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ABSTRACT

ESTIMATING NONLINEAR CROSS SECTION AND PANEL DATAMODELS WITH
ENDOGENEITY AND HETEROGENEITY

by

Hoa Bao Nguyen

The dissertation consists of three chapters that consider the estimation of nonlinear cross sec-

tion and panel data models. This study contributes to the literature by developing new estimation

methods for estimating models with limited dependent variable and endogenous regressors in the

presence of unobserved heterogeneity. It also makes contribution to the field of labor economics

by applying my new estimators to the study of female labor supply.

In the first chapter, a fractional response model with a count endogenous regressor is con-

sidered. A new estimation method is proposed to handle discrete endogeneity in the presence

of unobserved heterogeneity and non-linear setting. The two-step Quasi-Maximum Likelihood

and Nonlinear Least Squares estimators using the Adaptive Gauss Hermite quadrature are pro-

posed. Average partial effects for discrete endogenous variables are obtained given its difficulty

of approximation based on a non-closed form conditional mean with a non-normal heterogeneity.

Monte Carlo simulations verify that the new estimators are the least biased and the most efficient

among examined estimators including existing estimators. This is the first research that supports

the necessity and significance of count endogeneity. The proposed estimators are applied to an-

alyze the US female labor supply. The result shows diminishing marginal effects of additional

children on female’s working hours. This novel finding is consistent with a story of fertility and

presents an evidence of economies of scale that mothers become more efficient after raising the

first kids, devote more time to work and balance between working time and family time.

In the second chapter, a dynamic Tobit panel data model that allows for an endogenous re-

gressor (besides the lagged dependent variable) is developed. I also permit the presence of unob-

served heterogeneity and serial correlation of transitory shocks. A correlated random effect Tobit



approach, a computationally attractive estimation method, is proposed. The estimation method

employs the control function approach to account for endogeneity and to consistently estimate av-

erage partial effects. In addition, serial correlation in the reduced form is corrected which makes

the estimator more robust. This method is readily applied to Panel Study of Income Dynamics data

from 1980 to 1992. I find a strong evidence of persistence in US white female labor working hours

and the initial condition of female labor supply is statistically significant.

The third chapter considers the estimation of a panel data model with a corner solution response

and the presence of a dummy endogenous variable as well as heterogeneity. The main contribution

is to allow a joint distribution of the binary endogenous regressor and the unobserved factors that

affect both the amount and participation equations. A bivariate probit model is suggested in the

first stage. An exponential type II Tobit (ET2T) model is exploited for the amount equation to en-

sure that the predicted value for the response variable is positive; and there is a correlation between

unobserved effects in both the amount and participation equations. The two-step estimation proce-

dure inspired by Heckman’s idea of adding correction terms for endogenous switching and a corner

solution outcome is used to analyze the impact of fertility on female labor force participation and

labor supply using the Vietnamese Household Living Standard Surveys data 2004-2008. The pro-

posed approach gives a statistically significant negative effect of having a newborn on women who

are working and remain in the labor market. It corrects remarkably the bias in estimating the effect

of a newborn on mother’s working hours compared to other alternative estimation methods.
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Chapter 1

ESTIMATING A FRACTIONAL RESPONSE MODELWITH A COUNT ENDOGENOUS

REGRESSOR

1.1 Introduction

Many economic models employ a fraction or a percentage, instead of level values, as a dependent

variable. In these models, economic variables of interest occur in fractions such as employee

participation rates in 401(k) pension plans, firm market shares and fractions of total weekly hours

spent working. These fractional response variables take values in the unit interval [0,1], which have

both continuous and discrete characteristics. As suggested in Papke & Wooldridge (1996, 2008),

we can model fractional response variables based on a correctly specified conditional mean and use

a simple quasi-maximum likelihood estimator or nonlinear least squares (QMLE/NLS) method

with the Bernoulli distribution. This method is more attractive than other standard approaches

such as the MLE method with beta distribution or the log-odd transformation because it will give a

direct estimate of the original dependent variable and ensure that the predicted value is in the unit

interval.

Fractional response models (FRMs) with continuous or binary endogenous variables have been

studied (see more in Papke & Wooldridge (2008) and Wooldridge (2010)). However, there has

not been any well-developed estimation method and procedure to deal with count endogeneity in

FRMs. Traditionally, a count endogenous explanatory variable (CEEV) is treated as a continuous

endogenous variable and it is written in a linear fashion of covariates including instruments and

additive error. A common approach such as the two stage least squares (2SLS) using the linear

approximation always gives a constant marginal effect. This approach ignores the fact that the

marginal effect of having one more unit of the CEEV on the outcome of interest might be more

or less than the marginal effect of having the previous unit on the outcome. In order to acknowl-

edge this fact, we should study FRMs and count endogeneity with the nonlinear approximation
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in the first stage. Specifically, we can handle a CEEV by allowing a Poisson distribution of the

count variable in the reduced form. The heterogeneity term in the Poisson model is assumed to be

correlated with the error term in the structural conditional mean. It is standard to allow the het-

erogeneity to follow a gamma distribution (which leads to the gamma error in the reduced form)

because it results in a closed form solution, the Negative Binomial (NB) model. The key to cor-

rect for the endogeneity problem in this case is how we are willing to make an assumption on the

joint distribution of errors. One strategy is to allow a linear correlation between the transforma-

tion of the gamma, which is now normally distributed, and the error in the structural conditional

mean (see further discussion in Weiss (1999)). However, this assumption does not allow a direct

relationship between the two errors which governs the endogeneity problem. The choice of the

transformation function is the inverse of the standard normal and depends on unknown parameters

in the distribution of the heterogeneity of the Poisson model. This strategy can be used to test

for endogeneity of the count explanatory variable but it will make the evaluation of the likelihood

function more computational and obtaining the conditional maximum likelihood estimator as well

as its asymptotic covariance matrix is nontrivial and time-consuming. An alternative strategy is

that we still allow the gamma heterogeneity in the Poisson model and a linear, direct correlation of

this heterogeneity and the error term in the structural conditional mean. We then need to integrate

out this heterogeneity in the structural conditional mean. As discussed in Winkelmann (2000), the

heterogeneity in a Poisson model can be presented in terms of an additive correlated error or a

multiplicative correlated error. However, the multiplicative correlated error has some advantage

over the additive correlated error on grounds of consistency. As a result, a multiplicative correlated

error is used in this model.

Because nonlinearity is allowed in both the reduced form and the main structural equations,

a two-step estimation procedure is more attractive. In a simultaneous nonlinear equations model

with a count dependent variable and a binary endogenous variable, Terza (1998) proposed a two-

stage method estimation method using a joint normal distribution of the error terms. He did not

carry out the estimation of the Poisson Full-Information Maximum Likelihood (FIML) or explore
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its properties even though this approach was introduced in his paper. This is due to the computa-

tion burdensome of the FIML estimator. It emphasizes the advantage of the two-step estimation

procedure that we can employ in this model. However, the joint normal distribution of the error

terms is no longer appropriate in this case because a normal error term in the Poisson model will

not lead to a closed form solution. Therefore, we have discussed the strategy on assuming the error

terms as above. Besides an easier computational task, the two-step estimation procedure ensures

that the predicted value lying in the rational range. Moreover, we do not need to find a conditional

probability for each value of the CEEV without knowing in advance specific values of a general

count explanatory variable, and avoid computing a conditional MLE which must be very difficult.

Other estimation method for a FRM with a CEEV can be considered. For example, semipara-

metric and nonparametric method can be used (see more in Das (2005)). However, this approach

does not give estimates of the partial effects or the average partial effects of interest. If we are

interested in estimating both parameters and average partial effects (APEs), a parametric approach

will be preferred. In addition, in a nonlinear model, the quantity of interest is the APE which

can be comparable to a linear model’s estimate. Therefore, it is necessary and useful for applied

economists and practitioners to obtain the APE and use the parametric model.

In this chapter, I show how to specify and estimate FRMs with a CEEV and an unobserved

heterogeneity. Based on the work of Papke & Wooldridge (1996, 2008), I also use models for the

conditional mean of the fractional response in which the fitted value is always in the unit interval.

I focus on the probit response function since the probit mean function is less computationally

demanding in obtaining the average partial effects. I suggest a new estimation method to handle

discrete endogeneity in the presence of unobserved heterogeneity and non-linear setting. The two-

step Quasi-Maximum Likelihood and Nonlinear Least Squares estimators using Adaptive Gauss

Hermite quadrature are proposed. Average partial effects for discrete endogenous variables are

obtained given its difficulty of approximation based on a non-closed form conditional mean with

a non-normal heterogeneity. Monte Carlo simulations verify that the new estimators are the least

biased and the most efficient among examined estimators including existing estimators. Using

3



these robust and efficient estimators, I applied my proposed estimators to analyze the US female

labor supply. The empirical result gives an evidence to show that this is the first research that

supports the necessity and significance of count endogeneity.

This chapter is organized as follows. Section 2 introduces the specifications and estimations of

a FRM with a CEEV and shows how to estimate parameters and the average partial effects using

the two-step QMLE and NLS approaches. Section 3 presents Monte Carlo simulations and an

application to the fraction of total working hours for a female per week will follow in Section 4.

Section 5 concludes.

1.2 Theoretical Model - Specificatio and Estimation

For a 1×K vector of explanatory variables z1, the conditional mean model is expressed as follows:

E(y1|y2,z,a1) = Φ(α1y2 + z1δ1 +η1a1), (1.1)

where Φ(·) is a standard normal cumulative distribution function (cdf), y1 is a response variable

(0 ≤ y1 ≤ 1), and a1 is a heterogeneous component or an omitted factor assumed to be correlated

with y2 but independent of exogenous variables z. In equation (1.1), I focus on the fractional

probit conditional mean because it gives a computationally simple estimator when we deal with

unobserved heterogeneity and endogenous regressors, as well as a convenient way to obtain aver-

age partial effects later on. The exogenous variables are z = (z1,z2) where we need exogenous

variables z2 to be excluded from (1.1). z is a 1×L vector where L > K, z2 is a vector of instru-

ments. y2 is a count endogenous variable where we assume that the endogenous regressor has a

Poisson distribution:

y2|z,a1 ∼ Poisson[exp(zδ 2+a1)], (1.2)

then the conditional density of y2 is specified as:

f (y2|z,a1) =
[exp(zδ2+a1)]

y2 exp [−exp(zδ2 +a1)]

y2!
, (1.3)

where a1 is assumed to be independent of z, and exp(a1) is distributed as Gamma(δ0,1/δ0) using

a single parameter δ0, with E(exp(a1)) = 1 and Var(exp(a1)) = 1/δ0.
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The presence of a1 in both equations (1.1) and (1.2) is what makes y2 potentially endogenous

in the equation of interest, (1.1). To illustrate this point, we could use, for example, u2 instead

of a1 in the reduced form and u1 instead of η1a1 in the structural conditional mean and assume a

linear function: u1 = η1u2 + e1. Substitute the right-hand-side of this function into the structural

conditional mean and then omit e1 through multiplying all the coefficients by the scale factor

1/
�

1+σ2
e , we will see η1u2 and u2 appear in the places of a1 and η1a1 in equations (1.1) and

(1.2), respectively. Hence, rather than using u1 and u2, we simply use a1 and η1a1 as stated in the

reduced form and the structural conditional mean to govern the endogeneity of y2.

After a transformation (see Appendix D.4. for the derivation), the distribution of a1 is derived

as follows:

f (a1;δ0) =
δ δ0

0 [exp(a1)]
δ0 exp(−δ0 exp(a1))

Γ(δ0)
. (1.4)

In order to get the conditional mean E(y1|y2,z), I specify the conditional density function of

a1. Using Bayes’ rule, it is:

f (a1|y2,z) =
f (y2|a1,z) f (a1|z)

f (y2|z)
.

Since y2|z,a1 has a Poisson distribution and exp(a1) has a gamma distribution, y2|z is Negative

Binomial II distributed, as a standard result (see the Poisson and Negative Binomial II models in

Cameron & Trivedi (1986) and a specific derivation of this result from equations (D.1) to (D.3) in

Appendix D).

After some algebra, the conditional density function of a1 is:

f (a1|y2,z) =
exp [P] [δ0 + exp(zδ 2)]

(y2+δ0)

Γ(y2+δ0)
, (1.5)

where P=−exp(zδ2 +a1)+a1(y2 +δ0)−δ0 exp(a1).

The conditional mean E(y1|y2,z) therefore will be obtained as:

E(y1|y2,z) =
� +∞

−∞
Φ(α1y2+ z1δ1+η1a1) f (a1|y2,z)da1 = μ(θ ;y2,z), (1.6)

where f (a1|y2,z) is given in (1.5) and θ = (α1,δ1,η1).
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The key to obtain the conditional mean of interest is to get the conditional density function

of a1. Therefore, we need to assume the distribution of a1 and specify f (a1|y2,z) as above. For

estimating purpose, it is necessary to compute f (a1|y2,z) in (1.5) based on the parameters in the

reduced form (1.2). These parameters can be estimated using a Negative Binomial II regression.

And henceforth, they can be viewed as first-step estimated parameters. In the second step, we are

interested in estimating conditional mean parameters, θ , in the FRMs.

For FRMs, we can consider a beta distribution or log-odds transformation of the fractional

dependent variable. However, Wooldridge (2010) shows that these two approaches have some

drawbacks. First, they rule out the case when the fractional response variable has some pileup

at zero and/or one. Second, specifying a beta distribution is not robust and produces inconsistent

estimators if any aspect of the distribution is misspecified. Third, the log-odds approach does not

give a direct estimate of the conditional mean which is of interest; since this approach offers only

the estimate of the transformed dependent variable (see more discussion in Papke & Wooldridge

(1996)). Therefore, for the dependent variable which has some mass point at 0 and/or 1, and

continuous in (0,1), we can focus on estimating the conditional mean of the fractional response

(as stated in equation 1.1) that keeps the predicted value in the unit interval, and obtain robust

estimators using the QMLE/NLS under the correctly specified conditional mean function. See

Papke & Wooldridge (1996, 2008) for further details.

Given the fractional probit conditional mean model as in equation (1.1), there are many ways to

estimate θ consistently. One possibility is to adopt the NLS estimator. This estimator is consistent

and
√

N asymptotically normal. However, this estimator is unlikely to be asymptotically efficient

because homoskedasticity is unlikely to hold for y1, even if we ignore the conditional Poisson

distribution for y2. It might also be computationally intensive to obtain the weighting matrix for

the NLS estimator. Hence, we can use a simpler, robust and efficient estimator, that is, the quasi-

maximum likelihood estimator (QMLE).

One can consider the QMLE using the Bernoulli distribution or the Poisson distribution of y1.

The QMLE is simple and strongly consistent even if the true distribution of y1 is not Bernoulli
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once the first moment is assumed to be correctly specified. There are other reasons that make the

Bernoulli QMLE more attractive. First, maximizing the Bernoulli log likelihood is easy. Sec-

ond, the Bernoulli distribution is a member of the linear exponential family (LEF) and it does not

have any restriction as other distributions (see further discussion in Papke & Wooldridge (1996)).

Moreover, it has some advantage over the Poisson distribution. For example, it is consistent with

the nature of a fractional response variable which has both continuous and discrete characteristics.

The Poisson distribution is consistent with a non-negative response variable but does not take into

account mass points at 0 and/or 1. In addition, even though the Poisson distribution is a member of

the LEF, it is chosen if we want the variance to be proportional to the mean, which is not realistic

for a fractional response variable. It is unlikely that the variance is monotonically increasing in

the mean. Another attraction of the Bernoulli QMLE is that it is efficient in a class of estimators

containing all QMLEs in the LEF as long as the conditional mean is correctly specified and the

variance assumption holds. The assumption that the variance associated with the quasi-log like-

lihood in equation (1.6) is the Bernoulli generalized linear models (GLM) variance will hold if

the number of Bernoulli draws is independent of zi. This assumption still holds in an empirical

example of this chapter. However, in other applications, there is no guarantee that this assumption

holds and it is recommended to obtain fully robust sandwich standard errors (see more discussion

in Papke & Wooldridge (1996) and (Wooldridge, 2010, section 18.6)).

Therefore, in what follows, we use the QMLE or NLS with the Bernoulli quasi-log likelihood

function to estimate θ of equation (1.6) in the second step.

The Bernoulli quasi-log likelihood function is given by:

li(θ) = y1i lnμi+(1− y1i) ln(1−μi). (1.7)

The QMLE of θ in the second step is obtained from the maximization problem (see more

details in Appendix D.1.):

Max
θ∈Θ

n�
i=1

li(θ). (1.8)

The NLS estimator of θ in the second step is attained from the minimization problem (see more

7



details in Appendix D.3.):

min
θ∈Θ

N−1
N�

i=1
[y1i −μi(θ ;y2i,zi)]

2/2. (1.9)

After we obtained the estimated parameters from the first-step and approximate the conditional

mean (the detailed approximation procedure is discussed below), we estimate θ using the QMLE

and NLS estimators as described in the above maximization and minimization problems. These

estimators are the so-called two-step M-estimators that are consistent and asymptotically normal

(see further discussion of these estimators in Newey & McFadden (1994) and (Wooldridge, 2002,

chapter 12)).

Since μi = E(y1|y2,z) does not have a closed form solution, it is necessary to use a numerical

approximation. The numerical routine for integrating out the unobserved heterogeneity in the con-

ditional mean equation (1.6) is based on the Adaptive Gauss-Hermite quadrature. This adaptive

approximation has proven to be more accurate with fewer points than the ordinary Gauss-Hermite

approximation. The quadrature locations are shifted and scaled to be under the peak of the inte-

grand. Therefore, the adaptive quadrature is performed well with an adequate amount of points

(see more in Skrondal & Sophia (2004)).

Using the Adaptive Gauss-Hermite approximation, the above integral (1.6) can be obtained as:

μi =
� +∞

−∞
hi(y2i,zi,a1)da1 ≈

√
2�σi

M�
m=1

w∗
m exp

�
(a∗m)2

�
hi(y2,zi,

√
2�σia

∗
m+ �wi), (1.10)

where �σi and �wi are the adaptive parameters for observation i, w∗
m are the weights and a∗m are the

evaluation points, and M is the number of quadrature points. The approximation procedure follows

Skrondal & Sophia (2004). The adaptive parameters �σi and �wi are updated in the kth iteration of

the optimization for μi with:

μi,k ≈
M�

m=1

√
2σ̂i,k−1w∗

m exp{(a∗m)2}hi(y2i,zi,
√

2σ̂i,k−1a∗m+ ω̂i,k−1),

ω̂i,k =
M�

m=1
(τi,m,k−1)

√
2σ̂i,k−1w∗

m exp{(a∗m)2}hi(y2i,zi,τi,m,k−1)

μi,k
,
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σ̂i,k =
M�

m=1
(τi,m,k−1)

2

√
2σ̂i,k−1w∗

m exp{(a∗m)2}hi(y2i,zi,τi,m,k−1)

μi,k
− (ω̂i,k)

2,

where

τi,m,k−1 =
√

2σ̂i,k−1a∗m+ ω̂i,k−1.

This process is repeated until σ̂i,k and ω̂i,k have converged for this iteration at observation i of

the maximization algorithm. This adaptation is applied to every iteration until the log-likelihood

difference from the last iteration is less than a relative difference of 1e−5; after this adaptation, the

adaptive parameters are fixed.

Once the evaluation of the conditional mean has been done for all observations, the numerical

values can be passed on to a maximizer in order to find the QMLE or NLS θ̂ .

I summarize the method for estimating θ with the following procedure:

1.2.1 Estimation Procedure

(i) Estimate δ2 and δ0 by using maximum likelihood of yi2 on zi in the Negative Binomial

model. Obtain the estimated parameters δ̂2 and δ̂0.

(ii) Use the fractional probit QMLE (or NLS) of yi1 on yi2, zi1 to estimate α1, δ1 and η1 with the

approximated conditional mean. The conditional mean is approximated using the estimated

parameters in the first step and using the Adaptive Gauss-Hermite method.

After getting all the estimated parameters θ̂ = (α̂1, δ̂1,η̂1)
′, the standard errors in the second

stage should be adjusted for the first stage estimation and obtained using the delta method. The

standard errors obtained by using the delta method can be derived with the following formula:

̂Avar(θ̂) =
1
N
Â−1

1

�
N−1

N�
i=1

r̂i1r̂′i1

�
Â−1

1 . (1.11)

For more details, see the derivation and matrix notation from equation (D.6) to equation (D.20)

in Appendix D.1.
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1.2.2 Average Partial Effects

Econometricians are often interested in estimating the average partial effects of explanatory vari-

ables in non-linear models in order to get comparable magnitudes with other nonlinear models and

linear models. The Average Partial Effects (APE) can be obtained by taking the derivatives or the

differences of a conditional mean equation with respect to the explanatory variables of interest.

The APE cannot be estimated with the presence of unobserved factor. It is necessary to "integrate

out" the unobserved variable in the conditional mean or average the partial effects across the dis-

tribution of the unobservable. Then we will obtain a single factor by taking the average across the

sample in order to compare with the corresponding linear estimate.

I begin by reviewing the calculation of APEs when the explanatory variables are exogenous,

following Papke & Wooldridge (2008), and then show how to identify the APEs with a count

endogenous explanatory variable.

1.2.2.1 The Case with Exogenous Covariates and a Normally Distributed Heterogeneity

In a FRM with all exogenous covariates, model (1.1) with y2 exogenous and a normally distributed

a1 is considered (for a general discussion of a FRM with all exogenous covariates, see Papke &

Wooldridge (2008)).

Let w= (y2, z1), dropping observation index i, equation (1.1) is rewritten as:

E(y1|w,a1) = Φ(wβ +a1),

where w is the fixed terms and a1 is the random term. We can also allow elements of w to be

any function of (y2, z1), including nonlinear functions, such as quadratic or cubic forms, and

interactions. If w1 is continuous, then the partial effect with respect to w1 is:

∂E(y1|w,a1)/∂w1 = β1φ(wβ +a1).

If w1 is a dummy variable, we compute:

Φ(w1β +a1)−Φ(w0β +a1),
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where w1 and w0 are two different values of the covariates including w1=1 and w1=0, respectively.

Since a1 is not observed but we assume a1|w ∼ Normal(0,σ2
a ), we can obtain the APE by

averaging the partial effects across the distribution of a1:

Ea1 [β1φ(wβ +a1)],

Ea1[Φ(w1β +a1)−Φ(w0β +a1)],

and these are equivalent to getting: β1φ(wβ a) and
	
Φ(w1βa)−Φ(w0βa)



where subscript a stands

for division by
�

1+σ2
a .

Then we can obtain a single number to compare with the linear estimates by averaging the

derivative or the difference across the sample.

For a continuous z11, the APE is estimated by:

δ̂11a

��N−1
N�

i=1
φ(α̂1ay2i + z1iδ̂1a)


� .
For a count variable y2, the APE is estimated by:

N−1
N�

i=1

�
Φ(α̂1ay1

2 + z1iδ̂1a)−Φ(α̂1ay0
2 + z1iδ̂1a)

�
.

For example, if we are interested in obtaining the APE when y2 changes from 0 to 1, it is

necessary to predict the difference in mean responses with y2 = 1 and y2 = 0 and average the

difference across all units.

1.2.2.2 The Case with a Count Endogenous Covariate and a Non-normally Distributed Het-
erogeneity

In a fractional response model with a count endogenous variable, model (1.1) is considered with

the estimation procedure provided in the previous section. The APEs are obtained by taking the

derivatives or the differences in:

Ea1[Φ(α1y0
2+ z0

1δ1 +η1a1)], (1.12)
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with respect to the elements of (y0
2,z

0
1). In the argument of the expectations operator, (y0

2,z
0
1) are

fixed terms and a1 is a random term.

The partial effect (PE) is obtained for a continuous variable z11:

PE(y0
2,z

0
1,a1) = δ11φ(α1y0

2 + z0
1δ1 +η1a1), (1.13)

and for a discrete variable y2, we compute:

Φ(α1y1
2 + z0

1δ1 +η1a1)−Φ(α1y0
2 + z0

1δ1 +η1a1), (1.14)

which is the difference in mean responses with two fixed points: y2 = y1
2 and y2 = y0

2 that we are

interested in.

To obtain the APEs, we need to average the above partial effects across the distribution of a1:

APEc = Ea1[δ11φ(α1y0
2 + z0

1δ1 +η1a1)], (1.15)

for the continuous case, and

APEd = Ea1[Φ(α1y1
2 + z0

1δ1 +η1a1)−Φ(α1y0
2 + z0

1δ1 +η1a1)], (1.16)

for the discrete case.

This is equivalent to integrate out a1 and we respectively receive:

ψ =APEc =
� +∞

−∞
δ11φ(α1y0

2+ z0
1δ1 +η1q1) f (q1|y0

2,z
0
1;θ)dq1, (1.17)

λ = APEd =
� +∞

−∞
Φ(g1θ) f (q1|y1

2,z
0
1;θ)dq1−

� +∞

−∞
Φ(g0θ) f (q1|y0

2,z
0
1;θ)dq1, (1.18)

where q1 is a dummy argument in the integration, g1 = (y1
2,z

0
1,q1), and g0 = (y0

2,z
0
1,q1).

These APEs are estimated by:

�APEc = δ̂11

� +∞

−∞
φ(α̂1y0

2+ z0
1δ̂1+ η̂1q1) f (q1|y0

2,z
0
1; θ̂)dq1, (1.19)

�APEd =
� +∞

−∞
Φ(g1θ̂ ) f (q1|y1

2,z
0
1; θ̂)dq1−

� +∞

−∞
Φ(g0θ̂ ) f (q1|y0

2,z
0
1; θ̂)dq1, (1.20)
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Since equations (1.19) and (1.20) cannot be obtained in a closed form, we need to use the

Adaptive Gauss-Hermite method to approximate the density of f (q1|yk
2,z

0
1;θ); k = 0,1. This is

equivalent to obtain:

ψ̂ =�APEc ≈ δ̂11

���√2�σi

M�
m=1

{w∗
m exp[(a∗m)2]}φ(g0 �θ) f (y0

2,z
0
1,(

√
2�σia

∗
m+ �wi); θ̂)

��� , (1.21)

�λ =�APEd =�λ 1 −�λ 0, (1.22)

where �λ k =
√

2�σi

M�
m=1

{w∗
m exp[(a∗m)2]}Φ(gk �θ) f (yk

2,z
0
1,(

√
2�σia

∗
m+ �wi); θ̂), (1.23)

in addition to gk = (yk
2,z

0
1,(

√
2�σia

∗
m + �wi)); k = 0,1 and θ = (α1,δ1,η1)

′. For a comparison

between the linear model estimates and the fractional probit estimates, it is useful to have a single

factor. This single factor can be obtained by averaging out z1i across all individuals in the formula

of ψ̂ and �λ . For example, in order to get the APE when y2 changes from 0 to 1, it is necessary to

predict the difference in the mean responses with y2 = 0 and y2 = 1 and take the average of the

differences across all units. This APE gives us a number comparable to the linear model’s estimate.

The standard errors for the APEs will be obtained using the delta method. The detailed deriva-

tion is provided from equation (D.21) to equation (D.40) in Appendix D.1.

1.3 Monte Carlo Simulations

This section examines the finite sample properties of the two-step QML and NLS estimators of the

population averaged partial effect in a fractional response model with a count endogenous variable.

Some Monte Carlo experiments are conducted to compare these estimators with other estimators

under different scenarios. These estimators are evaluated under correct model specification with

different degrees of endogeneity; with strong and weak instrumental variables; and with different

sample sizes. The behavior of these estimators is also examined with respect to a choice of a

particular distributional assumption.
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1.3.1 Estimators

Two sets of estimators under two corresponding assumptions are considered: (1) y2 is assumed

to be exogenous, and (2) y2 is assumed to be endogenous. Under the former assumption, three

estimators are used: the ordinary least squares (OLS) estimator in a linear model, the maximum

likelihood estimator (MLE) in a Tobit model and the quasi-maximum likelihood estimator (QMLE)

in a fractional probit model. Under the latter assumption, five estimators are examined: the two-

stage least squares (2SLS) estimator, the two-step maximum likelihood estimator (MLE) in a Tobit

model using the Blundell-Smith estimation method (hereafter the Tobit BS), the two-step QMLE in

a fractional probit model using the Papke-Wooldridge’s estimation method (hereafter the QMLE-

PW; see more discussion of handling endogeneity in Papke & Wooldridge (2008)), the two-step

QMLE and the two-step NLS estimators in a fractional probit model using the estimation method

proposed in the previous section.

1.3.2 Data Generating Process

The count endogenous variable is generated from a conditional Poisson distribution:

f (y2i|x1i,x2i,zi,a1i) =
exp(−λi)λ

y2i
i

y2i!
, (1.24)

with a conditional mean:

λi = E(y2i|x1i,x2i,zi,a1i) = exp(δ21x1i +δ22x2i +δ23zi+ρ1a1i), (1.25)

using independent draws from normal distributions: z∼N(0,0.32), x1 ∼N(0,0.22), x2 ∼N(0,0.22)

and exp(a1)∼ Gamma(1,1/δ0) where 1 and 1/δ0 are the mean and variance of a gamma distribu-

tion. Parameters in the conditional mean model are set to be:

(δ21,δ22,δ23,ρ1,δ0) = (0.01,0.01,1.5,1,3).

The dependent variable is generated by first drawing a binomial random variable x with n trials

and a probability p and then y1 = x/n. In this simulation, n = 100 and p comes from a conditional
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normal distribution with the conditional mean:

p = E(y1i|y2i,x1i,x2i,a1i) = Φ(δ11x1i +δ12x2i +α1y2i +η1a1i), (1.26)

and parameters in this conditional mean are set at: (δ11,δ12,α1,η1) = (0.1,0.1,−1.0,0.5).

In order to compare the magnitudes between a nonlinear model and a linear model, we are

interested in computing APEs. Based on the population values of the parameters set above, the

so-called true value of the APE with respect to each variable is reported as the mean of the APEs

approximated via the simulations with the standard procedure described below.

First, when y2 is treated as a continuous variable, the so-called true value of the APE with

respect to y2 is approximated from simulations by first computing the derivative of the conditional

mean with respect to y2, and then taking the average across the distribution of a1:

APE =−1.0∗ 1
N

N�
i=1

φ(0.1∗ x1+0.1∗ x2−1.0∗ y2+0.5∗a1i). (1.27)

Now when y2 is allowed to be a count variable, the so-called true values of the APEs with

respect to y2 are computed by first taking differences in the conditional mean. These true values

of the APEs are computed at interesting values. In this chapter, I will take the first three examples

when y2 increases from 0 to 1, 1 to 2 and 2 to 3, respectively and the corresponding true values of

the APEs are:

APE01 =
1
N

N�
i=1

���� Φ(0.1∗ x1+0.1∗ x2−1.0∗1+0.5∗a1i)

−Φ(0.1∗ x1+0.1∗ x2−1.0∗0+0.5∗a1i)


��� , (1.28)

APE12 =
1
N

N�
i=1

���� Φ(0.1∗ x1+0.1∗ x2−1.0∗2+0.5∗a1i)

−Φ(0.1∗ x1+0.1∗ x2−1.0∗1+0.5∗a1i)


��� , (1.29)

APE23 =
1
N

N�
i=1

���� Φ(0.1∗ x1+0.1∗ x2−1.0∗3+0.5∗a1i)

−Φ(0.1∗ x1+0.1∗ x2−1.0∗2+0.5∗a1i)


��� . (1.30)

These so-called true values of the APEs (which are approximated through simulations) with

respect to y2 and other exogenous variables are reported in Tables A.1-A.4. The experiment is

conducted with 500 replications and the sample size is normally set at 1000 observations.
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1.3.3 Experiment Results

I report sample means, sample standard deviations (SD) and root mean squared errors (RMSE)

of these 500 estimates. In order to compare estimators across linear and non-linear models, I am

interested in comparing the APE estimates from different models.

1.3.3.1 Simulation Result with a Strong Instrumental Variable

Tables A.1-A.4 report the simulation outcomes of the APE estimates for the sample size N = 1000

with a strong instrumental variable (IV) and different degrees of endogeneity, where η1 = 0.1,

η1 = 0.5, and η1 = 0.9. The IV is strong in the sense that the coefficient on z is δ23 = 1.5 in the first

stage and the F-statistics on the significance test of z in the first-stage are large. These F-statistics

have average values equivalent to 91.75, 107.57 and 133.56 in 500 replications for three designs

of η1: η1 = 0.1, η1 = 0.5, and η1 = 0.9, respectively. Three different values of η1 are selected

which corresponds to low, medium and high degrees of endogeneity. Columns 2-10 contain the

true values of the APE estimates and the means, SD and RMSE of the APE estimates from different

models with different estimation methods. Columns 3-5 consist the means, SD and RMSE of the

APE estimates for all variables from 500 replications with y2 assumed to be exogenous. Columns

6-10 include the means, SD and RMSE of the APE estimates for all variables from 500 replications

with y2 allowed to be endogenous.

I first report the simulation outcomes for the sample size N = 1000 and η1 = 0.5 (see Table

A.1). The APE estimates using the proposed methods of QMLE and NLS in columns 9-10 are

closest to the true values of the APEs when y2 is discrete (−.3200,−.1273 and −.0212). It is

typical to get these three APEs for a discrete y2 (when y2 goes from 0 to 1, 1 to 2 and 2 to 3) as

examples in order to see the pattern of the means, SD and RMSE of the APE estimates. The APE

estimate is also very close to the true value of the APE (−.2347) when y2 is treated as a continuous

variable. Table A.1 shows that the OLS estimate is about a half of the true value of the APE.

The first source of large bias in the OLS estimate comes from the ignorance of the endogeneity

in the count variable y2 (with η1 = 0.5). The second source of bias in the OLS estimate is due
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to the neglect of the non-linearity in both the structural and reduced-form equations (1.1) and

(1.2). The 2SLS approach also produces a biased estimator of the APE because of the second

reason mentioned above even though the endogeneity is taken into account. The MLE estimators

in the Tobit model have smaller bias than the estimators in the linear model but larger bias than

the estimators in the fractional probit model because they do not consider the functional form

of the fractional response variable and the count explanatory variable. When the endogeneity is

corrected, the MLE estimator in the Tobit model using Blundell-Smith method has a smaller bias

than the counterpart where y2 is assumed to be exogenous. Among the fractional probit models, the

two-step QMLE estimator, where y2 is assumed to be exogenous, (column 5) has the largest bias

because it ignores the endogeneity of y2. However, it still has a smaller bias than other estimators

of the linear and Tobit models. The two-step QMLE-PW estimator (column 8) provides useful

result because its estimates are also very close to the true values of the APEs but it produces a

larger bias than the two-step QMLE and NLS estimators proposed in this chapter. Similar to the

two-step MLE estimator in Tobit model using Blundell-Smith method, the two-step QMLE-PW

estimator adopts the control function approach. This approach utilizes the linearity in the first

stage equation. As a result, it ignores the discreteness in y2 which leads to the larger bias than the

two-step QMLE and NLS estimators proposed in this chapter.

The first set of estimators with y2 assumed to be exogenous (columns 3-5) has relatively smaller

SDs than the second set of estimators with y2 allowed to be endogenous (columns 6-10) because

the methods that correct for endogeneity using IVs have more sampling variation than their coun-

terparts without endogeneity correction. This results from the less-than-unit correlation between

the instrument and the endogenous variable. However, the SDs of the two-step QMLE and NLS es-

timators (columns 9-10) are no worse than the QMLE estimator where y2 assumed to be exogenous

(column 5).

Among all estimators, the two-step QMLE and NLS estimators proposed in this chapter have

the smallest RMSE, not only for the case where y2 is allowed to be a discrete variable but also

for the case where y2 is treated as a continuous variable using the correct model specification. As
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discussed previously, the two-step QMLE estimator using Papke-Wooldridge method has the third

smallest RMSE since it also uses the same fractional probit model. Comparing columns 3 and 6, 4

and 7, 5 and a set of all columns 8-10, the RMSEs of the methods correcting for endogeneity are

smaller than those of their counterparts.

Table A.2 reports simulation result for coefficient estimates. The coefficient estimates are use-

ful in the sense that it gives the directions of the effects. For studies which only require exploring

the signs of the effects, the coefficient tables are necessary. For studies which require comparing

the magnitudes of the effects, we essentially want to estimate the APEs. Table A.2 shows that the

means of point estimates are close to their true values for all parameters using the two-step QML

(or NLS) approach (−1.0, 0.1 and 0.1). The bias is large for both 2SLS method and OLS method.

These results are as expected because the 2SLS method uses the predicted value from the first stage

OLS so it ignores the distributional information of the right-hand-side (RHS) count variable, re-

gardless of the functional form of the fractional response variable. The OLS estimates do not carry

the information of endogeneity. Both the 2SLS and OLS estimates are biased because they do not

take into account the presence of unobserved heterogeneity. The bias for a Tobit Blundell-Smith

model is similar to the bias with the 2SLS method because it does not take into account the dis-

tributional information of the right-hand-side count variable and it employs a different functional

form given the fact that the fractional response variable has a small number of zeros. The biases

for both the QMLE estimator treating y2 as an exogenous variable and for the two-step QMLE-PW

estimator are larger than those of the two-step QMLE and NLS estimators in this chapter. In short,

simulation results indicate that the means of point estimates are close to their true values for all

parameters using the two-step QMLE and the NLS approach mentioned in the previous section.

Simulations with different degrees of endogeneity through the coefficient η1 = 0.1 and η1 =

0.9 are also conducted (see Table A.3 and A.4). Not surprisingly, with less endogeneity, η1 = 0.1,

the set of the estimators treating y2 as an exogenous variable produces the APE estimates closer to

the true values of the APE estimates; the set of the estimators treating y2 as an endogenous variable

has the APE estimates further from the true values of the APE estimates. With more endogeneity,
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η1 = 0.9, the set of the estimators treating y2 as an endogenous variable has the APE estimates

getting closer to the true values of the APE estimates; and the set of the estimators treating y2 as

an exogenous variable gives the APE estimates further from the true values of the APE estimates.

As an example, it is noted that, as η1 increases, the APE estimates of the 2SLS method are less

biased while the APE estimates of the QMLE estimator treating y2 as an exogenous variable are

more biased and the difference between these two APE estimates is smaller since the endogeneity

is corrected.

All other previous discussions on the bias, SD and RMSE still hold with η1 = 0.1 and η1 = 0.9.

It confirms that the two-step QMLE and NLS estimators perform very well under different degrees

of endogeneity.

1.3.3.2 Simulation Result with a Weak Instrumental Variable

Table A.5 reports the simulation outcomes of the APE estimates for the sample size N = 1000 with

a weak IV and η1 = 0.5. Using the rule of thumb on a weak instrument (suggested in Staiger &

Stock (1997)), the coefficient on z is chosen as δ23 = 0.3 which corresponds to a very small first-

stage F-statistic (the mean of the F-statistic is 6.97 in 500 replications). Columns 2-10 contain the

true values of the APE estimates, the means, SD and RMSE of the APE estimates from different

models with different estimation methods. Columns 3-5 consist the means, SD and RMSE of the

APE estimates for all variables from 500 replications with y2 assumed to be exogenous. Columns

6-10 include the means, SD and RMSE of the APE estimates for all variables from 500 replications

with y2 allowed to be endogenous. The simulation results show that, even though the instrument is

weak, the set of estimators assuming y2 endogenous still has smaller bias than the set of estimators

assuming y2 exogenous. The two-step QMLE and NLS APE estimates are still very close to the

true values of the APEs for both cases in which y2 is treated to be a continuous variable and y2

is allowed to be a count variable. Their SD and RMSE are still the lowest among the estimators

considering y2 endogenous. Table A.11 also provides this evidence.

Simulation results from my proposed procedure show that the two-step QMLE and NLS APE
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estimates are less biased and more efficient compared with the linear model’s and other models’

estimates. However, at the first glance, we can notice the standard deviation in Table A.5 is less

than the standard deviation from Table A.1 under columns of QMLE and NLS, which is contrary

to the pattern of standard deviations in the linear model (under the column with 2SLS estimation

method). The standard deviation from my proposed procedure (under the columns of QMLE and

NLS) is smaller in the case of a weak IV than the case of a strong IV, which seems odd at first

if we judge that exclusion restrictions are driving identification. If we look at the result from the

column of 2SLS, the bias and inefficiency of 2SLS estimates may arise because a linear model

may provide a poor approximation for the count and fractional response variable. It suggests that

nonlinearities have larger contributions than exclusion restriction to identification in the nonlin-

ear models. In other words, functional form assumptions are mainly responsible for identification

rather than the exclusion restriction. Therefore, it is worth investigating the reason why the esti-

mates in my proposed procedure tend to be closer to the true value of the APEs and are always

efficient without increasing the standard deviation in the case of weak instrument. We design the

experiment similar to simulated experiment in Table A.5 but the coefficient on the instrument is

0 (δ23 = 0). This is equivalent to the case of no instruments. The results in Table A.6 show that

standard deviations under columns of QMLE and NLS are still smaller suggesting nonlinearity is

responsible for identification since there is no exclusion restriction here.

1.3.3.3 Simulation Result with Different Sample Sizes

Four sample sizes are chosen to represent those commonly encountered sizes in applied research.

These range from small to large sample sizes: 100, 500, 1000 and 2000. Tables A.7-A.10 report the

simulation outcomes of the APE estimates with a strong IV, η1 = 0.5, for sample sizes N = 100,

500, 1000, and 2000 respectively. Table A.8 is equivalent to Table A.1. Columns 2-10 contain the

true values of the APE estimates and the means, SD and RMSE of the APE estimates from different

models with different estimation methods. Columns 3-5 consist the means, SD and RMSE of the

APE estimates for all variables from 500 replications with y2 assumed to be exogenous. Columns
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6-10 include the means, SD and RMSE of the APE estimates for all variables from 500 replications

with y2 allowed to be endogenous. In general, the simulation results indicate that the SD and

RMSE for all estimators are smaller for larger sample sizes. Previous discussion as in 3.3.1 is still

applied. The two-step QMLE and NLS estimators perform very well in all sample sizes with the

smallest SD and RMSE. They are also the least biased estimators among all the estimators in this

discussion.

1.3.3.4 Simulation Result with a Misspecifie Distribution

The original assumption is that exp(a1) ∼ Gamma(1,1/δ0). However, misspecification is dealt

with in this part. The distribution of exp(a1) is no longer gamma, instead, a1 ∼ N(0,0.12) is

assumed. The finite sample behavior of all the estimators in this incorrect specification is exam-

ined. Table A.11 shows the simulation results for the sample size N = 1000 with a strong IV and

η1 = 0.5 under misspecification. All of the previous discussion under the correct specification as

in 1.3.3.1 is not affected. The APE estimates under the fractional probit model are still very close

to the true values of the APEs.

Table A.12 shows the simulation results of the APE estimates with the sample size N = 1000

and η1 = 0.5. The estimates are close to true values of the APEs , with very small MSE and

rejection rates close to 0.05.

We should note from all tables in the section of Monte Carlo simulations that the standard

deviations under the columns of QMLE and NLS using the proposed procedure are not directly

comparable as standard errors. However, we can see from the simulation result of Table A.13

that the proposed procedure’s analytical variance is quite reliable because estimates of mean of

standard errors using analytical computation is quite close to those using bootstrapping method.

1.3.4 Conclusion from the Monte Carlo Simulations

This section examined the finite sample behavior of the estimators proposed in the FRM with

an endogenous count variable. The results of some Monte Carlo experiment show that the two-
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step QMLE and NLS estimators have smallest standard deviations, RMSE and least biased when

the endogeneity is presented. The two-step QMLE and NLS methods also produce least biased

estimates in terms of both parameters and the APEs compared to other alternative methods.

1.4 Application and Estimation Results

My proposed estimators can be applied in a model of female labor supply. The dependent variable

refers to the allocation of total hours per week mothers spent on working. Hereafter, we name

the dependent variable as weekly fractional working hours. The data in this chapter were used in

Angrist & Evans (1998) to illustrate a linear model with a dummy endogenous variable: more than

two kids. They estimate the effect of additional children on female labor supply, considering the

number of children as endogenous and using the instruments: same sex and twins at the first two

births. They found that married women who have the third child reduce their labor supply, and

their 2SLS estimates are roughly a half smaller than the corresponding OLS estimates.

In this application, the fractional response variable is the fraction of total weekly hours that

a woman spends working. This variable is generated from the number of working hours, which

was used in Angrist & Evans (1998), divided by the maximum hours per week (168). There is a

substantial number of women who do not spend any hours working, 13068 observations at zero.

Therefore, a Tobit model might be a choice.

In this application, we are interested in estimating a model of weekly fractional working hours

(FrHour) for women who take into consideration of having the number of children as a count

endogenous factor. We begin with the linear model as follows:

FrHour = α1Kidno+δ1Educ+δ2Age+δ3Age f b+δ4Hispan+δ5NmInc+a1. (1.31)

The count variable in this application is the number of children beyond two, between 0 and 10,

instead of an indicator for having more than two kids which was used in Angrist & Evans (1998).

The number of kids is considered endogenous, which is in line with the recent existing empirical

literature. First, the number and timing of children born are controlled by a mother makes fertility
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decisions correlated with the number of children. Second, some women have preference for family-

based activity or market-based work, so fertility is correlated with women’s heterogeneity. The

estimation sample contains 31,824 women, more than 50% is childless, 31% have one kid, 11%

have two kids and the rest have more than two kids. Table A.14 gives the frequency distribution of

the number of children and it appears to have excess zeros and long tails with the average number of

children is around one. Other explanatory variables which are exogenous, including demographic

and economic variables of the family, are also described in Table A.15.

The current research on parent’s preferences over the sex mixture of their children using US

data shows that most families would prefer at least one child of each sex. For example, Ben-Porath

& Welch (1976) found that 56% of families with either two boys or two girls has a third birth while

only 51% families with one boy and one girl had a third child. Angrist & Evans (1998) found that

only 31.2% of women with one boy and one girl have a third child whereas 38.8% and 36.5% of

women with two girls and two boys have a third child, respectively. With the evidence that women

with children of the same sex are more likely to have additional children, the instruments that we

can use are same sex and twins. Table A.16 illustrates the result of first-stage estimates with the

significant statistics of same sex and twins.

Table A.17 shows the estimation results of the OLS in a linear model, the MLE in a Tobit model

and the QMLE in a fractional probit model when y2 is assumed exogenous. The estimation results

of the 2SLS in a linear model, the MLE in a Tobit BS model, the QMLE-PW, the QMLE and NLS

estimation in a fractional probit model are shown in Table A.18 when y2 is assumed endogenous.

Since I also analyze the model using the Tobit BS model, its model specification and derivation

of the conditional mean, the average partial effects and the estimation approach are included in

Appendix D.2. The two-step NLS method with the same conditional mean used in the two-step

QMLE method is also presented in Appendix D.3.

Ordinary least squares

The OLS estimation often plays a role as a benchmark since its computation is simple, its

interpretation is straightforward and it requires fewer assumptions for consistency. The estimates
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of a linear model in which the fraction of total working hours per week is the response variable

and the number of kids is considered exogenous are provided in Table A.17. As discussed in the

literature of women’s labor supply, the coefficient of the number of kids is negative and statistically

significant. The linear model with the OLS estimation ignores functional form issues that arise

from the excess-zeros nature of the dependent variable. In addition, the predicted value of the

fraction of the total weekly working hours for women always lies in the unit interval. The use of

the linear model with the OLS estimation will not make any sense if the predicted value occurs

outside this interval.

A Tobit model with an exogenous number of kids

There are two reasons that a Tobit model might be practical. First, the fraction of working hours

per week has many zeros. Second, the predicted value needs to be nonnegative. The estimates

are given in Table A.17. The Tobit coefficients have the same signs as the corresponding OLS

estimates, and the statistical significance of the estimates is similar. For magnitude, the Tobit

partial effects are computed to make them comparable to the linear model estimates. First of all,

the partial effect of a discrete explanatory variable is obtained by estimating the Tobit conditional

mean. Second, the differences in the conditional mean at two values of the explanatory variable

that are of interest is computed (for example, we should first plug in y2i = 1 and then y2i = 0).

As implied by the coefficient, having the first child reduces the estimated fraction of total weekly

working hours by about 0.023, or 2.3 percentage points, a larger effect than 1.9 percentage points

of the OLS estimate. Having the second child and the third child make the mother work less by

about 0.021 or 2.1 percentage points and 0.018 or 1.8 percentage points, respectively. All of the

OLS and Tobit statistics are fully robust and statistically significant. Comparing with the OLS

partial effect, which is about 0.019 or 1.9 percentage points, the Tobit partial effects are larger

for having the first kid but almost the same for the second and the third kid. The partial effects of

continuous explanatory variables can be obtained by taking the derivatives of the conditional mean;

or we can practically get the adjustment factors to make the adjusted Tobit coefficients roughly

comparable to the OLS estimates. All of the Tobit coefficients given in Table A.17 for continuous
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variables are larger than the corresponding OLS coefficients in absolute values. However, the Tobit

partial effects for continuous variables are slightly larger than the corresponding OLS estimates in

absolute values.

A Fractional response model (FRM) with an exogenous number of kids

Following Papke & Wooldridge (1996), I also use the fractional probit model assuming the

number of children exogenous for a comparison purpose. The FRM’s estimates are similar to

the Tobit’s estimates, but they are even closer to the OLS estimates. The statistical significance

of QML estimates is almost the same as that of the OLS estimates (see Table A.17). Having the

second child reduces the estimated fraction of total weekly working hours by 1.9 percentage points,

which is roughly the same as the OLS estimate. However, having the first and third child result

in different partial effects. Having the first kid makes a mother work much less by 2.0 percentage

points, and having the third kid makes a mother work less by 1.6 percentage points.

Two-stage least squares

In the literature on female labor supply, Angrist & Evans (1998) consider fertility endogenous.

Their remarkable contribution is to use two binary instruments: genders of the first two births are

the same (samesex) and twins at the first two births (multi2nd) to account for an endogenous third

child. The 2SLS estimates are replicated and reported in Table A.18. The first stage estimates

using the OLS method and assuming a continuous number of children, given in Table A.16, show

that women with higher education are estimated to be 6.5 percentage points less likely to have

kids. In magnitude, the 2SLS estimates are less than the OLS estimates for the number of kids

but roughly the same for other explanatory variables. With IV estimates, having children leads a

mother to work less by about 1.6 percentage points, which is smaller than the corresponding OLS

estimates of about 1.9 percentage points. These findings are consistent with Angrist and Evans’

result.

A Tobit BS model with an endogenous number of kids
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A Tobit BS model is used with the number of children endogenous (see Table A.18). Only

the Tobit average partial effect of the number of kids have statistically slightly larger effect than

that of the 2SLS estimates. The APEs of the Tobit estimates are almost the same as those of the

corresponding 2SLS estimates for other explanatory variables. Having the first, second and third

kid reduce the fraction of hours a mother spends working per week by around 1.8, 1.7 and 1.5

percentage points, respectively. Having the third kid reduces a mother’s fraction of working hours

per week by the same amount as the 2SLS estimates. The statistical significance is almost the same

for the number of kids. The Tobit BS method is similar to the 2SLS method in the sense that the

first stage uses a linear estimation and it ignores the discrete nature of the number of children. It

explains why the Tobit BS result gets very close to the 2SLS estimates.

A FRM with an endogenous number of kids

Now let us consider the FRM with the number of kids endogenous. The fractional probit model

with Papke-Wooldridge method (2008) has dealt with the problem of endogeneity. However, this

method has not taken into account the problem of count endogeneity. The endogenous variable

in this model is treated as a continuous variable, hence, the partial effects at discrete values of

the count endogenous variable are not considered. In this chapter, the APEs of the QMLE-PW

estimates are also computed in order to be comparable with other APE estimates. Having the

first kid reduces a mother’s fraction of weekly working hours by the same amount as the 2SLS

estimates. Treating the number of children continuous also gives the same effect as the 2SLS

estimate on the number of kids. As the number of children increases, the more working hours a

mother has to sacrifice. Having the second and third kids reduce the fraction of hours a mother

spends working per week by around 1.6, 1.5 and 1.4 percentage points, respectively. The statistical

significance is the same as the Tobit BS estimates for the number of kids. The APEs of the two-step

QMLE-PW estimates are almost the same as those of the corresponding 2SLS estimates for other

explanatory variables.

The fractional probit model with the methods proposed in this chapter is attractive because

it controls for endogeneity, functional form issues and the presence of unobserved heterogeneity.
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More importantly, the number of children is considered a count variable instead of a continuous

variable. Both the two-step QMLE and NLS are considered and the two-step NLS estimates are

quite the same as the two-step QML estimates. The two-step QML and NLS’s coefficients and

robust standard errors are given in Table A.18 and the first-stage estimates are reported in Table

A.16.

In the first stage, the Poisson model for the count variable is preferred because of two reasons.

First, the distribution of the count variable with a long tail and excess zeros suggests an appropriate

model of gamma heterogeneity instead of normal heterogeneity. Second, adding the unobserved

heterogeneity with the standard exponential gamma distribution to the Poisson model transforms

the model to the Negative Binomial model, which can be estimated by the maximum likelihood

method. The OLS and Poisson estimates are not directly comparable. For instance, increasing

education by one year reduces the number of kids by 0.065 as in the linear coefficient and by 7.8%

as in the Poisson coefficient.

The fractional probit’s estimates have the same signs as the corresponding OLS and 2SLS es-

timates. In addition, the result shows that the two-step QMLE is more efficient than the OLS and

2SLS estimators. For magnitude, the fractional probit’s APEs are computed to make them com-

parable to the linear model’s estimates. Similar to the Tobit model, the partial effect of a discrete

explanatory variable is obtained by estimating the conditional mean and taking the differences at

the values we are interested in. Regarding the number of kids, having more kids reduces the frac-

tion of hours that a mother works weekly. Having the first child cuts the estimated fraction of total

weekly working hours by about 0.017, or 1.7 percentage points, which is similar to the 2SLS esti-

mates, and less than the OLS estimates. Having the second child and the third child make a mother

work less by about 1.5 percentage points and 1.4 percentage points, respectively. Even though

having the third kid reduces a mother’s fraction of weekly working hours compared to having the

second kid, the marginal reduction is less, since a marginal reduction of 0.2 percentage points for

having the second kid now goes down to 0.1 percentage points for having the third kid. This can

be seen as the "adaptation effect" as the mother adapts and works more effectively after having

27



the first kid. The partial effects of continuous explanatory variables can be obtained by taking the

derivatives of the conditional mean so that they would be comparable to the OLS, 2SLS estimates

and other alternative estimates.

All of the estimates in Table A.18 tell a consistent story about fertility. Statistically, having

any children reduces significantly a mother’s working hours per week. In addition, the more kids

a woman has, the more hours that she needs to forgo. The FRM treating the number of kids as

endogenous and as a count variable gives an evidence that the marginal reduction of women’s

working hours per week is less as women have additional kids. In addition, the FRM’s estimates,

taking into account the endogeneity and count nature of the number of children, are statistically

significant and more significant than the corresponding linear model’s and Tobit BS’s estimates.

One advantage of the fractional probit model with the two-step QMLE (NLS) method that we

are discussing in this part is that it fits the data better than alternative models or methods. Either R-

squared (S1 = SSE/SST = 1−
�

n�
i=1

(y1i− ŷ1)
2/

n�
i=1

(y1i− ȳ1)
2
�
) or the correlation squared (S2 =

{Corr[y1,E(y1|y2,z)]}2) can be used to compare the goodness-of-fit among these models. The

statistics on fractional probit-QMLE, NLS, Tobit BS, and Linear 2SLS are 0.116, 0.114, 0.090, and

0.088, respectively. This shows that the fractional probit model using the two-step QMLE(NLS)

methods has larger goodness-of-fit statistic(s) than that of the Tobit model using Blundell-Smith’s

procedure and the linear model using the 2SLS method.

It seems questionable that the standard errors under the columns of QMLE and NLS methods

(see Table A.18) are unexpectedly smaller than alternative methods’ standard errors if we compare

with the simulation results in Table A.1. There are two things we need to make clear: i) In the

simulation results, they are standard deviations instead of standard error estimates; and ii) Table

A.1 show the case of a strong IV whereas our empirical results does not have a strong IV. Therefore,

we need to look closely at Tables A.5 and A.6 where we have a weak IV or no IV. We also see the

pattern that standard deviations in Tables A.5 and A.6 are much smaller than alternative methods’

standard deviations and they are quite the same as what we observed in Table A.18. In addition,

we also note that the standard errors in Table A.18 use analytical variance instead of bootstrapping
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variance which is not directly comparable to other methods’ variances which are bootstrapping

variances. However, the simulation result in Table A.13 implies that the analytical variance used

in Table A.18 is quite reliable. For these reasons, we can conclude that the linear approximation

may provide a poor approximation for the count and fractional response variable in a simultaneous

model. It is also worth noting that standard deviations of nonlinear estimators are not increasing

when we go from a strong to weak IV case. In this particular fractional probit model, too much of

the identification appears to be off of the nonlinearity. Exclusion restriction seems not necessary

when a nonlinear model is used for the first stage, instead of the linear model. In other words,

nonlinearity is responsible for identification. However, it is widely considered preferable to have

an identification strategy that is robust to using a linear first stage regression. This is really a

matter of one’s judgment and identification off the nonlinearity is still identification. We only need

to worry about assumptions on functional form and the distribution of an error term.

1.5 Conclusion

I present the two-step QMLE and NLS methodology to estimate the fractional response model

with a count endogenous explanatory variable. The unobserved heterogeneity is assumed to have

an exponential gamma distribution, and the conditional mean of the fractional response model

is estimated numerically. The two-step QMLE and NLS approaches are more efficient than the

2SLS and Tobit with IV estimates. They are more robust and less difficult to compute than the

standard MLE method. This approach is applied to estimate the effect of fertility on the fraction

of working hours for a female per week. Allowing the number of kids to be endogenous, using the

data provided in Angrist & Evans (1998), I find that the marginal reduction of women’s working

hours per week is less as women have an additional kid. In addition, the effect of the number of

children on the fraction of hours that a woman spends working per week is statistically significant

and more significant than the estimates in all other linear and nonlinear models considered in this

chapter.
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Chapter 2

ESTIMATION OF A DYNAMIC TOBIT PANEL DATAWITH AN ENDOGENOUS

VARIABLE AND AN APPLICATION TO FEMALE LABOR SUPPLY

2.1 Introduction

This chapter considers the estimation of a dynamic Tobit model with an endogenous regressor in

the presence of unobserved heterogeneity in both stages and serial correlation in the first stage.

Practical issue motivating this study is concerned with the dynamics of female annual labor sup-

ply where we have a corner solution outcome and it is affected by its previous state and another

source of endogeneity. The estimation method proposed in this chapter is established based on a

combination of practical methods proposed in the literature. To deal with the first source of endo-

geneity, estimation methods of dynamic nonlinear models with a lagged dependent variable have

been proposed with fixed effects or random effects. The first method is case-specific, computation-

ally complex and often leads to estimators that do not converge at the usual
√

n rate. In addition,

partial effects for nonlinear model using this approach are not identified. Therefore, an appealing

and robust method which solves for unobserved effects and the well-known initial condition prob-

lem has been proposed by Wooldridge (2005). To correct for the second source of endogeneity, we

can use a control function approach, especially convenient and computationally easy proposed by

Smith & Blundell (1986) for limited dependent variables (LDV). As state dependence in a dynamic

nonlinear model can be overestimated without taking into account serial correlation, we also need

to correct for serial correlation.

The contribution of this chapter is to provide a computationally attractive estimation method

for a dynamic censored model with an endogenous regressor (besides the lagged dependent vari-

able) and serially correlated error terms. This method is readily applied to Panel Study of Income

Dynamics (PSID) data using the years 1980 to 1992. Based on the estimation result, I find the

evidence of persistence in US white female labor working hours over the period 1980-1992. It

30



suggests that the current labor supply of US women is affected by their past labor supply and

their initial condition of labor supply. Both observed and unobserved individual heterogeneity, and

serial correlation play an important role in the persistence of US female labor supply.

This chapter is organized as follows. The second section reviews: i) approaches to estimation

of a dynamic Tobit panel data model; ii) a control function approach to govern the endogeneity

problem and iii) methods to deal with serial correlation. It also discusses related issues on the

dynamics of the US female annual labor supply. The third section develops a model for dynamic

Tobit panel data with an endogenous regressor and the fourth section obtains average partial effects

(APE) estimates. The fifth section discusses how to correct for serial correlation in the first stage.

Empirical example follows in the next section. The last section is summarization and conclusion.

2.2 Literature Review

The approach and framework of this chapter are most closely related to the work proposed by

Giles & Murtazashvili (2010). They allow continuous, endogenous contemporaneous regressors

in a dynamic panel data model but their outcome of interest is a binary variable. Their estimator

is applied to analyze the impact of migrant labor markets on reducing the probability of falling

into poverty. Since the outcome variable in this chapter is continuous with a positive probability

as well as has a pileup at zero, the framework for a dynamic binary response model in Giles &

Murtazashvili (2010) has to be adjusted. A dynamic Tobit panel data model should be appropriate

in this case.

There have recently been many studies on a dynamic Tobit panel data model which allows for

unobserved heterogeneity and dynamic feedback. These two features of the dynamic panel data

model, however, often create difficulties in estimation. The main difficulty is that with nonlin-

earity, it is not obvious how to “difference away” the individual specific effects and how to use

instrumental variable type techniques.

Some developments have been made on estimating certain nonlinear dynamic models using

the “fixed-effects” approach, for example, the censored regression models (Honore (1993); Hon-
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ore & Hu (2001)), the sample selection models (Kyriazidou (2001)), the discrete choice models

(Honore & Kyriazidou (2000)), and the models with multiplicative individual effects (Chamberlain

(1992); Wooldridge (1997)). In particular, Honore (1993) proposed some solutions for estimating

a censored regression panel data model with individual fixed effects and lagged censored depen-

dent variables. Honore & Hu (2001) provided identification results for this approach under certain

conditions. And Honore & Hu (2004) allowed a lagged dependent variable and a set of strictly

exogenous variables. They constructed moment conditions for the panel data model with fixed

effects and lagged (censored) dependent variable with a restrictive assumption of non-negative co-

efficient on the lagged dependent variable. In addition, their approach will not result in estimates

for APEs. Even though semiparametric approaches do not make any assumptions on either unob-

served effects or initial conditions but they are case-sensitive and often lead to estimators that do

not converge at the usual
√

n rate (Arellano & Honore (2001)). For example, Honore & Kyriazi-

dou (2000) assumed that transitory errors are iid over time (ci is arbitrary dependent on Xit). If the

regressors are continuous or have high dimension then the estimator will have a convergence rate

slower than
√

n. The estimator will over-difference the data and understate the role of the initial

value of dependent variable, yi0. This causes downward biased coefficient on the lagged dependent

variable in finite samples and this bias will not decrease as T increases. More importantly, par-

tial effects on the conditional mean are not identified. The amount of state dependence therefore

cannot be determined.

An alternative of estimation method in nonlinear dynamic models is to use the “random-

effects” approach. This approach is faced with a notably difficult issue of initial condition problem.

Wooldridge (2005), Chay & Hyslop (1998), and Hsiao (1986) have an excellent summarization on

how this problem is treated in the literature. There are three alternative assumptions on initial con-

ditions. The first approach treats the initial condition as exogenous (Heckman (1978a,b, 1981b)).

Initial conditions are independent of the individual effects and can be ignored when estimating the

structural model. However, if either ci or Xit is a determining factor in the initial sample conditions,

then this approach will overstate the amount of state dependence in the process. Moreover, this is a
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very strong assumption and may not make sense. For example, ability is allowed to be uncorrelated

with initial earnings. The second approach treats the initial condition as in equilibrium (Card &

Sullivan (1988)). This restriction is unlikely to hold when observable covariates are time-varying

and important determinants of the outcome. The initial condition is allowed to be random and the

distribution of the initial condition given unobserved heterogeneity is specified. This model does

not allow for additional covariates (Bhargava & Sargan (1983); Hsiao (1986)). The third way is to

adopt a flexible reduced form specification: approximating initial sample observation (Heckman

(1981b)). This approach is computationally difficult to obtain estimates of parameters and APEs.

The first approach is viewed as “pure” random effect approach where ci is independent of zi

and yi0. In addition, unobserved effect is independent of exogenous variables. One can obtain

the density of (yi1, . . . ,yiT ) given yi0 and zi by integrating out ci. This method requires a strong

assumption of independence between the initial condition and the unobserved effect. The fourth

approach which is proposed by Wooldridge (2005) is the most unrestricted random effect model,

which was named "correlated" random effect. Compared with the fixed effect model, it may pro-

vide substantial efficiency gain (Hausman (1978)) given the correctly specified distribution of ci

and yi0. It recommends to obtain a joint distribution of (yi1, . . . ,yiT ) conditional on yi0 and zi;

rather than a distribution of (yi0, . . . ,yiT ) conditional on zi as in Heckman’s approach. However,

we need to specify a density of ci given yi0 and zi (motivated by the original idea from Cham-

berlain (1980)). The relationship between ci and zi makes this model named “correlated” random

effects where we allow a linear relationship between ci and zi and yi0. This approach requires

fewer computational efforts than Heckman’s technique and gives nice APEs. It also leads to sev-

eral advantages, we can choose a flexible conditional distribution of the initial condition instead of

approximation which results in computational difficulty. As a consequence, estimates are readily

computed and partial effects can be easily determined.

The study of limited dependent variables models with an endogenous regressor (instead of

lagged dependent variable) has a fairly long history. Most papers in the literature have assumed a

reduced form for the endogenous variable. Examples of this include the papers by Nelson & Olson
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(1978); Heckman (1978a); Amemiya (1979); Newey (1985, 1986); Blundell & Smith (1989); Vella

(1993); Blundell & Powell (2004); Das (2002) for cross sections and Vella & Verbeek (1999);

Labeaga (1999); Giles & Murtazashvili (2010) for panel data. In a linear model, such a reduced

form (or the “first stage”) can be thought of as a linear projection, and as such it is essentially

always well-defined and consistently estimated by the OLS estimator. This is not the case in a

nonlinear model where it is typically assumed that the first stage is a conditional expectation and

that the error is independent of the instruments. Smith & Blundell (1986) considered a static

Tobit model to analyze female labor supply in the UK in 1981 treating other household income as

endogenous. The insight of their paper is to substitute a consistent estimator for the residual in the

reduce-form equation into the structural model to control for the endogeneity. And this approach

is named control function approach which produces a two-step estimator based on the conditional

likelihood for the equation of interest. As this chapter studies a source of endogeneity not coming

from the lagged dependent variable, we will employ the control function approach that allows

for a correlation between unobserved effect and regressors, as well as between regressors and the

structural error.

As in Baltagi & Li (1991) and Baltagi & Wu (1999), estimation of a panel data model with

AR(1) disturbances is based on a feasible generalized least squares procedure. This method is

simple to compute and provides natural estimates of the serial correlation and variance components

parameters. The test for zero first-order serial correlation is also easily implemented. However, this

estimation procedure works very well for a linear panel data model but has not been executed in a

nonlinear panel data model. In order to deal with serial correlation in a dynamic nonlinear model,

Lee (1999) has proposed the simulated maximum likelihood method. This method is robust in

time-series context, however, it is quite computationally intensive. We will exploit the method

similar to Baltagi & Li (1991) to handle our first stage serial correlation.

One of the possible applications for this model is to study the persistence of the US female

labor supply taking into account endogenous features of observed covariates. The literature on

labor supply has examined female labor supply in many studies. Women’s labor supply is one
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of long-standing labor supply research (Heckman (1974); Heckman & Macurdy (1980)). Studies

of women labor supply is growing rapidly due to the increasing availability of panel data and

improved computational power and techniques. According to Heckman (1981a), state dependence

may arise if working leads to accumulation of human capital – skills, know-how, work ethic, etc.,

and not working leads to depreciation of human capital. Women who prefer work to leisure, who

are highly motivated and have high ability tend to stay in the work force for their entire working life

and their high labor supply persistence is exhibited. Differences in “search costs” associated with

different labor market states may also cause state dependence (Eckstein & Wolpin (1990); Hyslop

(1999)). There might be fixed cost to enter the labor market, raising the cost for individuals who

are not employed, relative to those already in the labor market.

Shaw (1994) studies the persistence of the US white female labor supply from 1967 to 1987

using a linear dynamic model with age stratification and she found persistence in their labor supply

because as women entered the labor force, they tended to become continuous workers. She also

found that the extent of persistence changed little over the 20 year period studied after controlling

for individual circumstances which are influential for early and late life periods such as number of

children, health status, age, and wages. However, she does not take into account the nature of the

working hours as a limited dependent variable. And she does not examine whether the persistence

comes from transitory shocks that might be serially correlated.

2.3 Model

I consider a panel data model with the latent variable as follows:

y∗1it = ρy1i,t−1+αy2it +xitβ + c1i +u1it , t = 1, . . . ,T, (2.1)

y1it = max(0,y∗1it), (2.2)

where y1it is observed and equal to zero with a positive probability while continuously distributed

over strictly positive values, y1i,t−1 is a lagged dependent variable and the dynamics are assumed

first order, y2it is an endogenous variable, xit is a 1×K vector of time-varying explanatory variables
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which can contain a constant term, ci1 is a time-constant unobserved heterogeneity and uit1 is an

idiosyncratic error. β is a K × 1 vector of parameters, ρ and α are scalar parameters. i indexes

a random draw from the cross section with sample size N and t denotes a particular time period

within a number of fixed time periods T . For simplicity, we assume a balanced panel. In the

followings, we have i = 1, . . . ,N, and t = 1, . . . ,T .

We assume that model (2.1) is correctly specified dynamically and the error term is serially

uncorrelated:

u1it |y1i,t−1, . . . ,y1i0,xi,c1i ∼ Normal(0,σ2
u1
). (2.3)

If we allow the error term to be serially correlated, for example, allowing for an AR(1) process,

we would want to include not only a lagged dependent variable but also lags of x as well. In this

case, we include a single lag of y1, contemporaneous y2 and possibly of x’s.

In model (2.1), xit is assumed to be strictly exogenous and y2it is allowed to be endogenous.

Let zit = (xit ,z1it) be a set of strictly exogenous variables, a 1×L vector of instrumental variables,

where L > K and z1it is excluded from (2.1). Using the control function approach to model the

endogeneity (see Smith & Blundell (1986); Rivers & Vuong (1988)), we can assume a linear

reduced form for y2it as follows:

y2it = zitγ + c2i +u2it , (2.4)

where u2it is an idiosyncratic serially uncorrelated error with Var(u2it) = σ2
u2

and c2i is an unob-

served effect. Using Mundlak (1978)’s device, we allow c2i = ziδ +a2i and rewrite y2it as:

y2it = zitγ + ziδ + v2it , (2.5)

where v2it = a2i +u2it ; zi = T−1
T�

t=1
zit and a2i|zi ∼ Normal(0,σ2

a2
). We can also add time dum-

mies into this reduced form.

Now it boils down to the assumption that we need to make for the conditional distributions of

u1it and c1i. We will discuss first about u1it . As in the cross-sectional case discussed in Smith &

Blundell (1986), we can allow a joint normality between u1it and v2it . However, v2it is serially

correlated because of the presence of the heterogeneity, a2i, therefore, this will make the serial
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correlation issue in the estimation with dynamics difficult to handle. As a result, we will start with

the assumption of joint normality of u1it and u2it as suggested in Giles & Murtazashvili (2010)

since u2it can be naturally assumed to be serially uncorrelated. As we will see in the discussion

below, this assumption is reasonable in our context of dynamics in the structural equation. We

write:

u1it = θ1u2it + e1it , (2.6)

where θ1 =Cov(u1it ,u2it)/Var(u2it) and e1it ∼ Normal(0,σ2
e1).

(u1it ,u2it) is allowed to have a zero mean, bivariate normal distribution; zi is strictly exogenous

in both equation (2.1) and (2.5) or in other words, u1it and u2it are independent of zi.

e1it is independent of zi and u2it . We can assume that e1it serially uncorrelated because u2it

is serially uncorrelated and independent of zi in addition to the fact that u1it is free of serial cor-

relation. Even if u2it is serially correlated, we can correct for this serial correlation without any

hardship. We will discuss about this issue in more details later.

Regarding the issue of the endogeneity of y2it , let us rewrite equation (2.6):

u1it = θ1v2it −θ1a2i+ e1it . (2.7)

We will see now the direct relation between u1it and v2it , through that we can account for

endogeneity of y2it in period t. In addition, u2it is free of serial correlation, then from equation

(2.6), e1it is not correlated with u2i,t−1 and v2i,t−1, as a result. With the same idea for past values

of v2it , y2it will become sequentially exogenous in the estimating equation. With equation (2.7),

we now have to handle the heterogeneity issues, not only c1i but also a2i. Rewrite the structural

equation under the assumption from equation (2.7), we have:

y∗1it = ρy1i,t−1+αy2it +xitβ + c1i +θ1v2it −θ1a2i+ e1it , t = 1, . . . ,T,

or

y∗1it = ρy1i,t−1+αy2it +xitβ + si+θ1v2it + e1it , t = 1, . . . ,T, (2.8)

where si = c1i −θ1a2i, which is a composite error.
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Using Wooldridge-Chamberlain’s device (2005, 1980), with the motivation of "correlated" ran-

dom effects dynamic model proposed by Wooldridge (2005) to handle the initial condition prob-

lem, we can specify si as a linear function of y1i0 and zi in order to use the standard random effects

Tobit software without approximating the density function of si. However, now our regressors in

equation (2.8) extends to include v2it (which is not in zi), therefore, we will include v2i into the

linear function that describe the relationship of si and the initial condition as well as explanatory

variables in all time periods.

si = θ2y1i0+ ziθ3 +v2iθ4 +a1i, (2.9)

where

a1i|(y1i0,zi,v2i)∼ Normal(0,σ2
a1
). (2.10)

This is a reasonable assumption because unobserved effect (such as motivation, ambition) is

correlated with the initial condition of the outcome of interest (working hours). In addition, as the

model has a lagged dependent variable, y1i,t−1 and c1i has some source of correlation. In order to

conserve the degree of freedom or to reduce the time of computation which will be important in

some applied work with a substantial number of explanatory variables, we can assume that different

time periods of explanatory variables have equal impacts on si and using Mundlak’s device, we can

restrict our assumption (2.9) to: si = θ2y1i0 + ziθ3 +v2iθ4 +a1i.

We can see that now v1it = θ2yi0+ziθ3+v2iθ4+θ1v2it +a1i+e1it . Substitute that into equa-

tion (2.1), hence, we readily obtain:

y∗1it = ρy1i,t−1+αy2it +xitβ +θ2y1i0+ ziθ3+v2iθ4+θ1v2it +a1i+ e1it , t = 1, . . . ,T, (2.11)

and in a shorter version, we have:

y1it = max(0,w1itλ1+θ2y1i0+ ziθ3+v2iθ4 +θ1v2it +a1i + e1it), t = 1, . . . ,T, (2.12)

where w1it = (y1i,t−1,y2it ,xit) and λ1= (ρ ,α,β ′)′.
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Based on the estimating equation (2.11), with the framework suggested in (Wooldridge, 2002,

section 13.9) and Wooldridge (2005), we can write the density as follows:

ft(y1t |y1,t−1,y2t ,y10,z,v2,a1;λ ) = f0t f1t , (2.13)

where

f0t =
�
1−Φ[(w1tλ1+θ2y10+ zθ3+v2θ4 +θ1v2t +a1)/σe1 ]

�1[y1t=0]
,

and

f1t = (1/σe1)φ [(y1t −w1tλ1−θ2y10− zθ3 −v2θ4 −θ1v2t −a1)/σe1]
1[y1t>0].

Thus the density of (y1i1,y1i2, . . . ,y1iT ) given (y1i0 = y10,zi = z,v2i = v2,a1i = a1) is:

T 
t=1

ft(y1t |y1,t−1,y2t ,xt ,y10,z,v2,a1;λ ), (2.14)

and since we do not observe a1i, in order to estimate λ , we need to integrate out a1 from this den-

sity. Given a1i|(y1i0,zi,v2i) ∼ Normal(0,σ2
a1
), we can obtain the density of (y1i1,y1i2, . . . ,y1iT )

given (y1i0 = y10,zi = z,v2i = v2) as:�
R

�� T 
t=1

ft(y1t |y1,t−1,y2t ,xt ,y10,z,v2,a1;λ )


�(1/σa1)φ(a1/σa1)da1, (2.15)

which has exactly the same structure as in the standard random effects Tobit model, but the ex-

planatory variables at time period t are:

wit = (y1i,t−1,y2it ,xit ,y1i0,zi,v2i,v2it). (2.16)

Now we can exploit the standard random effects Tobit software for estimation. We add yi0,zi,�v2i

and �v2it as additional explanatory variables in each time period and estimate λ ,θ 3,θ4 and σ2
e1

,

where �v2i = (�v2i1,�v2i2, . . . ,�v2iT ).

Based on the above model development, the estimation procedure for "correlated random ef-

fect" dynamic Tobit model is proposed as follows.

Estimation Procedure:
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(i) Estimate the reduced form for y2it using the pooled OLS of y2it on zit , zi, and time dummies.

Obtain the residuals, �v2i and �v2it .

(ii) Use the random effect Tobit of y1it on �wit and get all the estimates of interest, �λ , where�wit = (y1i,t−1,y2it ,xit ,y1i0,zi,�v2i, �v2it).

2.4 Average Partial Effects

In order to compare the magnitude of the estimate obtained in a nonlinear model from the previous

section with a linear estimate, we need to obtain the marginal effect or the average partial effect

(APE) of the explanatory variable of interest. Following Wooldridge (2002, 2005), the APEs are

computed as the derivatives or differences of:

E[m(w1tλ1+θ2y1i0 + ziθ3+v2iθ4+θ1v2it +a1i,σ2
e1
)], t = 1, . . . ,T, (2.17)

where m(g,σ2
e1
) = Φ[g/σe1]g+σe1φ [g/σe1] under the notation that

g= w1tλ1+θ2y1i0+ ziθ3+v2iθ4 +θ1v2it +a1i,

and in the argument of the expectation operator, variables with a subscript i are random and all

others are fixed.

Using iterated expectation, expression (2.17) can be rewritten as:

E{E[m(w1tλ1 +θ2y1i0 + ziθ3+v2iθ4+θ1v2it +a1i,σ2
e1
)|y1i0,zi,v2i]}, (2.18)

where w1t are fixed values here and the conditional expectation is with respect to the distribution

of (y1i0,zi,v2i,a1i). Since a1i and (y1i0,zi,v2i) are independent, and a1i ∼ Normal(0,σ2
a1
), the

conditional expectation in equation (2.18) is obtained by integrating

m(w1tλ1+θ2y1i0+ ziθ3+v2iθ4+θ1v2it +a1i,σ2
e1
),

over a1i with respect to the Normal(0,σ 2
a1
) distribution.
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Since

m(w1tλ1+θ2y1i0+ ziθ3+v2iθ4 +θ1v2it +a1i,σ2
e1
)

is obtained by integrating

max(0,w1tλ1+θ2y1i0 + ziθ3+v2iθ4+θ1v2it +a1i+ e1it)

with respect to e1it over the Normal(0,σ2
e1
) distribution, the conditional expectation in equation

(2.18) is:

m(w1tλ1+θ2y1i0+ ziθ3+v2iθ4 +θ1v2it ,σ2
a1

+σ2
e1
). (2.19)

For a given value of w1t (w0
1), a consistent estimator for expression (2.19) can be obtained by

replacing unknown parameters by consistent estimators:

N−1
N�

i=1
m(w0

1λ̂1+ θ̂2y1i0+ ziθ̂3+v̂2iθ̂4+ θ̂1v̂2it , σ̂2
a1

+ σ̂2
e1
), (2.20)

where v̂2it are the first stage pooled OLS residuals from y2it on zit , zi and time dummies, and

v̂2i = (v̂2i1, v̂2i2, . . . , v̂2iT ).

The APEs are obtained by taking derivatives or differences of expression (2.19) (in which w0
1

is replaced with w1t) with respect to w1t and the estimator of these APEs will be obtained based

on those derivatives and differences and estimated parameters.

For example,�APE of y1,t−1 is:

�ρ���(NT )−1
N�

i=1

T�
t=1

Φ[(w1t λ̂1 + θ̂2y1i0 + ziθ̂3+v̂2iθ̂4+ θ̂1v̂2it)/(σ̂2
a1

+ σ̂2
e1
)]

��� , (2.21)

and�APE of y2t is:

�α���(NT )−1
N�

i=1

T�
t=1

Φ[(w1t λ̂1+ θ̂2y1i0+ ziθ̂3+v̂2iθ̂4+ θ̂1v̂2it)/(σ̂2
a1

+ σ̂2
e1
)]

��� . (2.22)

2.5 Serial Correlation Correction

As discussed in the previous part, the essential assumption that we made in equation (2.6) requires

u2it free of serial correlation. If u2it is serially correlated, then we must correct for the serial

41



correlation in e1it , otherwise our estimator will not be consistent. For simplicity, assume that u2it

follows an AR(1) process, similar to the discussion in Giles & Murtazashvili (2010):

u2it = ηu2i,t−1+ e2it , t = 1, . . . ,T, (2.23)

and e2it is a white noise error with Var(e2it) = σ2
e2

.

We have:

y2it = w2itγ2 +a2i+u2it , (2.24)

where w2it = (zit ,zi) and γ2 = (γ ′,δ ′)′ or we can write:

y2i = w2iγ2+ v2i. (2.25)

Since u2it has serial correlation, e1it is serially correlated as we can see below:

ηe =Cov(e1it ,e1i,t−1) =Cov(u1it −θ1u2it ,u1i,t−1−θ1u2i,t−1),

ηe =Cov(u1it −θ1ηu2i,t−1−θ1e2it ,u1i,t−1−θ1u2i,t−1),

ηe = ηθ2
1Var(u2i,t−1),

ηe 	= 0 unless η = 0 or θ1 = 0.

To remove serial correlation in e1it , our strategy is to use a transformation procedure and obtain

the first-stage residual free of serial correlation. Define the variance-covariance matrix of v2i as:

Γ = E(v2iv′2i) = σ2
a2
jT j′T +σ2

u2
Ψ(η), (2.26)

where Γ is a T ×T positive definite matrix when −1 < η < 1 and I assume that in what follows.

This matrix is necessarily the same for all i because of the random sampling assumption in the

cross section. jT is a T ×1 vector of ones, and Ψ(η) is defined as below:

Ψ(η) =

��������������������

1 η η2 . . . ηT−3 ηT−2 ηT−1

η 1 η . . . ηT−4 ηT−3 ηT−2

η2 η 1 . . . ηT−5 ηT−4 ηT−3

...
...

... . . .
...

...
...

ηT−2 ηT−3 ηT−4 . . . η 1 η

ηT−1 ηT−2 ηT−3 . . . η2 η 1


�������������������
. (2.27)
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We also note that σ 2
u2

= σ2
e2
/(1−η2). After obtaining consistent estimates of η,σ 2

a2
,σ2

u2
(and

σ2
e2

), we can transform v2it into v∗2it which is free of serial correlation. With this new serially un-

correlated error (v∗2it ), we can transform u2it to a new serially uncorrelated u∗2it using this equation:

u∗2it = v∗2it −a2i. This will guarantee that our new e1it (e∗1it) is free of serial correlation as a result

of: e∗1it = u1it − θ1u∗2it . e∗1it is now serially uncorrelated, independent of zi and u∗2it , and has a

normal distribution: Normal(0,σ ∗2
e1
).

We will briefly describe the transformation procedure as follows:

Using the fact that j′T jT = T , Γ is rewritten as:

Γ = Tσ2
a2
jT
!
j′T jT
"−1 j′T +σ2

u2
Ψ(η) = Tσ2

a2
PT +σ2

u2
Ψ(η), (2.28)

where PT ≡ IT −QT ;QT = IT − jT
!
j′T jT
"−1 j′T . Define τ1 = σ2

u2
Ψ(η)/[Tσ2

a2
+σ2

u2
Ψ(η)], we

can write:

Γ =
�
Tσ2

a2
+σ2

u2
Ψ(η)

�
(PT + τ1QT ). (2.29)

After some algebra, we can show that: (PT + τ1QT )
−1/2 = (1− τ)−1[IT − τPT ] where τ =

1−√τ1.

Hence,

Γ−1/2 =
�
Tσ2

a2
+σ2

u2
Ψ(η)

�−1/2
(1− τ)−1[IT − τPT ] =

�
σ2

u2
Ψ(η)

�−1/2
[IT − τPT ], (2.30)

where τ = 1−
�

σ2
u2

Ψ(η)/[Tσ2
a2

+σ2
u2

Ψ(η)]
�1/2

.

Define CT ≡ [Ψ(η)]−1/2 [IT − τPT ] and transform equation (2.25) into:

#y2i = $w2iγ2 + #v2i, (2.31)

by multiplyingCT to both sides of equation (2.25).

Now the variance matrix of #v2i is:

E(#v2i#v′2i) = CT ΓCT = σ2
u2
IT . (2.32)

Therefore we have transformed v2i into v∗2i(= #v2i) which is serially uncorrelated and ho-

moskedastic by using: #v2i = CTv2i. (2.33)
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The estimator of CT is: �CT = �σu2
�Γ−1/2. (2.34)

We can see that, in the special case when η = 0 (no serial correlation), Ψ(η) = IT and CT =

[IT − τPT ].

Now we can adjust equation (2.9) under the adjusted assumption that:

s∗i = θ2y1i0 + ziθ3 +v∗2iθ4+a∗1i, (2.35)

where a∗1i|(yi0,zi,v∗2i)∼ Normal(0,σ∗2
a1
) and obtain:

y∗1it = ρy1i,t−1+αy2it +xitβ +θ2y1i0+ ziθ3+v∗2iθ4+θ1v∗2it +a∗1i+ e∗1it , t = 1, . . . ,T, (2.36)

where v∗2i = (v∗2i1,v
∗
2i2, . . . ,v

∗
2iT ) and we will estimate all parameters in the second stage using

standard random effects Tobit software, based on the density of (y1i1,y1i2, . . . ,y1iT ) given (y1i0 =

y10,zi = z,v∗2i = v∗2) as:�
R

�� T 
t=1

ft(y1t |y1,t−1,y2t ,xt ,y10,z,v∗2,a∗1;λ ∗)

� (1/σ∗

a1
)φ(a∗1/σ∗

a1
)da∗1, (2.37)

which has exactly the same structure as in the standard random effects Tobit model, but the ex-

planatory variables at time period t are:

w∗
it = (y1i,t−1,y2it ,xit ,y1i0,zi,v∗2i,v

∗
2it). (2.38)

Now we can propose an estimation procedure for “correlated random effect” dynamic Tobit

model with first-stage residual serial correlation correction.

2.5.1 Estimation Procedure

(i) Run the random effect linear regression with an AR(1) disturbance of y2it on w2it (with time

dummies) and obtain the residuals �v2it and �v2i. Obtain �CT and transform �v2it and �v2i into�v∗2it and �v∗2i based on the above transformation procedure.

(ii) Use the random effect Tobit of y1it on �w∗
it and get all the estimates of interest, λ̂∗, where�w∗

it = (y1i,t−1,y2it ,xit ,y1i0,zi,�v∗2i, �v∗2it).
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2.5.2 Average Partial Effects

As the errors in the first stage are serially correlated, we also need to adjust the estimates of APEs.

Instead of equation (2.18), we start with:

E[m(w1tλ1+θ2y1i0+ ziθ3+v∗2iθ4 +θ1v∗2it +a∗1i,σ
2∗
e1
)], t = 1, . . . ,T, (2.39)

and following the same discussion as the case with no serial correlation, we can obtain APEs with

respect to y1,t−1, y2t , and xt by taking derivatives or differences of:

N−1
N�

i=1
m(w1t λ̂1+ θ̂2y1i0+ ziθ̂3+v̂∗2iθ̂4 + θ̂1v̂∗2it , σ̂

2∗
a1

+ σ̂2∗
e1
). (2.40)

If the null hypothesis of no endogeneity and no serial correlation in the first stage is rejected,

the standard errors in the second stage should be adjusted for the first stage estimation by using

delta method or bootstrapping. In addition, we also need to obtain asymptotic standard errors

for the APEs. Appendix E shows how to obtain adjusted standard errors in the second stage and

asymptotic standard errors for the APEs using delta method.

2.5.3 Comparison

We will compare the methods proposed in the previous section with the traditional linear model

and the model without serial correlation correction.

1. Linear Dynamic Model with an endogenous explanatory variable

We estimate model (2.1) using a generalized method of moments (GMM) system approach

(Arellano & Bover (1995)) using both level and differenced instruments.

2. Correlated Random Effect model (without serial correlation correction)

We estimate model (2.1) with a correlated random effect model:

y∗1it = ρy1i,t−1+αy2it +xitβ +θ2y1i0+ ziθ3 +v2iθ4 +θ1v2it +a1i + e1it , t = 1, . . . ,T.

Estimation Procedure:
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(i) Estimate the reduced form for y2it using the pooled OLS of y2it on zit , zi and time dummies.

Obtain the residuals, �v2i and �v2it .

(ii) Use the random effect Tobit of y1it on �wit and get all the estimates of interest, �λ , where�wit = (y1i,t−1,y2it ,xit ,y1i0,zi,�v2i, �v2it) using the notation introduced in the previous section.

Using Mundlak’s simpler version of Chamberlain’s device (1980), in those estimating equa-

tions above, we can use v2i instead of v2i since the Mundlak’s model can conserve on degrees of

freedom, which is important especially when T is large in a dynamic model.

2.6 Empirical Example

The estimation procedure described above can be used in many applications. Here we apply to

analyze the US female labor supply. In a panel data study, working hours exhibit a dynamic behav-

ior and the persistence may be contaminated by heterogeneity, endogeneity and serial correlation.

According to Heckman and MaCurdy’s labor supply model, the censored model should be appro-

priate. The challenge is to invent a new econometric device to estimate a dynamic censored model

with an endogenous variable besides the lagged dependent variable. And this new device has been

developed in the previous section.

Endogeneity of experience is a potential problem because there are two sources of endogeneity

here. First, experience is correlated with ability. Second, experience is constructed based on

working hours and exogenous shock to working hours in the past (through wages) is correlated

with the number of years of experience we observe today. Therefore, experience is not viewed as

strictly exogenous after conditioning on unobserved heterogeneity.

Having controlled for unobserved effects does not follow that we have unbiased estimates of

state dependence, for two reasons. First, women with high average lifetime hours of work, and

thus high xit , may have become permanent workers because their early experience in the market

demonstrated to them the need for continuous hours of work to build and maintain their human

capital investment. The result is that "human capital acquired through work experience raises
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the future probability of participation" (see Heckman & Willis (1974), initial definition of state

dependence). In this case, the estimated state dependence parameter is biased downward towards

0, because state dependence operates entirely through a high lifetime ci. State dependence is the

coefficient on lagged hours: a positive coefficient on lagged hours implies that past hours have

a positive impact on future hours. If ci is omitted from the regression, the coefficient on lagged

hours will be biased upward by the omitted variable bias, and therefore the importance of state

dependence will be over-estimated.

The second problem is that state dependence cannot be separated from serially correlated er-

rors. In other words, if shocks to hours are correlated over time, they will be picked up by the

lagged hours variable, and state dependence will be biased. Hyslop (1999) found that transitory

errors negatively correlated over time, suggesting failing to control for serially correlated transitory

errors would lead to underestimation of state dependence.

2.6.1 Data

One application of the model introduced in the previous part is to study the dynamics of female

labor supply. We can use the data from the Panel Study of Income Dynamics (PSID) for the

years 1980-1992. In this study, we only focus on 864 white female who were either heads of

households or spouses and their age is from 18 to 65. Women who are self-employed, in army and

agricultural workers are excluded. Observations with inconsistent or missing data are dropped.

More specifically, if one of the following happened in at least one year between 1976-1992, then

the person will be dropped: self-reported age exceeded the age constructed using information on

the year of birth by more than two years or self-reported age was smaller than constructed age by

more than one year; the person was less than 18 or more than 65 years old; the person had missing

experience; the person’s age exceeded her/his experience by less than six years; spouse’s weeks

of unemployment was missing; the person reported positive work hours and zero earnings; the

change in years of schooling between 1976-1985 was negative and exceeded one year in absolute

value. In cases when the reported decrease in years of schooling was on year, the minimum of the
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two reported values was assigned in all periods. The final sample consists of 11,232 observations.

The dependent variable in the structural equation (2.1), y1it , is female annual working hours.

The vector of explanatory variables includes the lagged dependent variable (y1i,t−1), an endoge-

nous variable, experience, (y2it), and a set of exogenous variables (xit): education (measured in

years of schooling), number of small children ages in 3 categories: 0-2, 3-5, and 6-17, marital

status, husband’s employment status, and non-wife income. Experience is constructed by taking

the information about prior experience from 1976 survey year or from the year when the indi-

vidual entered the sample for the first time, and then updating this information annually. In each

year, experience was increased by one if the annual work hours were 2000 or more, and it was

increased by the number of hours worked divided by 2000 if the annual work hours were less than

2000. Education is considered to be strictly exogenous conditional on the unobserved effect while

experience is considered endogenous.

The set of instruments, zit , contains years of schooling, age and its square, an indicator of

marital status, number of children with three categories of ages in the family, husband’s employ-

ment status, and non-wife income; their time averages and time dummies. Table B.1 reports the

summary statistics for all variables used in the analysis.

Figure B.1 shows the distribution of women’s working hours during the period 1980-1992.

Around 27 percent of women did not work at the time of the survey. On average, women work for

1124 hours per year, which is about 21 hours per week (including women who do not work). The

next largest group consists of women who work for 2000 hours per year, which is equivalent to 40

hours per week, accounting for 12 percent. The pattern with some pile up at zero hour and 2000

hours suggests that hours of work are sensitive to changes in the structure of both observed and

unobserved individual heterogeneity. Figures B.2-B.5 illustrate the relationship between women’s

working hours and her experience, and her children number with 3 groups of ages, respectively.

All of these relationships appear to fit our prior expectations.

In our sample, there are 2,978 women worked zero hours, opposed to 8,053 women worked

for wage during the year with positive hours, ranging from 2 to 5,168. Hence, annual hours is a
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reasonable candidate for a Tobit model.

2.6.2 Estimation and Result

We are interested in estimating the dynamic Tobit model of working hours for a woman i at time t:

Hoursit = max(0,ρHoursi,t−1+αExperienceit +xitβ + c1i +u1it), (2.41)

where Hoursit is annual working hours for a woman i at time t, which are determined by her annual

working hours in the previous period, Hoursi,t−1, her experience, Experienceit , and a vector of

her characteristics including age, education, number of children, marital status and her husband’s

characteristics. The lagged dependent variable is included to capture the dynamic feature of work-

ing hours, in the sense that current working hours may also depend on past working hours, all

others held constant. This dependence is due to things such as the accumulation of skills derived

from past work. From this model, we are interested in estimating the coefficients on Hoursi,t−1

and Experienceit . The coefficient on Hoursi,t−1 will shed light on the US female labor supply

persistence over the period 1980-1992.

As women’s experience is considered endogenous in this model, we will instrument the en-

dogenous regressor with her age and its square because there is a positive significant correlation

between experience and age and age is strictly exogenous in the structural equation. The first-

stage regression estimates and their statistics are reported in Table B.2. The instruments are jointly

significant on experience with the F-statistics are 196.26.

We first test for the endogeneity of fertility using the Hausman (1978) test. Because experience

and working hours are simultaneously determined, the exogeneity assumption of experience has to

be tested. A test for endogeneity of y2it can be obtained by adding the first-stage residuals to the

second stage estimation and obtain the t-statistic on �v∗2it . Table B.3 shows the significance of �v2it

and �v∗2it suggests that the hypothesis of an exogenous experience is rejected.

Table B.4 reports estimation results (of average partial effects) using the correlated random ef-

fect approach with and without serial correlation correction. The estimation result for the dynamic
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linear model using GMM method is also shown for comparison. Since the result in Table B.4 is

consistent with the result in Table B.3, we are going to discuss more about the results in Table

B.3. In all models (columns (1)-(3)), the coefficients for lagged working hours are significant and

positive, suggesting positive state dependence of labor supply for women. The positive sign of the

lagged working hours shows that women are likely to continue to be workers if they are already

workers or continue to be unemployed if she does not work. The decline in the value of the co-

efficient on lagged working hours from model (1) to model (3) explains the upward bias of state

dependence in women’s working hours without taking into account the censored and unobserved

heterogeneity issues as well as the serial correlation of unobserved factors. Unobserved hetero-

geneity which correlates with women characteristics contributes the largest to this upward bias,

next is the ignorance of zero working hours issues and last is the serial correlation of unobserved

factors.

In these models, from column (1) to column (3), in general, experience has positive influence

on working hours. The magnitude is larger when we controlled for serial correlation. It shows

that if women work continuously and accumulate a substantial amount of experience, the more

experience they have, the more hours they work.

Compare to columns (1) and (2), we control for an extra source of serial correlation (the transi-

tory shock) in experience besides unobserved heterogeneity (the permanent shock). The coefficient

on experience is quite larger and its standard error is smaller. The intuition is as follows. Consider

a positive (transitory) shock to experience. With a high degree of positive serial correlation and a

rise of experience in the first period, experience will continue to rise in the next period and become

very large over a long time period. This explains a higher coefficient on experience compared to

those on (1) and (2). After correcting for the serial correlation in (3), even though in the first stage,

CRESC estimates are more efficient than CRE estimates and we can see that the standard error on

experience is smaller than those on (1) and (2).

Other explanatory variables might be affected using CRESC (for example, number of children)

because when a lagged dependent variable entered into the equation, which is the proxy of the
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dependent variable, in the presence of the serial correlation of the endogenous variable, the higher

effect of experience may pick up some of the effects of unmeasured variables as well as observed

covariates. As a result, the coefficients on the lagged dependent variable and children (as well as

mother’s education) are reduced and the significance of children might change. Even though a

linear model does not require any serial correlation assumption of experience, the coefficient of

children is more appealing in a nonlinear model where we use CRESC. We also note that children

is allowed to be correlated with heterogeneity but not with the shocks to labor supply so this

assumption is not conflicting with the endogeneity assumption in Chapter 1 where we deal with the

cross section and allow correlation between children and heterogeneous preference. In this chapter,

we treat children exogenous with respect to shocks rather than with respect to heterogeneity.

It is also indicated from the coefficients on small children from 0-2 and 3-5 that small kids have

statistically significant negative effects on mothers’ working hours. There is an evidence from the

result that children aged 6 to 17 do not affect negatively to women working hours and the statistics

are not significant in models (2) and (3).

The initial value of working hours illustrates the correlation between the unobserved effect and

the initial condition. The coefficient on the initial value of working hours is statistically significant

in both models (2) and (3). It suggests a strong state dependence of labor supply for women for a

long period.

2.7 Conclusion

In this chapter, an attractive and easy-to-compute method for estimating dynamic Tobit panel data

models with endogenous regressors (besides the lagged dependent variable) is proposed. This

approach requires fewer computational efforts than Heckman’s technique and gives nice APEs. It

also leads to several advantages, for example, we can choose a flexible conditional distribution

of the initial condition instead of approximation which results in computational difficulty. As

a consequence, estimates are readily computed and partial effects can be easily determined. In

addition, the control function approach is used to control for the endogeneity which is not coming
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from the lagged dependent variable. This approach allows for correlation between unobserved

effect and regressors, as well as between regressors and the structural error. To handle the presence

of heterogeneity that causes serial correlation, the correction procedure is added and the serially

uncorrelated residual in the first stage is obtained.

This proposed method discussed in this chapter provides useful tool for applied economic re-

search. The method can be applied to various economic applications, such as estimation of labor

supply models, housing expenditure models, or children’s educational expenditure models, etc.

The proposed estimation procedure is readily applied to Panel Study of Income Dynamics data

from 1980 to 1992. Based on the estimation result, I find a strong evidence of persistence in the

US white female labor working hours after controlling for censoring, endogeneity and serial cor-

relation issues. I also find that the initial condition of female labor supply is statistically significant

and has positive impact on women working history. It suggests that the current labor supply of US

women is affected by their past labor supply and their initial condition of labor supply.
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Chapter 3

AN EXPONENTIAL TYPE II TOBIT PANEL DATAMODEL WITH BINARY

ENDOGENOUS REGRESSOR - APPLICATION TO ESTIMATING THE EFFECT OF

FERTILITY ONMOTHERS’ LABOR FORCE PARTICIPATION AND LABOR SUPPLY

3.1 Introduction

There has been a growing interest in the estimation of nonlinear panel data models with discrete

endogenous variables. Most of the studies focus on binary response or count models with an

endogenous dummy variable. However, there has not been any method suggested in a panel data

model with a corner solution response. Moreover, there is a correlation between the probability

of a positive outcome and itself. Heterogeneity is also present in the model. Therefore, the goal

of this chapter is to develop a panel data estimation method for a model with a corner solution

response and a binary endogenous variable in the presence of heterogeneity and the mentioned

correlation.

Many approaches have been proposed to handle switching endogeneity in models with lim-

ited dependent variables. In a limited dependent variable panel data model, the main difficulty

lies with the nonlinear functional form and we cannot difference away the unobserved effect. Full-

information maximum likelihood can be used but this approach is intensively computational which

makes it unattractive. Semiparametric or nonparametric estimators are based on distributional

weaker assumptions; nevertheless, these estimators give scaled index coefficients and not aver-

age partial effects. The simplest approach is 2SLS, however, this method ignores nonlinearity in

both the first and second stage. It might provide a good approximation but the two assumptions

that a binary endogenous variable is expressed as a linear function and a binary or censored de-

pendent variable is a linear function of a binary endogenous variable are unrealistic. Especially,

this approach ignores the distribution of a censored variable where there is a massive pile of ze-

ros. Econometricians came up with the control function approach to handle endogeneity so that
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nonlinearity is present in the second stage but linearity is still endured in the first stage. In this

chapter, I propose a simple two-step estimator that keeps the nonlinearity assumption in both the

first and second stage, and this method is more computationally attractive than the full-information

maximum likelihood approach.

The model and estimation can be used in various economic applications. For example, we can

apply it to study the effects of union status on labor market outcomes, the effects of childbearing

on women’s labor supply and many studies on health economics, business or epidemiology where

binary endogeneity and the corner solution response occur. There are enormous studies on the

effect of fertility on women’s labor force participation (LFP) and labor supply. It is important to

understand how the childbearing decision affects female participation in the labor force and how

much she will work in a system of related equations. In this chapter, I will consider the fertility

decision an endogenous dummy variable that influences both women’s LFP and hours of work.

The labor supply equation is the amount equation with a corner solution response while the LFP

equation is the so-called participation equation. Using this system of equations, we can correct for

both corner solution and endogenous problems in the study of women’s labor supply.

The contribution of this chapter is to propose a simple two-step estimator which is robust and

can be easily implemented for a Tobit panel data model in the presence of discrete endogeneity and

heterogeneity. The main estimation strategy is to add correction terms so that the endogeneity and

corner solution bias will be removed. This approach allows a joint distribution of the endogenous

dummy regressor and the unobserved factors that affect both the amount and participation equa-

tions. I propose a two-step estimation method in which the first stage exploits a bivariate probit

model for the relationship between the dummy endogenous variable and the participation decision.

For the amount equation, by using an Exponential Type II Tobit (ET2T) model (see more of Type II

Tobit models in (Wooldridge, 2010, chapter 17)), we can ensure that predicted value of log(hours)

is positive, and there is a correlation between unobserved effects in both the amount and partici-

pation equation. In addition, exclusion restriction is used in order to identify the parameters in the

structural equation. In other words, we allow some variables in the participation equation which
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are not determinants in the amount equations. Explanatory variables are permitted to be correlated

with the heterogeneity. Finally, on the empirical side, it also contributes to the study on the effect

of having a newborn on women’s LFP and labor supply, taking into account their unique culture

and characteristics, using Vietnamese Household data in recent years.

This chapter is organized as follows: The second section reviews approaches to the estima-

tion of a model with a binary endogenous explanatory variable and a limited dependent variable.

It also discusses the literature on the effect of fertility on female labor supply and female labor

participation. The third section develops a model for Tobit panel data with a dummy endogenous

regressor in the presence of correlated participation and heterogeneity. An estimation procedure is

proposed and average treatment effects are obtained. The next section gives an overview of data

and estimation results for an empirical example. The last section is summarization and conclusion.

3.2 Literature Review

There have been many studies on limited dependent variable models with a dummy endogenous

variable. These models were first pioneered by Heckman (1978a) using joint normal distributional

assumptions and maximum likelihood (ML) method. Many other works use the conditional ML

framework such as Amemiya (1978, 1979); Newey (1986, 1987); Blundell & Smith (1989) but with

different procedures: generalized least squares (GLS) estimators, minimum Chi-squared estimators

or two-step estimators. The disadvantage of this canonical method is that it is hard to implement

and very computationally expensive.

In a panel data framework, most papers assume a reduced form for an endogenous variable

or use a control function approach with generalized residuals (Vella & Verbeek (1999); Labeaga

(1999)). Many studies also use this approach for cross-sectional cases (Vella (1993); Smith &

Blundell (1986); Rivers & Vuong (1988)). Even though this approach produces consistent estima-

tors, it would be unrealistic to assume a linear function for a dummy variable.

In order to avoid distributional assumptions in traditional ML framework as in Heckman (1978a),

some studies have proposed nonparametric or semiparametric estimators (Newey (1985); Lee
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(1996); Vytlacil (2002); Vytlacil & Yildiz (2007)). However, these estimators are quite difficult to

implement in the case where both the corner solution and binary endogeneity occur. Moreover, in

a panel data framework, the semiparametric fixed-effect approach cannot identify average partial

effects.

Angrist (2001) discussed other alternative methods for estimating dummy endogenous vari-

ables (including 2SLS, IV for an exponential conditional mean, minimum mean squared error

approximation or quantile treatment effects approach). He prefers IV an estimation strategy (simi-

lar to Mullahy (1997) and Abadie (2000)) for nonlinear models with covariates and a nonstructural

approach since it gives similar average treatment effects. However, he did not give any evidence

for not using the structural approach.

In this chapter, I focus on the simple two-step estimation method (Terza (1998); Kim (2006))

since our model has both corner solution and binary endogeneity problems. It would be attractive

to use this method that incorporates a method similar to Heckman (1979) to correct for sample

selection. In addition, in our panel data framework, we would like to use correlated random effects

to handle heterogeneity in the presence of endogeneity and correlated participation (similar to

Semykina & Wooldridge (2010)). Both IV strategies and the bivariate probit method are utilized

to handle the binary endogeneity.

The proposed method is very applicable in many economic models since switching endogene-

ity is of interest to many applied economists and policy makers. One interesting application is

estimating the effect of having a newborn on women’s labor supply in the presence of a corner so-

lution response and unobserved heterogeneity. Hence, the following part will consist of a literature

review on the relationship between fertility and female labor supply.

A remarkable number of studies have examined the effect of fertility on female labor supply

and labor force participation. These studies can be divided into four major groups, depending on

how they handle the endogeneity problem of the fertility decision. The first group is presented

by the studies of Gronau (1973), Heckman (1974), and Heckman & Willis (1977) who assumed

exogenous fertility and established a strong negative correlation between female labor supply and
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fertility. However, as Browning (1992) commented, very few credible inferences can be drawn

from them even though we have a number of robust correlations. Their main methodology is to

use OLS to estimate the effects of fertility on labor supply.

A second group of studies led by Cain & Dooley (1976), Schultz (1978), and Fleisher & Rhodes

(1979) acknowledged endogenous fertility. They handled the endogeneity problem by estimating

simultaneous equations models. Smaller estimates on fertility are found when treating it as an en-

dogenous variable than when treating it as an exogenous variable. The problem with this approach

is that it is hard to find plausible exclusion restrictions that could identify the underlying structural

parameters.

A third group of studies, pioneered by the work of Nakamura & Nakamura (1992), added the

lagged dependent variable (i.e. hours of work) to control for unobserved heterogeneity across

women. This approach has been used subsequently by a number of authors (Even (1987); Lehrer

(1992)). Although adding the lagged dependent variable can help control for unobserved hetero-

geneity, it still does not address the problem of the endogeneity of the fertility decision.

Last but not least, a fourth group of studies solved the endogeneity problem of fertility by

exploiting exogenous sources of variation in family size. Rosenzweig & Wolpin (1980) first used

this strategy by comparing the labor supply of women who had twins at their first birth with that of

women who had a single child. Then Bronars & Grogger (2001); Jacobsen et al. (1999) used the

same strategy but managed to obtain more precise estimates. Other studies (Bloom et al. (2009);

Kim & Aassve (2006)) exploit abortion legislation or the contraceptive choice of couples as an

IV for fertility. In the same spirit as the twins studies mentioned above, Angrist & Evans (1998)

estimated the effect of a third or higher order child on female labor supply by exploiting the fact

that parents typically prefer mixed-sex siblings. For a sample of couples with at least two children,

they instrumented further childbearing (i.e. having more than two children) with a dummy variable

for whether the sex of the second child matched the sex of the first. Because sex mix is virtually

random, this strategy allows for identification of the effect of a third or higher order child.

Nguyen (2010) emphasized the negative significant impact of the number of children on female
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labor supply. The paper found diminishing impacts of having children on female labor supply and

the first child always has the largest adverse effect on a mother’s labor supply. This implies that

children do not have equal impacts on a mother’s labor supply. This finding is similar to the idea

from Browning (1992) that having a newborn has more significant impact on a mother’s labor

supply than having a general number of kids. However, the paper does not view the problem

in terms of a two-part model acknowledging the fact that people who decide to work will have

positive working hours. This chapter will consider the issue of female labor force participation in

a relation with female labor supply and the impact of having a newborn on both a mother’s amount

and participation decision, which calls again for a discrete endogeneity of having children.

3.3 Model and Estimation

I consider a panel data model with a corner solution response and a binary endogenous variable in

the presence of correlated participation decision and heterogeneity as follows:

y1it = y2it exp(X1itβ1 + y3itα1 + c1i +u1it), (3.1)

or

log(y1it) = X1itβ1+ y3itα1+ c1i +u1it if y1it > 0 or y2it = 1(iff y∗2it > 0),

y∗2it = X2itβ2+ y3itα2+ c2i +u2it , (3.2)

y∗3it = X3itβ3 + c3i +u3it , (3.3)

y2it = 1[y∗2it > 0], (3.4)

y3it = 1[y∗3it > 0], (3.5)

where y1it is continuous with strictly positive values when y∗2it > 0 and equal to zero when y∗2it < 0

with positive probability, hereafter i = 1,2, . . . ,N and t = 1,2, . . . ,T . We assume that we observe

y1it only when y∗2it > 0 or y2it = 1. Xmit are 1×Km vectors of exogenous explanatory variables

(for m = 1,2,3) which can contain a constant term. βm are Km × 1 vectors of parameters. cmi

are time-constant unobserved heterogeneity and umit are idiosyncratic errors. α1 and α2 are scalar
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parameters. 1[·] is an indicator function which has a value of one when the expression inside the

bracket is true, otherwise has a value of zero. Both y2it and y3it are dummy variables. We assume

a balanced panel for simplicity so i = 1,2, . . . ,N and t = 1,2, . . . ,T is assumed throughout this

chapter. A novel feature of this panel data model is that the common endogenous variable y3it

appears in both the amount and participation equations: (3.1) and (3.2). We therefore need to

handle both endogeneity and the corner solution problem in equation (3.1).

Following the work of Heckman et al. (1999) and Heckman (1979), α1 and α2 are identified if

X3i includes at least one variable which is excluded from X2i or X1i under the correct assumption

of joint distribution of the error terms. That variable is usually referred to as (an) instrumental vari-

able(s). X2i should include at least one variable which is not in X1i. Those instrumental variables

are assumed strictly exogenous conditional on unobserved heterogeneity. With that in mind, and

using the modeling device in Mundlak (1978), we can model the relationship between unobserved

effects cmi and Xmit for each m. Let us rewrite equations (3.1)-(3.3) as follows:

y1it = y2it exp(X1itβ1 + y3itα1 + c1i +u1it), (3.6)

y∗2it = X1itβ21+X22itβ22+ y3itα2+ c2i +u2it , (3.7)

y∗3it = X1itβ31+X32itβ32+ c3i +u3it , (3.8)

where X32it and X22it are instrumental variables.

Now we assume that:

cmi = Ziδm +ami, m = 1,2,3, (3.9)

where ami|Xmi ∼ Normal(0,σ2
am); Zi = T−1

T�
t=1

Zit ; Zit contains both explanatory variables X1it ,

X32it , and X22it . Zi is a 1×L vector where L = K2 +K3 −K1.

And now we can rewrite equations (3.1)-(3.3) as:

log(y1it) =W1itγ1+ y3itα1+ v1it if y1it > 0 or y2it = 1;W1it ≡ (X1it ,Zi), (3.10)

y∗2it =W2itγ2 + y3itα2 + v2it ;W2it = (X2it ,Zi), (3.11)

y∗3it =W3itγ3+ v3it ;W3it = (X3it ,Zi), (3.12)
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where vmit = ami+umit ; m = 1,2,3.

As discussed in (Wooldridge, 2010, section 17.6.3), we model the corner solution using the

ET2T model. First, we can ensure that the predicted value of the response variable is positive.

Second, it is noticeable that we can allow a correlation between unobserved factors that affect the

amount equation and unobserved factors that affect the participation equation, that is, v1it and v2it

are correlated. This assumption is exploited to relax the assumption in the usual lognormal hurdle

model. Moreover, it is a reasonable assumption in empirical study. For example, in the model

for married women’s labor supply, unobserved factors can influence both women’s LFP and labor

supply or the unobserved effects determining both decisions are related. Therefore, we can assume

that:

E(v1it |W1i,v2it) = ηv2it , (3.13)

in addition to Var(v2it) = 1; Var(v1it) = σ2; Cov(v1it ,v2it) = ψσ = η where ψ is the correlation

between v1it and v2it .

We are interested in deriving E(log(y1it)|Wi,y3it ,y
∗
2it > 0).

E(log(y1it)|Wi,y3it ,y
∗
2it > 0) =W1itγ1+ y3itα1+E(v1it |Wi,y3it ,y

∗
2it > 0). (3.14)

Now,

E(v1it |Wi,y3it ,y
∗
2it > 0) = y3itE(v1it |Wi,y

∗
3it > 0,y∗2it > 0)+(1−y3it)E(v1it |Wi,y

∗
3it < 0,y∗2it > 0),

or

E(v1it |Wi,y3it ,y
∗
2it > 0) = y3itE1 +(1− y3it)E0.

We will derive E1 first and apply the similar strategy for E0.

E1 = E(v1it |Wi,y
∗
3it > 0,y∗2it > 0) = η1E(v2it |Wi,y3it = 1,y2it = 1), (3.15)

E1 = η12E12+η13E13, (3.16)

where

E12 = φ(W3itγ3)Φ
�
(W2itγ2 +α2−ρW3itγ3)(1−ρ2)−1/2

�
Φ−1

2 (W3itγ3,W2itγ2 +α2;ρ), (3.17)
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and

E13 = φ(W2itγ2 +α2)Φ
�
(W3itγ3−ρ(W2itγ2 +α2))(1−ρ2)−1/2

�
Φ−1

2 (W3itγ3,W2itγ2 +α2;ρ),

(3.18)

under the assumption that Cov(v2it ,v3it) = ρ and Var(v3it)= 1; we can also write: v2it = ρv3it +eit

where eit |Zi,v3it ∼ Normal(0,σ2
e ).

E0 = η02E02+η03E03, (3.19)

where

E02 = φ(−W3itγ3)Φ
�
(W2itγ2 −ρW3itγ3)(1−ρ2)−1/2

�
Φ−1(−W3itγ3,W2itγ2,−ρ), (3.20)

and

E03 = φ(W2itγ2)Φ
�
(−W3itγ3 +ρW2itγ2)(1−ρ2)−1/2

�
Φ−1(−W3itγ3,W2itγ2,−ρ). (3.21)

Using these two regimes of y3it and correlated participation, we can handle both endogenous

switching and corner solution problems. Instead of proceeding with the full information maximum

likelihood, we estimate parameters of interest using a two-step estimation procedure based on

Heckman’s idea of correcting a selection problem using the correction functions (which is the

inverse Mill’s ratio in Heckman’s model). For each regime corresponding to either y3it = 0 or

y3it = 1, we add two correction terms which comprise one part for fixing an endogeneity problem

and the other part for correcting correlated unobserved effects bias from the participation equation.

The conditional mean of interest with positive outcome, y2it = 1, is:

E(log(y1it)|Wi,y3it ,y
∗
2it > 0) =

���� W1itγ1 + y3itα1+η12y3itE12(θ1)+η13y3itE13(θ1)

+(1− y3it)η02E02(θ1)+η03(1− y3it)E03(θ1)


��� , (3.22)

where Wi =W1i ∪W2i ∪W3i and 4 correction terms E12,E13,E02 and E03 are stated as above.

We can identify θ1 = (α2,γ ′3,γ ′2,ρ)′, a Q×1 vector, (Q = 1+K2+K3 +2L+T ) using maxi-

mum likelihood estimation for pooled bivariate probit model in the first stage. Similar to Heckman
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(1978a), Greene (1997), and Carrasco (2001), the log likelihood function in the first stage that

solves for estimates of θ1 is:

lnLit(θ1) =

���� (1− y3it)(1− y2it) lnP00+ y3it(1− y2it) lnP10

+y2it(1− y3it) lnP01+ y3it y2it lnP11


��� , (3.23)

where

P11 = Pr(y3it = 1 and y2it = 1) = Φ2(W3itγ3,W2itγ2 +α2;ρ), (3.24)

P00 = Pr(y3it = 0 and y2it = 0) = Φ2(−W3itγ3,−W2itγ2,ρ), (3.25)

P10 = Pr(y3it = 1 and y2it = 0) = Φ2(W3itγ3,−W2itγ2 −α2;−ρ), (3.26)

P01 = Pr(y3it = 0 and y2it = 1) = Φ2(−W3itγ3,W2itγ2;−ρ). (3.27)

We can estimate parameters in the first stage to obtain �θ1 (and its standard errors as shown in

the first-stage technicalities of Appendix F) and get 4 correction terms in equation (3.22) to plug in

the second stage. In the second stage, we estimate the following equation on the selected sample

with y2it = 1 or a positive dependent variable using POLS:

log(y1it) =

���� W1itγ1+ y3itα1 +η12y3itE12(θ̂1)+η13y3itE13(θ̂1)

+(1− y3it)η02E02(θ̂1)+η03(1− y3it)E03(θ̂1)+ εit


��� . (3.28)

Hence, with a similar idea of adding the inverse Mills ratio to correct for the sample selection

bias, we can add 4 correction terms to control for a corner solution problem with a correlated

participation decision and binary endogeneity. We can rewrite the estimating equation above as:

log(y1it) =W1itγ1 + y3itα1+
4�

j=1
η jλ̂it j + εit , (3.29)

where λ̂it1 = y3itE12(θ̂1); λ̂it2 = y3itE13(θ̂1); λ̂it3 =(1−y3it)E02(θ̂1); and λ̂it4 =(1−y3it)E03(θ̂1).

Even though the two-step estimator is easy to implement and numerically robust, we need to

adjust the second-stage standard errors, taking into account the first-stage estimation. I show how

to obtain �θ1 and derive the asymptotic variance of this two-step estimator (θ̂2) in the technical

section of Appendix F.
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3.4 Average Partial Effect

The quantity of interest in this study is average treatment effect (ATE) of the binary endogenous

variable. We can also obtain average partial effects (APEs) for exogenous explanatory variables.

First we rewrite model (3.1) to (3.3) in the conditional mean forms as follows:

E(log(y1it) = X1itβ1+ y3itα1+ c1i +u1it if y1it > 0, (3.30)

E(y2it |X2it ,y3it ,c2i,u2it) = Φ(X2itβ2+ y3itα2 + c2i +u2it), (3.31)

E(y3it |X3it ,c3i,u3it) = Φ(X3itβ3+ c3i +u3it). (3.32)

Our main interest lies in the treatment effect of a binary endogenous variable in both equations

(3.30) and (3.31). We can evaluate the effect at values of exogenous explanatory variables of

interest. But first, we need to handle the correlated unobserved effects using Mundlak’s device

as shown in equation (3.9) and follow the estimation procedure that is clarified in the previous

section. Now (3.30) and (3.31) have been previously derived as:

E(log(y1it)|Zi,y3it ,y1it > 0) = X1itβ1+ y3itα1+Ziδ1 +
4�

j=1
η jλit j, (3.33)

E(y2it |Zi,y3it ,a2i,u2it) = Φ(X2itβ2+ y3itα2 +Ziδ2+a2i +u2it). (3.34)

ATE for the amount equation:

For y3t as a binary variable, the ATE at time t can be obtained by averaging equation (3.30)

over the distribution of c1i and u1it or take a difference in:

E(Zi,λit)
[X1tβ1+ y3tα1+Ziδ1 +

4�
j=1

η jλit j], (3.35)

where in the argument of the expectation operator, variables with a subscript i are random and all

others are fixed.

With the definition from equation (3.17) - equation (3.21), plus equation (3.29), (3.35) is rewrit-

ten as:

EEit [α1+η12E12(θ1)+η13E13(θ1)−η02E02(θ1)−η03E03(θ1)]. (3.36)
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Given consistent estimator of �θ1 and �θ2, the ATE of the binary variable y3t in equation (3.33)

can be estimated as:

�ATE = N−1
N�

i=1

	�α1+�η12E12(
�θ1)+�η13E13(

�θ1)−�η02E02(
�θ1)−�η03E03(

�θ1)


, (3.37)

where for each unit we predict the difference in mean responses with and without “treatment” (for

y3t = 1 and y3t = 0), and then average the difference in these estimated mean responses across all

units.

ATE for the participation equation:

We rewrite model (3.34) with the scaled coefficients using a standard mixing property of the

normal distribution of eit :

E(y2it |Zi,y3it ,v3it ,eit) = Φ(X2itβ2+ y3itα2+Ziδ2 +ρv3it + eit), (3.38)

or

E(y2it |Zi,y3it ,v3it ,eit) = Φ(X2itβ2e+ y3itα2e+Ziδ2e+ρev3it), (3.39)

where the subscript e denotes division by
�

1+σ2
e .

Note that we can write (3.38) - equation (3.39) in terms of bivariate probit model as in the

technical section and the procedure to obtain APE or ATE is the same as described below. That

means we average out Zi and then take derivatives or changes with respect to the elements of

(X2t ,y3t).

The APEs are obtained by computing derivatives, or obtaining differences, in:

E(Zi,v3it)
[Φ(X2tβ2e+ y3tα2e +Ziδ2e +ρev3it)], (3.40)

or

E(Zi)
[Φ(X2tβ2v+ y3tα2v+Ziδ2v)], (3.41)

where the subscript v denotes division by ρe
%

1+σ2
v3

and Var(v3it) = σ2
v3

= 1. In order to obtain

partial effects, we average out Zi and then take derivatives or changes with respect to the elements
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of (X2t ,y3t). Across the sample for a chosen t, we can obtain the estimators for APE with respect

to one element X2t1 of X2t as:

�APE = �β2v1

��N−1
N�

i=1
φ(X2t

�β2v+ y3t�α2v+Zi
�δ2v)


� . (3.42)

The estimator for ATE with respect to y3t is:

�ATE = N−1
N�

i=1

�
Φ(X2t

�β2v+�α2v +Zi
�δ2v)−Φ(X2t

�β2v+Zi
�δ2v)
�
, (3.43)

which we are interested in.

3.5 Empirical Example

3.5.1 Overview of Data

Over the past two decades, fertility has decreased as the labor force participation rates of women

in most developing and advanced countries have increased (Kim & Aassve (2006)). This change

implies the changing roles of women and changes in the time allocation among household members

in both work activities and fertility behavior. We also observed this pattern in Vietnam.

For the last two decades, the fertility rates of Vietnamese women fell while the labor force

participation rates for the whole population did not change very much. A decline in fertility also

accompanied an increase in income. During the period from 1986 to 2006, while fertility dra-

matically decreased, GDP per capita increased 2.9 times to 587.4 USD per capita. This pattern

is consistent with microeconomic predictions: higher income leads to a reduction in fertility and

the inverse relationship of fertility and labor force participation (Becker & Lewis (1973); Willis

(1973)). Thus, it is important to analyze the data on fertility and labor market behavior of working

women.

The data used in this paper came from the Vietnamese Household Living Standard Surveys

(VHLSS) 2004, 2006, and 2008, which were conducted by the Vietnamese General Statistical

Office (GSO) with technical support from The World Bank. The survey sample was randomly
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selected to represent the whole country, taking into account urban and rural structures, geographical

conditions, regional issues, ethnic differences, and provincial representation. The sample used in

this chapter has 665 women. The survey collected information about the following: household

information, education, health, employment, migration, housing, fertility and family planning,

incomes, expenditures, borrowing, lending, and savings.

Only households with children under 18 years old and households with a mother and father

younger than 60 and 65 years of age, respectively, at the time of the interview are included in this

research. There are 1,995 households in the sample used for this research. Table C.1 provides a

summary of the descriptive statistics for the whole sample. The dependent variables are working

status and hours worked per day for a woman (being either head of household or spouse). Ac-

cording to Table C.1, 95% of mothers worked in the interview year, and on average, they worked

7.8 hours per day. The explanatory variables are whether mother has a newborn, mother’s educa-

tion, age, non-labor income, father’s education, age; and other household characteristics such as

whether they live in an urban area, they work on a farm and their ethnicity. In this sample, each

household had an average of 2.5 children; 10% of the sample women had newborns; 55% and 56%

women in the sample had a boy first and their first two kids had the same gender, respectively. In

general, the husband’s education is higher than wife’s education. Income from other sources for

women in the sample is about 8 million VND per year (approximately 400-450 USD per year).

Table C.1 also shows that around 84% of working wives worked on farms and 18% of households

were located in urban areas.

Table C.2 shows the summary statistics for each year in the panel data. There is no obvious

pattern for women working hours and labor force participation (LFP). However, we can observe

that the fertility rate declines over time. The percentage of having a newborn goes down from 16%

in 2004 to 9% in 2006 and 6% in 2008. On the contrary, non-wife income increases over time.
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3.5.2 Estimation and Result

The main contribution of this chapter and its following application is to allow the correlation be-

tween women’s decision to participate in the labor market and their amount of working hours; to

acknowledge the nature of having a newborn as a dummy variable and to consider the influence

of having a newborn on both women’s participation and labor supply. As shown in the literature,

newborns have negative effect on women’s labor force entry. This means that women who are not

working are unlikely to take part in the labor market after delivering babies. This raises the ques-

tion of how newborns affect their mothers’ labor supply for those women who are participating

and stay in the market.

When a mother has a newborn, she will decide how many working hours she will spend after

deliver a baby. If endogeneity of fertility is not accounted for, we will not obtain consistent esti-

mates of labor supply conditional on fertility. In order to draw robust and credible estimates of the

effects of newborns on women’s labor supply and participation, we need to take into account this

endogeneity. Another important point is both amount and participation decisions are jointly de-

termined because preferences for working or work time somehow are positively correlated. In the

same way, preferences for having a baby and for working are negatively correlated. Therefore, we

should model these decisions with a joint relationship. Using the panel data VHLSSs 2004-2008,

we study women’s labor supply in a system of equations where fertility decision is an endoge-

nous dummy variable occurred in both labor supply and participation equations, and this system

of equations are jointly correlated. We are interested in estimating a panel data model of working

hours for a woman i at time t, who takes having a newborn into consideration as an endogenous

factor, as follows:

Log(Hoursit) =

���� Newbornitα1+Meduitβ11+Mageitβ12+Magesqitβ13

+NMincomeitβ14+ c1i +u1it if Hoursit > 0


��� , (3.44)

LFP∗
it =

���� Meduitβ21+Mageitβ22+Magesqitβ23+Heduitβ24+Hageitβ25+

Hagesqitβ26+NMincomeitβ27+Newbornitα2+ c2i +u2it


��� , (3.45)
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Newborn∗it =

���� Samesexβ32+Medugitβ33+Mageitβ34

+Magesqitβ35+NMincomeitβ36+ c3i +u3it


��� . (3.46)

These equations correspond to equation (3.1) to equation (3.3) in the model section. Hoursit

is annual working hours for a woman i at time t, which is determined by her education, Medu,

her age, Mage, her age square, Magesq, her other income not from her wage, NMincome, other

variables such as whether she lives in an urban area, whether her ethnicity is majority, whether she

works on a farm, and whether she has a newborn, Newborn, with the age from 0 to 1. A woman’s

LFP is influenced by her characteristics (the same variables in equation (3.44), her husband’s

characteristics including education, age, age square, Hedu, Hage, Hagesq, non-mom income as

well as whether she has a newborn. The fertility decision equation has right-hand-side variables

including an instrumental variable: whether the first two children have the same gender and other

exogenous variables including mom’s characteristics and non-mom income. We also allow some

explanatory variables to be correlated with heterogeneity and take care of this relationship by

adding time averages of explanatory variables into each equation.

With the new procedure to control for a corner solution, we can allow unobserved factors that

affect both amount and participation equations to be correlated. In addition, to ensure that the

predicted value of labor supply is positive, we need to apply Type II Tobit model to log(hours)

rather than hours. That is why we use the specification of Exponential Type II Tobit model (ET2T)

(see more in (Wooldridge, 2010, Chapter 17)). In addition, the ET2T model is applicable when we

have exclusion restrictions. The participation equation contains many more variables which are

not in the amount equation so that the parameters in the amount equation will be identified.

The choice of appropriate instrumental variables is important because these can affect the reli-

ability of estimates and inferences. Valid and strong instrumental variables must satisfy two con-

ditions: an instrumental variable should be uncorrelated with the error term and it should be highly

correlated with the right-hand-side endogenous regressor(s). In this research, that means that the

instrumental variables have no correlation with factors that directly affect parental LFP and labor

supply and that the instruments are correlated with fertility. Whether the first two children have
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the same gender is used to generate exogenous variations in fertility in this research.

Normally, the gender of a child is a random variable, and it is uncorrelated with parental LFP

and labor supply. In addition, we found that the boy-to-girl ratio of the first child was 1.05 in our

sample, which is close to the natural ratio. Thus, the gender of the first child is a valid instrumental

variable. However, this instrumental variable is not significant in the first stage. Angrist & Evans

(1998) found that parents prefer a mixed sibling-sex composition, and parents who first had two

girls or boys had a higher probability of having additional children. Carrasco (2001) also found

same sex instrumental variable is a strong instrument in the US data. In this dataset, among women

with more than two children, the likelihood of another birth was 28% if they had a son, 34%

if they had two sons and 11% if they had three sons. This evidence implies that siblings with

mixed genders are desirable among Vietnamese families. The same gender of the first two children

variables meets the two conditions required of a valid and strong instrument, and it can serve as

an instrumental variable to generate exogenous variations in fertility. The same gender of the first

two children equals 1 if the first two children have the same gender, and 0 otherwise. According to

Table C.1, 55% of sampled households had a male first child and 56% of households had the first

two children with the same gender. The t-test is implemented to see if the same gender instrument

is strong or not. The result is -3.2, implying that this instrument can be used for this study.

Table C.3 shows the estimation result for the bivariate probit model in the first stage. The co-

efficient on samesex is positive and it is statistically significant implying samesex is a good and

significant instrument in our study. The coefficient on a newborn in the LFP equation is also neg-

ative and statistically significant. The effect of a newborn reduces the mother’s probability of LFP

by 13.6%. In terms of the average treatment effect, compared to women without newborn babies,

mothers with newborns have lower probability to continue to work by 12.7%. The coefficient on

ρ , -0.165, shows us that there is a negative correlation between unobserved effects that affect both

fertility and women’s LFP. This brings more evidence to empirical studies of developing countries

that having an additional child will negatively influence the probability of working women who

just delivered a child to come back to work.
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Table C.4 reports the coefficient estimates from six different estimation methods. Pooled OLS

(POLS) assumes that all explanatory variables are uncorrelated with unobserved heterogeneity and

are also strictly exogenous. The estimates based on POLS show that having a newborn reduces the

mother’ s working hours by 13.4%. The POLS estimates have the largest bias because they do not

take into account endogeneity of fertility, the presence of heterogeneity which might be correlated

with explanatory variables, and the correlation between work participation and the amount of work.

Pooled 2SLS takes into account endogeneity of a newborn but does not remove an unobserved

effect. Controlling for endogeneity of a newborn reduces the bias by 10%. Now having a newborn

will make a mother reduce her working hours by 23%. Fixed effects (FE) allows for correlation

between the explanatory variables and unobserved heterogeneity and FE-2SLS further allows a

newborn to be correlated with the idiosyncratic errors. Columns (3) and (4) show that mothers’

working hours are diminished by 16.4% and 27.7% using the FE and FE-2SLS. However, FE-

2SLS ignores the correlation between women’s decision to participate and how much to work. In

addition, all methods from (1) to (4) do not consider a newborn a dummy variable.

To take into account the correlated participation, we can also use Heckman type IV correction

(see Semykina & Wooldridge (2010)) method and hereafter, we call this estimator SW (under

column 5 of Table C.4). This estimator allows correlated participation and heterogeneity in the

presence of endogeneity. However, this method ignores the binary nature of the endogeneity and

assumes a linear reduced form (using pooled 2SLS in the second stage after obtaining the inverse

Mills ratio in the first stage). The result shows that mothers’ working hours are reduced by 30.8%

using the SW, which is more than the reduction in mothers’ working hours using the FE and FE-

2SLS. It suggests that correlated participation does matter. However, this decrease is still smaller

than the reduction in mothers’ working hours using the new proposed procedure since we need to

take care of the binary endogeneity.

The new proposed procedure corrects for endogeneity of a newborn, plus its dummy nature and

its influence on both women’s participation and amount of work. It also reduces another source

of bias from correlated heterogeneity by adding time averages of explanatory variables into all
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equations and time dummies. However, the standard errors are larger once these corrections are

accounted for. After controlling for all these sources of bias, women who are still working will

decrease their working hours by 34.5%.

The result shows that having a new child in Vietnamese households has a negative effect on

maternal hours for working women. Women will have to give up their working hours by 34.5% to

take care of her newborn or use such forgone time as an input of home production.

3.6 Conclusion

This chapter studies the nonlinear panel data model with an endogenous dummy variable and a

corner solution response. The main contribution is to allow a joint distribution of the endogenous

dummy regressor and unobserved factors that affect both the amount and participation equations. I

propose a two-step estimation method in which the first stage exploits a bivariate probit model for

the relationship between the endogenous dummy variable and the participation decision. For the

amount equation, by using an ET2T model, we can ensure that the predicted value of log(hours) is

positive; and there is a correlation between unobserved effects in both the amount and participation

equations. In addition, we need to allow exclusion restrictions in order to identify the parameters

in the amount equation. In other words, we allow a set of explanatory variables in the participation

equation which contains the set of explanatory variables in the amount equations. I also allow

some explanatory variables to be correlated with heterogeneity.

This estimation method is applied to analyze the effect of fertility on women’s working hours

and labor force participation. The proposed approach gives a statistically significant negative effect

of having a newborn on a woman who is working and remain in the labor market. Having a

newborn has a significant negative impact on a woman’s taking part into the labor force and her

working hours. The proposed estimation method corrects remarkably the bias in estimating the

effect of a newborn on a mother’s working hours compared to other alternative estimation methods.
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Table A.1: Simulation Result of the Average Partial Effects Estimates (N=1000, η1 = 0.5, 500 replications)

Model True Linear Tobit Fractional Linear Tobit Fractional Fractional Fractional
value Probit BS Probit Probit Probit

Estimation Method APE OLS MLE QMLE 2SLS MLE QMLE-PW NLS QMLE
y2 is assumed exogenous y2 is assumed endogenous

y2 continuous -0.2347 -0.1283 -0.1591 -0.2079 -0.1583 -0.1754 -0.2295 -0.2368 -0.2371
(0.0046) (0.0042) (0.0051) (0.0110) (0.0064) (0.0077) (0.0051) (0.0050)
[.0034] [.0024] [.0008] [.0024] [.0019] [.0002] [.00008] [.00008]

y2 discrete 0-1 -0.32 -0.2014 -0.2763 -0.2262 -0.3109 -0.3201 -0.3204
(0.0046) (0.0051) (0.0082) (0.0099) (0.0041) (0.0030)
[.0038] [.0014] [.0030] [.0003] [.00005] [.00001]

y2 discrete 1-2 -0.1273 -0.161 -0.1193 -0.1716 -0.1258 -0.128 -0.1278
(0.0027) (0.0017) (0.0031) (0.0023) (0.0020) (0.0016)
[.0011] [.0002] [.0014] [.00005] [.00004] [.00001]

y2 discrete 2-3 -0.0212 -0.0388 -0.0259 -0.0317 -0.0224 -0.0214 -0.0212
(0.0030) (0.0012) (0.0031) (0.0014) (0.0014) (0.0010)
[.0006] [.0001] [.0003] [.00004] [.00001] [.000001]

x1 0.0235 0.0224 0.021 0.0223 0.0237 0.0212 0.0231 0.024 0.0238
(0.0181) (0.0125) (0.0130) (0.0189) (0.0131) (0.0142) (0.0159) (0.0140)

x2 0.0235 0.0218 0.0214 0.0195 0.023 0.0218 0.0241 0.0243 0.0244
(0.0181) (0.0128) (0.0129) (0.0192) (0.0131) (0.0134) (0.0153) (0.0136)

Note: Figures in brackets ()[] are standard deviation and RMSE respectively.
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Table A.2: Simulation Result of the Coefficient Estimates (N=1000, η1 = 0.5, 500 replications)

Model True Linear Tobit Fractional Linear Tobit Fractional Fractional Fractional
value Probit BS Probit Probit Probit

Estimation Method Coef. OLS MLE QMLE 2SLS MLE QMLE-PW NLS QMLE
y2 is assumed exogenous y2 is assumed endogenous

y2 -1 -0.1283 -0.2024 -0.8543 -0.1583 -0.2275 -0.9387 -1.045 -1.044
(0.0044) (0.0046) (0.0146) (0.0089) (0.0084) (0.0255) (0.0483) (0.0424)

x1 0.1 0.0224 0.0267 0.0917 0.0237 0.0275 0.0945 0.1061 0.1052
(0.0181) (0.0160) (0.0534) (0.0190) (0.0171) (0.0578) (0.0702) (0.0619)

x2 0.1 0.0218 0.0272 0.0956 0.0231 0.0282 0.0987 0.1071 0.1073
(0.0181) (0.0163) (0.0534) (0.0192) (0.0170) (0.0548) (0.0681) (0.0600)

Note: Figures in parenthesis () are standard deviations.
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Table A.3: Simulation Result of the Average Partial Effects Estimates (N=1000, η1 = 0.1, 500 replications)

Model True Linear Tobit Fractional Linear Tobit Fractional Fractional Fractional
value Probit BS Probit Probit Probit

Estimation Method APE OLS MLE QMLE 2SLS MLE QMLE-PW NLS QMLE
y2 is assumed exogenous y2 is assumed endogenous

y2 continuous -0.2461 -0.1507 -0.1854 -0.2402 -0.16 -0.1887 -0.2442 -0.249 -0.2491
(0.0042) (0.0037) (0.0046) (0.0102) (0.0053) (0.0056) (0.0044) (0.0043)
[.0031] [.0019] [.0002] [.0027] [.0018] [.0001] [.0001] [.0001]

y2 discrete 0-1 -0.3383 -0.239 -0.3289 -0.2445 -0.3355 -0.3384 -0.3385
(0.0042) (0.0031) (0.0066) (0.0051) (0.0019) (0.0020)
[.0032] [.0003] [.0030] [.00009] [.000005] [.000007]

y2 discrete 1-2 -0.1332 -0.2001 -0.1319 -0.2022 -0.1331 -0.1332 -0.1332
(0.0018) (0.0011) (0.0025) (0.0013) (0.0008) (0.0010)
[.0021] [.00004] [.0022] [.000004] [.000001] [.000001]

y2 discrete 2-3 -0.0208 -0.0193 -0.0219 -0.0177 -0.0212 -0.0208 -0.0208
(0.0029) (0.0007) (0.0032) (0.0008) (0.0007) (0.0007)
[.00005] [.00003] [.0001] [.00001] [.000001] [.000001]

x2 0.0246 0.0267 0.021 0.025 0.0265 0.0234 0.025 0.0255 0.0253
(0.0168) (0.0089) (0.0063) (0.0170) (0.0090) (0.0065) (0.0072) (0.0066)

x2 0.0246 0.0241 0.0214 0.0246 0.0242 0.0222 0.0246 0.0252 0.0249
(0.0178) (0.0100) (0.0070) (0.0182) (0.0100) (0.0070) (0.0077) (0.0072)

Note: Figures in brackets ()[] are standard deviation and RMSE respectively.
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Table A.4: Simulation Result of the Average Partial Effects Estimates (N=1000, η1 = 0.9, 500 replications)

Model True Linear Tobit Fractional Linear Tobit Fractional Fractional Fractional
value Probit BS Probit Probit Probit

Estimation Method APE OLS MLE QMLE 2SLS MLE QMLE-PW NLS QMLE
y2 is assumed exogenous y2 is assumed endogenous

y2 continuous -0.2178 -0.1104 -0.1368 -0.1777 -0.1548 -0.1637 -0.2144 -0.2208 -0.2205
(0.0042) (0.0039) (0.0054) (0.0148) (0.0096) (0.0124) (0.0052) (0.0045)
[.0034] [.0026] [.0013] [.0020] [.0017] [.0001] [.0001] [.0001]

y2 discrete 0-1 -0.2973 -0.1706 -0.2307 -0.21 -0.2871 -0.3 -0.2994
(0.0049) (0.0069) (0.0136) (0.0196) (0.0054) (0.0040)
[.0040] [.0021] [.0028] [.0003] [.00008] [.00006]

y2 discrete 1-2 -0.1281 -0.1303 -0.111 -0.1491 -0.1232 -0.1288 -0.1291
(0.0031) (0.0024) (0.0060) (0.0047) (0.0025) (0.0020)
[.00007] [.0005] [.0007] [.0002] [.00002] [.00003]

y2 discrete 2-3 -0.0253 -0.0532 -0.0319 -0.0452 -0.0258 -0.0247 -0.0249
(0.0022) (0.0019) (0.0030) (0.0023) (0.0021) (0.0015)
[.0009] [.0002] [.0006] [.00002] [.00002] [.00001]

x1 0.0218 0.0327 0.0276 0.0291 0.0263 0.0273 0.0305 0.0318 0.0313
(0.0222) (0.0176) (0.0182) (0.0169) (0.0184) (0.0201) (0.0237) (0.0208)

x2 0.0218 0.0215 0.0212 0.0236 0.0244 0.0199 0.0233 0.02 0.0203
(0.0201) (0.0170) (0.0179) (0.0184) (0.0187) (0.0206) (0.0216) (0.0187)

Note: Figures in brackets ()[] are standard deviation and RMSE respectively.
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Table A.5: Simulation Result of the Average Partial Effects Estimates (N=1000, η1 = 0.5, 500 replications, δ23 = 0.3)

Model True Linear Tobit Fractional Linear Tobit Fractional Fractional Fractional
value Probit BS Probit Probit Probit

Estimation Method APE OLS MLE QMLE 2SLS MLE QMLE-PW NLS QMLE
y2 is assumed exogenous y2 is assumed endogenous

y2 continuous -0.2402 -0.1352 -0.1618 -0.2094 -0.1661 -0.1823 -0.2327 -0.2405 -0.2407
(0.0047) (0.0037) (0.0050) (0.0621) (0.0363) (0.0366) (0.0046) (0.0043)
[.0033] [.0025] [.0010] [.0023] [.0023] [.0002] [.00001] [.00001]

y2 discrete 0-1 -0.3202 -0.1992 -0.2724 -0.2301 -0.3157 -0.3199 -0.3202
(0.0044) (0.0055) (0.0522) (0.0799) (0.0037) (0.0029)
[.0038] [.0015] [.0018] [.0001] [.00001] [.000001]

y2 discrete 1-2 -0.1275 -0.1605 -0.1195 -0.1676 -0.1248 -0.128 -0.1279
(0.0026) (0.0016) (0.0189) (0.0087) (0.0016) (0.0015)
[.0010] [.0003] [.0029] [.00009] [.00002] [.00001]

y2 discrete 2-3 -0.0213 -0.0386 -0.0268 -0.0332 -0.0227 -0.0215 -0.0214
(0.0027) (0.0011) (0.0108) (0.0066) (0.0012) (0.0010)
[.0005] [.0002] [.0013] [.00005] [.000001] [.000003]

x1 0.024 0.0224 0.0114 0.0117 0.0237 0.0235 0.0253 0.0261 0.0252
(0.0181) (0.0118) (0.0130) (0.0189) (0.0225) (0.0142) (0.0146) (0.0127)

x2 0.024 0.0218 0.0104 0.0109 0.023 0.0227 0.0227 0.0244 0.025
(0.0181) (0.0123) (0.0129) (0.0192) (0.0244) (0.0134) (0.0135) (0.0119)

Note: Figures in brackets ()[] are standard deviation and RMSE respectively.
This table presents the case of weak IV (δ23 = 0.3).
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Table A.6: Simulation Result of the Average Partial Effects Estimates (N=1000, η1 = 0.5, 500 replications, δ23 = 0)

Model True Linear Tobit Fractional Tobit Fractional Fractional Fractional
value Probit BS Probit Probit Probit

Estimation Method APE OLS MLE QMLE MLE QMLE-PW NLS QMLE
y2 is assumed exogenous y2 is assumed endogenous

y2 continuous -0.2441 -0.1382 -0.1652 -0.2117 -0.1827 -0.2625 -0.2436 -0.2441
(0.0045) (0.0034) (0.0049) (0.0424) (0.0427) (0.0045) (0.0044)
[.0033] [.0024] [.0010] [.0020] [.0002] [.00001] [.00001]

y2 discrete 0-1 -0.3194 -0.2019 -0.2708 -0.2284 -0.3513 -0.3186 -0.3194
(0.0039) (0.0053) (0.0562) (0.0931) (0.0036) (0.0030)
[.0038] [.0014] [.0018] [.0001] [.00001] [.000001]

y2 discrete 1-2 -0.1269 -0.1605 -0.1189 -0.1697 -0.1294 -0.1274 -0.127
(0.0025) (0.0021) (0.0211) (0.0101) (0.0016) (0.0015)
[.0010] [.0002] [.0015] [.00007] [.00001] [.00001]

y2 discrete 2-3 -0.0211 -0.036 -0.0269 -0.0267 -0.0175 -0.0213 -0.021
(0.0026) (0.0020) (0.0129) (0.0074) (0.0011) (0.0010)
[.0004] [.0002] [.0010] [.00004] [.000001] [.000002]

Note: Figures in brackets ()[] are standard deviation and RMSE respectively.
This table presents the case of no instrument (δ23 = 0).
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Table A.7: Simulation Result of the Average Partial Effects Estimates (N=100, η1 = 0.5, 500 replications)

Model True Linear Tobit Fractional Linear Tobit Fractional Fractional Fractional
value Probit BS Probit Probit Probit

Estimation Method APE OLS MLE QMLE 2SLS MLE QMLE-PW NLS QMLE
y2 is assumed exogenous y2 is assumed endogenous

y2 continuous -0.235 -0.1419 -0.1695 -0.218 -0.1688 -0.1837 -0.234 -0.2371 -0.2366
(0.0221) (0.0193) (0.0216) (0.0667) (0.0356) (0.0253) (0.0166) (0.0162)
[.094] [.0066] [.0017] [.0066] [.0051] [.0001] [.0002] [.00017]

y2 discrete 0-1 -0.3281 -0.2173 -0.3 -0.2386 -0.3277 -0.3288 -0.3281
(0.0253) (0.0339) (0.0492) (0.0457) (0.0137) (0.0122)
[.0111] [.0028] [.0090] [.00004] [.00005] [.00004]

y2 discrete 1-2 -0.1308 -0.1767 -0.1252 -0.184 -0.1305 -0.13 -0.1306
(0.0222) (0.0096) (0.0257) (0.0139) (0.0073) (0.0063)
[.0046] [.0006] [.0053] [.00004] [.00009] [.00004]

y2 discrete 2-3 -0.0214 -0.0316 -0.0243 -0.0286 -0.0217 -0.0211 -0.0213
(0.0129) (0.0034) (0.0134) (0.0041) (0.0036) (0.0027)
[.0010] [.0003] [.0007] [.00003] [.00003] [.00001]

Note: Figures in brackets ()[] are standard deviation and RMSE respectively.
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Table A.8: Simulation Result of the Average Partial Effects Estimates (N=500, η1 = 0.5, 500 replications)

Model True Linear Tobit Fractional Linear Tobit Fractional Fractional Fractional
value Probit BS Probit Probit Probit

Estimation Method APE OLS MLE QMLE 2SLS MLE QMLE-PW NLS QMLE
y2 is assumed exogenous y2 is assumed endogenous

y2 continuous -0.2358 -0.1415 -0.171 -0.2201 -0.1617 -0.1815 -0.2334 -0.2379 -0.2376
(0.0177) (0.0157) (0.0163) (0.0175) (0.0114) (0.0119) (0.0051) (0.0086)
[.0046] [.0034] [.0007] [.0041] [.0029] [.0001] [ .0001] [.0001]

y2 discrete 0-1 -0.3285 -0.219 -0.3026 -0.2351 -0.3241 -0.3293 -0.329
(0.0219) (0.0311) (0.0153) (0.0192) (0.0109) (0.0106)
[.0059] [.0012] [.0052] [.0002] [.00001] [.00002]

y2 discrete 1-2 -0.1309 -0.1782 -0.1259 -0.1847 -0.13 -0.131 -0.1311
(0.0205) (0.0082) (0.0158) (0.0058) (0.0044) (0.0043)
[.0028] [.0002] [.0031] [.00004] [.00001] [.000004]

y2 discrete 2-3 -0.0214 -0.0309 -0.024 -0.0267 -0.0219 -0.0212 -0.0213
(0.0109) (0.0025) (0.0084) (0.0018) (0.0017) (0.0014)
[.0004] [.0001] [.0002] [.00002] [.00001] [.000004]

Note: Figures in brackets ()[] are standard deviation and RMSE respectively.
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Table A.9: Simulation Result of the Average Partial Effects Estimates (N=1000, η1 = 0.5, 500 replications)

Model True Linear Tobit Fractional Linear Tobit Fractional Fractional Fractional
value Probit BS Probit Probit Probit

Estimation Method APE OLS MLE QMLE 2SLS MLE QMLE-PW NLS QMLE
y2 is assumed exogenous y2 is assumed endogenous

y2 continuous -0.2347 -0.1283 -0.1591 -0.2079 -0.1583 -0.1754 -0.2295 -0.2368 -0.2371
(0.0046) (0.0042) (0.0051) (0.0110) (0.0064) (0.0077) (0.0051) (0.0050)
[.0034] [.0024] [.0008] [.0024] [.0019] [.0002] [.00008] [.00008]

y2 discrete 0-1 -0.32 -0.2014 -0.2763 -0.2262 -0.3109 -0.3201 -0.3204
(0.0046) (0.0051) (0.0082) (0.0099) (0.0041) (0.0030)
[.0038] [.0014] [.0030] [.0003] [.00016] [.00001]

y2 discrete 1-2 -0.1273 -0.161 -0.1193 -0.1716 -0.1258 -0.128 -0.1278
(0.0027) (0.0017) (0.0031) (0.0023) (0.0020) (0.0016)
[.0011] [.0002] [.0014] [.00005] [.00004] [.00001]

y2 discrete 2-3 -0.0212 -0.0388 -0.0259 -0.0317 -0.0224 -0.0214 -0.0212
(0.0030) (0.0012) (0.0031) (0.0014) (0.0014) (0.0010)
[.0006] [.0001] [.0003] [.00004] [.00001] [.000001]

Note: Figures in brackets ()[] are standard deviation and RMSE respectively.
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Table A.10: Simulation Result of the Average Partial Effects Estimates (N=2000, η1 = 0.5, 500 replications)

Model True Linear Tobit Fractional Linear Tobit Fractional Fractional Fractional
value Probit BS Probit Probit Probit

Estimation Method APE OLS MLE QMLE 2SLS MLE QMLE-PW NLS QMLE
y2 is assumed exogenous y2 is assumed endogenous

y2 continuous -0.2347 -0.1286 -0.1591 -0.208 -0.1591 -0.1755 -0.2293 -0.2369 -0.2371
(0.0028) (0.0028) (0.0031) (0.0082) (0.0044) (0.0050) (0.0031) (0.0030)
[.0024] [.0017] [.0006] [.0017] [.0013] [.0001] [.00005] [.00006]

y2 discrete 0-1 -0.3201 -0.2014 -0.2766 -0.2263 -0.3106 -0.3201 -0.3204
(0.0034) (0.0036) (0.0059) (0.0074) (0.0029) (0.0021)
[.0027] [.0010] [.0021] [.0002] [.000001] [.000007]

y2 discrete 1-2 -0.1275 -0.1609 -0.1194 -0.1717 -0.1258 -0.1281 -0.1278
(0.0020) (0.0012) (0.0024) (0.0017) (0.0015) (0.0011)
[.0008] [.0002] [.0010] [.00004] [.00001] [.000009]

y2 discrete 2-3 -0.0213 -0.039 -0.0259 -0.0317 -0.0224 -0.0214 -0.0212
(0.0020) (0.0008) (0.0021) (0.0010) (0.0010) (0.0007)
[.0004] [.0001] [.0002] [.00003] [.000002] [.000001]

Note: Figures in brackets ()[] are standard deviation and RMSE respectively.
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Table A.11: Simulation Result of the Average Partial Effects Estimates (N=1000, η1 = 0.5, a1 is normally distributed, 500 replications)

Model True Linear Tobit Fractional Linear Tobit Fractional Fractional Fractional
value Probit BS Probit Probit Probit

Estimation Method APE OLS MLE QMLE 2SLS MLE QMLE-PW NLS QMLE
y2 is assumed exogenous y2 is assumed endogenous

y2 continuous -0.2379 -0.1599 -0.1876 -0.2369 -0.1625 -0.1885 -0.2375 -0.239 -0.239
(0.0053) (0.0041) (0.0050) (0.0088) (0.0051) (0.0056) (0.0049) (0.0048)
[.0025] [.0015] [.00003] [.0024] [.0016] [.00001] [.00003] [.00003]

y2 discrete 0-1 -0.3409 -0.2431 -0.3393 -0.2445 -0.3403 -0.3401 -0.3401
(0.0040) (0.0028) (0.0063) (0.0050) (0.0023) (0.0018)
[.0031] [.00005] [.0031] [.00002] [.00003] [.00003]

y2 discrete 1-2 -0.1361 -0.2032 -0.1358 -0.2037 -0.136 -0.136 -0.136
(0.0019) (0.0010) (0.0026) (0.0012) (0.0011) (0.0010)
[.0021] [.000007] [.0021] [.000002] [.000002] [.000002]

y2 discrete 2-3 -0.0215 -0.0195 -0.0217 -0.0192 -0.0216 -0.0216 -0.0216
(0.0027) (0.0006) (0.0032) (0.0007) (0.0008) (0.0006)
[.00006] [.000005] [.00007] [.000003] [.000003] [.000003]

x1 0.0238 0.0265 0.0223 0.024 0.0237 0.0224 0.024 0.0242 0.024
(0.0165) (0.0084) (0.0059) (0.0189) (0.0084) (0.0059) (0.0064) (0.0061)

x2 0.0238 0.0234 0.0217 0.024 0.023 0.0218 0.024 0.0239 0.0239
(0.0179) (0.0103) (0.0064) (0.0192) (0.0104) (0.0064) (0.0064) (0.0061)

Note: Figures in brackets ()[] are standard deviation and RMSE respectively.

Table A.12: Simulation Result of the Average Partial Effects Estimates (N=1000, η1 = 0.5, 500 replications)

APE (QMLE) True APE Mean SD MSE Rejection rate
y2 continuous -0.2347 -0.2371 0.005 0.0051 0.046
y2 discrete 0-1 -0.32 -0.3204 0.003 0.0029 0.045
y2 discrete 1-2 -0.1273 -0.1278 0.0016 0.0014 0.046
y2 discrete 2-3 -0.0212 -0.0212 0.001 0.0009 0.048
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Table A.13: Comparison of analytical and bootstrapping mean of standard errors (N=1000, η1 = 0.5, 200 replications)

Model Fractional Probit
Estimation Method QMLE NLS
Standard error analytical bootstrapping analytical bootstrapping
y2 continuous -0.2406 -0.2406 -0.2405 -0.2405

(0.0043) (0.0041) (0.0046) (0.0043)
y2 discrete 0-1 -0.3203 -0.3203 -0.32 -0.32

(0.0030) (0.0028) (0.0038) (0.0034)
y2 discrete 1-2 -0.1279 -0.1279 -0.128 -0.128

(0.0015) (0.0013) (0.0016) (0.0014)
y2 discrete 2-3 -0.0214 -0.0214 -0.0215 -0.0215

(0.0010) (0.0010) (0.0012) (0.0012)

Note: Figures in parenthesis () are mean of standard errors. Figures not in
parenthesis () are APEs’ estimates. Bootstrapping standard errors are
obtained by bootstrapping method using 100 bootstrap replications.
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Table A.14: Frequencies of the Number of Children

Number Frequency Percent Cumulative
of kids relative frequency

0 16,200 50.9 50.9
1 10,000 31.42 82.33
2 3,733 11.73 94.06
3 1,373 4.31 98.37
4 323 1.01 99.39
5 134 0.42 99.81
6 47 0.15 99.96
7 6 0.02 99.97
8 4 0.01 99.99
9 2 0.01 99.99
10 2 0.01 100

Total 31,824 100

Table A.15: Descriptive Statistics

Variable Description Mean S.D. Min Max
frhour Women’s weekly fractional working hours 0.126 0.116 0 0.589
kidno Number of kids 0.752 0.977 0 10
age Mother’s age in years 29.742 3.613 21 35
agefstm Mother’s age in years when first child was born 20.118 2.889 15 32
hispan =1 if race is hispanic; = 0 if race is black 0.593 0.491 0 1
nonmomi Non-mom’s labor income 31.806 20.375 0 157.4
edu Education = Number of schooling years 11.005 3.305 0 20
samesex =1 if the 1st 2 kids have the same sex; = 0 otherwise 0.503 0.5 0 1
multi2nd =1 if the 2nd birth is twin; =0 otherwise 0.009 0.093 0 1
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Table A.16: First-stage Estimates using Instrumental Variables

Dependent Variable - Kidno Linear model (OLS) Negative Binomial II model (MLE)
edu -0.065 -0.078

(0.002) (0.002)
age 0.096 0.119

(0.002) (0.002)
agefstm -0.114 -0.156

(0.002) (0.003)
hispan 0.036 0.045

(0.010) (0.015)
nonmomi -0.002 -0.003

(0.000) (0.000)
samesex 0.075 0.098

(0.010) (0.013)
multi2nd 0.786 0.728

(0.052) (0.045)
constant 0.911 0.013

(0.042) (0.067)

Note: Figures in parentheses are robust standard errors.

87



Table A.17: Estimates Assuming Number of Kids is Conditionally Exogenous

Model Linear Tobit Fractional Probit
Estimation Method OLS MLE QMLE

Coefficient Coefficient APE Coefficient APE
kidno (continuous) -0.019 -0.034 -0.0225 -0.099 -0.0202

(0.0007) (0.0013) (0.0008) (0.0040) (0.0008)
0-1 -0.0231 -0.0207

(0.0008) (0.0008)
1-2 -0.0207 -0.0185

(0.0007) (0.0007)
2-3 -0.0183 -0.0163

(0.0005) (0.0005)
edu 0.004 0.008 0.005 0.022 0.005

(0.0002) (0.0004) (0.0002) (0.0010) (0.0002)
age 0.005 0.008 0.006 0.024 0.005

(0.0002) (0.0003) (0.0002) (0.0010) (0.0002)
agefstm -0.006 -0.01 -0.007 -0.03 -0.006

(0.0003) (0.0004) (0.0003) (0.0010) (0.0003)
hispan -0.032 -0.052 -0.034 -0.15 -0.031

(0.0010) (0.0022) (0.0014) (0.0070) (0.0013)
nonmomi -0.0003 -0.0006 -0.0004 -0.002 -0.0004

(0.0000) (0.0001) (0.0000) (0.0002) (0.0000)

Note: Figures in parentheses under the Coefficient columns are robust standard errors.
Figures in parentheses under the APE columns are bootstrapped standard errors.
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Table A.18: Estimates Assuming Number of Kids is Endogenous

Model Linear Tobit (BS) Fractional Probit Fractional Probit Fractional Probit
Estimation Method 2SLS MLE QMLE-PW QMLE NLS

Kidno is assumed cont.
Coef. Coef. APE Coef. APE Coef. APE Coef. APE

kidno (continuous) -0.016 -0.027 -0.018 -0.078 -0.016 -0.081 -0.017 -0.081 -0.017
(0.0070) (0.0130) (0.0080) (0.0370) (0.0080) (0.0070) (0.0010) (0.0070) (0.0010)

0-1 -0.018 -0.016 -0.017 -0.017
(0.0080) (0.0080) (0.0010) (0.0010)

1-2 -0.017 -0.015 -0.015 -0.015
(0.0070) (0.0070) (0.0010) (0.0010)

2-3 -0.015 -0.014 -0.014 -0.014
(0.0060) (0.0050) (0.0010) (0.0010)

edu 0.004 0.009 0.006 0.024 0.005 0.024 0.005 0.024 0.005
(0.0005) (0.0009) (0.0006) (0.0020) (0.0005) (0.0010) (0.0005) (0.0010) (0.0005)

age 0.005 0.008 0.005 0.022 0.004 0.021 0.004 0.021 0.004
(0.0007) (0.0010) (0.0008) (0.0040) (0.0008) (0.0010) (0.0008) (0.0010) (0.0008)

agefstm -0.006 -0.01 -0.006 -0.028 -0.006 -0.027 -0.005 -0.027 -0.005
(0.0008) (0.0010) (0.0010) (0.0040) (0.0009) (0.0020) (0.0008) (0.0020) (0.0008)

hispan -0.032 -0.052 -0.034 -0.15 -0.031 -0.151 -0.031 -0.151 -0.031
(0.0010) (0.0020) (0.0010) (0.0070) (0.0010) (0.0070) (0.0010) (0.0070) (0.0010)

nonmomi -0.0003 -0.0005 -0.0004 -0.002 -0.0003 -0.002 -0.0003 -0.002 -0.0003
(0.00004) (0.00006) (0.00004) (0.00002) (0.00004) (0.00020) (0.00004) (0.00020) (0.00004)

Note: Figures in parentheses under the Coefficient columns are robust standard errors. Figures in parentheses under the APE
columns are bootstrapped standard errors; those under the APEs for a count endogenous variable with the QMLE and NLS
methods are computed standard errors.
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Appendix B

TABLES AND FIGURES FOR CHAPTER 2

Table B.1: Summary Statistics

Variable Description Mean Standard deviation
Annual Hours 1105.7 886.52
Experience (years) 11.89 7.71
Education (years) 12.94 2.27
Age (years) 41.42 10.18
Number of children aged 0-2 0.13 0.37
Number of children aged 3-5 0.18 0.42
Number of children aged 6-17 0.84 1.01
Married (= 1 if married) 0.88 0.32
Husband’s employment status (=1 if working) 0.82 0.39
Non-wife income (thousand dollars) 36,622.4 41,704
Number of observations 11,232
Number of women 864
Number of years 13
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Table B.2: Determinants of Female Working Experience - First stage regressions

Dependent variable: Female Working Experience
Number of children aged 0-2 -0.442**

[0.200]
Number of children aged 3-5 -0.707***

[0.169]
Number of children aged 6-17 -1.207***

[0.162]
Years of schooling 0.470***

[0.096]
Married -1.191

[1.186]
Husband’s work participation -1.256

[0.913]
Non-wife income -0.00003***

[0.00001]
Age 1.174***

[0.138]
Age squared -0.010***

[0.002]
η 0.958
Number of observations 11,232
Number of women 864
R-squared 0.37
F-Statistics on IVs 196.26

Note: *, **, ***: significant at 10%, 5% and 1% level respectively. Other explanatory
variables include time dummies and time averages of all explanatory variables.
Standard errors robust to heteroskedasticity and serial correlation are inside
square brackets. Instrumental variables (IVs) are age and age squared.
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Table B.3: Estimating Dynamic Female Labor Supply, Second Stage Regressions, Experience is
Treated as an Endogenous Variable

Model Dynamic Linear Tobit
Estimation Method GMM Correlated CRE with serial

RE (CRE) correlation correction
[1] [2] [3]

Lagged Hours 0.857*** 0.542*** 0.492***
[0.012] [0.009] [0.025]

Experience 4.683*** 4.964** 13.207***
[1.514] [2.381] [1.582]

Children 0-2 -37.657** -73.537*** -148.978***
[15.718] [15.884] [18.038]

Children 3-5 0.371 -44.292*** -97.080***
[12.932] [13.66] [15.628]

Children 6-17 29.820*** 46.139*** 7.103
[5.81] [8.108] [8.364]

Education 7.979** -6.849 3.975
[3.147] [9.415] [9.577]

Married -134.671*** -253.253** -234.204**
[33.576] [124.741] [117.946]

Husband’s work status 136.438*** 205.205*** 195.717***
[26.787] [25.982] [28.254]

Non-wife income -0.001*** 0.001*** -0.001***
[0.0004] [0.0002] [0.0002]

Initial Condition 0.161*** 0.102***
[0.038] [0.011]

v2it -59.413***
[3.643]

v2it* 427.820***
[47.673]

Observations 10368 10368 10368
Number of women 864 864 864

Note: *, **, ***: significant at 10%, 5% and 1% level respectively. zi and v2i
are included in (2) and (3) but not reported in the table. The first stage residual
in (3) is free of serial correlation. Standard errors corrected for the first
stage estimation are inside square brackets.
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Table B.4: Average Partial Effects on Female Labor Supply

Model Dynamic Linear Tobit
Estimation Method GMM CRE CRE-SC

[1] [2] [3]
Lagged Hours 0.857*** 0.469*** 0.434***

[0.012] [0.012] [0.011]
Experience 4.683*** 4.294 11.481***

[1.514] [3.074] [2.662]
Children 0-2 -37.657** -63.616*** -122.552***

[15.718] [17.612] [14.848]
Children 3-5 0.371 -38.317** -80.443***

[12.932] [12.932] [10.343]
Children 6-17 29.820*** 39.914*** 6.262

[5.81] [10.10] [8.722]
Education 7.979** -5.925 3.504

[3.147] [12.38] [9.669]
Married -134.671*** -219.09 -251.11

[33.576] [278.695] [244.441]
Husband’s work status 136.438*** 177.521*** 161.88***

[26.787] [58.886] [35.728]
Non-wife income -0.001*** 0.001*** -0.001***

[0.0004] [0.0003] [0.0004]
Replications 100 100

Note: *, **, ***: significant at 10%, 5% and 1% level respectively. The figures
inside square brackets are bootstrapped standard errors with 100 replications.
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Figure B.1: Distribution of Women’s Annual Hours of Work in 1980-1992
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Figure B.2: Hours of Work vs. Experience
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Figure B.3: Hours of Work vs. Number of Children 0-2
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Figure B.4: Hours of Work vs. Number of Children 3-5
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Figure B.5: Hours of Work vs. Number of Children 6-17
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Appendix C

TABLES FOR CHAPTER 3

Table C.1: Summary Statistics for the Whole Sample

Variable Description Mean S.D.
Female labor participation 0.95 0.21
Annual Hours 1938.02 755.29
Education (years) 7.29 3.88
Age (years) 39.18 7.21
Newborn aged 0-2 0.1 0.3
Spouse’s age (years) 41.9 7.48
Spouse’s education (years) 8.2 3.86
Non-wife income (millions) 8.44 16.13
First child’s gender 0.55 0.5
(=1 if a boy, =0 if a girl)
First two children has same sex (=1 if yes, =0 if not) 0.56 0.5
Live in urban 0.18 0.38
Live with grandparent 0.09 0.29
Work on farm 0.84 0.37
Ethnic (=1 if major, =0 if minor) 0.79 0.4
Number of women 665
Number of observation 1995

Note: N=665 women. Years = 2004, 2006, 2008.
S.D. stands for standard deviation.
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Table C.2: Summary Statistics for Each Year in the Panel

Variable Description 2004 2006 2008
Mean S.D. Mean S.D. Mean S.D.

Annual Hours (hours) 1818.47 826.48 1842.79 839.42 1792.62 869.48
Female labor participation (=1 if work, =0 if not) 0.96 0.19 0.96 0.2 0.94 0.23
Newborn aged 0-1 (=1 if yes, =0 if not) 0.16 0.36 0.09 0.28 0.06 0.25
Education (years) 7.23 3.81 7.31 3.85 7.32 3.98
Age (years) 37.23 7.03 39.16 7 41.13 7.09
Non-wife income (million dongs) 6.32 14.77 7.89 13.05 11.1 19.53
Spouse’s age (years) 39.97 7.32 41.9 7.32 43.83 7.3
Spouse’s education (years) 8.12 3.81 8.18 3.8 8.3 3.96
First two children has same sex (=1 if yes, =0 if not) 0.59 0.49 0.57 0.5 0.52 0.5
Live in urban (=1 if yes, =0 if not) 0.17 0.38 0.18 0.38 0.19 0.39
Work on farm (=1 if yes, =0 if not) 0.86 0.35 0.83 0.38 0.82 0.38
Ethnic (=1 if major, =0 if minor) 0.8 0.4 0.8 0.4 0.79 0.41
Number of observations 665 665 665
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Table C.3: Bivariate Probit Estimates of Fertility and LFP in the First Stage

Fertility Equation LFP Equation
Dependent Variable Newborn LFP

[1] [2] [3]
Explanatory Variable Coefficient APE/ATE
Newborn - -0.136*** -0.127***

[0.05] [0.03]
Samesex 1.024*** - -

[0.374]
Non-wife income 0.008*** -0.001*** -0.001***

[0.003] [0.0002] [0.0002]
Age -0.302 -0.031* -0.019*

[0.204] [0.017] [0.011]
Age squared 0.002 0.0001* 0.0001

[0.002] [0.00006] [0.0001]
Education -0.06 -0.005 -0.003

[0.08] [0.03] [0.03]
Husband’s age - -0.007* -0.005*

[0.004] [0.003]
Husband’s age squared - 0.0001 -0.0001

[0.0003] [0.0002]
Husband’s education - -0.07* -0.05*

[0.05] [0.03]
Cov(v2it,v3it) = ρ -0.165

[0.04]
Log likelihood -866.48
Number of observations 1995

Note: N=665, T=3. Time averages of explanatory variables and year dummies for 2006
and 2008 are included. Figures in square brackets are clustered standard errors
to control for serial correlation across time.
*, **, ***: significant at 10%, 5% and 1% level respectively.
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Table C.4: Estimates for Log(Female Working Hours) Equation

Explanatory Variable Pooled Pooled Fixed Fixed SW Proposed
OLS 2SLS Effect Effect 2SLS Procedure Procedure
[1] [2] [3] [4] [5] [6]

Newborn -0.134*** -0.232*** -0.164*** -0.277*** -0.308*** -0.345***
[0.04] [0.053] [0.044] [0.082] [0.117] [0.108]

Education 0.023*** 0.024*** 0.018* 0.014 0.019* 0.016**
[0.004] [0.006] [0.01] [0.011] [0.012] [0.008]

Age -0.014 0.003 0.039 -0.002 0.035 -0.02**
[0.017] [0.046] [0.033] [0.067] [0.037] [0.01]

Age squared 0.0001 -0.0001 -0.001 0.0002 -0.0005 0.0001**
[0.0002] [0.0004] [0.0004] [0.001] [0.0005] [0.0001]

Non-wife income 0.001 0.001 0.001* 0.002* 0.002** 0.002***
[0.001] [0.001] [0.001] [0.001] [0.001] [0.0006]

Urban 0.090** 0.088** 0.077 0.053 0.091** 0.095***
[0.039] [0.04] [0.085] [0.197] [0.038] [0.037]

Work on Farm -0.318*** -0.317*** -0.101* -0.104 -0.329*** -0.328***
[0.037] [0.037] [0.054] [0.066] [0.033] [0.034]

Ethnic -0.143*** -0.138*** -0.176 -0.195 -0.142*** -0.143***
[0.034] [0.037] [0.161] [0.235] [0.028] [0.028]

R-square 0.1 0.08 0.07 0.03 0.1 0.11
Number of observations 1904 1904 1904 1904 1904 1904

Note: The dependent variable is log(hours), with 1904 observations of positive hours. Year dummy
variables and time averages of explanatory variables are included. Standard errors are robust to
serial correlation and heteroskedasticity. Standard errors in the SW and proposed procedure are
corrected for the first-step estimation. *, **, ***: significant at 10%, 5% and 1% level respectively.
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Appendix D

TECHNICALITIES FOR CHAPTER 1

D.1 Details of the QML Estimator

D.1.1 Asymptotic Variance for the Two-step Estimator

This section derives asymptotic standard errors for the QML estimator in the second step. The

adjusted asymptotic standard errors for the NLS estimator can be derived in a similar way. In the

first stage, we have: y2|z,a1 ∼Poisson[exp(zδ2+a1)] with the conditional density function:

f (y2|z,a1) =
[exp(zδ2 +a1)]

y2i exp [−exp(zδ2+a1)]

y2!
. (D.1)

The unconditional density of y2 conditioned only on z is obtained by integrating a1 out of the

joint density. That is:

f (y2|z) =
�

a1
f (y2|z,a1) f (a1)da1, (D.2)

in which f (a1) =δ δ0
0 exp(a1)

δ0−1 exp(−δ0 exp(a1))Γ−1(δ0).

Let m = exp(zδ2) and c = exp(a1), then the conditional density is:

f (y2|z,a1) =
[mc]y2 exp [−mc]

Γ(y2 +1)
,

and the unconditional density is:

f (y2|z) =
∞�

0

[mc]y2 exp [−mc]
Γ(y2+1)

δ δ0
0 cδ0−1 exp(−δ0c))

Γ(δ0)
dc.

This is equivalent to:

f (y2|z) =
[m]y2δ δ0

0
Γ(y2+1)Γ(δ0)

∞�
0

exp[−c(m+δ0)]c
y2i+δ0−1dc,

or

f (y2|z) =
[m]y2δ δ0

0
Γ(y2 +1)Γ(δ0)

Γ(y2+δ0)

(m+δ0)
(y2+δ0)

.
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Define h =
δ0

m+δ0
results in:

f (y2|z) =
Γ(y2+δ0)h

δ0(1−h)y2

Γ(y2+1)Γ(δ0)
, (D.3)

where y2 = 0,1, ... and δ0 > 0, which is the density function for the negative binomial distribution.

The log-likelihood for observation i is:

li(δ2,δ0) = δ0 ln
�

δ0
δ0 + exp(ziδ2)

�
+ y2i ln

�
exp(ziδ2)

δ0 + exp(ziδ2)

�
+ ln
�

Γ(y2i +δ0)

Γ(y2i+1)Γ(δ0)

�
. (D.4)

For all observations:

L(δ2,δ0) =
N�

i=1
li(δ2,δ0). (D.5)

We can estimate jointly δ2 and δ0 by maximum likelihood estimation method.

Let γ = (δ2,δ0)
′ has the dimension of (L+1) where L is the dimension of δ2 which is the sum

of K and the number of instruments, under standard regularity conditions, we have:

√
N(γ̂ − γ) = N−1/2

N�
i=1

ri2 +op(1), (D.6)

where

ri2 =

���� −A−1
01 s01

−A−1
02 s02


��� , (D.7)

in which s0 =

&
∇δ2

li

∇δ0
li

'
=

&
s01

s02

'
, and

A0 = E(∇2
γ li) = E

&
∇2

δ2
li

∇2
δ0

li

'
= E

&
H01

H02

'
=

&
A01

A02

'
.

After taking the first derivative and the second derivative, we have:

s01 =
z′iδ0(y2i − exp(ziδ2))

δ0 + exp(ziδ2)
, (D.8)

H01 =−z′iziδ0 exp(ziδ2)

δ0 + exp(ziδ2)
, (D.9)
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s02 = ln(
δ0

δ0 + exp(ziδ2)
)+

exp(ziδ2)− y2i
δ0+ exp(ziδ2)

+
Γ′(y2i+δ0)

Γ(y2i +δ0)
− Γ′(δ0)

Γ(δ0)
, (D.10)

H02 =H021+H022, (D.11)

where

H021 =
exp(ziδ2)

δ0 [δ0 + exp(ziδ2)]
− exp(ziδ2)− y2i

[δ0 + exp(ziδ2)]
2 ,

and

H022 =
Γ′′(y2i +δ0)Γ(y2i+δ0)−

	
Γ′(y2i+δ0)


2
[Γ(y2i+δ0)]

2 − Γ′′(δ0)Γ(δ0)−
	
Γ′(δ0)


2
[Γ(δ0)]

2 ,

where s01 and H01 are L×1 and L×L matrices; s012 and H02 are 1×1 and 1×1 matrices. ri2(γ)

has the dimension of (L+1)×1.

With the two-step M-estimator, the asymptotic variance of
√

N(θ̂ − θ) must be adjusted to

account for the first-stage estimation of
√

N(γ̂ − γ) (see more in 12.4.2 of chapter 12, Wooldridge,

2002).

The score of the QML (or the gradient) for observation i with respect to θ is:

si(θ ;γ) = �θ li(θ),

= y1i
�θ μi

μi
− (1− y1i)

�θ μi

1−μi
,

=
y1i �θ μi(1−μi)−μi(1− y1i)�θ μi

μi(1−μi)
,

=
y1i �θ μi −μi �θ μi

μi(1−μi)
,

=
(y1i −μi)�θ μi

μi(1−μi)
,

=
(y1i −μi)

μi(1−μi)

� +∞

−∞
∂Φ(giθ)

∂θ
f (a1|y2,z)da1

si(θ ;γ) =
(y1i −μi)

μi(1−μi)

� +∞

−∞
g′iφ(giθ) f (a1|y2,z)da1, (D.12)

where gi = (y2i,z1i,a1i) and θ = (α1,δ1,η1)
′ and θ has the dimension of K +2.

√
N(θ̂ −θ) = A−1

1 (N−1/2
N�

i=1
ri1(θ ;γ))+op(1), (D.13)
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A1 = E [−�θ si(θ ;γ)] ,

= E
�
(�θ μi)

′ �θ μi

μi(1−μi)

�
,

= E
�

1
μi(1−μi)

B′B
�
.

Â1 = N−1
N�

i=1

�
1

μi(1−μi)
B̂′B̂
�
, (D.14)

where B=
(+∞−∞ g′iφ(giθ) f (a1|y2,z)da1.

ri1(θ ;γ) = si(θ ;γ)−F1ri2(γ),

r̂i1(θ ;γ) = ŝi(θ ;γ)− F̂1r̂i2(γ), (D.15)

where ri1(θ ;γ), si(θ ;γ) are (K+2)×1 matrices, and ri2(γ) and F1 are (L+1)×1 and (K+2)×
(L+1) matrices, A1 is a (K +2)× (K+2) matrix.

F1 = E[�γsi(θ ;γ)] = E

&
�δ2

si(θ ;γ)

�δ0
si(θ ;γ)

'
,

E
)
�δ2

si(θ ;γ)
*

= E
� −1

μi(1−μi)
B
+� +∞

−∞
Φ(giθ)

∂ f (a1|y2,z)
∂δ2

da1

,�
,

E
)
�δ0

si(θ ;γ)
*

= E
� −1

μi(1−μi)
B
+� +∞

−∞
Φ(giθ)

∂ f (a1|y2,z)
∂δ0

da1

,�
,

F̂1 =
1
N

N�
i=1

���� [μi(1−μi)]
−1B̂
!(+∞−∞ Φ(giθ̂ )[∂ f (a1|y2,z)/∂δ2]da1

"
[μi(1−μi)]

−1B̂
!(+∞−∞ Φ(giθ̂ )[∂ f (a1|y2,z)/∂δ0]da1

"

��� , (D.16)

where
∂ f (a1|y2i,zi)

∂δ2
=
z′iPC[δ0+ exp(ziδ2)]

(y2i+δ0−1)

Γ(y2i +δ0)
, (D.17)

in which

P=−exp(ziδ2 +a1)+a1(y2i +δ0)−δ0 exp(a1),

and

C= {(y2i +δ0)exp(ziδ2)− exp(ziδ2 +a1)[δ0+ exp(ziδ2)]} .
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∂ f (a1|y2,z)
∂δ0

= f (a1|y2,z)D, (D.18)

in which D= a1 −a1 exp(a1)+ ln(δ0 + exp(ziδ2))+
y2i+δ0

δ0+exp(ziδ2)
−Γ′(y2i+δ0) and

f (a1|y2,z) =
exp(P)[δ0 + exp(zδ2)]

(y2+δ0)

Γ(y2+δ0)
.

Therefore, we can obtain the asymptotic variance of the two-step estimator as:

Avar
√

N(θ̂ −θ) = A−1
1 Var[ri1(θ ;γ)]A−1

1 , (D.19)

and the estimator of this variance is:

̂Avar(θ̂) =
1
N
Â−1

1

�
N−1

N�
i=1

r̂i1r̂′i1

�
Â−1

1 . (D.20)

The asymptotic standard errors are obtained by the square roots of the diagonal elements of

this matrix.

D.1.2 Asymptotic Variance for the APEs

First, we need to obtain the asymptotic variance of
√

N(ψ̂−ψ) for continuous explanatory variable

where:

ψ̂ =
-� +∞

−∞
φ(gθ̂) f (a1|y2,z; θ̂)da1

.
θ̂ , (D.21)

is the vector of scaled coefficients times the scaled factor in the APE section

ψ =
-� +∞

−∞
φ(gθ) f (a1|y2,z;θ)da1

.
θ , (D.22)

is the vector of scaled population coefficients times the mean response.

If y2 is treated as a continuous variable:

�APE =
-� +∞

−∞
φ(α̂1y2 + z1δ̂1 + η̂1a1) f (a1|y2,z; θ̂)da1

.
α̂1.

For a continuous variable z11:

�APE =
-� +∞

−∞
φ(α̂1y2+ z1δ̂1 + η̂1a1) f (a1|y2,z; θ̂)da1

.
δ̂11.
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Using problem 12.12 in Wooldridge (2002), and let π̂ = (θ̂ ′, δ̂ ′
2, δ̂ ′

0)
′ we have:

√
N(ψ̂ −ψ) = N−1/2

N�
i=1

[j(gi,zi,π)−ψ]+E[∇π j(gi,zi,π)]
√

N(π̂ −π)+op(1), (D.23)

where

j(gi,zi,π) =
-� +∞

−∞
φ(giθ) f (a1|y2,z;θ)da1

.
θ ,

and

f (a1|y2,z) = f (a1;δ0,δ0)

+
δ0 + exp(zδ 2)

δ0+ exp(zδ2 +a1)

,δ0+y2
[exp(a1)]

y2.

First, we need to find
√

N(π̂ −π)

√
N(π̂ −π) = N−1/2

N�
i=1

&
A−1

1 ri1

ri2

'
+op(1),

√
N(π̂ −π) = N−1/2

N�
i=1

ki+op(1). (D.24)

Thus the asymptotic variance of
√

N(ψ̂ −ψ) is:

Var
/0-� +∞

−∞
φ(giθ) f (a1|y2i,zi)da1

.
θ −ψ

1
+J(π)ki

2
, (D.25)

where J(π) = E[∇π j(gi,zi,π)].

Next, we need to find ∇θ j(gi,zi,π) ; ∇δ2
j(gi,zi,π) and ∇δ0

j(gi,zi,π).

∇θ j(gi,zi,π)=
-� +∞

−∞
φ(giθ) f (a1|y2i,zi)da1

.
IK+2

−
-� +∞

−∞
φ(giθ)(giθ)(θgi) f (a1|y2i,zi)da1

.
, (D.26)

where IK+2 is the identity matrix and (K +2) is the dimension of θ .

∇δ2
j(gi,zi,π) = θ

+� +∞

−∞
φ(giθ)

∂ f (a1|y2i,zi)

∂δ2
da1

,′
, (D.27)

where ∂ f (a1i|y2i,zi)/∂δ2 is defined in (D.17) and

∇δ0
j(gi,zi,π) = θ

+� +∞

−∞
φ(giθ)

∂ f (a1|y2i,zi)

∂δ0
da1

,′
, (D.28)
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where ∂ f (a1i|y2i,zi)/∂δ0 is defined in (D.18). ∇δ2
j(gi,zi,π) is (K+2)×L matrix and ∇δ0

j(gi,zi,π)

is (K +2)×1 matrix.

Then,

∇π j(gi,zi,π) =
�
∇θ j(gi,zi,π;θ)|∇δ2

j(gi,zi,π;δ2)|∇δ0
j(gi,zi,π;δ0)

�
, (D.29)

and its expected value is estimated as:

Ĵ= J(π̂) = N−1
N�

i=1

�
∇θ j(gi,zi,π; θ̂)|∇δ2

j(gi,zi,π; δ̂2)|∇δ0
j(gi,zi,π;δ̂0)

�
. (D.30)

Finally, Avar
	√

N(ψ̂ −ψ)



is consistently estimated as:

�Avar
	√

N(ψ̂ −ψ)


= N−1

N�
i=1

0-� +∞

−∞
φ(giθ̂) f (a1|y2i,zi)da1

.
θ̂ − ψ̂ + Ĵk̂i

1
×
0-� +∞

−∞
φ(giθ̂ ) f (a1|y2i,zi)da1

.
θ̂ − ψ̂ + Ĵk̂i

1′
. (D.31)

where all quantities are evaluated at the estimators given above. The asymptotic standard error for

any particular APE is obtained as the square root of the corresponding diagonal element of (D.31),

divided by
√

N.

Now we obtain the asymptotic variance of
√

N(�λ −λ ) for a count endogenous variable where:

APE = Ea1[Φ(α1yk+1
2 + z1δ1 +η1a1)−Φ(α1yk

2 + z1δ1+η1a1)]. (D.32)

For example, yk
2 = 0 and yk+1

2 = 1.

�APE =
-� +∞

−∞
Φ(gk+1

i θ̂ ) f (a1|y2,z;θ̂ )da1−
� +∞

−∞
Φ(gk

i θ̂) f (a1|y2,z; θ̂ )da1

.
, (D.33)

Var
�√

N(�λ −λ )
�

= Var
√

N
�
(�λk+1−�λk)− (λk+1−λk)

�
,

= Var
√

N(�λk+1−λk+1)+Var
√

N(�λk −λk)

−2Cov[
√

N(�λk+1−λk+1),
√

N(�λk −λk)].

(1) We start with:
√

N(�λk −λk) = N−1/2
N�

i=1

)
j(gk

i ,zi,π)−λk

*
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+E[∇π j(gk
i ,zi,π)]

√
N(π̂ −π)+op(1), (D.34)

where j(gk
i ,zi,π) =

(+∞−∞ Φ(gk
i θ) f (a1|y2i,zi)da1.

3Var
�√

N(�λk −λk)
�
= N−1

N�
i=1

0� +∞

−∞
Φ(gk

i
�θ) f (a1|y2i,zi)da1−�λk +

�J�ki

12
, (D.35)

in which the notations of �ki is the same as (D.24) and Ĵ is defined as follows:

Ĵ= J(π̂) = N−1
N�

i=1

�
∇θ j(g

k
i ,zi,π; θ̂)|∇δ2

j(gk
i ,zi,π; δ̂2)|∇δ0

j(gk
i ,zi,π;δ̂0)

�
, (D.36)

∇θ j(g
k
i ,zi,π;θ) =

� +∞

−∞
gk′

i φ(gk
i
�θ) f (a1|y2i,zi)da1, (D.37)

∇δ2
j(gk

i ,zi,π;δ2) =
� +∞

−∞
Φ(gk

i
�θ)∂ f (a1|y2i,zi)

∂δ2
da1, (D.38)

∇δ0
j(gk

i ,zi,π;δ0) =
� +∞

−∞
Φ(gk

i
�θ)∂ f (a1|y2i,zi)

∂δ0
da1. (D.39)

(2)3Var
�√

N(�λk+1−λk+1)
�

is obtained in a similar way as (1).

(3) Using the formula: Cov(x,y) = E(xy)−ExEy and getting the estimator of this Covariance

with the notice that E(�λk) = λk, after some algebra, we have the estimator for this covariance is 0.

Adding (1), (2) and (3) together, we get:

3Var
�√

N(�λ −λ )
�
=3Var

�√
N(�λk−λk)

�
+3Var

�√
N(�λk+1−λk+1)

�
. (D.40)

The asymptotic standard error for APE of the count endogenous variable is obtained as the

square root of the corresponding diagonal element of (D.40), divided by
√

N

D.2 Details of the Tobit Model’s Estimators

This appendix shows how to obtain the average partial effects for Tobit models in both cases where

y2 is assumed exogenous and endogenous respectively.

Following the Smith-Blundell (1986) approach, the model with endogenous y2 is written as:

y1 = max(0,α1y2 + z1δ1 + v2ξ1 + e1), (D.41)
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where the reduced form of y2 is:

y2 = zπ2+ v2,v2|z∼ Normal(0,Σ2), (D.42)

and e1|z,v2 ∼ Normal(0,σ2
e ). The conditional mean of y1 is:

E(y1|z,y2,v2) = Φ[(α1y2 + z1δ1 + v2ξ1)/
%
(1+σ2

e )],

= Φ(α1ey2+ z1δ1e + v2ξ1e).

The Blundell-Smithprocedure for estimating α1,δ1,ξ1 and σ2
e will then be:

(i) Run the OLS regression of yi2 on zi and save the residuals v̂i2, i = 1,2, . . . ,N.

(ii) Do Tobit of yi1 on yi2,z1i and v̂i2 to get α̂1e, δ̂1e, and ξ̂1e, i = 1,2, . . . ,N.

APEs for Tobit model with exogenous or endogenous variable are obtained as follows:

* APE in Tobit Model with exogenous variable y2

y1 = max(0,y∗1), y∗1 = α1y2+ z1δ1+a1, a1|y2,z1 ∼ N(0,σ2).

The conditional mean is:

E(y1|z1,y2) = Φ(α1sy2 + z1δ1s)(α1y2+ z1δ1)+σφ(α1sy2+ z1δ1s), (D.43)

where α1s =
α1
σ ,δ1s =

δ1
σ .

We define E(y1|z1,y2) = m(y2,z1,θ1s,θ1).

For a continuous variable y2:

APE =
∂E(y1|z1,y2)

∂y2
= Φ(α1sy2 + z1δ1s)α1. (D.44)

The estimator for this APE is:

�APE =
1
N

N�
i=1

Φ(α̂1sy2i + z1iδ̂1s)α̂1. (D.45)

For a discrete variable y2 with the two values c and c+1:

APE = m(y2i = c+1)−m(y2i = c), (D.46)
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and the estimator for this APE is:

�APE =
1
N

N�
i=1

m̂(y2i = c+1)− m̂(y2i = c), (D.47)

where m̂(y2i = c) = Φ(α̂1sc+ z1iδ̂1s)(α̂1c+ z1iδ̂1)+ σ̂φ(α̂1sc+ z1iδ̂1s).

* APE in Tobit Model with endogenous y2 (Blundell-Smith 1986)

y1 = max(0,y∗1), y∗1 = α1y2 + z1δ1 +η1a1+ e1 = α1y2 + z1δ1 +u1,

y2 = zδ 2+a1,

Var(a1) = σ2, e1|z,a1 ∼ N(0,τ2
1).

The standard method is to obtain APEs by computing the derivatives or the differences of:

Ea1 [m(α1y2 + z1δ1 +η1a1,τ2
1 )], (D.48)

where m(α1y2 + z1δ1 +η1a1,τ2
1 ) = m(α1y2 + z1δ1,η2

1 σ2+ τ2
1 ).

The conditional mean is:

E(y1|z1,y2) = Φ(α1sy2+ z1δ1s)(α1y2 + z1δ1)+
%

η2
1 σ2+ τ2

1 φ(α1sy2 + z1δ1s), (D.49)

where α1s =
α1%

η2
1 σ2+τ2

1

,δ1s =
δ1%

η2
1 σ2+τ2

1

.

We define:

E(y1|z1,y2) = m(α1y2 + z1δ1,η2
1 σ2+ τ2

1 ). (D.50)

Consistent estimators of APEs are resulted from the derivatives or the differences of m(α̂1y2+

z1δ̂1, η̂2
1 σ̂2 + τ̂2

1 ) with respect to elements of (z1,y2) where σ̂2 is the estimate of error variance

from the first-stage OLS regression. �APE with respect to z1:

�APE = N−1
N�

i=1
Φ(α̂1sy2i + z1iδ̂1s)α̂1, (D.51)

and�APE with respect to y2:

�APE = N−1
N�

i=1
m̂(y2i = c+1)− m̂(y2i = c), (D.52)

where m̂(y2i = c) = Φ(α̂1sc+ z1iδ̂1s)(α̂1c+ z1iδ̂1)+
%

η̂2
1 σ̂2+ τ̂2

1 φ(α̂1sc+ z1iδ̂1s).
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An alternative method is to get APEs by computing the derivatives or the differences of:

Ea1[m(α1y2 + z1δ1 +η1a1,τ2
1)], (D.53)

where m(z1,y2,a1,τ2
1) = m(x,τ2

1) = Φ(x/τ1)x+ τ1φ(x/τ1).�APE with respect to z1: �APE = N−1
N�

i=1
Φ(x/

%�τ2
1 )
�δ11. (D.54)

�APE with respect to y2: �APE = N−1
N�

i=1
[�m1− �m0], (D.55)

where �m0 = �m[y2 = 0] and x=�α1y2 + z1
�δ1 +�η1�a1 and â1 is the residual obtained from the first

stage estimation.

For more details, see the Blundell-Smith procedure and the APEs in (Wooldridge, 2002, chapter

16).

D.3 Formula of the NLS estimation

In order to compare the NLS and the QML estimation, the basic framework is introduced as below.

The first stage is to estimate δ2 and δ0 by using the step-wise maximum likelihood of yi2 on

zi in the Negative Binomial model. Obtain the estimated parameters δ̂2 and δ̂0. In the second

stage, instead of using QMLE, we use the NLS of yi1 on yi2, zi1 to estimate α1, δ1 and η1 with the

approximated conditional mean μi(θ ;y2,z).

The NLS estimator of θ solves:

min
θ∈Θ

N−1
N�

i=1

0
y1i−

� +∞

−∞
Φ(α1y2i + z1iδ1 +η1a1) f (a1|y2,z)da1

12
,

or min
θ∈Θ

N−1
N�

i=1
[y1i−μi(θ ;y2i,zi)]

2/2.

The score function can be written as:

si =−(y1i −μi)
� +∞

−∞
g′iφ(giθ) f (a1|y2,z)da1. (D.56)
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D.4 Derivation of the Heterogeneity Distribution

We are given exp(a1) distributed as Gamma(δ0,1/δ0) using a single parameter δ0. We are inter-

ested in obtaining the density function of Y = a1. Let X = exp(a1). The density function of X is

specified as follows:

f (X ;δ0) =
δ δ0

0 Xδ0−1 exp(−δ0X)

Γ(δ0)
; X > 0, δ0 > 0. (D.57)

Since X > 0 and Y = ln(X), dX/dY = exp(Y ) and Y ∈ (−∞,∞). The density function of Y will

be derived as:

f (Y ;δ0) = f [h(Y )]

44444dX
dY

44444 ; Y ∈ (−∞,∞), (D.58)

where f [h(Y )] =
δ

δ0
0 exp(Y )δ0−1 exp[−δ0 exp(Y )]

Γ(δ0)
.

Plug in Y = a1, we get:

f (Y ;δ0) =
δ δ0

0 exp(a1)
δ0 exp[−δ0 exp(a1)]

Γ(δ0)
, (D.59)

which is equation (1.4).
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Appendix E

TECHNICALITIES FOR CHAPTER 2

E.1 Asymptotic Variance of the Two-step Estimator

If the null hypothesis of no endogeneity and no serial correlation in the first stage is rejected,

the standard errors in the second stage should be adjusted for the first stage estimation by using

delta method or bootstrapping. In addition, we also need to get asymptotic standard errors for the

average partial effects.

We start with the linear reduced form in the first stage:

y2it = w∗
2itγ2+ v∗2it , (E.1)

where w∗
2it = (zit ,zi) is 1× (2L) vector of exogenous variables. Under standard regularity condi-

tions, we have:
√

N(�γ2− γ2) = N−1/2
N�

i=1
πi2(γ2)+op(1), (E.2)

where

πi2 = A−1
2 B

′
2iv

∗
2i, (E.3)

and B2i is the T × (2L) matrix with tth row w∗
2it , A2 = E(B′

2iB2i) and v∗2i is a T × 1 vector of

reduced form errors.

Now we can write:

M=E(y1it |zi,y1i,t−1,y2it ,y1i0,w∗
2i),

M=m[ρy1i,t−1+αy2it +xitβ +θ2y1i0 + ziθ3 +(y∗2i−w∗
2iγ2)θ4+θ1(y

∗
2it −w∗

2itγ2),σ2
s∗],

M=m[αy2it +w3itλ3+θ1(y
∗
2it −w∗

2itγ2)+(y∗2i −w∗
2iγ2)θ4,σ2

s∗], (E.4)

where w3it = (y1i,t−1,xit ,yi0,zi); σ2
s∗ = σ∗2

a1
+σ∗2

e1
and λ3 = (ρ ,β ′,θ2,θ

′
3)

′.

We collect all the parameters in M except for γ2 into the parameter vector λ ∗ and abuse the

notation that wit = (y2it ,w3it ,v
∗
2it ,v

∗
2i) in this part. In the previous part we use w∗

it .
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With the maximum likelihood in the second stage, the log likelihood for observation i in period

time t is:

lit(λ∗;σ2
s∗) = 1[y1it = 0] log[1−Φ(witλ∗/σs∗)]

−1[y1it > 0]{logφ [(y1it −witλ∗)/σs∗]− log(σ2
s∗)/2}. (E.5)

Using the notation: Φ(wiλ∗/σs∗) = Φi; φ(wiλ∗/σs∗) = φi and the constant does not affect the

maximization, we can rewrite this log likelihood as:

li(λ∗;σs∗) = 1[y1i = 0] log(1−Φi)−1[y1i > 0]{1
2
(y1i −wiλ∗)2/σ2

s∗+
1
2

log(σ2
s∗)}, (E.6)

and we have the score as:

si(λ∗;γ2) =

���� si1
si2


���=
���� ∇λ∗li

∇σs∗li


��� , (E.7)

and si1 =−1[y1i = 0](φiwi)/σs∗(1−Φi)+1[y1i > 0](y1i−wiλ∗)wi/σ2
s∗,

si2 = 1[y1i = 0](φiwiλ∗)/[2σ2
s∗(1−Φi)]+1[y1i > 0]

	
(y1i−wiλ∗)/

!
2σ4

s∗
"−1/

!
2σ2

s∗
"

.

With the two-step M-estimator, the asymptotic variance of
√

N(�λ∗ −λ∗) must be adjusted to

account for the first-stage estimation of
√

N(�γ2−γ2) (see more in 12.4.2 of Chapter 12, Wooldridge,

2002). We can write:

√
N(�λ∗−λ∗) = A−1

1

��N−1/2
N�

i=1
πi1(λ∗;γ2)


�+op(1), (E.8)

where

A1 = E[−∇λ∗si1(λ∗;γ2)], (E.9)

and

∇λ∗si1(λ∗;γ2) =−σ−2
�
1[y1i = 0]

)
[φ2

i −φi(1−Φi)λ∗]/(1−Φi)
2
*
+1[y1i > 0]

�
w′

iwi,

and

πi1(λ∗;γ2) = si1(λ∗;γ2)−F1πi2(γ2), (E.10)
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where

F1 = E[∇γ2si1(λ
∗;γ2)], (E.11)

or F1 =−E
5

T�
t=1

[(1−σs∗)φitwitλ∗+Φit ](θ1w∗
2it +θ4w∗

2i)

6
.

Therefore, we get:

Avar
�√

N(�λ∗−λ∗)
�
= A−1

1 VA−1
1 , (E.12)

where V=Var[πi1(λ∗;γ2)].

A valid estimator of Avar
�√

N(�λ∗−λ∗)
�

is:

�A11 =
�A−1

1

�
N−1

N�
i=1

�πi1 �π ′
i1

��A−1
1 , (E.13)

where

�A1 = N−1
N�

i=1

T�
t=1

�σ−2
�
1[y1it = 0]

)
[ �φ2

it − �φit(1− �Φit)
�λ∗]/(1−�Φit)

2
*
+1[y1it > 0]

��w′
it�wit ,

and �πi1 = �si1− �F1 �πi2 in which �πi2 =
�A−1

2
�B′2i�v∗2i and

�F1 =−N−1
N�

i=1

T�
t=1

[(1−�σs∗) �φit�wit
�λ∗+ �Φit ](

�θ1w∗
2it +

�θ4w∗
2i),

and the asymptotic variance of �λ∗ is:

̂Avar(�λ∗) = �A−1
1
�Q�A−1

1 /N = �A11, (E.14)

where �Q= N−1
N�

i=1
�πi1 �π ′

i1.

We can derive Avar
7√

N(8σ2
s∗ −σ2

s∗)
9

as the above procedure for the derivation of

Avar
�√

N(�λ∗−λ∗)
�

and get �A22.

And denote, Ψ ≡ (λ ∗,σ2
s∗)′, we can derive�Avar

	√
N(�Ψ−Ψ)



as:

�Avar
	√

N(�Ψ−Ψ)


=

���� �A11
�A12�A21
�A22


��� , (E.15)

where �A22 = �A−1
2
�Q�A−1

2 /N and

A2 =−σ−4{(wiλ∗/σ s∗)3φi+(wiλ∗/σ s∗)φi− [(wiλ∗/σ s∗)φ2
i /(1−Φi)]−2Φi}/4
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and �A12 =
�A−1

12
�Q�A−1

12 /N and

A12 = σ−3{(wiλ∗/σ s∗)2φi+φi− [(wiλ∗/σ s∗)φ2
i /(1−Φi)]}w′

i/2.

E.2 Asymptotic Variance of the Average Partial Effects

Next, we obtain the standard errors for the average partial effects as in equations (2.21) and (2.22).

�ϕ =�λ∗
��(NT )−1

N�
i=1

T�
t=1

Φ(wit
�λ∗/�σs∗)


� , (E.16)

where �wit = (y2it ,w3it , �v∗2it ,�v∗2i).

ϕ = λ∗
���T−1

T�
t=1

E [Φ(witλ∗/σs∗)]

��� . (E.17)

Then we need to compute the asymptotic variance of
√

N(�ϕ −ϕ).

Let �μ = (�λ∗; �γ ′2)′ and

p(wit ,w∗
2it ,μ)≡ (T−1

T�
t=1

	
Φ(
	
αy2it +w3itλ3 +θ1(y

∗
2it −w∗

2itγ2)+(y∗2i−w∗
2iγ2)θ4



/σs∗)



)λ∗,

we have:

√
N(�ϕ −ϕ) = N−1

N�
i=1

���λ∗(T−1
T�

t=1
[Φ(witλ∗/σs∗)])−ϕ

���+E[∇μp]
√

N(�μ −μ)+op(1).

(E.18)

In which:
√

N(�μ −μ) = N−1
N�

i=1
Di+op(1), (E.19)

where Di =

���� A−1
1 πi1

πi2


��� and all matrix definitions were introduced in step 1 and a valid estimator

of Di is: �D=

���� �A−1
1
�πi1�πi2


��� . (E.20)

Therefore, the asymptotic variance of
√

N(�ϕ −ϕ) is:

Ω =Var

�����λ∗(T−1
T�

t=1
[Φ(witλ∗/σs∗)])−ϕ


�+PD

��� , (E.21)
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in which Ω =Var(K+PD)where K= λ ∗(T−1
T�

t=1
[Φ(witλ∗/σs∗)])−ϕ .

Hence, we can get �K=�λ∗(T−1
T�

t=1

�
Φ(�wit

�λ∗/�σs∗)
�
)− �ϕ. (E.22)

The last job is to find the Jacobian P where P= E[∇μp]

P=[P1|P2]

P1 = ∇λ∗p=T−1
T�

t=1
[φ(witλ∗/σs∗)] (witλ∗/σs∗)+Φ(witλ∗/σs∗)],

and �P1 = T−1
T�

t=1

�
φ(�wit

�λ∗/�σs∗)
�
(�wit
�λ∗/�σs∗)+Φ(�wit

�λ∗/�σs∗)],

or in short: �P1 = T−1
T�

t=1
[φ(�ω)�ω +Φ(�ω)] , (E.23)

where ω = witλ∗/σs∗

P2 = ∇γ2p=T−1
T�

t=1
[φ(witλ∗/σs∗)](−θ1w∗

2it −w∗
2iθ4)λ∗/σs∗)] and

�P2 = T−1
T�

t=1
[φ(�ω)](−�θ1w∗

2it −w∗
2i
�θ4)
�λ∗/�σs∗)]. (E.24)

Therefore

�P= (NT )−1
N�

i=1

��T−1
T�

t=1
[φ(�ω)�ω +Φ(�ω)] |T−1

T�
t=1

[φ(�ω)](−�θ1w∗
2it −w∗

2i
�θ4)
�λ∗/�σs∗)]


� .
(E.25)

Finally, Avar
	√

N(�ϕ −ϕ)



is consistently estimated as:

�Ω = N−1
N�

i=1
(�K− �P�D)(�K− �P�D)′. (E.26)

The asymptotic standard error for any particular APE is obtained as the square root of the

corresponding diagonal element in the above expression, divided by
√

N.
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Appendix F

TECHNICALITIES FOR CHAPTER 3

Derivation of Maximum likelihood estimator in the firs stage and the Asymptotic Variance

in the second stage

F.1 Bivariate Probit Model in the First Stage

In the first stage, we estimate equation (3.11) and equation (3.12) simultaneously and get the log

likelihood as in equation (3.23). Note that the model is qualitatively different from the usual bivari-

ate probit model. In a simultaneous equations model (3.11-3.12), the second dependent variable

y3it appears on the right hand side of the equation with the dependent variable y2it . One can derive

the following conditional mean and obtain the corresponding marginal effects of interest:

E(y2it |Wi) = Pr[y3it = 1|Wi]E[y2it |y3it = 1,Wi]+Pr[y3it = 0|Wi]E[y2it |y3it = 0,Wi], (F.1)

where

E[y2it |y3it = 1,Wi] = Pr[y2it = 1|y3it = 1,Wi], (F.2)

and

E[y2it |y3it = 0,Wi] = Pr[y2it = 1|y3it = 0,Wi], (F.3)

Therefore

E(y2it |Wi) = Φ2(W3itγ3,W2itγ2+α2;ρ)+Φ2(−W3itγ3,W2itγ2;−ρ). (F.4)

To obtain the derivatives and Hessian, let us rewrite the log likelihood in a convenient way with

q2i = 2y2i−1 and q3i = 2y3i−1 (which results in qim = 1 if ymi = 1 and qim =−1 if ymi = 0, for

m = 2,3):

lnLit = lnΦ2(ki2,ki3;π), (F.5)
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where kim = qimWmitγm for m = 2,3 (here the notation is abused under the note that γ2 = (γ ′2,α2)
′

and π = q2iq3iρ .

The score function and the information matrix resulting from equation (F.5) are derived as

follows:

sit(θ1) = ∇θ1
lnLit(θ1) =

������������
∂ lnLit(θ1)/∂γ3

∂ lnLit(θ1)/∂γ2

∂ lnLit(θ1)/α2

∂ lnLit(θ1)/ρ


����������� , (F.6)

and

I(θ1) =−E
�
∇2

θ1
lnLit(θ1)

�
. (F.7)

We have:

∂ lnLit(θ1)/∂γ3 = Φ−1
2 (ki2,ki3;π)(qi3W3it)gi3, (F.8)

where gi3 = φ(ki3)Φ
�
(ki2 −πki3)(1−π2)−1/2

�
.

∂ lnLit(θ1)/∂γ2 = Φ−1
2 (ki2,ki3;π)(qi2W2it)gi2, (F.9)

where gi2 = φ(ki2)Φ
�
(ki3 −πki2)(1−π2)−1/2

�
.

∂ lnLit(θ1)/∂α2 = Φ−1
2 (ki2,ki3;π)qi2gi2, (F.10)

and

∂ lnLit(θ1)/∂ρ = Φ−1
2 (ki2,ki3;π)qi2qi3φ2(ki2,ki3;π). (F.11)

Therefore, the asymptotic variance of θ1 is:

Avar(θ1) =C−1VC−1/N, (F.12)

where

C = N−1
N�

i=1
I(θ1), (F.13)
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and

V = N−1
N�

i=1
sit(θ1)sit(θ1)

′. (F.14)

As a result, the estimator of the asymptotic variance of θ1 is:

̂Avar( �θ1) =
�C−1�V �C−1/N, (F.15)

and
√

N( �θ1−θ1)
d→ Normal(0,C−1VC−1), (F.16)

or
√

N( �θ1−θ1) = N−1/2
N�

i=1
ri(θ1)+op(1), (F.17)

where

ri(θ1) =−I(θ1)
−1si(θ1), (F.18)

and �ri(θ1)≡−I( �θ1)
−1si(

�θ1). (F.19)

F.2 Asymptotic Variance of the Two-step Estimator

The asymptotic variance of the second-stage parameters, θ2, needs to be corrected for general

heterokedasticity, serial correlation and first-stage estimation of θ1 using the delta method as shown

in Wooldridge (1995a) and Wooldridge (2002, chapter 12).

For y2it = 1,we define the general regressors for time period t as:

�wit = (W1it ,y3it ,0, ..,0, λ̂it1,0, ..,0,0, ..,0, λ̂it2,0, ..,0,0, ..,0, λ̂it3,0, ..,0,0, ..,0, λ̂it4,0, ..,0,)

and the parameter vector in the second stage is:

θ2 = (γ ′1,α1,η11, . . . ,ηT1,η12, . . . ,ηT2,η13, . . . ,ηT3,η14, . . . ,ηT4)
′

which is a G×1 vector where G = (1+K1+L+4T ).

122



We can write E[log(y1it)|wit ,y2it = 1] = witθ2, then we have: log(y1it) = witθ2 + εit where

E[εit |wit ,y2it = 1] = 0 (t = 1,T ).

On the selected sample, our POLS estimator is:

�θ2 =

�
N−1

N�
i=1

T�
t=1

y2itw
′
itwit

�−1�
N−1

N�
i=1

T�
t=1

y2itw
′
it log(y1it)

�
, (F.20)

�θ2 = θ2+

�
N−1

N�
i=1

T�
t=1

y2itw
′
itwit

�−1�
N−1

N�
i=1

T�
t=1

y2itw
′
itεit

�
, (F.21)

and it can be shown that:

√
N( �θ2−θ2)

d→ Normal(0,A−1BA−1), (F.22)

where

A=E

�
T�

t=1
y2itw

′
itwit

�
, (F.23)

B=Var(hi) = E(hih′i) and hi = si−Fri, (F.24)

in which

si =
T�

t=1
y2itw

′
itεit , (F.25)

F=E

�
T�

t=1
y2itw

′
itθ

′
2∇θ1

w′
it(θ1)

�
, (F.26)

in which ∇θ1
w′

it(θ1) is a G×Q gradient of w′
it(θ1) evaluated at �θ1 and ri is defined in the previous

part.

To estimate Avar( �θ2) = A−1BA−1/N, we obtain:

�A≡N−1
N�

i=1

T�
t=1

y2it�w′
it�wit , (F.27)

�F≡N−1
N�

i=1

T�
t=1

)
y2it�w′

it
�θ ′
2∇θ1

w′
it(
�θ1)
*
, (F.28)

and for each i = 1,N.
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�si≡ T�
t=1

y2it�w′
it�εit , (F.29)

in which �εit = log(y1it)− �wit
�θ2, and �hi = �si−�F�ri. (F.30)

A consistent estimator of B is: �B≡N−1
N�

i=1

�hi
�h′i. (F.31)

The asymptotic variance of �θ2 is estimated as:

̂Avar( �θ2) =
�A−1�B�A−1/N, (F.32)

and the asymptotic standard errors are obtained as the square roots of the diagonal elements of this

matrix.
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