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ENTROPY, STRAIN AND THE FEHLI-DIRAC STATISTICS

I Introduction

Boltzmann's famous relation between the entropy S of

a gas and W the probability of its state is given by*

u) S:kLmW+C.

here k is Boltzmann's constant and C is a constant depending

upon the zero from Which entropy is to be measured. The

probability W of the gaseous state is calculated rigorously

in statistical mechanics by counting the ”complexions" or

possible arrangements of molecules in phase Space. The pro-

duct of the number of complexions each raised to a suitable

power measures the probability, being a physical quantity

called (for the sake of definiteness) the weight. This

weight represents the W of equation (1) and forms the basis

of entropy calculations in statistical mechanics.

There has recently been deveIOpedMI a "geometrical

weight methoc" based on a physical concept called the "range"

or volume occupied per molecule in phase space. The geo-

metrical weight method has been extended*** to inelude the

new statiStical mechanics of Einstein, Bose, Fermi, and Dirac.

Problems usually handled by the classical statistiCal mechanics

all seem within the scepe of this new method. One important

advantage is that Stirling's approximations and associated

‘ E. Bloch; The Kinetic Theor of Gases, p. 69.

** W. S. Kimball?jifit?3p_-EEHZPEBbEBTETty, Journal of Physical

Chemistry, vol. 6% (19297 p. 1058, hereafter referred to

as, Kimball, Entrepy and Probability.

***s. Chandrasekhar; On the Probabilitr_Meth0Q in the New

Statistics, PhIToSOphical Magazine, vol._§'319305 p. 621,

hereafter referred to as Chandrasekhar.



difficulties* do not enter at all into this direct geometrical

treatment. (Since factorials never enter). Another advantage

is the geometrical picture of weight“I which the method affords.

This contrasts favorably with counting complexions to find the

measure of thermodynamic probability.

The most noteworthy achievement of this geometrical weight

method is the new eXplanation, which it suggests, of the second

law of thermodynamics. By using this method it has been shown***

that the equilibrium equations which (by the Lagrange method

of conditional maxima and minima) determine a state of maximum

entropy and probability are equilibrium equations between stress

and strain. Entrepy then appears as k times the total strain Y.

(2) B : k log W‘+ C = kY.

The second law of thermodynamics is accounted for as being due

to the Operation of these internal forces or stresses in velocity

or momentum as well as ordinary Space. The equilibrium state

of maximum entr0py is really the state of maximum strain brought

about by these forces.

Accordingly the known equilibrium**** equations that lead

to the Maxwell-Boltzmann distribution law may be put in the form

(5) _Wf£dm:‘)‘%
“£0/u¢=W.Q/

ifl
7.

L

* J. Rice; Statistical mechanics, p. 282.

*‘ Kimball; Entropy and Probability, sec. 8, Fig. 3.

*** W. S. Kim a1 ; Entropy, Elastic Strain, the Second Law of

Thermod namics; etc., Journal of Physical Chemistry,_—

vol. 35 (19315 p. 611, sec. 5, hereafter referred to as

Kimball; Elastic Strain.

**‘*R. C. Tolman; Statistical Mechanics, Chap. 4.

 



wherein the Qi is an undetermined constant and the 7( is the

Maxwell-Boltzmann distribution function. The 773' in the

right member are the ranges* or internals between successive

molecules in velocity or momentum Space, and the zafr are

the X velocity components for each molecule.

(4) 7;. : 7,1. -11. :- 4.

When )\ is given its value -2%} in terms of the absolute

temperature T, determined from the distribution function in

the usual way**, equations (3) take the form of equilibrium

between stress and strain*** acting in velocity or momentum

 

space,

(5) I4 7—: m: : “M M, 9/24, z w: 21,- (7/14. '

7',
”id

7".

In this thesis we extend the geometrical weight method

to include real gases in which the volume is restricted

according to Van der Waal's equation and the energy of molecules

obeys the Pauli exclusion principle****. We find that the

isothermal bulk modulus of gases obeying these restrictions

is the same as that of the classical perfect gas provided

molecular attractions are neglected. This holds true both

for momentum space and ordinary Space. Also the state of

’ Kimball; Entgopy and Probability, sec. 8.

** L. B. Loeb; Kinetic Theory gjpgaggg, Chap. 4.

**’ Kimball; Elastic Strain.

****J. Rice; Statistical MeCHanics, p. 277.



maximum weight or entropy for a given internal energy, again

correSpondS to a state of equilibrium between stress and strain

acting in momentum Space as well as ordinary space just as was

the case for the gas law. The entrOpy again appears as k times

the total strain in phase space. The velocity distribution

function which these equations represent is the same Fermi-Dirac

distribution as usually derived by the statistical method, and

which Chandrasekhar has shown* can be derived by the geometri-

cal weight method.

Perhaps the most important result of the present inves-

tigation is that it affords a step toward a mechanical ex-

planation of the Pauli exclusion principle. We show that

forces acting in momentum Space exclude particles from occupied

cells with the same vigor as they are excluded from the oc-

cupied positions in ordinary Space as represented by Van der-

Waal's constant b. Thus Pauli's exclusion principle is ex-

plained in exactly the same way as the second law of thermo-

dynamics. Each is the result of the objections** which groups

of particles have toward compression in phase space. The

corrections introduced by the Pauli exclusion principle show

the degree of objection which particles feel when compression

tends to put additional ones in an occupied phase volume. The

mechanical vigor of the objections is the same in momentum

space as in ordinary space as measured by the gas law and

Van der Waal's equation.

* Chandrasekhar.

*' Kimball; Elastic Strain, p. 620.



II The Bulk Modulus and the Stress-Strain

Relations For Real Gases In Ordinary Space

From the gas law we calculate the isothermal bulk modulus

by differentiation at constant temperature.

(5) 7’: *— 5%? :z‘w,427

V

Here p is the pressure, V the volume, and n is the number of

molecules per 0.0. Multiplying both numbers of equation (5)

by n gives the modulus for stress and strain in momentum space.

.4, , 1

”I 7’
L’—
7.

It is interesting to note by comparing (6) and (7) that the

modulus of elasticity for change in volume is the pressure, p,

the same as for change in momentum Space.

For real gases obeying van der Waal's equation,

a I ' _ ‘ :

{WW/V W ”7

the isothermal bulk modulus calculated as above takes a

modified form.

(8) f'I/PIVJI’jp’



If we consider only repulsive forces due to impact the po-

tential energy term jgiidue to molecular attractions drops

out and Van der Waal‘s equation simplifies to

p (V—b): RT.

The simplified equation gives

__'_ 0/79 , M

<9) ’9“ .17 22-77:)
V-/L F B

for the bulk modulus instead of expression (8). In the right

member of equation (9) we let V:- ’1'}: and—N4» : 734 for sake of

later comparisons (see (14)). The expression (9) shows that,

if molecular attractions are neglected and account taken only

of molecular size, the modulus of elasticity p is the same as

for gases obeying the gas law. Hence the incorporation of

what might be called "the Van der Waal exclusion principle"

has no effect on the modulus of elasticity.

III Entropy Strain, and Weight for Real

Cases in Ordinary Space.

If we use the gas law and restrict attention to iso-

thermal changee, the first law of thermodynamics gives the

relation between entrOpy change and the work term

pdv RHV/c2 I ._
.5- : L a. :: '—-——-——/ __(10) d 7 T V

The right member shows the relation between entropy and

strain.



If we consider real gases represented by Van der Waal's

equation and again restrict attention to isothermal changes,

the work term will be modified;

_ fl] ._ 0’17/V , [IV

(11) d5” 792 " 60* 27'1/ 'f ”RV—A.

The entropy is equal to the sum of the strains Y multiplied

by Boltzmann's constant k.

Elll/ ... I ‘ ..__/t :—

(12) g .-: R z 012 _ amw 1/ r C /rY

It has been shown* for a perfect gas, in which molecules

are mere points, how the range in ordinary Space, 3% , the

volume occupied per molecule, is related to the weight which

measures the thermodynamic probability for one out of N

particles. The N is the number of molecules in a gram molecule,

the amount considered.

For real gases, following the idea of Van der Waal's equation

and his constant b, we see that the range instead of being %% ,

will be restricted by the effective volume attributed to each

molecule by whatever method is used in calculating b.

* Kimball; Entropy and Probability, p. 1567.



Thus

_4_ ”4.4.2.4.;

is the range or volume which each particle has to itself

being the previous range reduced by ,4,, the effective

volume displaced by its physical size. In the right member

we let F, a constant distribution function, represent the

number of particles per unit volume in ordinary Space just

as f7 represents the number per unit volume in momentum

space. Also‘8==:f: is evidently the number of particles

that could be packed into a unit volume in case there is

no free motion. Hence the weight per molecule is

._ _— N I- E.

(15) w.- ,w= lain—WA, : Vvé —. 7w 3,,

For N molecules the weight is

_ , w . w. Jv

(ls) W— IV-vt/ 1%) (#7,?)

which when substituted in Boltzmann's equation gives

#5 - Wt 9/1
(1’) “ V’/

and

(18) ='k log W + C : Nk log (V—b)-+ C = kY.



The expression (1?) Checks equation (11) and the entrOpy

strain equation (2) shown* to hold for gases obeying the

gas law. It will be observed that b and B represent the

fact that only one particle at a time can occupy a volume

diSplaced by its physical dimensions. We might refer to

this as the Van der Waal exclusion principle by analogy with

or perhaps a part of the Pauli exclusion principle which

excludes extra particles from an occupied call in phase space.

IV Entropy Strain, and Weight for Real Gases

In Velocity and Momentum Space.

As in the classical statistics the number of particles

in a unit volume of velocity or momentum Space is also repre-

sented by a distribution function

(19) gig = flim/jw/ : 47; : ,-—.

o/ay

wherein (in : dudvdw is a volume element in the space, and

u, v, and w are the velocity components. The volume occupied

by a particle at this place in velocity space is given by the

reciprocal of this number as indicated. Where the gas law

applies this volume equals the range (vz-z7q ) that leads to

the classical distribution law**. It has to be multiplied by

N to give the weight per molecule, and the product for N

molecules gives the total weight W being related to entropy

* Kimball; Elastic Strain.

*’ Kimball; EntrOpy and Probability.
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and the haxwell-Boltzmann law in the familiar way*.

For real gases we restrict the range given by (19)

according to the Pauli exclusion principle. Thus

/ —-”Ln/4;:‘V‘wC~ :,_/...

(20) Yi:—)—;}~al—f A t ’ jc‘

is the free empty range left to a particle at that place in

velocity or momentum Space after deducting C; the minimum

range it can occupy. Here A 2 if is evidently the mrnber of

such minimum ranges or cells in a unit volume of momentum

space, being the usual symbol** used to represent the Pauli

exclusion principle. equation (20) is seen to be identical

with (14) except that it applies to velocity or momentum Space

instead of ordinary Space, and suggests possible physical

relationship between the Pauli exclusion principle and the

Van der Waal exclusion principle".

A causal relationsnip between these two has already been

considered*** and then dismissed**** by shrenfest. The present

treatment, shows that both are due to figmg cause, i.e. modus

operandi of elastic forces in a restricted phase space. This

of course merely takes us another step forward in explanation

towards the ultimate "let cause".

‘ Kimball; Entropy gpd_Probability.

** Chandrasekhar. .

‘** P. shrenfest; Relation bgtween the Reciprocal Impenetra-

bility 2£_Hatter and Pauli's mxclusion Principlg,

Nature, volt—TISHTTSZT) p. 196.

****P. Ehrenfest; Relation between the Reciprocal Impenetra-

bility‘g£_Matter and Pauli's gxglusion Principle,

Nature, vol. 119 (1927) p. 602.
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Thus we see that a, r: 2,“ is like [,2 Zé = % , the latter

being the volume in ordinary space that a particle must

occupy to the exclusion of other particles by virtue of its

very physical existence.

Having obtained the expression for range we multiply

this by N to give the weight per molecule which measures the

probability that any one of N molecules may occupy this

particular range, thus

( ) /Vn j? l/ A j!

and for N molecules the weight is

 

I a— f’. I fp‘ I \l ”N

. _ V' , ____ N / '" Irrp-é. ‘ - l- f: ____n _,.

(22) W“ N (7177.017. ”‘73) ' N 7i)/Z_é/( / ofljz V?”

where the g's are the reciprocals of the ranges. Sub-

stitution in Boltzmann's equation as before gives the entropy.

fry/tr: /

f

’ I
N N f’l’

.-
évi

I

(23) 5 1': /f/€/ej W-f—C :- ”Luff/V +7§ ("inf 71-)+C .. A“ 7‘, ._ /1’ Y

Equations (21) and (22) have been given by Chandrasekhar’.

They are here shown in terms of the free range (20) left to

a particle after the volume a, E Al which it diSplacee in

momentum space is deducted according to Pauli's exclusion

principle. It is significant that the weight is still N”

times the product of the free ranges reserved to the particles

* Chandrasekhar.
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in momentum space, and the entropy is the sum of the corres-

ponding strains exactly as it was in the case of a gas obey-

ing the gas law.

Although the argument of this section refers to velocity

or momentum space it may be generalized to include phase space

(action Space) and leads to formulas of the same form as (21)

(22) and (23).

v The Equilibrium Equations rcr Stress and

Strain in the Fermi-Dirac Statistics.

To find the maximum value of W subject to a constant

energy, E, we use the method of Lagrange. The function ¢

is formed by adding E times an undetermined constant ;\ , to

w; 40: was . Take N partial derivatives of the now N inde-

pendent rd: , and set each partial derivative equal to zero.

'
1

<24) at... calla: ..__ .,
Bu; 3% fiuz E M/jJ;.L7 J‘+A"H¢ ’0

But in view of (20)

(as) w 1:». A (a; r — w: + A tad
7c. 4]" '

wherein the partial derivatives are taken with respect to

the LX velocity component of each molecule. Equation (25)

shows that there is a constant ratio, namely,

n H _ 97) 14: Fly, 2' ¢}‘7\_‘(’/: [/14] “:7 _. Mg
!

(20) — A — 7” .14 lit/p25».

1’7” ”n f A .'
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between energy change per molecule (between successive

molecules) and the corresponding strain just as was shown

to be the case for the Maxwell—Boltzmann distribution. This

ratio is of course the elastic modulus per molecule. To find

its value we substitute in (26) the value of the X. determined

by the integrals

We“) ,
For} P ._.

(27) 3/jilujdfi
: / 2] hymn/12:1

;

0
J

fl

wherein

, /

( 28)
fit! J I m

-—._.’»

(76"1w;
it

is determined from (25) and the f; is the energy associated

with each molecule. The determination of C from these integrals

presents difficulties which do not concern equation (26). The

.A however which appears in the eXponential term of equation

(28) is required* by thermodynamics to have the value -Z%% .

It follows that ,ffig) given by (28) will have the same form

as the Fermi-Dirac distribution law. This formula of the new

statistics is thus derived by the geometrical weight method

as already shown by Chandrasekhar**. Substituting-jfi%;for.)

in equation (26) gives the elastic modulus in terms of mean

values of u and r:

 

(29) A/ w —- 213:4 0/.“ :: -— Wm,M 0&2:

’ " 17. mi ,. 1,) .

”r 7/ A

* J. Rice; Statistical Mechanics, p. 274.

*‘Chandrasekhar.
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Multiplying both members of equation (29) by n gives

(30) :m/ff”: WMMP/M_ 4777101141;

% 172— "M " g 9/7; // _:——_£-

7 7 A

These formulas are like (6) and (7) and snow that in the

case of the Fermi—Dirac statistics as well as the classical

law, the elastic modulus per molecule is kT. For a unit

volume it is equal to the pressure (nkT : p). Likewise the

'elastic modulus appearing in equation (30) is the same as

that in (9) which refers to real gases in ordinary space.

Now (9) represents real gases in which the Van der Waal

constant b restricts the volume and no intermolecular

attractions are considered. Thus there appears a striking

parallelism (as represented by (29) and (30) on the one hand

and (9) on the other) between the behavior of molecules in

velocity Space and ordinary Space. In both types of space

molecules "object" to being crowded together with the same

vigor (same modulus of elasticity) whether their range is

curtailed by the Pauli exclusion principle or the Van der Waal

exclusion principle. Furthermore this resistance to com-

pression is the same in each case as for the simple theory

in Which the exclusion principles are neglected*.

VI Intermolecular Attractive Forces.

On the other hand the elastic modulus given by equation

(7) is not the same as in the other cases, since here

‘ Kimball; Elastic Strain, p. 620.
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intermolecular attractions are considered. It is recognized‘

in connection with the new statistics that the Fermi-Dirac

distribution law, with the negative correction term (":§f)

appearing in (21) and (22), correSponds experimentally to the

case of an extra repulsion between particles, and is well

verified by a gas of electrons or protons. Where attractive

forces exist as with neutral molecules, the Bose-Einstein

statistics ought to hold. If we were to introduce attractive

forces into equilbrium equations like (24) and (25), it seems

likely that they would correSpond to the new statistical

expressions for weight like (21) and (22) except with a

positive correction term (1nfif). Such changes** give the

Bose-Einstein statistics which can probably be fitted into

the stress~strain,naad entrOpy theory. The present treat-

ment, however, considers only the repulsions correSponding

to the Pauli exclusion principle.

VII Experimental Verification.

‘The most important verification of the stress strain

relations and the allied entrepy strain equations (2), (18),

and (23) is that they afford a natural and obvious explana-

tion*** of the second law of thermodynamics. The "ergodic"

hypothesis, on the other hand, has provén quite unsatisfactory

to most physicists****.

‘ P. Ehrenfest and J. R. Oppenheimer; Note on the Statistics

2;: Nuclei, Physical Reviews, trot-753719.?) p. 333.

*‘ Chandrasekhar.

it. Kimball; Elastic Strain, sec. 7.

‘***R. C. Tolman; Statistical Mechanics, p. 39.
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The present viewpoint illuminates the heretofore unex-

plained Pauli exclusion principle. Not only is there a striking

analogy between the equilibrium equation (9) for ordinary space

and (29) and (30) for momentum space, but the modulus of elas-

ticity is the same for the two cases, indicating the Operation

of the same mechanical causes in the two realms. Even the

exclusion of occupied regions in the two cases introduces the

;C

A

for the Pauli exclusion principle) in an exactly analogous

correction terms (% =3? for Van der Waal's equation, and

way. This shows that their mechanical effect in these force

equations is of the same type.

The operation of the Pauli exclusion principle is ex-

plained in exactly the same way as the second law of thermo-

dynamics. Each of these is mechanically accounted for by the

operation of forces acting in momentum Space. They are a

measure of the force which excludes particles from occupied

cells in momentum space. The correction term given by the

Pauli exclusion principle expresses the degree of the objection

to forces tending to put particles in occupied phase positions.

Furthermore it is worthy of mention that the fundamental

relations of the Fermi-Dirac statistics are obtained without

the usual technical rules for counting complexions and the

associated difficulties. It is significant that the two

points which the statistical methOd does not explain, namely,

the second law of thermodynamics and the Pauli exclusion

principle, are explained by the present mechanical stress

strain theory.
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