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SOME ASPECTS OF THE MESON THEORY

OF NUCLEAR FORCES

I. General Discussion and Purpgse

The main purpose of this paper is to illustrate some of the

 elementary, general principles of field theory and its application

to nuclear problems. This object will be realized by selecting

a specific field postulate, by applying the general principles to

this particular case to obtain the field equations, and by applya

ing these equations to the solution of a particular problem for

which experimental data are available.‘

The field postulate that will be selected will be that of

the charged.meson theory in which the field quantities will be

'specified by two complex conjugate 4-vectors, U and'U*. After

having obtained the equations of motion for these fields (the

electromagnetic field will, of course, also play an important part

in the following development), these equations will be applied to

the problem of the calculation of the exchange magnetic mement of

the deuteron. The equations will also be used to obtain an

expression for the potential function employed to describe the

nature of the interaction between two nuclear particles.

These last two objectives are to some extent mutually exclusive,

as the charged-meson-field-postulate does not allow, to the order

of approximation employed in this paper, for interactions between
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nucleons of the same charge; whereas charged mesons must be assumed

if the phenomenon of exchange currents between nuclear particles

is to be predicted by the theory. A.more general field postulate,

the pseudcscalar field, is available to remedy this particular

defect but will not be considered in this work.

There are three reasons for the choice of the exchange

magnetic moment problem as a test case for a particular field

theory in its application to nuclear physics. 1) There is

considerable reliable experimental data on nuclear.magnetic

moments with which to compare the quantitative predictions of the

theory. 2) some of these data are apparently not explainable on

the basis of "classical" assumptions, that is, new assumptions

concerning the nature of intra-nuclear forces must be made--

perhaps even new assumptions concerning the nature of the nucleus

itself. 3) The problem.of carrying through the calculations

necessary for a quantitative prediction is a comparatively

‘ straightforward process.

II. The Field ConceE and Its Mathematical Formalism

.A field can be defined as a region in space in which at every

point there is associated, in a unique manner, one or more quanti-'

ties. The field equations are then the analytical representations

of the dependence of these quantities upon their position in

space and time. These equations are therefore the field analogues

of the classical equations of motion of particle mechanics. In

fact, as pointed out by Schiffl, the concept of wave fields as

 



employed in quantum field theory is actually a sort of generaliza-

tion-to-the-continuum of classical many-body mechanics.

As in particle mechanics, the task of setting up the equations

of motion of the system may proceed from several starting points.

For the purposes of this development, we shall start from the

basic assumption that the correct equations of motion can be

derived from.the variational principle when applied to a proper

Lagrangian

5 L dt = o. (2.1)

t' .

(For a more general discussion of field theories and their

properties, see Pauliz.)

The first problem is therefore to construct the proper

Lagrangian function to describe the system. To ensure Lorentz

invariance of the resultant equations of motion, the Lagrangian

shall consist only of quantities that are relativistically invar-

iant. Since we shall be dealing with nucleons (protons and

neutrons) and their interactions with an electromagnetic and a

meson field, the Lagrangian will, in general, consist of five

parts.

L a L' L“ L" L‘" L“r

where

LP: proton Lagrangian

L": neutron Lagrangian

L": meson Lagrangian

L“: electromagnetic field Lagrangian

Lt: interaction Lagrangian.

It should be noted here that fundamental to the field theory is the
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postulate that there is no particle-particle interaction, only

interactions between particles and fields. The specific form of

the component parts of the above function will depend, of course,

upon the nature of the wave equation assumed for the nucleons and

the type of meson field chosen for study. The general procedure

for construction of the Lagrangian for the nucleons and the

'electromagnetic field are well known and will not be entered into

here. However, the interacting terms will first be written into

the particle Lagrangians to illustrate the manner in which the

field assumptions affect the nuclear particles.

III. The Equations for the Vector Meson Field

Yukaw'a:5 was the first to recognize that the range properties

of nuclear forces could be at least qualitatively accounted for by

the assumption that there is associated with nucleons a field

which, if described by the scalar quantity3 d), satisfies the

equation

9’ _.

CI CI) “K (I) “ O (3.1)

"‘ ~«If-4:
where [j :: X7‘2—— 2%: 35?}! 3 (i):: It I

Irk - r1] being the distance between the 1th and kth nucleons. This

may be immediately generalized in analogy with the electromagnetic

system of equations (the above corresponding to Laplace's equation

for the electrostatic field) by designating 14) - U4, the fourth,

or time, component of a 4-vectcr, and‘Ui,‘Uz, 03 as the space
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components of the same vector and obtain the set of four equations

“'9’ 3-D

DU-KU8O. (3.2)

If we compare this with the Klein-Gordon equation for a free

particle .

4

s?- = p2+uzc4 (3.5)

which becomes

44262 Z O (304-)n \I .52. r

after making the operator substitutions

$

E -> 111 2 , p->-ih grad,

at

we see that we” may identify a heavy "quantum” associated with the

U field whose rest mass is related to the range constant, K by

K we. M-Ea-
‘E‘ c

The relationship between K and the rest mass of the particle

associated with the field equation

:1 I! - K3 «I» =4 0

may be interestingly brought out in another manner.

Separate the variables and designate the separation constant

by 002 2

I-

W ::. (A39. (3.5)

we

e—I 9‘ (t) .‘2 a.
m; % __ I< zw (3.6)

_ Solve the time uation b

°q ’ ° ”miteum t
LI) (t) = H 6

thus indicating the nature of the time dependence of the solutions.

To this point we have regarded the equation as a field equation.
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Now let us regard it as the equation of motion of a particle and

solve for the energy eigenvalues of this system.

E‘I’ = (f 9545

(few) 2.411;): 1:420) wt)

Choosing the negative exponediial,'we have

' E = in: me

But if 7:?- 0, the eigenvalues of the momentum operator are zero;

the particle is at rest. Since

w-o,E=Kne=Mc2

we have M = K £0

'6'—

This quantum, or meson, plays an entirely analogous role in

nuclear interactions to that of the photon in electromagnetic

quantum theory of radiation. In the former case, the nucleons

emit and absorb mesons in the same fashion that charged particles

emit and absorb photons. Hence in formulating the problem.math-

ematically it would seem reasonable to be guided to some extent

by the formalism already developed for electromagnetic radiation

theory. For instance, a charged particle in an electrostatic

field experiences potential energy due to its position in that

field given by

PT 8 e 4).

Similarly a nuclear particle in a mason field will experience

potential energy given by

PE-eU4

where g is a strength constant characteristic of the particle,

- 9

and has'the same dimensions as charge, cmab‘secl gm ‘. Since in
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the electromagnetic case the Lagrangian for the field is known

 

to be

an F 31

L- we dt (3.7)

1+

1:

where

= 2%.. 123“

F“? ‘QX. 9X55 (3‘8)

the CI)» '3 beingthe components of the electromagnetic 4-potential,

the proper Lagrangian for the meson field alone is assumed to be

3 2(*1

L-[IGPVI +_ KRIMFI }<lr (3.9)

2

I‘

where

as: ... as» (3.10,

However, the mesons in this theory are assumed to be

charged and hence will be acted upon by electromagnetic fields.

In general, the momentum operator, 3%,. , for a particle in the

absence of an external field transforms in the presence of a

9 ...). .2. _. £3- (PF
37? 9X? C34;

Hence the tensor, GF’ , will be transformed in the presence of

field as follows:

an electromagnetic field

2.. $3. > (,4 - 2. _. i? > u

GP, —> (9x? c.4- (PF P 9X, C72” (I)? F (5.11)

and its complex conjugate

7‘ .2 (e I :2 (e W I‘
...) + __ u __ __—_ + __ .

G5” (9)9. C“? CPP y C 9X), of 9P” j a”

Two sets of field quantities are necessary: one set to be associ-

ated with positive mesons and the other with negative mesons. These



equations were first set up by Proca4 as a device for linear-

ization of the wave equations for the electron.

Hence in this theory the complete Lagrangian for the mesons,

including their interaction with the electromagnetic field, is

assumed to be

.’ * r ..

M ., . . ’3

I. z ‘{ G’giC-f” + K2 ”PIP )cn (3.12)
It .4

(For a discussion of the mathematical formulation of the many other

types of meson theory, see Frohlich, Heitler, and Kemmer5, and

Kemmersg and for a detailed development of the theory of charged

mesons, see Bhabha7.)

IV. The Nucleon Equations

For lack of a better one, Dirac's equation will be chosen to

describe the motions of the nucleons. To put it in 4-vector‘

notation we proceed as follows: The proton equation in the

electromagnetic fi old is

E-<34> = C(x-p3-e(a-H) +(3mc1:1 _ (4.1)

:/’O 0— _. I O‘\

0‘ KIT 0) (3— (o —|)

Q o I _ o -( = I 0

V( 0) WC 0) °”* (o «I

The quantities at and p are Dirac's 4 x 4 matrices, and the I)" 's

where

are Pauli's spin matrices. Rearranging and going over to the



operator equation where

E-a>ih p—>-ihV.9...
9t

we have

"I
r- I

dig)? .. 3.: a.) — ergo-0007 — g; H) firs-smegma,» (4.2,

4*

Multiply through by (3' and define a new set of matrices as follows:

4 ..

FEE-((3%? a"=€ b” =-L;3€-=F>

6 being +311. It is to be noted that throughout these calcula-

tions 62 is not regarded as a complex number, that is, if

‘A z a -F£;b, AI f a - E b,

.A, a, and b being real quantities. Employing the above definitions,

we obtain

# P 69 ——- r1 0 .

I I” (ma-“- 4W J“ 3% It?” ”-3)

And fer the neutron

  

4 P2. Mto‘ __
3 Ir 2X? + t It)" - o (4.4)

where

:0? =.1_ .

on

If now we assume that a nucleon experiences potential energy

due to its position in the meson field generated by nearby nucleons,

then additional terms of the form 311 and gU* must be added to the

.above equations. And this brings us to what is perhaps the most

important concept in the whole field theory: the concept of a

mechanism whereby forces of interaction between particles are

generated.

We designate the meson fields due to the presence of nucleons
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by U and 11*. Let us assume that the proton interacts with the

U*-field, the energy accruing to the proton due to the interaction

being gu*. Furthermore the proton is assumed to absorb a negative

mesOn and become a neutron. Likewise neutrons in the U-field

would have potential energy equal to go and would absorb a

positive meson and become a proton. Symbolically this exchange

process that is postulated as the mechanism of nucleon interac-

tions may be represented as follows:

P tiM' —efiN

tld-ld*-e>fh

Or conversely

P +M+ + N

N+M‘+P.

To incorporate the new energy terms and the exchange process

into the nucleon equations, we first postulate that the proton and

neutron states of a nucleon are merely the different states of the

same particle. We introduce a new coordinate into the description

of the system. This coordinate is usually referred to as the

isotopic spin variable. New define an eight-rowed, one column

eigenfunction, 3E) , which we may refer to as the nucleon eigen-

function.

awe = (3:)
Define the following 8 x 8 matrices

t ... 11:59. J. 531.1 HPLI ,

P" a —2 ()0 (,‘OJ
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-7Li§-=i. JZLL —( —O’:(— 0‘0

tNP‘ 3 3- 1:0 :

The following equations are readily verifiable

an a (“2") m»? =0?)

The t 's are the charge exchange operators.

We may now write the two nucleon eouations as a single

equation

W(%" Erma (fir) " NP gaff “(Pu jar)

a” rig;— mm Err—chm me

All matrices in the equation are, of course, 8 x 8

P W" O _
X :— ~O~t ‘8’}, ,etc.

It has been shown experimentally by Rabi8 and his co-workers

that the deuteron behaves in an applied electromagnetic field as

though it possesses'a non-vanishing electric quadrupole moment.

That this experimental fact suggests the necessity of postulating

a tensor interaction term in the potential function of the

Lagrangian may be illustrated as follows: We consider the

interaction between elements of charge P2 C1 (6 in the

electron cloud distribution about the nucleus and the elements

of the charge ‘Oncic in the distributed nuclear charge.
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Figure 4.1

The interaction energy is given by

v= { “3'57“? (4.6,

where u e

I u h. X EQ(COSu.9) ’

W: {(-2 J "T h; < kg (4.7)

From the addition formula for Legendre polynomialeg, we have

‘ l “—M M r \

[99(C05u9> -: %.l (R - 53)”) I: (Cosge)f} (0056,0003 “(Cpe‘luj

Inserting this in the equation for'V and examining the terms for

1 = 8,1e have

:0“ 5,... (W -v~ meow->9 ><
<9M)! [ Padre

r;
Z'e

fR

N

by gyms 9") cos “(<22 “91) c1?“ (4.8)
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If now we assume that the nuclear charge distribution is axially

symmetric (that (0,, does not depend upon (PH ), then the only

non-vanishing contribution will be for M I 0. Thus

v, = f “if,“ Bees 93ij n," a (case) cm. (4.9»
'C 'Cue

It is the quantity

9C2 = [6v h2(3CogDe~ «1) CH)

C.

that Rabi detected experimentally. This integral indicates that

 

the charge distribution in the nucleus exhibits angle dependence.

But the charge distribution is a function of the forces between

particles, hence it is reasonable to assume that these forces must

also be angle dependent, that is, non-central. In view of these

considerations, we add to the potential function of the nuclear

equation the tensor interaction terms

59»
GT? . ‘*

55 T X G 3’ Z‘ r c
“—— 1‘2 K PH P? 2 K NP /°

The nucleon equation is now

4?? __~--~ *_

2‘ [i9 i53§9‘LEE”Z;W’C¥19 £3, (”F’Lfio 23' 7:97 L1f=

__ [3? 6,3){~ '7' it \ M (I

This ecuation is still objectionable as it predicts an integral

dipole moment (in units of nuclear magnetons) for the proton

and no dipole moment for the neutron. This situation could be
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somewhat improved by adding additional terms of the form

u~U~°H + TIN/P (HP—MG>° H

where M” and “P are the observed dipole moments of the

neutron and proton respectively; This paper, however, is con-

cerned primarily with the exchange properties of the charged

.meson theory, and consequently the incorporation of these

terms would be merely an unnecessary complication.

To put the nucleon equation into the form of a Lagrangian

we note that if’H is any Hermitian operator, the requirement that

g§{£]3/4423T3t=o

t2:
leads to

[(363) H 42 + J3 H<242D14I<H = o

Tt k___'__\

j [(gqj)}{¢ +§$>H+Jdtdi=~o

f L——-\.

HQJ2O , HSZ/ZO

I‘

Thus we obtain two equations, one the Hermitian conjugate of the

other. Hence we obtain the desired form for the nucleon equation

by defining
.—

eLPB“: E



and writing

§[yto fir.) ..qu (70.0 _2( TNP (”Ca ‘ (31???” MP

__ C993 MPG [VINO

2K EVE"Gm +INP GPv})+ I” 3; +TP”;§- @(4.11)

for the final.form.of the Lagrangian density of the nucleons in

the electromagnetic and meson fields.

For convenience in calculation, we break it down into

three parts:

“—'P r“ L C? 2)
L

L 2 2 4)? [Y 5—); ”3:1994- $42449 (4.12)

J4[2:9 .. (L

It}; “ 9X”? SD” (4.13)

——-I "‘ ”“ ‘ <

L :1 El? f((mo U1: + UPI: up)

3 6’? ._ . iv __ 4 \_
—'23t_< 3’ CNP‘ GP? + (p... 60.)] 95 (4.14)

The bar indicates that these are Lagrangian densities. To

summarize, we have also

 

L " - + K P (‘7 (4.15)
2

and __

E E” 2 (r9? F33,

% (4.16)
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fer the meson and electromagnetic fields. The summations are

over i protons and J neutrons, thus theoretically extending the

validity of the results to cases of many particles.

V. The Derivation 9_I_‘_ the Equations of Motion

Now that the Lagrangians for the system under consideration

have been set up, the process of deriving the equations of

motion is, in principle at least, a simple one. We proceed as

in classical particle mechanics and require that

5 J;(I.r + I.“ + I-m'+ L + LE ) dt I 0,

or, as in the previous notation,

g£[£[(LP+LN+LH+i‘+i“‘ )Jr]c(t =0 (5.1)

_To illustrate the procedure, we will carry through the '

variation with respect to. Lye in detail. The other equations

resulting from.variations with respect to L4: and (fé'will then

be simply written down.

As the Lagrangians have been defined, it is seen that the

coordinate Lfl° does not appear in-LP , L , or'L . Hence

I n

B Lcifl: (5L +8L><JJZ=O (5.2)

Consider first

8 LMAJQ. = [S GHQ—g0» +K2Up“; C(JZ (5.3)

.11 . "Ll

G6,: a ’)
:5 g(%—X: :4)“1M :-,L (Pydp)+KaI/(:§ifl('s’

' IJ1 _)

‘x



 

«r Os.)a (Xv),

:[ggl’(§::z J5, -- [:fflfiup) 632

3’ XPI) 3:. <

The integrals over $1 and $2 vanish because of the requirement

that S up (Xe), = Eufi (X4); =— O at the boundaries.

Remembering that repeated indices are to be summed and that

Gf’v : — va

111. (5.3) becomes

96 96— * /, 4x

éflgazo fi‘“+84“ 36:“: +91TG-(ov CR, 3%

+ K”; M): SMF]CLQ

‘V
.

[97352 “PIC—56?); + K0? [1;] S“? 4‘0“ (5'4)
[0.
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Consider now

EfLIc-(Jl [2 EFCSDUOTPNJ
5%)

.1).
4C).!

-23 )9)? T .1 ng‘p]CLD—‘

9K
PM

\
I

(5.5)

Considering the second term in the integrand by itself

Z _—;—:[f km) (P:[<9%) —I(Pp EU?)

”(92%) ”IQ? 3%)]9043-
(5.6)

(XM)

gZEEEWI‘; 92 SMLa:

(3).

“9(9):

53,-:(3? 3"”?g
2%] ((3

(x),

*;>: 39[
[Suki..-

(EEPVTPJ
E)

‘1“: as x?

<5
(0’?

('EQBCJyK-Ipyg
.1

"' /(°ng (E b ('F’N _(13)
f

E

...qu’
5643;;

(pyfflj
Ejgf

L
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6_ we -
Neting that 8' v “\E and recalling the remain-

der of the integrand in Eq. (5.5), we obtain

i; (-3,; asm>ape-We]

(5.7)

Hence

affd‘azffiifi?("‘I‘PXGe:2:55.; P 3”P~9)

..Zgfl? UPC: g + Muff] BLIP An = 0

Thus the equations of motion resulting from the variation with

respect to U’ are

(5-)) +71“ (83(57): fléfiTe): 93:)

~ 2:: 5’ J

jig 2r 7;. :75 —+ (<qu -—— o
,J

(5.8)

The conjugate equations are

“1%)(Gw “- 2—371?“ W22; a)

"'5'er— X’O'QPLE + («QM/a = O

(5.9)



-20..

The equations that result from the variation with respect to 4,.

are

9a»-————‘

F" (a ( _ 1" . '1‘

9X.) '— .114}, I} 4/, +41% G?” "u? at»)
(.

'37:: pl) __..1 *_( _

+ 2: -‘K‘ ’27-: b] MV(PN ‘0’? (HP 515 :O-(5.1o)

‘JJ

These last equations are of particular importance, as they

yield the expression for current and charge density due to protons

and charged mesons. We rewrite it as follows

91%» -1=.J.' 5:.”
QXY c c c

where

P "" Q,

%= Z “Pg—[Ii]???
(5'11)

L

and

N :0) ii...- ( ~ ‘l
(— :2: E :8 ((1,, (‘NP " (I), (PN)£, (5.12)

VI. The Hamiltonian
 

Since we will not be concerned with the specific form.of the

nucleon Hamiltonians, we will indicate them byHN anleP for

neutrons and protons respectively. The Hamiltonian density for the

remainder of the system.may be obtained in the usual way
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-_ " ° 4: o ___ — (‘1 — EH ‘ I

KEEN/“’75:”? “Lima“ L ‘L ‘L

The quantities W are the momenta canonically conjugate to the
us

field coordinates Ur . They may be obtained from the defining

relations

_ (9 T=_.£.2. H =——-——

«”r‘"cg2up,.’“'/P- CQMPJJ?P C9<Pm

where the notation LB .4 indicates 239°. The momenta are

9X.

“Tr = 1“ [67:4 “*ZKEE X94 Z—Ffl EVE] (6.1)
’° 9Q

é—(QLGM‘BEFF 7W Tm» £13] (5.2)‘
1
.

.
3
4

H

QT; 2' 52C FF+ (5'3)

The summation over nucleons has been neglected since we shall

be concerned only with the potential energy terms contributed to

the Hamiltonian by the interaction between two nucleons. Hence

we have QM

:PJFH H 9Q G634 7; E; B PHI-LP

#32“ P4 JQHJ ( 94%

fish "PET my“) 9t +2c5 9t
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:7!

+6;m< (40> <5):
VII. Reduction 2". B-Vector Notation

@[3804(0th a;q.) «3‘16

 

For purposes of further calculation it is desirable to rewrite

the equations of motion in ordinary B-vector notation. We make use

of the following defining relations between the tensors and 4-vectors

employed previously, and the S-vector that will be employed here-

after.

-G3 . 0 G1 -iF2

G p =

‘9 G gel 0 -1r
3

131 mg 135 0

plus conjugate relations.

”H3 0 H1 -iEz

FF, ..

Hz “Hi 0 ”“33

ml 132 1E3 0



<3)T> :. (Egipvrmg) LEEPXC"%>

(Mm) = (miffed?) 3i? CONE)

and the conjugate vectors 8*, T*, M* and the scalar n* involving

the converse exchange operators, T;..

Employing the above definitions, it is easily verifiable that

the equations of motion become

(V-IIA) x (s+s*) - (g 9 - HA4)(F+T*) -m*+ Kan ,_. o (7.1)

c 91

(V -m) - (F +T*) - N"‘+ Kan4 - o (7.2)

plus conjugate equations. Equation (5.12) becomes

l"- [[5 x (G*+ 5)]- flfi“ x (c + sq] -flfi4*F -U4Fj7

O

-]I[fi4*'r* -U4§7 (7.3)

for the current density and

m .

J4=elTfi°F - U*- 37 -e1[fi-T - U*oT_’f7 (7.4)

for the charge density.

Again it is to be noted that the summation over the nucleons

has been neglected. It would be entirely feasible to bring the

summation through to the above eouations, and in fact necessary,

if one were to apply these equations to the problem of the Triton

for example. This paper, however, is in the main restricted to the

two particle problem, 30‘we shall dispenae'with the many particle

notation henceforth.
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The Hamiltonian in vector notation is

—s‘-'—N . 2g. .25 T .25.! +
H H+H +%_;[(F* 91")HF 9t)” )

i .

(T* . 23 )+(E - %§fl+(m .U)+(M*- U*)

9t

(NU4+N*U4*) + (T - F) + (T* - F*) - (G - s) - (G* - 3*)

- K3(U - U* +U4u,*) - (G - G*) + (F . F*) + 9.:(E2 - Hz).

The defining relations for G and F are

G: (VXU)+.I[(UXA)

G’" . (VXU*) -]I(U*XA)

r . -124 -VU -I[A4U+-]IU4A

'6' t 4

..—

*

F* s --1_ 9H - VU4* +1IA4U* - IIU4*A

c 2}t

VIII. Integral Representation 9_f_ the Field Quantities

It is desirable at this point to express the field quantities

in an analytical form that lends itself to the application to

specific problems. The method employed for this purpose is

identical in principle to that developed bvadller and Rosenfield10

and by Ma and run. The actual technioue differs slightly.

We restrict ourselves at the outset to problems that depend

only on the stationary states of the system, hence all time deriva-

tives may be neglected. We further assume that the motion of the

nucleons in a given system is such that non-relativistic wave

equations will adequately describe them. Thus all quantities

involving the operator a will be. small and may be neglected. The

(7.5)

(7.6a)

(7.6b)

(7.7a)

(7.71:)

latter approximation depends upon the interesting significance of O<
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as a velocity operator.

The operator to be associated with the time-derivative of a

coordinate x is defined in quantum mechanics by

dI-Vx-i'EI-I-Ig.

dt

The Hamiltonian that appears in the commutator for this case is

given by Eq. (4.1). Since the quantities depending upon the

field coordinates commute with the quantities depending upon the

space coordinates, it is only necessary to evaluate

[-C(M°V)x + XQ(D(°V)]LP

—-cx(a-v<}/) —Q4/(0<°Vxx)+ xQOchp)

—Cwu.

hence the operator to be associated with v: is

H

vx~>ca‘ , or v—>co<.

Consider

COUP=ASD

'where the 1% 's are the eigenvalues of the velocity of the system;

a :3.

(2(4) (L L%:4

waw=gwe

so that for velocities appreciably less than the velocity of light,

quantities involving (X will be small and can reasonably be

neglected. A.non-relativistic apnroximation for the meson cannot

be made.

A.further simplification of the eouations results from.the
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fact that the electromagnetic field ouantities need not be con-

sidered in the cases proposed herein. In fact, one of the reasons

for restricting the actual computational problem to systems of at

most one proton is to facilitate this particular simplification.

Implicit in this approximation is the assumption that the electro-

magnetic interaction between a charged meson and a proton is small

compared to protonemeson-field interaction. or course this

approximation also neglects the meson-meson interaction through

the intenmediation of the electromagnetic fields resulting from

mesic charge.

As a consequence of these approximations, the field equations

now become

V X(G+S"‘)+ ((28.0 (8.1)

V x(G*+s)+ K2U*uo

V-r-N* + (<2U4-0 (8.2)

V°F*-N + 1(2U4*:0

G-VXU, G*-VXU* (8.3)

Fs-VU4, F*I‘VU4*O (8.4)

And the equation for the current density due to exchange of

charged mesons between nuclear particles becomes

in: I[ fix (G*+ 317 4116* x (9 +8*)] qyfigr - U433? (8.5)

c

whereas the charge density is

H

J4 ueflfi-fl-W-fl (8.6)

From the field equations we readily deduce that

9 :2

VU'KU:VXS*
(8.7a)

vaw - K"1 (1* =V x s (8.71:)
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2

V

9 3

:2

U4 ' K U4 3 'N*
(8.7s)

NOW, in general

fl

((4/79): - amber = (Owe— swym : o

0"

as the surface recedes to infinity. A130

7391) = KN}— Sfl- r)

so

{{‘PVQCP " TD??? — $0-t’)]}c(‘i = o

“C

(WICPSO' FM? = - [(Vggb— («9494mm

7 t

m 2 gmHelp...
(8.8)

Having defined 8 (r-r') by the relation

VOL/J '* KDQD . - 8(r-r')

for regions of no nucleons, we prove that

{go-mar -- H—

as follows

—— {8 (r- (Oar = {07942 — (842%)? ={[Vo(vq»)-K7+j]dt

T I
C

=- {Va/2.60— — @qu4:

r
U'
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New ‘kai
-Ky ~KF

76 .. _§_ g Ive “>

r " 3 r

so we have v

. e—Kr —K KP

EM)“: <73 + 5'65 ”VK)?"
V’

and Lin SS“- ”((1

 

~—)<r «r 9 2

1m [4W6 + W‘Hve — 4TH K]

 

f») r->O
3

= 411'.

It follows immediately from Eq. (8.7) and Eq. (8.8) that

U(r')a- ( [(VXS*)?(r-r')d;, (8.9)

447

and r

‘U (r') u l ‘r’ N*’ (r ~ r') d:, (8.10). ....“ . 4»

F (r') = - ' {W‘V‘lph' - r') 3;, (8.11)

1+1T r '

G (r') n - V Ifl'V X 3*) ¢ (r-r'_)_7 dr, (8.12)

Tn

where

(Pu-fl) = O‘KIr - r'l .

Ir - r7)

Equation (8.12) may be put in somewhat more convenient' term as

follows:

V XJVXS*)LP(r-r'j_7

=VcP(r-rv)x(vxs*) =-vP(r-rv)X(va*)

:-{‘V xfip(sz*_)7-47B7X(VX 8‘17}.
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30 (8.12) becomes

G(r'):__)___ {V X[6P(VXS*_)7d;

‘ITT y

.. 1 f (P [VX( sz*_)7dr. (8.13)

WT )

The first integral may be transformed to a surface integrallg

which will vanish upon integration. Therefore

c(r').- I {(PfVJHszfiflu—r>

LHT r

gt) [f' V7 V7. 8* - )7 o‘V’ sf7’&:’
...L.

‘f7r r _9

.) pvovs*a'§-n cPVV-S*dr

«+17 r 4V V

The first integral may be partially integrated, the integrated

part vanishing on the boundaries as the boundaries recede. ‘We

have finally

G(r').-.__I__f 8* Vchszf-l [(PVV-yg:

477' r471 r

=___L__ j 9*[K2(P - 8(r-r'l7d:

‘7’ r

-) @Vchd-r)

LHT , a

-. -4>

= K7 I 3* din-t [(9 V Vos*dr-S*.

4 r 47

)— (8.14)
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IX. Calculation.2£_the Exchange Dipgle_

Moment 2£_the Deuteron

To calculate an exchange mag-

’ netic moment, it is necessary to

Figure 9.1)

 
  

obtain an expression for the.mag-

netic moment of a volume distribu-

tion of current of density, 313.

The components of the electromag-

netic vector potential A (see

are related to the

volume distribution of current

1‘ (9.1)

(21‘

C'

Figure 901

where Z: t (119 yl: 31); :19 yl’ 21

being the coordinates of rl-space, a region whose linear dimen-

sions are small'with respect to r2 and R.

New

—> --> ->

f (1.2) I f (R " r1)

IOXpZ—I— -Y

5’29

by Taylor's expansion. Hence

12
1 exp { -y —— 7 (1).

1‘2 . x1?9X yl 9:41-22 (R)

.2192]: (R)
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80 Eq. (9.1) becomes

A(x, y, z) -- .T( 11, yl, zl) expErl-VJ( l ) d'C .l

3. (R (I: Y: 25—)

I:

(9.2)

The first term is

11-1 _J_d‘(.

c R
T

New I am dal is a current element along. X. So

4 -v --e

Idrl .IJ) daldrl . 181‘.

Hence the volume integral reduces to a line integral along the

path of a current filament. All filaments are presumed to close

within the region, 7.- , hence

..5

A 'Ll... drl a 0. (9.3)

cR k

The second term in the expansion is

A, = i [E 1'1 ' V (29] Jdt In .2'f51 0 V (3)] $1. (9.4)

c (R) c (R)

‘C )1

We employ the identities

a {51- v g] .,} - 5.- v (1.3.7 ..., + [al- v 3.1)] :1.
R R

and

(r Xdr)XV(_l_)=r-V(_l_) dr-dr-V(_l_) r

1 1 (R) [1 (12)] 1 1 m] 1
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to reduce (9.4) to

-I d{_/_I-‘ °.V(_1_) r} -}_f r Xdr I VQ).

TEE-g 3‘ (11)] 1 2c X l 1 (R)'

The first integral vanishes around a closed filament. Thus

(R)

The dipole moment of the current filament is by definition

A,= -__:L_ I rlX drlx VLL). (9.5)

2c 8'

[My - _I_ r1 X drl =_l_._ r1 X Idrl.

2e 2c

8 a X

If we sum over all the filaments, that is, over the total current

distribution, we obtain the dipole moment of the distribution

[u =1;- (r1 1: flat, ’ (9.6)

C ‘ _

'Z

since

Idrl : J'd'C .-

.Thus.the dipole moment of a system such as the deuteron may

now be calculated from the following expression (see Eq. 8.5)

M ;.]_I_{rx{fix (G*+s)_7-[J*X (G+S*)_7_

2

. r

-,

- 54*3‘ _ {1415?} dr.
(9.7)

we evaluate two integrals that will be of assistance in

later calculations

-K'r'Rll " K’r-Rzl ~—>

l e dr, (9.8)

1517’ (r -Rll (r-Rzl
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_> ~KIr-Rll -k)r-R2(

1 re 8 dr. (9.9)

[677? )r‘RlI )r'Rzl

P

N

\

l\

l \

\ w.

) \R R-R -R
f; l \ - l 2

9' I . ..
Ea) \ P-R1+R2

/ : if“ \ I'l =~'1‘ ' R1

{I i // F: r R
23"" 2

(3 /

‘ 1‘ 31‘ 4—H ..R g —R
/—§ 1 2 2 l I‘2

  

Figure 9.2

The second integral.may then be written

)6317’

’-

7.:0<+)<P(b)d)/= --'”JG +€)<‘3
Ir.) (Mr?!

‘K ”.9-

Hf.) c:

)3 Iblel

( _.

+/éTT

thl

r2;r1+R1-R3=r1+R

—)<(),+R(

 

(bl

#_—

RI—KIHI

A)
1.



: ...!— (E‘L’Qp) @(FJCPCI‘a) C)"

P

 

luv"

) 4 —)<(),( 4(1),).581

+ 277)) 6T7)" em C“

+ ...L. E €—!<H./ <3 ~)<l)r.~/?)J

léIT’ t. W 7b- (W h.

Let the variable of integration in each of the last two integrals

be X. They then may be combined as follows:

 

—)< (X( -)< ( XV?) -!</X— m \

t [-13 C {e + €—_. }<(21.

75W; )1) (X +8! 11—- r?)

The integrand is clearly odd and hence will integrate to an even

function which will vanish when evaluated over space. 80 Eq.

(9.9) becomes

_:G_ (90‘!) LPCA)<))‘,

327’ ,

Write the last integral as follows:
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e-KI)-)<R)-— (m9

pee <4).
3;" ()2) ))'‘N‘

 

 

’/

I).-f\’l = (52+ V12"? R0055) D

CT)“: =- )3? Smeclbde CH)

  
Figure 9.3

When these substitutions are made, the integrations over a? and 9

may be'performed directly. We obtain

... (<09 K? )fic )9“ IT- , + -;> 9 086

I67fR’K

)zo 9=°
3

00 -K()'2+R)-K')‘a

Se

 

{are ...,

r.=o

+f) R —K(W“('a)‘K/"a

IQWK 6 9“:

(“f-0

00 ”KOVR)" (V);

+ if. e a

Ib‘fl'KK (a.

).= R
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When the integrations are performed, we have as a final result

_> ~K’R

1...?)erIVWDQO‘JJd)’ = «Ci—576:3?

’5"? )~ (9.10)

Let us consider first the contribution to the exchange moment by

the term

5%: F x [uJ‘F —u. F70!)

I“

{r x[{$fi@fi,gp(a)d@};-iFILM VcPChHRflJF

fig; g)X[{T;r§N.*cP(h>dIQ}{-'W21wwdgfld.

’3

N
H

Making use of the relation V ((1) (b) 2 4) de + ('6 V4.)

we have

= “331574) 490.3490.) ( xgwfmer/(flclfldfiid)

)’ Q,
J-
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- R

F x[w,*gn,—N.Vfl.”je N ((67.49...H )

L
u 24
’
(
H

7
C

5
0
"
“

8
3
"
“

Henceforward

-#((§7 -FT/?’

:1 ,) S§;_ 1: (F?:>.6 LP R7 C?

NOW’

LR: X (VJNJWJCJ’QQ: N2[W2WX(Q2]C(‘Q2

J

by partial integration. In the same way

{A}: x (EN.)LJ)d@ -_. "'{Nirfi XVDSULHQQ.

pa. 4%

Hence the integral becomes

3.7),.) Q[N ’Y F Was/2) [N7M?Wflfism.
IQ)?

Since Vawz—KRCP(?)

Vac/u 1075490?)

so we have

= £117?(N. (FAQMMR’JAQM.

m?
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,1“ N Na (p X?) Mew/8.118.,

(9.11)

 

:léJTC Iv

Consider now the remainder of the expression for the exchange

%—£1 xflu x (63+ 3)] -[u*x (5.1 angel)

= -IIK:()>4>(1.)LP<8)X{((V, 219*) xf Sagdmfiich

3977 r 8‘ )Q
J

+ -> ‘ , 0

315739 <90.) M1.) X{ f (V, X Sf) XIQVJ Z°§JPdRHm<H

9,

+1...jfim1><P<1>x( ( (v.11) 21 (37}11211211

3'7" )1 R’
.1 ’9:

   

;@(1D(>C*1)X§§(VgVH3
) XJVZVm°§}c()Q,J/€dl

9.1
32/7” 1

’Q'

__ {W “D “'

— fig ) P XRV) X 31 J X SJNJCW'C‘VQ (9.12.)

...:(1111111111111a
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+1 {(5 x [(v: x Sf“) >< ($7.17a 61)]94343

69.1?
(9.1212)

WWW. x 3.) x (v. 1.33)]1115’143
R

3 (9.12d)

To illustrate the method whereby these integrals were

evaluated, we shall carry through the process in detail for

Eq. (9.120). The others may be evaluated similarly.

Consider first

Sfé’x [mm x (1111-3331119.
R.

Let X . v; V: e 32. We have, after partial integration

over R1

=§<srx14>q1dr< + Z’flegfimfxwl

R. 1 a

#32141 (shunt). + 3,14,. (fl. XVN’)»

1141\zx41(s.*m.>x]ae 11’flm1x
R’

+Qz/4Q(S,* x V3409 + S'Jflg (Q X V1409
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it :> . ’4‘

1 143% MS. 11233111). 1 1g“;

+ «9,3 [Q3 )<S,* XV: (P); 4' 342 Ha (p: X VA”);

+141V.142(S.*><1<<)2]a1€.

This becomes, upon rearranging and collecting terms,

3(37‘XFO4/dp. + (“9.11057 x v.41) 1W.

19‘. 1?.

+ LIHI:R ° <V. ‘P X Sikflclfi

= g (37mm), 1 jgxpmwsfflae.

R
9.

Employing the identity

V X (fab) = V43 7%! + $(VXU)

we have

$07. 16.34118 - {(sane

1. 1).

so that
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31.

=§§ Q, KB! x (11,111 3*):{dfl336

19.?)

{a x[<v,1s.*>m]11w@

A?
3

Hence

Hf? xlm x 2:.) 1 (v2 1.133)]11419963

IQ?
'3

._._ $1.815: x (v. may 1159,1113

1%)? WVB 17,1 3.) x (W x Sfflewa

R.

We now note that

VeVNP: V,v,1p=§

so the first integral becomes, after two partial integrations

over R2

-—H[(391§2) x 3"]31990.

R. F;

whereas the second one becomes



8la

Baa/”Pgx(gu'SNa/gs'-

semooeq(PZI'G)aeuuemIsttmts9HI

(QT6)

Man:MM(8MN":31»

erwfisxceo‘5flfl—

ssmooeq(031's)was;eqqaoueH

'(‘ax’a)£fi==WAx95-——1Mx’2)

[(115chw—mmmfig-(18.1%)]:

[WI/lx‘21)+(rb14x3)][1'3103mm]:

1M[.‘g°(‘S°‘A‘A)]Xd

d a

“aw/HS[451°(‘3”A(1‘)]X%

ana

9P3FM'A)[.'3°
€311.11'14)]x33

‘8?-



weepsXC§°‘S?]tfi*

(pzt's)pun(031's)stsxfiequ;eqqJOmuseqqJogQABQmouem

C‘a‘y

'3,1312%zoz)(;gx‘s)j+[(rb'4MS)x3””+

be

rd?3?[(rpANA)Z°*'Sj<65xa75S"=

my

tags?‘3[4591'(.1'3"’33if”d38

pus

:1'1

armffivs2-23763x;§>]+W‘A‘A~‘8)X{8]}3g+

a»2»

”WWW‘A-‘A?‘Av‘S‘JCJSM)35'-

‘suotqexfiequ;IBIQJBdom:x9159‘semooeq

{aIv

wasIn:H1.631229%d83

MON

(fI'G)fly
a:

'W'cyP‘gMno(.’S°M\>]>’-dS—
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“L“(FXS
M31°VWM

V1¢HARJ
Q

“{[3'x
51 V V= 9’9][(3XS

.)(Vmflpm
g)

M1

+S§[(3.*°
§)XSJ]JRJ

A§

R;

RP X31>[31’°V.
(V. 1V. 41)] cm. 4/13

”3

1 fl [3; x (S.*-V.\7.4»)]+[(3.x3,*
) (V, ~t1fl}amg

R.1?

2
%

U

=.e°§(Px§*)[3 V.(V,1ch)]14ram

P

—33'*,(<PXS)[S
0V,(V,ochpflclRJP

1,;2S3(3*x3,)(vv-LPNRCIP.
(9.15)

RJ?1

In a.similar manner it can be shown that the contribution from

(9.12s) and (9.12b) is

~2H(31*><S.)LP 1W. we.

are;
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- gmmrm 1) x 3.111214%.

W;

+ Up x [(3. x v. 41) x 3,711.11;

’7'”: (9.16)

Hence the total contribution to M of terms involv-

ing P is

M (terms involving (0 ) =

 

“3 ." (re cm, are;

levcm‘tig ((9 x R) N N’ (P >

 

+(€ it 3 °V Va°VJ¢ 3/949:

32V¢K#£(Fxg')[a 9( D]

R. a

— (Q

Barrow}

(F. x 3.35?“ «(2
&1)ij

R1

(p x[(§," x v.41) x 321M. 41?.

p
t 2.

 

RF
-LeK g

 

397m J5?

 

K 11

+3(2:Te% U Q X[(52 X79 9'") X 3' JAR (W‘-

R.(9 (9.17)
1
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The tenms involving f) explicitly can all be made to vanish

by locating the origin of our coordinate system midway between the

two nucleons. The total contribution of terms independent of (7

is

11 (independent of f7 )

mm“Km:XSN’CWCW

—I ”(an ng-vWR M1
mm e.

  

4 0K? 1£<S' X3007V+KDNJCWCWJ'
xrr

Now ‘2 -—kffi?’ -—Fffi?

'V7JDCL’ =' #7 E? -— lec’E?

g?

and

V" == in.§f

(1

so we have

 

-kfi?

M: "- WQDMff(SXS°W—%)€ asap

Rafi?
(9.18)

This result agrees, except in sign, with that obtained by

M8. and Yull o It is obvious that for the deuteron ‘1

spin vectors 31*

= O, as the

and 82 must be either parallel or anti-parallel.



X. Calculation 2£_the Potential Function

for the Nuclear Particles in the Meson Field

To determine the potential function of the nuclear particles

in the meson field, we must examine those terms contributed to the

Hamiltonian by the particle-meson field interaction. Those terms

-- _ _ 94 ' QUE

V1 “20(Gg4 2E5?) ENE)???

_ "‘ P‘i Do!‘t

+ 2c(91+ 1,; Q 7 ”61192) gr-

._ g, E (WU/1111 + 11,} TM, ) J:

632?}? E (”aw TM “L GP: INJE-

(10.1)

If we consider only those terms independent of the time and

make the usual non-relativistic approximation for the wave func-

tions for the nucleons, Eq. (10.1) reduces to (in S-vector nota-

tion)

1.: N*U4* + 11114 + s*~ (1* 4- so. (10.2)

we may evaluate the potential energy from the integral

VIAT

If.

We consider first the contribution from the terms



(Ya/(4* + Na.)

2 a ~—'—N M20011?)1;,erwa 1117/1 <f

A
P
R

(Referring again to Figure 9.2)

_.[TNH 1911,331241 ELI—Tip! N (PUHKL

”(a R, (10.3)

Next , the terms

LHT
R7

+39Eij
4’0’06? ”'LfoO'DYI

V “(SC)“(_ 3!]

A7,

_(_L(_.2 30 S)cf(r1)cilx7 +£_:[(3.g‘gkpofir)
?

WT;

;z

_ ...L 1001963111; 1118311121 “fiffifibfiwfiifi’flfl?
WT}? A7

J l

“ 131(3):) ° 31> . (10.4)
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Now

$19 VV1 8) Ar = [[VM) V13) 11(V-S)VGD:(JZ

z —f(V-S)V<PC” {31va at

so Eq. (10.4) becomes

ifl(3.x 3,1001% 1 fifeEmma
L{

“a

1— 11 (5,313,137, )3 ()(nfldrfi, — fiflSySflV Mafia

. K.

—;Z(Sl*° 32>. (10.5)

If now we choose the origin at particle 1 (the proton) and

evaluate the potential energy function due to meson interaction

at the other particle, we have

? = -? 49(1) = 490191 190?),

V, V, 49(1,)-V1P(1.)= (77ch)

so [Including Eq. (10.3)]V

(V: = 7117”)” N OWN)? 4- [firLMUVIVCPUVMW,

V1
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Q

+3115 3: S, VPWDCMZ, + £3.16; 2° S: ((90069.

WT R 4/7 5?

3 l

-33. 3N(SJ°’Q> —SJ])[(’?> (0(5))0‘62
———— 3

471 ’9

fl

— 2i - (3595;?) _ 371%?) @CWDCW,
W)” K p9

+ Semis - 2(35 39).

a (10.7)

The above expression is written as shown in an effort to

bring out more clearly the precise nature of the integration

indicated. The first integral, for example, expresses the poten-

tial energy of the neutron in the field of the proton; the

second integral expresses the potential energy of the same proton

in the field of the same neutron. Thus the potential energy of

the system is actually. Just one-half the sum of the two space

integrals (ignoring the spin dependent terms, though the same

argument applies for these also). But the system possesses a

further degree of freedomp-the isotopic spin variable that

characterizes the charge state of the nucleons. The integration

should therefore be extended over the spin coordinates also,

as indicated by the summation over i and J. After integrating

and summing, we have
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3C0PWXVS°W gig-W.

”733‘“ (H?) )9 (10.8)

To consider the significance of the operator

.... a) (a) __ (0 (a)

L NP TPN + (- Pu Twp

(2

we recall the original definitions

 

‘-

—- _ c,—<z;
(Np -

and

-‘(+(L

‘17P" '“ ‘ a

2

 

and expand as follows: ) CD) ) c) ()

<0 (2) 0 —— U) —- C) ‘ 3

7:NP ZZWV 'F‘Z;W’ YTHF’ (I (I -F'7r; .(3 _ H

9 fl . 31 '

The eigenfunctions of the isotopic variables may be written

explicitly

1‘ -——— (€363)

Z“ VHCETWLJ + (2)00]

7L3= {mm}

1‘2 Hem) 42x10]
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where the character operator (goperating on the state func-

tions 3 and It yields 14

T3 .5 = § T3 (’L = - (4 ’

Hence 5 designates the neutron state and K the proton state of

the nucleon. Making use of the following relationsg,

T‘§=¢( T,S=~(b( T3§=§

1', v1 = S T, 4

it is easily verifiable that

P“Z'=o P"Z"=Z’ P7330 1372-24-

I
!

-('§ T3‘4“"\

Since the functions 1' and ZErepresent two-nucleon systems

of two neutrons or two protons, it is seen that the charged meson

theory indicates no interaction between like particles to the

order of approximation employed herein. In the case of unlike

particles there is an interchange of charge states between the

particles due to the operator P" . It is to be noted that the

form of the potential function derived from the charged meson

hypothesis is identical in form with that obtained in the

neutral theory15, with the exception of the operator P“. The

neutral theory indicates interactions only between unlike

particleS.
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XI. The Contribution to the Electric Quadrupole

Moment of the Deuteron inesic Space Charge

In Section IV we derived the expression for the electric

quadrupole moment

EC? '1)?" (712(3C059‘914‘DJTM

I:
N

From Section VIII Eq. (8.6) we obtain

Hence we have

a 1(—Z’—%((V‘ x 3,?) (P (0% ffiflmvmmd Ki]

K. (V:

-11“ [714% x 3;) 4) 09W. 1 -q——',-,)[1V.* V<P(od€].

R A, (11.1)U

a a E[[H{[vfipog x Vipofléj mama;

ILTTQ

pg

ng{D7200,»NW] Sle,was

“.81?

:31 L);(”33* 4-H. 3)[Venn xwaflama.
7

(11.2)



Now V. 00'!) = [K@(}') + @]<:“ é?)

‘VVQ 2 = J (a Q—(Jz) —>“ —_'>
Mr) [W *> + a ](r K421).

Let [KQOJ + CBS—0]“:- A.

‘>

V.<P<r1)= MF- 1‘3)

$4001 = ’42 (he)

=fll(r+f:’:)

Henc e

 vacpm X V430.)

= ,4,A2[(r~/<J.)x(*+@]

... 4. ,4;[(+xr1’/L)+(WQ1>]

=2I4./42 (H1471).

Also

 

 
V, (P (n) = )4, (H191)

Figure 11.1

(See Figure 4.1)

so V2 (002) X V, (DUI)
,4, ,4; [0142?) x010]

-24 H1 (”331).
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Thus

Mmizfiwm-(MW

2/4, 1:1,.0 K #9)

where R 3 R1 - R2, (the internuclear distance vector).

ll

22 [V9 490.) x V. 4900]

H

Hence

‘ 1Z7}?

(2" 1T. [flmjflwsgwt Haom)]et1<aawg.

«4/11 (11.3)

Thus

(“f0/:'13:”[3:(N; S+Nf5a°> HA
(*XIQ)P%(“01_~(J

JerjvJ

(11. 4)

where the prime indicates contribution from exchange processes

only.

Making use of the fact that

2 ([1003? 3:46)? + (k SMCP 31.18) T + (fCOSG) a:

«5

and R g Bk, B being the magnitude of the internuclear distance,

we have

(v M?) = (r8349 3:11p)? — (+63146Comp) .7

so that we have now

(Q Qj‘— IZI/‘ETJ[{[{ <NQS, 4' N: Sg>° H. H [O'BSMG EMF):

HY} (8}

. \ $\ 2 1:”, 'i‘ J I. '. ..f/j‘ , I f)

— (kw/JHQCOiiJ J]? ("“30” C) ‘0}JV1J/‘~¢ 0/1.. .

(11.5)
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(6 Q); /ZIT79)({'4' fl, 6 13(3 Corie - ORA/,3”,

ilfllflfi

+N.* 3:133:16 Sump *2 Sue ((1-ch giddy. 4N;

3 *

_%2ff £2,qu 5 I» (300339 -1>[N, 3.3

mus,

m," 3,3) Sue Coscp )3 a... 41454ch «7, an,

(11.5)

_>

where dr has been replaced by

‘f‘

r2 Smechde d+‘.

It is clear that the integration over {>‘will vanish for both

integrals, hence

(€3CQ:)’== C3 .

HI. Indication _a_s_ 33 How the Calculation 2; the

Exchange Moment 2!; the Triton Gould 3353 Accomplished

Making use of the general development carried out in Section V,

and particularly equations (5.8), (5.9), and (5.11), it is

entirely feasible to carry through the calculations for magnetic

and electric quadrupole moments for systems of more than two

particles. However, it is obvious that the problem.would be

extremely complicated if the system contained more than one

charged particle, since then it would be necessary to consider

the coulombian interactions that appear explicitly in the
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expression for the current density. Consequently the triton,

a system of two neutrons and one proton, is the most reasonable

test case fer the extension of the development herein. There

follows a brief development of the expression for the exchange

magnetic moment, analogous to the previous development for the

deuteron.

CD Proton

® Neutron

@ Neutron

are.

b=”‘ R3

f"F?3

 
H

*3 

 
I —>

1M==§EijXJ)3f

_ ?

Figure 12.1

3... 4131 X {(31131} -1_T[u* x (c + 2: SW]

-IL-[aff - a, V] (12.1)
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We also have
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(12.3)
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vu, -/v a. 1 ~ZHJ (12.4)

For the triton

m _ K2 :2
J” —_U_<L( X[IF£S,<PO.)A@ 4.3% $3<PUQCM§

;
3

714490967.VaoSJCIK—z‘JLV£<P<*1)(EV1'3154(§()

1* 2 ..1164 Xfigrfg' 43. 0154?, 117:;[cp(+.)(m 13’)<WD

1?.f9.

“1(“:[;}TT/£Nl * V, CPO.) JR] " “(ZELWLND )7}, Cp("a)JRz

+11% M, 73 We) 4&0



:y 1=._

-51-

.0 VPmm xf3.1 p (1.3M,

'92

       

+[<Vl }( SfDCQUJJR Xf33 CPO?) 4/93]

p, (‘93

+

 

I[fl V: X 3}") 4900M, >407; ”v; 13;)41‘094g

1;
Ié-TT

Ki

+((V, 1 §.*)c0(r.)c1/€ x(<v3v3183)m>ag]

IQ, R3

 

a _

... If; [f(V, xszwoaag x swamp,

1?,
K).

+ ((v, x $4303)ch fo-fipmm]

R’,

E,Iflwmama/<3 2< R0721 3)mm

+{(V3 XS-JCPOJCi/V; Xf<V, V, °S'*) CPOJJQ']

g
6’.

/173[{N1‘p(’)3fl [3N Mammy/y,wow?

+1“IQ[[NI*C( ((1) dfi/I( N2 )7; ((509)553 +£H3 V3 CfOQC/QJ

éTT p ft’ / ‘g

(12.6)



Consider the contribution from the last two terms
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(9 +5.) MIR—10.1) = «NW. Mi.)

so we have finally

(.1?m '

§—:K££N.* N (W xfi’)e . (NRA?

(12. 9)

In exactly similar fashion the other terms can be shown to

yield contributions to the exchange moment of precisely the same

form as those obtained for the deuteron, with the addition of a

complete set of identical terms in R1, R5. Given assumptions

concerning the relationships between the vectors R R and R
1’ 2’ 3’

it would be possible to carry through the indicated integrations.

However, there would then remain the problem of calculating the

expectation values for the dipole operator, taking into consider-

ation all permissible combinations of space, spin, and charge

wave functions that accord with the exclusion principle. Such

a task appears feasible theoretically, but almost prohibitive from

the computational standpoint, especially in view of the apparent

inadequacy of a purely charged meson theory of nuclear forces.



XIII. Discussion
 

The purely charged meson theory is evidently unable to pro-

vide a mechanism to account for the anomalous magnetic moment of the

deuteron or the electricquadrupole moment of the deuteron in

terms of exchange pheonomena. Since the magnetic moment of the

deuteron is not the sum; of the moments of its constituent

particles*, a contribution of the right order of magnitude and of

the right sign to this moment by the charge exchange process would

have been very encouraging. Also it might have been reasoned

that the distributed mesic space charge due to exchange would

contribute to the electric quadrupole moment**. The calculations

based on the charged meson hypothesis, however, reveal that the

exchange process contributes nothing to these quantities in

that theory. It would appear that there is a non-vanishing

contribution to the moment of the triton, but the calculations

were not carried far enough to indicate whether or not the

contribution is significant.

In connection with the problem of the triton, it should be

noted that Villars18 has carried through computations for the

exchange moment predicted by the pseudoscalar theory. His

results appear to be of the right order of magnitude and of the

right sign for the dipole moment.

 

*fl, = 2.7896 (Nuclear Magnet0n8)16

16
up: 0.85647 1 .0003

A": 4.9103 1: .0012 16

**(eQ) : 2.73 x 10‘27 cm? 17
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It is significant that a field theory of nuclear forces,

postulating a mechanism for the origin of those forces,;yields

interaction terms in the Hamiltonian that agree qualitatively with

experimental evidence. In fact, considerable attention has been

given to a phenomenological approach to the problem of the

deuteron in which the form of the interaction potential is taken

to be that predicted by the neutral theorylg: 20: 21

V': I, (r) + 11 (r)a;-c; +.Jz (r) 312

where

312 1.: 3 (6', . roaor)/r3.

Another approach to the whole problem of nuclear forces

representing an extension of field theory to its logical extremes

seems indicated in the various attempts to develop a‘Unitary

Field Theory22 in which fundamental quantities like mass and

charge follow as consequences of mathematical consistency of

proper field eouations.
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