y2+1) T(50)

dc.
0

Thisis equivalent to:

[m ]y26
T(y2+

f(y2lz) = I'(59) /exp c(m+ &g)]c¥2it%1dc,

or
[my2 563 0 I'(y2+ o)
L(y2 +1)T(80) (m+ &) Y2190

f(yolz) =
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i _ & .-
Defineh = M8 resultsin:

(y2+ 8)h% (1 — h)¥2
Ty + (&)

f(yzlz) = L (D.3)

wherey, = 0,1, ... and §g > 0, which isthe density function for the negative binomial distribution.
The log-likelihood for observationi is:

{ T'(y2i + &)
T'(y2i +1)T'(d)

exp(z; 62) }

| Csinl——% T\ [ _exPEid)
"(52’50)_5°'n{ )} +y2'|n{60+exp(2i62)

5o 1 exp( 52 } - (B4

For al observations;
N

L(82,80) = > _1i(82,80). (D.5)

i=1
We can estimate jointly 6> and dg by maximum likelihood estimation method.

Let y= (8, 8y) hasthedimension of (L +1) where L isthe dimension of 8, which isthe sum

of K and the number of instruments, under standard regularity conditions, we have:

N
VN(—7) =N"Y23 k34 0p(2), (D6)
i=1
where
—Arls
01 01
rip = PRE (D.7)
—Ag3 802
V.l s
inwhichso= | 22" | = ' |, and
Vpli 502
V% l; Hopp Ao
Ag=E(V3) =E 2 | =E =
V(Zsoh Hop Ap2

After taking thefirst derivative and the second derivative, we have:

 Z8o(yoi —exp(zi5)))
O T S+ exp(ziy) (B8)

77 Op exp(z &)

o= = ep(@d)

(D.9)
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80 exp(zi&) —yai | I'(Y2i+80) T'(bo)

S + + - , D.10
02 (50 + exp(z; 67) ) do+exp(zidy)  T(yz+3dg) T'(p) (0-10)
Hop = Hpp1 +Hopo, (D.11)
where
Hop — — OPzi%)  &xp(z 62) — Y2
0 [00 +exp(zi®2)]  [8p+ exp(zi82)]*
and

2 2

T (yai + 80)T(y2i +80) — [I'(y2i +80)]~  T"(80)T'(o) — [I"(J0)]
[T(y2i +80)]° [T(80))?

where sg; and Hpy areL x 1 and L x L matrices; sg10 and Hpp are 1 x 1 and 1 x 1 matrices. rj(7y)

Hopp =

b

has the dimension of (L+1) x 1.

With the two-step M-estimator, the asymptotic variance of /N (é — 60) must be adjusted to
account for the first-stage estimation of /N(§— 7) (see morein 12.4.2 of chapter 12, Wooldridge,
2002).

The score of the QML (or the gradient) for observation i with respect to 0 is:

si(0;7) = veli(8),
Vo Hi Vo Hi
1i U (1 yll)l—,ui’
Yii Vo Mi(1— i) — 1i(1—y1i) Vo Hi
i (1— i)
Y1i Vo Hi — Ui /g Ui
i (1— i)
(Y1i — i) Vo Ui
i (1— i)
o (y1i— 1) /+°°3<I>(gi9)
Wi(1— ) J== 00

=Y

Y

Y

Y

f(a1]y2,z)dag

5(0:7) = 5= [T o(0) T (aly ey 0.12)

where gi = (Ysi,z1j,84j) and 6 = (aq,61,11)" and 6 hasthe dimension of K + 2.

N
VN —0) = ATE(NTY2 3 1ri1(6: 7)) + 0p(D), (D.13)
i=1
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A1 = E[-vgsi(6;7)],
_ g |(ek) Ve m
B E{ i (1— i) }

B’B}.

E{Hi(l—.ui)

A= N_liN: {;fz’f;} (D.14)
S AT T g '

where B = [72 gl (gi0) f (ag]y2,z)day.

ri1(6;7) =si(0;7) —F1riz2(y),
£1(0;7) =8i(0;7) —F1fia(7), (D.15)

whererj1(60;7), si(0;y) are (K+2) x 1 matrices, and rj>(y) and Fy are (L+ 1) x 1 and (K +2) x

(L+1) matrices, Ay isa (K +2) x (K +2) matrix.

_ i(6;7)
F1 = E[vysi(6;7)]=E :
V5o8i(6:7)

E(Van(0) = E ([0l k)|,

Hi Hi
E(V‘Sosi(e;w) N ELli(l_—lui)B(qugi@)%;;wdalﬂ’
1 V=1 (o o A Z
F1=%Z (i (1 — )] lf(f_WCD(g.(?)[&f(al!yz, )/98;]day) | (D.16)
i=1 | [(1—w)] "B (/75 @(gif)[0f(aulyz.z)/d0)day)
where ( 51
df(aqlyzi,zi)  ZPC[8p+ exp(z;5p)]V2ito0—1
06 Ty + &) ’ (17
in which
P = —exp(zi6y +a1) +a1(Yzi + o) — doexp(ay),
and

C = {(y2i + 6p) exp(zj62) — exp(zj 62 +ay) [Sp + exp(zj62)] } -
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df(aly2,2)

26 f(a1ly2,z)D, (D.18)

. : i+
inwhichD = a; —ajexp(ag) +In(dg + exp(z;62)) + 504%7;(1?52) — T (y2i + &) and

exp(P)[8p + exp(z8,)] V2 +90)
T(y2+ o)

Therefore, we can obtain the asymptotic variance of the two-step estimator as:

f(a1ly2,z) =

Avarv/N(8 — 0) = A7 Varri1(6;7)]A L, (D.19)
and the estimator of this varianceis:
i=1

iy 1. N A
Avar (6) = NAI1 (N—lzfilfi’l> ATt (D.20)

The asymptotic standard errors are obtained by the square roots of the diagonal elements of

this matrix.

D.1.2 Asymptotic Variance for the APEs

First, we need to obtain the asymptotic variance of /N ({ — ) for continuous explanatory variable

where;

A

o= ([ oed) (aalyz.z: 6)dan ) 6, (021

— 00

is the vector of scaled coefficients times the scaled factor in the APE section

v=(/ " oleo) 1 (@lyzzi0)day) 6. ©22)

isthe vector of scaled population coefficients times the mean response.

If y» istreated as a continuous variable:

— +oo ~ A ~ A ~
APE = (/_m ¢(a1y2+2151+n1a1>f(alyy272;9>dal> 0.

For a continuous variable z11:
— +oo R n R A A
APE = (/_w o(0ny2+12101 +mag)f(aylys,z; 8)da1> 511
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Using problem 12.12 in Wooldridge (2002), and let # = (8,85, 8})’ we have:

N
\/N(‘;l\/_ l//) = N_l/zgl[j(gi,li,ﬂ') - II/] + E[Vﬂ.](nghn)]\/ﬁ(ﬁ - 717) +0D(1)=

where
. +°°
i(g 7 m) = (| 0(0)f (aulys,z:6)dan ) 6,
and 5
i 80 + exp(z82) > 012 ¥2
f(alye) = @i, o) (G raersots ) lexpla)2
First, we need to find vN(# — r)
A ~1/2 N AIll’il
VN(#—m)=N"12}" +op(1),
i=1 ri2

VN(# —71) = N_l/zgjki +0p(1).
=1

Thus the asymptotic variance of /N(§ — y) is:

Var { K/_erd’(gie)f(al‘YZi»Zi)dal> 0 - ‘/’] HImk } ’

where J(x) = E[Vsj(g;.zi, m).

Next, we need to find Vj(g;, zi, 7) ; Vs,i(g;. 2, 7) and V5 j(g;, zi, 7).

(o)

—00

(/7 0(2i0) (20) (0g) f(aalyor, m)da )

—00

Voilgi,m.m)= ([ 0(@0) (aalya)dan ) T 12

where Ik ;> istheidentity matrix and (K + 2) isthe dimension of 6.

(e}

Valgmm) =0 [ oeo) 22 Mg, )

where d f (az|Y2i,zi)/d 62 isdefined in (D.17) and

. Foo df(a1lyai, zi !
VSOJ(giazian):0</_w (P(gﬁ)%dal) ,
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where d f (agj|Y2i,zi)/d dg isdefined in (D.18). V52j(gi,zi,7r) is(K+2) x L matrix and Vaoj(gi,li ,TT)
is(K+2) x 1 matrix.
Then,

Vﬂ'j(givzi 5 71') = [V9j<gl y Zj, TC, 6) yvﬁzj(gl ,Zj, T, 52>‘V50j(g| y Zj, 77"150)] ’ (D29)

and its expected value is estimated as:

N ~
J=3(#) =N"Y [Vei(g;.7,m:0)|Vs,i(gi i, 7: 82) |V s, (g, 7, :00) | (D.30)
i=1

Finally, Avar [v/N({§ — y)] is consistently estimated as:

(o)

Avar [VN( - y)] = N—li ([ o(@d)(aalyzi.z)da ) 6 -+ 3]

oo

()7 o(ai6) @y mdan) 6 g+ 3] (031

(o)

where all quantities are evaluated at the estimators given above. The asymptotic standard error for
any particular APE is obtained as the square root of the corresponding diagonal element of (D.31),
divided by v/N.

—~

Now we obtain the asymptotic variance of v/N (24 — 1) for acount endogenous variable where:
APE = Ea,; [CD(OC1YE+1 +z7101+may) — CD((lelé +z7101+may)]. (D.32)
For example, y§ = 0 and yK+1 = 1,
— —+o0 ~ A oo A A
APE = ([ "ol )i (@l z0)da— [ 0(eD)f(aypmb)da), (D39
var [VN(2-2)] = VarVN (A1 =4 — (e —A)]

= VarvN(A 1 — M) +Var VN — )
—2CoV[VN (A1 — A1), VN — A

(1) We start with:
N N
VN — A4 =N"Y23" (g zi, m) — &)



+E[Vri(g,zi, ©)]VN(% — 1) +0p(1), (D.34)

where j(g€,zi, ) = [T ®(gk0) f (a1 |yai, zi)day.
o 12
Var [\/_(/lk ] 12{/ K6)f(aylyai,zi)dag — 7Lk+Jki} , (D.35)

in which the notations of k; is the same as (D.24) and J is defined as follows:

N
J=1J Z [Voilg',zi, 9)!V52J(g. Zi, T, 52)W50J(g. 2, m:00)| (D.36)
~+oo
Voi(gzi,m:0) = [ go(g0) T (aulyai,z)day, (D37)
. . Foo ~ df(ay]y,zi
Vagilelamioy = [ o) 222 ga, 0.39)
V (el 7i,m:80) = | 7 p(gkp) 21 BY22) g (D.39)
opd\si s 415 7400 e | 98 1 -

(2) Var [VN(As1 — A1) is obtained in asimilar way as (1).
(3) Using the formula: Cov(x,y) = E(xy) — ExEy and getting the estimator of this Covariance
with the notice that E(ﬁk) = A, after some algebra, we have the estimator for this covarianceis 0.

Adding (1), (2) and (3) together, we get:
Var [VN(A —1)] =Var [Ny — A)| +Var [VN(Ae1 — Mgr)] - (D.40)
The asymptotic standard error for APE of the count endogenous variable is obtained as the
square root of the corresponding diagonal element of (D.40), divided by /N
D.2 Details of the Tobit Model’s Estimators

This appendix shows how to obtain the average partial effectsfor Tobit modelsin both cases where
Yy isassumed exogenous and endogenous respectively.

Following the Smith-Blundell (1986) approach, the model with endogenousy, iswritten as:

y1 = max(0, agyp 42101 + V&1 +€1), (D.41)
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where the reduced form of y; is:
Y2 = z7 +V2,V2|z ~ Normal (0, Z3), (D.42)
and ey |z, v, ~ Normal (0, 62). The conditional mean of y; is:

E(yilz,y2,v2) = ®[(cay2+2181+V261)/\/ (14 08)],

= ®(0gey2+2161e+V281e)-
The Blundell-Smithprocedure for estimating oy, 81, €1 and 62 will then be:
(i) Runthe OLSregression of y;» onz; and savetheresidualsVip, i =1,2,...,N.
(i) Do Tobit of yj; 0N yi2,z1; and Vi to get dye, 10, and Eqe, i = 1,2,...,N.

APEsfor Tobit model with exogenous or endogenous variable are obtained as follows:
* APE in Tobit Model with exogenous variable yo
y1=max(0,y}), Vi = oay2 +2181 + a1, a1ly2,z1 ~ N(0,02).

The conditional mean is:

E(y1]z1,Y2) = ®(ousy2 +2161s) (012 +2161) + 09 (015y2 +21615), (D.43)
_ 0 _ 6
where oqs = 5,015 = & -

We define E(y1|z1,Y2) = m(y2, 21, 015, 61).

For a continuous variable y,:

JE(y1|z1,Y2)

APE =
Y

= D(oysys +21015) 011 (D.44)

The estimator for thisAPE is:

—

APE = D (Gysyi +211615) 01 (D.45)

Mz

1
N

i=1

For adiscrete variable y, with the two values c and ¢+ 1:
APE = m(y = c+1) —m(y =©), (D.46)
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and the estimator for thisAPE is:

N
APE = =% M(yz = c+1) —M(yz = c), (D.47)
i—1

Zl-

where M(yy; = ¢) = ®(1sC+ 21i 515) (81C+ 21 81) + 5 (81sC+ 22 S15).
* APE in Tobit Model with endogenousy» (Blundell-Smith 1986)
y1=max(0,y7), ¥ = o1y2 +2z181 + Mma1 + €1 = o1y2 +2181 + Uy,
Y2 =1282+ay,
Var(a) = 62, e1]z,a; ~ N(0, 79).

The standard method is to obtain APES by computing the derivatives or the differences of:
Eay [M(0aY +2181 +M18q,75)], (D.48)

where m(oy Yo +2181 + n1ay, 1) = M(ouys + 2181, 1762+ 1%).

The conditional mean is:

E(y1lz1,Y2) = ®(0asy2 +21815) (0ay2 +2181) + 1/ nf02+ 120 (ysy2 +2181),  (D.49)

)
where oyg = ——k— §jg= ——% .
e \/nfo2+1d e /nfol+d
We define:
E(y1)z1,y2) = m(0y2 +2181,n20% + 15). (D.50)

Consistent estimators of APEs are resulted from the derivatives or the differences of m(a;yo +
2161, 7262 + 72) with respect to elements of (z1,y,) where 62 is the estimate of error variance

from the first-stage OL S regression. APE with respect to z;:

N
APE = N3 @ (dyey5 +22i616) 1, (D.51)
i—1
and APE with respect to y,:
- N
APE = N3 i(yy = ¢+ 1) — iy =©), (D.52)
i—1

where M(yy; = €) = ®(03C+21i 015) (G1C+29i01) + 1/ 1762 + T2 (85C+ 29 O1).
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An alternative method isto get APEs by computing the derivatives or the differences of:
Ea, [M(c1Y2 + 2181 + maq, ), (D.53)

where m(zl7y27 aip, sz_) = m(X, 1]2_> = CD(X/T1>X + T1¢(X/Tl>'

APE with respect to z;:
—_— N ~
APE = N1Y " o(x/1/72)611. (D.54)
i=1
APE with respect to yo:
N
APE =N~15" [my — my), (D.55)
i=1

where My = My, = 0] and x =01y, + 2131 +1n14; and &, is the residua obtained from the first
stage estimation.

For more details, seethe Blundell-Smith procedure and the APEsin (Wool dridge, 2002, chapter
16).

D.3 Formula of the NLS estimation

In order to compare the NL S and the QML estimation, the basic framework isintroduced as bel ow.
The first stage is to estimate 6, and Jg by using the step-wise maximum likelihood of y;»> on
zj in the Negative Binomial model. Obtain the estimated parameters 32 and 30. In the second
stage, instead of using QMLE, we usethe NLS of yj1 on i, zj1 to estimate o1, 61 and 11 with the
approximated conditional mean ;i (6;y>,z).
The NLS estimator of 6 solves:

2

N oo
gninN_lz {yli —/ D(onyo; +21i01 + M1ag) f(ag]yz,z)dag | ,
0 = oo

N
inN—1 i (0:yi.7;)]2/2.
or gnelg i:zjl[yll i (0;y2i,2)]°/

The score function can be written as:

si = — (Y — 1) /_t:o g10(0)f(ayly2,z)day. (D-56)
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D.4 Derivation of the Heterogeneity Distribution

We are given exp(a;) distributed as Gamma(dg, 1/8g) using a single parameter 5g. We are inter-
ested in obtaining the density function of Y = a;. Let X = exp(az). The density function of X is

specified asfollows:

) op—1 i
9% X0 "ep(=00X). 5 g0, (D.57)
I'(d0)

f(X;80) =

SinceX >0andY = In(X),dX/dY =exp(Y) andY € (—eo,0). The density function of Y will

be derived as:
dX
£(¥:85) = f[h(Y)] \d—Y\; Y€ (com), (050
630 exp(¥) %0~ Lexpl— g exp(Y )
where f[h(Y)] = T30) :
PluginY = aj, we get:
% 80 e
F(Y:60) = 6o exp(a1) 0 exp[—dpexp(ay )] (D.59)

I'(dp) ’

which is equation (1.4).
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Appendix E
TECHNICALITIES FOR CHAPTER 2

E.1 Asymptotic Variance of the Two-step Estimator

If the null hypothesis of no endogeneity and no serial correlation in the first stage is rejected,
the standard errors in the second stage should be adjusted for the first stage estimation by using
delta method or bootstrapping. In addition, we also need to get asymptotic standard errors for the
average partial effects.

We start with the linear reduced form in the first stage:
Yait = Wait Y2 + Vait, (E.1)

where w3, = (zjt,Zj) is 1 x (2L) vector of exogenous variables. Under standard regularity condi-

tions, we have:

N
VN~ 12) = N"Y23 " mp(1) + 0p(2), (E2)
i—1
where
—1p!
Ti2 = Ay "Byivy, (E3)

and By isthe T x (2L) matrix with tth row wi;, Ay = E(B5;By;) and v& isa T x 1 vector of
reduced form errors.

Now we can write:

M =E(y1it|zi, Y1i t—1, Y2it» Y1i0: W5i )

M =mpysi 11+ oyait + Xit B -+ O2y1i0 -+ Zi 03 + (Vs — W5 ¥2) 04+ O1(Y3it — W5i72), O],

M =m{atyzit +WaitAg + 01(Vie — Whir¥2) + (Y5 — W5i12) 64,05, (E.4)
/
Wherew3it = (yli,t—]_?Xit?yiO?Zi); GS>2I< = Gé.kf+ Gglz and 2’3 = (pvﬁ/7 927 93>/'
We collect al the parameters in M except for ¥, into the parameter vector A* and abuse the

notation that wit = (Yait, Wait, Vaj;, Va ) in thispart. In the previous part we use wi;.
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With the maximum likelihood in the second stage, the log likelihood for observation i in period

timet is:

lit(A*;02) = 1lymit = 0]log[l— ®(witA*/0s:)]

—1[y1it > 0]{log[(y1it — witA*)/0s] —log(c2.)/2}. (E5)

Using the notation: ®(wil*/os«) = ®j; ¢ (WiA*/0s«) = ¢ and the constant does not affect the

maximization, we can rewrite thislog likelihood as:
. 1 2,2 1 2
li(A7; 0s:) = 1[ysi = O]log(1 — i) — 1lysj > O]{5(ysi —wiA")"/0s. + 5 log(os)},  (E6)

and we have the score as;

sa | | v |
si(A"72) = { = ED
$i2 Vol

and sig = —1[y1; = 0](9iwi)/Os (1 — ®;) + 1[ys; > O] (i — wiA*)wi/ &,
si2 = 1y = 0](giwiA*)/[204,(1— @i)] + Lyx; > O] [(yai — wir*)/ (208,) — 1/ (204)] .
With the two-step M-estimator, the asymptotic variance of /N @* — A*) must be adjusted to
account for thefirst-stage estimation of N (7 — 72) (see morein 12.4.2 of Chapter 12, Wooldridge,
2002). We can write:

N
VN@A*—1%) = A7t [N—l/zzmw;m} +0p(1), (E8)
i—1
where
Ay =E[-V5i1(A% 12)], (E.9)
and

Vsin(A 1) = o2 {1lyy = 0] ([07 — 9 (1— @) A"]/(1— ®))?) + 1y > O]} wiw;,

and

mi1(A%72) = si1(A75 12) — F1mio(12), (E.10)
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where

F1 =E[Vysi1(A%12)]; (E.11)

;
orFy = —E {El[(l - 0 )wie” + B By + 64w |

Therefore, we get:
Avar [VN(A* —1*)] = A7 VAL, (E.12)

where V =Var[mj1(A*;12)].
A valid estimator of Avar [\/N@* - l*)] is:
—~ —~ N —~
App=A7t (N—lzfqlﬁ{l) A7l (E.13)
i=1
where

N T N N
Ap=N"13"3"6"{1lysit = 0 ([9F — it(1— i) A*]/(1— Dit)?) + Llyait > O]} Wy Wi,
i=1t=1
and %1 = §i1 — F1 7 inwhich % = A5 1B, v3 and
F1=—N"") "% "[(1— Osi) it Wit A" + Dit] (01 Wit + 64w5;),
i=1t=1

and the asymptotic variance of A*is:

Avar(1*) = ATTQATY/N = Ayy, (E.14)

_ N
whereQ =N~1Y" 71 7/;.
i=1
We can derive Avar {\/N(ng—oé)] as the above procedure for the derivation of
Avar [/N(2* — 1*)] and get Az.
And denote, ¥ = (1*,62)', we can derive Avar [v/N(¥ —¥)] as:
_ _ A1 A
Avar [N -w)) = | TR (E.15)
A2l A
where Apy = Kg 1QK5 1 /N and
Ap =0 H{(Wid"/06) 01+ (Wid"/0s) g1 — [(Wid"/0s) 67/ (1 - @) 204} /4
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and KlZ = K]TZlGKIZl/N and
Ao = 0 3{(Wil*/05:) 201 + i — (Wi "/ Gsx) 02/ (1 — D;)]}W}/2.

E.2 Asymptotic Variance of the Average Partial Effects

Next, we obtain the standard errors for the average partial effects asin equations (2.21) and (2.22).

p=A" {(NT)_lzZ‘D(WM*/@k)} : (E.16)
i=1t=1
where Wit = (Yait, W3it, Vi, V2i)-
( T )
o=A* iT—le[qn(witx*/csk)]}. (E.17)
t=1

Then we need to compute the asymptotic variance of vN(¢ — ¢).
Let fi = (A*; %)’ and
-
p(Wit, Whi, 1) = (T™1 32 [@([aryair + waitAz+ 01(Yaie — Wi ¥2) + (Y31 — W5i12)64] /0s:) ) A7,

we have:

( T )
VNG —9) =N~ imT—l [@(witd*/0s:))) —<p} +E[Vup]VN(H — 1) +0p(1).
i=1 t=1
(E.18)
In which:
N
VN — ) =N~13Dj +0p(2), (E.19)
i=1
AL tm N . . N
where D; = | and all matrix definitions were introduced in step 1 and a valid estimator
T2
of Dj is
—~ [ Kilﬁil -I
D= . (E.20)
T2
Therefore, the asymptotic variance of v/N(¢ — @) is:
({ T ] )
Q:Vari[/l*(T—lz [@(witx*/o&k)])—wJ +PD}, (E.21)
t=1
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inwhich Q = Var (K +PD)where K = A*(T~1 i [D(WitA* /0s)]) — @.
Hence, we can get -
* T—lthjl [@(With"/5s.)]) — &. (E.22)
Thelast job isto find the Jacobian P where P = E[V ; p]

=[P1|Py]

.
Py =V4p =T 1Y [p(with"/0s.)] (With "/ Os:) + D(Witd "/ 0s:)],
=1

and

"U)
||

.
T3 [0 /Gon)] (W /Bor) + B(Figh" /),

or in short;

P =T13 [¢(®)0+ ()], (E23)

where ® = witA*/ Osx

T
P2=Vyp :T_lgl [0 (WitA™/ Osi)] (—B1W5i; — W5 04)A" / 05+ )] and

T

Po=T 13" [0(®)] (~O1whi — w504)2" /5o (E.24)
t=1
Therefore
TN 1 _ ]
=(NT)"">_|T [ Z ®)0+P(0)] [T~ Z (—O1w3it — w5i04)A" /Gs.)] |
=1
! (E.25)
Finally, Avar [v/N(@ — ¢)] is consistently estimated as:
—~~ N —~ A~ o~ A~
Q=N"13"(K-PD)(K—-PD). (E.26)

i=1
The asymptotic standard error for any particular APE is obtained as the square root of the

corresponding diagonal element in the above expression, divided by v/N.
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Appendix F
TECHNICALITIES FOR CHAPTER 3

Derivation of Maximum likelihood estimator in the firs stage and the Asymptotic Variance

in the second stage

F.1 Bivariate Probit Model in the First Stage

In the first stage, we estimate equation (3.11) and equation (3.12) simultaneously and get the log
likelihood asin equation (3.23). Note that the model is qualitatively different from the usual bivari-
ate probit model. In a simultaneous equations model (3.11-3.12), the second dependent variable
y3it appears on the right hand side of the equation with the dependent variable y,;;. One can derive

the following conditional mean and obtain the corresponding marginal effects of interest:

E(yait[W) = Prlyait = 1WE[y2it|yait = 1, W] + Prlyait = O\WE[y2it|ysit = O,W],  (F1)

where
Ely2it|ysit = 1, W] = Prlyzit = 1lysit = 1, W], (F2)
and
Elyait|ysit = 0, W] = Prlyzit = 1|ysit = 0,W], (F3)
Therefore
E(y2it W) = P2(Wait 13, Wait 72 + 2; p) + Po(—Whit v3, Wait 12, —pP).- (F4)

To obtain the derivativesand Hessian, let usrewrite thelog likelihood in a convenient way with
Ooi = 2yoi — 1 and gz = 2y3; — 1 (which resultsin gjm = 1if i = Land gjm = —1if yy,i =0, for
m=2,3):

InLit = |n¢2(ki27ki3;7r)7 (FS)
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where kim = GimWit ym for m= 2, 3 (here the notation is abused under the note that y» = (15, o)’

and 7 = di4gip-

The score function and the information matrix resulting from equation (F.5) are derived as

follows: ) )
dInLit(61)/9y3
dInLit(61)/9

Sit(61) = Ve, InLit(61) = nhu0y)/or : (F.6)

dInLit(61)/ o

| 9InLit(61)/p |

and
|(61) = —E [V, InLit(61)] . (F.7)
We have:

91nLit(61)/9ys = @ (K2 kiz @) (GiaWait)Gia, (F8)

where giz = ¢ (kia)® | (kiz — mkiz) (1— 7%) ~/2].

InLit(61)/972 = @5 (K2, kis; ) (G2 Wait ) Gz, (F9)

where giz = ¢ (ki2)® | (ki3 — mkiz) (1— 7%) ~/2].

21nLit(61)/d 0 = Dy (ki kiz; 7)di2Giz, (F10)
and
InLit(61)/9p = @5 (kip, kiz; m)izGiad2(kiz, kis; 7). (F11)

Therefore, the asymptotic variance of 61 is:

Avar(61) =C~WC)N, (F12)
where
N
C=N"13"1(6y), (F.13)
i=1
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and

N
V =N"13"s¢(61)s1t(61)". (F.14)
i=1

As aresult, the estimator of the asymptotic variance of 61 is:

—

Avar (6;) =C WC /N, (F.15)
and
VN(8; — 61) & Normal (0,c~ve 1), (F.16)
or
VN8, — 6y) = N—l/zzNj ri(61) +0p(1), (F.17)
where -
ri(61) = —1(61) s (60), (F18)
and
7i(61) = —1(61) " 's(61). (F19)

F.2 Asymptotic Variance of the Two-step Estimator

The asymptotic variance of the second-stage parameters, 62, needs to be corrected for general
heterokedasticity, serial correlation and first-stage estimation of 64 using the deltamethod as shown
in Wooldridge (19954) and Wooldridge (2002, chapter 12).

For y»it = 1,we define the general regressors for time periodt as:
Wit = (Wlit7y3it707 "707 ;Lit].uO? "707 07 ~~70,)Lit2707 "707 07 ~~70,)Lit3707 "70707 "707 ;Lit4707 "707)
and the parameter vector in the second stageiis:

92 = (,}/17 01, MN11, -1, M125---5MNT12,M135-- -, NT3, N145 - - - 77T4),

whichisaG x 1 vector where G = (14 K1 +L+4T).
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We can write E[log(y1t) [Wit, Y2it = 1] = wit62, then we have: log(y1it) = wit62 + &jt where
Elsit/wit, y2it =1] =0 (t =1,T).
On the selected sample, our POLS estimator is:

- -1 N T
6) = < -y ZygtV\/th) (N_lz > yoitWi |09(Y1it)> : (F.20)

i=1t i=1t=1
-1
0y = 62+ < =Y Zy2|tV\/tW|t> < -1 Z > Y2|tV\/t€|t> (F.21)
i=1t i=1t=
and it can be shown that:
VN(B, — 6) 4 Normal (0,A~1BA L), (F.22)
where
T
A=E <Z YZitWiltWit> : (F23)
t=1
B = Var (hj) = E(hjh!) and hj = s;—Fr;, (F.24)
inwhich
-
si= > YoitWéit, (F.25)
t=1
T
F=E <Z Yoit Wiy eévelm/itwl)) : (F.26)
t=1

inwhich Vg, Wi (61) isaG x Q gradient of wj; (6,) evaluated at 61 and r; isdefined in the previous

it

part.
To estimate Avar (65) = A~ 1BA~1/N, we obtain:

-1 Z Z Yoit Wit Wit (F.27)
i=1t=
N T
F=N"1}" % (YZitWit Qével"‘/it(el)) ; (F.28)
i—1t=1

and for eachi = 1,N.
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.
$i= Y Yot Wiéit, (F.29)
=1

inwhich & = log(ysjt) — Wit 62, and

hj = §;—FF;. (F.30)
A consistent estimator of B is:
N
B=N"13 hjh.. (F.31)
i=1

The asymptotic variance of 52 IS estimated as:

Avar (6,) = A~BATL/N, (F.32)

and the asymptotic standard errors are obtained as the square roots of the diagonal elements of this

matrix.
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