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I. INTRODICTION

The purpose of this work is to discuss and formulate

mathematically the physical properties of a particular

system for the transmission of guided electromagnetic

waves. The system consists of a straight, hollow, con-

ducting sheath or pipe of parabolic cross section as

shown in figure 1. The electromagnetic waves are assumed

to be confined to the interior of the pipe and are prop-

agated along its axis. The discussion 3 limited to the

problem of determining the waves that may exist in such a

system and to the attenuation that they experience as they

move down the pi e. The question of reflection and radia-

tion that may occur at discontinuities in the interior

dielectric or the conducting sheath will not be discussed

here. V

The first diseussion of such systems for guiding electro-

magnetic waves appears in a paper by Lord Rayleigh, pub-

lished in the "Philosophical hagazine"l in 1897. In this

er he showed that for perfectly conducting pipes ofrap

‘

Cre tangular and circular cross section all waves greater

than a certain critical wave length were completely

attenuated, while wave lengths shorter than the critical

wave length were freely transmitted. Futhermore, he was

able to separate the types of waves that occur in such

See references 1-5 in bibliography at the end of this

paper.



systems into two types which he called "waves of the first

and second kind" which are identical with the E and H

waves to be defined later in this paper. In 1931 South-

wortnl began an experimental investigation of wave guides

of circular cross section. He reported the results of his

work in 1936 and at the same time Carson, Mead, and Schel-

kunoffg published the first theoretical study of wave

guides whose sheath was of finite conductivity. Ba row

and anus reported theoretical work on pipes of rectangular

and elliptical cross section in two papers that appeared

in lads. 1n the case of the elliptical pipe Chu found

that there existed two kinds of E and H waves which he des-

ignated as odd and even and both of which degenerated into

waves of the circular pipe for the case of zero eccentric-

ity. The work on rectangular pipes by Barrow and Chu is

interesting because it includes a discussion of the radia-

tion fronrthe Open and of the pipe; The radiation from a

circular pipe was discussed by Uhu in a paper published in

1940.

Ibid.

2 Ibid.

Ibid.
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II. SOLUTION OF THr HAVE EQUATIONI:

According to Eisenhart the scalar wave equation is sep-

arable in only four distinct systems of cylindrical coor-

dinates. On the basis of Eisenhart's criterion1 the only

types of pipes for which the scalar wave equation may be

separated are those whose cross sections are either

rectangular, circular, elliptical, or parabolic. The

first three have been well investigated theoretically, but

the fourth has received little if any attention.2

The parabolic coordinate system used to describe the

parabolic pipe is defined by the transformation:

[I = é'CP‘Tfé/

i=7;

The Z axis is taken to be the axis of the pipe and the

surface of the pipe itself is formed by the intersection

of the two parabolic cylinders;=;=constant.

Plane waves, nonhomogeneous in f’ and fr are assumed

propagated down the pipe in a nositive direction. This

and the assumption of a simple periodic time variation is

equivalent to postulating an electromagnetic field of the

form: A?

:_ /—'-; / I j ,1. -A2 (chat

/—7 / 7f (1)

Eisenhart, L. P., Annals of Mathematics 35, pp. 284—304. 1954

2 See references 1-5 in bibliography at end of this paper.



 

 

 
 

Sigure 1. Parabolic cross-section with parabolic coordinates

inserted.



in which a) is equal to 277 times the frequency of the

source, and h is the prOpa"ation canstant in the positive

2 direction. The propaga.ion constant is itself complex

and equal to a +A3i where cr is the attenuation constant

and K3 is the phase constant.

The scalar components of the electromagnetic field are

obtained from the wave equation and from Kaxwell's

equations. In parabolic coordinates these are:

2.. ,4 £2: ,1 a’fll/ér’r/ry/fi/fy = 0 _

32‘ afz (2)

rL/Tl- fl :_/ L94 1, {c'wévwr/ £41
7 f r a}, 3? (5a)

 

3?, 3:; (3b)

r’I/T/‘j A” 2-,! 24:6 - ca.) fl/flz7/ r f A 27 I...)

(5d)

3'

where/-cwgw.tqflrand_:wuzz‘;g“ . We shall call 7- the

wave guide constant. "It will depend only on the physical

size of the pipe and the mode of the wave excited.

The practical system of units is used, where:

e :dielectric constant ‘éepf farads per cm. (in air)



/U = permeability .xi 1/0 7 henrys per cm. (in air)

”'= conductivity in mhos per cm.

/9 I magnetic field in amoeres per sq. cm.

1?
electric field in volts per cm.

Separating variabilos in the wave equation leads to the

two ordinary differential equations:

éfib"w flsy”:*nw/é7 =c9
( 4a)

df‘

.5525 i /r7‘-/m/// : 0 ( 4b)

where m is the separation constant, restricted here to

pusitive integral values. Both of these are forms of the

i l - . l
confluent hyperseOLe.ric ecuation or as they are some-

times called, parabolic cylinder equations. Solutions in

2
the form of definite intesrals were given by Weber for

the problem of the parabolic membrane. Later all solutions

5,4
were classified by Epstein in connection with the

problem of diffraction of lirht by a parabolic cylinder.

Both even and odd solutions of order m exist for these

eouations. we shall desisnate the even solutions of (4a)

and (4b) as eUm’ V and the odd solutions as U , V
e m o m o m

  

l Whittaker and natson, Modern Analysis, p.341,2nd ed.(1915)

2 aeber, Die Eartiellen Qifferentialslsichuqen der Kath.

Phy81k,“Bd. a, nnfl. S. 238 (1912

Epstein, miss. Kunich.

4
See appendix for list of solutions.



The solution of the wave equation can be written:

5 gunmanV//l . waxy/1‘13”” as)

where bm and cm are complex constants and depend upon the

str noth of excitation.

III. PERFEUTLY CONDUCTING PIPES

The boundary conditions depend upon the assummptions

made regarding the conductivity 0' . In this section

0

we consider 0/ to be infinite in the walls of the pipes

and zero in the dielectric inside the pipe. under this

condition the tanaential conponents of the electric

field vanish at the walls and the prOpagation constant

h reduces to a}! , since the attenuation onstant must

be zero. Boundary conditions of this type can he sat-

isfied by considering two partial fields to exist in the

pipe. The first, called an E wave is defined by Hz 3 O

everywhere inside the pipe, and the second, called an

H wave is defined by EZ - O everywhere inside the pipe.

Thus for the two partial fields the boundary conditions

are:

5=olf=7=a

[We [7 :o,f :a— (08)

£120, 7 :a,



Hove/m: [zzo/fgq (6b)

:a

J

11W: I3 "’~

1:}:0

where f =1 srjf'8a cat-ininaa l)“ lggndnry of the pipe.

The boundary conditigns are exceptional in that the walls

of the pipes are formed by two cylindrical surfaces rather

than just one as in the case of the circular or elliptical

pipe.1

The above boundary conditions can be satisfied by using

only one term of the series siven by (5). For the E waves

the components of the field are:

E. ~—= easy/14W , C Jar/meal. ”vs-W: 2; a)

 

where the primes indicate the differentiation with respect

to either f or z' .

In order that the tangential components of the electric

field vanish at the boundary, it is necessary that U and

V satisfy the equations:

eUnda) = 0 eVm(a) - 0 (8a)

See appendix for list of solutions.



OUm(a) - o on(a) = 0 (8b)

The roots of these equations serve to determine the crit-

ical wave lennth. corresponding to a root anm where n

indicates the number of root and m the order, the critical

wave length is: )Lm” = 37'
2;,”

 

For m = O the functions of U and V are identical. In

this case it is not hard to verify that they can be written

in terms of Bessel functions of order i and -:. The even

solution is:

.44ng = c,/j7'</:7/ (77;) (9a)

and the odd solution is:

' :7 ,- L
(9b)

where 01 and 02 are c not fits.

In terms of 7d‘ a few of the roots of eUO(a)-O are:

are a”: 440/ ) e740 a3 2/0.30
I

For the odd solution aUa(a) = 0:

07204‘ ZJTJ'O ) 0):.zJoflz S/Z30

The longest critical wave length for these modes is

given by the even solution:

 

9/240 = Z77 :: 27mg.’- 1’: 7€fo

€220 440/

where yO is the latus rectum of the parabola]r . a.

For the values ofmn¢up, there appears to be no simple

method of calculating the roots of the equations (8a), (8b).



/O.

The components of the field for the H wave are:

= /é caugth/ . r .14. g2.%Q2/4‘1”‘“ (ioa)

K£f(z/t( -

if: §#//’//::;1;/c:fu_léeMZ//f'//7 *6 014Wm/f/ )e' (1J0)

15--.— 27 la .....:a2,r1V.2+c Mam/2/22*’1*‘”‘<1nc1
7 if / We "7 Z

The boundary conditions here are:

eU'm(a) - O eV'm(a) = O ("a)

OU'm(a) - 0 OV'm(a) - o (“1.1

Again for m 8 O we can reduce these to fairly simple express-

ions in terms of Bessel functions. For:

. (4’44 : tiff/r, 671/; 435%: effing; éf/ (12a)

Also:

’I g .1 T“ = 23 - 5) (11b?
aggri—d-é-f—ézaéééflj: (7f Jig;

From the equation eU'O(a) = 0 .3 find:

croodl=7f0 , c7230 4’75/9220

and from oU'O(a) = 0:

97‘40 a1=zxz 5740 4‘ =§<27

The 101i at critical wave here is:

0100 :gaz : 27¢ : /163y

 



3mg.  

.
7
5
"
"

,
J
’
a
L
—  

F
i
g
u
r
e

7
-

U
0

L
a
v
e

f
u
n
c
t
i
o
n
s

o
f

t
h
e

g
r
o
u
n
d

s
t
a
t
e
.

S
u
b
s
c
r
i
p
t
s

a
r
e

i
n

t
h
e

o
r
d
e
r

m
,
n
.

//





y
,

/

/

:
/
/
-

l -| l I

 

.E... . ' .12..

 I Y

”AV" _ O 1 U!
o.

.4 . \.

— _.. _ I... slid-I“ If. ‘

‘irure 9. Electric field configurations for the ground state modes

shown for quarter section:- of the pipe- The subscripts are

written in the order m,n.

“
—
4
-
—
—
—
.

a
n
-
—
—
—
~
.
“
—
—

 

AZ.



/5

As in the case of the E wave there appears to be no

simple method for calculating noots of higher orders.

IV. IMPERPECTLY CON UC IKG PIPE 0
)

In this case we consider the conductivity to be finite

thouch large. This required modification of the boundary

conditions which are now the continuity of the tangential

electric and tanrential mannetic fields. The actual fields

that exist will be a superposition of the two partial

fields which we previaisly designated as E waves, or as H

waves. However, if the conductivity is large, it will be

assumed tlat one of these partial field will predominate

and we shall still speak of E and H *aves. ror each case

we shall define a set of associated impedances which will

help clarify the physical statement of the probleml. A

superscript (l) on the impedance will designate an E wave,

22’ z 1;; :5; _-_ ifs. _—_ f5 (13a)

where Z:=f%“'is the Characteristic impedance. The imped—

ance for the coordinates f’ and f7 are defined by:

m,

[z =‘Zf (a, Z} : Zg/ff (13b)

Likewise for the H wave:

Zia) : é; :- Q T: .Ié £31:

7% 47 '4? ’ (lda)
.. ~’ 1 ": "fl -'

Stratton, alectromarmatic Theory, pp. 554-o5. 1941.
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Because of the similarity of the two boundaries]'- a

andZV a a we shall limit the remainder of the discussion

to the boundaryjr : a. Loreover we shall no longer dis-

tinguish be ween even and odd U and V as t.e det ils are

the same for both.

for the field outside the boundary of the pipe I = 8

we shall take

a... p ’11 JI'WZ

x" =2: V; 7.172242% X (15)
z? ...._.o

whereIZflfi/represcnts an asymptotic solution of the conflu-

ent hyperncometric equation. The primes will hereafter

desionate the value of the functions outside the pipe.

I

As an approximation forZV/we shall use:

_ ('7; 2' cI/ZWJ/jg—

7::‘gr2 m .4: 2 1 (16)

zrjz

which is valid for values ofJCU~1. Then (15) can be

written:

/ I p, , (r? 2' .. Zz flu/Z

‘5; = 5 AZ?J.4L_.£;_E .g (17)
27"]

where

77/7]:[51,; V7/.."/Z”””/;’Z



/JT

and b' is a new constant.

  

The boundary conditions require 3? =§g at'f - 8 where:

A? = ”if"? .4”?” , W : a:WW- ii?
24¢171 2f / rlzyz-Jfl af.

We have assumed for the second equation thatofi)cwc and

 

/ . ’ f ' q ,

7c’n/M! 4/ Vua¢m- nquatine h/ and né anc setting

7fi%4%7/ equal to unity since it is independent of)” ,

sites a relation for the constant b' in terms of b:

 

,9“ z - écoc’i’nz ,1 if" gl/Q/ (is-’1)

0' 7'1 if

In this expression we have assumed 17%2’))’ .

Jalculation of the attenuation constant is the prin-

ciple objective in the imperfectly conducting pipe. This

can be done by means of the definition:

a :3 {4 _é‘/ (19)

z ”,3

where W]! is tte power lost throuWh the wall, f': a and

wZ is the power transmitted down the pipe.

In order to evaluate w? it is necessary to intecrate

the real part of the Poyntino vector in the z direction

over the cross section of the ripe. for tie a wave this

yields: _

m this“ o/o/afl/V/jff ””727; ”(r-:0)
2?M

The value of wZ for the R wave can be obtained by re—

placins 6 by /4 .
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The power lost throu“h the wall of the pipe is:

—/ 1v -- . /r ~— ,

V; .- axe/Key’ wax/yard»; (.211

for a unit length of the pipe. nere R indicates the real

part of the expression and * indicates the complex con-

juqateo

It is necessary to enphassine tLat for an inperfsctlv

P

conductins pipe the so-called a wave actzally has a small

HZ component present. in computina the power lost through

the pipe these cannot be neslected. Both a macretic and

an electric impedance will exist for either wave. for

values of c’)) (we the approximate values of the im-

ped nce are:

/ w ’ W1 4'7}

Z}! *' ' *7 '7’;— “’ ma)

Za/://;T“Ii7lé;:«1(aab)

By means of equations (15) and {14) we find

h x
,

w
\

, 77' ’ 5f W's]; ’ 272‘ n.
[2; : :4»? 4}”! A? I / é/:;’/;l//l/jrz a]? (4,5)

These viva for the 3 wave:

-"’ z 5/2 Jfl/fi//z/d_ ’2 1/

Vf= V2 V312 w“ 57;?” ”7/ (:24)
7



/7-

The attenuation for the n wave is:

41/22 ~-WWW/M”

7““////z 777/77

where_//ii; and fémm is the frequency correspondine to

 

the have lensth/Jmlm. .

Followine the saye method, the vs lue of WJ, for the E

have is:

g/:J/z/’Z/z7/7//‘//7/’~-,11,’//// 1:25)
”I"

The attermution for t1:e ; wave is:

1/71 11.,7f171/177
//7_Z*—:" /////J!//*/‘/1p// 1/},

\
fi

The values or the attenuation for both war 3 are in

1
7
$

aereenent with thse fOJnd by Ghu for the pi e of ellip-

tica1 cross section. Both expressions for the attenuation

have one term that Varies asJ/éi thus increasine with

frequency. Thus it of interest to note that the behavior

of electronasnetic w;ves, insofar as the above theory

applies, is the same f0: all cylindrical pipes whose
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whose cross sections are defined by coordinates Miich

separate the scalar wave equation.

jxperinental work is now in progress to det-rmine ways

in which the various partial fields may be excited and to

check the values 0? tne critical frequencies and attenua-

tion constants for VariOJS modes.
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We now consider the nethod of obtaining the solution of

fi( /r' ’ tan/[C : 0 (2C)

1% ’1 /
Letting gz=rj_%1F‘/72z/ we obtain

55% ,1 1/7411? f (m «(r/fl :0 . (29)

Agri 49’

Setting 1 = 5734' yields

.. 2/‘7 a — ‘7 (3“ ~-21 4/sz 145/ JV 5/4:- .. 6-5 -317 /7 .. a . (50)

This is the same form as Krummcr's first confluent hyper-

peometric equation

2 £1.17 + éezj/fl ., (2/7 I (bl)

'1’” 22:

where c = g and a -/§%-;§?' .

Nov let

a

‘P is determined Irom the indicial equation

-flW~/¢V=v

and since c = % P = c or i. The coefficients for the

series are given by Cnrl (nfl)(nfc) - Cn (n-a) = o

If CO = l the series is

2: C 1"" : / — a- z ,, gfig-d z‘ , g/x-d/a’iLf’..-; (55)

,M if. <43fl7 3/ (fivflk4d 1’



20

Since p is doutle valued I nay we either odd or even in

respect toJf .

(/7 —— 475,, 0,74" (an

a /‘7 = ,6ng flay/‘1)" (ISM-‘77)

If a or (c—a) is an interser the series in finite and w

ohtain Eernetian or Sonine polynonials. However this

condition can be satisfied only if the separation constant

is permitted to take on inacinary values and this is im-

possible if we wish to satisfy real boundary conditions.

The final solution of our orisinal differential equation

must be real and so we take

teéQ’=' an'é}f e -Qn[ v‘,awa‘:que/’.afij¢ (353)

(55b)

0 6/ - (r—a'déf} (1/71/4/ 7‘ _,¢é'zi1~g2? /7 (”,7

7

These are given in the integral form by Eater:

 

I

t a : fwd/Ma/w/y/J-zwx- :5: 4/5 '22:.)
\

/

2-; -- ,. J- , H-
a :j’\o/ J 6/. / (‘»/-\),/;— / 63:) /}y*/j_ 3///?}% g? [if (2)93)

0

For the cise wte'e m - o the differential equation :5



a special form of the bessel equation:

4’

/ "&,c”/0 =0

which has the solutions

7.-

i z/Lr L/_: /::‘é:"j

/ r

g? r v62; Dig/(ffgdz'fl/

Thus

6 4/0 -. 4?" J; ("97 7

0420 - 6"- 4; (27,57

2/
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