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ABSTRACT

The rate at vhich the harmonics are developed during the
propagation of an initially sinusodial ultrasonic wvave depends
on the nonlinearity of the liquid. A stainless steel plate wvas
used as a filter to pass only the desired harmonics. The rate
of growth of each of these harmonics, as & function of distance
and pressure, vas measured by means of the Aiffracticn pattern
produced by the wvave. From the result of these msasurements,
the parameter B/A (describing nonlinearity) vas calculated to
be 6.2 ¢+ .6 and 9.6 ; 1 for vater and m-xylens, respectively.

The rate of growth of the harmonics as measured, deviate
somsvhat from the values predicted from the theory for a dis-
sapationless medium. An approximate theory wvas suggested to
consider both generation and absorption of the harmonics. PMair
agreement vas obtained between this approximate theory and the
msasured values of the harmoniecs.
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CHAPTER I
IRTRODUCTION

In general, a sound beam changes its wave shape as it propagates
in a fluid vhose pressure density relationship does not follow Hooke's
lav. This mesans that harmonics are generated as the wvave progresses.
In the case of infinitely smll amplitude, this change in wave shape
is 80 smll that cne can neglect it; however, in the case of a finite
axplitude sound wvave, this effect has to be considered. The distortion
of & finite amplitude wvave is dus (o the nonlinear property of the
medium in vhich ths vave propagates. The positive and negative incre-
ments in pressure are impressed on the mass of medium. The chenge in
the velums of the mass not being equal, the volume change for the posi-
tive pressure vill be less than the volume change for nsgative pressure.

Thures, Jenkins and 0'Neill studied finite amplitude effects in
gases. They have pointed out that the equation of state for adia-
batic processes shows that the linear relationship between pressure
and voluns does not hold, and consequently, leads to the distortion
of ths ultrasonic vave. They gave an approximate salution for the
generation of harmonics as a function of distance, fundamental pres-

sure and frequency.

Fox and Walhccz, falloving the same argument for liquids, as-
sumed that the following pover series expresses the relatiom between
pressure and density



PeRaA 3z, Bloawe)y . (1)

vhere P is the pressure and S is the density. Pocndgo are the
pressure and density of the undisturbed medium. B and A are para-

meters of the liquid vhich are functions of temperature.

Fox and Wallace, instead of solving the qquation of motion, sug-
gested a graphical analysis of the distorted wave. As they pointed
out, the gradually steepening wvave fromt would ultimately form a
discontinuity without some stabilising mechanism. This stabilizing
mechanism is the absorption of the ultraseund in the medium. Pox
and Vallace evaluated the nonlinearity parameter B/A for liquids

using compressibility data.

Fubini-Ghtiron3 used s similar treatment to that of Fox and
Vallace, but instead of a graphical method, he used an analytical
treatasnt of the finite amplitude wave distortien. His theory
assumes that the medi{um 1s dissipationless and the expressions for
the grovth of harmamics hold up to the discontinuity of the vave
front. This analytical method has been redeveloped independently
by Keck and Beyer, and Hargrove’. Hereafter, this method will be
referred to as the Fubini-Ghiron method, however, the notation of
Bargrove vill be used.



Muach experimsntal work was carried out in the last decade to
demonstrate and measure the distortion of a finite amplitude wvave in
11quids. Zarembo, Krasilnikov, and Shklovskaia-Kordi6 showed the de-
pendence of the ultrasonic abosrption coefficient on sound pressure.
They used two different methods: first, they used & thermal prebe as
a receiver and analyzed ths harmonic structure of the disterted vave;
secondly, they observed directly the harmonics in a traveling wave.
They used an scoustic filter to separate the fundamental and its
harmsnics.

Mmmm7exphmathstthc;ppumuocrthﬁ
asymmstry in the refrection of light by an ultrusonic wvave is caused
by the distortion of the wvave form.

Zenkel and Hiedemamn®, in their study of light diffracticn by
an ultrasonic beam, explained the asymmetry of the diffrection pate
tern Ly the distortion of finite amplituds vaves. Their method wvas
an indireet wvay of msasuring harmomic structure. They assumed a
certain percentage of the harmonic content and fitted it into the
light intensity nmeasuremsnt of the diffraction pattern.

mmruup,tmmmmmmmoua-m
harmonie by use of a metal plate vhich served as an acoustic filter.
The second harmonic which passed through the filter plate served as
s 4diffraction grating.



The experimental method of using a filter plate in combination
with optical diffraction has nowv been used to study quantitatively
how the harmonic content of an ultrasonic wave varies with distance
from a sinusoidally vibrating source. The results of this study,
and the non-linearity perameter B/A for water and m-xylene derived

from them will be given in this thesis.



CHAPTER II
THEORY

Theory of Nondissipstive Liquids
The amowunt of distortion of a large amplitude sound wvave is ex-

pressed in terms of the smount of harmonics present. Thuras, Jemkins
and 0'Neil obtained a solution for the sescond and third harmemics by
solving the equation of motion for the nonlinear wvave.

Their solutiom is an epproximation for smmll pressures not con-
sidering any dissipation of the vave. The expression for the amplitude
of the second harmonic may be given as

7, - TBALY) oy (2)

- 28OC°

vhere X is the distance between the transmitter and the receiver.

Fo

undistrubed medium. f is the frequeney of the ultrasound, Co 1is the

is the fundamental pressure at X = 0. Qo is the density of the

sound velocity, and B/A is the nonlinear parameter of liquid.

Expsriment shows that the linsar relation between the amplitude
of the second harmcnic and distance holds only for a very small regien
of distance. At greater distances, the second harmonic levels off.
Such & behavior 1s given by the theory of Fubini-Ghirend. In this
theory, instead of selving the equation of motiom, an amalytical



method was carried through between x = O and the point of discone
timuity; that is, vhare the wave wvould reach discontinuity due to
the distortion. With the assumption that the crest propagates faster
than the treugh, Fubini-Ghiron3 obtained an expression for the amp-
1itude of the n'® narmenic in e dissipaticnless medium which may be

given as
R~ %—E‘ﬂ- 3,.(nk) (3)

vhere Pn is the amplitude of the n'® harmonic, Pi1o is the funda-
mental pressure, Jnuﬂnnﬂ‘omrntuol function, k is the
frectionsl paremster of the discontinuity distance ks-l- , and

L
vhere

L=8eCo {2 [(%A“)Pto{‘]}-l (»)

This theory gives the right shape for the harmenic generatiom,
as it levels off the curve, but 4t still deviates from the experimental
valuss. In the first approximation for smll distances and small pres-

sures the two expressicens (equaticns 2 and 3) are identical. The theory
of Fubini~Ghiron vill be used in & modified form to dsscribe the propa-
gation of sound in & liquid. ’



Theory of Dissipative Liquids

One way to accomt for dissipation of a finite axplitude ultiw-
sonic wave is the method used by Thuras, Jenkins and O'Neil. They
assumed that each harmonic would be absorbed independently of the
other.

Here, however, we assune & slightly different model vwhich has
led to a better sagreemsat betveen theory and experimsnt. We divide
the discontunity distance into small intervals and assume that at
any distance the gemsrated harmonic can be calculated from the theory
of Fubini-Ghirem. The dissipation of the harmonic is introduced by
assuming that in the interval dk the average valus of the gensrated
Marmonic wvill undergo the absorption. Thus, the actual amoxmt of
Marmonic present in each interval is the amount generated minus the
amount absorbed.

Let us consider the expressien for the n'l harmouic as expressed
by Pubini-Ghirond.

Po= 2t 1 (nk) (5)

The nth order Bessel function can be expanded into the following ine-
finite series ‘



T.(x)= 8 L) (Hr (6)

g0 11 (34n]!

Expanding equation (6) and neglecting terms higher than the seeond,
ve obtain for equatiom (5)

Pn _ Lnk)n-' _ nk N+l (7)
Po 2™'n! 2 n+li)!

To find the amount of nth harmonic dissipated, we assuse an

exponential absorption of the averags harmonic present, thus

_Pa) =B (1o X (8)
(pno dissipated  Po ( )

vhere (X, is the absorption cosffieient of the n'® harmeonic in the

nedium.

The average valus of the relative amount of n'® harmonic 1is
given by

(9)

-&dk ,_&"k)n-l _ (nk);‘“
{ dk 2™ n! 2" (e 2)!

a'd Edl



Substituting equation 9 into equation 8, we obtain

(ED) (n k)n' (hk)n“ (| e“"nx) (10y

-pm dnss|pai'cd ’ln ln n‘ 2““ (n#Z)'

nuut\-lmcfn“hnrmtcpmmtismmtofMe
generation (equation 7) minus the amesmt of harmonic dissipated
(equatien 10).

(11)

_ ™ (nk)" [(nk)"“ nk )™ (“ -0 KL
plo S TR! Zn”(l’H—n' 2Tl 2Mhe2)! e
vhere x = k1

Yor the seecond harmonic, equation 1l becomes

®_k_K ~ox, kL
2ea-F [ E-&] ™ (2)

and for the third harmonic

b k?— 81 k* [k"-

P, 320

215 e (13)

o
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This theory is limited to values of X , k, and L, such that the
gensration of the harmemnics is not influenced by their absorption.

It 1s also limited to distances less than the discontinuity distance.
By satisfying these conditions experimentally, values of the harmonics
a8 & function of distance vhieh vere msasured could be oompared vith
this theory. These results will be given after a description of the
experiment.



CHAPTER III
EXPERIMENTAL METHODS

Experimental Arrangement

The experimental arrangement used is shown in the schematic illuse
tration in figure 1. Light from the mercury vepor lamp 8 was condensed
by lens L, on the source slip B. Lens L2 was adjusted by autocolli-
mation to render the light parallel. The light passing through the

tank was focused by lens L. on the entrance slip B, of the photomulti-

3
plier microphotometer, a filter F which passes only the S5L61A line of

mercury was placed between slit B, and the photomultiplier Ph.

The ultrasonic transducer Q was an air backed 1 inch square X-cut
quartz crystal. This crystal was excited at its fundamental frequency
by an RF oscillator which had a maximum output of 50 watts. The RF
potential across the quartz was.mealured using a high-frequency vacuum

tube voltmeter.

A specially designed tank T described elsewhere, 10 vas used to

eliminate reflection of the sound beam, P was a stainless steel plate
approximately 1 mm in thickness, used as an acoustic filter to select

the desired components of the sound wave.

Pressure Measurement

As is known, the ultrasonic beam acts on the incoming light es

an optical phase grating. The angle of the diffracted light in the
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th

n"" order is expressed as

Sin@ =nd_ (14)

Where A\ is the wave length of the light, A * 18 the wave length of

the wound, and n can be any integer number.

The intensity of the diffracted light in the n'? order for small

sound pressure was derived by Raman and Nathu to be

In=J.°(v) (15)

vhere J, is the a®® order Bessel function. The term v is expressed

V:—z‘—;_r_&_g-m

vhere a is the width of the sound field and M is the variation of the
refractive index of the liquid due to the density variation caused by
the sound beam. The variation of the index of refraction is caused
by the condensations and rarefactions in the medium as a consequence
of the sound pressure. This variation is assumed to be proportional

to the sound pressure.

The measurement of the intensity of the diffracted light leads
to the value of the variation of the index of refraction and indirectly

to the sound pressure. However, the difficulty is that the relation-



1k

ship between pressure and the variation index of refraction is not
very accurately known. A theoretical relation was derived by
Lorentz-Lorenz 12, 13 for the variation of the refractive index,
with the assumption that the molecules are optically isotropic. It

is known, however, this does not hold true for many liqpids.

Raman and Krishnan 14 tried to use some correction term con-
sidering the anisotropic property of the molecules, but to apply

their result in actual calculation is too complicated for the pre-

sent purposes.

Several empirical formulas were worked out for the variation of
the refractive index with pressure, of which Eykman's 15 formula seems
to fit best with the experimental measurements for work on water and
m-xylene, which are the liquids used in this work. From the Eykman
formula the variation of refractive index is found to be

(e (ol duo +.4)
M 'w ,14021.8,44;:! (16

where I~ is the refractive index of the undisturbed liquids. From
this formula, the relationship between pressure amplitude and the

Raman-Nath parameter v is

P=.56 % atm, (17)
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for water and

P=2S —i— atm, (19

for mexylene.

With these expressions, it is possible to determine the pressure
amplitude from the light intensity in any diffraction order. The
procedure used was as follows:

The relative intensity of the diffracted light in the first
order of the diffraction spectra was measured with the photomultiplier
microphotometer. From the measured intensity values, the Raman-Nath
paramster v was calculated using equation 15,

From the evaluated v-values, the pressure amplitade, was determined

by means of equations 17 and 18,

Demonstration of the Higher Harmonics

As a demonstration that the higher harmonics of the fundamental
are present as a result of the distortion of the wave, the following
experiment was made: the filter plate at the front of the sound beam

wvas rotated through a 90° angle and the light intensity of the second
order was recorded. Because the spacing between diffraction orders

is proportional to the frequency (equation 11), any second harmonics
present would contribute to the second order in thé diffraction pattern.
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At first, a 3 mc quartz was used and placed close to the plate
and a very lov sound pressure was applied. Under that condition the
finite amplitude effect is negligible. The transmission curve is
shown in figure 2a. Since the light intensity is a function of the
sound pressure, the peaks show the transmission of the fundamental
pressure. Then the transducer was moved back to 50 cm and the
ultrasonic pressure was increased to 1 atm. Under this condition,
the experiment was repeated. As the result shows, in figure 2b,
the extra peaks are indicating the presence of second harmonié
since they coincide with the transmission peaks of the 6 mc sound
wave shown in figure 2c. A similar measurement was made to demon-
strate the presence of the third harmonics as shown in figure 3.
This method gives the possibility to select the angle of maximum
transmission for the different harmonics. It is also demonstrated
that the harmonics present are not generated in the transmission

plate, but in the liquid.

Calibration of the Plate

One cannot expect that the energy of the incoming sound beam
to the plate vill be transmitted into the outgoing beam one hundred
percent, for due to the multiple reflection inside the plate and the
generation of shear waves inside the solid medium, there will be a

certain amount of loss.

To detect the sound energy loss, or more correctly, the amount
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of sound transmitted, measurements of the sound amplitude were made
before and after the plate using the optical method. To obtain a
calibration for the second harmonic of a 3 mc wave, a 6 mc source

wvas used.

The r@tio of the outgoing sound amplitude to the incoming sound
amplitude gave the tranmsmission coefficient of the plate. The transe
mission coefficients obtained were .92 for water and .74 for mexylene.
For the measurement of the second harmonic these coefficients were

taken into consideration.

Measurement of the Second Harmonic in Water

In the actual measurement of the second harmonic, a 3 mc quartz
vas used to generate the fundamental frequency. The plate was placed
near to the light beam with a selected angle to the sound wave, at
which angle only the second harmonic was transmitted (assuming no
fourth harmonic is present). The fundamental and the third harmonics
were reflected and the second harmonic was measured, using the method
described, at various distances and at various fundamental pressures.
The fundamental pressure was measured by measuring the quartz voltage.
The quartz voltage was calibrated to the acoustical pressure by an

optical method using equation 12.

The distance was varied from zero to the discontinuity distance

and the fundamental pressure was varied from .l atm to 1.1 atm.
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In figure U4 the relative percentage of the second harmonics was
plotted vs. the fractional parameter of the discontinuity distance k
for 3 different fundamental pressures: 1.1 atm, .88 atm and .4k atm,
with the corresponding discontinuity distances: 39 cm, 48 cm and 97
cm. The solid line represents the theoretical curve for a dissie
pationless medium. As one can see, the experimental points are in
good agreement with the dissipationless theory for low k values. As
it vas expected, the medium can be considered dissipationless if the
sound wave propegates a small distance. However, with increasing k
values, the experimental points deviate more and more drastically
from the theory, indicating that the medium cannot be considered

dissipationless vhen the propagation distance is too great.

It is significant to point out that the deviation from the theory
is greater for smaller pressures than for higher ones. 8ince the
discontinuity distance is inversely proportional to the fundamental
pressure, the absorption becomes more dominating, as the sound wave

has to travel farther to reach the discontinuity distance.

Figure 5 shows the theoretical curves considering dissipation
using equation 10 with the experimental points. As we can see, there
is a much better agreement between theory and experiment, even if one
considers only this simple model for dissipation. For small pressures
the ;gracment is much better than for higher pressures. Therg is a '

possibility that at higher pressures some fourth harmonics are gener-
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ated which also pass through the plate. But probably some more terms
should be included into the dissipationless theory. The fact that
absorption affects the generation of harmonics could cause some of

these discrepancies.

Measurement of Second Harmonics in mexylene

The same method was carried out to obtain measurement in mexylene.
The measurement was more difficult for higher k values than in water.
When high ultrasonic pressure was used, the disturbance in the liquid
was very high. This disturbance is attributable to the presence of a
quartz wvind. Plate vibration could also be obs;}vnd in xylene more
than in water. However, for small k values the experimental points
are in good agreement with the theory (figure 6).

Measurement of Third Harmonics in Water

To show that the method is applicable for measuring the value
of harmonics higher than the second, the plate was calibrated for
the third harmonic in the same way as was descridbed for the second

harmonic, and one set of measurements was carried out.

As was expected, figure 7 shows that the experimental points
deviate more rapidly from the dissipationless theory than in the
case of the second harmonics. 8ince the absorption is proportional
to the square of the frequency, this can be explained. The approximate

dissipeﬁionless theoretical curve shows good agreement with the experi-
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mental points, indicating the correctness of the assumption for

dissipation.

Evaluation of B/A Values for Water and mexylene

The equation of state for liquids expressed by Fox and Wallace2
introduces the nonlinearity parameter B/A. The growth of the second
harmonic of finite amplitude sound waves is related to the B/A values,
thus measurements of the second harmonic can be used to determine the

value of B/A.

A quick way to determine the nonlinearity parameter is to use
the dissipationless theory for harmonics as developed by Fubini =
Ghiron. Considering the expression for second harmonics and neglecting

higher order terms, one obtains

B = - b
/A const. -ﬁ- 2 (1b)

Thus, measuring second harmonics at various distances and various pressures
leads to the value of B/A. Figures 8 and 9 show P |3'X VS. -P!o

for water and mexylene.

The extrapolation of these curves give the B/A value. As one can
see, the evaluation of B/A occurs at XPlo = 0, obviously satisfying

the condition for the dissipationless case. ' Although at higher XP;,
values, the curves deviate from the theoretical curve, these points are

not used for the determination of the B/A value because the extrapolation
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neglect; the effect of dissipation.

Using this approach, the value of B/A for water was found to be

6.2+.6 and for m-xylene 9.6+1.
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CHAPTER IV
SUWAMARY OF RESULTS

A method for quantitative measurements of harmonics as a result
of the distortion of a finite amplitude sound wave was developed.
This method used an acoustic filter and the optical diffraction method
of measuring ultrasonic pressure. Measurements were taken for the
relative percentage of the second and third harmonic growth in water
and for the second harmonic growth in m-xylene at various distances
and various fundamental pressures. As vas expected, there was a
drastic deviation between the dissipationless theory and the experi-

ment, indicating absorption of harmonics.

An approximete theory was suggested to consider the dissipation
of the harmonics. A reasonable agreement was obtained between this

theory and the experiment for small pressures.

It has been shown that one can evaluate B/A from distortion
measurement even though the exact theory is not known. JFrom these
measurements the nonlinearity parameter B/A is evaluated as 6.2+.6
for water and 9.6+1.0 for m-xylene.
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