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SOME ASPECTS OF THE QUANTUM MECHANICS OF THE DEUTERON

I. INTRODUCTION-—— IMPORTANCE OF THE DEUTERON PROBLEM

IN NUCLEAR PHYSICS

The deuteron plays in nuclear physics a role similar
to that of the hydrogen atom in atomic physics. It
consists of two elementary particles, one proton and one
neutron. In investigating the quantitative theory of
nuclear forces, its crucial test is the deuteron, the
simplest stable combination of heavy particles (neutrons
and protons) composing the nuclei. The deuteron tests the
theory without aggravating the computational situation.

In spite of the comparative simplicity of the dynamical
system, many phenomena of nuclear physiocs are known to
occur in conjunction with the deuteron, such as, photodis-
integration, capture of neutrons by protons, scattering of
slow and fast neutrons and protons, etc. The purpose of
this paper, is to consider in detall a few of the experi-
mental and theoretical investigations of the deuteron,
namely, those associated with the binding energy, spin and
magnetic dipole moment, and the electric quadrupole moment.

Before proceeding further, let us briefly recall the

discovery of the deuteron. The discovery of the isotope



H? of hydrogen was the result of very exact and careful
measurement. At first it was believed that there was
only one isotope of oxygen =— namely 016. Later, in
1929 1, oxygen was found to be a mixture of isotope O16
with slight traces of 017 and 018. Therefore it was
concluded that hydrogen must also carry a trace of an
isotope heavier than B, In 1931 Birge and Menzel 2 of
the University of Celifornia estimated the relative
abundance of isotope H? to H' as one part in 4500,

In 1932 Urey 3 of Columbia University, subjected a
residue obtained by distilling liquid hydrogen to spectral
enalysis. The Balmer lines of Bl were obtained as usual,
but each line was accompanied by a faint line on its short
wave-length side. The Rydberg constant for an atom with a
nucleus of mass M is related to that for an atom with a

nucleus of infinite mass by

By =Ro 33 (1.

where m is the mass of the electron. Hence

R WO +m | (1.2)

The subscript 1 and 2 refer to H; and H? respectively. If
'Xl is the wave-length of a certain line in the spectrum

of B and ‘Xz that of the corresponding line in the spectrum

of B2, it 1s seen that Xj/n, = Ry/R, . Replacing the



lert side of Eq. (1.2) by 4Xl/.K2 and solving for M, we
obtain

¥y mAy . (1.3)
may - (M +m(X; -A,)

M,

By measuring the difference )»1 - )\2 between a Balmer
line and its faint companion, Urey found the latter was
due tb radiation from atoms of mass 2.

Because the isotope ) is of great interest and
importance it was given the specliel name of deuterium and
designated by the chemical symbol D. The nucleus of
deuterium is called deuteron.

The deuteron has about twice the mass of the proton,
i.0., M = 2,01472 and carries the seme electrical charge e.
its spin 1s 1 in units of % and obeys Bose statistics. Its
megnetic moment is +0.8565 + 0.0004 nuclear mégnetons.
These values refer to the ground state of the deuteron. In
the quantum meghanical description of the deuteron, it is
reasonable to assume the ground state to be an S-state,
i.0., a state of zero orbital angular momentum, L=0. Since
a free neutron and a free proton each has a spin %, the spin
value of 1 seems to indicate that the proton and neutron
have parallel spins in the deuteron.

The deuteron also possesses a small electric quadrupole
moment. This interesting and surprising discovery was

made by Rabi b ana his co-workers. According to their



results, the deuteron is cigar-shaped, i.e., elongated in
the direction on the spin. The existence of the quadrupole
moment seemed surprising, because it had been assumed that
the ground state of the deuteron would be & pure S-state,
for which the quadrupole moment would vanish.

To resolve this difficulty, Rarita and Schwinger 5
introduced tensor, i.e., angle-dependent, forces. The
effecf of this type of force causes the deuteron to spend
part of its time in the S-state (L=0) and part in the
D-state (L=2). The quadrupole moment arises from the
fact that the deuteron contains a small mixture of the
D-state. One of the consequences of this theory is that
the magnetic moment of the deuteron will not be the sum
of the magnetic moments of the free neutron and free proton.
This 1s supported by recent measurements by Arnold and
Roberts 6. They showed that the deuteron moment is smaller
than the sum of the magnetic moments of the free particles
by +0.0228 +0.0016 nuclear magnetons. Because the Rarita-
Schwinger theory hes been remarkably sucsessful in accounting
for experimental results, a detailed discussion of their
theory will be given in a later section.

In order to discuss this theory, we shall consider the
deuteron binding energy from which the general characteri-
stics of proton-neutron force can be deduced and then

consider the concepts of magnetic and quadrupole moments,



as they arise in classical electrodynamics.

II. BINDING ENERGY

In this section, we shall review the methods used in
determining the deuteron binding energy, and point out its

relation to nuclear forces.

A. EXPERIMENTAL DETERMINATION

The binding energy of the deuteron was first measured
by Chadwick and Golhaber in 1934 7. They observed the
photodisintegration of deuteron produced by 2.62 Mev. Y-
ray from thorium C' by means of an ionization chamber.

H + hy ——»_1111 + onl . (2.1)

This reaction tekes place when hy which is the energy of
the incident Y -ray, is greater than the binding energy of
the deuteron. The difference between hY and the binding
energy appears &s kinetic energy of the neutron and the
proton. Because the momentum of the Y -ray is small, the
momenta of the proton and neutron are almost equal but
opposite. Further, since thelr masses are almost equal,
they share the excess energy very nearly equally. The
energy E of the proton can be determined by measuring its
range. The binding energy is them hy = 2RE.

In 1937 Chadwick, Feather and Bretscher 8 used the

2.623 Mev. Y ~ray from thorium C" to disintegrate deuteron



in a cloud chamber and measured the range of disintegration
protons. Using Blackett and Lee's 9 range-energy ocurve,

they gave 0.185 Mev. as the proton energy and 2.62 - 2x 0.185
= 2.,25 + 0,05 Mev. for the binding energy. Using Parkinson,

10

Herb, Bellamy, and Hudson's more recent values of proton

ranges, they estimated the proton energy as 0.2 Mev. and

11 made corrections

the binding energy as 2.22 Mev. Bethe
to these data and obtained a proton energy of 0.225 Mev.
and the binding energy for the deuteron of 2.17 + 0.04 Mev.
One of the direct measurements of the deuteron binding
energy is that done by Stetter and Jentschke 12, who
measured the ionization produced by the disintegration
protons in an ionization chamber and obtained the value
2.189 + 0.022 Mev. TIn 1940, K. Kimura 1> obtained the
deuteron binding energy 2.189 - 0.007 Mev. by estimating
the energy of disintegration neutrons from RaC-D.

. A more accurate determination was made by Wiedenbeck
and Marh8fer 1L in 1945; (a similar method was also used
by Myers and L. C. van Atta 15). Let us describe the
experiment in detall, shown in Fig. 1. They made use of
the resonance absorption of neutron by rhodium or silver.

Tt 1s well known from theory 16

end from experiments on
the excitation of nuclel by X-rays 17, that the intensity
of any isochromat in the thick target of continuous X-ray

spectrum, increases linearly when the potential applied in
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accelerating the electrons is greater than the energy of
the isochromat. Therefore, in a Y-n process, the number
of neutrons of a given energy should be a linear function

of the applied voltage V when

VQVt‘l‘ —A_%_l_-vn ’ (2.2)

where Vi is the threshold potentiel, and A the atomic
weight of the neutron being considered. Thus the essential
features of the experiment, shown in Fig. 1, are the use
of the high voltage X-rays to produce disintegration and
the detector which is sensitive to only one neutron "line"
energy equal to the resonance energy of the detector. The
experimental result will not be affected by the faster
neutrons. Thus the activity vs. accelerating-potential
curve should give a straight line intersecting the abscissa
at the binding potential. The detector used was an argon-
ether filled counter with a rhodium cathode. Small samples
of deuterium were bombarded for two minutes by X-rays
rroduced by a beam current of 100 miecroamperes striking a
thick gold target. The activity was taken as the number
of counts above the background obtained during the two
minutes after the irradiation was stopped. The activity
was plotted as shown in Fig. 2. A straight line is obtained,
which, when extrapolated to zero activity, gives for the
deuteron binding energy the value 2.185 + 0.006 Mev.
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Still another method is due to Stephens 18 who deduced
the binding energy by mass considerations. The masses of
deuteron and proton are known accurately from mass spec-
trographic data, and the mass difference of neutron and
proton is known accurately from measurements on the reaction
chain 19

cl3(p, n)N3( g*)ct2.
From the equation
[2u(p) + {M(m) - M(p)} - M(D?)] = Binding Energy
he obtains the result 2.187 * 0.011 Mev.

B. THEORY OF NUCLEAR FORCES AND THE BINDING ENERGY

In order to account for the binding energy of the
deuteron quantum mechanically, one must know or guess
something about the nature of the nuclear forces holding
the neutron and proton together. Since nuclear effects
cannot be accounted for by known forces, such as electric
and gravitational forces, it is necessary to introduce an
entirely new type of force. We shall assume it to be a
short range central force.

Let us now derive a few results of the type of force
we have postulated. The Schroedinger equation transformed
to the center of mass of the proton-neutron system is

given by

VY64 4 4 [£- Vi) (A0$) =0, (2.3)



where r is the distance between the proton and the neutron,

and m the reduced mass given by

m__hMLNéM, (2.‘&)

M, + My
M stands for the mass of either the proton or the neutron.
The quantity E occurring in Eq. (2.3) is a negative quantity
and its absolute value is the binding energy as determined
by experiment. Since E is a known quantity we can determine
the unknown quantity V(r). For this purpose, consider the
ground state. 8Since L=0 for the ground state,y must be
spherically symmetric. If we assume a central force, i.e.,
the interaction potential of neutron and proton is only a
function of the distance r between the particles but
independent of angles, then the wave function in Eq. (2.3)
is also a function of r only. The Laplacian operator
applied to the wave function V¥ = U(r)/r gives

2 2U(r) 1 4%
VIR =TT

Eq. (2.3) then becomes

T 3r? #2 T
il.e.,
v, Moy y(r)]u=o. (2.5)
dr? 1

An assumption about the shape of V(r) is necessary. One

pos8idility 1s the rectangular potential well. This shape,
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(Fig. 3), certainly represents a short range force and
leads to a differential eqwation which can easily be solved.
Here, there are two parameters, the width and depth of the
well. Since the Schroedinger equation with a given E
determines only one parameter, we expect to find only the

relation between V and Ty

‘——/lo ? .
Vo TVo — A not definite values for them.
A
With E = - Eo, where B, is
Fig. 3 ~ positive, Eq. (2.5) becomes
d%u , M
=2+ = [V, =EyJu=0 forr < T (2.6)a
ar? A °?
d?u M
=— -5 Eu=0 for r > Tg. (2.6)b
dr -

¥ must be continuous, finite and have a continuous first
derivative everywhere. Therefore u = ry, which must have
the same continuity conditions, must go to zero at r =0, and
must not diverge faster than r as r » 0. To satisfy the
conditions at zero and infinity the solution of (2.6)
must be

u = A sin kr for r < Ty, (2.7)a

U = Be~*T for r > r,, (2.7)y

where
k= /u(v-%)/ 4%, (2.8),
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Now if U and its derivative are continuous then the deriva-
tive of log U must also be continuous. Applying these
conditions at r = r, we obtain the result
k cot kry = = & . (2.9)
Eq. (2.9) does not involve A and B but only the two unknowns
r, and V,, E, being 2.187 Mev. V, and r, are not restricted
further. As seen from the above, E, 1s small compared to
¥V, and can be neglected in Eq. (2.8)5. Eq. (2.9) can be
put in a simple and approximate form
cot kry, = - &/k ~/E/V. (2.10)
Thus cot kr, is negative and small in absolute value.
Therefore, kr, is only slightly larger than 7T /2. (We
know the value 61' kr, slightly larger than 37 /2 is not
admissible since there would be a radial node in the wave
function ¥ at kr, =7, indicating that this is not the
lowest energy level. This result contradicts the hypothesis.)
Using kro~ 77 /2 and egain neglecting E, in the expression
for k, Eq. (2.10) gives
V2 A 712 /1M, (2.11)
Actually (Vorg) is slightly greater than the. quantity on
the right. Thus

2
Vord ¢ 11 Mﬁ2 or kr, (7. (2.12)

(The expression Vor°2 frequently occurs in nuclear calcula-

tion; it 18 not necessary to know Vo and ro separately.)
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Let us consider another result which does not depend
on the detailed form of the potential (as long as the force
has a short range). Such 1s the case for the wave function
U(r). When r is greater than the range of nuclear forces,
it is given by

U = Ce~*T, (2.13)
For r less than the range of nuclear foroces, the wave
function should decrease as shown in the diagram (Fig. 4).
However, the wave function given above is sufficliently
accurate over the whole region, as to be useful in many
calculation. Since the

L ijﬁ' exponent £ r in the above
[

Foo————--

/

?

u;ﬂ‘é expression is a dimension-

e less quantity, « has the
V(AR)

dimension of 1/cm. Therefore
we can take 1/« as a
Fig. &4
measure of the size of the

deuteron. Since we assume that a central force has short
range, the "radius® of the deuteron is considerably larger
than the range of nuclear forces. That is

To<é 1/l o (2.14)
Most of the area under U(r) occurs for r > r,. The use of
another shape for the potential function changes U(r)
appreciably only for r < ro. Therefore whatever the shape

of the potential, Ce"‘r is close to the true wave function
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over most of space.

Let us normalize ¥ so as to determine the value of C.
Then
(] [ -]
JdeT = 4o [ u2ar = Lwe? [ 27T ar
a ]
= 27C%/ & =1,
or

c = /KX/fam .

Therefore, the normalized wave function is

u(r) = /o e~%*T, (2.15)
27T

Similarly if definite values are assigned to r, and Vo then
A and B of the true U(r) given by Eq. (2.7) can be found
from the continuity end normalization conditions. B is

somewhat greater than C of the approximate U(r), thus

B = /% (1+ 34r,). 2.16

In fact Eq. (2.16) is a good approximation.

We shall conclude this section by showing that it is
not possible for the deuteron to have bound excited states.
Let us consider the possibility of the existence of excited
states with L=0. It will be assumed in this proof that
the force between the neutron and the proton is the same
for states of higher L as for the case L=0. In order to
prove our assertion we shall compute the minimum well depth
Vo required to produce a bound state, i.e., one for which

the binding energy E, is just zero. This required well
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depth will be found to be considerably larger than the
actual well depth, as determined above from the binding
energy of the ground state. Since the actual depth is less
than the minimum value required for the binding of states
of non-venishing angular momentum, such bound states cen
not exist. The analytical proof is as follows. For L = O,

the Séhroedinger wave equation is

2
8, g - v(r)]u - 2EFL) 4o, (2.17)
dr A< r?
Assume
V= -7, r=1r,, E =-E,.

Set E, = O for minimum well depth, and let L=1. The
solution of Eq. (2.17) is given by
sin kr

U = - cos kr, T < To, (2.18),
kr
U= e T 4 ], (2.18),
where
K% = M(V, - Eg)/ %%, (2.19),
A% = ME / B°. (2.19)y

For simplicity set E, = O, and use for the outside solution
U= 1/r, T > Toe (2.20)
Using the definition of k with E5 = 0,
WV r.%/ 8% = 7%, (2.21)
The required depth V, . 1s almost four times as large as the
actual depth in the ground state. Therefore no other bound
state exists at L = 0.
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III. EXPERIMENTAL DETERMINATION OF THE SPIN
AND MAGNETIC MOMENT OF THE DEUTERON

A. THE DEUTERON SPIN

It is known that the electron possesses an intrinsic
angular momentum, called the "spin®™, of value % and a
magnetic moment of 1 Bohr magneton. The simple relation
between these quantitites has been pointed out by Dirac,
who derived his equation by relativity arguments. For
protons and neutrons and nuclel consisting of these
particles, however, the relation between the spin and
magnetic moment is not a simple one. So far, there is no
theory of general applicability which gives this relation-
ship. The lack of such a theory makes the problem of
measuring spins and magnetic moments of nuclei very
important in nuclear physies. For this purpose a number
of methods have been devised: hyperfine structure, moleée-
cular beams, band spectra, etc. Since the spin of the
deuteron has been determined by the band specotra method,
this willf%iscussed in detail.

The band spectra method is very useful in determining
nuclear spins, particularly for light nuclel which tend to
form homonuclear molecules. The presence of & nuclear spin
causes & change in the statistical weight associated with
the given rotational state of a homonuclear diatomiec

molecule and thus causes a change in the expected intensities
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found in the band spectrum.

The reason for this is as follows. If the nuclear
spin is zero, the statistical welight of any state for which
the total angular momentum is J would be 2J+1. The presence
of a nuclear spin further increases the degeneracy of the
states. A nucleus of total angular momentum I can have a
component M in any prescribed direction, taking eny of the
values I, I -1,--T,a total of 2I+1 states. Let ¥y
represent the wave functions of these states. If a molecule
contains two identical nuclel, the wave function of each
being represented by Yfmi(A) and YV Mz(B)’ the total number
of ways in which these functions can be combined to form

the product functions
Yy, (A Yy, (B) (3.1)

1s (2I+1)2. 8ince symmetric and antisymmetric states do
not combine in diatomic molecules containing identical
nuclei, it is necessary to separate the (2I+1)2 functions
into symmetric and antisymmetric functions. We note that
the product functions given by Eq. (3.1) are symmetric when
M = Mz. Of the remaining

(2+1)2 - (21+1) = 2I(2I+1)
funotions of the form %ML(A) “/’M2(B) and \/'uz(A) V’MI(B),
one half will be symmetric and the other half antisymmetric.
Thus the total number of symmetric functions is

I(2I+1) + 21 +1 = (I+1)(2I+1)
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and (2I+ 1)I, the number of antisymmetric functions. The
ratio of these numbers is

(I+1)(2T+1) _ I+l

= (3.2)
I(21+1) I

If the nuclel obey Bose statistics, symmetric nuclear
spin functions must be combined with rotational states of
even L and antisymmetric spins with those of odd L. Because
of the statistical weights attached to the spin states, the
intensity of even rotationel lines will be (I+1)/I as
gréat as that of the neighboring odd rotational lines.

For Fermi statisties of the nuclei, the spin and the
rotational states combine in a manner to make the odd
rotetional lines more intense, in the ratio (I+1)/I.

Thus by determining which lines are more intense, even or
odd, the nuclear statistics is determined and by measuring
the ratio of intensities of adjaeenf lines, the nuclear

spin is obtained as shown in Fig. 5.

Occupation number

' llll.

Intensityalfernation in Band Spectra
Fig e 5

The deuteron spin was investigated in 1934 by Murphy
and Johnston 20, who measured photometrically the relative
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intensitites of 29 lines in the A bands of the molecular
spectrum of deuterium. These lines corréiond to the tran-
sition 3p 513 M= 2P ™3 ):; analyzed by Dicke 21, fThe bands
lie between 5939 and 6291 A and were photographed in the
second order of a 21-foot grating. The experimental results
show that the deuteron obeys Bose-Einsteln statistics and

that its spin is 1.

B. MAGNETIC MOMENT OF THE DEUTRON

Magnetic moment of the deuteron has been determined
by hyperfine structure and atomic beam methods. The latter
method was used by Rabi and his co-workers 22, who measured
the hyperfine structure separation by passing a beam of
atomic hydrogen and deuterium through an inhomogeneous
magnetic field. The magnetic moments are then calculated
from the hyperfine structure separations.

The disadvantage of the above method is that the
result depends on the somewhat uncertain relation between
the nuclear magnetic moment and the hyperfine structure.
This criticism is avoided in the molecular-beam magnetic
resonance method 23 in which the nuclear moment is obtained
by observing the precessional frequency of nuclel in a
uniform magnetic field. Consider a system with angular
momentum J, in units of A and megnetic moment « , in an

external magnetic field H,. The angular momentum vector
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will precess about the H, vector with the Larmor frequency
given by

- 4B
Y= =n, (3.3)

Of the quantities occurring in the equation, Hy may be
measured by conventional procedures and J can be determined
by some one of the methods mentioned in the previous section.
For the determination of » , Rabi 24 has pointed out an
ingeneous method. It is as follows. From Eq. (3.3) we see
that if a nucleus of magnetic moment « 1s placed in a
uniform field Hy, , it will continue to precess with a
constant angular velocity v/ and the angle which the angular
momentum vector mekes with H, will remain constant. Now
suppose, in addition, that a small rotating field Hi is
applied at right angles to the steady fleld H,. The nucleus
will then also tend to precess also about this small rotating
field, thereby changing the angle which J makes with H,.

If Hi rotates with the frequency » this effect is cumula-
tive and the change in the.angle between H, and J can be
made large. If the frequency of revolution f of Bi about

Hb is different from ) , the net effect will be small. The
smaller the ratio Hi/Hb the sharper this effect will be

in its dependence on the exact agreement between the
frequency of precession y , and the resonance frequency f.

The schematic diagram of the apparatus used in detecting

these reorientations is shown in Pig. 6. A stream of
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molecules coming from the source, O, in a high vacuum
apparatus, is defined by a collimating slit, S, and detected
by some suitable device at D. The magnets A and B produce
inhomogeneous magnetioc fields. When these magnets are
turned on, molecules having magnetic moments will be
deflected in the direction of the field gradient if the
projection of the moment, Aoy along the field is positive,
and in the opposite direction, if‘/Lz is negative. The
magnets A and B are adjusted so that the number of molecules
arriving at D 18 the same whether the magnets A and B are

on or off.

The molecules also pass between the poles of magnet C,
which produces the uniform field H,. Instead of a rotating
field, an oscillating field (which is equivalent to two
fields rotating in opposite directions) at right angles to
the steady field is produced by means of a loop of wire
inserted between the poles of the C magnet. (The loop is
not shown in the diagram.) If the frequency of the oscilla-
ting field is just right to induce reg¢orientations of the
molecules, i.e., to cause &« , to change, magnet B will no
longer be able to bring the molecules to the detector D,
i.e., the deflection will be too large if « 5 increases
and too small if At decreases. Thus the condition of
maximum reorientations is determined by noting the minimum

molecular beam arriving at D.
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By the use of quantum mechanics, the reorientation
process 1s more precisely described as one in which the
system, originelly in some state, with a magnetic quantum
number, m, makes & transition to another magnetic level m'.
An exact solution for the transition probability for the
case where Hl rotates and is arbitrary in magnitude was
given by Rabi 2l

For the particular case J = 3 we have

P 3)= ginzo sin? ;7 £t(14z2-22z cos G)é, (3.4)
(2,-2)7 1,222 cos @

where P( 3,-3) is the probability that the system, originally
]
in the state m=4%, is found in the state m = -4 after a

time t; z, the ratio of the frequency of revolution f to
the frequency of precession )/ , given by

v =pm(82 + B2) ¥/7 4, (3.5)

tan @ = Hl/Hoo (306)

For an oscillating field, when Hy/H,<< 1, in the neighbor-
hood of £ =4 this formula becomes

A
P, = e sin3et [(1-2)2+ a2]2, (3.7)

where A =HléH° is one half the ratio of the amplitudes
of the oscillating to the statlic fields.

.'.l‘o determine the magnetic moment of the deuteron 25,
the molecular beam of HD or Dy is used. The molecule HD
or Dy is in the state with rotetionel angular momentum, J,
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equal to zero, the internuclear axis is oriented in every
direction with equal probability. Therefore, if the applied
steady field is large enough to decouple the particles from
each other, the frequencies at which the protons or the
deuterons meke transitions will be effectively that of the
free proton or the free deuteron. The experimental results
are obtained in the following way. The radiofrequency
osclllator 1s set at a definite constant frequency f and
the molecular beam intensity 1s observed as a function of
the homogeneous magnetic field H,. For certain values of
the magnetic field the beam intensity becomes a minimum.
This occurs whenever the product hf for the oscillator is
equal to the difference in energy between two molecular
states. The resonance curves for deuteron in the ED and D,
molecules are shown in Fig. 7, 8. By analyzing such curves,
it 1s found that the magnetic moment of the deuterons is
0.855 + 0.006 nuclear magnetons.

IV. DISCOVERY OF THE ELECTRIC QUADRUPOLE MOMENT
OF THE DEUTERON

In the last section, we outlined the general procedure
for determining the magnetic moments of nuclel by the
magnetic resonance method and in particular, we pointed
out that the very deep minima at the center of the resonance
curve corresponds to the transition frequency of the free

nuclear particles, such as the free proton or the free
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deuteron. However in attempting to account for the auxiliary
minima flanking the central minimum, Rabl and his co-workersl*s?7
noticed a fundemental difference in the spectra of H, and
D2 o They found that the structure of the radio-frequency
spectrum of H, molecule could be explained by the magnetie
interactions of various angular momentum vectors. They
found, however, to their surprise, that a similar reasoning
applied to the Dy spectrum led to results not in agreement
with the observed facts. We shall explain below the main
arguments which led Rabl and his co-workers to the conclu-
sion that the discrepancy can be attributed to the electric
quadrupole moment of the deuteron.

Let us first consider the Hé molecule. The angular
momentum vectors associated with such a molecule are as
shown in the diagram. The quantitites §; eand ¢, are the
spins of the two protons, and J is the angular momentum
arising from the rotation of the H molecule. It is readily
seen that when such a molecule is placed in a magnetic

field, its energy is given by

- AMp ks FE )J
+ /“‘rz{ai - 3&’-”6‘;‘71’} (4.1)
A3 N2

Fig. 9
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The quantity 4 p is the magnetic moment due to the
rotation of the molecule; other terms have the usual
significance. Using this as the energy expression and by
analyzing the resonance curve of H,, it is found that

H' = 27.2 gauss,
(’aP/rB)av. = 34.1 gauss. (Le2)

When this 1s combined with the wvalue 26
(1/e3) = 2.438x0% em’>, (4.3)

the proton magnetic moment turns out to be

3h.1 =23
Mo=3r3Y o (34.1) = =1.403x10 erg/gauss, (h.4)
P av. 2.4,38x1024
or
A _ = 2.785 nuclear magneton., (Los)?

P
This value 1s in remarkable agreement with the value of
the proton magnetic moment obtained from the £/H value of
the deep resonance minimum.

With the D2 spectrum, there is no argument if one
assumes only magnetic interaction between the angular
momentum vectors. One would expect the spin orbit constant
H' to be about % that of H, since the angular velocity of
rotation of D2 is half as large. The reason for this is
that the rotational angular momentum vectors J are equal,

the internuclear distances r are almost equal, but the mass

of Dy is practically twice that of Hy. One would then
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expect for D2
H' = 13.6 gauss, (4e5)
H"=,uD/(r3?av.= 10.5 gauss. (446)

The spectrum calculated from these constants 1s indicated
in Fig. 10 by six short, closely spaced lines at the top.
A glence at the dilagram shows that there is no sgreement.

In order to bring theory and experiment into agreement
Kellogg 2Zt‘:ghowed that 1t is necessary to assume the
existence of the deuttron quadrupole moment. The gquantum
theory of the effect of quadrupole moment on atomic energy
levels was given by Casimir 28. A theory for molecules
can be constructed elong similar lines. The part of the
energy operator which concerns the quadrupole moment of a
nucleus is, according to Casimir,

0290 {3(s.3)% + 2(8.7) - 8(s+1)3(T+1)}
23(27 - 1)s(2s -1)

(4.7)

where Q = (322 - rz)av. is the magnitude of the nuclear
quadrupole moment. The average is teken over the nuclear
charge for the state which has the largest component of
the spin S in the z direction. The origin is the center
of mass of the nucleus. The quantity eq is defined by

[%(3 °°32°e - 1)/r2] , (4.8)

av.
where the sum is taken over all of the molecular charges
except the nucleus under consideration. This average is

taken over the state of the molecule which has the greatest
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component along its angular momentum J, in the z direction.
Te 1s the distance of the e'D element of charge from the
nucleus. J and S are the molecular and nuclear angular
momentum operators, 64 is the angle which r, makes with
the z axis. The factor [ (qe) is the average of 22V/ »z?
where V is the electrostatic potential at the nucleus.

The value gQ was obtained from the Dz resonance curve
shown in Fig. 19, The quantity q was calculated from
molecular wave functions by Nordsieck 39. These values
lead to

Q= 2.73x107%7 om.? (4.9)
for the deuteron quadrupole moment,

The existence of the nuclear quadrupole moment shows
that the ground state of the deuteron is not a pure 331
state, but is a mixture of states of 331 end 3Dy. The
effect of the mixing of such states 1s to result in a
seeming departure from the additivity of proton and neutron
magnetic moments when forming the deuteron. We shall see
presently that the proton and the neutron are bound to each
other not only by a central force, but also by another

type of force, called tensor force.

V. ELECTROMAGNETIC INTERACTION OF THE ELECTRONS
WITH THE NUCLEUS

In this section, a classical treatment of the electro-
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magnetic properties of the nucleus will be given. It will
be shown how the concepts of magnetic dipole and electric
quadrupole moments arise in classical electrodynamiecs. Also
an important property of non-central forces will be pointed
out. The reason for these discussions 1s that a systematic
development of the classical electromagnetic properties

of the nucleus is not available in the literature at pre-
sent. It is hoped that the following discussion will give

a better insight into the quantum-mechanical cabulations
that will follow in a later section.

A. ELECTROSTATIC INTERACTION-——ELECTRIC QUADRUPOLE MOMENT

Let us first show that the concept of the quadrupole
moment arises from the electrostatic interaction of the
electrons and the nucleus. Consider then the electrostatic
potential energy due to the interaction of the distributed
2 (‘fz:‘ 0.4) nuclear charge density within
\r,xf“”““\Jw R the surface V" and the distri-

buted electron charge density

fe outside of V. From Fig.

‘\\v
{ d—% (/ln » °Ll P )
! >

\ 11 we see that the constribu-
L tion to the potential energy
Fig. 11 due to the charges in volume
elements 4 T, and d Y, 1is
Ay = Padty Fo dY, = L fdYedy,
R |2e = An |
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Consequently, the total potential energy is given by
J Safe dtod T,
Outside V' Jinside V /rg +1‘121 - 2r r, cosw

V= , (5.1)

To obtain the contribution from the various multipoles, the

denominator 1s expanded in terms of Legendre polynominals
1

-1 Z(rn/re)k?k cosw ,
2 2 _ r
/re +r; = 2r,r, cosw e
where cos «w = ¢c08 © cos A + sin @ sind cos(¢¥ -48). Substi-

tution into Eq. (5.1) gives

_ ¥ Sadt K
V=2 j e f A P P (co90) AT,
f ff P(Casw)dr,, _’_f_e_d_fe_ AnPu P (Casw)drn

D

The first term is called the Coulomb energy and is Jjust
the energy due to a charge Ze concentrated at the center
of the nucleus. The second term is the electric dipole
moment term. Experiments show that the electric dipole
moment does not manifest itself in atomic nucleli. Thus
the contribution from this term vanishes. The third term
is called the quadrupole interaction term. Let us examine
this a 1little more closely. Since cosw contains both the

electron and the nuclear angles, we shall separate them by

using the addition-formula 28 for the Legendre polynomials.
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That is

P, (cos w) = Z (2-J,,) m:\'))t B (o5 o) Blicasicos Kip-p). (5.3)

Substituting this into the quadrupole twem, there results

2-6)! (fo pK X
v, Kz‘_‘;(z 5 G550 [ 25 P (cos Ot 2 g, Bccswrcsn-par, - (5.4

Since the nucleus is rotating rapidly about its spin axis,
it is safe to assume that the nuclear charge distribution
has axial symmetry. Then the charge density fn is inde=-
pendent of B and the only value of k for which the inte-

grel does not vanish i1s for k=0. Hence

Vo = j f Pp (€os8) AT, fﬂ P, P (Cosak) 4Ty
— o [ Je(3co5%6-1) 2, d
".[ 2 AT [a}(scest-1) Fy (5.5)
where
eQ = }Jrnz(B cosld - 1) fnd T, (5.6)
which is the nuclear quadrupole moment, and
eq = . (507)

Pe (3 cos?e - 1) d Te
J >
It can be shown that this represents the second derivative
of the potential, or the gradient of the electric field
along the nuclear spin axis arising from the elctron charge
distribution. The proof runs as follows.

eqz_.:f fe(B cos®e - 1) v, ___jfe(Bzé - rg) d7e »

o

3
e
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The potential due to the elotron charge distribution

at points inside the nucleus is

Thererore
fg‘itg

;E’ The=2n|

. (5.8)

( ze ’l” )2

nl

1
ff 4% 3322 | Re= |

- [ 2ttt

| Re~ An|®

£, dTe -

Hence, at the center of the nucleus

[ & l’e&
32: ’/le'/l’l' A_" =0

f 38i-Ae p 4o, (5.9)

To see how the shape of the nucleus affects the

quadrupole moment, assume a nucleus to be a uniformly

charged ellipsoid of revolution having total charge Ze with

semi-major and semi-minor axes of a and b respectively.

Assume that the spin and the major axes c¢oincide. Since

the volume of this ellipsoid of revolution is L/37rab2, the

Fig. 12

charge density 1is
324

l».Jr ab?

?
—

)

dv, =R d¢ dR dz,

r§(3 cos2L - 1) =32‘121 - r§

= 222 - R?, (5.10)
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eQ =~ J Jb -2?/s 27 (2z2-112)_3’~1?.:r R d4 dR dz
z==aJy=0

é =0 Lrab
[1-22/a?

a b
= 27rJ 3 (222 - r?)R dR dz
-a)0

27rf5l [b2z2(1-z2/a2) - b3(1 - z2/a2)2/1.] az
-a

= 8ab2(a? - b?)/15,

_ 326 87 .12(al - w2
eQ= hﬂabz rs ab (a b ), (5011)
Q = 2 z(a? - b?). (5.12)
5

This verifies a remark by Mattauch 30.
Similarly in case the spin axis is the minor axis,
the quadrupole moment turns out to be

Q.=.§. z(b2 - a?). (5.13)

From these results we see that in case the nucleus
is lengthened along the spin axis the quadrupole moment is
positive (Fig. 13,) and negative when flattened (Fig. 13;).

TI

Fig. 13, bR< a? Fig. 13, b%>a?
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The axis ratio a/b calculated according to Eq. (5.12)
is plotted in Fig. 14.

B. MAGNETOSTATIC INTERACTION —~ MAGNETIC DIPOLE MOMENT

DUE TO NUCLEAR CURRENT DISTRIBUTION

In the preceding paragraph we considered the effect
of stationary distribution of charge upon the energy of
en atom. Let us now consider the magnetostatic interac-
tion energy of the atom. By this we mean the contribution
to the energy of the atom due to & stationary distribution
of nuclear currents, that arise from the motion of charges
within the nucleus. Our purpose is to determine the effect
of the internal motion of nuclear charges on the magnetic
moment of the nucleus. Let us suppose that the motion of
particles with-in the nucleus gives rise to an effective
current of density ?'. The vector potential 31 % due to
this distribution is given by

K=%J ) ary | (5.14)
|1"‘rn|

Expanding the denominator, we obtain the following.

°0

- 1 X =
A= ZLKZ"O l/t]"*'_fl/lnl J (An) P, (Cos w)dz'n

[}

—-’
VY J} (Zn) P, dTn

\ 4

t CI'MIlnxl?(ﬂn)a(cosw)d‘rn.
(5.15)

Fig. 15
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The first term is zero. The second term is

1_1 T (r.) cosw drT,.-_1 = { B
T T fl nl? n Th c|r|2Je.rnJ(rn)dTn’ (5.16)

where 8.F, = Ie| l?nl cosw, and € 1is a unit vector along
the vector T.
From the continulty equation
div L 12Ff 0 (5.17)
* c dt

and from the faet that we are considering stationary

distribution of charges and currents

?{ =0, (5.18)

p.]

we see that the current density satisfies the relation
div J = 0. (5.19)

This means that J can be derived from the curl of some

vector. Let us write therefore

-

J =cvxm, (5420)
A I = =2 =2
4 _"Tl°°r vxm dT,e. (5.21)
ir x| a n

From the expansion formula 32
- - o 4
Vx(UV)=vVUXV+UVXYT,
we get
3.§;vxﬁ’=vx(g.§;ﬁ) -V(G’o ?;)Xﬁ
Vx(a,orfnﬁ) - (GOV’ITQ)XH

VX(E’. En.l—ﬁ) - -é'XI—n',

Il
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Agqp= - -1 Ié’xﬂarn=- ' xf'l'n’d‘(n, (5.22)
IT1? Ir12

8ince the volume integral of the first term vanishes.
Comparing this with the vector potential of a dipole,

_ AxXT (5.23)
Aatp = Ir 1P ,

where <& is the magnetic dipole moment, we see that
[Bar, =4 (5.24)

is the contribution to the magnetic dipole moment due to
the motion of charges in the nucleus.
We shall now obtain a more convenient expression for

this orbital magnetic moment. ZFrom Eq. (5.20) we have

rxJd _ ¥xvxm,
c
1 f?x}'drn_—.f}"xvxi? aT e (5.25)
c

From the expansion formula 32

Grad (U « V) = VevU +U.vV+ Vecurl U+ U X curl V,

we obtain
Gred (P.R) = TeVD +M.VIr + B XVXT + TXVXH
= MeVE +MeVT+ MXVX T +TXV X m,
Then
Exvx® = Gred (F.@) -B.vE -mv¥ - BXVXT

Gred (Fem) - m -m = MAV X T

Substitute the above equation into Eq. (5.25)
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-_
1 ([Pxfdar, =-]2mav_ .
-E-f j n f n
Comparing with Eq. (5.24), we obtain

;j?dern= 22,

c

2 -1 [ExTav..
~ 2cf n

By means of

7 =pFv, (5.26)
where '5’13 the charge density end V is the veloeity, it
follows that

Z:f%&idrn. (5.27)

The integral of Eq. (5.27) gives the contribution of the
motion of the charged nuclear particles to the nuclear

megnetic moment. It cen be written in the form

z =Z-Ta§-§—-1., (5.28)
where the summation is over all particles and L is the
orbital angular momentum of the particles. FXor the case

of the deuteron which contains a proton end a neutron,

—> el ﬁ L 32 'ﬁ
2 == 1L,, %27 4 (5.29)
2][10 2‘20 2

Since the neutron has no charge the first term is zero.

Therefore

2 - 22 T, (5.30)
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Since
L= L, = L/2, (5.31)
we obtain
o = =B 3 7). (5.32)

This is the contribution of the orbital motion of charged
nuclear particles to the magnetic moment. This is also the

quantum-mechanical operator for the orbitel magnetic moment.

C. ANGULAR MOMENTUM CONSIDERATION FOR NON-CENTRAL FORCES

Because we find it necessary to introduce non-central
or angle-dependent forces to account for the experimentally
observed electric quadrupole moment, we shall discuss the
classical aspects of such foreces. We shall show that,
although the orbital angular momentum is a constant for
central forces, 1t 1s not necessarily so for non-central
forces.

The fact that orbital angular momentum is conserved
for ecentral forces can be seen from the following considera-
tions. Let us suppose that a particle i1s moving under the
action of a central force F(r). We can then write

" mE =F = 1(x) 7, (5.33)
where ¥ is the position vector, The quantity ExF is

known as the torque about the origin, exerted by the force

¥. Therefore,
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mn®x8 = FxF = T x £(r) %, (5.34)
since the vector product of a vector into itself vanishes.
But

TAE =

(F xV),

2

}

d 2 -
& (n Fx¥) =o0. (5.35)

So the orbital angular momentum is constant, that is

mr XV = constant.
Thus we see that a particle in a central force field will
continue to move in a fixed invariable plene, that is, the
orbit of the particle will not "wobble™.

On the other hand, consider two spinning dipoles eeach
of mess m and m* and of magnetic moments M and M', as shown
in FPig. 16. Consider now the moment of the force about
the center of mass., Let r be their distanece from each other.
The potential of the magnetiec
dipolé 32 45

U=-M.v1l/r. (5.36)
Since the first magnet gives rise
to the field

E=(vvi/r) .M, (5.37)
Pig. 16 the potential energy of the

dipole m' is
-M* .H=-M" .[M . (vvl/r)]. (5.38)
The translational force on the dipole m' is computed by
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the formula
F o= M .vH=NM.v[M(vv1/r)],

and the torque on m' is given by

L,= M'xH =¥ x(vvl/r)M.

But

=
'
b

vv
r

il.e.,

VV%=-2—1-£ - 1.

Substitute Bq. (5.41) into Bqe. (5.37). We have

#-w (2. Loag. A
1 =-51=-"F 53
Substitution of Eq. (5.41) into Eq. (5.39) gives
= 37 ¥
F.o= m v [ Zyer-LT.

Using the expansion formula
- -—> -
vuvV)=vuv+uvy,

(5.39)

(5440)

(5.41)

(5.42)

(5.43)

v(UV) = VevU + UevV +ViXourl U + U X curl V,

we obtain the first term of Eq. (5.43)

—- -
{_gn.r {v(mr)} X 4 mery X
r’ r°

M 3? M 1 1l =4

= Mevr 3T 4 3M-r _vr}
r {_3' r?

- 3ﬁ5¥+3u,r{ _5731- -—1}

r
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=3 -Z-M'rrr 7 MI o43)
{ 7 +r5+r5 } (5.43) g

and the second term of Eq. (5.43)

v-M-— —-5 M o= - 2. (5.43),

r r5
Substituting Eq. (5.43), and Eq. (5.43), into Eq. (5.43)
we obtain

i’ = 3[- 2 M’ru'r;-'- M—-;—@-'—&;M'-f-i— Mt*erM, (50’#‘0—)

Therefore the moment of the translational force on m' is

TxFyp = M TXM' 4 2 M'errx M. (5.45)
5
I‘ r

If the moments are taeken about the center of mass,
then r* = 2R, r = = 2R. Then moment of forces on m' about

the center 0 is

=2 6MR 6M! R
RXFpyy = RXM' + = RX M. .
M? 32R5 3285 (5.46)
8imilarly, the moment of the translational force on m
about 0 is
= 6M' <R 6MR
“-RXTy = RXM + RXM', (5.

Therefore the sum of the moments of the translationsal force

on m and m*' is

RXFyy - RXFy = l?‘:——nxm+§2”;;1‘nxnv (5.48)

Thus the sum of the moment of the translational forces
does not vanish. This shows that the orbital angular

momentum is not a constant of motion.
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Now let us go back to the spin moments of the dipoles
m and m*. Let Iy and LM' be the torques on m and m'
respectively. Substitute Bq. (5.41) into Eq. (5.40). We

have for the torque on m'

Ly: = M'x H = M'x[L’fF-L]oM
1’5 r3

::—Lz— t X ? - M'XM
3285 MIXEM'R - Z=9 (5.49)

and similerly the torque on m is given by

MXM*

Ly=-12_ M xRM'«R - . (5.50)
32R° 8R?
The sum of the torques is
Ly +LM" 22 W' X RU-R+ By XU R, (5.51)

Therefore the sum of moments of the translational force
eand the torques is

Rx ¥y, + (-R) X By + Iy + Iy = 0. (5.52)
This shows that the total angular momentum of the system
remains constant.

These results are true in quantum mechanics. We shall
show that when tensor, i.e. non-central, forces are intro-
duced, the orbitel angular momentum L will no longer be a
good quantum number, although the total angular momentum

is still a constant of motion.



VI. THE THEORETICAL INTERPRETATION OF THE MAGNETIC DIPOLE
AND ELECTRIC QUADRUPOLE MOMENTS OF THE DEUTERONS

In the previous section, we outlined the experimental
methods used in determining nuclear multipole moments, and
developed the concepts of multipole moments in classical
electro dynamics. Our purpose now will be to see how these
ideas can be fit into a consistent quantum mechanical scheme.
One suspects this to be possible because quantum mechanics
has been remarkably suécessful in providing a qualitative
interpretation of nuclear phenomena.

It is interesting to note that the Rarita and Schwinger
theory, which will be outlined below, was anticipated in
1938, in a paper by Yukawa, Sakata, and Taketani 33, How-
ever, the physical significance of their theory of the
deuteron was not fully realized until after the discovery

of the deuteron quedrupole moment 3k.

A. NECESSITY OF NON-CENTRAL FORCE

In order to see what must be done, let us assemble
the experimental data. The moments of the deuteron are
/LD =+0.8565 ¥ 0,0004 nuclear magnetons,

Q = 2.73 X 10727 om?,

The magnetic moments of the proton and neutron are

HMp = +2.7896 ¥ 0.0008,
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My =" 1.9103 ¥ o0.0012.

We notice that the sum of proton and neutron moments is

Ap + o, =40.8793 T 0.0015,

which differs from the deuteron moment by

(Mptpy) - 4p =0.0228 T 0,0016.

Thus, the magnetic moment of the deuteron is very nearly
the sum of the proton and neutron moments. In addition,

as has been pointed out previously, the deuteron spin is 1,
which is Jjust the sum of the spin of the proton and the
neutron. These results suggest that the ground state of
the deuteron is a 331 state. The small deviation from
additivity and the small quadrupole moment 1s due to the
presence of a small amount ofv3D1 state,

Let us examine the problem a little more carefully by
applying the Landé formula of nuclear systems. Let S
represent the intrinsic angular momenta of the particles,
fbthe orbital angular momentum, and 3’the total angular
momentum of the nucleus in the ground state. The eigenvalue
of f?is, of course, the experimentally observed nuclear
spin I. Let the magnetic moments associated with the veotor
S and T be jzé and.ZZL, respectively. Then, because of the
Larmor precession of the vectors §'andff about 3: the

effective magnetic moment of the experimentally observable
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value is

M gpp = A cCOS (L, J)+/ls cos (S, 7). (6.1)
I\ Using the cosine law of trigonometry,
we then get

2 2 2
Herr = A1, g Z%EE’ J

+u, 12 =82 -JF2% . (6.2)
S 55T

Introduce the gyromagnetic ratios

given by
— gL’“N’ . (6.3)a
/,(.J = gJ/lN, (603)0

where /‘N is the nuclear magneton. Then Eq. (6.2) becomes

- 82-12-72 12-g2-72
'u'eff [513 272 +83 23.2 JJ/‘No (6.4)

Thus the gyromagnetic ratio of the nucleus 1is

= =3( -S8(st+1)-L(L+1)
gorr = ~2leg + gg) et

gs- gl.)o (6.5)
In the last step we replaced s by 8(S+1), eto., in
accordance with the results of quantum mechanics. Under
the section on non-central force, we showed that g = 4.

The quantity &g is just the sum of the g's of the proton

and neutron. Hence

€s = &t &
207896 - 109103 = 0087930 (606)

i
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From Eq. (6.6) we see that if the nucleus is in the S
state, (=8 =1, L=0), the effective magnetic moment
should be

Thus, 1f the deuteron ground state were a pure S state, its
magnetic moment should be just the sum of the moments of

the proton and the neutron. If the deuteron were a pure D

state (S=1, J=1, L=2), its magnetic moment would be

= 1(2) - 2(3) _
ot [i(gLi—gs)—r 2 (1) (2) (eg gL)] TH

=[2le, +eg) - (&g - EL)]’“N
= [,510_8%92 - (8723 - .5)J,uN=.310h/J-N . (6.8)

The experimentally observed value lies between these two
values. Hence we are led to consider the possibility that
the ground state 1s partly S8 and partly D states. If the
percentage of the D state is represented by p, then the
observed magnetic moment will be given by

Mp = 0.8693(1 - p) + 0.3104p, (6.9)
where the first term is the contribution to the magnetic
moment from the 8 state and the second term, that from the
D state. Inserting the observed value of A4y 1n the above
equation and solving for p we obtain p = 4%, It is a
remarkable result of the Rarita and Schwinger theory 6 that
just this amount of D state admixture is necessary to

account for the deuteron quadrupole moment.
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B. PROPERTIES OF PAULI SPIN FUNCTION

In developing their theory, Rarita and Schwinger mede
an outright assumption that the interaction function
between the proton and the neutron in the deuteron is
given by

V(r) = [1 - 2g+3g 070 ,+78),] J(r), (6.10)

307 1r,,0, °1T
S, = —2—222 12 _¢ .0, (6a1)

T2

where 0'1 and 0‘2 are the neutron and proton spin operators,
respectively. Also g and Y represent the strengths of
spin-spin and dipole-dipole interactions, respectively. The

wave equation of the proton and neutron system is

2 2
[- %};— v; - %— v%+v])”=l)0. (6.12)

This equation can be put into a more convenient form by
transforming it into a coordinate system whose origin
coincides with the center of mass. The result is

2
-g.}_ vEY+TY¥ =EY. (6.13)

This equation differs a little from wave equations treated
in many text books on quantum mechanics. The difference 1s
that the potentiael function V contains an angle dependent
term.slz. Because of this term the orbital angular momentum
operator L? will no longer commute with the Hamiltonian

2 .
HE-%- v?4y. (6614)
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That is
[1L?, H] # o. (6.15)

The physicel meaning of this is that the orbital angular
momentum is not a constant of motion. Yet there are certain
constants of motion. These can be determined by a method
given in Rojansky 35, i.e., by finding the dynamical
variables which commute with the Hamiltonien. These are
82, Jz, J, end the parity. The effect of the last quantum
mechanicel constant of motion is to prevent the mixing of
states of 0odd and even orbital angular momentum. Therefore
the ground state solution of the wave equation can be
written in the form

y (F=1, 8=1, my, parity even) =~k(3sl) +Y’(3Dl). (6.16)
The notation used here is similar to that used in atomic
spectroscopy. The symbol J represents the total angular
momentum and is the observable spin of the nucleus., Let

3

us now proceed to determine the 381 and D1 wave functions.

For this, we assume that these functions are of the form

Y8) = oy pl=)XT, (6.17)
¥ %p)) = o, wi(x) 8,%7, (6.18)
where j(?‘are the spin functions, given by
XT = £ l2), (6.19)
)
= 1 [&(1)B(2)+4(2)8(2)], (6.20)
Sy )

X;l = A1) B(2). (6.21)
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The above are spin functions of totel spin 1 with components
in the direction of quantization equal to 1, 0, -1, respec-

tively. These remarks can be proved by showing that

s?x] = H1+1)X7, (6.22)
m m
S,X; = mX; » (6.23)
where
S2=(°'1+0‘2 2 s - Tzt 02,
2 ’ z= 2

Using these results we see that the wave functions given

in Bq. (6.17) are the wave functions of a state with
J=S=1 and L=0. To normalize the 331 wave function, i.e.,
to determine the constant ¢, of Eq. (6.17), we write

2 m,2
clf(xl) in =1.
Since (XI{)2= 1, 47e?= 1. Therefore

°1=—]-'—- I (6.2‘})

The proof that Eq. (6.18) represents a state of J=1, S=1,
L=2 1is somewhat more involved. We shall show that it
represents a D state. For this we need to prove that
L3(8,,XT) = 2(2+1) 8,,XT (6425)
To demonstrate this, let us first show that
v 3(r? 8127(!;) =0, (6.26)

or

V22 5, A™) = [v2(2 8,0 XD .
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since XT do not depend upon the space coordinates. Using
the relation

30y *xr0, -
S 1 2

12 = Z -0 -0,

and carrying through the differentiations, we have
. 2 ] ° -
V-v(r? 8),) = V. [3(0.r0, + 1y 0per) - 27

The Laplacian v2 can be written in the fom

2 _ 1 9 (.23, ._1%2

Now apply the above operator to the wave function 812’,(,1]1_1 .

From Eq. (6.26) we have

2
1 2 L 2 —_
Therefore
1° ,.2 1 2 (w2 3% ;.2
—5 (1’ 312) = ;2-3-1: (1’ 3;.2.) (1‘ 312)
= 2 2) . o = T2 (v
—br( _5[30-11'6‘21' T2 0y 0’2]
2
= 9 |(r~2 g =2 -
= -3—1:[( T)][B 0.1. era"2 . er (T'l 00—2]
=2(3) r {30_1' 6p0 5 6, - (7 ° 0-'2}
= 2(3) r? 8, = 2(2+1) r° 3y,.

Consequently

L3(r? 8),) = 2(2+1)(r? 8;,),

or
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12(s,X 1) = 2(2+1)(s,X . (6.28)

Comparing this with

2y (L,m)=L(L+1)V (L, n),
we see that L= 2. This shows that Slz’xlf is the wave
function of a state with £Z=2. Let us normalize the

3D, wave function i.e., determine the constant ¢, so that

1
o J 2] - 8T a0 =1

The above lntegral can also be written in the form
2 m .2 m -
2 [(a} 2, x]) an =1.

‘Thus in order to obtain the normalizing factor, we need to

evaluate Slg e« This can be done in the following manner.
Since

3¢, *°r0, . T

1 2
S12= 2 -1,
r
therefore
(8, +1)? = 9 (0 r)? (0, * r)3, (6.29)
r

Using the relation given by Dirac 35
CAGC +B = A*B - 10+ AXB ,
Eq. (6.29) becomes
2 2 R 2 . =
(%2+D =%[r+i¢i rxﬂ[r +10, rxﬂ 9,

2 _
812 - 8 - 28120

Therefore
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m 2 m
o2 Jxl (8 - 2312))(];‘l an = g} Jxlx‘; an = 802 (477),

2 1 1
(4] = . (6030)
2 S 2572

For the radiel part of the wave function, write u(r)/r and
w (r)/r for 381 and 3D1 states, respectively. Then from
Eqs. (6.16), (6.17), (6+377, (6.18), (6.24) and (6.30) we
obtain

- 1 _fu(r) -3/2 w(r) ], m
where
30, * 05
=271 " No"2 " T2 .
812 = 2 Fy -0
The normalization condition is
L (u2+w?) ar = 1. (6.32)
Using the relation
0'100‘2=28(S+1) -3=1, when S = 1

into Eq. (6.10), we obtain

When we substitute the above result into the deuteron wave

Eq. (6.13), we obtain

2
EY = %— vy - [1+Y812]J(r))¢/ . (6.33)
The differential equations whioch u(r)/r and w(r)/r
satisfy can be found by substituting Eq. (6.31) into the
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deuteron wave Eq. (6.33). We get

2&(5).7(1+22 s,z X7 )
+:‘§-[E+(1+Yslz)3(r)] [.‘l(l).-f_ﬁslz _(_-).] =0, (6.34)

The quantity v 2u(r)/r can be evaluated easily, since u(r)/r

depends upon r only. Thus

2
V21, wr(rz =Y2}_ Td w %_‘an(o,ff) Y, . (6.35) 4
The term
2 w(r
we note, can be written
2 wlr) _y,18%0 ,1woni(e Y
v Y2 T —'Y2ra;z-+r T ( ’¢) 2 (6035)b

where rzf).(O, 4’) is the angular part of the Laplacian. To
evaluate the last term, let us note that it contains the
angular dependence of the wave function of the D state and
that it 1s actually a linear combination of the spherical
harmonics of the second degree. This can be seen by

actually carrying out the operation of S;5 on ’X,‘}, 1.0

SIZXi = [3 sin® o 9214,7("1-!- 3/2 sin © cos © ew X;
+(3 cos? @ - l)xl] . (6.36)

The coefficient of the spin functions are Y2(2), Yz(l), and

Y2(° ) respectively. Since
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n(e,4) ¥, + £(£+1) ¥, =0,

therefore

n(e,¢) ¥, = - 2(2+1) ¥, = - 6Y,.
Applying these results, we find

n(e,4) Y, = - 68,7 . (6.37)

Hence Eq. (6.34) becomes

1 d%u , 1 1 ,42w 6
= S+ —=— 8 2 (45 - 2w)
[r ar 202 12 r dr r

+ %2 {2+ +78,)3(x) {%LL*;% S12 ‘%ﬂ}] Xy=0-

(6.38)
Since Eq. (6.38) is identically zero the angle dependent
and the angle independent parts must each be identically
zero. This fact depends on the linear independence of the
spherical harmonics. Making use of 81%:= 8 - 2812, we can
‘separate Bq. (6.38) into

%:% + X [x + 3] alr) _ _ 53/2 l;fi"“’“r" (6.39),

and
2w bw M 3/2
d_rT - T+Z§' [E +(1-2 Y)J'(r)]a)-——‘-Z !zru(r)w .

4
(6.39),,

The next step in the solatuon of the problem is to

solve the differential equations just obtained and to apply
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the usual quantum mechanlcal continuity conditions to the
wave functions. To do this, we find, unfortunately that
the wave functions for points inside the potential well
cannot be solved in terms of any elementary function.
Rarita and Schwinger have given a power series solution,
but this method involves tedious numerical work. Conse-
quently, we shall develop a method which will enable us
to ascertain the order of magnitude of the quadrupole
moment arising from the presence of 4% D admixture.

The differential Eqs. (6.39) can be written in the

form
-‘:—i‘z" +K2u = - A2 Vow(r), (6.40) 4
::;’ - &2+ p2w = AT ulx, (6.40),

where
K2 _ l;? (Vo = 1Bol) _ % - &2, (6.41),
K% ‘21 [ - 27)V,-IE,] =%5 (1-2r)Vy =2,  (6.41)y
A2 = 2% %5 v, (6.41),

62

and E,, the experimentally determined binding energy 2.187

Mev. given earlier.
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For points outside the potential well (r > ry), V,
vanishes, and consequently, the differential equations
assume the simple forms

dzu

——m——— 2 —a
) 4cu = 0, (6.42) g
Pw 6w 2,_

The well-behaved solution of the first equation is
w(r>ry) = A e~ *{r = To), (6.43)g

The solution of the second equation is a little more
complicated; it can be shown to be

w(r>r,) = o/X K, , (K'7), (6.43),
where Kn(r) is known as the modified Bessel functions 36

of the second kind. That K (K'r) is a solution of the

5/2
differential equation can be inferred from the fact that

the solution of

%31‘ fo2 -2t} y =077 (6.44)

1s y = /X J5/, (ax). Both J5/, (x) and Ks /o (x) can ve

expressed in terms of elementary function. These are

J5/2(x)=/-;rg; (= sin x - % cos x+i.2. sin x), (6.45)

- |z 2) =X , .
Using these results, we obtain the outside solutions

-OL(I‘ - ro)

u(r) = A e , r>ry,  (6.47)4
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w(r) = Be *(r-ro)

(1 +3/ckr +3/ oL2pR), r>To, (6.47)y
The inside solutions are diffioult to obtain because

they satisfy a palr of coupled differential equations.

Therefore, let us content ourselves by a very rough method

of approximating the solutions. It is to be remembered

thet we are here primarily interested in determining the

effect of the D state on the gquadrupole moment and that the

effect of the D state is very small, i.se.,
o0
J;wz dr = 0.04. (6.48)

From this fact we infer that «w 1s small in comparison with

u. Therefore the solution of

—"12‘l +K2u =0
ar?

given by
u = A, sin Kr (6.49)
is fairly close to the correct solution. Connecting this
with the outside solution, we obtain
A,sin Kr, = A, ALK cos Kro = =-AA,

or
cot K‘l‘o = =- °(/Ko

But K >> o, therefore Kro, & 7T/2 and A A, .

Experiment indicates that the ground state of the
deuteron is practically a S state (actually 96%). Conse-
quently we may put
[ a2 ar = 1.

]
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> 2 ___j*‘z 2 2e24T0 [ g=2T 4
fou dr vosin Kr dr + A%e L

2

& A

2

2

)

= -1

o~ + 22 (l‘f'o(r ) = 1
2 To 24 2aL o 4
2 oo g2 - 2K . (6.50)
As AT = 1+ LT,

The sine term was dropped because its argument is practi-
cally 7T«

The situation is a little more serious with the D
state wave function. The differential equation which it
satisfies is coupled to a large function u. However, let
us assume that it is possible to neglect this coupling

term, The differential equation then becomes
alw - 6w

dr2 r2 + K'zu) = 0)

whose solution is
w =~ By /T I/, (K'r) . (6.51)

To determine the relation between the amplitude B
and B, and also the value of the parameter K', it will be
necessary to apply the continulty conditions at r = r,.
However, this will lead to a transcendental equation which
cannot be solved conveniently. Since we are interested in
approximate outside results only, let us look for an
approximate outside function which will lead to an easy

-O((r - ro)

solution. We might suspect e to be such a

function, but the application of the continuity condition
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will esgealn lead to a transcendental equation. The function
1l/r is not admissible, since its integral will not converge.
However, we will see presently that by approximating the
outside solution by 1/r?, we can obtaein an equation which
can be solved easily.
Therefore, let us put
w(r < ry) = By/T I5/, (K'r), (6.52) o
w(r>r,) = B/r?. (6.52),,

Setting the logarithmic derivatives of the inside anid

outside solutions equal to each other, we obtain

=4 _[B-21ogr] rep.

a_ 1, '
i llog BgtF log r + log J5/5 (K r)]r=ro e .

% +'%; log J5/2 (K*'r) = - 2/r,
d

- TJ (Ktr)

dr “5/2 _

Eq. (6.53) reduces to
J K'r) = 0.
The first root of this function 27 is Leb9.
The relation between the amplitude B and B, is given
by
— 2
BO fi'-o 35/2 (K'ro) = B/ro °
This gives us B in terms of B,. To evaluate B, we need to

consider

Mo 0
= 2 3r=pB? 2 ar
o4 = [ w dr-BOJ; r7;/, (K'r)ar+B L ar
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B2
3rq

_.32.1 T J5/2 (K'r) dr + 3 ° (6.5L)

To evaluate the remaining integral, we use the relation
x
I IJ%lxldx = ¢ x? (Jn2+.‘!'2+ ) - nx Jn dn+1
[4

=3 2R3 - T (0 T, (D).

Therefore

f:"r J§/2 (K'r) ar = 3 r2 ;r"§/2 (K'r,),

To
From Eq. (6.54) we then obtain
B2 3 13 J§/2 (K'r)+ _B__ = 0,04,
rg J?/Q(K'r) 3r
2 = 6/5 (001&) rg . (6055)

We are now ready to estimate the value of the quadru-
pole moment, The quadrupole moment @ is defined as the
value of (3z2 - r?) averaged over the asymmetrical charge

distribution in the magnetic sub-state m=1, i.e.,

Q=i(322 - rz)’ MJ"——lo
Using the wave function given by Eq. (6.31), the above

expression becomes
-z 5 av e {els de, 2Bt ot - 28
2, %

w(r)

{ELI:).,«ZJ_ 815 }xlj—”-=-i%7r§§fdr r2fodo sin ©
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n Z
J: a4 {u?(3 cos? 6 - 1) X'l}+7-}2. (3 cos?6 - 1) X180u X]

+3(c05% 0 - 1) w2 (8, X7)% (6.56)

Angular integrations give zero for the first term. PFor

the second and third terms we use Eq. (6.36) and the

orthogonality conditions of the x-}s. We get for the

second term ¢ _.f dr r2 uw &and for the third tem

——— J = dr r? w?, upon performing the angular integration.
[/
Thus we find

o0
2 1 202
Q=_1J.=fdrr uw-.z.b.fdrrw

o

f—fdrrz (ww - 2 w?),

(6.57)
2J2

The second term involving w? 1s the contribution to

the quadrupole moment by the D state. Since this is small,

the quadrupole moment will be given practically by

/5 o0
Q.=T0-fo dr r? uw.,

Therefore,
""/—AoBofr sin Kr(/T J5/2(K'r))dr+fJAB 2“‘(r".‘b)dr

Aoaof 2 sin Kr(/57,/,(K'r))ar+ £ 4B

10 2& °
The order of magnitude of the integral is
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{‘% 28r3/235/2 (K"

r)r

/2 o) p =
TABoT3/ 215 (K T) T = r3/ 215/, (K'x) 10

This is clearly the upper limit of the value of the integral.
Because the wave function vanishes at the origin, we would
expect the correct value to be conslderably smaller. There-

fore, it will be neglected. Consequently, we obtain

Squaring Eq. (6.58), we obtain

2 ~ 2 __ 2 [} 3
© ¥ G002 TKT 5 (-04) x5

3
224 1 _To

500 o ytar,

Now

i-"—’- ﬁ-%'l— = l',.36 x10-13 em, ro = 2.8 X]_O-lB cm,

150
R o 2% (4.36x10713) (2.8)%x 1077

- 500 1.64

= ———L -52 = "520'
500(1.65) X110 2.8 x10 .

Q =1.7x10"%7 om.2,
This result is about half the experimentally observed
quadrupole moment (2,73 x20"%76m. ). However, one should
not attach too much significance to the numerical result
because of the rough approximations that were made. Our
calculations indicate only that a D state admixture of L%

leads to a positive quadrupole moment of the order of
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lO'27 cm2.

VII. CONCLUSION AND DISCUSSION

In this paper, a few of the quantum mechanical
problems in the theory of the deuteron were considered.
In particuler, it was shown that tensor forces can
simultaneously account for the observed magnetic dipole
"and electric quadrupole moments of the deuteron.

It is to be noted, however, that the experiment,
which we have discussed, does not give Q directly, but
rather the produect qQ. The actual value of quadrupole
moment, therefore, depends to a large extent upon
Nordsieck's 39 calculated value of q, which, in turn,
depends upon the reliability of Wang's molecular wave
functions. It would indeed be a valuable contribution to
nuclear physics if a method were devised to measure the
deuteron quadrupole moment directly. Recently Davis et
al 4o have reported a new method by which they determined
the chlorine quadrupole moment. It will be of interest
to see whether thelr method can be adapted to give an

absolute determination of the deuteron quadrupole moment,
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