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SOME ASPECTS OF THF MESON THFORY

OF NUCLEAR FORCES

I. General Discussion and Purpose

The main purpose of this peper is to illustrate some of the
elementary, general principles of field theory and its application
to nuclear problems, This object will be realized by selecting
a specific field postulate, by applying the general principles to
this particular case to obtain the field equations, and by apply-
ing these equations to the solution of a particular problem for
which experimental data are available.‘

The field postulate that will be selected will be that of
the charged meson theory in which the field quantities will be
‘specified by two- complex conjugate 4-vectors, U and U*, After
having obtained the equations of motion for these fields (the
electromagnetic field will, of course, also play an important part
in the following development), these'equations will be applied to
the problem of the calculation of the exchange magnetic moment of
the deuteron., The equations will also be used to obtain an
expression for the potential function employed to describe the
nature of the interaction between two nuclear particles,

These last two objectives are to some extent mutually exelusive,
as the charged-meson-field-postulate does not allow, to the order

of approximation employed in this paper, for interactions between
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nucleons of the same charge; whereas charged mesons must be assumed
if the phenomenon of exchange currents between nuclear particles

is to be predicted by the theory. A more general field postulate,
the pseudoscalar field, is available to remedy this particular
defect but will not be considered in this work,

There are three reasons for the choice of the exchange
magnetic moment problem as a test case for a particular field
theory in its application to nuclear physics., 1) There is
considerable reliable experimental data on nuclear magnetic
moments with which to compare the quantitative predictions of the
theory. 2) Some of these data are apparently not explainable on
the basis of "classical"™ assumptions, that is, new assumptions
concerning the nature of intra-nuclear forces must be made--
perhaps even new assumptions concerning the nature of the nucleus
itself. 3) The problem of carrying through the calculations
necessary for a quantit;tive prediction is a comparatively

- straightforward process.

II. The Field Concept and Its Mathematical Formalism

A field can be defined as a region in space in which at every
roint there is assoclated, in a unique manner, one or more quanti-
ties. The field equations_are then the analytical representations
of the dependence of these quantities upon their position in
space and time, These equations are therefore the field analogues
of the classical equations of motion of particle mechanics. In

fact, as pointed out by Schiffl, the concept of wave fields as
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employed in quantum field theory is actually a sort of generaliza-
tion-to-the~continuum of classical many-body mechanics.

As in particle mechanics, the task of setting up the equations
of motion of the system may proceed from several starting points,
For the purposes of this development, we shall start from the
basic assumption that the correct enuations of motion can be
derived from the variational principle when applied to a proper
Lagrangian

S)L at = o. (2.1)
¢ .
(For a more general discussion of field theortes and their
properties, see Pauliz.)

The first problem is therefore to construct the proper
Lagrangian function to describe the system. To ensure Lorentz
invariance of the resultant equations of motion, the Lagrangian
shall consist only of quantities that are relativistically invar-

iant. Since we shall be dealing with nucleons (protons and

neutrons) and their interactions with an electromagnetic and a
meson field, the Lagrangian will, in general, consist of five
parts,

Lar” 1" 1" 1" 1t
where

L'= proton Lagrangian

L'z neutron Lagrangian

L"= meson Lagrangian

L= electromagnetic field Lagrangian

L'= interaction Lagrangian,

It should be noted here that fundamental to the field theory is the
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postulate that there is no particle-particle interaction, only
interactions between particles and fields. The specific form of
the component parts of the above function will depend, of course,
upon the nature of the wave equation assumed for the nucleons and
the fype of meson field chosen for study. The general procedure
for construction of the Lagrangian for the nucleons and the
‘electromagnetic field are well known and will not be entered into
here. However, the interacting terms will fifst be written into
the particle Lagrangians to 1llustrate the manner in which the

field assumptions affect the nuclear particles,

III. The Equations for the Vector Meson Field

thawa5 was the first to recognize that the range properties
of nuclear forces could be at least qualitatively accounted for by
the assumption that there 1s associated with nucleons a field
which, 1f described by the scalar quantity, ¢), satisfies the
equation |
O¢ —Kk“d =o (3.1)
a2 ] 27 -k I - K]

L 2 9 = S

Ik - K|

where =Y

|ry - ril being the distance between the i'D and kB nucleons. This
may be immediately generalized in analogy with the electromagnetic
system of equations (the above corresponding to Laplace's equation
for the electrostatic field) by designating 1Q = Uy, the fourth,

or time, component of a 4-vector, and Uy, Ug, U3 as the space



5=

components of the same vector and obtain the set of four equations
-> 2>
UU"KU’O. (3.2)
If we compare this with the Klein-Gordon ecuation for a free
particle
-
E2 = p2; M0t (3.3)

which becomes
22 =0 (3.4)
O ¥ ¢

after making the operator substitutions

-
E =14 2 > p>-ih grad,
>t

we see that we may identify a heavy "quantum"™ associated with the
U field whose rest mass is related to the range constant, K by

K =Mc M= K5,
c

£y

The relationship between K and the rest mass of the particle
assoclated with the field equation
Oy -Kig=o0
may be interestingly brought out in another manner,

Separate the variables and designate the separation constant

vVop o o®
4)(0 - (3-5)
—1 24 () 2 2
p o) e? 7 947)63 - K™ =w (3.6)

. Solve the time uation bt
* » ovtalning . JrEree t
g = Ae
thus indicating the nature of the time dependence of the solutions,

To this point we have regarded the equation as a field equat.ion.
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Now let us regard it as the equation of motion of a particle and
solve for the energy elgenvalues of this systenm,
Eg=(%h 9;%:
(h yim 2_41%@ = E P e
Choosing the negative expone:zial, we have
E = fe /kovwd

But 1if V:4’- 0, the eigenvalues of the momentum operator are zero;
the pafticle is at rest., Since

w =0, E= K*ac = M2

we have M=KA4.,
C

This quantum, or meson, plays an entirely analogous role in
nuclear interactions to that of the photon in electromagnetic
quantun théory of radiation. In the former case, the nucleons
emit and absorb mesons in the same fashion that charged particles
emit and absorb photons, Hence in formulating the problem math-
ematically it would seem reasonable to be guided to some extent
by the formalism already developed for electromagnetic radiation
theory. For instance, a charged particle in an electrostatic
field experiences potential energy due to its position in that
field given by

PE = e q>.
Similarly a nuclear particle in a meson field will experience
potential energy given by

PE = gU4
where g is a strength constant characteristic of the particle,

- 2
and has the same dimensions as charge, cmqksec ’gm *, ©Since in



the electromagnetic case the Lagrangian for the field is known

to be
EM F o
L= “® dT (3.7)
T
T
where
- 24 _ 24«
F“P ‘;Xa JXP (3.8)

the % *a being the components of the electromagnetic 4-potential,

the proper Lagrangian for the meson field alone is assumed to be
C 2
n
L-jICTCv, + KRI(/(F) }Ar (3.9)
2
T

where

G.=F Qi/(_).’ — -gﬂf (3.10)

However, the mesons in this theory are assumed to be
charged and hence will be acted uron by electromagnetic fields.
In general, the momentum operator, 5%—( , for a particle in the
absence of an external field transforms in the presence of a

2 _ e p
7 N
. — = .
I Xe A Xe cH

Hence the tensor, G, , will be transformed in the presence of

field as follows:

an electromagnetic field

2 _te ) (2 _ >
Ger > (31~ & #)% ~ (5%, - & P)Ue 50
and 1ts complex conjugate
* 2 e ) v 2 (e AW
- e U, - ~ =
G = (B 5900 - (o &0
Two sets of field quantities are necessary: one set to be associ-

ated with positive mesons and the other with negative mesons, These



equations were first set up by Prv::ca4 ag a device for linear-
ization of the wave equations for the electron.

Hence in this theory the complete Lagrangian for the mesons,
including their interaction with the electromagnetic field, is

assumed to be

. . .
"= [ G Cor o ? Ut ) 4 (3.12)
Jo &

(FPor a discussion of the mathematical formulation of the many other
typres of meson theory, see Frohlich, Heitler, and Kemmer5, and
KemmerG; and for a detailed development of the theory of charged

mesons, see Bhabha?,)

IV. The Nucleon Equations

For lack of a better one, Dirac's equation will be chosen to
describe the motions of the nucleons. To put it in 4-vector
notation we proceed as follows: The proton equation in the

electromagnetic field is

E-c¢ = c(xep)-e(x-R) + @mec™®  (41)
_/o v 0 oD
a KU‘ O) == (o -|)
_/° 1 _ [ o -« - /1 ©O
we(Te) w(C) w (B )

The quantities X and pare Dirac's 4 x 4 matrices, and the [ 's

where

are Paulits spin matrices., Rearranging and going over to the
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operator equation where

E = ik P> -ia vV

2,
It
we have

=1
o !

c‘f(*g% - & %) -t (e (V- H) +En Y0 (a2)
l}

Multiply through by B and define a new set of matrices as follows:

)’Pz—l.(-?o(f: xt< € vt pe=p

€ Ybeing -fﬂ:i. It is to be noted that throughout these calcula-
tions € 1is not regarded as a complex number, that is, if

A=a +¢cb, A¥*fa-=-c¢h,
A, a, and b being real cuantities, Employing the above definitions,

we obtain
¢l @ — Mec |
4 h (5)—(9——1—'— CPP) " E ]d'/” O (4.3)

And for the neutron

gl P M. -
¥ {r rt S e =0 (4.4)
where
Ir =1e.
ch

If now we assume that a nucleon experiences potential energy
due to its position in the meson field generated by nearby nucleons,
then additional terms of the form g8l and ¢U* must be added to the

. above equations, And this brings us to what is perhaps the most
important concept in the whole field theory: the concept of a
mechanism whereby forces of interaction between particles are

generated.

We designate the meson fields due to the presence of nucleons
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by U and U¥, Let us assume that the proton interacts with the
U*-field, the energy accruing to the proton due to the interaction
being ¢0*. Furthermore the proton is assumed to absorb a negative
meson and become a neutron. Likewise neutrons in the U-field
would have potential eneréy equal to g0 and would absordb a
positive meson and become a proton, Symbolically this exchange
process that is postulated as the mechanism of nucleon interac-
tions may be represented as follows:

P+ M >N

N+M* > P,
Or conversely

P>M* + N

N—>M" + P,

To incorporate the new energy terms and the exchange process
into the nucleon equations, we first postulate that the proton and
neutron states of a nucleon are merely the different states of the
same particle, We introduce a new coordinate into the description
of the system, This coordinate is usually referred to as the
isotopie spin variable. Now define an eight-rowed, one column
elgenfunction, EE » Which we may refer to as the nucleon eigen-

function,

g (X,‘é,i';r,cb‘aijE) = (__41:_
Pe
Define the following 8 x 8 matrices

T +(T, o | “(
e ()



1ll;£53 o __Q1) ,- . o ' - C) 1()
tNP= o _—j- l,:—o |

The following equations are readily verifiable

s (4) e (5)

The T 'g are the charge exchange operators.
We may now write the two nucleon ecuations as a single

equation

2 _— *
R - Lo 3t)
+ T ’jéjr_c- + Con C’%QJE =0 (4.5)

All matrices in the equation are, of course, 8 x 8

S Y7o
Yy = —O—‘I —X_p_ yete.

It has been shown experimentally by Rabi8 and his co-workers
that the deuteron behaves in an applied electromagnetic field as
though it possesses a non-vanishing electric quadrupole moment.
That this experimental fact suggests the necessity of postulating
a tensor interaction term in the potential function of the
Lagrangian may be illustrated as follows: We consider the
interaction between elements of charge (CQ<J Zé in the

electron cloud distribution about the nucleus and the elements

of the charge fzﬁiZ; in the distributed nuclear charge.
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Figure 4.1

The interaction energy is given by

V = f()"j{fli@@;_dre (4.8)

where ";
}‘,4 w !
S e o

From the addition formula for Legendre polynomialsg, we have

F(COb‘O\ ((/j M))‘ 2 ) So,n-) I?M(QOS QQ) am(COSS,,)COS M ((l[%" q"")

Inserting this in the equation for V and examining the terms for

1 =23, we have

GQ-m!
z_<“'5 ) M'( f—fe B (cosed X

e

J[p" W B (cos a,) cosm(e- ) dT, (48)

Cw
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If now we assume that the nuclear charge distribution is axially
symmetric (that f} does not depend upon <£L ), then the only

non-vanishing contribution will be for M = 0. Thus
4T 2
Vz =§ per 3 < P:;(COS 90) pN rr( F;} (CUSQ~> C‘TN . (4.9)
C < Tw

It is the cuantity
.
GQ = f@w | (BCOSDQN —l) Cltu
<

that Rabli detected experimentally. This integral indicates that

the charge distribution in the nucleus exhibits angle dependence.
But the charge distribution is a function of the forces between
particles, hence it is reasonable to assume that these forces must
also be angle dependent, that is, non-central. In view of these
considerations, we add to the potential function of the nuclear
equation the tensor interaction terms

rr e, 2,76,

2K

The nucleon equation is now

?f[b'(—g— T e - 9 T -5 T U

- 2 V(- ¥
;?Lkb’ {(MG/"” +T"‘P 5ad \+ NP PlP—O*TPN TLO% (4.10)
JTe s e |8 e
This ecuation is still objectiongble as it-predicts an integral
dipole moment (in units of nuclear magnetons) for the proton

and no dipole moment for the neutron, This situation could be
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somewhat improved by adding additional terms of the form
-Z;HM~°H + Cyp <HP—/I/{G>° H

where M, and A, ere the observed dipole moments of the
neutron and proton respectively. This paper, however, is con-
cerned primarily with the exchenge properties of the charged
meson theory, and consequently the incorporetion of these
terms would be merely an unnecessary complication.

To put the nucleon equation into the form of a Lagrangian

we note that if H is any Hermitian operator, the recuirement that

gi( D HdTdt =0
4

(G Hy + § HOPdTdt -0
t T
j (SEO HE + P H ¢ [drdt=0
t°T (G

H(}):O ) H(P:O

Thus we obtain two equations, one the Hermitian conjugate of the
other. Hence we obtain the desired form for the nucleon egquation

by defining

_—

GEB* - ¢



and writing

Ty 2 - YA
R A A A e

R ERAN | M NPQ
Sk B {TPquV +Z_~P Gpv }) + 2 @(4 11)

for the final form of the Lagrangian density of the nucleons in
the electromagnetic and meson fields.
For convenience in calculation, we break it dovm into

three parts:

— < (o Q C
- Z o [Y . —IC{%} + C’f]gbp (4.12)

2 L'}) [ i j%’ (4.13)
:Z.;—q;[__(é')’p z_’;; a{a* +Z—P,: (,{F,)
_ _%i YT, ¢ C_F: + 0 pr)] T (1)

The bar indicates that these are Lagrangian densities. To

summarize, we have also

—nmM @ (.frg* ¥
L - LJ"',O)’ ‘— % + K 9(/1(0 a(\? (4.15)
A
and .
1:- EM _ [‘pv F »

o4 (4.16)
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for the meson and electromagnetic fields, The summations are
over 1 protons and j neutrons, thus theoretically extending the

validity of the results to cases of many partiecles.,

V. The Derivation of the Equations of Motion

Now that the Lagrangians for the system under consideration
have been set up, the process of deriving the eauations of
motion is, in principle at least, a simvle one, We proceed as
in classicel particle mechanies and reocuire that

SJ(L+L+L+L+L ) dt = 0,

or, as in the previous notation,

gf[ (L"+ L+ 1" LT+ L )Jr]dt =0 (5.1)

To 111ustrate the procedure, we will carry through the
varietion with respect to Llf in detail, The other equations
resulting from variations with respect to Up emd } will then
be simply written down,

As the Lagrangians have been defined, it is seen that the

coordinate U,o does not appear in -I_..P . i" , OT -I-."' « Hence

gfum:f(mﬂ S ) de =0 (s

Consider first

«
e : —%

L

I3 m)- 33 ) i

"
~
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=ﬁ§§[9€9§>?:) ) ‘%%ﬁ) -~ Sy +IH 544

+ K2 uf,* SLIP} 4.0
X, (x,),

=fci’fi;(§u )] ds, - f’(g )] d S,

I X)' Sl (yl

r"'ﬂ

+‘—i. L{ 296; v 27(;
;z—[l oU, ——ﬁ- + SL/ Xv +G€:<II’(P,, SUF

T G 5u,) +;1i<9(,1; SYda

The integrals over S; and S, vanish because of the requirement
that 5 (/(,e CXu), = Eu,a (X,), = (O at the boundaries.
Remembering that repeated indices are to be summed and that

C;%vv = - C;v[o

B3, (5.3) becomes

06 . .
éﬂgdp —9——)%7 + ol %Qﬁ—x: + 91 Gy &) 3Y-

+ k’QU,o guﬂjdﬂ

[ 99_@_C~>-<v PGy B+ K Ue" | St 40 15,0

j:l
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Consider now

s{da - (S E[-30°0) su.
> (2.
— Ea v . g ‘ ]
S0 Gew 2 G I (5.5)

Considering the second term in the integrand by itself

3 (70 e

(28 g 5u.) |[@dn

(5.6)
(X.),
= (E b'pv\(-?u g_j S(/{ dg
),
QS
f@w” ‘@S| ds,
(x,),
3 [s02 vres m
AR o Ko
— % (W 37T rN_ )+TO? %HII‘”(P:QE

("QX

ST, SU-E YT, Q]Jn
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- »e
Noting that K = "~K and recalling the remain-

der of the integrand in Eq. (5.5), we obtain

_LZ -2 2 (BT @) v, By

_?,E YT EE} SUo d2

(547)

Hence

frio- (G nle przrecs

‘Z?:E TS o+ f<9u;] Su.dan =0

Thus the equations of motion resulting from the variation with

respect to U are

(6%), +I£LR,>(GFI —JZ%E 7., E)

—;Zi G T+ KU -
A
(5.8)

The conjugate equations are

IQ,)(@N - 7y, Q)
-—gZE g _41; + K%{p:

(5.9)
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The equations that result from the varistion with respect to 4%

are

Wy _

—_—

¢ P ( —_ ¥ P
e A B T + (U 6 ~th )

PY— ey — 4 ¥ __o0\
+Z%£EE Uy Gen = Uy CNP)Hf = O.(5,10)
¢,
These last equations are of particular importance, as they

yield the expression for current and charge density due to protons

and charged mesons. We rewrite it as follows

Q_FE_V '.l =.‘T_P+ -{M
£2Xy c ¢ c
where
e — ( e C (
%: Z “PP ﬂ:)’ ([,‘P 5.11)
C
and

— o ¥__ ¢ — 4
_f_ :?;/- E E_‘Z( (u)) (-Np —dv <PN>E. (5.12)

VI. The Hamiltonian

Since we will not be concerned with the speecific form of the
nucleon Hamiltonians, we will indicate them by E and H for
neutrons and protons respectively. The Hamiltonian density for the

remainder of the system may be obtained in the usual way
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The quantities ;TI; are the momenta canohically conjugate to the

field coordinates U, . They may be obtained from the defining

relations
( DL _ L - =L DL
o T SR S
where the notation é{; 4 indicates 22££} The momenta are
Xy
- ( * 92 g5, P
AH,a: 55[6’(:4 —?E_:E ¥ Z_Pﬂ_qﬂ;:( (6.,1)

1}

JWF —%: [G'f"* ) ‘8[5 P LA Caer JG_JJ (6.2)

and

)

oIl gc Fou . (6.3)

The summation over nucleons has been neglected since we shall
be concerned only with the potential energy terms contributed to
the Hamiltonian by the interaction between two nucleons, Hence

we have

RN ARY TN R



4—]@_[5 g (MFTPN t (/{/o np> Bp))<c(g)3 (FH

G [T - () - (),

VII. Reduction to 3-Vector Notation

For purposes of further calculation it is desirable to rewrite
the equations of motion in ordinary 3-vector notation. We make use
of the following defining relations between the tensors and 4-vectors

employed previously, and the 3-vector that will be employed here-

after.
0 GS "Gz “iFl
-Gz 0 Gl -in
Sev = 6. -G, 0 -iF
2 1 3

iF, iF, iFg O

plus conjugate relations,

°  Hy -H; -iF

“Hs 0 Hl -iEp
FP » -
H, -, 0 g
ﬂEl 132 1E3 0



(5,7) = (2EpTT,Z, FEeawE)
(M- (38 xCo®, 3¢ T, E )

and the conjugate vectors S*, T*, M* and the scalar n* involving
the converse exchange operators, T&P.

Employing the above definitions, it is easily verifiable that
the equations of motion become

(V-TA) X (6+8%) - (1_9 - ITA)F+T*) -W*+ KU =0  (7.1)
5 9%

2
(V =IIA) » (F + T*) - N*+ K U4 =0 (7.2)
plus conjugate equations. Equation (5.12) becomes

Lﬂ- Of x(c*+ s)7 - I /0% X (G + s*)] -1[ U *F - UF¥7
c

-II [o *r* -0437 (7.3)
for the current density and
Ilaeff-F - U*- ¥/ -eIf0-1 - U*. 17 (7.4)

for the charge density.

Again it is to be nnted that the summation over the nucleons
has been neglected, It would be entirely feasible to bring the
summation through to the above ecuations, and in fact necessary,
if one were to apply these equations to the problem of the Triton
for example. This paper, however, 1s in the main restricted to the
two particle problem, so we shall dispenge with the many particle

notation henceforth,
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The Hamiltonian in vector notation is

T" . 24 . .24 ) 4
B +_;_G_LTF* ,J_C_H-(F ?t)+(T 24 )

< |
= - 24y (® - %é)]ﬂm . U) + (i* - U¥)

7t
(NU4+N*U4*) +(T - F)+ (T*- F¥*) = (G - S) - (G*. S¥)
- Ka(U - U* +U0*) - (G-G*) +(F-F¥+ ER - HR), (7.5)

The defining relations for G and F are

G=(YXU)+ II(UXA) (7.6a)
G* = (VX U¥) = IL(U* X &) (7.6b)
Fa -%%Qt VU, - TTAU+ T U,h (7.7a)
»
F*=-19U - VU*+ITAD* - TU*A (7.7b)
¢ 7t

VIII. Integral Representation of the Field Quantities

It is desirable at this point to express the field quantities
in en analytical form that lends itself to the application to
specific problems, The method employed for this purpose is
identical in principle to that developed by Mgller and RosenfielalO
and by Ma end Yull. The actual technicue differs slightly.

We restrict ourselves at the outset to problems that depend
only on the stationary states of the system, hence all time deriva-
tives may be neglected. We further assume that the motion of the
nucleons in a given system is such that non-relativistic wave
equations will adequately describe them, Thus all quantities
involving the operator ¢ will be small and mey be neglected., The

latter approximation depends upon the interesting significance of X
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as a velocity operator.

The operator to be associated with the time-derivative of a

coordinete x 18 defined in quantum mechanics by

dx‘v:.%[lix-x:_ﬂo

dat

The Hamiltonian that appears in the commutator for thié case is
given by Eq. (4.1). Since the quantities depending upon the
field coordinates commute with the quantities depending upon the
space coordinates, it is only necessary to evaluate

[Fe(x-V)x + xe (VD¢
e x(a-vP) - (x-V %)+ xe (xV¢)
~C ¢ X,

hence the operator to be associated with vy is

\

-ifhvx > =ich Xy

Vy>ce&, , or v—>eX.

Consider
CHY = AP

where the )\ *s are the eigenvalues of the velocity of the system;

14 = _."L

V\LP ¢ LPV\

poap =2 ¢
so that for velocities appreciably less than the velocity of light,
quantities involving (¥ will be small and can reasonably be
neglected. A non-relativistic apnroximation for the meson cannot
be made,

A further simplification of the ecuations results from the



fact that the electromagnetic field cuantities need not be con-
sidered in the cases proposed herein. In fact, one of the reasons
for restricting the actual computational problem to systems of at
most one proton is to facilitate this particular simplification.
Implicit in this approximation is the assumption that the electro-
magnetie interaction between a charged meson and a proton is small
compared to proton-meson-field interaction., Of course this
approximation also neglects tpe meson-meson interaction through
the intermediation of the electromagnetic fields resulting from
mesic charge,
As a consequence of these approximations, the field equations

now become

V X(6+)+ K Uao (8.1)
V X(6*+8)+ KU*=o0

V-F-N + K'Uy =0 (8.2)

VeF -N + K U*=0

GmwV XU, G*a VY X U* (843)
Fz-VUy Fa-VTU* (8.4)
And the equation for the current density due to exchange of

charged mesons between nuclear particles becomes

3"s T Fx (c*+ 8)7 -IT*X (G + s*)/ <IfG,*F - U, F*/ (8.5)

¢

whereas the charge density is
"
I, se IS -7 -Uv*. F/ (8.6)
From the field equations we readily deduce that
a 2
Y U- K U=VXs* (8.7a)

vie*- K?uv*=vxs (8.71)
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2
Y 2U4 - K Uy = -N* (8.7¢)
V9U4* - |<2U4*= -N. (8.7&)

Now, in general .
f(w% -4 VIp)dT = f(w#» $Vp)edT = O
a
as the surface recedes to infinity. Also
v = K7 - S+

g{qjvaq’ - $[RP - 5(»—»')]}41 -5

T

- _ 2 ' d
LHTLPSOWCIF £<V¢ 28) T

S(r) = - ;%TKV%\_ 2O PGy dr

(8.8)

Having defined 5 (r-r') by the relation
V2 - K2 ac$§(rr)

for regions of no nucleons, we prove that
gga—r)dr = 4T

as follows

—~ (B (r-+)dT = ((vgt}» - kPP dT :([vo(vq))-r«"ﬂdt
T T T

= {wp-dw - Kafq)dt

T T
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Now  —kt -KF ~KFQ
ve - (_.c _Ke )r
r r3 I_:l
so we have

' e e K*
S(rk-+)dt = <__3 + 5 Fdr -kl e
T r t

and Lim ,§S(r- F)dt

1]

—KF -k 2 2
in [LHT@ FuTrREe - Lnrn«]

F—=r j ) 3
= 4T,
It follows immediately from Eq. (8.7) and Eq. (8.8) that
U (r') = - f (V X s%) CP(r-r') dr, (8.9)
‘fTT
and
(x7) *D(r - ) ar, (8.10)
U, (r') = | N r - r*) dr, 8.10
* e L
F(r)z- 1| [ MVP(z 1) ar, (8.11)
I \ '
G (r') = - V x [{Vxs¥ ¢ (r-x*)/ dr, (8.12)
w
where
4>(r-r') = o Klx = r1
|r - ']

Equation (8.12) may be put in somewhat more convenitént  form as
follows:
VXAV Pr-1)T
2V Pr-r)X(VESH) 2-VP(r-2)X (VX s¥
:-{‘V [PV - [V (vx s*ﬂ}.
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So (8.12) becomes

G (r) =_1_ f\? X[CP(VXS*)]d;
41r F

f O [V x( vxs*ﬂa: (8.13)
F

The first integral may be transformed to a surface 1ntegra112

which will vanish upon integration. Therefore

G (r') =-_1 fCP[VX(VXS*_)]d—r)
yTm F

a1 f(pfv Vest- V-V o7 ar
T

’-
. PV -V *ar-_| PV Vestar
) 4T )

The first integral may be partially integrated, the integrated
part vanishing on the boundaries as the boundaries recede. We

have finally

6 (r') = _|_ f s* V'VLPE:-__!_((PVV-S*;?
r 41

4T "
= _1_ j s*[K’cp- S (r - )74z
PR
-1 V Ve.star
(e
- _K? f s* ar - 1 YCPV V- s ar - s*,
4 4T
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IX. Calculation of the Exchange Dipole

Moment g£ the Deuteron

To calculate an exchange mag-
- netic moment, it is necessary to
obtain an expression for the mag-
netic moment of a volume distribu-
tion of current of density, T3,
The components of the electromag-
netic vector potential A (see
Figure 9.1) are related to the

volume distribution of current

(9.1)

i
Irp
T

Figure 9,1

where T = T (x3, v3, 21)5 x5, 73, 23

being the coordinates of r)-space, a region whose linear dimen=-
gions are small with respect to ro and R,

Now
- -> -
f (r2) =T (R - rl)

2

- exp[xl Ix -yy — 39

192-7f (2)

by Taylor's expansion. Hence

1 = exp v 2 52 7.
1‘2. [xlgx 19(; 192_7(R)
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So Eq. (9.1) becomes

Alx, vy, 2) = 1 J( X9, Y1, 27) exp /= 1,V / ( 1 ) 4T,
° 1 e [ 1 J (R (z, ¥, z) )

T (9.2)
The first term 1is

A=1 | 7at.
c R

T
Now I =|J| daj is a current element along. Y. So

- - -
Idr) |7l dejdr; = 74T,

Hence the volume integral reduces to a line integral along the
path of a current filament. All filaments are presumed to close

within the region, T , hence

-
A -__I__ drl = 0. (9.3)
cR ¥

The second term in the expansion is

A, =£f[-‘ ry - V(1) /74T = -;_fﬁl. v (1) 7 5;1. (9.4)
) (R) ) (R)
T .4
We employ the identities

- al /My () r} - /7 -y (1) 7 ary + fAr, - ¥ (1) ,
{(Bv@re) «Av@re sy vywTy

and

(ry Xar)) X V(1) =/ry- v (1) _/ ar, = far. - v (1)
1 Ta) XV =l &) om - Lomy (R)Jrl
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to reduce (9.4) to
-1 d{_[f- ..V (1) r} -_I_g ryXdr) X V(1)
§:£ 1 (R)J 1 % ) 177 TR

The first integral vanishes around a closed filament., Thus

2¢ (R)

The dipole moment of the current filament is by definition

A=-1_ ( ry Xdr; X V(1) (9.5)
¥

Hy =1

I r) X dry = 1 Ty X Idrl.
2c ¥ 2¢c

If we sum over all the filements, thet is, over the total current

distribution, we obtain the dipole moment of the distribution

U =% (ry X J)atT, (9.6)
o ‘

T
since

Idrl =JdazT .
Thus the dipole moment of a system such as the deuteron may

now be calculated from the following expression (see Eq, 8.5)

M ;]_Ifrx{ﬁ X (6*+s)/-/* x (6+5s%) 7
2
r

»
- ﬁ4*F - U4F:7} dro (907)
We evaluate two integrals that will be of assistance in
later calculations
-K|r =Ry = k|r =Ryl —»

1 e dr, (9.8)
|6 T Ir = R3] |r = Ry
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and

- klr'-R
g dr. (9.9)
|T = Rol
R - Rl - Rz
rl =T = Rl
To=T - Rz

rl-r2+R2-R1:r2—R

T2 =T+ R =Rz =1 +R

Figure 9,2

The second integral may then be written

-K |k |-KK|H+R|

‘ -

EYdF = — k+!?)€

leﬂ" y ‘P(”CP( ) #< It [+ K|
}, f

‘Kl"g‘ﬁ("il}‘;l
i) € dt

/éﬂ ;,1 Ib_,?| “;l

a



(mm P ) P (k) dr

/71’
| - —Mh( ~-Kjh+RI
+/_é’—ﬂakh T e
+—'—F: e—-mu/e-Km-/?ld
/éZT’} T A

Let the variasble of integration in each of the last two integrals

be X. They then may be combined as follows:

-k Xl -K [ X +R| -k [ X~ R _
| f’i e e . € }41.
el IRl | X +RI (X -

The integrand is clearly odd and hence will integrate to an even
function which will vanish when evaluated over space. So Eg.

(9.9) becomes

(9 cP()») Py dF.

5% ¥ e

Write the last integral as follows:
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-KIL-R)=K (k] .
L d
) hl 1ha=R|

%
Ih-R]| = (}f+ ﬁ°~9r,chose) ?

df = K Swedr,de dP

When these substitutions are made, the integrations over :P and ©

may be performed directly. We obtain

w Y Ve
-k (K +R?-2HRose)”
-2 g [@ ( ]c“—a
e=0

k=0

T ik (h+R)-Kk
Se

IeTRK dh;
=0
v (K RGER)-Kh
[GITKIC < d ks
baz0
> "K(’?"‘Q)" K’)';
S [ |
I6TTRK F

h=rR
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When the integrations are performed, we have as a final result

-~ ~kR
| g - L e
i?ﬁ"ir P Pk)dF A

(9.10)

Let us consider first the contribution to the exchange moment by

the term

- I ‘X ZTLI4 F — [14 F .ZCJF

e

57
I i [{ N;zr?m) dr?}} f N, v&c»)dﬁﬂd}
t{;r:( [{ fN @(})d(}{ jH;IVcP(h)JP} dr .

K

wl

Making use of the relation \ ((P (b) = P V(f} + qﬁ Y

we have

_ _ AL
- =, J‘( pc;)cpa,)rx[rv VN, - NVN.]cW,cW,JL
r l

}



1

. -k K
= -I—- g §F X [H,*VND‘NJ VIN“‘]G C(@'Jp? .
A

Henceforward
—k R KK
e = LP ) % = CP(@) .

L'?a X (VaNa) P dR, = N,[va«px@]d@

by partial integration. In the same way

yﬁ\)( x (VM )G = —(Nnifﬁ XV?W]C{'Q;.
LA

3

Hence the integral becomes

3977/<§ ﬁ [N F XV-’M [ NIF XVS”J}JWJ?.

K, f

Since V.LP=—I<R4P(?)
Vi = KR &K

80 we have

%— J N*Na (P*R) PR 4R.4R,
®K.
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,g-(( M <PXR) Y(R)dR IR .

(9.11)

IéJTCl(

Consider now the remainder of the exvression for the exchange

L xflux 6" -[a7x e o 3])ds

3;”7 g F HF P X{f(v xS ) xf }dmm;
},

FO0) QL) x{ ( (v, xS*) X f v, V. }d'p,g@a;
R

1]

3‘9 72

F PEIP x{((% xS,) XJV}&@A&/»

lf__.
32
m A 7

r

(wm@cb)x{g( v x5.) xfw S }am&
g

I ~

397’

(9.122a)

— ‘ﬂ_’(g (? x[(V, x 5" x5 [{dR IR,

32T b

3;zrrffp X[(V’“‘XS)XS J‘PCWQW& (9.12b)



3G

= g ( e x [(v, x 37D K (%Y ~S>)]4N‘W'€
321K (A (9.12¢)

_IT 5 V.S dFdR.
B'JJ?TPS?, S;QP x[<V:X59>X(V )]4) ?

2 (9.124d)

To illustrate the method whereby these integrals were
evaluated, we shall carry through the process in detail for
Eq. (9.12¢). The others may be evaluated similarly.

Consider first

S@.DX[(V.XS.*) SEA XS EI
K,

Let A = YV, V, e Sg. We have, after partial integration

over Ry
=§(§.*x A pdR, + ?’H@ﬂg(&*xw),
4 - R,
+ R, Ay (STxVg), + SLA (R xvé),

+ AV, (S Xr?,)xzdﬁ, + f‘([(& A,

K

@A) (5.*x v;a/»)é ' S,;FIJ (R xv, @9
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A v, ¢ (xR, 19k« KL A,

+@3 Ag )(S'txvl (P)z + S:z /'Q& C@XV,\P)E

PR (ST xR, [ R

This becomes,upon rearranging and collecting terms,

[ Ex) el v ([(R-W(ST 5 7.9) 4R
R, ©°,

" L,”M"(W v SR

= g (SXA) ¢ dR, + ﬁQ,X[Ax (v, ¢ xS,*)]d/?,_
R, K

Employing the identity

v x (W) = Voxu + (¥Yxu)

we have

((roxshyedR = [ (57 av ) dR
% k

so that
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|

_({ Rx[Ax (mapx sM]dR4E

R

(@ x[(vxsm) x Al €5
K

2

Hence

g [ﬁ x[(v, xS,7) x (v, V)°SJ)]LPCHP.J@

© %,

B gﬁgﬁ,}[g'* x (Ve v )| IR R

+£,(p,5 x[(\z Ve S,) X (0 XSI*)]AW@.

We now note that

V,Vap= Vg =B

s0 the first integral becomes, after two partial integrations

over Rz

) HUS&E} x S,* |dR.d4A,

R R,

whereas the second one becomes
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ggp x[(VV.-S) S (v dRIA
R,
W—’X[ v,V 5) V[ STRAR,,

L
e x[ (VeSS
[ 0e5) - SR xVe )+ (R x T ]
[ (0% %) - S Rxw) - (R a7 9) |

and

RV =Rxvg = KLR R,

Hence the term (9.12¢) becomes

(L5, 8> x5 TaR 40

QK
SVP X[(V;V N ) XV, gb]S*JPJrQ
(9.13)

In a similar manner (9.12d) becomes

(L (sm2) xs. 14k 4R



-43-

_ §§ ex[(WVieS*) -GS, dRdR,.
R

,ﬁg (9.14)

Now

gg o X[(WVeS:) V¢l S dR IR,

RR,

becomes, after two partial integrations,

- Sg (o S*)]S20V (Ve pI]dR IR,

R

P ({57 x (s mr xS E R
Ry

and

((ex[(vv-5%) Y915, drRdR
R R,

- ({ xS v ©RIR

R.R,

* + xS)@ N ) [fdRAR
el Sé(s;us. 3 v+ [(5xST @ ] 40

We now have for the sum of the integrals (9.12¢) and (9.124d)

-i&[(ga"\é-) xS [dR 4R,
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+

A

((er SIS %@ m pldedR

157 % (52 % %O L(5"xS)(T% R 9%
ﬁ‘.\

g[(S.*oii)xS;]elRfo’;

Ka

—

+
I B/ /N

s gg [S:* (53T P+ [ (3:257)(7, -?@]}amg
RR

(2]

= (( Cox S I[5a B (e n ) [dRIR,

K
_i |
_Qgg (S,‘ X S,) (V‘V“P)Jp'dpa' (9.15)

RR.

v IR

2

R
((exSOL37-T(vnwd] R

K

In a similar manner it can be shown that the contribution from

(9.12a) and (9.12b) is

—;zﬂ(%,*xsa)q; dR de,
AR,
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- ( px[(&" XY, @) x Sa [dRdR,

ﬁp X [G2 X Vo) x S.* [dR 4R,

Rk (9.16)

Hence the total contribution to /,{ of terms involv-

ing P is

J (terms involving ‘0 ) =

ﬁ (px R) MY Ny PR 4R R,

K&
léTTC ik,

+(€
32TC kKt

((M S,*)[Sa -V, (VoW ) [dR4R,

i
—(€ g((F‘xS,)[S,*oV,(V.*'V.“P)}W,J@
samekd ) ),

b

(K ggp X[(S,* XV, L[)) X Sz]d@dﬁa
ome &

R Rz
e [[ 0l marsTaR R,



~46=

The tems involving (J explicitly cen all be made to vanish
by locating the origin of our coordinate system midway between the
two nucleons, The total contribution of terms independent of (')

is

A (independent of (O ) /677'@. (((S XS)%C‘&QCIR
i

ﬁ(g x 5) (V- V¢)dR 4R,

[T K

I

ok

g@*x SV + K7 )R 4K
Ky

-k K -kR
Now qu/: l(t;?e - gKe
Q

and

s0 we have

kK
“e S’ﬂc’mff(s XS)<K Je  dR R,

R s (9.18)

This result agrees, except in sign, with that obtained by

Ma and Yull, It is obvious that for the deuteron MU = 0, as the

spin vectors sl* and S2 must be either parallel or anti-parallel,
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X. Calculation gz_the Potential Function

for the Nuclear Particles ig_the Meson Field

To determine the potential function of the nuclear particles
in the meson field, we must examine those terms contributed to the

Hamiltonian by the particle-meson field interaction. Those terms

are

B s am
Vo = 5 (Goy — £ BV T B2t

AP AP

¢ = o
+ 55 (Ger - T VYT, B)2
~ G B Y (UeTon + U T D E
—._;?% GV (G Ton + G Tue) B

(10.1)

If we consider only those terms independent of the time and
make the usual non-relativistic approximation for the wave func-
tions for the nucleons, Eq. (10.1l) reduces to (in 3-vector nota-

tion)

V= N*'U* + NU, + S*-G* + S-G. (10.2)

We may evaluate the potential energy from the integral

fVIdT
T

We consider first the contribution from the terms



NYUS + N U,

—'— N Pt)dR,

Ru"“ﬁ

(Referring again to Figure 9.2)

o O, N, Qo dk F fﬂ Mo POrOdR.
(_‘ Ky (10.3)

Next, the temms
* &
S| ° G T S? ° G

{S P ()G, - ’fr PGV, 7, S, IR, -S,}
K.

2

I
Y,
:t"&

_ KISk S) podk, *-’Cf(s - S) @G IR

L”Tf

_;L( (n)(s Vo Voo S)dR, - — CPG)(S A S)J 9
K

< l

— 2 (S.* > 5.1) . (10.4)
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Now

Q‘Q vv-s)dr - ﬂV (O 7-5)-(7-) V[T

_f(v. D yPdr = ES‘ -V Y dT

so Eq. (10.4) becomes

K (3 .5,) @R, + l(?((S . S2) @K,
L{

-'([ 5,7, 100 o [55™ wei
. K,

_2<S:*‘ Sl) (10.5)

If now we choose the origin at particle 1 (the proton) and
evaluate the potential energy function due to meson interaction

at the other particle, we have

B --R , ¢0)=Pu) =P,
VY, )=V, %P = vvPR

so /Including Eq. (10. 3)_7

V. - :{’—Jh’ O (DR, + _fm N, PR,
,
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F (S5 PER, + K ( 0 S,) PRIIR,
YT
K)Q
- :}%T [S“o S, VV@(@]A@ - ;‘,—Tﬁ%o&? ~V\?<Pc@]dﬁ7,
% K,

v

—2(3,*° S;), (10.6)

Now

N= + )PI’\?

and where I is the idem factor, so

(S,*osg)o(vvcpc@ - 3(SPR(S R [ K2
K 3

KK -kR

K l =
Rt ) TN L)

-5,

Let f(R) = (Jf7+ g+7:)° , then

V —.Z N, fﬁ &(P)dk t+ NJN §) R,
7~

A%

(*J



«Hl=

2 % ol +

+F3 K<Y (IR, + BEES .

Y RSJ & AN DR ACET
2 ~

SSt | [3R(GeR 3J] FRY PR 4R,
o R

S [3?(33.@ _ Sj{@ O df

FIS(H-R)IR = 2(37-S,).
< (10.7)

The above expression is written as shown in an effort to
bring out more clearly the precise nature of the integration
1nq1cated. The first integral, for example, expresses the poten-
tial energy of the neatron in the field of the proton; the
second integral expresses the potential energy of the same proton
in the field of the same neutron. Thus the potential energy of
the system is actuallynjust one-half the sum of the two space
integrals (ignoring the spin dependent terms, though the same
argument applies for these also). But the system possesses a
further degree of freedom--the isotopic spin variasble that
characterizes the charge state of the nucleons. The integration
should therefore be extended over the spin coordinates also,
as indicated bv the summation over i and j. After integrating

and summing, we have
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KR
Q)
‘1 (Z;P L'PN 4'.7}” Z:" ;>
-IcK
<
' 9 <THP PN +r&>~ Z—NP )(O—\ 0->
w Q)
+3; (T,,, Tr,,( +Tp~ Z-np >[<O~,°O;>
-KR
3@7-9)(03"@]{(@3
R+ K (10.8)
To consider the significance of the operator
— U a -_ G
T )?}:) + LPN)T;:)
pd
we recall the original definitions :
—_ ¢ C
Cve = 2
A
and
T = -Z- + ( (‘2
PN
ol
and expand as {ollows o , w @
3) [ _— \
T T2 v 5T ~ T,"’_(i":l T, —PH
2 B > :

The eigenfunctions of the isotopic variables may be written

explicitly

L= ($)(5)
1= (5D (0) ¥ (5]
- (%)(%7

2= () - (5]
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where the character operator-z;operating on the state func-
tions 3 and q.yieldsl4
Tg.§= ; TBI’(:‘L{'

Hence S'designates the neutron state and l{ the proton state of
the nucleon. Making use of the following relationsg,

T,35= ¢4 Ls= (Y 35=5

=53 Ly =-(S T, U= -4
it is easily verifiable that ‘

P'1'-0 P77 P00 PZ-T

! 3
Since the functions Z_ and }! represent two-nucleon systems

of two neutrons or two protons, it is seen that the charged meson
theory indicates no interaction between like particles to the
order of approximation employed herein. In the case of unlike
particles there is an interchange of charge states between the
varticles due to the operator P". It is to be noted that the
form of the potential function derived from the charged meson
hypothesis is identical in form with that obtained in the
neutral theoryls, with the exception of the operator F>~. The
neutral theory indicates interactions only between unlike

particles,
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XI. The Contribution to the Electric Quadrupole

Moment of the Deuteron by Mesic Space Charge

In Section IV we derived the expression for the electric

quadrupole moment

Tw
From Section VIII Eg. (8.6) we obtain

BEence we have

o, = E["J%f(v' X S,") § )R, -<-4—'F>§NJ ch(b%‘@]

K.

- [———f(nxs)@cww (— fN V@(»de]

(11,1)

[(( [:v,cpo,)x v, 0(&)] S}NQJE’J?
/C*T

+ ﬁ{[ V, 00 « 7, £ 0] 3»} N d R4,
R7K.

P

LI (S TS [V P XV, 90| dRAR.
etk

(11.2)



DD =

Now V, 0("1\) = [’«&(h} + M](r‘ é>)
h

S : B v - @

VR = [k po 4 4272_]0 7).

Let [KCP(}) + de_*)] - A

—>

V.Or) = A, G- R)

-5 -

vQ0) = A, (HR)
= A, (H-f:?t)

Hence

YALORSAAC)
= A A [(F-R) x (F+R))]
- A A [ (@) + (hx0)]

=2AA (FxR,).
Also
Figure 11.1 Vi@ ()= A (F+K,)
(See Figure 4.1)
8o V() X v, P(r) = A, ;42[(”@) X(}-A%)]

-—;Z_H,ﬁa (FXF?;!)
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Thus

2V 17 ¢ = 3 A xR - (xR
= ;2/‘:/{ ":},} (F X FJ)

where R = Ry = Ry, (the internuclear distance vector).

Hence

= /Zj%%gma SASYAS RV R ETIIRIETS
K,

(11.3)

Thus

<€Q> Jf (N > +/Y*5> H A, (PXQ)}—( 205’ - {}J}-:‘miv‘l

} KXy

e
(11.4)

where the prime indicates contribution from exchange processes

only.

Making use of the fact that

- (rcoscp Sin6) + (FSwd Swé)f + (rCoge)E

-

and R = Bk, B being the magnitude of the internuclear distance,

we have

(r xR) = (P Sice S)C = (FB SweCosP) Iy

8o that we have now

1677
A
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€Q) - ,ggp( ( ( 4.4, 8+ (3cov’e - D[ (5.0
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3 +
_%ﬂ A8, B ¥ (3e05% - DN 5,
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N, S’;}) Si<e COSP + Sive di c/ecfzp]dﬁ. dR,

(11.6)

-
where dr has been replaced by

r* Swwedrde dy.
It is clear that the integration over P will vanish for both

integrals, hence

Q) = o.

XII. Indication as to How the Calculation of the

FExchange Moment of the Triton Could Be Accomplished

Meking use of the general development carried out in Sectiomn V,
and particularly equations (5.8), (5.9), and (5.,11), it is
entirely feasible to carry through the calculations for magnetic
and electric quadrupole moments for systems of more than tvo
particles. However, it is obvious that the problem would de
extremely complicated if the system contained more than one
charged particle, since then it would be necessary to consider

the coulombian interactions that appear explicitly in the
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expression for the current density., Conseauently the tritonm,
a system of two neutrons and one proton, is the most reasonable
test case for the extension of the development herein. There
follows a brief development of the expression for the exchange

magnetic moment, analogous to the previous development for the

deuteron,

(D Proton

@ Neutron

(3) Neutron
SN
b=F- Ks
b= F- Ky

1 o
ﬁl=§EJkPXJ)JF
K

Figure 12,1

T mux (6 SN -mUt x (G ST

___IIj[jL14*’/: - qu f? +;]

(12.1)



We also have
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vu, - K%, =~ZN’ (12.4)

For the triton
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Consider the contribution from the last two terms
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So the temm
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(R +6)x(R-£) = =2(@ x)

so we have finally

87&((” N, (@x@>e AR 4R,

?”KHN N (K xR)e {ddeP

(12.9)

In exacily similar fashion the other terms can be shown to
yield conﬁributions to the exchange moment of precisely the same
form as those obtained for the deuteron, with the additign of a
complete set of identical terms in R,, Rz. Given assumptions

concerning the relationships between the vectors R Rz, and RS’

l'
it would be possible to carry through the indicated integrations.
However, there would then remain the problem of calculating the
expectation values for the dipole operator, teking into consider-
ation all permissible combinations of space, spin, and charge
wave functions that accord with the exelusion principle. Such

a task appears feasible theoretically, but almost prohibitive from
the computational standpoint, especially in view of the apparent

inadequacy of a purely charged meson theory of nuclear forces,
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XIII. Discussion

The purely charged meson theory is evidently unable to pro-
vide a mechaniam to account for the anomalous magnetic moment of the
deuteron or the electrie quadrupole moment of the deuteron in
terms of exchange pheonomena. Since the magnetic moment of the
deuteron is not the sum of the moments of its constituent
particles*, a contribution of the right order of magnitude and of
the right sign to this moment by the charge exchange process would
have been very encouraging., Also it might have been reasoned
that the distributed mesic space charge due to exchange would
contribute to the electric quadrupole moment**, The calculations
based on the charged meson hypothesis, however, reveal that the
exchange process contributes nothing to these quantities in
that theory. It would appear that there is a non-vanishing
contribution to the moment of the triton, but the calculations
were not carried far enough to indicate whether or not the
contribution 18 significant,

In connection with the problem of the tritom, it should be
noted thet Villarsl® has carried through computations for the
exchange moment predicted by the pseudoscalar theory. His
results appear to be of the right order of magnitude and of the

right sign for the dipole moment,

*U, = 2.7896 (Nuclear Magnetons)16
Uy = 0.85647 £ ,0003 16
16

U, = =1.9103 £ ,0012

**(eQ) = 2.73 x 10727 em? 17
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It is significant that a field theory of nuclear forces,
postulating a mechanism for the origin of those forces, yields
interaction terms in the Hamiltonian that agree qualitatively with
experimental evidence, In faet, considerable attention has been
given to a phenomenological approach t» the problem of the
deuteron in which the form of the interaction potential is taken
to be that predicted by the neutral theoryt9» 20, 21

Val, (r) + 71 (v)aeoy + 7, (7) S5
where

S0 =8 (0, e Tayer)/r2,

Another approach to the whole problem of nuclear forces
representing an extension of field theory to its logical extremes
seems indicated in the various attempts to develop a Unitary
Field Theory22 in which fundamental quantities like mass and
charge follow as consequences of mathematical consistency of

proper field ecuations,
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