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ABSTRACT

An analysis of negative pion - neutron scattering

at 460.mev in a prOpane bubble chamber has been made in

order to verify the hypothesis of charge symmetry in

pion - nucleon interactions. A comparison of the ang-

ular distribution in ("7,n) and (3+,p) scattering at

equivalent energies was made for this purpose. Since

the (3+,p ),‘ datawere obtained in hydrogen, corrections

for nucleon motion, assuming a Fermi sphere of 191 mev/c,

as well as for diffraction from the carbon nucleus,

using a black sphere model, were carried out. Applying

a 12 test, the resulting (fl‘,n) angular distribution

fits a least squares fit of the (3+,p) data with a

probability of 0.054 for the entire curve and a prob-

ability of 0.20 for the part of the curve corresponding

to laboratory angles greater than 53 degrees.
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I INTRODUCTION

An important particle in the mystery of nuclear

physics is the pi meson. According to Yukawa"s theory, the

pi meson plays the same role in a nuclear field as the

photon plays in the electromagnetic field} With the dis-

covery of the artificially produced pi meson; its mass,

spin, lifetime for weak decay and parity became well esta-

blished. The interaction of the pi meson with nucleons is,

however, not so well established. One method of studying

the interaction is to observe the scattering of pi mesons

from.nucleonse An experiment to measure pi meson proton

scattering is relatively simple to perform since there are

sources of free protons available. However, it is very

difficult to study pi meson neutron scattering, since

there are no stationary free neutrons available in nature.

All stable sources of neutrons are found in a bound state

(inside a nucleus). However, from.the principle of charge

symmetry, we can predict the interaction of a pi meson with

neutrons by studying the interaction of a pi meson with

protons.

To explain charge symmetry, it is convenient to

introduce the idea of isotopic spin? Isotopic Spin form-

alism makes use of the similarities between a proton and

a neutron. They have the same spin and mass, but a



different charge. Apart from electromagnetic effects,

they behave the same way in nuclear matter. They could

be thought of as just one particle (a nucleon) in two

different charge states. We introduce a new quantum

number "Mt" and give it a value of +1/2 for a proton and

-l/2 for a neutron. The state of a nucleon is now also

determined by this new quantum number. The Pauli ex-

clusion principle can now be generalized to exclude the

states of any two nucleons with all quantum numbers equal,

including Mt‘ The terminology "spin" was introduced

because of the analogous role that the charge states

play to the role of ordinary spin in atomic physica,if we

neglect spin-orbit interaction. Again in analogy to

ordinary spin, we could think of a three dimensional

"isotopic spin space", having the three Operators:

0/

x (II (D)

T .- 9—;
A0

(53)

The quantum number Mt would just be the projection of

B I

F
3

N

I

T on the z axis.

With this knowledge of isotopic spin space, we may

now proceed to define charge symmetry. The statement of

charge symmetry is that a 180 degree rotation of the

'isotopic spin vectors about any axis in the xy plane

does not change the interaction. The definition
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effectively, Just changes the sign of Mt‘ We can now see

that from the previous assignment of Tz for a proton and

a neutron, (n,n) and (p,p) interactions should be ident-

ical. (n,n) equivalent to (p,p) is the definition of

charge symmetry that is commonly used. The advantage of

the first definition is that it can also be applied to

meson - nucleon systems. The pi meson is a charge

triplet3 with T2 - l,O,-l corresponding to a "f, '9,

and w"respectively. It now follows that by charge syms

metry, a proton can be interchanged with a neutron, a w+

meson can be interchanged with a ""meson, a WP meson can

be interchanged with a "9 meson, and vice versa in any

interaction. We can now clearly see that

a. (w+,P) and (3-,n)

b- (w-9P) and (n+,n)

c. <.~°.p) and <.°. n)-

should be identical interactions.

In this paper, we are interested in an experimental

verification of this principle of charge symmetry in

pion - nucleon scattering at pion energies of 460 mev.

The method used is to compare the angular distributions

of negative pions scattered from neutrons and of positive

pions scattered from protons in the laboratory system.

Previous work similar to this has been performed by

J. Ashkin4 et al. The method used by Ashkin was to

compare the total cross sections of positive and negative



pions scattered from deuterium.

Since the protons in this experiment are free and

the neutrons are bound in carbon nuclei, both experiment-

ally obtained distributbns must be transformed before the

comparison can be made. This is described in detail in

Section III.

The main proton data‘werc obtained by W. D. 97111135

who did (37",p) scattering at 500 mev using a hydrogen

bubble chamber. As will be described in Section III,

data from (3+,p) scattering at 850 mev in a hydrogen

chamber by Erwin and Kopp6 and at 1.1 bev in a prOpane

chamber by Glaser et al7 will be used in the analysis.

The neutron data were obtained from Walker et al8

in a propane chamber exposed to #60 mev w- mesons at

the cosmotron.



II EXPERIMENTAL DETAILS

The pion-neutron data was abstracted from 20,000

pictures taken of a prOpane bubble chamber built by

Professor W. D. Walker of the University Of Wisconsin

which was exposed to a 460 mev negative pion beam at the

cosmotron of the Brookhaven National Laboratory. There

was no magnetic field. The chamber was photographed by

two cameras with their Optical axes at right angles to

each other. The use of the maximum possible stereo angle

allowed for the accurate measurement of the most important

quantity in the experiment -the space angles between the

various tracks. A sketch of the Optical system is shown

in figure 1.

In the scanning of the pictures, every event in-

volving an incoming pi meson was recorded. These events

were broken down as follows:

Hydrogen

elastic ""+ p . w*'+ P

charge exchange fl"+.p . "o e n

"fpproduction w? +.p - sf + ”T'+ n

“9 production "7 + p . “9 + "7'+ p

Carbon

quasi elastic "7'+ p . W7'+ p

0
charge exchange ”7 + p - n + n



 
 

 
 

 
 

 
BOTTOM

/ CAKRA

BEAM DORECTION

FIGURE /



 

. "4- production a." + P . 1r+ + W- + n

"9 Production
w-d+ P _ W_O + w7'+ P

deflection

diffraction off carbon nucleus

s9 prod» on neutron
Ff +»n- _ “o + w? + n

stars

_

The number of events for each catagory is listed in Table l.

 

 

A-

description number

elastic — — — _298-

quasi elastic 569

w? prod. (hydrogen & carbon) 182

17° prod. " " " 105

charge exchange " " 464

deflections > 6° 905

deflections < 69 219

WP prod. on neutron 20

stars with 0 "7 442

stars with l “T 545

stars with 2 w- 72

Total 5621    
Table l .
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The eventsof most interest to us were the (1(a)) elastic

scatterings from the hydrogen in the chamber and the

("7,nfi)elastic scatterings from.the neutrons bound in

the carbon of the chamber. In the former case, the kine—

matics of the event is completely determined from the

angles that the scattered pion and the proton make with

the initial direction of the incoming pion. An equally

good set of variables is the angle of the scattered pion

and the range of the proton. The elastic events are sep-

arated from the quasi-elastics by a measurement of the

cOplanarity of the event. With these parameters, one can

measure the angle of emission of the scattered pion in

the center of mass system. Or from the Lorentz trans-

formation, one has (symbols defined on page 15)

(11:); Pose = X ( ”C035" * Mk)

(:2) Pswe = ”My

Aeset of curves giving 9% vs GT with 9* and Pkfincoming)

as parameters has been plotted so that once the space

angles have been measured, the incoming momentum and the

corresponding center of mass angle can be quickly deter-

mined (See figure 15).

In order to calculate the space angles, the following,

measurements are made on each elastic scattering (these

are all made with respect to a set of fixed axes in the

chamber and in each of the two views).



 
Fig. 2 Deflections.



a. Incoming beam angle.

b. Angle Of the scattered pion.

c. Angle of the scattered proton.

d. Co-ordinates of the point of collision.

e. Range of the proton (when available).

f. Tangents of the cOplanarity angles, where

available.

These data must then be combined to find the space angle.

In this process, the two most important corrections are

for the conical projection and the index of refraction

of the prOpane (1.25). The details of these calculations

are shown in the Appendix. A program for these calcu-

lations was made for the digital computer Mistic of the

computer laboratory, Michigan State University.

We are concerned in this paper mainly with the

deflections. The small angle deflections are considered

to be mainly diffraction scatterings from carbon, while

the large angle ones are mainly pion-neutron scatterings.

A typical deflection is shown in figure 2. It is char-

acterized.by a sharp break in a fast pi beam accompanied

by no visible recoil tracks. A total of 1090 of these

deflections were measured and calculated for their space

angles. The following quantities were measured from the

conical plane (film).
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Bottom view:

a. beam angle.

b. deflected angle.

c. position of beam in chamber.

Side view:

a. beam angle.

b. deflected angle.

The purpose of the third measurement in the bottom view

was to separate the events into different momentum groups.

However, a preliminary study made of the sensitivity of

the measurement to momentum was negative. About 300

(W7,p)}elastic events were analyzed for the dependence

of beam angle and position in chamber to momentum. The

momentum of the (u',p)3e1astics were found through other

criteria' already mentioned. An example of the results

is shown in figure 5. The idea of dividing our events

into momentum groups was thus quickly abandoned and an

average value of 590mev/c was adepted for all incident

pions. The space angles were calculated using the anal-

ysis scheme derived in the Appendix and by the digital

computer Mistic. The approximation that all events occur

at the center of the chamber was made to simplify the

computations.(an error of at most 1° in the lab. system).

Using the values <£137,H) - 50 mb and <§(fl',c)

equal to 316 mb determined from experiments by Cool et 8?;10

the value for V(deflection) can be determined from
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(3) _ _§Kdeflection) . number=gg_ge§;gc§10ns

8 ¢E(W;H)+5CE(W:C) total number of events

The value for 4(def1ection) came out to be 106 mb. The

differential cross section dV/dR for deflections can now

be calculated using

(4) SE; a EQ;_9§_§Eterva13X--B€s-$§-l§§§£¥§l-x((defl,)

dJZ 4w' total no. of defl.

The angular distribution dV/dR.vs cos 9 for all deflect-

ions is given in Table 2. The distribution is also

illustrated in figures 17 and 18 (the ”I curve). The

total cross sections obtained from Cool et al were for

anti-coincidence angles up to 6°. This means that all

events with angles less than 60 are counted as going

straight through. Therefore, in our calculatiOns, we

must neglect all deflections with angles less than 6°.

The events classified as deflections have actually

a third possible origin besides the two already listed.

This other possibility is a 137, 2n star with a fast pi

coming off. As a rough check on how many of these events

we could have included as deflections, a survey was made

in our data for 13', 1p, ?n stars with a fast pi and a

backward scattered proton. It is assumed that in these

events, a neutron would also have been given off by the

carbon nucleus. It is then assumed that the number of

lw', 2n stars would not exceed the number of ln', lp, 1n



11

stars. The number Of INT, 1p, 1n stars found was roughly

28, negligible compared to the total of 1124 deflections

found. We shall thus consider the deflections to be just

composed of (n-}n) and diffraction scatterings.

Table 2. Angular Distribution for Deflections.

 

 

 

-9-1ab. (deg;)_ No. dT}dR mb/str Error mb/str

6.8 69 ' 508 37

8-10 74 257 . 50

10-12 84 240 26.2

12-14.l 82 188 20.8

14.1-16.3 80 151 16.9

16.5-18.2 69 150 15.7

18.2-20 47 88.9 13.0

20-25.1 48 45.8 6.6

23.1—25.9 42 40.0 6.2

25.9-28.3 53 31.4 5.5

28.5-32.9 50 25.8 5.4

52.9-56.9 31 14.8 2.7

36.9-45.6 50 9.53 1.54

45.6-66.4 59 3.76 0.49

66.4-90.0 26. 1.72 0.54

90.0_120 20 0.76 0.17

120-180 18 0.69 0.16 J  

 



III CHARGE SYMMETRY

To test the principle of charge symmetry, we will

compare the angular distributions related to the (w*,p)

and (w',n) scatterings. There are two major difficulties

with the (3-,n) data. As mentioned previously, we can

not in general distinguish between a (fi',n) and a dif-

fraction scattering, especially small angle scatterings.

Secondly, the target neutron is bound inside a carbon

nucleus; and according to the Fermi gas model, it has

a momentum associated with it. We can reduce the second

problem by considering a model prOposed by Serberll’lz.

In this model, if the target nucleus is small and the

incoming momentum is high, we can consider the problem

as just the collision of the pion with one nucleon inside

the carbon nucleus. The problem is now similar to an

ordinary scattering except that the target is in motion.

A. Correction for a Moving Target.

let us first correct for the moving target. We have

a choice of two approaches. One is to smear out the (3+,p)

angular distribution, that is to give the stationary tar-

get nucleon various momenta that it would have if it were

bound inside a carbon nucleus. A further explanation of

this method will be given later. The other approach is to
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unsmear the (fl',n) angular distribution, that is to find

out the most likely distribution it would have if the tar-

get nucleon were stationary. The former is the much

simpler approach and will be adOpted here.

The first question that comes to mind is what para-

meter determines a scattering. In the center of mass co-

ordinate system, this parameter is just the momentum P‘

of the particle. However, the (n‘,n) scattering data is

available only in the laboratory system. Therefore, we

must compare our distribution in the laboratory system.

This means that a Lorentz transformation would have to

be performed from the center of mass to the laboratory

system. In this transformation, another parameter, the

velocity of the center of mass "B" is introduced. Thus,

in the laboratory system, our scattering is completely

determined.by two parameters, P‘ and B.

Let us now look into the actual Fermi momentum Of

a nucleon inside a nucleus. Several momentum distri-

butions have been proposed which have given reasonable

fits to experimental datala. One is the Gaussian

distribution, 2

3h. ‘bP

where the average kinetic energy of a nucleon is 19.5mev

which corresponds to a momentum of 191 mev/c. We shall

use the Gaussian distributioETto adopt the value of
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191 mev/c for the momentum of a nucleon inside a nucleus.

Assuming that the nucleons are isotrOpic in direction, the

momenta can be represented by'a sphere of 191 mev/c where

the density of scattering events is uniform over the sur-

face of the Sphere. A three dimensional momentum diagram

of the initial state of a scattering event is illustrated

in figure 4.

The smeared out angular distribution must be the net

effect of every possible scattering on the Fermi sphere

of 191 mev/c described above. Thus, in smearing out a

distribution, we must consider all scatterings on the

Fermi sphere. This would involve an integration over the

whole surface of the sphere, a messy calculation to per-

form. To simplify the task, we shall instead slice up

the sphere into 52 parts such that each of the 52 dissected

parts represents an equal surface area on the original

sphere. Taking a representative point on the outside

surface of each of the 52 parts, we shall calculate an

angular distribution for that point. The net effect of

the whole Fermi sphere will then be the average of the

52 angular distributions.

To obtain an angular distribution for a particular

point on the sphere, we must remember that the laboratory

angular distribution depends only on P* and B. Available

to us are the experimental angular distributions of

(n+,p) scattering with stationary targets at energies of
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.5 6 7500:me , 850 mev , and 1.1 bev as shown in figures 5,

6, and 7. The corresponding momenta available in the

center of mass system are 405 mev/c, 549 mev/c, and

641 mev/c respectively. This is calculated from con-

sidering the Lorentz transformation of the momentum vector

from the center of mass co-ordinate system to the labor-

atory co-ordinate system.

(6) p“ r. 303' 5E)

where V

(7) 5 = (Br " 3») "7' (is f ”P)

(8) 3’ 2 </ .— 52) “V2

From figures 5, 6, and 7, we can make a cross plot of

dvyaw vs P* with cos 6"as the parameter. The plots are

shown in figures 8 and 9. From figures 8 and 9, we can

determine the center of mass distribution of any (w+,p)

scattering, moving or stationary target once P‘ is deter-

mined. Thus, for a particular point on the Fermi sphere,

we can obtain a center of mass angular distribution by

solving for P‘ of that particular point.

Inorder to Obtain P‘ for a particular point on the

Fermi sphere, we need only specify the angle q’(see fig.4)

that is related to the point. This is evident from

equation 6, 8, and the following,

(7a) fl )/

A P : (Fe:+:P‘ BIT-6605“)“
T(9)
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Figure:10‘ Dissection of Formi Sphere.

For our choice of qfls, let us first slice the Fermi sphere

into eight sections as illustrated in figure 10. Again

referring to figure 4, this is done by taking eight dif-

ferent values OfCX. The «'s were chosen such that each.

center of mass angular distribution corresponding to the

particular'q willLbe weighted equally (equal solid angle

involved); Table 5 lists the one chosen and the corres-e

ponding cos eve, B's, P*"s, are and P;Fs. The equations

used to compute the variables are listed right below the

'Table. The variable I::will be explained later.

For each of the eight values of a listed in Table 5,

we can determine a center of mass angular distribution by

using figures 8 and 9. we must next consider transforming

these;eight angular distributions into the laboratory sys-

tem. To transform to the laboratory system, let us again
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=‘=" ‘ “‘ ’ ‘ 1

PW - 590 mev/c and IF:p - 191 mev/c

_ _ _—=_— — —_— __ — — 4

0((deg.) costx B P” mev/c l4)(deg.) P; mev/c

-— _ — ——— — — — —--"T

54.4 0.875 0.471 546. 9.21 855

51.5 0.625 0.446 558 12.58 771

68 . 0 0. 575 0.420 570 15 ~69 700

82.8 0.125 0.592 582 17.95 621

97;. 2 -0. 125 0. 561 598 19 . 58 545

112.0 -0.57.S 0.528 414 20.23 477,.-

_l45:6_ _-0.8'Z_5_ _ 0.247 _ _455 17.78 525 _ _ __J

(6) [3* z X (P‘ 55)

2 2.

cm a = e~(e2+t + PM»

-T/

(8) X = Q '- 32) a

./

2 /2

(9) PT ' (PM? 7‘ 25'5“”

(10) 9ou ‘ T» “W “L 'D

, -5712 +

(11) £3: 76‘ -

H
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flamlL

consider the Lorentz transformation of the energy-momentum

four vector.

, s x

(12) longitudinal PC1989 -‘-'- b’ ( P2959 +55 )

I __ T" It

(15 )3 transverse P swe - ID 5W9

where 0"and 9* are illustrated in figure 11. Dividing

equation 12 by 15, we get

it
9(- ‘K g

(04);: 72w 9’ : ewe —:- (a’wse + £5 #9)

We can now transform our center of mass angular distri-

butions to the laboratory system by using equation 14.

However, by referring to figure 11, we notice that

the angle 9' is measured with respect to the direction of

8. With a stationary target, this presents no difficulties

since B is along the same direction as the incident part-

icle in the laboratory system. But with a moving target,
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B is in a different direction with the incident particle

in the laboratory system. The desired angle "9" is the

angle between the direction of the incident particle and

the scattered particle in the laboratory system.

To correct for this shift in angles, consider the

diagram illustrated in figure 12. The primed co-ordinate

system refers to the scattering system, the system which

gives the angle 9"with reSpect to the direction of B.

The unprimed co-ordinate system refers to the reference

system, the system which gives the angle 9 with resPect

to the incident pion beam in the laboratory system. We

can write for the unit vectors 51 and $2,

(15) E : S/NLO Z + €552.03. + OE

(16) "r; : ewe; 31/49 I + cos an, .5 + $1,460,039?) A

The actual scattering angle ew_can now be obtained from

the following expression,

__ __ I x /

(17) ",1; : C5569“, 1' 3000501909qu 7“ (3052,0605?-

We shall now complete the dissection of the Fermi

sphere. Cutting along the angle 0', we shall split each

of the eight sections shown in figure 10 into four equal

parts. For simplicity, let us choose for the angle 0';

the values 0°, 90°, 180°, and 270°. Equation 17 now

simplifies to
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(18) 0' - 0°, 180° ms 977 = Cos was 6,;

(19) o' .. 90° Cos e,r : COS<9,,/'w)

(20) s: a 270° C05 O,T = cos(6,,'+@

For each of the dV/dfl vs cos 9;, we now have in its place

four dV/dQ vs cos 9" angular distributions.

Let us now return to equation 14 which transforms

the angular distributions from the center of mass to the

laboratory co—ordinate system. Instead of doing all the

calculations using this equation, we shall make use of

the already available kinematic curves shown in figure 15.

These curves were calculated using equation 14, but for

a stationary targetl4. The curves give a relationship

between 9;, 95, 9:, and P", However, we can just as well

think of the curves as a relationship between 9%, 95, 9;,

and B. This would make the curves adaptable to moving

target scatterings. To utilize the kinematic curves, let

us think of the collision with a moving target as one of

an incident pion beam with momentum P; and a stationary

target. Pé‘of course, must be chosen such that B is

preserved.

(21) 5: f7),

a._______w_ , 2 .2 A???)

”:~ s//r?,'?”+ 772,,‘ M7) I T ION”? I R
x, I

Values for P;:are listed in Table 5. By using Egg we are

really using B in disguise. NOw we may adopt figure 15

for our computations.
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In detail, here is how the computations were done.

a. From figures 8 and 9, determine angular distri-

butions for each Of the P*'s listed in Table 5.

b. For each of the PT's, transfer over to the lab-

oratory system (9; with respect to B) using figure 15.

First take a particular value of cos 9: and note the cor-

responding value of dVVdR. From figure 15, find the cos 9;

which corresponds to the value of cos 9: and I;_under

consideration. This value of cos 9; will now correspond

to the above value of dV/dfl.

c. For each cos 9;, we have four corresponding values

for cos 9w (0' - 0°, 90°, 180°, &.270°). These are cal-

culated from equations 18, 19, and 20. Values of’a)may

be obtained from Table 5. An example of the angular dist-

ributions with respect to e for 0( . 145.60 and 0' - 0°,

90°, 180°, and 2709 are shown in figure 14.

d. We now have 52 angular distributions from the

eight values of‘d and the four values of 0'. The net

effect is just the average of them all. The next step is

to add up the 52 distributions and divide by 52.

The resultant curve is shown as the solid curve in

figure 15. The dotted curve represents the angular dist-

ribution for a stationary target at a pion laboratory

momentum of 590 mev/c. The stationary target curve was

Obtained by

a. Finding the center Of mass angular distribution
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from figures 8 and 9 (P* - 587 mev/c).

b. Transferring to the laboratory system using the

kinematic curves in figure 15. (9 . 0' since u)- 0 for a

stationary target)

As can be seen from figure 15, there is very little differ-

ence between the two distributions.

As an experimental check on the results, we made use

of the elastic (stationary target) and quasi-elastic

(moving target) data mentioned in section II. Angular

distributions were calculated for the two and are shown

in figure 16. The curves are in good agreement with the

predicted results of stationary and moving target angular

distributions.
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B. Diffraction Scattering.

New that we have corrected for the moving target,

the only thing left is the correction for the diffraction

scattering from the carbon nucleus. Assuming that the

incident meson wave sees the carbon nucleus as a black

Sphere, we have for the angular distributioE,5

O/V’(d1ff)9/T__(dIff) [ J: (A3”? Silk/J2

 (22 ) a}; = 3m 6*

where k* - h/P‘ and R - rko are the wave number and radius

of the nucleus respectively. The deflections, as mentioned

before, consist of both the (wf.n) and the diffraction

scatterings. Therefore, before we can compare the (w',n)

and (nI,p) interactions, we must add the diffraction

effect to the transformed ("5,p) scattering or subtract

the diffraction effect from the deflections. We shall

do the former.

At first one might expect that since there are Six

neutrons and six protons inside a carbon nucleus, we can

simply write

(25 ) dI(C/Ef/5Cf/0N> : if (d'I/‘flg’TC 7‘20») + 6 _0/:1' (77‘,— 7L)

(215?. EU? 63?.

However, there is the prOblem that some of the nucleons

are shielding the others which will reduce the factor six

being used above. To obtain the correct factor, we turn

to the (n',p) data listed in Table 1. We are reasonably

sure in this case that we are able to distinguish between
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an elastic event (free proton) and a quasi-event (proton

bound inside a carbon nucleus). In prOpane (C5H8)’ if

there were no shielding effects, we would expect a 8/18

ratio of elastics to quasi-elastics. The actual ratio

was 298/569, indicating some shielding effects. Taking

this into cOnsideration, the relation

(24) 8/5m - 298/56‘9

should hold where "m" is the effective number of un-

eshielded protons (or neutrons) inside the carbon nucleus.

We can now write after solving for "m" in equation 24,

gig/(def!) J gym/II) + 3.3 £0579

(25 ) BIZ " CIR.

Or if charge symmetry is to hold, we must have

Egon-71L dad-4% éffi/IVO: 33 5550579
(26) 3.32/12 “Cm d5? ° 002

In equation 22, there are still two unknown con-

stants,«¢(diff.) and the radius parameter ro to be deter-

mined. By trial and error methods, HVf.- 25 mb/str and

r0 - 1.1 x 10'13 cm. were found to give the best results.

Equation 22 can now be written as

45(d1f9_ 25 37(7-/25w69 2
(27) 0152 _ Ski/6*

 

 

Values Of the d¢(diff.)/dflicurve were only taken to the

first minimum (around 55°).

Rewriting equation 26, we have A)

c/o’MEf/Q d<r(77*}>) ck (diff
:7 . J + _. .-
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as the condition for the validity of charge symmetry.

The observed wf(dcfl.)/dn and the calculated value of

5.3 dV(‘1r.+,p)/d52 + «(aura/cm are shown in figures 17

and 18 as the dashed curve and histogram respectively.

A fiftest was applied to the curves, the result being

6(probability) - 0.054 for the entire curve and a €(prob-

ability) - 0.20 for the part of the curve corresponding

to laboratory angles greater than 55°. A 742 test with,

a €(pr0bability) of greater than 0.01 is sufficient for

one not to reject a hypothesis. The results to our

test thus gives us close enough agreement for us to say

that charge symmetry has not been violated. As expected,

the fit for laboratory angles greater than 55° is better

than the fit at smaller angles where we had to apply the

black sphere model to correct for the diffraction effect.

It is also interesting to note that the value of 1.1 x 10'13

cm. for the radius parameter is in good agreement with the

Stanford16 determination of ro (1.07 x 10'15 cm.).



IV CONCLUSION

Two immediate remarks can be made. One is that a

moving target does not change the angular distribution

appreciably. This is illustrated in figures 15 and 16.

The other is that charge symmetry is not violated in the

(fi',n) and (3+,p) scatterings. This is illustrated in

figures 17 and 18. A closer look at figure 17 would also

suggest that a better fit could be made in the region

from cos 9 equal 0.82 to 0.92. A smaller value for the

radius parameter r accomplishes this. However, a smaller
0

r0 also swings the curve off in the region around cos 0

equal 0.98. It was decided that the black sphere approx—

imation made earlier for the nucleus was responsible for

this. To obtain more precise results, a model of the

nucleus with a diffuse edge must be considered.



APPENDIX

ANALYSIS SCHEME FOR THE MEASUREMENT OF SPACE ANGLES

After obtaining the data, the problem.is how to com-

puts the space angle from the films taken. As mentioned

before, the pictures were taken by two mutually perpend-

icular cameras in order to obtain a stereoscopic view of

the events. The main difficulty is that the cameras must

be placed at a finite distance away from the chamber. As

a consequence, the events seen on the films represent the

Aconical projections of the true Space events. In this

section, we shall set up an analysis to measure the Space

angle between two intersecting vectors in space knowing in

the mutually orthogonal side and bottom.views,-the conic-

ally projected angles, the co-ordinates of the vertices

of the conically projected angles, and the co-ordinates

of the points of projection. Correction factors for the

change in index of refraction in traveling from propane

to air are taken into consideration. A cOplanarity test

for events with three prongs (three intersecting vectors

in space) is also considered. The analysis scheme has

been set up in particular to solve for space angles in a

(w’,p) scattering experiment, but may be applied to a

(n-,n) scattering and other types of problems too.
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In figure 1A is shown one view of the cameras. In

practice what is usually done is to mark the surface of

the chamber with identification markers a specified dist-

ance apart. These markers will show up in the films taken

and can be used to calibrate the actual size of the events.

The film will then be projected back onto a screen to

about twice the size between the original markers. This

is illustrated in figure 1A where the back side of the

chamber now represents the conically projected plane. Now

we are ready to proceed to derive an expression for the

space angle 9 in terms of measurements made on the conic-

ally projected plane (the screen) and the co-ordinates of

the points of projection.

A. Derivation of Equations for the Orthogonally Projected

Angles.

From figurB 1A, the following sets Of triangles are

similar.

(a) AADO and. ACHO

(b) ADFO and AHGO

Let us take as our Space point (xi, Ye: z;) and as our

conically projected point (X50 Ys'.’ ZSL)' The distances

are then as follows: I

(O) AD .. Z3;

(d) CH - z;
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(e) GH 3 x;

(f) FD . X5;

(3) D0 -' D5 + ds/np

(11-) H0 ' D5 + (ds/2 - :YL )/np

whereen, represents the index of refraction for prOpane.

The last two distances D0 and H0 are corrected for the

change in Optical path due to a change in the index of

refraction in traveling from air to prOpane. Since cor-

responding sides are proportional in similar triangles, we

have from the relations (a) and (b), I

AD/HC‘n CHVHO

(1A)

FD/DO - GH/HO

or rewriting as

ZS}. /<Ds + dS/nf’)

H 3t/[Q+t(%-:I~)]

 

(21!)
I ‘-

XsL/(Dfids/“PI = e/[Ds *Wé AI

Next define
a

(5A) I; 1' 7,";( f " ‘19

We then have

. (D5 + G’s/71F)

Zei- " 3" D. + A}.
(4A)

_ : 34L D + dséfl)

x3. (“t—”JD,+ Y“

let us now take two arbitrary Space points (xl,yl,z,)

and (x2,y2,22) and their corresponding conical projection

(X91,YSZ,Z$2) and (XS.,Y$‘,Z5,). These two points form a vector

512 in three space, and their corresponding conical pro-

jections form a vector in plane "s". The vector being



50

(st-XSI, 0, Zsz'ZSI)’ The tangent of the angle 9; that this

vector makes with the x axis in plane "a" is

I ‘ _ - 1 .1. _ '

(5A) 75” es ‘ (Z52 4.3,) ’ (x5?- X5”)

Substituting equation 4A into 5A and simplifying, we have

’3 (32-3)“ 32(W-I
S nf+’32

<¢2-]¢')+ 12<Ds+ql§/NP+>é/Ll—l

Simplifying the term in brackets, ££+dkhf+zg

Ds+ Og/flP+ YET,

(6A) 7A1 9.
___

 
 

 

  

 

(7A) . , / 3 Ti?“05 ., 43/7? +3; 791% ”1.24/2

Next define
-;

(8A) A ‘ {791% T CW2 I 9°

We may now rewrite tan 9; as

(32‘3I)+(1:“ZI>+ M(WM

/ + €H(92’%)+(12'l,)

But (22-z,)/(x2-x,) is just the tangent of the orthogonally

 (9A) 7541/ 65’ =' 

projected angle eg in plane "8*"
and (y2 -y )/x2-x,) is

just the tangent of the orthogonally projected angle 9" in

plane "b*" (XY plane). The star "n" denotes the ortho-

gonally projected plane as contrasted with the conical

plane without the star. We may now write tan 9; as

(100 75w 93' = (25mg + EMT/ab) +(I+ 2’24 Axe)

Next to simplify the expression 22A and xZA using equa-

tion 2A. -I

12 /st 3 [ACES-WC]

(11A) aha/23¢ = [AWQWQJ
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Therefore,

242/4 = x52 / ($195+ C15)

(12A)

32A : Zsz/ (771° DB + C15)

Taking equation 10A and rewriting in terms of tan 9"

II I ’I /

72A! 68 3 7AM! 65 + TIT/V65 (ZZAZZKWGS ‘- 32 A)

  

(15A) , I] X52 I Z

I; 6 _. 52

7/14” 93 : 72M, (95 7‘ ZEWQA 0; 1.300572” 5 ds+ 7EDS]

Let

I ’ _

(14A) A’ . TPQMS ( X52 I‘M/65 232

Therefore, ” I I 0

(15A) 75'” es ‘ 72” 8. + A 75’” ‘96

Let us now turn to the XY plane "b" where our other

camera is located. The situation in plane "b" is exactly

analogous to that in plane "s" and all our equations would

be correct if we would change our subscripts "s" to "b" or

"b" to "s" and our Z's to Y's or Y's to Z's. Equations

14A and 15A could now be written as

’ — ——J——- )< JEN63’-ZEI)

(16A) 8 ' ”I’De*db( ‘2 6 b2

II / I ”

0710 7A, 0,5 = Awe. + B few/9.

Equations 15A and 17A can now be solved explicitly for e;

and 9% (two equations in two unknowns). The result being

A... e.” (m a; + A’Awa’) —.'- (I- B’AQ

(few 66’ + 874N659 “—2- 0- BA)

I
I

(18A) #N 9e”
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We now have explicit expressions for our orthogonally

projected angles in terms of measurable quantities - 9;,

and D9b., X32, 232’ X132, Zb2 and. the conStantS DP, D5, be

H. Correction for Beam Angle.

It should be noted that the angles we have referred

to so far are all measured with respect to the x axis. In

a usual scattering experiment what we are interested in is

the angle the scattered particle makes with the incident

beam of bombarding particles. This beam is usually making

a small angle with the x axis and must be corrected for.

From the well known trigonometric formula for the sum of

tangents of angles,

m a, (a, a: - t4~(9,9+( / + mews” ”Waves?

(19A) 7L/M/ @ (fan 95” “ fl”! fig) 7" ( / + f/wfé/ 7:14! 9.4” + [94/ 25/79/4659

5

where ' is the beam angle (angle it makes with the x axis).

Making the assumption that the beam angle is always very

small, we have

7AM 95 1 (72M 55’; 525) + ( H 13., 75/459: * Jé’fiVA/Qb)

(20A) 7295 : (2%,Ne;’-fe;)+<I+mmeg’+fl;79~99

as our true orthogonally projected angle with respect to

the beam.

The tangent of the Space angle can now be written as

(21A) 7‘4N6 = (flu/296 + 5363/2
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C. COplanarity Test.

Inorder for an event to be classified as elastic, it

must all lie in the same plane. Referring to figure 2A,

the angle ¢ is the angle between the event plane and the

chosen reference plane. If an event is to be classified

as cOplanor, each track composing the event must make the

same angle fl with respect to the reference plane.

22 7‘ Sb y: - 77 (91:— 113/65” 1.9 _ m e.

A ' 3 “fir'ir z ‘*3 .-.:-—* - ~+f—f’

( ) km 52 ' (32 ‘ 3. ”(120' to) 7"” 8°

 

&

where the superscript 0 refers to the fact that these

quantities are with respect to the beam track.

D. Sign Convention.

To satisfy our equations, we must restrict ourselves

to certain sign conventions in the conically projected

plane (screen). By referring to equation 5A and others,

we see that the convention used in figure 3A is a suitable

one o

E. Summary.

We have now all the equations necessary for solving

9 and fl'by'measuring in the conical plane,.R%, 96, Kb, Yb,

' 9's, Xs’ Zs’ The eight equations are listed below.
8,

V

firm 6 = (7%in + 7%”265) 2

764w 9b : f4” 91: / 7L4” 85

(21A)

(22A)
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W ab = (m 66'”fi£)+(/+Jzzm~e”+ngme)
(20A)

I

m =(mes-xz;)-=-</+w4~@'+wa
me,” = (m e’w’ms’) H ”4’59

(18A) 7%; e: = (7%” GSI+r4754~QQ '3‘ (/ v43)

(14A) A’ :_ (XS five; - 22>//?5

(16A) 5' : (X4, 7;?qu ij/(vs

The description of each of the quantities is listed in

Table IA

 

 

    

view symbol description 7

"b" view .Rb angle beam makes with x axis

9% angle particle makes with x axis

Xb
co-ordinates of vertex

Yb

"3" view 9; angle particle makes with x axis

‘Qé angle beam makes with x axis

Xs
co-ordinates of vertex

Zs

Table IA.

A program for the calculation of 9 and s using the

eight equations listed above has been set up for the com-

puter Mistic located at Michigan State University.
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