
H
Ml

u H

‘
.
t

I
“

"
w

‘
‘

I
u l l

M ‘I
H

r l \
i
‘

in'1
mm

1 ‘ 1i K
‘ WI

 
133

613

THS

SOME ASPECTS OF THE QUANTUM

MECHANICS OF THE DEUTERON

Thesis for The Degree of M. S.

MICHIGAN STATE COLLEGE

Wen~Chin Yu

1949



—-———-——-"""—""- ‘A 3 1293 017749

llilllllllHHlllWWIHIUlllHIWll}11W“2W”!
“1-—

LIBRARY

Mlchigan State

. . University

 

   

This is to certify that the

thesis entitled

SOME ASPECTS OF THE QUANTW

MECHANICS OF THE DEU’IERON

presented by

Wen Chin Yu

has been accepted towards fulfillment

of the requirements for

 ___3Lo_s_o__degree in Physics

Major ’profess -7 M

TL

Date Mamm— law; L

“-796

.___________.._.,._.___,-,



PLACE IN REFURN BOX to remove this checkout from your record.

TO AVOID FINES return on or before date due.

MAY BE RECALLED with earlier due date if requested.

 

DATE DUE DATE DUE DATE DUE

 

 

 

 

 

 

 

 
 

 

 

 

 

 

     
 

1/98 c-JCIRC/DateDue p65-p.14





SOME ASPECTS OF THE QUANTUM MECHANICS OF THE DEUTERON

By

'Wen-Chin Yu

A.Thesis

Submitted to the School of Graduate Studies orllichigan

State College of Agriculture and Applied Science

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

Department of Physics

19h?



rACKNOWLEDGEMENT

I wish to express my appreciation to Dr.

Chihiro Kikuchi for suggesting this problem

and for his interest and patience during the

preparation of this paper.

W-Wv?’

l
0

L
u

1% 01.9



TABLE 0! CONTENTS

page

I. Introduction . . . . . . . . . . . . 1

II. Binding Energy . . . . . . . . . . . 5

A. Experimental Dtermination . . . . . . 5

B. Theory of Nuclear Forces and the Binding

Energy . . . . . . . . . . . . 8

III. Experimental Dtermination of Spin and

Magnetic . . . . . . . . . . . . 15

A. The Deuteron Spin . . . . . . . . . 15

B. iMagnetic Mbment of the Deuteron . . . . 18

IV. Discovery of the Electric Quadrupole moment

of the Deuteron . . . . . . . . . 22

‘V. Electromagnetic Interaction of the Electrons

with the Nucleus . . . . . . . . . 26

A. Electrostatic Interaction —- Electric

Quadrupole Mbmgt . . . . . . . . . 27

B. Magnetostatic Interaction - Magnetic

Dipole Moment Due to Nuclear Current

Distribution . . . . . . . . . . 32

C. Angular Momentum Consideration for

Non-central Forces . . . . . . . . 36



page

VI. The Theoretical Interpretation of the

IMagnetic Dipole and Electric Quadrupole

moments of the Deuteron . . . . . . . f
3

A. Necessity of Non-central Force . . . . 5

B. Properties of Pauli Spin Function . . . #5

C. The Evaluation of the Electric

Quadrupole moment . . . . . . . . 52

VII. Conclusion and Discussion . . . . . . . 61

Bibliography 0 o o o o o o o o o o o o 62



SOME ASPECTS OF THE QUANTUM MECHANICS OF THE DEUTERON

I. LNTRODUCTION— IMPORTANCE 91;; THE DEUTERON, PROBLEM

_I_N_ NUCLEAR PHYSICS

The deuteron plays in nuclear physics a role similar

to that of the hydrogen atom in atomic physics. It

consists of two elementary particles, one proton and one

neutron. In investigating the quantitative theory of

nuclear forces, its crucial test is the deuteron, the

simplest stable combination of heavy particles (neutrons

and protons) composing the nuclei. The deuteron tests the

theory without aggravating the computational situation.

In spite of the comparative simplicity of the dynamical

system, many phenomena of nuclear physics are known to

occur in conjunction with the deuteron, such as, photodis-

integration, capture of neutrons by protons, scattering of

slow and fast neutrons and protons, etc. The purpose of

this paper, is to consider in detail a fan'of the experi-

mental and theoretical investigations of the deuteron,

namely, those associated with the binding energy, spin and

magnetic dipole moment, and the electric quadrupole moment.

Before proceeding further, let us briefly recall the

discovery of the deuteron. The discovery of the isotope



H2 of hydrogen was the result of very exact and careful

measurement. At first it was believed that there was

only one isotope of oxygen -- namely 016. Later, in

1929 1, oxygen was found to be a mixture of isotope 016

with slight traces of 017 and 018. Therefore it was

concluded that hydrogen must also carry a trace of an

isotope heavier than Bl. In 1931 Birge and Menzel 2 of

the University of California estimated the relative

abundance of isotope H2 to H1 as one part in 1.500.

In 1932 Urey 3 of Columbia University, subjected a

residue obtained by distilling liquid hydrogen to spectral

analysis. The Balmer lines of B]- were obtained as usual,

but each line was accompanied by a faint line on its short

wave-length side. The Rydberg constant for an atom with a

nucleus of mass M is related to that for an atom with a

nucleus of infinite mass by

Rm = Roe 7%? ’ (1'1)

where m is the mass of the electron. Hence

.112 = l‘2”‘2 + n) . (1.2)

The subscript l and 2 refer to El and H2 respectively. If

A1 is the wave-length of a certain line in the spectrum

of H]- and *2 that of the corresponding line in the spectrum

of H2, it is seen that 31/)‘2 =~ Rl/Rz . Replacing the



left side of Eq. (1.2) by Al/ A2 and solving for M2 we

obtain

M1 m"1 (1.3)112 _ .

By measuring the difference )xl - A2 between a Balmer

line and its faint companion, Urey found the latter was

due to radiation from atoms of mass 2.

Because the isotope H2 is of great interest and

importance it was given the special name of deuterium and

designated by the chemical symbol D. The nucleus of

deuterium is called deuteron.

The deuteron has about twice the mass of the proton,

i.e., M = 2.01472 and carries the some electrical charge e.

Its spin is l in units of 4h and obeys Bose statistics. Its

magnetic moment is + 0.8565 :t. 0.0001. nuclear magnetons.

These values refer to the ground state of the deuteron. In

the quantum mechanical description of the deuteron, it is

reasonable to assume the ground state to be an S-state,

i.e., a state of zero orbital angular momentum, L: 0. Since

a free neutron and a free proton each has a spin Q, the spin

value of 1 seems to indicate that the proton and neutron

have parallel spins in the deuteron.

The deuteron also possesses a small electric quadrupole

moment. This interesting and surprising discovery was

made by Rabi 1* and his co-workers. According to their



results, the deuteron is cigar-shaped, i.e., elongated in

the direction on the Spin. The existence of the quadrupole

moment seemed surprising, because it had been assumed that

the ground state of the deuteron would be a pure S-state,

for which the quadrupole moment would vanish.

To resolve this difficulty, Rarita and Schwinger 5

introduced tensor, i.e., angle-dependent, forces. The

effect of this type of force causes the deuteron to spend

part of its time in the S-state (L==0) and part in the

D-state (L==2). The quadrupole moment arises from the

fact that the deuteron contains a small mixture of the

D-state. One of the consequences of this theory is that

the magnetic moment of the deuteron.wdll not be the emu

of the magnetic moments of the free neutron and free proton.

This is supported by recent measurements by.Arnold and

Roberts 6. They showed that the deuteron moment is smaller

than the sum of the magnetic moments of the free particles

by +0.0228i0.0016 nuclear magnetons. Because the Rarita-

Schwinger theory has been remarkably sucsessful in accounting

for experhmental results, a detailed discussion of their

theory will be given in a later section.

In order to discuss this theory, we shall consider the

deuteron binding energy from which the general characteri-

stics of proton-neutron force can be deduced and then

consider the concepts of magnetic and quadrupole moments,



as they arise in classical electrodynamics.

II. BINDING ENERGY

In this section, we shall review the methods used in

determining the deuteron binding energy, and point out its

relation to nuclear forces.

A. EXPERIMENTAL_DETERMINATION

The binding energy of the deuteron was first measured

by Chadwick and Golhaber in 1931. 7. They observed the

photodisintegration of deuteron produced by 2.62 Mev. ‘Y-

ray from.thorium C' by means of an ionization chamber.

112 + hi} ——’_1H1 + onl . (2.1)

This reaction takes place when hy’ which is the energy of

the incident )/-ray, is greater than the binding energy of

the deuteron. The difference between hy’ and the binding

energy appears as kinetic energy of the neutron and the

proton. Because the momentum of the )/-ray is small, the

momenta of the proton and neutron are almost equal but

opposite. Further, since their masses are almost equal,

they share the excess energy very nearly equally. The

energy E of the proton can be determined by measuring its

range. The binding energy is then hy’== 2E.

In 1937 Chadwick, leather and Bretscher 8 used the

2.623 Mev. Y-ray from thorium C"to disintegrate deuteron



in a cloud chamber and measured the range of disintegration

protons. Using Blackett and Lee's 9 range-energy curve,

they gave 0.185 Mev. as the proton energy and 2.62 - 2)(0.185

'= 2.25 i 0.05 Nev. for the binding energy. ‘Using Parkinson,

10
Herb, Bellamy, and Hudson's more recent values of proton

ranges, they estimated the proton energy as 0.2 uev. and

the binding energy as 2.22 Mev. Bethe 11 made corrections

to these data and obtained a proton energy of 0.225 Mev.

and the binding energy for the deuteron of 2.17.: 0.0h1lev.

One of the direct measurements of the deuteron binding

energy is that done by Stetter and Jentschke 12, who

measured the ionization produced by the disintegration

protons in an ionization chamber and obtained the value

2.189 :t 0.022 Mev. In 1940, K. Kimura 13 obtained the

deuteron binding energy 2.189 - 0.007 Nev. by estimating

Ithe energy of disintegration neutrons from.RaC-D.

’ A.more accurate determination was made by Wiedenbeck

and Marhbfer 1h in 1945; (a similar method was also used

by myers and L. C. van Atta 15). Let us describe the

experiment in detail, shown in Fig. 1. They made use of

the resonance absorption of neutron by rhodium or silver.

It is well known from theory 16 and from experiments on

the excitation of nuclei by x-rays 17, that the intensity

of any isochremat in the thick target of continuousII-ray

spectrum, increases linearly when the potential applied in
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accelerating the electrons is greater than the energy of

the isochromat. Therefore, in a 'Y-n process, the number

of neutrons of a given energy should be a linear function

of the applied voltage V when

.A
Vévt+ —A——_-—l—-Vn , (2.2)

where'Vt is the threshold potential, and.A the atomic

weight of the neutron being considered. Thus the essential

features of the experiment, shown in Fig. l, are the use

of the high voltage Ikrays to produce disintegration and

the detector which is sensitive to only one neutron "line"

energy equal to the resonance energy of the detector. The

experimental result will not be affected by the faster

neutrons. Thus the activity vs. accelerating-potential

curve should give a straight line intersecting the abscissa

at the binding potential. The detector used was an argon-

ether filled counter with a rhodium cathode. Small samples

of deuterium.were bombarded for two minutes bin-rays

produced by a beam.current of 100 microamperes striking a

thick gold .target. The activity was taken as the number

of counts above the background obtained during the two

minutes after the irradiation was stopped. The activity

was plotted as shown in Fig. 2. A straight line is obtained,

which, when extrapolated to zero activity, gives for the

deuteron binding energy the value 2.185;: 0.006 Mev.
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Still another method is due to Stephens 18 who deduced

the binding energy by mass considerations. The masses of

deuteron and proton are known accurately from.mass spec-

trographic data, and the mass difference of neutron and

proton is known accurately from.measurements on the reaction

chain 19

013(P. n)N13(/s*)013.

From the equation

[2M(P)+ {M(m) - M(p)} - M(D2)]= Binding Energy

he obtains the result 2.187 1.0.011 Mev.

B. THEORY‘QE NUCLEAR FORCES_AND THE BINDING ENERGY

In order to account for the binding energy of the

deuteron quantum.mechanically, one must know or guess

something about the nature of the nuclear forces holding

the neutron and proton together. Since nuclear effects

cannot be accounted for by known forces, such as electric

and gravitational forces, it is necessary to introduce an

entirely new type of force. we shall assume it to be a

short range central force.

Let us now derive a few results of the type of force

‘we have postulated. The Schroedinger equation transformed

to the center of mass of the proton-neutron system.is

given by

V2Y(/l.€.4’) + it; [E-v(/u]yrr/z.a.¢)=o, (2.3)



where r is the distance between the proton and the neutron,

and m.the reduced mass given by

Mi-+IH2

M stands for the mass of either the proton or the neutron.

The quantity E occurring in.Eq. (2.3) is a negative quantity

and its absolute value is the binding energy as determined

by experiment. Since E is a known quantity we can determine

the unknown quantity V(r). For this purpose, consider the

ground state. Since L=0 for the ground state,Y must be

spherically symmetric. If we assume a central force, i.e.,

the interaction potential of neutron and proton is only a

function of the distance r between the particles but

independent of angles, then the wave function in Eq. (2.3)

is also a function of r only. The Laplacian operator

applied to the wave function 1V== U(r)/r gives

er ‘v r r dr2

Eq. (2.3) then becomes

2
l d u M: u __

i.e.,

c132 .,_ 3!. [r - V(r)] u=0. (2.5)
dr2 ‘52

An assumption about the shape of'V(r) is necessary. One

possibility is the rectangular potential well. This shape,



-10-

(Fig. 3), certainly represents a short range force and

leads to a differential eqwation which can easily be solved.

Here, there are two parameters, the width and depth of the

well. Since the Schroedinger equation with a given E I

determines only one parameter, we expect to find only the

relation between V and r0,

 

 

e—flo ; -

W) TV. -——)/L not definite values for them.

____i oL

With E =- - E0, where E0 is

113. 3 ' positive, Eq. (2.5) becomes

d2u u
—-+—[V -E0]u==0 forr<r (2.6)a

dr2 1&2 o o,

dzu M
——-—Eu=0 forr >ro. (2.6)b

dr2 2 O .

3? must be continuous, finite and have a continuous first

derivative everywhere. Therefore u = rY, which must have

the same continuity conditions, must go to zero at r==0, and

must not diverge faster than r as r-aoa. To satisfy the

conditions at zero and infinity the solution of (2.6)

 

must be

u = A sin kr for r 4 r0, (2.7)a

U =- Be'Sr for r > r0, (2.7)},

where

1: == JM(v - roT/ h , (2.8)a
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Now if U and its derivative are continuous then the deriva-

tive of log U must also be continuous. Applying these

conditions at r = r0 we obtain the result

k cot kro = - at . (2.9)

Eq. (2.9) does not involve A and B but only the two unknowns

ro and 70, E0 being 2.187 Mev. V0 and r0 are not restricted

further. As seen from the above, E0 is small compared to

'0 and can be neglected in Eq. (2.8)3. Eq. (2.9) can be

put in a simple'and approximate form

cot no == - 04/1: ass/m. (2.10)

Thus cot kro is negative and small in absolute value.

Therefore, kro is only slightly larger than 71’ /2. (We

know the value of kro slightly larger than 371/2 is not

admissible since there would be a radial node in the wave

function «y at kro = 7T, indicating that this is not the

lowest energy level. This result contradicts the hypothesis.)

Using krom 7r/2 and again neglecting EC) in the expression

for k, Eq. (2.10) gives

v0.3 R5 712 412/411. (2.11)

Actually (Vorg) is slightly greater than thequantity on

the right. Thus

 

2 2
Vol-g < 7T Mfi OI’ kro 4 7T 0 (2012)

(The expression Voro2 frequently occurs in nuclear calcula-

tion; it is not necessary to know V0 and r0 separately.)
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Let us consider another result which does not depend

on the detailed form of the potential (as long as the force

has a short range). Such is the case for the wave function

U(r). When r is greater than the range of nuclear forces,

it is given by

U = ce'M‘. (2.13)

For r less than the range of nuclear forces, the wave

function should decrease as shown in the diagram (Fig. 1.).

However, the wave function given above is sufficiently

accurate over the whole region, as to be useful in many

calculation. Since the

fit 9" exponent o( r in the above

I\ zit/”é 2 expression is a dimension-

) ~-‘_

or/\ less quantity, d has the

we A ’
dimension of l/cm. Therefore

 

  

we can take l/e( as a

Fig. 1.

measure of the size of the

deuteron. Since we assume that a central force has short

range, the "radius" of the deuteron is considerably larger

than the range of nuclear forces. That is

r0 << l/et . (2.11;)

Most of the area under U(r) occurs for r > r0, The use of

another shape for the potential function changes U(r)

appreciably only for r < r0. Therefore whatever the shape

of the potential, Ce'dr is close to the true wave function
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over'most of space.

Let us normalize “Y so as to determine the value of C.

Then

fy/Zdr = twjowuz dr = “T0210“ e‘zdr dr

=-— 27102/04 = 1,

0 == /ok/27r .

Therefore, the normalized wave function is

01‘

u(r).-.e _.L_ e'°‘1‘. (2.15)

27r

Similarly if definite values are assigned to ro and V6 then

.A and B of the true U(r) given by Eq. (2.7) can be found

from.the continuity and normalization conditions. B is

somewhat greater than C of the approximate U(r), thus

B =.- .4 (1 + 5M0). (2.16)

M

In fact Eq. (2.16) is a good approximation.

'We shall conclude this section by showing that it is

not possible for the deuteron to have bound excited states.

Let us consider the possibility of the existence of excited

states with.L==0. It will be assumed in this proof that

the force between the neutron and the proton is the same

for states of higher I. as for the case L==0. In order to

prove our assertion we shall compute the minimum well depth

V0 required to produce a bound state, i.e., one for which

the binding energy no is Just zero. This required well
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depth will be found to be considerably larger than the

actual well depth, as determined above from the binding

energy of the ground state. Since the actual depth is less

than the minimum value required for the binding of states

of non-vanishing angular momentum, such bound states can

not exist. The analytical proof is as follows. For I. = 0,

the Schroedinger wave equation is

2

Lgirnp -V(r)]u - ““1 u=0. (2.17)
dr £12 1‘2

Assume

V: -vo, rzro, . E =-Eoo

Set E0 = 0 for minimum well depth, and let L==1. The

solution of Eq. (2.17) is given by

U = M - cos kr, r 4 r0, (2.18)a
kr

U = 6"“ [:15 -r 1 ], (2.13),,

where

k2 = mvo - so)/ £2, (2.19)EL

.22 = 1130/ 4.2. (2.19),,

For simplicity set EO == 0, and use for the outside solution

U =3 l/r, r 2 r0. (2.20)

Using the definition of k with E0 =-- o,

moroz/ 62 : n2. (2.21)

The required depth V, .is almost four times as large as the

actual depth in the ground state. Therefore no other bound

state exists at I. =- 0.
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III. EIPERD’IENTAI‘ DETERMINATION . Q;. TEE SPIN

AND MAGNETIC MOMENT OF THE DEUTERDN

A. THE_DEUTERON SPIN

It is known that the electron possesses an intrinsic

angular momentum, called the "spin", of value i and a

magnetic moment of l Bohr’magneton. The simple relation

between these quantitites has been pointed out by Dirac,

who derived his equation by relativity arguments. ror

protons and neutrons and nuclei consisting of these

particles, however, the relation between the spin and

magnetic moment is not a simple one. So far, there is no

theory of general applicability which gives this relation-

ship. The lack of such a theory makes the problem of

measuring spins and magnetic moments of nuclei very

important in nuclear physics. For this purpose a number

of methods have been devised: hyperfine structure, mole-

cular beams, band Spectra, etc. Since the spin of the

deuteron has been determined by the band spectra method,

this willa%iscussed in detail.

The band Spectra method is very useful in determining

nuclear spins, particularly for light nuclei which tend to

form homonuclear molecules. The presence of a nuclear spin

causes a change in the statistical weight associated with

the given rotational state of a homonuclear diatomic

molecule and thus causes a change in the expected intensities
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found in the band spectrum.

The reason for this is as follows. If the nuclear

spin is zero, the statistical weight of any state for which

the total angular momentum is 3’ would be 2J+l. The presence

of a nuclear spin further increases the degeneracy of the

states. A nucleus of total angular momentum I can have a

component M in any prescribed direction, taking any of the

values I, I - 1, ---I,a total of 21+l states. Let NF“

represent the wave functions of these states. If a molecule

contains two identical nuclei, the wave function of each

being represented by Y’Miu) and YMJB)’ the total number

of ways in which these functions can be combined to form

the product functions

Yul (A) (”“2 (B) (3.1)

is (2I+l)2. Since symmetric and antisymmetric states do

not combine in diatomic molecules containing identical

nuclei, it is necessary to separate the (ZI-rl)2 functions

into symmetric and antisymmetric functions. We note that

the product ftmctions given by Eq. (3.1) are symmetric when

M1 = 112. Of the remaining

(21.»1)2 -. (21+1) =- 2I(2I+l)

functions of the form +111”) “I’M2(B) and YHZ(A)V’M1(B),

one half will be symmetric and the other half antisymmetric.

Thus the total number of symmetric functions is

I(2I+1) + 21 +1 = (I+1)(2I+1)
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and (211-1)I, the number of antisymmetric functions. The

ratio of these numbers is

(I+1)(21-I-l) __ 1+1 .
__ (3.2)

I(2I+l) I

 

If the nuclei obey Bose statistics, symmetric nuclear

spin functions must be combined with rotational states of

even.L and antisymmetric spins with those of odd L. Because

of the statistical weights attached to the spin states, the

intensity of even rotational lines will be (Ii-l)/I as

great as that of the neighboring odd rotational lines.

For Fermi statistics of the nuclei, the spin and the

rotational states combine in a.manner to make the odd

rotational lines more intense, in the ratio (I+—l)/I.

Thus by determining which lines are more intense, even or

odd, the nuclear statistics is determined and by measuring

the ratio of intensities of adjacent lines, the nuclear

spin is obtained as shown in Fig. 5.
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Fig. 5

The deuteron spin was investigated in l93h by Mbrphy

and Johnston 20, who measured photometrically the relative
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intensitites of 29 lines in the o< bands of the molecular

spectrum of deuterium. These lines correspond to the tran-

sition 3p 713 mu." 2p 0323/: analyzed by Dicke 21. The bands

lie between 5939 and 6291 A and were photographed in the

second order of a 21-foot grating. The experimental results

show that the deuteron obeys Bose-Einstein statistics and

that its spin is l.

B. MAGNETIC MOMENroEm DEUTeRON

Magnetic moment of the deuteron has been detemined

by hyperfine structure and atomic beam methods. The latter

method was used by Rabi and his co-workers 22, who measured

the hyperfine structure separation by passing a beam of

atomic hydrogen and deuterium through an inhomogeneous

magnetic field. The magnetic moments are then calculated

from the hyperfine structure separations.

The disadvantage of the above method is that the

result depends on the somewhat uncertain relation between

the nuclear magnetic moment and the hyperfine structure.

This criticism is avoided in the molecular-beam magnetic

resonance method 23 in which the nuclear moment is obtained

by observing the precessional frequency of nuclei in a

uniform magnetic field. Consider a system with angular

momentum J, in units of h and magnetic moment ,a. , in an

external magnetic field Ho. The angular momentum vector
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will precess about the Eb vector with the Larmor frequency

given by

=’“_Ho_)2 In . (3.3)

Of the quantities occurring in the equation, Eb may be

measured by conventional procedures and J can be determined

by some one of the methods mentioned in the previous section.

For the determination of.v , Rabi 2“ has pointed out an

ingeneous method. It is as follows. From.Eq, (3.3) we see

that if a nucleus of magnetic moment,LL is placed in a

uniform field Eb , it will continue to precess with a

constant angular velocity.V and the angle which the angular

momentum.vector’makes with Eb will remain constant. Now'

suppose, in addition, that a small rotating field Hi is

applied at right angles to the steady field E5. The nucleus

will then also tend to precess also about this small rotating

field, thereby changing the angle which J makes with Ho.

If Bi rotates with the frequency 1/ this effect is cumula-

tive and the change in the angle between Eb and I can be

made large. If the frequency of revolution f of’Ei about

BB is different from J , the net effect will be small. The

smaller the ratio Hi/Bb the sharper this effect will be

in its dependence on the exact agreement between the

frequency of precession y’, and the resonance frequency f.

The schematic diagram of the apparatus used in detecting

these reorientations is shown in Fig. 6. .A stream of
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molecules coming from the source, 0, in a high vacuum

apparatus, is defined by a collimating slit, S, and detected

by some suitable device at D. The magnets.A and B produce

inhomogeneous magnetic fields. When these magnets are

turned on, molecules having magnetic moments will be

deflected in the direction of the field gradient if the

projection of the moment,‘giz, along the field is positive,

and in the opposite direction, if,/cz is negative. The

magnets A.and B are adjusted so that the number of molecules

arriving at D is the same whether the magnets A and B are

on or off.

The molecules also pass between the poles of magnet O,

which produces the uniform field 35. Instead of a rotating

field, an oscillating field (which is equivalent to two

fields rotating in opposite directions) at right angles to

the steady field is produced by means of a loop of wire

inserted between the poles of the C magnet. (The loop is

not shown in the diagram.) If the frequency of the oscilla-

ting field is just right to induce re¢orientations of the

molecules, i.e., to cause,“z to change, magnet B will no

longer be able to bring the molecules to the detector D,

i.e., the deflection will be too large if,“ 2 increases

and too small iflgez decreases. Thus the condition of

maximum.reorientations is determined by noting the minimum

molecular*beam.arriving at D.
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By the use of quantum mechanics, the reorientation

process is more precisely described as one in which the

system, originally in some state, with a magnetic quantum

number, 111, makes a transition to another magnetic level m'.

An exact solution for the transition probability for the

case where El rotates and is arbitrary in magnitude was

given by Rabi 21*.

For the particular case J = i we have

P(% _§)= ginzo Sin27rftll+22-ZZ cos 9)%, (3.h)

’ 1+2 -2z cos 0

 

where PG é) is the probability that the system, originally

’

in the state m=§, is found in the state m == -5 after a

time t; z, the ratio of the frequency of revolution f to

the frequency of precession y , given by

y =,u(H§ + Hi?) 17: a, (3.5)

tan 9 = Hl/Hoo (306)

For an oscillating field, when Hl/H°<< l, in the neighbor-

hood of f=fl this formula becomes

31:13:11: [(l-z)2+ A2112 (3.7) 

Pat» .—_-. (l-zlz‘l-Af

where A =Hl/éHO is one half the ratio of the amplitudes

of the oscillating to the static fields.

.To determine the magnetic moment of the deuteron 25,

the molecular beam of HD or D2 is used. The molecule HD

or D2 is in the state with rotational angular momentum, J,
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equal to zero, the internuclear axis is oriented in every

direction with equal probability. Therefore, if the applied

steady field is large enough to decouple the particles from

each other, the frequencies at which the protons or the

deuterons make transitions will be effectively that of the

free proton or the free deuteron. The experimental results

are obtained in the following way. The radiofrequency

oscillator is set at a definite constant frequency f and

the molecular beam intensity is observed as a function of

the homogeneous magnetic field B5. For certain values of

the magnetic field the beam.intensity becomes a.minimum.

This occurs whenever the product hf for the oscillator is

equal to the difference in energy between two molecular

states. The resonance curves for deuteron in the ED and D2

molecules are shown in Fig. 7, 8. By analyzing such curves,

it is found that the magnetic moment of the deuterons is

0.855 i 0.006 nuclear magnetons.

Iv. DISCOVERY 91 THE momma QUADRU'POLEMOMENT

9; THE DMRON

In the last section, we outlined the general procedure

for determining the magnetic moments of nuclei by the

magnetic resonance method and in particular, we pointed

out that the very deep minima at the center of the resonance

curve corresponds to the transition frequency of the free

nuclear particles, such as the free proton or the free



 

  

D
i
n

I
'
D

F
R
E
O
L
E
N
C
Y

2
A
I
S
M
6

1
,
3
2
9
.
”

 

Ausunm m’rze

  

  
 

 
 

 
 

3
6
0
0

3
7
0
0

3
8
0
0
 

M
A
G
N
E
T
I
C

F
I
E
L
D

I
N
G
A
U
S
S

,
F
i
g
.

7
.

R
e
s
o
n
a
n
c
e

c
u
r
v
e

f
o
r
E
D

m
o
l
e
c
u
l
e
s

c
h
i
e
f
l
y

s
h
o
w
i
n
g

t
r
a
n
s
i
t
i
o
n

o
f

t
h
e

d
e
u
t
e
r
o
n

s
p
i
n

f
o
r

t
h
e

z
e
r
o

r
o
t
a
t
i
o
n
a
l

s
t
a
t
e
.

 



*
I  —-——v--— -

 

Ausuium "'39

 

 
 
 

 

 

D
m

D
:

F
R
E
Q
U
E
N
C
Y

I
3
0
0
M
C

I
g
'
Z
S
A
M
P

  
  

 
 

 
 

 
 

'
9
0
0

2
0
0
0

M
A
G
N
E
T
I
C

F
I
E
L
D

I
N
G
A
U
S
S

2
'
0
0
 

R
e
s
o
n
a
n
c
e

c
u
r
v
e

f
o
r
D
2

m
o
l
e
c
u
l
e
s

s
h
o
w
i
n
g

t
r
a
n
s
i
t
i
o
n

o
f

t
h
e

r
e
s
u
l
t
a
n
t

n
u
c
l
e
a
r

s
p
i
n

f
o
r

t
h
e

s
o
r
e

r
o
t
a
t
i
o
n
a
l

s
t
a
t
e
.

F
i
g
.

8
.



- 23 -

deuteron. However in attempting to account for the auxiliary

minima flanking the central minimum, Rabi and his co-wor‘kersl”27

noticed a fundamental difference in the spectra of EZ and

D2 . They found that the structure of the radio-frequency

spectrum.of HQ molecule could be explained by the magnetic

interactions of various angular momentum vectors. They

found, however, to their surprise, that a similar reasoning

applied to the D2 spectrum led to results not in agreement

with the observed facts. we shall explain below the main

arguments which led Rabi and his co-workers to the conclu-

sion that the discrepancy can be attributed to the electric

quadrupole moment of the deuteron.

Let us first consider the H22molecule. The angular

momentum vectors associated with such a.molecule are as

shown in the diagram. The quantitites J; and a; are the

spins of the two protons, and J is the angular momentum

arising from.the rotation of the HQ molecule. It is readily

seen that when such a molecule is placed in a magnetic

field, its energy is given by

—-’ *)

E=-/u7,(01+?2)-H-,ufi?'H

-/upH’<Fi+’2)-I

+—’u{5" $-15???” (“'1’A, 1 2 A: }

 

Fig. 9
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The quantity ”R is the magnetic moment due to the

rotation of the molecule; other terms have the usual

significance. Using this as the energy expression and by

analyzing the resonance curve of HQ, it is found that

H’ = 27.2 gauss,

(flP/r3)av. = 34.1 gauss. (1+.2)

When this is combined with the value 26

the proton magnetic moment turns out to be

 

31H]. -23
,a ={r3) (34.1): =1.h03x10 erg/gauss, (4.1.)

P av‘ 2.t38x102h

or

,u = 2.785 nuclear magneton. (inhl'

P

This value is in remarkable agreement with the value of

the proton magnetic moment obtained from the f/H value of

the deep resonance minimum.

With the D2 spectrum, there is no argument if one

assumes only magnetic interaction between the angular

momentum vectors. One would expect the spin orbit constant

H' to be about i that of H2 since the angular velocity of

rotation of D2 is half as large. The reason for this is

that the rotational angular momentum vectors J are equal,

the internuclear distances r are almost equal, but the mass

of D2 is practically twice that of H2. One would then



-25..

expect for D2

Ht .1 13.6 gauss, (INS)

HF=yuD/<r3?av ==10.5 gauss. (h.6)

The spectrum calculated from these constants is indicated

in Fig. 10 by six short, closely spaced lines at the top.

A glance at the diagram shows that there is no agreement.

In order to bring theory and experiment into agreement

Kellogg 2"7":shoxiled that it is necessary to assume the

existence of the deut‘ron quadrupole moment. The quantum

theory of the effect of quadrupole moment on atomic energy

levels was given by Casimir 28. A theory for molecules

can be constructed along similar lines. The part of the

energy operator which concerns the quadrupole moment of a

nucleus is, according to Casimir,

ezqsiatsaoz Lasso - sts+1);r(;r+1)},

2J(2J - 1)s(2s -1)

2)
a

(4.7)

where Q, = (322 - r is the magnitude of the nuclear

quadrupole moment. The average is taken over the nuclear

charge for the state which has the largest component of

the spin S in the z direction. The origin is the center

of mass of the nucleus. The quantity eq is defined by

3
[2&3 (3 cos29e - ll/re] , (MB)

av.

where the sum is taken over all of the molecular charges

except the nucleus under consideration. This average is

taken over the state of the molecule which has the greatest
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component along its angular’momentum.J, in the z direction.

I6 is the distance of the eth element of charge from the

nucleus. J and S are the molecular and nuclear angular

momentum.0perators, 9e is the angle which re makes with

the z axis. The factor { (qe) is the average of bZV/ 322

where V is the electrostatic potential at the nucleus.

The value qQ was obtained from the D2 resonance curve

shown in Fig.l0. The quantity q was calculated from

molecular wave functions by Nordsieck 39. These values

lead to’

Q, = 2.73 x10'27 cm.2 (1H9)

for the deuteron quadrupole moment.

The existence of the nuclear quadrupole moment shows

that the ground state of the deuteron is not a pure 331

state, but is a mixture of states of 381 and 3D1. The

effect of the mixing of such states is to result in a

seeming departure from.the additivity of proton and neutron

magnetic moments when forming the deuteron. ‘We shall see

presently that the proton and the neutron are bound to each

other not only by a central force, but also by another

type of force, called tensor force.

‘3 ELECTROMAGNETIC"INTERACTION QEPTHE‘ELECTRONS

WITHITHEANUCLEUS

In this section, a classical treatment of the electro-
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magnetic properties of the nucleus will be given. It will

be shown how the concepts of magnetic dipole and electric .

quadrupole moments arise in classical electrodynamics. Also

an important property of non-central forces will be pointed

out. The reason for these discussions is that a systematic

development of the classical electromagnetic properties

of the nucleus is not available in the literature at pre-

sent. It is hoped that the following discussion will give

a better insight into the quantum-mechanical calculations

that will follow in a later section.

A. ELECTROSTATIC .. INTERACTION-g-g-ELECTRIC ,QUADRUPOLE MOMENT

Let us first show that the concept of the quadrupole

moment arises from the electrostatic interaction of the

electrons and the nucleus. Consider then the electrostatic

potential energy due to the interaction of the distributed

,, 32:39)” nuclear charge density within

\fixx’“ 19. the surface If and the distri-

buted electron charge density

 
. ‘x,

if “i (2.443) Fe outside of V’. From Fig.

‘2. J 11 we see that the constribu-

_. _______ tion to the potential energy

Fig. 11 due to the charges in volume

elements d‘re and d‘cn is

JV : finale, Padre z fnfealt'ealt'n

R lfle’flnl
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Consequently, the total potential energy is given by

Outside V’ [inside 17' /r§ +r121 -2rer:1 cosw

To obtain the contribution from the various multipoles, the

V: , (5.1) 

denominator is expanded in terms of Legendre polynominals

l. =_LZ(rn/re)kpk
008w ,

2 2 _ r
“Ire-rrh’ 2rern coaca ‘ e

where cos a) = cos 0 cos at + sin 9 sinoL cos(<,1> -/8). Substi-

tution into Eq. (5.1) gives

= °° fut? Kv 2;!) V 73'3th WA 2,, ?K(Covw)a£‘(,,

=f_gd_fiEff" 7>(c.,sw)dr,, +f-éjfg 47,10”?77(Casw)dtn

7’ (:5 at?”

+fjfjflnf" 2 o w) + (5.2)

The first term is called the Coulomb energy and is just

the energy due to a charge Ze concentrated at the center

of the nucleus. The second term is the electric dipole

moment term. Experiments show that the electric dipole

moment does not manifest itself in atomic nuclei. Thus

the contribution from this term vanishes. The third term

is called the quadrupole interaction term. Let us examine

this a little more closely. Since coscu contains both the

electron and the nuclear angles, we shall separate them.by

using the addition-formula 23 for the Legendre polynomials.
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That is

“P" (cos .0): K; (2— QILMJB), ’P: ((05 oflj,“((054)605 I“?13). (5.3)

Substituting this into the quadrupole twem, there results

v7:“£K)g_;__:;; It: P,“(cos waltefflzfn 7;“ccosocosxd-purn. (5.1,)

Since the nucleus is rotating rapidly about its spin axis,

it is safe to assume that the nuclear charge distribution

has axial symmetry. Then the charge density I’n is inde-

pendent of ,3 , and the only value of k for which the inte-

gral does not vanish is for k=0. Hence

Va=lZ§is gamma? f/z: )0 gramme"

 

__ _,_ 1° (3605254) 2 ..

‘ if 8 Ag are Pam‘s“ 013,4 (5.5)

where

e0 5. fijrnzm coszot- 1) find Tn , (5.6)

which is the nuclear quadrupole moment, and

6‘12 o (507)
 

fa (3 00320 - l) 6. Te

I .3

It can be shown that this represents the second derivative

of the potential, or the gradient of the electric field

along the nuclear spin axis arising from the elctron charge

distribution. The proof runs as follows.

quf J’s)3 00829 ' 1) die szeUZE " 1%) d ‘(e ,

r3 r5
6
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The potential due to the elctron charge distribution

at points inside the nucleus is

Ire ' In)

Fed—EL ”If 1

53-51 (fle"_—/z_—nl (€32: I/ze"/lnl

 

Therefore

 

.74 3..( -

I/ze— Aal5

Hence, at the center of the nucleus

9: £132;- ( . )

[22% Ute-21:1]/z,.=a 4%}, dz"- 5 9

To see how the shape of the nucleus affects the

quadrupole moment, assume a nucleus to be a uniformly

charged ellipsoid of revolution having total charge Ze with

semiemajor and semieminor axes of a and b respectively.

.Assume that the spin and the major axes coincide. Since

the volmme of this ellipsoid of revolution is h/37rab2, the

charge density is

32a

in all)2

. fl

—

 

)

dTn=R dtde dz,

 
r1210 coszat- 1):”: - r121

== 222 - 112, (5.10) 
Fig. 12
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at; =.._ b 1’222/3 2” (222-32)_3.32_ R d4 dR dz

J J...zoa ¢=0

a b l-:2/a2

= 21f! 5 (222 - r2)R dR dz

a 0

 

271’]a [bzzzu-zz/az) - b2(l - zZ/a2)2/h] dz

-a

= 87Tab2(a2 - b2)/15,

3ze 871‘ 2 2 2
eQ:———-— ab (a - b ) (5.11)

[grab2 T; ’

Q .-.= 3 2(8)2 - b2). (5.12)

5

This verifies a remark by Mattauch 30.

Similarly in case the spin axis is the minor axis,

the quadrupole moment turns out to be

£211.52. z(b2 - a2). (5.13)

From these results we see that in case the nucleus

is lengthened along the spin axis the quadrupole moment is

positive (Fig. 135) and negative when flattened (Fig. 131,).

II I

I

ZN
4.

p

  
 

e
x

Fig. 13, b2< a2 Fig. 13b b2? a2
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The axis ratio a/b calculated according to Eq. (5.12)

is plotted in Fig. 1A.

B. MACHIETOSTATIC INTERACTION .— MAGNETIC DIPOLE mom

DUE gq NUCLEAR CURRENT DISTEBUTION

In the preceding paragraph we considered the effect

of stationary distribution of charge upon the energy of

an atom. Let us now consider the magnetostatic interac-

tion energy of the atom. By this we mean the contribution

to the energy of the atom.due to a stationary distribution

of nuclear currents, that arise from the motion of Charges

within the nucleus. Our purpose is to determine the effect

of the internal motion of nuclear charges on the magnetic

moment of the nucleus. Let us suppose that the motion of

particles with-in the nucleus gives rise to an effective

current of density 3.. The vector potential 31 K due to

this distribution is given by

K = %.J 35’“) (”n . (5.1).)

Ir - rnl

Expanding the denominator, we obtain the following.

Ii 7:”?
, '0 1 K—;

a

= cum I} (72,»)714'0.

  
 

\
I
r

 

'l' all/HfIAKI?(An)7:_(cosw)dTn.

(5.15)

 

Fig. 15
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lweause of the large senttering and the small number of experi-

mental points.
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The first term is zero. The second term is

 

1 l -9 d _ 1 —-y —’ "" -->

.0. WIIrn|3(rn) 008a) (n-c'flzjewnflrnld‘fn, (5.16)

where '9’.“n = I?! I?“ cosw, and ‘6’ is a unit vector along

the vector i".

From.the continuity equation

div 3 + _1__g_P€ = o (5.17)

c

and from the fact that we are considering stationary

distribution of charges and currents

2% -"-"-'- O)
(5018)

b

we see that the current density satisfies the relation

div 3:: o. (5.19)

This means that 3 can be derived from the curl of some

vector. Let us write therefore

—+

J --' chm, (5020)

A ._ l "‘ "’ “’
d -_—2—‘e.r vxmd‘r . (5.21)

11) IrI n n

From the expansion formula 32

-D --) -"

VX(UV)=VUXV+UVXV ,

we get

gofiVXfi=VX(-é’o‘f;fi) "V‘E’o 1711))(‘51’

Vx(g,oA_—’nfi) " (Gov-1:3)XE

=VX(?. Ea) "' "é’XI—If,
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Amp: - 1 ngfidrn=- 3’ xffidrn, (5.22)

Ir)2 lrl2

since the volume integral of the first term vanishes.

Comparing this with the vector potential of a dipole,

.. M. (5.23)

Adip — lrl3 ,

where Z is the magnetic dipole moment, we see that

Ifidrn=x7 (5.21.)

is the contribution to the magnetic dipole moment due to

the motion of charges in the nucleus.

We shall now obtain a more convenient expression for

this orbital magnetic moment. From Eq. (5.20) we have

A
.9

-9 -9

r J=rxvxm,
x

c

g; f?x3’drn==jr’xvxfid‘rn. ' (5.25)

c

From the expansion formula 32

Grad (U . V) = V.VU +U.vV+ V curl U+ U x curl V,

we obtain

Grad (“f-:13): ?.vm +m.vr+iixvx?+ 1.131(va

= 3.v'r’+m.vr+§ixvx'r’+?xvxfi.

Then

'r’xvx'fi == Grad ("13:13) -'I'E.v'i"— mv?-'fiixvx?

Grad. (120—13) ”m -m ~3KVX?.

Substitute the above equation into Eq. (5.25)
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_’

1 ”fix ar =-f2mar .
3f ‘1 n 11

Comparing with Eq. (5.21»). we obtain

ljrx‘j'd‘rn = 2,22,

c

"’ = l 'fdeT .

,u 20f 11

By means of

3" = fv , (5.26)

where 3’13 the charge density and ? is the velocity, it

follows that

,2 =f.%_9_i. arr, . (5.27)

The integral of Eq. (5.27) gives the contribution of the

motion of the charged nuclear particles to the nuclear

magnetic moment. It can be written in the form

,7? .-.-. Z fig— L, (5.28)

where the summation is over all particles and I. is the

orbital angular momentum of the particles. For the case

of the deuteron which contains a proton and a neutron,

2M1° “20 2

Since the neutron has no charge the first term is zero.

Therefore

fl = .32— L2. (5.30)
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Since

L1= L2 = L/2 , (5.31)

we obtain

jZorb = 21:1 (533). (5.32)

This is the contribution of the orbital motion of charged

nuclear particles to the magnetic moment. This is also the

quantumamechanical Operator for the orbital magnetic moment.

C. ANGULARMOMENTUM CONSIDERATION FOR NON-m_m

Because we find it necessary to introduce non-central

or angle-dependent forces to account for the experimentally

observed electric quadrupole moment, we shall discuss the

classical aspects of such forces. We shall show that,

although the orbital angular momentum is a constant for

central forces, it is not necessarily so for non-central

forces.

The fact that orbital angular momentum is conserved

for central forces can be seen from the following considera-

tions. Let us suppose that a particle is moving under the

action of a central force fir). We can then write

111 a’ = ir’ = f(r) 3', (5.33)

where '5." is the position vector, The quantity 'r’xf is

known as the torque about the origin, exerted by the force

1'. Therefore,
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m?x3 = ‘fxi" = i" x f(r) “r’, (5.31.)

since the vector product of a vector into itself vanishes.

But

rxa = 2%.,- (Fur),

d - v =._ ‘
E (m IXV) 0. (5035)

So the orbital angular momentum is constant, that is

mr x V = constant.

Thus we see that a particle in a central force field will

continue to move in a fixed invariable plane, that is, the

orbit of the particle will not "wobble”.

On the other hand, consider two spinning dipoles each

of mass m and m' and of magnetic moments M and M', as shown

in Fig. 16. Consider now the moment of the force about

the center of mass. Let r be their distance from each other.

The potential of the magnetic

dipole 32 is

U = - M . v l/r. (5.36)

Since the first magnet gives rise

to the field

H = ( v v 1/r) . M, (5.37)

Fig. 16 the potential energy of the

 
dipole m' is

“M. e H=-M' e[M 0(VV1/r)]e (5038)

The translational force on the dipole m' is computed by



-33..

the formula

F = M, 9 V H = M'.V[M.(VV1/1‘)] ’ (5039)

and the torque on m' is given by

LM' = M'x H = M' x (VVl/r).M. (5.1m)

But

.1; = - i:— - (VL)?-l-_V?

vv r Vr3 r3 r3 ’

i.e.,

vvi=2ii - i... (5.11)

r r5 r3

Substitute Eq. (5.1.1) into Eq. (5.37). We have

.._.. 232’-J_=2h££§-i. (5.1.2)
3 M l 1,5 1.3) 1.5 1.3

Substitution of Eq. (5.13.1) into Eq. (5.39) gives

—+ 3? if
= ' . V . - — . .FR M [—1.5 M r r3] (5 #3)

Using the expansion formula

-e —e —>

VULVI= v/xv+,uvv,

V(U°V) = V°vU + U-VV 1*le curl U + U x curl V,

we obtain the first term of Eq. (5.13)

r 3" . 3"
VI'E'S‘MJ} = {v(M-r)};.:: + MrV i.

=M°vr2§+3M°r 1 'r’+l_v?}

r5 (‘7‘? 1L.5
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:3 {-Lllrriii" 1.2.1: MI ( .43)1‘7 ‘I’ r + r5 } 5 a

and the second term of Eq. (5&3)

i _-_- 1 M = " L

V r3 V? r5 m0 (5eh3)b

Substituting Eq. (5.43% and Eq. (5.1.3)b into Eq. (5.1;3)

we obtain

3!" = 3P 5 M.rn'r¥+M—-5—'Mr+M—-M°r'+3—M"1‘M° ‘5'“)M' :33
r 1‘ J 1‘5

Therefore the moment of the translational force on m' is

E’xfl}. = 3.1112 er' .,. 2. M'orrx M. (5.1.5)

1‘5 1‘5

If the moments are taken about the center of mass,

then r' = 2R, r = - 212. Then moment of forces on m' about

the center 0 is

 

"" _ 6M’R RXM' 6M'.R
RXFMg —— 32R5 + 3.55— RXM. (5eh6)

Similarly, the moment of the translational force on m

about 0 is

-* 6M' 0R 6M0}!
- x = RXM + RXMH eR PM 32125 '3—235 (5 1(7)

Therefore the sum of the moments of the translational force

on m and m' is

-+ v MB 121M:
er -er = RXM+--—-RXM'. (5.48)

M' M 32125 32125

Thus the sum of the moment of the translational forces

does not vanish. This shows that the orbital angular

momentum is not a constant of motion.
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Now let us go back to the spin moments of the dipoles

m and m'. Let I‘M and LM' be the torques on m and m'

respectively. Substitute Eq. (5.h1) into Eq. (5.40). 'We

have for the torque on m!

LM. M'XH== M'x[L¥F-L]-M

5 1.3

.13.. tx t _ M'XM

BZRSM RMR 1:37. 9 (501(9)

II

and similarly the torque on.m.is given by

 
 LM=-.12 MXRM'O'R - MXM' . (5.50)

32125 8R5

The sum of the torques is

+ = —-M'XRM-R+ 12 MXRM'oR. (5. 1)Lip In 7323 5

Therefore the sum.of moments of the translational force

and the torques is

anyM, + (.42) x ’n + LM +LM. = o. (5.52)

This shows that the total angular'momentum.of the system

remains constant.

These results are true in quantum.mechanics. ‘We shall

show that when tensor, i.e. non-central, forces are intro-

duced, the orbital angular momentum.L wdll no longer be a

good quantum number, although the total angular momentum

is still a constant of motion.



VI. THE THEORETICAL marmmrron 93mm: mammrrc DIPOLE

AND ELECTRIC QQADRU'POLE‘ MOMENTS 9;; THE DEUTERONS

In the previous section, we outlined the experimental

methods used in determining nuclear multipole moments, and

develoPed the concepts of multipole moments in classical

electro dynamics. Our purpose now'will be to see how these

ideas can be fit into a consistent quantum mechanical scheme.

One suspects this to be possible because quantum.mechanics

has been remarkably successful in providing a qualitative

interpretation of nuclear phenomena.

It is interesting to note that the Rarita and Schwinger

theory, which will be outlined below, was anticipated in

1938, in a paper by Yukawa, Sakata, and Taketani 33. Howe

ever, the physical significance of their theory of the

deuteron was not fully realized until after the discovery

of the deuteron quadrupole moment 3h.

In order to see what must be done, let us assemble

the experimental data. The moments of the deuteron are

’“D =+0.8565 i 0.000). nuclear magnetons.

QD = 2.73 x 10'27 cm2.

The magnetic moments of the proton and neutron are

f‘r = +2.78% 1 0.0008,
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#11 =-_ - 1.9103 1 0.0012.

We notice that the sum of proton and neutron moments is

,uP +5211 =+0.8793 1 0.0015,

which differs from the deuteron moment by

(AP-bun) - ,aP = 0.0228 1 0.0016.

Thus, the magnetic moment of the deuteron is very nearly

the sum of the proton and neutron moments. In addition,

as has been pointed out previously, the deuteron spin is 1,

which is Just the sum of the spin of the proton and the

neutron. These results suggest that the ground state of

the deuteron is a 381 state. The small deviation from

additivity and the small quadrupole moment is due to the

presence of a small amount of. 3D1 state.

Let us examine the problem a little more carefully by

applying the Lands formula of nuclear systems. Let S

represent the intrinsic angular momenta of the particles,

It the orbital angular momentum, and I? the total angular

momentum of the nucleus in the ground state. The eigenvalue

of 3, is, of course, the experimentally observed nuclear

spin I. Let the magnetic moments associated with the vector

'3’ and I: be ’28 and ’21., respectively. Then, because of the

Larmor precession of the vectors {3’ and I: about 3’, the

effective magnetic moment of the experimentally observable



-43-

value is

Jaeffzfll. cos (L, J)+/ds cos (S, J). (6.1)

1‘ Using the cosine law of trigonometry,

we then get

2 2 2

+,us 1.2 ~2s2 - J2 . (6.2)

“‘37—

 Introduce the gyromagnetic ratios

 given by

flL =3 gL/ZN, .. (6.3)8

I“: = gJ/(N, (6.3)o

where ’uN is the nuclear magneton. Then Eq. (6.2) becomes

__ 82-1242 12—32-32

Thus the gyromagnetic ratio of the nucleus is

_H_ _ g 1-; 1
Bar: - “613* as) 882233?in 38' 8L)e _(605)

In the last step we replaced 82 by S(S+l), etc., in

accordance with the results of quantum mechanics. Under

the section on non-central force, we showed that 3L: i.

The quantity gs is Just the sum of the g's of the proton

and neutron. Hence

33 = gr. + 82::

207896 " 109103 = 0087930 (606)

ll
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From Eq. (6.6) we see that if the nucleus is in the 8

state, (J ='- 8 == 1, L=O), the effective magnetic moment

should be

”err = [é(gL+g3) +£(ss - 31.)] Jfln=ssiflm (6.7)

Thus, if the deuteron ground state were a pure 8 state, its

magnetic moment should be Just the sum of the moments of

the proton and the neutron. If the deuteron were a pure D

state (8:1, J==l, L==2), its magnetic moment would be

 

2... .19) - 2(3)

’u-eff [é(gL+gs)+ 2(1)(2) (33 - 81.)] J’uN

=[i(sL+gs) - (as - eLIJ/dN

= [,5,_-§_g91 - (4.8.92 - '5’]#N=°31°‘*'“N . (6.8)

The experimentally observed value lies between these two

values. Hence we are led to consider the possibility that

the ground state is partly S and partly D states. If the

percentage of the D state is represented by p, then the

observed magetic moment will be given by

,uD = 0.8693(1 - p) + 0.31014). (6.9)

where the first term is the contribution to the magnetic

moment from the 8 state and the second term, that from the

D state. Inserting the observed value of ’“D in the above

equation and solving for p we obtain p = 6%. It is a

remarkable result of the Rarita and Schwinger theory 6 that

Just this amount of D state admixture is necessary to

account for the deuteron quadrupole moment.
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B. PROPERTIES 92 PAULI SPIN, FUNCTION

In developing their theory, Rarita and Schwinger made

an outright assumption that the interaction function

between the proton and the neutron in the deuteron is

 

given by

V(r) = [1 - ggfig 0'1-0'2+Y312] J(r), (6.10)

3(F'o r 0‘ °:r

312 = 1 122 2 12 -01 oo-z . (6.11)

1'12

where 0'1 and 6'2 are the neutron and proton spin operators,

reSpectively. Also g and Y represent the strengths of

spin-spin and dip01e-dipole interactions, respectively. The

wave equation of the proton and neutron system is

2 2

[— 3?;- V; - fin— vg+v]yr=zyr. (5.12)

This equation can be put into a more convenient form by

transforming it into a coordinate system.whose origin

coincides with the center of’mass. The result is

2
-§_72y+v~r=E~/’. I (6.13)

This equation differs a little from.wave equations treated

in.many text books on quantum mechanics. The difference is

that the potential function V contains an angle dependent

term 312. Because of this term the orbital angular momentum.

operatorL2 will no longer commute with theHamiltonian

2 .

Has-1%- Vz-I'V. (6.1M
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That is

[1.2, H] 7‘- 0. (6.15)

The physical meaning of this is that the orbital angular

momentum is not a constant of motion. Yet there are certain

constants of motion. These can be determined by a.method

given in RoJansky 35, i.e., by finding the dynamical

variables which commute with the Hamiltonian. These are

$2, J2, J‘ and the parity. The effect of the last quantum2’

mechanical constant of motion is to prevent the mixing of

states of odd and even orbital angular momentum. Therefore

the ground state solution of the wave equation can be

written in the form

f(J’=l, S==l, mJ, parity even) =‘/’(3Sl) +Y’(3D1). (6.16)

The notation used here is similar to that used in atomic

spectroscopy. The symbol J represents the total angular

momentum and is the observable spin of the nucleus. Let

3
us now proceed to determine the 381 and D1 wave functions.

For this, we assume that these functions are of the form

W331) =—. 61 max: , (6.17)

(H3121) = 62 w(r) 312751;, (6.18)

where X? are the spin functions, given by

xi = .4(1).((2), (6.19)

O

= _;L_ .4(1),3(2)+o((2))9(1) . (6.20)x1 ,_,_I 1

X? = p(1)p(2). ‘ (6.21)
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The above are spin functions of total spin 1 with components

in the direction of quantization equal to l, 0, -1, respec-

tively. These remarks can be proved by showing that

  

32x? = 1(1+1))c“i1 , (6.22)

szx’l“ =-. DIX: , (6.23)

where

32=(°'1:0'2)2, 32: (12:942..

Using these results we see that the wave functions given

in Eq. (6.17) are the wave functions of a state with

J=S=l and L=O. To normalize the 331 wave function, i.e.,

to determine the constant 01 of Eq. (6.17), we write

2 m 2 __
°1iiX1I do .. 1.

Since (X1132 = l, Innis- 1. Therefore

01: l . . (6021+)

The proof that Eq. (6.18) represents a state of {fr-1, S=1,

L=2 is somewhat more involved. We shall show that it

represents a D state. For this we need to prove that

L2(812'X§_1) == 2(2+1) 81sz . . (6.25)

To demonstrate this, let us first show that

m

V2(,.2 8127(1) = o, (6.26)

01'

V2(r2 31270;) = [(726.2 312)] x11“ .
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since X? do not depend upon the space coordinates. Using

the relation

12: 1‘2 " (fl-0'2,
 

and carrying through the differentiations, we have

The Laplacian v2 can be written in the form

2 __ 1 a 2; -L2 .

Now apply the above operator to the wave function Slzch'.

From Eq. (6.26) we have

1 _b_ 2 A. 2 _ 1.2 2 =
:53]: (1‘ 3r) (_1‘ 812) :2- (1' 312) 00

Therefore

2
L 2 __ 1 a

:2‘1'312’ —- par-‘1‘

A

__ B 3 -> —-9 _

= 2(3) r2{30'1' erd’z er - (r1 . 0'2}

= 2(3) r2 312 =. 2(2+1) r2 312.

Consequently

1.2(r2 s12) --- 2(2+1)(r2 312),

01‘
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L2(slzx1f) == 2(2+1)(slzx§_‘). (6.28)

Comparing this with

LZV’LZ, m) = 1(1+1)‘)(’(1, m) ,

we see that 1= 2. This shows that 812%? is the wave

function of a state with [=- 2. Let us normalize the

3D ‘wave function i.e., determine the constant c2 so that
l

2 m.. m. ‘_

°2f(812xl 3127(1) “1‘1'

The above integral can also be written in the form

2 m 2 m __ 6

(Thus in order to obtain the normalizing factor, we need to

evaluate S 2 This can be done in the following manner.

 

12 °

Since

'3(r' ° r0? .:r
1 2

S12== 2 ' 1 ’

r

therefore

(31, + 1)2 _..—_ 2; (r1 . r)2 (r, - r)2. (6.29)

r

Using the relation given by Dirac 35

TAT-B=A°B-i0'°AXB ,

Eq. (6.29) becomes

(812+l)2=%[r2+10'1 ° rXr] [r2 + 10'2 ° rer=9 ,

332:2: 8-2312.

Therefore
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2 m m 2 In In __ 2
22 (X1 (8 - 2312))(1 dn=8cZJX1xl an _ 8c:2 (MT),

 

2 l 1
c = o

(6030)

2 Fr”. 2572

For the radial part of the wave function, write u(r)/r and

u’(r)/r for 331 and 3D1 states, resPectively. Then from

Eqs. (6.16), (6.17),),647)’, (6.18), (6.2).) and (6.30) we

obtain

- 2
Y=fi—l-f-{Eifl'+2 3/ amid-ilk? (6.31)

where

361 ° r12‘7-2 ' 1’12

812 = __.___________.2 " 1 "V2 '

1'12

The normalization condition is

L (u2+w2) dr == 1. (6.32)

Using the relation

g—l.¢-2=2s(s+1) -3=1, whenS=l

into qu (6e10), we Obtain

v = -(1 +Y812)J(r).

When we substitute the above result into the deuteron wave

Eq. (6.13), we obtain

_ 1’12 2
r y... T v - [1+Y812]J(r))(’ . (6.33)

The differential equations which u(r)/r and uJ(r)/r

satisfy can be found by substituting Eq. (6.31) into the
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deuteron wave Eq. (6.33). We get

 
V2 31.91 X1 + S ZCAi-L x1111)

2 2

+fiz‘-[E+(1+Y812)J(r)] [;31+;7§=312 ‘13)“)an ‘0' (6‘3“

The quantity V 2u(r)/r can be evaluated easily, since u(r)/r

depends upon r only. Thus

V2 Y2 gégflziaf; %_csfn(e,¢) r2 . (6.35),

The term

v2 (guy-£31).

we note, can be written

vzrz f+fl=rzlf%+%9¥n(e,¢)1r2, (6.35),,
r dr

where r21).(9, 4’) is the angular part of the Laplacian. To

evaluate the last term, let us note that it contains the

angular dependence of the wave function of the D state and

that it is actually a linear combination of the spherical

harmonics of the second degree. This can be seen by

actually carrying out the operation of 812 on Xi, i.e.,

$12Xi = [3 sin2 9 e21¢X'1+3/2_ sin 9 cos 9 a” X:

+(3 cos2 0 - 1)X1] . (6.36)

The coefficient of the spin functions are Y2(2), Y2”), and

Y2“) respectively. Since
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I1(0,4’)Y£ + [(1,1) Y£= 0,

therefore

n(0,4>)12 = - 2(2+1) Y2 = - 6Y2.

Applying these results, we find

1249.4) Y2 = - 6312fo . (6.37)

Hence Eq. (6.36) becomes

2 2
l d u l l g a) 6

[1‘ drag 2"? 12 1' dr

+ if; {r +(1 + rslz)J(r)} {Pi-13%;}; 312 gig” xii-“=0-

. (6.38)

Since Eq. (6.38) is identically zero the angle dependent

and the angle independent parts must each be identically

zero. This fact depends on the linear independence of the

spherical harmonics. Making use of 813:: 8 - 2812, we can

’separate Eq. (6.38) into

and

(3.2“) _ £1.15... [3111-2 Y).T(r)]w=-23/2 H yu(r)w

“'2' r 62
22

(6.39)b

The next step in the solatuon of the problem is to

solve the differential equations Just obtained and to apply
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the usual quantum mechanical continuity conditions to the

wave functions. To do this, we find, unfortunately that

the wave functions for points inside the potential well

cannot be solved in terms of any elementary function.

Rarita and Schwinger have given a power series solution,

but this method involves tedious numerical work. Conse-

quently, we shall develop a method which will enable us

to ascertain the order of magnitude of the quadrupole

moment arising from.the presence of h% D admixture.

The differential Iqs. (6.39) can be written in the

form

@412 u = -2\2 vowm, (6.h0)a

2w 6w
:12- }? + K'Zw = -)\2 v0 u(r). (6.ho)b

where

K23“ (V 'IEOI)=E2- 2 t
P 0 £2 0L , (60M)a

.2__ M _ _ ._ .42 .
K Z" [(1 2Y)V° In00:? (1 2Y)vo , (6 1.1)],

A2 23/2Y%§vo , (6.41)c

£2

and E0, the experimentally determined binding energy 2.187

Mev. given earlier.
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For points outside the potential well (r > r0), v0

vanishes, and consequently, the differential equations

assume the simple forms

 

2

1J3. _ 2 _—_—.

dzw _ 6a) 2 __
-—-—-dr2 r2 - 0‘ O.) —-O. (6oh2)b

The well-behaved solution of the first equation is

U(r) 1‘0) = A @- °L(1‘ - r0). (60h3)a

The solution of the second equation is a little more

complicated; it can be shown to be

w(r>ro) = c/f K5/2 (K'r). (6.1.3)b

where Kh(r) is known as the modified Bessel functions 36

of the second kind. That Ki (Kfir) is a solution of the

5/2

differential equation can be inferred from.the fact that

the solution of

aqazflzllrizx- }y=o37. (6.44)

is y=ffJS/2 (ax). Both J5/2 (x) and K5/2 (x) can be

expressed in terms of elementary function. These are

J5/2(x)=/7T'2; (- sin I - «3 cos x+i§ 8111 I). (6.145)

__ 7T 2 -1 o 0K5/2(x)— L2; (1 +3/x +3/x ) e (6 46)

'Using these results, we obtain the outside solutions

u(r) = A 6 -aL(r - 1‘0), 1‘} 1‘0, (60h7)a
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w (r) = Be- Och-TO )(l+3/°Lr+3/042r2), r>ro, (6.47)b

The inside solutions are difficult to obtain because

they satisfy a pair of coupled differential equations.

Therefore, let us content ourselves by a very rough method

of approximating the solutions. It is to be remembered

that we are here primarily interested in determining the

effect of the D state on the quadrupole moment and that the

effect of the D state is very small, i.e.,

co

£402 dr = 0.01.. (6&8)

From this fact we infer that w is small in comparison with

11. Therefore the solution of

__52“ +1:2 11 = 0

cu"2

given by

u = A0 sin Kr (6.1)9)

is fairly close to the correct solution. Connecting this

with the outside solution, we obtain

Aosin Kro = A, AOK cos Kro == -o£A,

01‘

c013 no = - OL/Ko

But I >> e( , therefore Kro A; 7T/2 and A9—’AO .

Experiment indicates that the ground state of the

deuteron is practically a 8 state (actually 96%) . Conse-

quently we may put

fang dr = l.
O
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°° 2 _. " 2 2 2 2ocro -2o<rd
Lu dr—jvosinKrdr-l-Ae J/Zve

A2 A2

= 722(1'0'7; sin 2Kr0)+_..

2 2

— Tro +""'2'; =2:(1+°Lr°) 1’

2 Q, 2 __ 2 .L . (6.50)

A0 A —' 1+ eLro

The sine term was dropped because its argument is practi-

cally 7T .

The situation is a little more serious with the D

state wave function. The differential equation which it

satisfies is coupled to a large function u. However, let

us assume that it is possible to neglect this coupling

term. The differential equation then becomes

2

and -'§-(% +K'2w=0,

dr2 r

 

whose solution is

w z Bo ff 15/2 (er) . (6.51)

To determine the relation between the amplitude B

and Bo and also the value of the parameter K', it will be

necessary to apply the continuity conditions at r = r0.

However, this will lead to a transcendental equation which

cannot be solved conveniently. Since we are interested in

approximate outside results only, let us look for an

approximate outside function which will lead to an easy

solution. We might susPect 6-4(3 - r0) to be such a

function, but the application of the continuity condition
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will again lead to a transcendental equation. The function

l/r is not admissible, since its integral will not converge.

However, we will see presently that by approximating the

outside solution by l/r2, we can obtain an equation which

can be solved easily.

Therefore, let us put

w(r < r0) = Bolt—E 35/2 (K'r), (6.52)a

w(r>ro) = B/rz. (6.52)-D

Setting the logarithmic derivatives of the inside and

outside solutions equal to each other, we obtain

 

d—r [log B5);log r + log J5/2 (K'r)]r__r=—[B-Zlogr]r= ,

1.0

dr !

Eq. (6.53) reduces to

(K'r) = 0.

5/2

The first root of this function 39 is h49.

The relation between the amplitude B and B0 is given

by

__ 2
Bo ffo 35/2 (K'ro) —- B/ro

This gives us B in terms of B0. To evaluate Bo we need to

consider

a, (w

_ 2 __ 2 2 dr
001+ ‘fw fir-Bel 1335/2 (K'r)dr+B 1;. E
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)%
= 2 2 , 32301 r J5/2 (K r) are + ”03 . (6.54)

To evaluate the remaining integral, we use the relation

x

I IJIleIldX =i 12(Jn2+J2+1) " 11X ‘Tn Jn+l

0

(=6 x2{J§(x)- Jn-1(X)Jn+1 (x)}.

Therefore

f0“.- :rg/zz(m) «u =- i r3133;, (I: re),

2 ._

 
 

Bro

From.Eq. (6.5h) we then obtain

32 i) r§J§/2 (K'r)+ B = 0.04.

1'3 J§/2(K'r) 31'

= 6/5 (.04) 2:3 . (6.55)

‘We are now ready to estimate the value of the quadru-

pole moment. The quadrupole moment Q,is defined as the

value of (322 - r2) averaged over the asymmetrical charge

distribution in the magnetic sub-state m:=l, i.e.,

Q. =£<322 - r2), M; = 1.

Using the wave function given by Eq. (6.31), the above

expression becomes

emit.“ fi(2§fl*fe 912%“: ”22 ' “’2’

1 1 =_.1.... °° 7'
2f- 312 "i-flhifi léngézfgz!’ dr :2!) as sin 9(2161+—
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7r 2

J: d4> {u2(3 cos2 9 - 1) XIII.)+T32-‘ (3 00829 - M11312“ Xi

+3(0os2 e - 1) 3&3 (Slzxi’2° (6.56)

Angular integrations give zero for the first term. For

the second and third terms we use Eq. (6.36) and the

orthogonality conditions of the x-is. We get for the

Q

second term .. _%-' dr r2 ua) and for the third term

5 2 0

- 5%)— !“ dr r2 .02, upon performing the angular integration.

0

Thus we find

5f§ . °

= {—3-— 0 dr r2 (uw - —:-'=- 2). (6.57)

The second tem involving 002 is the contribution to

the quadrupole moment by the D state. Since this is mall,

the quadrupole moment will be given practically by

Therefore,

oo

10 AoBofr sin Kr(./"1" J5/2u: r))dr+lo£lo e r

zlj'g' Agni/("1.2 sin Kr(frJ5/2(K'r))dr+ 5- AB
10 20L

The order of magnitude of the integral is
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f.

1‘6“ ARTS/235R (K'

IcceroBorg/Z‘U/z‘x'flr z 1.5

 

This is clearly the upper limit of the value of the integral.

Because the wave function vanishes at the origin, we would

expect the correct value to be considerably smaller. There-

fore, it will be neglected. Consequently, we obtain

Q 91 5A3 ' (6.58)

Squaring Eq. (6.58), we obtain

  

 

.2 N 2 2 _6_ 3

Q _ 4006(21*°‘1‘0 5 (’01,) r°

3

= .-_2_t...1... r° .

50° °’~ l+ekro

Now

39
,. 2 N .24 -13 (2.8)3x 10

 

500(1.64) 1° 2’8“”) '

Q = 1.7X10-27 cm.2.

This result is about half the experimentally observed

quadrupole moment (2.73x10'27cm.). However, one should

not attach too much significance to the numerical result

because of the rough approximations that were made. Our

calculations indicate only that a D state admixture of 6%

leads to a positive quadrupole moment of the order of
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10 cm..

VII. CONCLUSION AND DISCUSSION

In this paper, a few of the quantum.mechanical

problems in the theory of the deuteron were considered.

In particular, it was shown that tensor forces can

simultaneously account for the observed magnetic dipole

‘and electric quadrupole moments of the deuteron.

It is to be noted, however, that the eXperiment,

which we have discussed, does not give Q directly, but

rather the product qQ. The actual value of quadrupole

moment, therefore, depends to a large extent upon

Nordsieck's 39 calculated value of q, which, in turn,

depends upon the reliability of Wang's molecular wave

functions. It would indeed be a valuable contribution to

nuclear physics if a.method were devised to measure the

deuteron quadrupole moment directly. Recently Davis at

al #0 have reported a new method by which they determined

the chlorine quadrupole moment. It will be of interest

to see whether their method can be adapted to give an

absolute determination of the deuteron quadrupole moment.
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