
A Graph Theoretic Approach to Malware Detection

By

Syeda Momina Tabish

A THESIS

Submitted to
Michigan State University

in partial fulfillment of the requirements
for the degree of

MASTER OF SCIENCE

Computer Science

2012

ABSTRACT

A Graph Theoretic Approach to Malware Detection

By

Syeda Momina Tabish

Current malware detection approaches (i.e. anti-virus software) deployed at end

hosts utilize features of a specific malware instance. These approaches suffer from

poor accuracy because such features are easily evaded by trivial obfuscation such

as garbage insertion and re-ordering of instruction or call sequences. In this paper,

we introduce a novel graph theoretic approach to detect malware from instruction

or call sequences. In our approach, we map the instruction or call sequence of an

executable program to a graph. We then extract features from the constructed

graphs at three levels: (1) vertex level, (2) sub-graph level, and (3) graph level.

These features act as footprints of the behavior of an executable program and are

leveraged to differentiate between benign and malware programs. The results of our

experiments show that our graph-theoretic approach differentiates between benign

and malware programs with ≈ 100% accuracy.

Copyright by

SYEDA MOMINA TABISH

2012

TABLE OF CONTENTS

List of Tables . v

List of Figures . vi

1 Introduction 1

1.1 Background and Motivation . 1

1.2 Limitations of Prior Art . 2

1.3 Proposed Approach . 2

1.4 Key Contributions . 3

2 Related Work 5

2.1 Static Detection Techniques . 5

2.2 Dynamic Detection Techniques . 6

3 Proposed Approach 10

3.1 Overview . 10

3.2 Graph Construction . 10

3.3 Feature Extraction . 11

3.4 Detection . 17

4 Experimental Evaluation 19

4.1 Dataset . 19

4.2 Feature Analysis . 23

4.3 Classification Results . 25

4.4 Obfuscation Analysis . 28

5 Conclusion 32

BIBLIOGRAPHY 33

iv

LIST OF TABLES

Table 4.1 Basic statistics of the API call dataset used in this study. . . . 20

Table 4.2 Classification accuracy results for different feature sets. 29

v

LIST OF FIGURES

Figure 3.1 Architecture diagram of our proposed approach. For interpre-

tation of the references to color in this and all other figures, the reader

is referred to the electronic version of this thesis. 11

Figure 4.1 Timeseries and behavior graph of an example benign program. 21

Figure 4.2 Timeseries and behavior graph of an example malware program. 22

Figure 4.3 Distribution of some graph level features. 24

Figure 4.4 Q-Q probability plot of sub-graph level features. 26

Figure 4.5 Out-degree: vertex level feature of LocalAlloc API call. . . . 27

Figure 4.6 Number Of Triangles: vertex level feature of LocalAlloc API

call. 27

Figure 4.7 Closeness Centrality: vertex level feature of LocalAlloc API

call. 28

Figure 4.8 ROC plots of classification accuracy. 30

Figure 4.9 AUC of Obfuscation Analysis 31

vi

Chapter 1

Introduction

1.1 Background and Motivation

Malware analysis and detection has recently been a prime research area due to the

widespread increase in the number of new and previously unknown malware. The

huge monetary gains involved and ease of writing and distributing a malicious piece

of code have made it a cat and mouse chase, where the malware writers are ahead

and the security experts are closely following behind. Although a number of behavior

based malware detection techniques have been proposed recently, signature based

malware detection is still the most widely deployed defence mechanism by commer-

cial anti-virus software. This is mainly because behavior based malware detection

techniques suffer from false alarms; whereas, signature based malware detection

techniques have zero false alarm rate. Furthermore, behavior based malware detec-

tion techniques suffer from large processing overheads; on the other hand, signature

based malware detection techniques have acceptable processing overheads.

However, behavior based malware detection techniques are being actively investi-

gated because of their ability to detect zero-day (or previously unknown) malware as

they do not rely on any a-priori knowledge about new malware. Some of the behav-

ior based malware detection approaches have been integrated into the commercial

anti-virus software with limited success. The state-of-the-art commercial anti-virus

software still rely heavily on exact signature matching for malware detection and

1

hence they typically fail whenever there is a new malware outbreak. At the moment

the only line of defense for the naive end user does not provide sufficient protection

and therefore an efficient and effective non-signature based line of defense is needed

that can protect end hosts from previously unseen or zero-day malware. There is

still room for non-signature based malware detection techniques that have high de-

tection accuracy, are computationally inexpensive, and are easily scalable with the

increasing number of new malware.

1.2 Limitations of Prior Art

Existing commercial anti-virus software generally rely on separate signature or be-

havioral pattern extraction for every malware sample. This approach requires sig-

nature extraction for every malware sample and the size of signature database has

a tendency to explode and hence is unscalable due the increasing number of new

malware. According to a survey by TrendMicro, almost 5, 000 new malware samples

are submitted daily to the anti-virus software vendors for analysis [18].

Some behavior based malware detection techniques have also been proposed in

prior literature. A majority of these techniques rely on extracting or mining unique

patterns or signatures from the instruction or call graphs, as discussed later in

Section 2. The detection is typically done by graph matching algorithms or sub-

graph based features, which limits the granularity of such approaches to a particular

malware instance only.

1.3 Proposed Approach

In this paper, we propose a graph theoretic approach to malware detection at end

hosts using instruction sequences or API call sequences. The instruction or API call

sequences are mapped to graphs and structural properties of graphs are leveraged

to extract relevant features. The distinguishing feature sets, forming the basis of

our detection methodology, are extracted at three levels: (1) vertex level, (2) sub-

2

graph level, and (3) graph level. Our proposed vertex level features can be divided

into degree, path, and connectivity categories. Examples of these three categories

respectively are degree, diameter, and clustering coefficient. The aforementioned

and other features also give us interesting insights about general graph properties.

We extract a similar set of graph level features. At sub-graph level, we identify and

extract features (program instructions or call sequences) based on Markov chains.

We also use the concept of typicality of Markov chain states to identify program

instruction or call sequences of varying lengths. The concept of typicality is impor-

tant in the context of efficiently identifying a small subset of program instruction

or call sequences from a very large sample space. All of the aforementioned fea-

tures, extracted at various graph levels, are then used along with machine learning

algorithms for automatically learning classification models.

1.4 Key Contributions

The key contributions of our proposed two-step approach are described below.

1. The first step of our approach is feature extraction. To our best knowledge,

this work is the first attempt to extract and capture graph properties at various

levels starting from vertex level, to sub-graph level, and to graph level. The

canvas of feature extraction in our approach is wide enough to portray sufficient

information for accurate classification. In the second step, this comprehensive

feature set is further used in conjunction with machine learning algorithms, so

as to make full use of their sophistication and classification capabilities.

2. We evaluate the effectiveness and accuracy of our proposed approach using a

comprehensive data set of benign and malware files, which is collected keeping

in mind that this data set should be a good representation of a real-world

end host. We made sure to include majority of the normal daily use benign

application with wide range of functionality some of which also match closely

with the malware behavior and vice versa.

3

The rest of this paper is organized as follows. We provide an overview of the

related work in Section 2. The details of our proposed approach are explained in

Section 3. In Section 4, we evaluate the accuracy of our proposed approach. We

finally conclude this paper in Section 5.

4

Chapter 2

Related Work

Malware detection has been one of the most pressing security problem in recent

years. A lot of work has been done in this field, which can be divided into two

broad categories; static analysis and dynamic analysis techniques. Static analysis

is based on the concept of detecting or classifying an executable before it is run.

On the other hand, dynamic analysis schemes base their detection process while the

executable is running. Both analysis schemes have their pros and cons, for instance,

in static analysis it is not guaranteed that the code analyzed is the same as the

code executed, many polymorphic worms change the execution pattern on the fly.

Likewise, in most of the dynamic analysis techniques, the malicious program is first

run in a virtual environment or sand box to determine detection check points. We

separately discuss both categories of work in the following text.

2.1 Static Detection Techniques

We now discuss and summarize the most relevant static analysis techniques.

In [9], Christodorescu et al. presented an approach to detect malicious patterns

in executables using static analysis. They also claim that the proposed approach is

resilient to common obfuscation transformations. They first generalize the malicious

code into an automaton and then an internal representation of malicious code is

generated using abstraction patterns. The third process in the proposed framework

5

is that using IDA pro and Code surfer, control flow graphs (CFGs) are created which

are further passed as an input to the annotator. The annotator creates an annotated

CFG which contains the information such as where an abstraction pattern is found

in the code. The last step is the detector which uses the annotated CFG’s and

the malicious code automaton and decides using code unification if the malware

pattern matches with a pattern in the annotated CFG. The evaluation is done on

4 viruses and their obfuscated versions and has good accuracy in terms of false

positive and false negative rates. The limitation of the proposed approach is that it is

computationally expensive and can handle only very simple obfuscation techniques.

In [10], the authors presented a malware detection scheme which uses semantics

of the executables instead of exact string or signature matching. The executable

is parsed through IDA pro and CFG’s are constructed and an intermediate repre-

sentation, which is a library of x86 instructions also called a template, is created.

The detection algorithm keeps finding template nodes which match the program

template and returns with the instructions if a match is found. The limitations of

their approach are in the intermediate representation of the instructions, where it

is computationally hard to generate a complete set of every possible instruction

representation and take significant time for processing as well.

2.2 Dynamic Detection Techniques

Below we describe some dynamic analysis techniques that are most relevant to our

approach.

In [4] and [3], Bayer et al. proposed an analysis tool for malware security experts

so that they do not have to manually analyze the suspicious executable and which

can give them enough information about it as to render it malware or benign. The

tool is based on a PC emulator Qemu, which can handle self modifying code. The

proposed tool works by analyzing Windows API and native API calls made by the

malicious process, most importantly it keeps track of file created or opened using

function arguments. The analysis is compiled in the form of a comprehensive report

6

which contains, general information (file size, command line arguments, etc), file

activity, registry activity, service activity, process activity, and network activity.

The evaluation is done on ten malware samples and the analysis report matched

closely with the descriptions of majority of them.

In [20] a taint graph based malware detection technique was proposed by Yin

and Song. The malicious program is run in an emulator containing a test engine on

which the test scripts are run which first introduce important taint information (like

password input, TCP/UDP/ICMP traffic etc) and then monitor the activities of

the sample program and the overall system under observation. The behavior of the

program in a system wide context is further represented in the form of graphs which

help to identify if the program tries to read or misuse the taint information. The

evaluation is done on 42 real-world malware samples containing root kits, password

thieves, key loggers etc and the proposed approach detected all the malware, how-

ever, falsely detected 3 benign programs, which closely matched with the malware

behavior.

In [6], Bose et al. proposed a behavioral detection framework for mobile malware.

In this framework, system calls are logged and correlated to create dependency

graphs that are further pruned and aggregated for behavioral signature generation.

The classification of partial or incomplete malware behavior, when the malware has

not yet finished execution is done using machine learning algorithm support vector

machine for binary classification. The evaluation of the proposed approach is done

on custom made programs which emulate real world Symbian worms and other

well known malware. The results show that the proposed framework achieved good

detection accuracy with decreasing number of false negatives as the training data

size is increased.

In [16], Kolbitsch et al. proposed a dynamic malware detection technique which

using system calls information automatically creates fine-grained behavior models

and match any given unknown program against these models to classify it as benign

or malware. The behavior models are represented in the form of graphs in which

nodes denote interesting system calls and edges denote the data dependency between

7

two system calls when the input of one is dependent on the output of the other.

The first part of the approach is malware analysis that is carried out in a custom

made dynamic malware analysis tool Anubis, which records all the disassembled

instructions, system calls, data dependencies using taint analysis, and memory logs.

All of the above information is used to create behavior graphs. The second part

of the approach is detection which comprises of a scanner that monitors system

call invocations and checks if the monitored program matches any of the behavior

graphs. Upon matching, the malicious program is terminated. The evaluation of the

proposed approach is done on 6 malware families and it achieves reasonable detection

accuracy.

In [1], Ahmed et al. proposed a runtime malware analysis and detection tool

that detects malware using spatio-temporal information in API call logs. The spatial

information (from arguments and return values of calls), and temporal information

(from sequence of calls) is further used to build formal models to distinguish malware

from benign programs on the basis of API calls. The most discriminative spatial

and temporal features of the API calls are selected on the basis of information

gain, and are then passed on to the standard machine learning and data mining

classifiers using 10-fold cross validation. The evaluation is done on 416 malware

and 100 benign samples. The proposed approach achieves up to approximately 98%

detection accuracy.

In [8] a graph based malware detection approach is presented, which focuses on

mining patterns in a dependence graph after reducing its data space. The depen-

dence graph is constructed using system calls and is often quite large in practice.

The proposed approach first drastically reduces the size of dependence graph by ran-

domly and repeatedly summarizing it, and then it uses subgraph mining algorithm

to traverse the pattern space. The evaluation of the proposed approach is done on 6

malware families and it is also compared to gSpan, a state-of-the-art graph miner.

The results show that the proposed approach outperforms gSpan by showing stable

running time and efficiency and reveals interesting malware fingerprints.

In [15], Islam et al. proposed a behavior based malware detection technique,

8

which extracts strings (system call names and function arguments) from malware

and benign trace logs, which are then used for classification. Each file of the dataset

is run in a virtual environment and using a trace tool HookMe, the system call logs

are obtained. The trace files are used in feature extraction, which generates a list of

strings present in the binary and stores them in a hash table. The feature vectors

are created on the basis of the absence or presence of a string in a particular file.

These features are then passed onto data mining and machine learning base classi-

fiers, which are decision tree, rule learner, support vector machine, instance based

classifier, and meta classifier to perform k-fold cross validation. The experimental

evaluation is done on about one thousand malware and about five hundred benign

samples. The proposed approach achieves 97.3% detection accuracy.

In [14], Fredrikson et al. proposed an approach which focuses on automatically

extracting optimal specifications for behavior based malware detection. They use

graph mining (leap mining) and concept analysis algorithms to analyze a set of

malicious and benign programs, that extracts significant malicious behaviors, and

creates an optimally discriminative specification. The experimental evaluation is

done on 912 malware samples, collected using an internet honeypot and 49 benign

samples. The proposed approach achieves 86% detection accuracy for previously

unknown malware samples with 0% false positive rate. The comparison of their

technique with commercial anti-virus software detectors shows that their proposed

approach outperforms commercial software.

9

Chapter 3

Proposed Approach

In this section, we present the details of our proposed graph theoretic approach

towards malware detection. We first provide an overview of its architecture, which

consists of three main modules: (1) graph construction, (2) feature extraction, and

(3) detection.

3.1 Overview

We now introduce our graph-theoretic approach to detect malware from instruction

or call sequences. Figure 3.1 shows the architecture of our proposed approach, which

consists of three main modules. In the first module, we map the instruction or call

sequence of an executable program to a graph. The next module extracts features

from the constructed graphs at three levels: (1) vertex level, (2) sub-graph level, and

(3) graph level. These features act as footprints of the behavior of an executable

program and are leveraged in the detection module to differentiate between benign

and malware programs.

3.2 Graph Construction

The prior solutions for behavioral malware detection can be broadly classified into

two categories: static analysis (e.g. [9, 10]) and dynamic analysis (e.g. [3, 6, 17, 20]).

Depending on the category of solution, static or dynamic, the input is a sequence of

10

Graph

Construction
Detection

Instruction or

Call Sequence

1. LocalAlloc

2. RegOpenKeyExW

3. RegSetValueExW

4. RegCloseKey

5. CreateProcessW

6. GetProcAddress

1 2 3

6 45

f1 f2 f3 …

Benign Malware

Feature Extraction

Graph-level

Subgraph-level

Vertex-level

Figure 3.1: Architecture diagram of our proposed approach. For interpretation of the

references to color in this and all other figures, the reader is referred to the electronic

version of this thesis.

disassembled code instructions or system calls. A sequence of disassembled code in-

structions or system calls can be mapped to a multi-digraph where vertices represent

elements of the sequence and directed edges appear between consecutive sequence

elements. Let G = (V,E) denote the graph, where V is the set of vertices and E

is the set of directed edges. The graph corresponding to a sequence of length l will

have the edge set, such that |E| = l− 1. Each edge in the edge set has an associated

time index, which is defined by the function T (eij), where eij is an edge incident on

vertex vj from vertex vi. In the rest of this paper, we will refer to the constructed

graphs as behavior graphs.

3.3 Feature Extraction

We characterize the properties of behavior graphs in terms of feature sets that cap-

ture their structure at different levels of granularity. More specifically, we extract

features quantifying their behavior at three levels: (1) vertex level, (2) sub-graph

level, and (3) graph level. The details of these feature sets are separately provided

below.

11

Vertex-level Features

The vertex-level features can be classified into the following categories: degree, path,

and connectivity. Important degree based features that we analyze in our proposed

approach are: in-degree, out-degree, degree, and reciprocity. Important path based

features that we analyze in our proposed approach are: betweenness centrality and

closeness centrality. Important connectivity based features that we analyze in our

proposed approach are: number of triangles, clustering coefficient, and eigenvector

centrality. These features are separately computed for all unique vertices (represent-

ing instructions or API calls) in the behavior graphs. Below we formally define these

properties.

• Degree: The degree of a vertex is defined as the number of edges incident on

it. The degree δi of a vertex vi is defined as:

δi =

∣∣∣∣∣∣
⋃

∀j=i∨k=i

ejk

∣∣∣∣∣∣ (3.1)

where ejk denotes an inwards or outwards edge between vertices vj and vk.

• In-Degree: The degree of a vertex is defined as the number of inwards edges

incident on it. The in-degree δ↓i of a vertex vi is defined as follows.

δ↓i =

∣∣∣∣∣ ⋃
∀k=i

ejk

∣∣∣∣∣ (3.2)

• Out-Degree: The degree of a vertex is defined as the number of outwards

edges incident on it. The out-degree δ↑i of a vertex vi is defined as follows.

δ↑i =

∣∣∣∣∣∣
⋃
∀j=i

ejk

∣∣∣∣∣∣ (3.3)

• Reciprocity: The reciprocity of a vertex is defined as the ratio of its out-

degree to its in-degree. The reciprocity Ri of a vertex vi is defined as:

Ri = δ↑i/δ↓i =

∣∣∣∣∣∣
⋃
∀j=i

ejk

∣∣∣∣∣∣ /
∣∣∣∣∣ ⋃
∀k=i

ejk

∣∣∣∣∣ (3.4)

12

where ejk denotes an inwards or outwards edge between vertices vj and vk.

• Number of Triangles: A triangle is defined as the subset of any three vertices

in a graph that are completely connected. The triangle count ∆i of a vertex

vi is defined as the number of triangles that contain the given vertex as one of

their vertices. Let Γi denote the set of vertices that a vertex vi is connected to

then its triangle count ∆i is defined as:

∆i =

∣∣∣∣∣∣
⋃

vj ,vk∈Γi

ejk

∣∣∣∣∣∣ (3.5)

• Clustering Coefficient: The clustering coefficient of a vertex is defined as

the ratio of number of triangles it is a part of to the total number of possible

triangles. If δi denotes the degree of a vertex and Ti denotes the number of

triangles it is a part of then its clustering coefficient Ci is defined as:

Ci =
∆i(
δi
2

) =
2∆i

δi(δi − 1)
(3.6)

• Eigenvector Centrality: The eigenvector centrality of a vertex is a measure

of its importance in a network. To define eigenvector centrality ei of vertex vi,

let W denote the adjacency matrix of the graph G where wi,j is 1 if an edge

exists between vertices vi and vj, and 0 otherwise.

ei =
1

λ

N∑
j=1

wi,jxj (3.7)

where λ is the principal eigenvalue of matrix W.

• Betweenness Centrality: The betweenness centrality of a vertex is defined as

the fraction of all pair shortest paths, except those originating or terminating

at it, that pass through it. Let Pjk denote the shortest path from vertex vj to

vertex vk, where Pjk = (vj, vl, vm, vn, ..., vk). The betweenness centrality bi of

a vertex vi is defined as:

bi =
2I(Pjk, i)

|V |(|V | − 1)
(3.8)

13

where I(Pjk, i) is an indicator function such that I(Pjk, i) = 1 when vi ∈ Pjk

and I(Pjk, i) = 0 when vi /∈ Pjk.

• Closeness Centrality: The closeness centrality of a vertex is defined as the

average length of shortest paths to all vertices reachable from it. Let |Pij|

denote the shortest path length from vertex vi to vertex vj. The closeness

centrality ci of a vertex vi is defined as follows.

ci =

∑N
j=1 |Pij|
|V |

(3.9)

Sub-graph level Features

Let P (x1, x2, ..., xn) denote the probability of finding a particular n-gram x1, x2, ..., xn

in a given sequence and k denote the sample space size of each element in the se-

quence. The size of sample space for a sequence containing n elements is kn. Equiv-

alently, it can be represented as the joint probability P (x1 ∩x2...∩xn). Using Bayes

theorem, this joint probability can be defined by a combination of the marginal

and conditional probabilities. More specifically, P (x1 ∩ x2... ∩ xn) = P (x1|x2... ∩

xn)P (x2... ∩ xn). In fact, the conditional probability contains more precise infor-

mation due to its reduced sample space compared to the joint probability. These

conditional n-gram probabilities can be conveniently represented using a discrete

time Markov chain of order n− 1 containing kn−1 states. Note that each conditional

n-gram sequence corresponds to a unique state in the multi-order Markov chain.

Now let us assume that the presence of a state in Markov chain is represented by a

binary indicator random variable Ii, i = 1, 2, ..., kn−1, where kn−1 is the total num-

ber of states of the Markov chain of order n − 1. Hence, P (Ii = 1) represents the

probability for the presence of state Xi.

It is important to select an appropriate order for a Markov chain model. It is

also important to note that we are typically interested in employing a single Markov

chain to model a set of multiple sequences S. Here let |S| denote the size of the set

of sequences we want to model. For each sequence, autocorrelation is a well-known

heuristic for selecting appropriate order for its Markov chain model [7]. For a given

14

lag t, the autocorrelation function of a sequence, Sm (where m is the index), is

defined as:

ρ[t] =
E{S0St} − E{S0}E{St}

σS0
σSt

, (3.10)

where E(Si) and σSi
respectively represent the expectation and standard deviation

of S at lag i. The value of the autocorrelation function lies in the range [−1, 1], where

|ρ[t]| = 1 indicates perfect correlation at lag t and ρ[t] = 0 means no correlation at

lag t. The minimum value of lag tmin for which ρ[tmin] falls inside the 95% confidence

interval band is selected to be the appropriate order for a Markov chain. For a set of

multiple sequences, let T denote the set of selected orders as per the aforementioned

criterion. We select the maximum value in T, denoted by Tmax, as the order of a

single Markov chain model that we want to employ.

As mentioned earlier, the number of states in a Markov chain increase expo-

nentially for higher orders and so does the complexity of the underlying model.

Furthermore, higher order Markov chains require a large amount of training data to

identify a subset of states that actually appear in the training data. In other words,

a Markov chain model trained with limited data is typically sparse. To overcome

these challenges, we can combine multiple states in a higher order Markov chain to

reduce its number of states. We are essentially using states from lower order Markov

chains as we combine different states in a multi-order Markov chain. We also need

to establish a criterion to combine states in a multi-order Markov chain.

Towards this end, we use the concept of “typicality” of Markov chain states [7].

The basic idea of typicality is that we can identify a “typical” subset of Markov

chain states by generating its realizations. Before delving into further details, we

first state the well-known “typicality theorem” below:

For any stationary and irreducible Markov process X and a constant c, the se-

quence x1, x2, ..., xm is almost surely (n, ε)-typical for every n ≤ c logm as m→∞. A

sequence x1, x2, ..., xm is called (n, ε)-typical for a Markov processX if P̂ (x1, x2, ..., xn) =

0, whenever P (x1, x2, ..., xn) = 0, and∣∣∣ P̂ (x1, x2, ..., xn)

P (x1, x2, ..., xn)
− 1
∣∣∣ < ε, when P (x1, x2, ..., xn) > 0.

15

Here P̂ (x1, x2, ..., xn) and P (x1, x2, ..., xn) are the empirical relative frequency and

the actual probability of the sequence x1, x2, ..., xn, respectively. In other words,

P̂ (x1, x2, ..., xn) ≈ P (x1, x2, ..., xn).

A direct consequence of the aforementioned typicality theorem is that we can empir-

ically identify “typical” sample paths of arbitrary length for a given Markov process.

Towards this end, we can generate realizations (or sample paths) of arbitrary lengths

from the transition matrix of the Markov process. By generating sufficiently large

number of sample paths of a given length, we can accurately identify a relatively

small subset of sample paths that are typical.

Using this criterion, we select a subset of top-10000 typical states X1000 as po-

tential features, whose lengths vary in the range [0,Tmax]. To further cut down the

number of sub-graph level features (up to 100), we use an information-theoretic

measure called information gain to rank features [11]. Information gain is used to

quantify the differentiation power of features (Markov chain states in our case). In

this context, information gain is the mutual information between a given feature

Xi and the class variable Y . For a given feature Xi and the class variable Y , the

information gain of Xi with respect to Y is defined as:

IG(Xi;Y) = H(Y)−H(Y |Xi), (3.11)

where H(Y) denotes the marginal entropy of the class variable Y and H(Y |Xi)

represents the conditional entropy of Y given feature Xi. In other words, information

gain quantifies the reduction in the uncertainty of the class variable Y given that

we have complete knowledge of the feature Xi. Note that, in this paper, the class

variable Y is {Benign,Malware} for our application. Using information gain, we

finally select a subset of top-100 typical states X100 as features.

Graph-level Features

We now separately define the graph-level features below.

16

• Clique Number: A clique is a sub-graph such that all vertices in it are

directly connected to each other by an edge. The clique number ω of a graph

G = (V,E) is defined as the number of vertices in its largest clique.

• Average Clustering Coefficient: The average clustering coefficient C̄ of a

graph G(V,E) is defined as:

C̄ =
1

|V |

|V |∑
i=1

Ci (3.12)

• Diameter: The diameter D of a graph G(V,E) is defined as:

D(G) = max
∀j,k

(|Pjk|), (3.13)

where Pjk is the shortest path length between vertices vj and vk.

• Average Path Length: The average path length l of a graph G(V,E) is

defined as:

l(G) =

∑
∀j,k(|Pjk|)

|V |(|V | − 1)
, (3.14)

where Pjk is the shortest path length between vertices vj and vk.

3.4 Detection

We can now jointly use all features to differentiate between benign and malware

programs. In particular, given separate feature sets characterizing vertex-level, sub-

graph level, and graph-level properties, we first separately classify behavior graphs

by deploying a machine learning classifier for each of them. Given the classification

results for each of the feature sets, we then use a meta machine learning classifier

for final classification. In this study, we use Näıve Bayes algorithm as the base-

and the meta-classifier. Näıve Bayes is a popular probabilistic classifier that has

been widely used for problems like text and malware classification and is known to

outperform more complex techniques in terms of accuracy [19]. It trains using two

sets of probabilities: the prior, which represents the marginal probability P (Y) of the

17

class variable Y ; and the a-priori conditional probabilities P (Xi|Y) of the features

Xi given the class variable Y . As previously explained, these probabilities can be

computed from the training set. Now, for a given test behavior graph with observed

features Xi, i = 1, 2, ..., n, the a-posteriori probability P (Y |X(n)) can be computed

for both classes Y ∈ {Benign,Malware}, where X(n) = (X1, X2, ..., Xn) is the vector

of observed features in the test cascade under consideration:

P (Y |X(n)) =
P (X(n), Y)

P (X(n))
=
P (X(n)|Y)P (Y)

P (X(n))
. (3.15)

The Näıve Bayes classifier then combines the a-posteriori probabilities by assuming

conditional independence (hence the “näıve” term) among the features.

P (X(n)|Y) =
n∏
i=1

P (Xi|Y). (3.16)

Although the independence assumption among features makes it feasible to eval-

uate the a-posteriori probabilities with much lower complexity, it is unlikely that

this assumption truly holds all the time. For our study, we mitigate the effect of

the independence assumption by pre-processing the features using the well-known

Karhunen-Loeve Transform (KLT) to un-correlate them [12].

18

Chapter 4

Experimental Evaluation

In this section, we first provide details of the dataset used to evaluate our proposed

approach. We then provide the classification results of individual vertex-level, sub-

graph level, and graph-level feature sets along with those of the meta-classifier. We

also provide the results of obfuscation analysis in this section.

4.1 Dataset

The behavior of a program can be characterized using either of the two well-known

approaches: static and dynamic analysis. For static analysis, off-the-shelf executable

program loaders can be used to construct a sequence of code instructions. IDA

Pro [13] and CodeSurfer [2] are two well-known software to construct instruction call

graphs. For dynamic analysis, an open source processor emulator, such as QEMU [5],

can be used to log system calls in case of the Unix operating system and Application

Programming Interface (API) calls in case of the Windows operating system. QEMU

efficiently program calls through dynamic translation and caching [5]. Other analysis

systems such as TTAnalyze [3] and Panorama [20] have been built on the top of

QEMU.

To evaluate the effectiveness of our proposed approach, we have collected the

API call sequences of benign and malware programs. A set of one hundred programs

from freshly installed Windows are chosen to represent benign class. We have chosen

19

a diverse subset of more than three hundred malware programs from the dataset pro-

vided by OffensiveComputing.net. These malware programs are further categorized

into the categories of virus, trojans, and worm based on their functionality. Table 4.1

shows basic statistics of the API call data used in this study. In our data set, we log

more than 51 million API calls belonging to 237 unique API functions. We note from

Table 4.1 that benign programs tend to have larger number of calls to more unique

API functions on average than malware programs. This shows that benign programs

tend to have more complex functionality than malware programs in general. Within

malware programs, we observe that trojans have the largest number of calls to most

unique API functions on average. On the other hand, worms have the smallest num-

ber of calls to least unique API functions on average. This observation is linked to

the functionality of program, where worms are concisely implemented to facilitate

automated propagation and trojans covertly perform some backdoor activity with

some benign upfront functionality. Finally, it is interesting to compare the average

entropy of API call distributions for benign and malware programs. We note that

benign programs have larger average entropy than malware programs, which points

to more complex functionality of benign programs than malware programs.

Table 4.1: Basic statistics of the API call dataset used in this study.

Program Average Average Average Average

Category Number of Number Number of Entropy of

Programs of Calls Unique Calls Call Dist.

Benign 100 271, 694 135 0.96

Malware 312 77, 250 43 0.57

Virus 104 59, 086 43 0.57

Trojan 104 152, 527 47 0.54

Worm 104 33, 232 39 0.60

As mentioned in Section 3, instruction or call sequences can be mapped to behav-

ior graph. Figure 4.1 shows the plots of timeseries and behavior graph of an example

benign program. Likewise, Figure 4.2 shows the plots of timeseries and behavior

20

0 500 1000 1500 2000 2500 3000
0

20

40

60

80

Time Index

C
al

l I
nd

ex

(a) Timeseries

(b) Behavior Graph

Figure 4.1: Timeseries and behavior graph of an example benign program.

graph of an example malware program. The indices of calls are fixed in the alpha-

betical order in the timeseries plots. We visually observe interesting patterns in the

timeseries and behavior graph of benign and malware programs. For instance, we

observe repetitive call subsequence blocks in timeseries of both benign and malware

programs. However, the sizes of blocks are significantly smaller for benign programs

21

0 500 1000 1500 2000 2500 3000
0

20

40

60

80

Time Index

C
al

l I
nd

ex

(a) Timeseries

(b) Behavior Graph

Figure 4.2: Timeseries and behavior graph of an example malware program.

as compared to malware programs. Note that the layout of behavior graphs in Fig-

ures 4.2 and 4.1 is radial in nature. In a radial layout, we randomly choose a call

as a center vertex and the remaining vertices are put in concentric circles based on

the distance from the center vertex. A visual comparison of benign and malware

behavior graphs also highlights interesting differences. For instance, we note that

22

the degree distribution of behavior graph of malware program is significantly more

skewed compared to the behavior graph of benign program. In addition, we observe

significantly deeper branches of vertices in the behavior graph of example benign

program compared to that of example malware program. We aim to capture such

differences in an automated fashion by leveraging the three feature sets encompass-

ing properties of behavior graphs at various levels (graph, sub-graph, and vertex).

Below we explore the distribution of these feature sets across benign and malware

programs.

4.2 Feature Analysis

Figure 4.3 shows the distribution of two graph level features. In Figure 4.3(a), we

observe that behavior graphs of benign programs tend to have larger values of av-

erage clustering coefficient compared malware programs. Recall from Section 3 that

average clustering coefficient is a measure of connectivity of a graph, where larger

values of average clustering coefficient indicate more connectivity and smaller values

indicate less connectivity. The class-wise distribution of average clustering coefficient

shows that benign behavior graphs are more tightly connected than malware behav-

ior graphs. This observation also provides an insight into the peculiar functional

characteristics of malware programs. Figure 4.3(b) shows the class-wise distribution

of average path length of benign and malware programs. We would expect the av-

erage path length of benign behavior graphs to be smaller than that of malware

behavior graphs because the former are more tightly connected (quantified by clus-

tering coefficient) compared to the latter. However, we observe an opposite trend in

Figure 4.3(b) where malware behavior graphs having larger average path length than

benign behavior programs. This indicates that benign behavior graphs are tightly

connected such that average path length are relatively larger. This observation is ex-

plained by the reasoning that benign behavior graphs have tightly connected clusters

which have fewer connections across them.

We now analyze the properties of sub-graph level features of behavior graphs.

23

0.56 0.62 0.69 0.76 0.82

0

0.1

0.2

0.3

0.4

Average Clustering Coefficient

P
ro

ba
bi

lit
y

Benign
Malware

(a) Average Clustering Coefficient

1.86 1.96 2.07 2.17 2.28

0

0.05

0.1

0.15

0.2

0.25

0.3

Average Path Length

P
ro

ba
bi

lit
y

Benign
Malware

(b) Average Path Length

Figure 4.3: Distribution of some graph level features.

Recall from Section 3 that we can identify a typical sample paths of Markov chain

model of behavior graphs. The presence or absence of these typical sample paths act

as sub-graph level binary features. Here we are interested in studying the distribution

of their empirically estimated probabilities. Ideally, we want the sample paths in

typical set to have high probabilities. Figure 4.4 shows the Q-Q probability plot

24

of sub-graph level features. We observe that most sample paths have moderate to

high occurrence probabilities which is desirable. This shows that we can successfully

capture variable length Markov chain sample paths have

We now investigate the class-wise distribution of some vertex level features. Fig-

ures 4.5, 4.6 and 4.7 show the distribution of some vertex level features including

out-degree, number of triangles, and closeness centrality for LocalAlloc API call.

This particular API call is important for memory management and allocates the

specified number of bytes from the heap. A common trend observed for all of these

vertex level features is that we observe smaller values for malware programs com-

pared to benign programs. Similar to the analysis of class-wise distribution of graph

level features, these observations provide insight into the differences between benign

and malware program behavior.

4.3 Classification Results

We now provide the classification results of different feature sets proposed in Sec-

tion 3. To systematically evaluate the effectiveness of these feature sets in classifying

benign and malware programs, we first evaluate standalone feature sets and then

evaluate their all possible combinations. Figure 4.8(a) shows the Receiver Operating

Characteristics (ROC) plots for the Näıve Bayes classifier with standalone feature

sets. Figure 4.8(b) shows the ROC plots for the Näıve Bayes classifier with combina-

tions of feature sets. ROC performance is characterized in terms of false positive rate

(fraction of benign programs falsely detected as malware programs) and true posi-

tive rate (fraction of malware programs correctly detected as malware programs). In

ROC plot, the x-axis represents the false positive rate and the y-axis represents the

true positive rate. An ideal classifier will approach the operating point in the top-left

corner with 1.0 true positive rate and 0.0 false positive rate. Both true positive rate

and false positive rate are jointly incorporated in a single metric called Area Under

ROC Curve (AUC). The AUC for an ideal classifier is 1.0. Another alternate mea-

sure of classification performance is called precision, which is defined as the fraction

25

0 0.2 0.4 0.6 0.8 1

0.001

0.02

0.25
0.50
0.75

0.98

0.999

Data

Q
ua

nt
ile

 P
ro

ba
bi

lit
y

(a) Benign transition matrix

0 0.2 0.4 0.6 0.8 1

0.001

0.02

0.25
0.50
0.75

0.98

0.999

Data

Q
ua

nt
ile

 P
ro

ba
bi

lit
y

(b) Malware transition matrix

Figure 4.4: Q-Q probability plot of sub-graph level features.

of correctly classified instances.

In Figure 4.8(a), we observe that ROC curve for sub-graph feature set is the

26

12 21 30 39 48

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Out−degree

P
ro

ba
bi

lit
y

Benign
Malware

Figure 4.5: Out-degree: vertex level feature of LocalAlloc API call.

75 160 245 330 415

0

0.2

0.4

0.6

0.8

Number of Triangles

P
ro

ba
bi

lit
y

Benign
Malware

Figure 4.6: Number Of Triangles: vertex level feature of LocalAlloc API call.

closest to the top-left operating point. It is followed by the vertex feature set and

the ROC curve of graph feature set is furthest from the top-left operating point.

In Figure 4.8(b), we observe that combinations of feature sets does improve the

classification performance. In fact, the best classification performance is achieved

27

0.58 0.64 0.70 0.77 0.83

0

0.1

0.2

0.3

0.4

Closeness Centrality

P
ro

ba
bi

lit
y

Benign
Malware

Figure 4.7: Closeness Centrality: vertex level feature of LocalAlloc API call.

when all feature sets are combined. Table 4.2 also provides the detailed classification

accuracy results for different feature sets. It is interesting to note that combining

sub-graph and graph feature sets actually degrades the classification performance

compared to standalone feature sets. This is because redundant features can confuse

the classifier resulting in degraded classification accuracy. However, we do note that

combining all feature sets consistently provides the best classification performance

in terms of all metrics. With combined feature set, our proposed approach achieves

precision up to 99.5%.

4.4 Obfuscation Analysis

We have also done obfuscation analysis on our scheme so that we can observe the ef-

fect of random removal/addition of API calls edges; that is in our case to the graphs.

We specifically want to see whether a crafty malware writer would be successful in

trying to break the sequence of API calls.

Figure 4.9 shows the AUC of the obfuscation analysis on our scheme. We ob-

fuscated API calls ranging from 10 - 100. The accuracy gracefully degrades but no

drastic effect even if 40 API calls are obfuscated.

28

Table 4.2: Classification accuracy results for different feature sets.

Feature AUC True Positive False Positive Precision

Set Rate Rate

Graph 0.892 0.923 0.343 0.918

Vertex 0.949 0.923 0.02 0.995

Sub-graph 0.989 0.983 0.02 0.995

Vertex, 0.949 0.923 0.02 0.995

Graph

Sub-graph, 0.989 0.983 0.02 0.995

Graph

Vertex, 0.89 0.92 0.141 0.965

Sub-graph

All 0.993 0.998 0.02 0.995

29

0 0.1 0.2 0.3 0.4 0.5
0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

Vertex
Sub−graph
Graph

(a) Individual Feature Sets

0 0.1 0.2 0.3 0.4 0.5
0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

Vertex,Graph
Sub−graph,Graph
Vertex,Sub−graph
All

(b) Combinations of Feature Sets

Figure 4.8: ROC plots of classification accuracy.

30

(a) Table of AUC for obfuscating API’s rang-

ing from 10 to 100

(b) AUC’s plotted for different obfuscation values

Figure 4.9: AUC of Obfuscation Analysis

31

Chapter 5

Conclusion

In this paper, we have proposed a graph theoretic malware detection technique

that operates on the program instruction sequences or the API call sequences. The

instruction sequences are mapped to a graph from which distinguishing feature sets

are extracted at three levels, namely vertex level, sub-graph level, and graph level.

These feature sets are then given as an input to machine learning algorithms, both

individually and as a whole, to generate training models. The experimental results

show that the proposed approach achieves approximately 100% detection rate and

0% false positive rate when the three feature sets are jointly used.

32

BIBLIOGRAPHY

33

BIBLIOGRAPHY

[1] Faraz Ahmed, Haider Hameed, M. Zubair Shafiq, and Muddassar Farooq:. Using
spatio-temporal information in API calls with machine learning algorithms for
malware detection. In ACM Workshop on Security and Artificial Intelligence,
2009.

[2] Paul Anderson and Tim Teitelbaum. Software inspection using CodeSurfer. In
Workshop on Inspection in Software Engineering, 2001.

[3] Ulrich Bayer, Christopher Kruegel, and Engin Kirda. TTAnalyze: A tool for
analyzing malware. In European Institute for Computer Antivirus Research
Annual Conference, 2006.

[4] Ulrich Bayer, Andreas Moser, Christopher Kruegel, and Engin Kirda. Dynamic
analysis of malicious code. Journal in Computer Virology, 2(1):67–77, 2006.

[5] F. Bellard. Qemu, a fast and portable dynamic translator. In USENIX Annual
Technical Conference, 2005.

[6] Abhijit Bose, Xin Hu, Kang G. Shin, and Taejoon Park. Behavioral detec-
tion of malware on mobile handsets. In ACM Conference on Mobile systems,
Applications, and Services (MobiSys), 2008.

[7] Pierre Bremaud. Markov Chains. Springer, 2008.

[8] C. Chen, C. Lin, M. Fredrikson, M. Christodorescu, X. Yan, and J. Han. Mining
graph patterns efficiently via randomized summaries. In ACM Conference on
Very Large Data Bases, 2009.

[9] Mihai Christodorescu and Somesh Jha. Static analysis of executables to detect
malicious patterns. In USENIX Security Symposium, 2003.

[10] Mihai Christodorescu, Somesh Jha, Sanjit A. Seshia, Dawn Song, and Randal E.
Bryant. Semantics-aware malware detection. In IEEE Symposium on Security
and Privacy, 2005.

[11] T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley-
Interscience, 1991.

[12] R.D. Dony. The Transform and Data Compression Handbook, Chapter 1. CRC
Press, 2001.

34

[13] Chris Eagle. The IDA Pro Book: The Unofficial Guide to the World’s Most
Popular Disassembler. No Starch Press, 2011.

[14] Matt Fredrikson, Somesh Jha, Mihai Christodorescu, Reiner Sailer, and Xifeng
Yan. Synthesizing near-optimal malware specifications from suspicious behav-
iors. In IEEE Symposium on Security and Privacy, 2010.

[15] Rafiqul Islam, Ronghua Tian, Lynn M Batten, and Steve Versteeg. Differentiat-
ing malware from cleanware using behavioural analysis. In IEEE International
Conference on Malicious and Unwanted Software, 2010.

[16] Clemens Kolbitsch, Paolo Milani Comparetti, Christopher Kruegel, Engin
Kirda, Xiaoyong Zhou, and XiaoFeng Wang. Effective and efficient malware
detection at the end host. In USENIX Security Symposium, 2009.

[17] Andrea Lanzi, Davide Balzarotti, Christopher Kruegel, Mihai Christodorescu,
and Engin Kirda. Accessminer: Using system-centric models for malware pro-
tection. In ACM conference on Computer and Communications Security (CCS),
2010.

[18] D. Perry. Here comes the flood or end of the pattern file. Virus Bulletin VB,
2008.

[19] Ian H. Witten, Eibe Frank, and Mark A. Hall. Data Mining: Practical Machine
Learning Tools and Techniques. Morgan Kaufmann, 2011.

[20] Heng Yin and Dawn Song. Panorama: Capturing system-wide information
flow for malware detection and analysis. In ACM conference on Computer and
Communications Security (CCS), 2007.

35

