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I. INTRODUCTICN

The purpose of this work is to discuss and forrulate
mathematically the physical rroperties of a particular '
system for the transmission of zuided electronarnetic
waves. The system consists of a straicht, hollow, con-
ducting sheath or pipe of parabolic cross section as
shown in figure 1. <The electromagnetic waves are assumed
to be confined to the interior of the pipe and are prop-
acated along its axis. The discussion is limited to the
problem or determining the waves trtat ray exist in such a
system and to the atternuation that they experience as they

move down the pipes. The cguestion of reflection and radia-

lis]

tion trat may occur at discontiruities in the interior
dielectric or the conductine sheath will not be discussed
here.

Tne first dicseussion of such systems for r~ulding electro-
racnetic waves arpears in a paver by Lord Rayleish, pub-
lished in the "Philosovohical hagazine"l in 1897. 1In this
raper he showed that for perfectly conducting pipes of
reétangular end circular cross section all waves greater
than a certain critical wave lencth were conrnletely
attenuated, while wave lengths shorter than the critical
wave length vere freely transmitted., Futhermore, he was
eble to sevarate the types of waves that occur in such

1 See references 1-5 in bibliography at the end of this
paper.



systems into two tyres wnich he called "weves of the first
and second kind" which arc identical with thke E @nd H
waves to be defined later in this paper. In 1931 South-
worthl began an experimental investigation of wave cuides
of circular cross section. He rerorted the results of his
work in 1936 and et the same tine Carson, llead, and Ichel-
kunoffg published the first theoretical study of wave
guides whose sheath was of finite conductivity. RBarrow

and ChuS reported theoretical work on pipes of rectangular
and elliptical cross section in two papers tiizat appeared

in 193c. 1ln the cese of the elliptical pipe Chu found

that there existed tvio kinds of E end H waves which he des-
irnated ¢s o0dd znd even and both of which degenerated into
waves of the circular pipe for the case of zero eccentric-
ity. The work on rectsngular pipes by Barrow and Chtu is
interesting becauce it includes a discussion of the redia-
tion from tre onen end of the vipe, The radiation from a
circulsr pive was discussed by Chu in a paper rublishted in

1940.

|

Ibid.
2 Ibia.
Ibid.



II. SOLUTICH OF THE WAVe EUATION

Accordings to Lisenhart the scalar wave equaticn is sepn-
aravle in only four distinct systens of cvlindricel coor-
dirates. On the basis of Eisenhart's criterionl the only
types of pipes for Which the scalar wave equation may be
separated are those whose cross sections are either
rectancular, circular, elliptical, or rvarebolic. The
first three have been well investigated theoretically, but
the fourth has received little if eny attention.2

The mararolic cobrdinate system used to describe the
parabolic pipe is defired by the trensformation:

x = £ty
g = 75

The Z axis is taxen to be the axis of the pipe and the
surface of the pipe itsclf is formed by the intersection
of the two paravbolic cylindersf-z-constent,
Flane waves, nonhomo=zcneous in )i and 7 are assumed
provagated down the pive in a vositive direction. This
and the assumption of a simple periodic time veriation is

equivalent to postulating an electroragnetic field of the

form: Af
- /:,/ ' } b vl
5 / 7 (1)

1
Zisenhart, L. P., Annals of llathematics 35, pp. 284-304. 1934
2 See references 1-5 in bibliogzravhy at end of this vaver.



Jigure 1, Parabolic cro.s-section with narabolic coordinates
inserted.



in which « 1is equal to 27 times the freaquency of the
source, and h i1s the prora-ation constant in the positive
z direction. The propaga ion constant is itself complex
and egual to a »A8¢ where o 1s the attenuvuation constent
and B 1is the phase constant.

The scalar corponents of the electromagnetic field are
obtained from the wave egquation and from laxwell's

equaticns. In parabolic coordinates these are:

Tor Ee LMy L) = o

97‘ Q{ (2)
7"1/7"—’);1. //f = -4 ‘%’gfr v (cwe ro) j_—;/_f:z (Ba)
7"/_:4*‘ Y4 = -A IHe - W *‘T) '77[
7 Lhn = (fwe ) Il
7 55 57 (5b)

7"/7‘//’ é-f =-A Lz ~ ¢ o ge D K

rijgirt £, = -4 IL o JHs
7S 7 :97‘ 7 2/—; (34d)

>

where#: wew -/oporand »%: 447 . e shall call » the
wave guide constant. It will devend only on the vhysical
size of the pive and the mode of the wave excited.

The practical cystem of units is used, where:

€ = dielectric constant ‘é%%? fzrads per cm. (in air)



A = perneability ¥ 7 w0 S henrys pver c¢m, (in air)
7" = conductivity in mhos p=r cm.

/4 = maecnctic field in amncres per sq. cm.

£

electric field in vo’ts rer ci.
sevareting veriabilcs in the wave ecuation leads to the

two ordinary differential equations:

LY (742 r om)] & =0 ( 4a)
df‘
j/’{ Oyt ) V= o (4b)

where m is the sevaration constant, restricted here to
positive integcral values, Both of these are forms of the
confluent hyperceoreiric ecuationl or as they are sone-
times celled, varabolic cvliader equations. Golutions in

2 for

the form of definite intesrals were eiven by leber
the vrobhlem 0" the varabolic rmernrbhrane, Later all solutions
, o . . 3,4 _ . .
were classified by Lpctein in connection with the
problem of diffraction of 1li~ht by a vnarabholic cylinder.
Both even and odd solutions o:r order m exist for thnese

ecua~ions,. Wwe shall deci-nate the even solutions of (4a)

and (4bv) as eUm’

V_and the odd solutions as U , V
e'm om’om

1 Whittaker and watson, Kodern inalyvsis, p.34l, 2nd ed. (1915)
2 weber, cSie Partiellen Difflerentialeslcichucen der lLath.
Fhysik, ©d. a, anfl. 5. 208 (1912
Zpstein, Diss. lLunich.
4

See appendix for list of solutions.



The solution of the wavz equation can be written:

oo __A el ,
Ee) oS M et Al F ;,,y/,,@// D )
HI YO

where bm and c, are cormplex constants und depend uvon the
str n~eth of excitation.

III. PERFECTLY CONDUCTING PIPZ3

The boundary conditians devend upon the assumptiions
made repardine the conductivity o . 1In this section
we consider o to be iniinite in tie walls of tne vipes
and zero in the dielesctric iaside the pire. Under this
condition the taneential corvnonents of tre electric
field vanish ¢t the walls and the vronzecation constant
h reduces to ¢« , since tie atienuation constant must
be zefo. Boundary conditizns of this type can be sat-
isfied by considerine two partizl fields to exist in tre
vrive. The first, called an & wave is defined by Hy = O
evervwhere inside the pive, and the second, called an
H wave is defined by Ez = 0 everywhere inside the pipe.

Thus for the two martial fields the bouniary conditions

are:

ﬂ:a'fzy:a.
£ cwrve t'7:o,f-—a- (68)
é}—:o,f =



Wberef7=g SR S cotliadaze the Uoorndory of Lthe nipe,
The boundary conditions are excevtional in that tre walls
of the pipes are formed by two cylindrical surfaces rather
than just one as in the case of tne circular or elliptical
pipe.l
The above boundary conditions can be satisfied by using

only one term of the series ~iven by (5). lor the & waves

the components of the field are:

= (G bl haf) v o bl )] e D )

_ / ’ ,&,u‘a/f -
Loy = #/:'M(%f’jﬁ%%/ * ¢ a”,,,./fa%?/ },[ ( L.'")

we rW
Lyt b8 Lp LAY o ol bip )L

7‘1//'1 ,//'1

where the vrimes indicate tkhe differentiation with resrect
to either f or 7 .

In order that the tansential components of the electric
field vanish at the boundary, it is nccessary that U and
V satisfy the equations:

Upla) =0 eVp(a) = 0 (8a)

See appcndix for list of solutions.



oUnla) =0 oVm(a) =0 (5]

The roots of these equations serve to dete mine the crit-
ical wave lensth. Corresponding to a root 8m where n

indicates the number of root and m tne order, the critical

wave lencth is: A.. = 27

S

hinl

For m = 0 the functions of U and V are identical. 1In
this case it is not hard to verify tnat they can be written
in terms of Bessel functions of order 3 and -:;. The even

solution is:

eé/.;Gf/ = c,/f(/’-;z /%_ﬁ‘) (93)
and the odd solution is:
e Uty = o /f Tp g (9b)
whe re ¢y and ¢, are c.noU S,
In terrmg =7 7a® a few of the roots of eUg(a)=0 are:

eljo @¥ = %o/ ) €70 a% =s0.30

For the odd solution _,U,(a) = 0O:

07,0 @* =550 , 022, 0oa® = /80O

The loncest critical wave lensth for trtesc modes is

given by the even solution:

ed,o = 27 = 272" = 7&(%
e’7,0 v.0rf

where y, 1s the latus rectum of the parabolajr - g,
For the values ofmxo , there appears to be no sirple

method of calculating the rcots of the equations (8a), (8b).



The components of the field for the d wave are:

b (b6 Uall) M) o llaff)binty)) T (10e)

- Ferit |
é}‘—’— /:; :'__:f'tg___[é o /f////’/*c ﬂé’/ /// )e lUD)

_Azreil, Ay
.é'?-— J‘L/—’f Té‘gjzé‘a‘aed({) /// *cC é/wé’/., mé)) (1\(«,
add
The boundary conditions here ere:
eU'm(a) = O eV'mla) = 0 (1 o)
oU'pla) =0 oVipla) = 0 (1 b)
Arain for m = O we can reduce these to feirly simople exnress-

ions in terms of HBessel functions. For:

| = ‘e s (rrV /= 22.17'2 12 a
emé{/-%{:/(:/f‘/_;/'f// CJf ;[%/ ( )

Also:
) o e S . z ) aew
aé/gf/*d?_r_/fz;_//‘é(%ﬂ’/ < f Jf(;{
From the equation eU'o(a) =0 ve find:
e?0at= 750 , e 70 ar= /320

and from yU'y(a) = 0O:
o2,0at=2/2 oo &t = 27
The loa-.ct ceritical wave neire 1ot

o/l/jo =27 = 272 - /76’/.'
o),/"o 2 /2

/0.
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Sizure 4. Electric field configurations for the ground state modes
shown for quarter sectionc 0f the pipee The subscrirts are

written in the order rine
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As in the case of tne b wave there appears to be no

simple method for calculating roots of hirsher orders,

IV. IMP_RFECTLY CONDUCTING PIF:3

In this cese we consider the conductivity to be finite
thourh larce. <his required modification of tihe boundary
conditions which ere now tre continuity of the tancential
electric and tenrentizl marnetic fields. +the actual fields
that exist will be a superposition of tre two vartisal
fields which we previausly desirnated as & waves, or as H
waves, liowever, 1f the conductivitr is laree, it will be
assumred t:at one of these partisl field will predominate
and we shall still sveak of = and H raves. ror each case
we strall define a set of associated imvedances which will

1

felp clarify the pnysical statenent of tihe orob.,em-. A

superscript (1) on the impedance will desicnate an i wave,

ZY - 4‘ 4 cgﬁ%_:fﬁ, (13a)
where éi‘jg“'ls tue f‘LaIupLOTIStlu impedance. ke imved-

ance tor the coord ]ndtes‘f' and y are defined by:
=77 o= Z (13b)
//, Le = -L/ 7

Likewise for the E wave:

Zzw = é_:( = _Q = A

Ty i .ég (14a)
£, Z/z//q . L = T2, a
7= “ 7 7 F (149b)
3tratton, olectrorasnetic l'heory, pp. 354-055. 1641.



7

Beccuse of the similarity oi’ tie two bounaariesy = a
andzk = g we srell 1limit the remainder of the discussion
to toe boundary f = &, l.oreover we shall no longer dis-
tinsuish be ween even and odd U and V as t.e det ils are
the sare for both.

ror the field outside t.e boundary of tne pive ;7 = &

we shall take

= S s
£i =) LTI Ky e (]

ey

[
(9]

where 4.7/ represcnts an asymptotic solution of the conflu-
ent hvperecometric equation. The primes will hereafter
desicnate the value of the functions cutside the pire.

3 3 /,
As an anproxiration forZf/we shall use:

2z

_ <X c'/ZW"‘//g_
) o~ e F e (16)

L

which is valid for values of /)= . ihen (15) can te

written:

) _rx* _ 4 fz'u/z‘(
£7 o= éléﬁ&/ w 2 s o (17)
2’7""/’

where

ShT) = sk s o T
/7 o 67 <



and b' is a new constant.

The boundary conditions recuire 3/ =%; at = 8 where:
s stme 2Ly I )
).-‘//}.‘,:/—t )f Ve rzzy':t}_‘ 2‘[

We have assumed for t:ie second equation tnatoe M w«e and

7/ —_— . - o - .
oot Sflapr wquatine 1,  and i} and setting
/?%4%&/ eqgral to unity since 1t is indevend:nt of

cives a relation for the constant b' in terms of b:

b s Ll bwer’? o ;’—" Uz’ (17)
o < zf’f

In this expression we huve assured ¢s7»@” 27/
calculztion of tne attenuction constant is tre prin-
cirle otjective in the imverfectly conductins pipe. ihis

can be done by reans of tne defirition:
7 47

where LIS is tie power lost throush the well, r = g and

v, is the power transmitted down the vive.

In order to ev:luate w 1t is necessary to intecrate
Z
the real part of tne Foyntine voctor in trhe z direction

over the cross section ot tre vire. for tire w wave this

vields:

R, M/a////{”/ jf@/z’/mf/ 57/{///5"/7(30)
e

The value of w, for the i wave can bte obtaired hy re-

nlacins € by g .



/6.

The vower lost tiirou—h the wall of the pive is:

#ny o= ’F/K[’ LT e A (R
for a unit lencgth of the vive. nere R’ indicates tte real
part of the exvression and * iadicates the conplex con-
jurate,

It is necessary to enmnhasize tiat Tor an irpoerfectly
conductine pive the so-called J wave actially haz2sz a small
Hz corovonent precont. 1n comnutine the power lost throueh
the nire these cunno’t te nerlected. Both @ msenetic and
en electric imvedance will exist for eitrer wave. ltor
velues of o)) cwe the arproximate vulues o7 trhe im-
red.nce are:

7 2 ¢ _ZZ—(
i?m"“ e 522§i L7 o

7 = o Vs Sa)

7

a; /’ f’é‘ a (22h)

By neons of equations (13) und (14) we “ind

4 v/ ak

‘ 7 = w'é,_—. e ,
[,a: =y f A? 7 é/:[r’;//‘//" /%lv (23)

These rive for tre = wave:

Py R
% = V_Z_ V ”
77



The attenuation for the u» wave is:

S gt L) M“///V//’ (25)
//r———— //;///QQ'aQZ . iz {)/

where_//=j§ and jéwm is the freque=ncy corresrondine to

the wave lensth J., - .
followine tie sure nethod, the vslue of W s for the EH

wave 1is:
i’ 2/ ) )2 a./ v
:légﬂyééa /Z//Qﬂéé/ l{l/;%/ “;2, /C//J? (25)
v

The attenustion for tre @ wave is:

7

. @/,z@z Lo /"’[;W’*'/*—")/ it

« /im 4Kj;;/;4yu¥eyﬂ* ‘7‘;<£k] 54,

The volues or tie attenustion for both wav--s are in

Fa

acreerent witn those found by Chu for the vire of ellip-

tical cross section. Uoth exvressions for the aitenuation

£ : . N
have one term th=zt vi.ries as /3, thus increcsin~ with
frequency. :hus 1t of interecst to note that tre behavior

of electrora—netic waves, insofar as the above fthecory

applies, is tiie sarme fo: wll cvlindricel nipes whose

77



whose cross sections are derined by coordinates w. ich
sevarate the scalar weve esuation.

ixrerirental work is now Iin procress to det rmine wayvs

(@]

in which the various vartial fieclds may be excited =nd to
check the values o7 tne critical frequencies ond attenua-

tion c¢onstunts for various modes,

/&



V. AFF=NDIX

we now consider the rethod of obtaining the solution of

L (71 2 ) - o (2&)
g 1T
Letting gzz-z.gﬁf‘/72Z/ we obtuin
£ 7 <z’ _/___/_7 (s *t')‘.//y - o (29)
25 - ‘/fﬂéf - .
Setting z =gt vielis
. 3/\7 ) _ 4 ¢ pee _
Z‘5%7 fé?’ 9/;2? ../25_&7: T =0 . (30)
This is the s2me form as rrurmer's first confluent hyper-

ceometric equation

z A7 &) L7 a7, e
where ¢ = ; and a = /3 - ;ﬁ?
ow let
ST =2l L e : e

P is Getermined from toe incdizial eaquation

plpi) rip =0
and since ¢ = 3 P = o0 or {-. 'lhe coefficients for the

series are civen by Cnyl (nfl)(ngc) - Cn (n-a) = o

Iif CO = 1 the series is

Z (‘ Z,fn — / _ -z P E__/d_// ,1" _ d/ﬁ'///ﬂ"z/ /ZJ"; ('3:5)
a C_(’C,‘// 27 5(6/7((”/ s

e



L0

Since p is doutle valued I. &y <2 citier odd or even in

resnect to‘f .

e/ = LT (5 4)

o /7 = /Frf{‘_'_fm (crp)” (5am)

If a or (c-a) is an interrer the scries in finite and we
ohtain llerretian or Sonine vnolynorisls. 1lowever this
condition cun te satisfied only if the separation constant
is permitted to tate on imucinery velues and this is im-
rossitle if we wish to cseztisfy recl boundary conditions.
Trhe final solution of our ori~inal di'ferential eguation

rust bte real and so we tske

EZ/ R et %ff e real T Zem :;"{le/ t/;«ny, ('—7‘53)

’

o [/ - C_ﬂ’-/_:‘;)' 2] /7'11‘:/ d ,,{Jé’i-t‘r\fzf’ /7 42»27

These are riven in the intersral form by eter:
/

= -/ _)F - - R .

A B e R At

/
BN O o > s o -~ A
V4 _/"[ SE T s T e Oy C5-Z ) ﬁ/fj“ L5 (577)

o

For tte cce wie e m = o the differentizl equation s



a special forrr of the iessel equation

d274' - é,z;f

which has the solutions

Thkus

ctls

o Lo

= o

— /v}‘—‘
[ e
— \/é-

2/
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