THESIS lllllllllllllllllllllllllll lllllllllll lllllll 31293 01778 LIBRARY Michigan State University This is to certify that the dissertation entitled THE QUADRUPOLE MOMENTS OF THE FIRST AND SECOND ROW HOMONUCLEAR DIATOMICS AND THE SPECTROSCOPIC PROPERTIES OF METAL LITHIDES presented by Daniel B. Lawson has been accepted towards fulfillment of the requirements for Ph;D, degree in .Chemisuy_ Major professor Date [9/2f/97 MSU is an Affirmative Action/Equal Opportunity Institution 0- 12771 PLACE IN RETURN BOX to remove this checkout from your record. TO AVOID FINES return on or before date due. MAY BE RECALLED with earlier due date if requested. DATE DUE DATE DUE DATE DUE imam 1M chlHC/DateDuopG5—p.“ THE QUADRUPOLE MOMENTS OF THE FIRST AND SECOND ROW HOMONUCLEAR DIATOMICS AND THE SPECTROSCOPIC PROPERTIES OF METAL LITHIDES By Daniel B. Lawson A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Department of Chemistry 1997 ABSTRACT PART I. ON THE DISTANCE DEPENDENCE OF THE QUADRUPOLE MOMENTS OF THE FIRST AND SECOND ROW HOMONUCLEAR DIATOMICS PART II. THE ELECTRONIC STRUCTURE OF AlLi, ScLi, TiLi, VLi, CrLi, CuLi AND THEIR POSITIVE IONS By Daniel B. Lawson In Part I of this thesis, we estimate the complete basis set limits for the Hartree-Fock, MP2, CASSCF, and CASSCF + 1 + 2 wavefimctions for the first and second row homonuclear diatomics and calculate the molecular quadrupole moment as a fiinction of bond length. Our recommended values for (v = 0, J = 0), compare favorably to the current experimental values and previous high-level calculations. To aid in the analysis of the relationship between the molecule’s electronic structure and quadrupole moment, we introduce the concept of a quadrupole moment density that permits one to write the molecular quadrupole moment as a sum of the separated atoms quadrupole and a purely molecular contribution. The quadrupole density provides a (reference state dependent) means of determining the contribution to (-9 fi'om various regions in the molecule and gives considerable insight into the relationship between the electron density and the magnitude and sign of G), and it allows a detailed assessment of the contribution of electron correlation to G). In Part II, we begin with a study of the ground and low-lying excited states of the transition-metal lithides ScLi, TiLi, VLi, CrLi, and CuLi and their mono-positive ions, and report bond energies, bond lengths, and vibrational frequencies, calculated using MRCI and ACPF techniques. The ground states of ScLi (3A) and TiLi (4CD) trace their lineage to the ground 52dn configuration of the transition element and are weakly bound. The ground states of CrLi (62+) and CuLi (12+) trace their lineage to the ground sdn+1 configurations and are more strongly bound. VLi (5A) traces its lineage to the excited sd4 configuration and is strongly bound, relative to this asymptote. The positive ions ScLi+ (2A), TiLi+ (3CD), VLi+ (4A), and CrLi+ (72+) are more strongly bound than their neutral precursors, while CuLi+ (223+) is more weakly bound than its neutral precursor. In general, the structure of those transition- metal lithides that dissociate to the 52dn asymptote are very sensitive to electron correlation, while those that dissociate to an sdn+1 asymptote are less sensitive. The bonding in the positive ions is primarily ionic. And, in the last chapter of Part II, the ground state (12*) and several low lying excited states (including the 12' , 32' , lI'I , and 3H ) of LiAl are characterized by MCSCF, MRCI, and ACPF techniques using a large correlation consistent basis set. To my wife, Jeanne Acknowledgments I would like to take this opportunity to thank Dr. James F. Harrison for his unending support and guidance during the work that led to this thesis. I am indeed grateful to him both as a mentor and fiiend. I would also like to thank my guidance committee, Dr. Ned Jackson, Dr. Gary Blanchard, and Dr. Katherine Hunt. I would like to acknowledge the faculty and staff of Michigan State University’s Department of Chemistry. Special thanks to Paul Reed and Dr. Tom Atkinson for maintaining the departmental computers along with answering my many questions. I would like to thank the many fi'iends that I have acquired at Michigan State University, especially those of the Harrison and Hunt research groups. Without their contributions and support, I certainly would not have completed my studies. Finally, I would like to thank my entire family. They were helpful, supportive, and inspirational throughout my years in graduate school. TABLE OF CONTENTS List of Tables List of Figures Keys to Symbols and Abbreviations PART I CHAPTER 1 INTRODUCTION CHAPTER 2 ON THE DISTANCE DEPENDENCE OF THE QUADRUPOLE MOMENTS or H2, N2, 02, AND F2 A. Introduction B. Discussion C. MPZ Results D. Hellmann-Feynman Theorem E. Quadrupole Moment Functions F. H2 G. On the Sign of the Quadrupole Moment H. Correlation Effects on (93,01 and 63.01 1. Conclusion J. References CHAPTER 3 THE QUADRUPOLE MOMENT OF P2, 82, AND C]; A. Introduction B. Computational Technique C. Discussion D. On the Distance Dependence of $2 and C]; E. The Quadrupole moment of N2 and P2 ix xix 25 26 28 50 52 52 57 58 59 62 63 63 64 79 F. Conclusion 95 G. References 100 CHAPTER 4 THE QUADRUPOLE MOMENT OF H2, Liz, AND Naz 102 A. Introduction 103 B. Methods 103 C. Results 104 D. H2, Liz, and Na; 112 E. The Quadrupole Density of Liz and Na; 112 F. Conclusion 1 19 APPENDIX A INTRODUCTION T 0 THE QUADRUPOLE MOMENT 121 A Multipole Moments 122 B. Experimental Evaluation 125 C. Theoretical Evaluation 126 l. Ab-Initio Methods 126 2. Expectation Values 128 3. Point Charge Method 129 4. Finite Field Method 131 D. References 133 APPENDIX B TABLES OF BASIS SETS 135 A. Description 136 B. References 141 APPENDIX C TABLES OF PROPERTIES 189 APPENDIX D TABLES OF DISTANCE DEPENDENCE OF PROPERTIES 202 PART 11 CHAPTER 5 THE ELECTRONIC STRUCTURE OF ScLi, TiLi, VLi, CrLi, AND CuLi AND THEIR POSITIVE IONS 232 A. Introduction 233 vii B. Technical Details and WavefiJnction Construction 234 C. Neutral Lithides 236 D. Positive Lithides 252 E. Previous Work 261 F. Conclusions 264 G. References 266 CHAPTER 6 THE ELECTRONIC STRUCTURE OF AlLi AND ITS POSITIVE ION 267 A. Introduction 268 B. Computational Methods 268 C. Results 271 D. Excited States 274 E. Positive Ion 277 F. AlLi and ScLi 277 G. Conclusions 280 H. References 281 viii LIST OF TABLES Table CHAPTER 2 2-1. 2-3. 2-4. 2-5. 2-6. 2-7. 2-8. 2-9. Equilibrium value of the first and second derivatives of the molecular quadrupole moment function for H2, N2, 02, and F2, calculated with various wavefirnctions. . Selection of H2 quadrupole moments. Selection of N2 quadrupole moments. Comparison of experimental and theoretical quadrupole-moment derivatives. Selection of 02 quadrupole moments. Selection of F2 quadrupole moments. CASSCF+1+2 results for Ropt and 9. Comparison of MPZ and CASSCF+1+2 results. Expectation Value quadrupole moment and Point Charge quadrupole moment. CHAPTER 3 3-1. Equilibrium value of the first and second derivatives of the molecular quadrupole moment function for P2, 82, and C12, calculated with various wavefunctions. Selection of C12 quadrupole moments. . CASSCF + 1 + 2 results for Ropt and (-9. Comparison of MP2 and CASSCF + 1 + 2 results. ix Page 11 13 18 22 23 25 26 27 66 78 78 100 CHAPTER 4 4-1. First and second derivatives of O(R) near Rap, using various models and the V52 basis for Li; and the VQZ basis for N82. CHAPTER 5 5-1. 5-3. 5-4. 5-5. 5-6. Energy separation between the lowest terms of the 52d" and sdn+1 configurations. Calculated (MRCI) and experimental separations are presented with the experimental results connected by a dotted line. . Dissociation energy, bond length, and vibrational frequency for states of ScLi, TiLi, VLi, CrLi, and CuLi asymptotic to the transition metal 4sz3d“ and 433dn+1 atomic states. Estimate of Exchange Energy Loss. Calculated characteristics of various Transition-Metal Lithide Cations. Population Analysis of M-Li+. Comparison of Experimental and Theoretical Results. W 6-1. 6-2. 6-3 . 6-4. 6-5. 6-6. Adiabatic ionization potentials as S => S + e'. Characteristics of low lying AlLi electronic states. Population analysis of low lying states of AlLi. Calculated properties of MRCI roots. Properties of low lying states of the positive ion. Population analysis of AlLi“. 107 238 239 243 257 260 263 270 272 274 276 279 279 LIST OF FIGURES Figure Page CHAPTER 2 1. Model dependence of G) for H2 as a function of basis set. 6 2. Distance dependence of G) for H2 calculated with various models using the aug-cc-vaz basis. 8 3. Model dependence of G) for N2 as a function of basis set. 12 4. Distance dependence of O for N2 calculated with various models using the aug-cc-pqu basis. 15 5. Model dependence of G) for 02 as a function of basis set. 17 6. Distance dependence of O for 02 calculated with various models using the aug-cc-pqu basis. 19 7. Model dependence of O for F2 using various basis sets. 21 8. Distance dependence of G) for F2 calculated with various models using the aug-cc-pqu basis. 24 9. MRCI potential energy curves for N2, 02, and F 2 using the aug-cc-pqu basis and a 10 CSF, CASSCF potential energy curve for H2 using the aug-cc-vaz basis. 29 10. Molecular quadrupole moments of H2, N2, 02, and F2 as a function of bond length. 30 11. Distance dependence of the molecular quadrupole moments of N2, 02, and F2 partitioned into the 95 and On components. 33 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. Distance dependence of the quadrupole moment of N2 partitioned into its 6:0, and (-920, components. Distance dependence of 6,7,0] for 02 partitioned into its (920, and 0:0, components. Distance dependence of Gmol for F2 partitioned into its (93,0, and (9,3,0, components. Nodes of - 1/2 (3 cos2 9-1) (solid lines) and parabolas separating the Berlin bonding and antibonding regions. Electron-density difference and the associated quadrupole-density contours for N2 at 2.1 a0 calculated with the aug-cc-pvtz basis. The contour values are 2N*10'3(atomic units) with N = 0-6. The red contours are negative, the blue positive, and the nodes are in black. 811., and 59., for N2 at 2.1 a0 calculated with MRCI using the aug-cc-pvtz basis. Contours values and colors are same as in Figure 16. 6n, and 59,. for N2 at 2.1 a0 calculated with MRCI using the aug-cc-pvtz basis. Contours values and colors are same as in Figure 16. Electron-density difference and the associated quadrupole-density contours for 02 at 2.3 a0 calculated with the aug-cc-pvtz basis. Contours values and colors are same as in Figure 16. 5n, and 59., for 02 at 2.3 a0 calculated with MRCI using the aug-cc-pvtz basis. Contours values and colors are same as in Figure 16. 6n. and 56),. for 02 at 2.3 a0 calculated with MRCI using the aug-cc-pvtz basis. Contours values and colors are same as in Figure 16. Electron-density difference and the associated quadrupole-density contours for F2 at 2.7 a0 calculated with the aug-cc-pvtz basis. Contours values and colors are same as in Figure 16. xii 36 37 38 39 41 42 43 44 45 46 47 23. 24. 25. 26. 27. 28. 5n, and 59,, for F2 at 2.7 a0 calculated with MRCI using the aug-cc-pvtz basis. Contours values and colors are same as in Figure 16. 6n, and 69,. for F2 at 2.7 a0 calculated with MRCI using the aug-cc-pvtz basis. Contours values and colors are same as in Figure 16. Electron-density difference, 6n, and the associated quadrupole density, 86), contours for H2 at 1.4 a0 calculated with a 10 CSF MCSCF wavefunction and the aug-cc-vaz basis. Contour values and conventions are as in Figure 16. Effect of electron correlation on the magnitude and distance dependence of D, Go and On for N2. Effect of electron correlation on the magnitude and distance dependence of O, (-96 and On for 02. Effect of electron correlation on the magnitude and distance dependence of (-9, (9° and On for F 2. HAPTER 3 Model dependence of O for P2 as a fiinction of basis set. Distance dependence of G) for P2 calculated with various models using the aug-cc-pqu. The quadrupole moment of P2 as function of internuclear separation with various models using the aug-cc-pqu basis. Model dependence of O for S2 as a function of basis set. Distance dependence of O for S2 calculated with various models using the aug-cc-pqu. The quadrupole moment of 82 as function of internuclear separation with various models using the aug-cc-pqu basis. Model dependence of G) for C12 as a firnction of basis set. xiii 48 49 51 54 55 56 65 67 68 70 71 72 73 8. Distance dependence of O for C12 calculated with various models using the aug-cc-pqu. 9. The quadrupole moment of C12 as function of internuclear separation with various models using the aug-cc-pqu basis. 10. CASSCF+1+2 potential energy curves for N2, 02, F2, P2, S2, and C12 using the aug-cc-pqu basis. 11. Molecular quadrupole moments of N2, 02, F2, P2, S2, and C12 using the CASSCF+1+2 and the aug-cc-pqu basis. 12. Distance dependence of the sigma component of the quadrupole moment of N2, 02, F2, P2, S2, and C12. 13. Distance dependence of the pi component of the quadrupole moment Osz, 02, F2, P2, 82, and C12. 14. Distance dependence of the quadrupole moment of P2 partitioned into its 9°...“ and Ohm. components. 15. Distance dependence of the quadrupole moment of S2 partitioned into its 9°mor and 0"”! components. 16. Distance dependence of the quadrupole moment of C12 partitioned into its 9°“. and 6"”; components. 17. Electron-density difference and the associated quadrupole- density contours for N2, at 2.1 a0 calculated with MRCI wavefunction and the aug-cc-pqu. Contour values are 0.0, $0.001, $0.002, $0.004, $0.008, $0.016, $0.032, and $0.064. Blue represent positive contours and red represents negative. 18. Electron-density difl‘erence and the associated quadrupole- density contours for 02, at 2.3 a0 calculated with MRCI wavefiinction and the aug-cc-pqu. Contour values are 0.0, $0.001, $0.002, $0.004, $0.008, $0.016, $0.032, and $0.064. Blue represent positive contours and red represents negative. 19. Electron-density difference and the associated quadrupole-density contours for F2, at 2.6 a0 calculated with MRCI wavefimction and the aug-cc-pqu. Contour values are 0.0, $0.001, $0.002, $0.004, $0.008, $0.016, $0.032, and $0.064. Blue represent positive contours and red represents negative. xiv 76 77 80 81 83 84 86 87 88 89 9O 91 20. Electron-density difference and the associated quadrupole-density 21. 22. 23. 24. 25. 26. contours for P2, at 3.6 a0 calculated with MRCI wavefunction and the aug-cc—pqu. Contour values are 0.0, $0.001, $0.002, $0.004, $0.008, $0.016, $0.032, and $0.064. Blue represent positive contours and red represents negative. Electron-density difference and the associated quadrupole-density contours for S2, at 3.6 a0 calculated with MRCI wavefunction and the aug-cc-pqu. Contour values are 0.0, $0.001, $0.002, $0.004, $0.008, $0.016, $0.032, and $0.064. Blue represent positive contours and red represents negative. Electron-density difi‘erence and the associated quadrupole-density contours for C12, at 3.7 a0 calculated with MRCI wavefirnction and the aug-cc-pqu. Contour values are 0.0, $0.001, $0.002, $0.004, $0.008, $0.016, $0.032, and $0.064. Blue represent positive contours and red represents negative. CASSCF+1+2 potential energy curves for N2 and P2 using the aug-cc-pqu basis. Distance dependence of the molecular quadrupole moments of N2 and P2 using the CASSCF+1+2 and the aug-cc-pqu basis. Distance dependence of the molecular quadrupole moment of N2 and P2 partitioned into 6)., and O, components. Distance dependence of the molecular quadrupole moment of N2 and P2 partitioned into ®°moi and 9",...“ components. CHAPTER 4 1. Distance dependence of (-9 for Li2 near Rap. calculated with various models using the VSZ basis. Distance dependence of (-9 at large R for Li2 calculated with various models using the V52 basis. Distance dependence of O for Na2 near Rap. calculated with various models using the VQZ basis. Distance dependence of G) at large R for Na2 calculated with various models using the VQZ basis. 92 93 94 96 97 98 99 105 108 110 111 . CASSCF+1+2 potential energy curves for H2, Li2, and Na2 using the aug-cc-vaz, ASZ, and VQZ basis, respectively. Distance dependence of G) for H2, Li2, and Na2 using the CASSCF+1+2 wavefunction and the aug-cc-vaz, VSZ, and VQZ basis, respectively. Electron-density difference and the associated quadrupole-density contours for H2, at 1.4 a0 calculated with CASSCF wavefirnction and the aug-cc-vaz. Contour values are $00004, $0.001, $0.002, $0.004, $0.008, $0.016. Blue represent positive contours and red represents negative. Electron-density difference and the associated quadrupole-density contours for Li2, at 5.0 a0 calculated with CASSCF wavefirnction and the VSZ. Contour values are $00004, $0.001, $0.002, $0.004, $0.008, $0.016. Blue contours represent positive density and red contours represent negative density. Electron-density difference and the associated quadrupole-density contours for Na2, at 6.0 a0 calculated with CASSCF wavefilnction and the VQZ. Contour values are $00004, $0.001, $0.002, $0.004, $0.008, $0.016. Blue contours represent positive density and red contours represent negative density. APPENDIX A 1. The potential at an arbitrary point P created by a static molecular charge distribution. 2. Schematic representation of Point Charge method. APPENDIX B 1. Comparison of O2 RKR data to CASSCF+1+2 potential energy curve using the cc-pvtz basis. Comparison of the ROHF and UMP2 total energy for 02 using the cc-pvtz and the aug-cc-pvtz basis. . Comparison of the ROHF and UMP2 quadrupole moment of 02 using the cc-pvtz and the aug-cc-pvtz basis. 113 114 115 116 117 122 131 138 139 140 CHAPTER 5 1. The energy separation between the lowest terms of the 32d“ and sdn'*‘1 configurations. Calculated (MRCI) and experimental separations are presented with the experimental results connected by a dotted line. 235 2. The orbitals involved in the MCSCF wavefiinctions for the neutral and mono-positive transition-metal lithides. 237 3. The calculated (MCSCF) potential energy curves for the lowest quartet and doublet states of TiLi that correlate with the ground-state products, Ti (3F) + Li (ZS). 239 4. The calculated (MCSCF+1+2) potential energy curves for the lowest quartet and doublet states of TiLi that correlate with the ground-state products, Ti (3F) + Li (2S). 240 5. The 4CD ground-state potential curve of TiLi, calculated with the MCSCF, MCSCF+1+2 and ACPF techniques. 241 6. The 62"" ground-state potential curves of CrLi, calculated with the MCSCF, MCSCF+1+2, and ACPF techniques. 242 7. The two 5A states of VLi that correlate with the s2d3 and sd4 asymptotes. 247 8. A comparison of the neutral and positive ion states of ScLi, calculated at the MRCI level. 248 9. A comparison of the neutral and positive ion states of TiLi, calculated at the MRCI level. 249 10. A comparison of the neutral and positive ion states of VLi, calculated at the MRCI level. 250 11. A comparison of the neutral and positive ion states of CrLi, calculated at the MRCI level. 251 12. The MRCI ground-state potential curves for the neutral lithides. 253 13. The experimental energy levels for the low-lying asymptotic products M+Li, M++Li, M+Li+, and M*+Li+. 254 1 4. The 4A ground-state potential curves of VLi+, calculated with the MCSCF, MCSCF+1+2, and ACPF techniques. 255 1 5. The MRCI ground-state potential curves for the mono-positive lithides. 256 1 6. Variation of the calculated (MRCI) De’s of the mono-positive lithides with equilibrium bond length. 262 CHAPTER 6 1. Low lying excited atom energies. 269 2. Potential energy curves of the low lying electronic states of AlLi using MCSCF and MRCI. 273 3. Potential energy curves of the low lying electronic states of AlLi using MRCI. 275 4. Potential energy curves of the low lying electronic states of AlLi+ using MRCI. 278 xviii Smbols 2 e/ao 2 eao e ea0 e/ai Abbreviations ACPF CASSCF CASSCF+1+2 CBS CISD CSF EEL IVIPZ MCSCF MCI RHF/UHF ROHF Ra Ra KEYS TO SYMBOLS AND ABBREVIATIONS Quadrupole Moment Sigma component of the molecular quadrupole Sigma component of the molecular quadrupole moment referenced to its asymptotic atomic contribution. Pi component of the molecular quadrupole Pi component of the molecular quadrupole moment referenced to its asymptotic atomic contribution. Field Gradient Atomic Units of Length Atomic Units of Energy Atomic Units of Quadrupole Moment Atomic Units of Quadrupole Moment Second Derivative Atomic Units of Quadrupole Moment First Derivative Atomic Units of Field Gradient Averaged Coupled Pair Functional Complete Active Space Self Consistent Field Complete Active Space Self Consistent Field Singles and Doubles Configuration Interaction Complete Basis Limit Single and Double Configuration Interaction Configuration State Functions Exchange Energy Loss Second Order Moller-Plesset Perturbation Multi-Configuration Self Consistent Field Multi-Reference Singles and Doubles Configuration Interaction Restricted/Unrestricted Hartree-Fock Restricted Open Shell Hartree-Fock Optimal Model Separation Experimental Separation xix CHAPTER 1 Introduction A. Introduction The purpose of Part I of this thesis is to discuss the calculation and interpretation of the quadrupole moments of the first and second row homonuclear diatomics, and their distance dependence. The primary interest is in developing a qualitative understanding of the relationship between a molecule’s quadrupole moment and electronic structure, and, in order to do so reliably, we have explored the sensitivity of the calculated quadrupole moment to basis sets as well as electron correlation. Using Self-Consistent Field (SCF), Multi-Configurational Self-Consistent Field (MCSCF/CASSCF), Moller-Plesset Second Order Perturbation (MP2), and Multireference Configuration Interaction (MRCI/CASSCF+1+2), we calculate quadrupole moments, as a function of internuclear separation, for a sequence of basis sets obtained from the Dunning Augmented Correlation Consistent basis sets by deleting g and higher symmetries. The goal is to provide accurate calculated quadrupole moments of the first and second row homonuclear diatomics, an interpretation of the magnitude and sign of the quadrupole moment, the effects of correlation, and the distance dependence of the quadrupole moment. The work in Part I divided into three chapters. Chapter H is a description of the distance dependence of the quadrupole moment for H2, N2, 02, and F2. The next Chapter is a discussion of the quadrupole moments and distance dependence of P2, S2, amd C12, and a comparison with their first row conjugates. In the fourth chapter of ths work we discuss and compare the quadrupole moment and distance dependence Osz, Li2, and N32. Appendix A outlines the quadrupole moment as a molecular property by giving a derivation of the multipole moments, and a description of how multipole moments are determined. Appendix B contains the basis sets used in these calculations. Appendix C contains the dissociation energy, quadrupole moment and field gradient as firnction of internuclear separation. Appendix D gives complete tables of the Homonuclear Diatomics for which calculations were done, but may not have been discussed. In part H of this thesis, we describe the calculations of the excited states and positive ions of certain metal lithides. Chapter V describes the ground and low-lying excited states of the transition-metal lithides ScLi, TiLi, VLi, CrLi, and CuLi and their mono-positive ions, and report bond energies, bond lengths, and vibrational fi-equencies. Chapter VI includes the ground and excited states of AlLi and its positive ions. CHAPTER 2 On the Distance Dependence and Spatial Distribution of the Molecular Quadrupole Moments of H2, N2, 02, and F2 A. Introduction We first discuss the quadrupole moments of the titled molecules at the calculated equilibrium separations and compare these with experiment and previous calculations. Then, we examine the quadrupole moment functions (variation of the quadrupole moment with the internuclear separation), using MCSCF and MRCI techniques. Finally, we develop an interpretation of the molecular quadrupole moment as the sum of atomic contributions associated with the free (non-interacting) atoms and a molecular contribution that depends on the shift in the electron density due to molecule formation (the deformation density). Using the deformation density, we define a quadrupole density whose integral is the molecular contribution to the molecular quadrupole moment. The distance dependence of the quadrupole moment, the differing contributions to G from various regions of the charge distribution, and the role of electron correlation in determining O are analyzed in terms of the quadrupole density. B. Discussion Let’s look, first, at the H2 results. Figure 1 shows the graphical representation of the quadrupole data in Table C-1 of Appendix C. Several characteristics are evident. First, the convergence to the CBS limit is only monotonic after the aug-cc- pvdz basis and, accordingly, we use the last three basis sets to extrapolate to the CBS limit. Within these three basis sets, increasing the flexibility of the basis decreases, as does increasing the level of correlation. The aug-cc—vaz basis set results are close to the CBS limit for each model wavefirnction. 0.50- 1 + H2( 2g ) 0.49 - / \ i. 5 [i a 8? m0 3 - CISD limit ca 0.45 A 0.44 A . ——I— RHF - —~— MP2 0.43 - —A— CISD A 0.42 I | T I 2 3 4 aug-cc-vaz Figure 1. Model dependence of G) for H2 as a firnction of basis set. Note that the CBS-CISD limit predicts an equilibrium bond length Rom = 1.4010 a0 and a dissociation energy De = 4.740 ev in excellent agreement with the experimental values1 1.4011 a0 and 4.749 ev. Our CBS-CISD value of O is + 0.455 cog and agrees with the essentially exact theoretical result2 of + 0.457 eag' . The experimental value for O, + 0.460 $ 0.021 eag, is an indirect value assembled from the magnetic susceptibility anisotropy and the molecular g value, assuming a vibrationless H2.2‘4 As such, it agrees well with our CBS-CISD estimate of the vibrationless G), + 0.455 eag . Buckingham and Cordle5 have estimated the vibrational (v = O, J = 1) value to be 0.4853 eag. Figure 2 shows the variation of ('9 with R for the SCF and CISD wavefilnctions, using the aug-cc-pqu basis. These data were fit to a quadratic function of the form (R—Rop,)+(@—]o M (3) 90?) = ®(R°P') + (3%) dR2 2 op! p, and the parameters are reported in Table 2-1. These data are useful in correcting our calculated values to other bond lengths for comparison with previous calculations. Additionally, they allow us to estimate the vibrational dependence of 6), using the formula5:6 Be ago), d9 (9v = Gopt +2)— 3[1+ B: )Rop (ER?) e +46%) (+4 R 0P‘ e Rap! and experimental values1 for the spectroscopic parameters one, we, and Be. Using Equation 3 and our Rap, for the HF and CISD wavefunctions, we corrected 9 to the 0.7 - 1 + I. 2 . H2( g ) 6) VS. R-R .5 opt 0.6 - 0.5 - $0 (0 . 3 e 0.4 - 0.3 — ------ - ------ SCF l " ------'~-CASSCF ' —A— CISD 0.2 1 l . | ' l ' l -0.4 -02 0.0 02 0.4 R - Ropt (a0) Figure 2. Distance dependence of O for H2 calculated with various models using the aug-cc-vaz basis. Table 2-1. Equilibrium value of the first and second derivatives of the molecular quadrupole moment function for H2, N2, 02, and F2, calculated with various wavefunctions. . (99-) (mo) [$2] (8) Molecule Wavefunctron Ropt(a0) dR Rap! Rap! H2 SCF 1.3865 0.6064 0.2622 H2 CISD 1.4022 0.5174 0.1028 N2 SCF 2.0133 1.4017 0.5594 N2 MCSCF 2.0825 0.9481 0.0548 N2 MRCI 2.0806 0.9593 0.0892 02 ROSCF 2.1747 1.4797 — 0.0744 02 MCSCF 2.2939 1.3720 — 0.1998 02 MRCI 2.2864 1.4738 — 0.2160 F2 SCF 2.5071 1.1656 — 0.6212 F2 MCSCF 2.7632 1.1399 — 0.9718 F2 MRCI 2.6825 1.2134 — 0.9142 experimental Rexp = 1.4011 a0 at which most other calculations were done. Our HF result at Rexp is 0.4937 eag , in excellent agreement with the numerical HF result (0.4934 egg) of Larksonen, Pyykkc‘i, and Sundholrn.7 Using (4) and the data in Table 2-1, we estimate the vibrational dependent CBS-CISD value of O to be (9(1772 ; v) = +0455 + 0.051(v + i) 10 @(Hz ;v = 0) = 0.481ea3‘ , which is in good agreement with the v = 0 Wolniewicz8 value, 0.484 eag and the v = 0, J = 1 value, 0.4853 eag, of Buckingham and Cordle.5 There are a vast number of calculationsz+3+9'14 of O (H2), and we collect, in Table 2-2, a representative collection of ab initio values for O (H2), along with the experimental values and our CBS-HF and CBS-CISD results. From Figure 2, we see that the slope of 9 (Hz) around Rom is positive; and, as we will see, this is also true for N2, 02, and F2. Accordingly, to the extent that the HF model limit for Rem is less than Rexp, the HF model limit for G) is always less than the HF value calculated at Rexp. Note that electron correlation decreases 6) relative to the HF value. Precisely how much depends on whether one compares the HF and correlated value at the experimental bond length or at the optimal bond length (Rom) corresponding to each model. Since correlation corrections to the HF wavefunction are responsible for changing the predicted Rom, measuring correlation effects relative to the experimental bond length obscures this important efi‘ect. For example, 0 (CISD) at the experimental bond length is 7.8 percent smaller than D (HF) at this bond length, while G) (CISD) and 9 (HF) differ by 6.0 percent when each is referred to its model limit Rom. Our N2 results are summarized in Table C-6 and Figure 3 and compared with selected calculations12+15‘25 and experiment826+27 in Table 2-3. As with H2, increasing the quality of the basis set within a model reduces the calculated O, and adding correlation decreases 9, relative to the SCF values. Our CBS-HF limit is L'i Table 2-2. Selection of H2 quadrupole moments. 11 If R(a0) @(eag ) Reference Comment T4 0.493 1 1 Hartree Fock limit 1 - 4 0.4934224 7 Numerical HF 1.3863 0.4845 This (333-1413; Ropt Work 1.4016 0.4937 This CBS-HF; Exp. Rfixp Work 1.4 0.457 9 essentially exact wavefunction 1 .40 1 0.437 12 numerical DFT 1.40 0.4438 13 MP4 Sadlej15 basis 1.40 0.4414 13 CISD Sadlej basis 1 .3 895 0.4649 This CBs-MP2 R0 pt Work 1 . .4016 0.4712 This CBS-MPZ Exp. Rexp Work 1.4010 0.4552 This CBS-CISD RO pt Work vibrational average 0.516 This CBS-HF; v = 0, J = 0 Work Vibrational average 0.481 This CBS-CISD; v = 0, J = 0 Work vibrational average 0.477 14 essentially exact wf-integrate radial wavefirnction experimental 0.460 a 0.021 2 derived from exp. data - non-vibrating molecule experimental 0.485 5 vibrational average of magnetic \ anisotropy and g factor; v = 0, J = 1 12 094-. I N (12 +) -0.96- 2 g -0.98- -1.00- -1.02-i I mm -1044 4.06- -1.08- 4.104 4.12; -1.14 _ \\ "‘6 .......................... o MRCI 11ml! -1.16 - \ —:I '1-13 j i. MP2 limit -1.20 - i -1.22 - -1 .24 - '1.26 I l 2 3 4 aug-cc-vaz G) (eaoz) —1 - Figure 3. Model dependence of O for N2 as a function of basis set. 13 Table 2-3. Selection of N2 quadrupole moments. R(aO) @(eag ) Reference Comment 2.07432 — 0.9310 15 numerical HF 2.068 — 0.9400 16,17 numerical HF 2.07432 — 0.9054 18 SCF large basis 2.07430 — 0.9285 19 SCF large basis 2.068 — 0.937 20 SCF 2.0133 — 1.0158 This Work SCF at Ropt 2.07435 — 0.9306 This Work CBS-SCF limit 2.075 — 1.137 12 numerical DFT 2.068 — 1.1426 21 numerical HFS 2.07430 — 1.1289 22 large basis set DFT 2.068 — 1.15 23 numerical HFS 2.07432 — 1.1131 18 SDQ-MPPT(4); 6s4p3d1f 2.07430 - 1.0905 19 MRSD-CI 2.068 — 1.154 20 MRSD-CI 2.068 — 1.16865 24 CCSD-Sadlej’s15 Ss4p2d basis 2.0856 — 1.1755 This Work CBS-CASSCF; Ropt 2.0810 — 1.1270 This Work CBS-CASSCF+1+2; Rom 2.07432 — 1.1334 This Work CBS-CASSCF+1+2; Rexp vibrational average — 1.118 This Work CBS-CASSCF+1+2;v=0, J=0 vibrational average — 1.1557 25 CCSD, v=0, J=0; Sadlej’s 5s4p2d basis experimental — 1.09 $ 0.07 26 Optical Birefringence experimental — 1.05 $ 0.06 27 Optical Birefiingence l4 -l.0158 eag at Ropt of2.0133 a0 and — 0.9306 gag at R = 2.07432 a0, in excellent agreement with the numerical HF result20 of — 0.9310 eag at this bond length. The convergence of the MP2, MCSCF, and MRCI results all suggest that the aug-cc-pqu basis produces a quadrupole moment that differs from the CBS limit by less than 0.2 %, suggesting that the individual CASSCF and CASSCF+1+2 values of — 1.1753 cog and -- 1.1247 eag are near the model limit. The distance dependence of 9 around Rep. is shown in Figure 4 for the SCF, MCSCF, and‘MRCI models, using the aug-cc- pqu basis. Note the similarity between the MCSCF and the MRCI 0 versus R curves. The SCF curve has significantly larger first and second derivatives, and these are in good agreement with calculations by Truhlar28 and Maroules and Bishop.29 Using the MRCI derivatives in Table 2-1, we estimate the vibrational dependence of the CBS-CASSCF+1+2 quadrupole moment as ®(N2;v) = —1.1247+0.0137 (6+1) 2 and so our recommended vibrationally corrected quadrupole moment is O (N 2 ; v = O) = -1.118 eag. This is in good agreement with the reported experimental quadrupole moments gathered in Table 2-3. The several experimental estimates of the quadrupole derivative available in the literature33'36 average 0.95 eao, and these may be compared with our SCF, MCSCF, and MRCI results of 1.402 eao, 0.948 eao, and 0.959 eao. The SCF result is clearly much too large, while the correlated values agree with the average of the experimental values. The data are collected in Table 2-4. Note that the 15 -0.6 -4 .-"x 2 G) (ea0 ) ...... ....... SCF ------- MCSCF - ,” —‘— MCSCF+1+2 '1.6 ‘2’ r r 1 I I T I I -0.4 -0.2 0.0 0.2 0.4 R - R (a0 ) Figure 4. Distance dependence of G) for N2 calculated with various models using the aug-cc-pqu basis. 16 significant reduction in dO/dR, when a correlated wavefirnction is used, is implicit in the SCF vs GVB results reported by Cartwright and Dunning.3O Our 02 results are summarized in Table C-7 and Figure 5. As with H2 and N2, increasing the quality of the basis set decreases the quadrupole moment. However, unlike H2 and N2, adding correlation increases the quadrupole moment (makes it less negative). The opposing effects of basis-set quality and correlation permits a limited correlation wavefirnction with a small basis set to predict a quadrupole moment comparable with the CBS-MRCI limit. We have not found a reported Hartree F ock limit for O (02) with which to compare either our ROHF results (Rap, = 2.1747 a0 ,6 = —0.4188 egg) or our UHF results (Rap, = 2.1885a0 ,6) = —0.3427 cog). Our ROHF and UHF results at R = 2.28 ao are -0.264 eag and —0.218 cog , respectively and are in reasonable agreement with a large basis SCF calculation, by Bundgen et al.,20 at R = 2.2819 a0 that predicts G) = — 0.249 ea?) . There are two numerical HFS calculations of O, both at R = 2.28 a0. The first, by Becke,23 is an unrestricted calculation that predicts = — 0.36 ea?) , while the second, by Laaksonen et (11.,21 is a spin-restricted calculation predicting G) = —0.3885 ea?) . Our CBS CASSCF and CASSCF+1+2 results are — 0.2885 cc?) and — 0.2530 ea?) , respectively. It is fascinating that ROHF calculations at the experimental bond length predict a O (— 0.264 mg ), which differs from our best correlated result G) (eaoz) l7 0.10: ‘ O (32 -) 0.12 4 c 2 g 0.14 - ' —'— ROHF 0.16 - —'— U HF 0.18 - _‘— UMP2 .020 .3 —V— MCSCF . O . . 0.24 -. \ ‘w llmlt 0.26 \ ‘ L . \ ‘\ MRCI limit 0.28 - .\ '0-30 j \ MCSCF limit 0.32 4 °\ .0 34 j .\e ' - UHF limit 0.36 - 0.38 - 0.40 - \- '°'42 . RoI-IF limit '0-44 r l l I 2 3 4 aug-cc-vaz Figure 5. Model dependence of (9 for 02 as a function of basis. 18 Table 2-4. Comparison of experimental and theoretical quadrupole-moment derivatives. (50/071) Re (eao) Reference Comment + 0.94 33 quadrupole absorption + 0.97 34 collision-induced + 0.95 ' 35 collision-induced + 0.933$0.039 36 quadrupole absorption 0.959 This Work MRCI aug-cc-pqu; Rom 0.948 This Work MCSCF aug-cc—pqu; Rom 1.402 This Work SCF aug-cc-pqu; Ropt (—0.253 ea?) ) by only 4 percent. The reason for the insensitivity of O (02) to correlation effects is a consequence of the difference in the response of the c and 1t electrons in 02 to electron correlation and will be discussed after the quadrupole density is introduced. The distance dependence of O is shown in Figure 6. Unlike in N2, the MCSCF and MRCI curves are not nearly as parallel as are the MRCI and SCF curves. The first and second derivatives of these curves are collected in Table 2-1. 19 (+9 (e302) Figure 6. Distance dependence of G) for O2 calculated with various models using the aug- cc-pqu basis. 20 Experimental data on 02 is sparse. Buckingham et al.37 report — 0.3 $ 0.1 cog from induced birefringence measurements, and Cohen and Birnbaum32+37 report K9] = 0.25 cog obtained from the interpretation of pressure-induced far-infrared spectra. These, and selected theoretical results, are shown in Table 2-5. Using the derivatives in Table 2- 1, we estimate the vibrational correction to our CBS - CASSCF+1+2 result is @(02 ; v) = —0.2530+ 0.0257 (v + l) 2 resulting in G) (02 , v = 0) = —0.2273 eag , which is in general agreement with the highly uncertain experimental values. The experimental estimate33 of (dB/$08 for 02, obtained fiom an analysis of the quadrupole absorption spectrum is + 1.6 eao and is in reasonable agreement with our ROHF, MCSCF, and MRCI values of 1.8, 1.4, and 1.5 eao, respectively. Our F 2 results are collected in Table C-8 and Figure 7. As with H2, N2, and 02, the quadrupole moment decreases within a model with increasing quality of basis set and, as in 02, electron correlation increases G. Our CBS-RI-IF limit is + 0.3081 egg at Ropt = 2.5064 a0 and + 0.501 cog at R= 2.68 (10. This latter value is in good agreement with the numerical Hartree-Fock result of McCullough, 17 + 0.505 e03 , at R = 2.68 a0. Our CBS-CASSCF+1+2 value of + 0.7131 eag (Rom = 2.6853 a0) is in good agreement HM-H.‘ \ A..- 21 1.05 1 "l 2 g 0.95 - 0.90 1 0.85 - 0.80 - A 0 75 ' \F\A—Mgmm" it o - —\ . \ '\L 0.70 - j . . A MP2 /MRCI llmlt N .. (5° 0.65 — m .- ‘6 0.60 - 0,551 —l— RHF 0.50.: . —9— MP2 M, 2 + MRCI 0.35 "' \- ‘ \L 0+3°j RHF lirrnt 0.25 I I I I 2 3 4 5 aug-cc-vaz Figure 7. Model dependence of O for F2 using various basis sets. 22 Table 2-5. Selection of Oz quadrupole moments. R(a0) (9(eag ) Reference Comment 2.1747 — 0.4188 This Work ROHF; Ropt 2.1885 — 0.3427 This Work UHF; Ropt 2.28 — 0.2634 This Work ROHF 2.28 — 0.188 20 SCF Sadlcj15 basis (5s3p2d) 2.28 — 0.249 20 SCF 2.2819 — 0.271 38 CI 2.282 — 0.356 12 numerical DFT (unrestricted) 2.28 — 0.3885 21 numerical HFS (or = 0.7) 2.28 — 0.36 23 numerical HFS (restricted) 2.2970 — 0.2885 This Work CBS-CASSCF; Ropt 2.2873 — 0.2530 This Work CBS-CASSCF+1+2; Ropt vibrational average — 0.240 This Work CBS-CASSCF+1+2 experimental 1025' 32,37 pressure-induced, far-infiared spectrum experimental — 0.3 :l: 0.1 31 Optical Birefringence 23 with the numerical HF S calculations of Laaksonen et al.,21 0.6911 eag at R = 2.68 ao, and those ofBecke,23 + 0.69 eag also at R = 2.68 a0. Our CBS limit at R = 2.68 a0 is +0.7068 cog . The distance dependence of O (F 2) is shown in Figure 8. Correlation corrections effects more than double 6) (F 2), a much larger effect than in H2, N2, and 02. As we will see subsequently, the correlation corrections to 0, due to the c and 7: electrons, are both in the same direction, and, rather than cancel as in 02, they reinforce one another. Using the data in Table 2-1, we write the vibrational averaged (9 as @(F2 ; v) = +0.7131+ 0.0276(v + 2) and, so, 9(F2 ;0) = +0.7269 gag . We collect the values of G from selected calculations in Table 2-6. Ta ble 2-6. Selection of F2 quadrupole moments. 3(ao) eleai) Reference Comment 2- 6 8 0.505 17 numerical HF 2 - 6 8 0.659 35 SCF 2- S 064 0.3081 This Work CBS-HF; Ropt 2 - 6 8 0.501 This Work CBS-HF; Rexp 2- 68 0.6911 17 numerical HFS (or = 0.7) 2- 68 0.69 19 numerical HFS (or = 0.7) 2- 6853 0.7131 This Work CBS-CASSCF+1+2; Ropt 2-68 0.707 This Work CBS-CASSCF+1+2; Rex‘p vibrational average 0.727 This Work CBS-CASSCF+1+2; v=0, J=0 \ 24 1.2- 1.1— 1.0- @(eao) Figure 8. Distance dependence of (~) for F2 calculated with various models using the aug- cc-pqu basis. 25 There are no experimental measurements of 0 (F2). We have collected the CASSCF+1+2 values of O along with the estimated CBS limit and vibrational corrections in Table 2-7. Table 2-7. CASSCF+1+2 results for Ropt and O. Molecule aug-cc-pqu estimated complete basis set limit Ropt(aO) @013! (eag) Rop,(a0) 90m (ea: ) vibration correction H2 1.4014 + 0.4569 1.4009 + 0.4552 + 0.051 (v + 2) N2 2.0827 —1.1247 2.0810 —1.1270 + 0.0137 (v + g) 02 2.2907 — 0.2368 2.2873 — 0.2530 + 0.0257 (v + %) F2 2.6853 + 0.7165 2.6853 + 0.7131 + 0.0276 (v + y,) C MP2 Results It’s apparent, from Figures 1, 3, 5, and 7, that MP2 is a significant improvement over the SCF model with little additional effort. We collect our MPZ results in Table 2-8 and compare them to the corresponding CBS CASSCF+1+2 results. The comparison is striking and suggests strongly that the corrections due to MP3 and MP4 cancel one another significantly as seen by Wolinski et 01.6 and Maroulis and Thakkar14. 26 Table 2-8. Comparison of MPZ and CASSCF+1+2 results. Molecule MPZ (estimated CBS) CASSCF+1+2 (estimated CBS) Roman) 90.448) Ropt("0) 044803) H2 1.3895 + 0.4699 1.4009 + 0.4552 N2 2.0970 — 1.1751 2.0810 —1.1270 02 2.3032 — 0.2546 2.2873 — 0.2530 F2 2.6452 0.7178 2.6853 + 0.7131 D. Hellmann-Feynman Theorem When a perturbation on a Hamiltonian is the effect of an applied field of strength A, the perturbed Hamiltonian can be written as I? = 19° + 2.0 where O is for example, a dipole moment operator and H 0 is the full many-electron Hamiltonian for the unperturbed molecule. The Hellmann-Feynman theorem.“°’“’42 The Feynman is commonly written as, (d—Eifll; d2 where O is a one-electron operator of a given property that responds directly to the field and ‘1’ is the exact wavefunction. This equality is also true for certain approximate methods such as HF and MCSCF where all variables are variationally optimized within a given space. In the CI and MP wavefiinctions, however, the configurational coefficients are variationally optimized, but the molecular orbital expansion coefficients are not so the equality is not assured.42 27 To assess the difference between <‘PlOI‘I’> and (dE(/1)/d/i) 0, calculations have been performed using both HF and MPZ methods to calculate the quadrupole moment of various diatomics. <‘1’i0l‘1’> is determined as an expectation value (EV) while (dE(.i)/d/l) 0 is referred to as the point charge method (PC). Application of these techniques are described in Appendix A. As shown in Table 2-9 the MP2 wavefirnction using an aug-cc-pvtz basis set brings the EV quadrupole moment to within 2% of the point PC quadrupole moment. The MP2 results can be compared to the HF Table 2-9. Expectation Value Quadrupole moment and Point Charge Quadrupole Moment HF MP2 Epc EEV o/ODIII Epc EEV o/oDIIf H2074) 0.502 0.500 0.34 0.478 0.476 0.42 N2(‘2;) 0.910 0.920 0.11 -1171 -1.158 -111 0262,) -0.160 -0.163 -1.85 -0.262 0.264 0.76 F262;) 0.530 0.534 0.75 0.769 0.784 1.91 results also given in Table 2-9. With the exception of 02, the difference in the HF-EV quadrupole moments and HF-PC quadrupole moments are smaller. Since the Hellmann- Feynman equality holds for HF wavefunctions, improving the ‘completeness’ of the basis sets should lessen the difference between EV quadrupole moments and the PC quadrupole moments for the other approximate wavefilnctions and the results listed in Table 2-9 indicate this to be correct. 28 E. Quadrupole Moment Functions We study the distance dependence of O (quadrupole-moment function), using the aug-cc-pqu basis and the MCSCF and MRCI wavefunctions. The calculated potential energy curves for the molecules of interest are shown in Figure 9, and the calculated properties (Re, De, cue) are very close to the CBS CASSCF+1+2 limits. These wavefimctions provide a reasonably accurate description of the molecule’s electronic structure over a large range of internuclear distances, and we expect the calculated quadrupole-moment filnctions to be realistic. The quadrupole moment functions for the four molecules of interest are shown in Figure 10, from which we see that H2 is unique——having the only quadrupole-moment function that is everywhere positive. 0 for H2 and N2, is zero at large R because both molecules separate to atoms in S states. 9, for F2 and 02, separates to the sum of the atomic quadrupole moments of the atoms. For F2, the F atoms are in the 2FIFO (2P) state, loosely corresponding to the configuration, 1522322p32pi2p; with z labeling the internuclear axis. For 02, the atoms are in the 3 IT M|=1 levels, which, in a real representation, corresponds to one atom in 1s22522p,2cp)l,pzl Energy (e 2/a0) 29 2 _ 1 .— 0 .l - / -1 .. -2 - F2(128+)MRCI -3 —I 4 - 02028) MRCI -5 .. ‘ H (12 +)CASSC1= -6 1 2 g -7 q .8 .. N2(1£g+) MRCI .9 _ '10 1 1 l I I I I I l r r I 1 1 2 3 4 5 6 7 8 R (a o ) Figure 9. MRCI potential energy curves for N2, 02, and F2 using the aug-cc-pqu basis and a 10 CSF, CASSCF potential energy curve for H2 using the aug-cc-vaz basis. 30 1.5- F2(12+)MRCI 1.04 g . 3 - 02( Zg)MRCI 0.5 - \ H2(12‘.g+) CASSCF 0.0-i No 7 to m -O'SI N 1 MRCI V 2+ (9 _ ,< g) -10- -L5- -2-0 I l/[I l1 lfi l I l U I IT. I I I U ' EFT] 0123456789101112 R(a0) Figure 10. Molecular quadrupole moments of H2, N2, 02, and F2 as a function of bond length. "L .1 h H 31 and one in 13223222125323; . We will first consider N2, 02, and F 2, returning to H2 latter. Let’s first write the electron density at internuclear separation R as n(f';R) = n}; (F)+ng(r‘)+5n(r‘, R) (5) where 712 and n3 are the electron densities of the two non-interacting atoms placed at the appropriate nuclear positions. Note that 511 is defined by this equation. As a practical matter, 713 and 723 are obtained from the natural orbitals of the MCSCF or MRCI wavefimctions at large values of R and translated, intact, to the internuclear separation of interest. Using Equation 5, the quadrupole moment defined by Equation 1 can be rewritten as (-:-)(A2 ; R) = 26°(A) + j 6(9(F;R)dV (6) where ®0(A) is the quadrupole moment of the separated atom A in the diatomic A2 1 (90(A) = —§Jn2(7)(322 —r2)dV (7) and 59 is the quadrupole-moment density 1 — 2 2 (5(9=—-2-&2(r;R)(3z —r ) . (8) Note that the nuclear contribution to @(A2;R) is now implicit in 6n('r°,R). Note, also, that ®(A2 ;R) is now written as the sum of a (constant) atomic contribution, 200(A) and a contribution Om], due to molecule formation nu. 32 em, (R) = j ao(F;R)dV. (9) Since we may easily partition 6n into 0 and 7t contributions, 6n = 810 + an,“ (10) we may also write 0(A2;R)=00(A2;R)+®,,(A2;R), (11) where 90(42;R)= 29%(A)+ [89.(F.R)dV. (12) with an analogous expression for 6) ”(A2 ;R). The 0 and 1: components of the quadrupole-moment curves for N2, 02, and F2 are shown in Figure 11 for a MRCI wavefirnction in an aug-cc-pqu basis. Note that (90 is always negative and ('9,t is always positive; and, while the Sign of 0 depends on the relative magnitudes of these contributions, 9 usually decreases from its asymptotic value with decreasing R. The relative asymptotic values are easily understood, in terms of an orbital model. For example, the zz component of the atomic quadrupole moment of (oriented, m = 0) F is given by ®(F; 2P2): @(2p2)+2®(2py)+29(2px) where @(Zpa) = ’% [(2p,)2(322 02).”. 33 4.0 -l 3.5 - .1 3.0 - 2.5 - 2.0 -l 1.51 1.0 - 0.5 4 , 0.0 -0.5 - -10 4 d -1.5- d -2.0 - -2.5 4 -3.0 l -3.5 J -4.0 4 -4.5 J ‘5.0 I I T I 1.0 1.5 2.0 6) (e302) I I j I l l I'I'H‘T'l 3.0 3.5 4.0 4.5 5.0 5.5 6.0 Ra (0) r 2.5 Figure 11. Distance dependence of the quadrupole moments of N2, 02, and F2 partitioned into the (9., and 0,. components. 34 By symmetry @(pr) = 9(2Py) and @(pr)+@(2py)+®(2pz) = 0. With 2 as the internuclear line, 6,,(F) = 29(2px)+2@(2py) = -2®(2pz) a —200(F). It’s easy to show @(ZPz) = 960’") < 0, so, in an orbital model where all 2p orbitals are radially equivalent, 6,,(F) = —2®0(F) > 0. Our asymptotic values are 6),,(17) = +2.517 eag 90(17) = —l.170 e03. These are not precisely in the symmetry determined ratio because our wavefunction has D21l symmetry and our correlated wavefunction results in asymptotic p functions that are not equivalent. In a similar fashion, the O (3 ITMlzl) quadrupole moment is given by @(0; 3}1A41=1) = 20(2px)+®(2py)+@(2pz) 6,,(0)=2o(2p,)+o(2p,) G90(0) = (9(2pz) 35 6,,(0) = 3(—-21—o,(0)) = — 3/2o(,(o). Our asymptotic values are (9,,(0) = +2435 egg 00(0) = —1.499 mg Differing from the simple orbital ratios for reasons described earlier. If we reference each molecular quadrupole-moment fiinction to its asymptotic atomic contribution, we obtain Figures 12-14, which are simply (9 m01(R) and its component (95,0, and (9:50,. Some insight into why @201 is always negative and 07,201 is always positive may be obtained by examining 590(7, R) and a 6,,(7, R). Recall 6O 2 —%c5’na(r",R)(3z2 -—r2) = —%r2 5na(F,R)(3 cos 26— l) (13) 0' where the origin is the molecular midpoint and dis measured relative to the internuclear line as the polar axis. This equation relates electron shifts in the 0 system, upon bond formation to the molecular contribution to the quadrupole moment. Note that the factor - -;—(3 cos 20 - I) partitions the molecular space into two regions, labeled N and P and shown in Figure 15. It is interesting to note that the parabolas delineating the Berlin“5 bonding and antibonding regions are asymptotically tangent to the nodal surfaces separating the N and P regions. In the conical regions labeled N, to the rear of the nuclei, the angular factor is negative, and, thus, a positive Snc in this region results in a negative contribution to @301. In N2, the 0 bond involves a large sp hybridization, moving charge towards the midpoint of the molecule. Simultaneously, the opposite- 36 2.0- .N2(12 +) ,_ ...... 1.5- g 1.0- .\ 0.5- a all as" 00- 3 E 0.5-4 9 . 11 ® “1.0% -1.5- J -2.0- -2.5- ......... ‘ MRCI '30 I I T I I I I I r j f I I I l I 10 15 20 2.5 3.5 40 45 50 Figure 12. Distance dependence of the quadrupole moment of N2 partitioned into its 0;, and 0;, components. 37 2.0 1 (e802) 6) mol I O ‘01 .1 MRCI l l ' F ' l ' T ' I 1 .0 1 .5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 R(ao) It mol Figure 13. Distance dependence of Omar for O2 partitioned into its (9:0, and 0 components. 38 ' F (12+) 2 g (eaoz) mol 0) S l MRCI 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 Figure 14. Distance dependence of Omar for F2 partitioned into its 6):”, and 0:”, components. 39 —6 0 5 6 I 1 4 p r I 1 1 l r 1 6 d P region . 0 ‘ N region N region r 0 1 P region ' -6 T U r I I I I I U U r 6 -6 0 6 Molecular Axis (22/R a0) Figure 15. Quadrupole density nodes represented by solid lines. Berlin bonding and antibonding regions separated by parabolic curves. 40 phase sp hybrid pooches out to the rear of the nuclei contributing to a positive 8nO and, therefore, a negative 596. Note that this effect is enhanced by the r2 term in Equation 13, which weights heavily the farther reaches of 8nd. Along with the 0 bond in N2, we, of course, have the 1: bond, which results in 5n7t being positive in the region between the . . . 1 . . nuclei and above the molecular km; and, srnce 5 O,r = —§r2(‘)‘n,r (3 cos 261 — 1), thls lS precisely where the angular factor is positive, and, therefore, an accumulation of charge in the 1: system (positive Sn“) results in a positive value of 56'),t and contributes toward a positive value of 0:0,. These effects are vividly illustrated in Figure 16-18, which show Jn, 6:10, and 611,, and the associated (X9, 6(1),, , and 69,, densities for N2. Note that the increase in charge density around the molecular midpoint contributes little to O mob as it is multiplied by r2 (small in this region), and much cancellation results fi'om the integration over 3 cos 26— 1. The situation with 02 and F 2 differ only in degree. sp hybridization decreases in going from N2 to 02 to F2, and this is reflected in a less negative value of 6:0, in 02 and F2, relative to N2. The 1t systems in 02 and F 2 are qualitatively different from Nz’s, and this is reflected in the 07,201 curves shown in Figures 12-14. For 02, 672,, is smaller than in N2 and, thus, (9:0,(02) is less positive. For F2, an” is almost zero and 9:”,(F2) is small. These characteristics of 02 and F2 are illustrated by the contour plots in Figures 19—21 and 22-24. One striking feature of 0:0, in N2 and 02 is the maximum (Figures 12 and 41 3.83 E 0.3 move: 05 v5 62:8: 0:3 05 .0239: 8a 838:3 we: 2E. .90 u Z 53» $25. 383342 *zm 2e mos—g 53:8 2E. Amman Sarcoma 2: 55, 3332.8 8 mm 3 NZ :0.“ 338:8 Ego—3-28333: 3869.3 2: :5 00:95.3: bag—c.5505 .3 «Ear— 82 6.3%: 62 5.8.62 0 0 0| 0 0 0| b u I I b > > > iw P 01 p I i n I l r b P oil 0 u so I. llllllllllllll O C TIT I l e .0 II I air can! eel ll - o i 1- II - o b b b P b i i if I we r P i 531819.: UK! i b I 831819.. 512 «2 bass: 22.2.5... «2 E: E28: :88... 42 3 338...: 0 on u L! I p [I . .~ P 0| H \\I.’l . . an .- \\\\I/I// . v \x.--/... u _\\H/:, \2/ \ \ III: a . x \ r l . . I]! r \\\ \\l|u!///Ilo\o .\\\~\ / /~_ 0‘. \\\W\\WIIIII /I / \x \ \\\|)Il///-¢I/..‘ \\)J /.J.N\ \\\\X\|I//I / I \\ ‘ ‘10.“? , ‘3‘ ,/ , / lo ...... .. r p u.” L I I P I I! i L 0 gmluoluaa—UMS NZ 5: «Eu? 32.5.8.3: .2 0.5mm.”— E a: 2:8 0.3 $23 ::: mus—g 3:350 Ema: 53.8%3 2: wfim: HOME 55 3330.3 8 _.m 3 NZ :8 o®w :5 9:: a: 3:932 i F b I I L P Saloon»? 5“: NZ ham: :9: «BE: Gabon—u .: 8:»...— 43 .2 oSmE E 5 05m 05 228 :5 82g 8:880 :52 5259?: 2: $5: 5m: 8:: 533:8 8 8N 5 NZ :8 .6: :5 an .3 8:9...— ea 338...: a: 389...: o c on o o L I ? L P P I I [I t- I ? P I P o o “I n 5 0| 9... f : : ... .J .. j ( P D F b! F o b b b L I b I p I sinuous... 6:: a»??? 6:: NZ :9: E 233:3... «z E: :0: E 553.: 44 a: 338...: o c P P P P C .3 0.5mm :_ 5 0:5: 05 2200 :5 0020:, 8:850 .53 83.0085 0.: 5:: :0530—8 8 m.~ 5 NO :8 8:8:8 880:..23853 35:08:: 0:: :5 00:20.8: 3:585:85 .3 95$..— 9' b .I I I 0| I b I fits—Icon; UK:— «0 89:0: 0.2—3:3: .3: 339...: 0 cl I I P P I r b 0| IIIIII OOOOO .5 I I IIIIIIIII I P I 83:80»... Ga: 8 :5 £20: :25.» 45 .2 0::me :: 5 080.: 05 828 :5 8:3, 8:8:00 25: 53-0085 0:: win: ~08: 5:: :05328 8 ad 5 NO :8 :0: :5 :5 .3 0::wE a: 338...: a: 3.932 c 9 0| 0 o 00 r I I I I p I r I - 0| - I I! n I I I b 0' : .II I I P L I I I I. I p 0 n r I I P I 33.8.»... 5:2 33.8.9: 6:: 20 :0: 8:3: 0.85—:3: NO .5: :0: «BE: 5300—0 r k)! h P D o 46 E28 :5 3:15 mBoEoU 55: 53.00.55 2: wfim: 5m: 5:.» 35323 8 mN 5 NO 8m .6: :5 can n3 538.32 c o L I P P I h I 0|! 0| b 82.18.53 5%: NO 5: E 0.2—3:3... .3 833 E 5 25m 05 «:3. 5150—02 0 I L h! r 0' I b I neg—loot»:- 5m: NO .5: :9: E 5.55.» .5 2:5 0| 47 .2 839m 5 5 25m 05 E28 :5 82? 958.80 25: ~398-w5 2: £3» 35328 8 5m 5 an 5.: $2088 380:-28255 55685 2: :5 855mm: b_m:o:.=882m .NN «...—w:— fi< 589...: 2:2 38%: o o my. 0 9 9| I p I I n 0| 5 I I I - I I - 0|: I. i‘-- o 0 .- a: A , /.,. . ( Va I I / l 2" .-?:.;gs4-;z-a'<' * ‘ ... T. u 3;; \- . [Av r n V, . ~ .. . \\ -- .. f _,\. \. ”If. .//,I w. ..;J... .. .- .. .. m // 2“ . . ,, / , \‘w .v...e....... ” . r 79, a, On u-.\m._a.._..\HH: .. . :Fmvvrk ’ /rl .,1lll|lHk\\.\u. ...“ \ I \ . ? {... ..T n ...\< . . f \I - ,. , -\- t /’ v ~ I/ v I s I I in W n v . b gI I L L h I I r Ia h .. 0 . P I I I I h I I L I P . O U>Aluolm5 5:2 Biluoiuaa Um: E 565: «En—3:2... a .5: .365: .358.» 48 $28 :5 825 950500 25: 33-3-55 2: mafia HUME £5 55305.... 3 EN 5 «m 8m .6: :5 0:: P I I F I! I I b 9| . 1 a s u o a . o 0 ~ 0 o - a g I I Q: o I u IIIIIIII on I . o n 9 o n n n I o u I I I o o - . u i . . . I v - a . c r a I a n I C Q fl 0 - . 0 w v .. fie . fi 1 . . . . 4 . . v . v u . . u . I . u a n . u u s n c . . u . v c . . . a . o . c u . I c I nnnnnnnn I a I a o o D v ‘ h o u I I I r I I! r L s P O gainer»:- an: a .555: «Emma 0.33:5: .2 033m 5 5 05... 05 ....n 9...»:— 82 .5932 I I! I I 3&5 .Um—E NI.— .5: «Eu.» 5: 5585 .2 Emma 5 an 089. 8a 328 was 83:? @5350 $6.3 ~39oo-w:a 05 9%: 552 £5 vow—339 8 EN 3 am 8m 5m was saw .3 «Sufi 3.2 5.3232 33. 2:39.32 0 o o. o c on L! v. t r [h L p! > > p k . 0' F L \b n P P p . 0| . .. . v \ t l / a v \ / x .x /\ \ \3 /- \ .. . A J fl / \\ . .. - . x . ) .,( \ 2 /C..... . , an... s.n\\\ll ..... ‘ \ ~cw...‘.., I0! Hmvu ...”. . .1/ / - u‘t\\‘\\ \\ II .. f A Jan...“ ..-.v' ...m _ | AWN.— \ sv “\MI/L.\Jy _ r/Iwmnu. ... ,.,..| ......l. ...flo/IK\ 9 . . Ww . 5 T a}: .H- iv.) .o 4 \«x. \1 /I\~ \ \\I\IJ/.'... .A.. r. , . . 4 ~ 5“? I / -. .aI/M/H/IHN... ' r kmf... \.V ......VNT, \ b w \-........_.._/ /: x / . r-\ .\ .\1/ / o... . v \{\\. , z x \_ v ’/I \ \\ w. .. ‘ r m fl L -» L p h L p P. b . O . b .. u y b b u p b . W 5303qu 5:2 "Saloon?! .01: F..— 5:93.... 0.2—Pins: am Eu E 56 553.9 50 13), which we understand as follows. As the nuclei come together, It electron density accumulates between them (in the P region of Figure 15) and, as R becomes comparable to Ropt, some of this density begins to spill over into the N region and thus 9:0, begins to decrease. The same situation obtains in 02 and F2. In 02, one has less accumulation, a smaller increase in €97,201, but the same spilling of 6n” into the N region. 611,, for F2 is rather flat, although one still has a slight maximum in 9%,. The equilibrium bond length in these molecules is smaller than the internuclear distance where @201 is a maximum, so, the slopes of both the 1: and 0 component of (9 are both positive around Ropt. EH2 A similar analysis for H2 shows that, as the two H atoms approach to form a bond, the density difference (3n,I is positive between the nuclei with a large negative region to the rear of each nucleus. Because of the 3 cos 2 6—1 factor in the quadrupole density integrand, the positive region between the nuclei integrate to a small contribution to @201, while the decreased density in the N region of Figure 13 contributes to a large positive @301. This characteristic of 6nd is common to s-s bonds such as H2, Li2, Na2, etc. and opposite to the sp-sp bonds characteristic of N2, 02, and F2. The maximum in (93,01 obtains when large positive components of 6110 in the N region spill over into the P region and this happens a little before the equilibrium separation. Clearly, G) will go to 51 .2 2sz 5 mm 0.3 22:82.8 Ea mos—g 50:80 $an Nm>a-oo-w=a 2: can cogcéofik, mUmUE mmo S a .53 082328 on v; 3 NE com E3088 6w .b_m:ovo_oqac§c 33688 05 c5 .5 gauche bfifiuéobuofi ”.3. 3:83: 0' "Gnu: a: 53:3. £35.65... 0' N: Eu 5.9.3. :28»? .3 95!...— 3.523%: 0 0 0| _ ? 0|. w w \ill iiiii 11,, \ // v \x \\u/ \\s..\...oI././ A ll/ /, \ \\ i/ \N.... ...“.WJM, // v \ \ “Jun... vv..\ / , V f a a ...... / a 3”... ...h n... 7 , 5 f / _ 23m“ \ _ fi / / ...—1...... In...“ \x \ / ,/ L 7...... «a. r- \. . / ,/ \. ./.....,..n.u.\\ -\. . z// r /I\ .l \ V b b b P O ”—082 52 zero as R —+ O and n(F;R) approaches the united atom limit. These observations are illustrated in Figure 25. G. On the Sign of the Quadrupole Moment From the preceding discussion, we see that the sign of (9 for N2, 02, and F2 depends on the relative values of @a (negative) and (9,, (positive). In F2, for example, one has a large positive 7: contribution at 00, due to the separated atoms, which changes little as the molecule forms because 5n” is small and essentially independent of R. The asymptotically negative 6 contribution is reduced further by 0 bond formation but not enough to change the sign of G, which remains positive. The F2 0' contribution is anemically negative because of the very slight sp hybridization in F2. In 02, the asymptotic value of (9 is less positive than in F 2, and the increased sp hybridization is able to overcome a very positive 1: contribution and results in a negative quadrupole moment. In N2, the large sp hybridization causes the (90 to be dominant and G) is decidedly negative. The situation in H2 is fundamentally different. The sign is always positive because at large R the s-s bond results in 6'20 being negative in the N region, and this situation obtains until the maximum in G) (H2;R), after which (9 decreases toward zero, as described above. H. Correlation Effects on 33,01 and 6,730, Further insight into the relationship between electron correlation and the quadrupole moment obtains from an analysis of (9c, and 9”. In Figure 27, we plot these 53 quantities for the SCF, MCSCF, and MRCI wavefunction of N2 (aug-cc-pqu basis). The distance dependence of 6),, (around Ropt) for all three wavefunctions is similar, with the SCF and MCSCF contributions being remarkably so. The MRCI value of 90 is the largest of the three and reflects the effect of dynamic correlation in increasing 5’70- in the region between the nuclei. The correlated distance dependence of 6),, differs markedly from the SCF value and is significantly smaller. These results suggest that the reasonable values of G) calculated fiom SCF functions (Table 2-3) obtain because of a cancellation of errors, 0,, (SCF) being too negative and 0,, (SCF) too positive. Our calculated 6) (SCF) is —0.9306 eag, while (9 (CASSCF+1+2) is —1 . 1334 egg, both at R = 2.07432 a0. These differ by 18 percent, and most of the error is in the 1: contribution. The corresponding data for 02 and F2 are given in Figures 28 and 29. Note that the scales in these plots are identical and the magnitude of the effect of electron correlation on Go and 9,, is similar. In 02, like N2, (9,, (SCF) is too negative, while 6,, (SCF) is too positive, resulting in a similar cancellation of errors. At 2.28 a0, we calculate 9 (oz; ROHF) = — 0.2634 egg and o (0,; CASSCF+1+2) = — 0.2530 egg, a difference of only 4 percent, as noted earlier. In F2, both (9,, (SCF) and (9,, (SCF) are too small, but rather than cancel they add and result in a G) (SCF) (0.501 eag at R = 2.68 54 uuuuuuu ..................... .......... . n. ....... n' . ......... a . ..... 'o-_ "u. .‘ - ‘- — Q-- - .- -—--_ .... ----_- n 2- 1 + N,< 2,) a Figure 26. Effect of electron correlation on the magnitude and distance dependence of (9, @o, and G), for N2. 55 2.0 2.5 3. Figure 27. Efi‘ect of electron correlation on the magnitude and distance dependence of G), (90, and (9,. for 02. 56 Figure 28. Effect of electron correlation on the magnitude and distance dependence of (9, @02 311d 93 for F2. 57 a0) compared to the (9 (CASSCF+1+2) value of 0.707 eag (a difference of 29 percent) at the same bond length. 1. Conclusions We have studied the quadrupole moments of H2, N2, 02, and F2 and have estimated the CASSCF+1+2 basis-set limit for the latter three and the CISD limit for H2. These are in excellent agreement with comparable calculations by others and in good agreement with the existing experimental data. The rather large values of the quadrupole moment derivatives, shown in Table 2-1, result in the quadrupole moment being a very sensitive fiinction of R around Rom. We have written the global quadrupole-moment function as the sum of an atomic contribution and a molecular contribution (9",01. The atomic contribution is simply the sum of the quadrupole moments of the constituent (oriented) free atoms, while the molecular contribution is an integral over a quadrupole- density fiinction of the form (X9 = —%(3cos 26—1)r26n in which the nuclear contributions are implicit in 6n. While not unique, this partitioning of (9 allows us to separate molecular effects from additive atomic efl‘ects and provides a deeper understanding of the variation of (9 with R. In particular, the nodal structure of 3 cos 26—1 allows us to partition the space in a diatomic molecule into N regions, to the rear of the nuclei and complimentary P regions. Because 5(9 is linear in 5n, one may define quadrupole densities associated with 6nd. and 672,, and examine the contribution of the o and 1: deformation densities to the molecular quadrupole moment. Increases in 5er 58 in the N region contribute to make 9%,), negative, while increases in 572,, in the P region make 97,201 positive, and, thus, the molecular contribution to the quadrupole moment is the sum of two opposite-signed terms. The total molecular quadrupole moment is the sum of this molecular contribution and the moment due to the sum of the separated atoms. This perspective is useful in understanding the difference in the quadrupole moments of related systems, such as N2 and P2, 02 and $2, C6H6 and C6F6, etc.44 Additionally, the effect of electron correlation on 9 may be partitioned into 0 and 1: contributions via (91,, and 6:1,. We note that the parabolas that delineate the Berlin bonding and antibonding regions are asymptotically tangent to the nodal surfaces separating the N and P regions (Figure 15). Indeed, the largest contribution to 9:01 and 9:0, come from a density difference that is largely localized in the Berlin45 antibonding and bonding regions, respectively. Additional contour plots and three-dimensional images of on and 59, as well as detailed numerical values of 9 as a function of R, are available via our web page, www.cem.msu.edu/~harrison. 59 J. References l. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. Huber, K. P. and Herzberg, G., “Molecular spectra and molecular structure,” Vol. 4, Constants of Diatomic Molecules (Van Nostrand-Reinhold, New York, 1979) McLean, A. D. and Yoshimini, M., J. Chem. Phys. 1966, 45, 3676. Stogryn, D. E. and Stogryn, A. P., Mol. Phys. 1966, 11, 371. Ramsy, N. F., Molecular Beams (Oxford University Press, London, 1956). Buckingham, A. D. and Cordle, J. E., M01. Phys. 1974, 4, 1037. Amos, R. D., M01. Phys. 1980, 39, 1. Laaksonen, L., Pyykko, P., and Sundholm, D., Comput. Phys. Rep. 1986, 4, 313. Wolniewicz, L., J. Chem. Phys. 1966, 45, 515. Kolos, W. and Wolniewicz, L., J. Chem. Phys. 1965, 43, 2429. Wolinski, K., Sadlej, A. J., Karlstrom, G., M0]. Phys. 1991, 72, 425. Kolos, W. and Roothaan, C. C. J ., Rev. Mod Phys. 1960, 32, 219. Dickson, R. M. and Becke, A. D., J. Phys. Chem. 1996, 100, 16105. Diercksen, G., Sadlej, A. J., Theoret. Chim. Acta 1983, 63, xxxx. Kolos, W. and Wolniewicz, L., J. Chem. Phys. 1964, 41, 3674. Sundholm, D., Pyykko, P., and Laaksonen, L., M01. Phys. 1985, 56, 1411. Maroulis, G. and Thakkar, A. J., J. Phys. B 1987, 20, L551. McCullough, E. A., Jr., M01. Phys. 1981, 42, 943. Maroulis, G. and Thakkar, A. J., J. Chem. Phys. 1988, 88, 7623. Feller, D., Boyle, C. M., and Davidson, B. R., J. Chem. Phys. 1987, 86, 3424. Bundgen, R, Green, F., and Thakker, A. J., J. Molecular Structure 1995, 334, 7. Laaksonen, L., Sundholm, D., and Pyykko, P., Int. J. of Quant. Chem. 1985, xxvii, 601. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 60 Duffy, P. and Chong, D. P., J. Chem. Phys. 1995, 102, 3312. Becke, A. D., J. Chem. Phys. 1982, 76, 6037. Piecuch, P., Kondo, A. E., Spirko, V., and Paldus, J ., J. Chem. Phys. 1996, 104, 4699. Spirko, V., Piecuch, P., Kondo, A., and Paldus, J ., J. Chem. Phys. 1996, 104, 4716. Buckingham, A. D., Graham, C., and Williams, J. H., Mol. Phys. 1983, 49, 703. Graham, C., Pierrus, J ., and Raab, R. E., Mol. Phys. 1989, 67, 939. Truhlar, D. G., Int. .1. Quantum Chem. 1972, VI, 975. Maroulis, G. and Bishop, D. M., Mol. Phys. 1986, 58, 273. Cartwright, D. C. and Dunning, T. H., J. Phys. B 1974, 7, 1776. Buckingham, A. D., Disch, R. L., and Dummur, D. A., J. Am. Chem. Soc. 1968, 90,3104. Cohen, R. E. and Bimbaum, G., J. Chem. Phys. 1977, 66, 2443. Camy Plyret, C., F laud, J. M., Delbouille, L., Roland, G., Brault, J. W., and Testerman, L., J. Physique Lettres 1981, 42, L279. Reddy, S. P. and Cho, C. W., CanadianJ. Phys. 1965, 43, 2331. Shapiro, M. M. and Gush, H. P., Canadian J. Phys. 1966, 44, 949. Reuter, D. and Jennings, D. E., J. Mol. Spec. 1986, 115, 294. Bimbaum, G. J. and Cohen, E. R., Mol. Phys. 1976, 32, 161. Rijks, W., van Heeringen, M., and Wormer, P. E. S., J. Chem. Phys. 1989, 90, 6501. Wahl. A. C., J. Chem. Phys. 1964, 41, 2600. Hellmann,H., Einfuhrung in die Quantenchemie (Deuticke, Leipzig, 1937) Feynman,R.P., Phys.Rev. 1939, 41,721 42. 43. 44. 45. 61 Raghavachari,K., and Pople, J.A., Int. J. Quant. Chem, 1981, 20, 1067 Amos, R.D., Adv. Chem. Phys, 1987 Lawson, D. and Harrison, J. F., to be published. Berlin, T., J. Chem. Phys. 1951, 19, 208. CHAPTER 3 The Quadrupole Moments of P2, 32, and C12 a-.. A. Introduction In Chapter 2, the quadrupole moments of H2, N2, 02, and F2 were discussed in detail. This chapter provides an extension of that discussion to the second row homonuclear diatomics. With the exception of Clz, very little theoretical or experimental data could be found for molecules containing heavy atoms. In this Chapter we present calculated quadrupole moment data for the second row homonuclear diatomics and compare them with the first row. Using methods developed in Chapter 2, we also will look at the sign and magnitude of the quadrupole moment as a function of the electronic structure. B. Computational Technique The MCSCF and MRCI calculations were done using the COLUMBUSl system of codes, while the full CASSCF and CASSCF+1+2 were done using MOLPROZ. The UHF, ROHF, and Moller-Plesset calculations were done using g943. Tables 11-13 of Appendix C contain the quadrupole moments of the titled molecules for various wavefiinctions and basis sets. The MPZ wavefimctions include excitations from the 40g, 4ou , 508, Sou, 21tux, 21ruy, 21th, and 21tgy orbitals of P2, S2, and C12. The MCSCF wavefunctions are CASSCF functions over the MO’s derived from the valence p orbitals (the 568, 2nux, 21tuy, Zugx, any). The MRCI incorporates all single and double excitations from these six orbitals, as well as all double excitations from the 40g and 4ou orbitals. The CASSCF wavefimctions include all valence electrons and the 8 orbitals described above, and the CASSCF+1+2 wavefunction consists of all single and double excitations from the 63 64 CASSCF reference space. Quadrupole moments were computed in atomic units using the Buckingham convention described in Appendix A. The Dunning basis sets used in this study are described in Appendix B. C. Discussion The results of P2 are summarized in Table C-11 and Figure 1. Unlike H2, N2, 02, and F 2 in Chapter 2, the quadrupole moment does not decrease systematically with increasing basis set. This is an indication that the basis, although fully optimized for the energy, may not be fiilly optimized for this particular property. Our best SCF value, given as the value associated with the aug-cc-vaz basis, is 0.7920 eag at 3.4950 a0. This does not compare well with Glaser, Horan, and Haney4 SCF value of 0.5212 eag at 3.5773 aO , however, this value was calculated with a relatively small basis set. At the experimental separation of 3.5780 a0 our SCF quadrupole was 1.0629 eag. This value should be very close to the numerical HF result. Following the SCF calculation, the post- SCF techniques also do not yield CB S-limit quadrupole moments. Our aug-cc-vaz CASSCF and CASSCF+1+2 values are 0.3162 ea; at 3.6288 a0 and 0.5241 ea: at 3.6055 a0 , respectively. Using the aug-cc-vaz basis at the experimental geometry, the CASSCF gives 0.2039 ea: and the CASSCF+1+2 gives 0.4608 eag. At the SCF level, the aug-cc-pvdz quadrupole moment is 8.7 % smaller than the aug-cc-vaz while the aug—cc-pvtz quadrupole moment is 0.6% smaller. For the RHF, MPZ, and CASSCF+1+2, the aug-cc-vaz CASSCF+1+2 value is less than 5.0% higher 65 3.70 - ‘ (12 +) - g 3.65 - \\\:\ NA ‘ \o \Nv 3.60 4 A0 CU . V0 —-— RHF 0: —0— MP2 3-55 ‘ —A— CASSCF .\ —V— CASSCF+1+2 .l I 3.50 - \IR. 3-45 f I l f 2 3 4 5 aug-cc-vaz Figure 1. Model dependence of G) for P; as a function of basis set. § 66 than the aug—cc-pqu quadrupole moment and 3.8% lower than the aug-cc-pvtz quadrupole moment. Adding correlation to the RHF wave fiinction by MPZ and CASSCF+1+2 lowers the value of the quadrupole moment by similar amounts. As in the last chapter MPZ predicts the quadrupole moment comparatively well at little overall computational cost. The CASSCF wavefunction has the greatest differences in the quadrupole moments for each basis set. The CASSCF, also, overestimates the correction to the quadrupole moment, lowering it more than either the MPZ or the CASSCF+1+2. The distance dependence of (*9 around Rap. is shown in Figure 2 and 3 for the SCF, CASSCF, and CASSCF+1+2 models, using the aug-cc-pqu basis. The slopes of the CASSCF and CASSCF+1+2 are parallel to each other, and this is to be found true for 82 and C12 as can be seen in Table 3-1. Table 3-1. Equilibrium value of the first and second derivatives of the molecular quadrupole moment fimction for P2, S2, and C12, calculated with various wavefunctions. (a [g] Molecule Wavefunction Ropt(a0) dR Rap! (“0) dR2 Ropt P2 SCF 3.5007 3.3894 -0.8168 P2 CASSCF 3.6330 2.1529 -1 .6946 P2 CASSCF+1+2 3.6114 2.0972 -1.6068 82 ROSCF 3.5216 1.3023 -1.0148 S; CASSCF 3.6457 1.2266 -1.4504 S2 CASSCF+1+2 3.6101 1.2559 -1.4362 C12 SCF 3.7309 2.2393 -1.0038 C12 CASSCF 3.8574 2.4962 -1.1354 C12 CASSCF+1+2 3.8050 2.3801 -1.1788 67 (9 (e302) _0 5 _ e/ _I_ SCF ' / . r —4— CASSCF —A— CASSCF+1 +2 '1-0 ' l ' r ' l ' 1 -0.4 -02 R R 0.0 02 0.4 - opt (a0) Figure 2. Distance dependence of G for P2 calculated with various models using the aug- cc-pqu basis. 68 2 ® (ea0 ) .5: _4 _ '3‘; ............... SCF _5 j j] --------- CASSCF . —— CASSCF+1 +2 I I 1 l'l'l'l'l'1 789101112 1 l l j 1 2 3 4 5 6 R (a0) Figure 3. The quadrupole moment of P; as a fiinction of internuclear separation with various models using the aug-cc-pqu basis. 69 The SCF curve has significantly larger first derivative, while the SCF second derivative is of a smaller magnitude. In comparing P2 with N2, the N2 second derivatives for all methods were positive, while the P2 second derivatives are negative. This can be better understood by looking at the quadrupole moment as a firnction of R, @(R). The N2 @(R) curve is zero at R=oo and everywhere else negative, while the P2 @(R) curve is zero at R=oo, positive at large R, and becomes negative as R becomes smaller than Row. The reasons for the difference between N; and P; will be described later. Using the CASSCF+1+2 derivatives in Table 3-1, we estimate the vibrational dependence of the aug-cc-vaz CASSCF+1+2 quadrupole moment as 9(1)“) = 0.5241+ 0.0197(v+ %) and so our recommended vibrationally corrected quadrupole moment is 69(ng = 0): +0.5340 eag. There is no experimental value with which to compare our results. The CBS-ROHF quadrupole moment of S2 is 1.3966 ea: at 3.5143 a0 and our CBS-UHF quadrupole moment is 1.3909 eag at 3.5171 a0. The data at Rap did not extrapolate well for the quadrupole moments at the experimental separation of 3.5701 a0 . The ROHF quadrupole moment with the aug-cc-pv52 basis is 1.5404 ea: and the aug-cc-pv52 UHF quadrupole moment is 1.5315 eag. The CBS-CASSCF and CBS- CASSCF+1+2 results were 1.4612 ea: at 3.6354 a0 and 1.4585 ea: at 3.5978 a0, respectively. The aug—cc-vaz CASSCF and CASSCF+1+2 where 1.3143 ea: and 1.3918 ea: , respectively, at the experimental separation. The CBS-Unrestricted-MPZ gave a quadrupole moment of 1.3909 ea: at 3.5171 a0. The results for each method and 70 1.8- ‘ 82 (32%;) 1.7 - —-— UHF ° + ROHF A 1.6 - —0— MP2 No —A— CASSCF 3 —v— CASSCF+1 +2 . * ~# 1.4 - \IR. 1.3 - \F *9 I 1 l l 2 3 4 5 aug-cc—vaz Figure 4. Model dependence of ('9 for S; as a fiinction of basis set. (9 (e302) 71 2.50 -1 1 S 32 '- 2.25 - 2 ( g ) 2.00 4 . 1.75 - 1.50 - 1.25 4 1.00 - " 0.75 - ‘ 0.50 - . ——I— ROHF 0.25 - —~— CASSCF - —-— CASSCF+1 +2 0.“) I l I l r l T l -0.4 -02 0.0 02 0.4 R - Ropt (a0) Figure 5. Distance dependence of G) for S2 calculated with various models. 72 2 ® (ea0 ) ‘ --------- CASSCF - —— CASSCF+1 +2 I'u'I'uTrfil'l 6 7 8 9 101112 R(ao) Figure 6. The quadrupole moment of S2 as a function of internuclear separation with various models using the aug-cc-pqu basis. 73 3.1 - 1 , (:1 (12 +) 3.0 - 2 g 2.9 .4 o 4 V 2.8 4 ‘ ' —-— RHF A J —0— MP2 foo 2'7 —A— CASSCF 3 ‘ —v— CASSCF+1 +2 N 2.6 u N (D . A 2.5 - \A\ A 2.4J .. \' 2.3 - I II \- I 22 l T l l 2 3 4 aug-cc-vaz Figure 7. Model dependence of 9 for C]; as a function of basis set. 74 basis set are collected in Table C-12 and Figure 4. No other theoretical or experimental data exists to compare with our S; quadrupole moment. A plot of the @(R) in the region of Rap. is given with the aug-cc-pqu for various wavefunctions in Figure 5. From the plot we can see the CASSCF and CASSCF+1+2 quadrupole functions are on top of one another while the ROHF quadrupole fiinction has a steeper slope. From Table 3-1, we see that the slope @(R) SCF slope is larger than both the CASSCF and CASSCF+1+2, while the SCF second derivative is a smaller negative number. The CASSCF+1+2 first derivative is +1.2559 and the CASSCF+1+2 second derivative is -1.4362. Using the CASSCF+1+2 derivatives, our vibrationally corrected S2 quadrupole moment is @(Sz;v)=1.4585+0.0102(v+12—) and so our recommended vibrationally corrected quadrupole moment is @(S2;v = 0)= +1.4636 eag. The overall @(R) curve is given in Figure 6 and is very similar to the 0; curve in Chapter 2. From Chapter 2, the ROHF quadrupole moment of 02 was 18 % larger than from the UHF quadrupole moment. For 52, however, the ROHF and UHF quadrupole moments are much closer. This is related to the strong dependence of the quadrupole moment on the internuclear separation. The S2 ROHF internuclear separation is only 0.003 a0 larger than the UHF bond length, while the 02 ROHF internuclear separation is 0.015 ao smaller than the UHF separation. Our C12 results are collected in Table C-13 and Figure 7. As in the previous SJittems the quadrupole moment decreases within a model with increasing quality of basis. COlTelation increases the quadrupole moment from the SCF value and the CASSCF+1+2 75 decreases the quadrupole moment from its CASSCF value. Our CBS-RHF limit is 2.2373 eag at 3.7267 a0. The aug-cc-vaz RHF quadrupole moment at the experimental geometry of 3.7567 a0 is 2.2884 eag. There are no numerical-HF data for C12, however, our values compare well with other large basis SCF data.“ With the aug-cc-vaz at the experimental geometry, our CASSCF and CASSCF+1+2 quadrupole moments are 2.3165 ea: and 2.2896 eag, respectively. The distance dependence of @(C12) near the optimized geometry is shown in Figure 8 and 9. Correlation correction effects are relatively small on the first and second derivatives. The SCF, CASSCF, and CASSCF+1+2 first derivatives are positive and SCF, CASSCF, and CASSCF+1+2 second derivatives are negative. The SCF first and second derivatives are 2.23 93 and -1 .003 8, respectively, while the CASSCF+1+2 first derivative is 2.3801 and the second derivative is -1.1788. Using the CASSCF+1+2 first and second derivatives and equation 4 from Chapter 2, we write the vibrational averaged G) as @(C12;v) = 2.3559 + 0.0301(v+—21) and, so or vibrationally corrected CASSCF+1+2 quadrupole moment for C1; is 2.371 eag. This compares well with Buckingham, Graham, and Williams8 experimental value of 2.405i0. 120 eag. We collect the experimental and select calculated values of (9 in Table 3-2. We have collected the CASSCF+1+2 values of G) along with estimated CBS limit vibrational corrections in Table 3-3. 76 3.0q 1 + .C12( 2g) Q 2 .8 ~ {.7/ / ,/' q I I , l a v I ' .4 x 2.6 - x . I I '1 ‘0 I, f l’ 5 I ' I ‘ , fl .. I ,’ II I ’I ’ I I I I I I / 2 4 _. ’ ’ I . I I , I I I I I / I I I I I 22- . . , I I 2 (~) (ea0 ) 2 .0 _ :9"; I", fl“ 1.3- —-— SCF ‘ ' _._ CASSCF .4 - —A— CASSCF+1+2 126 . . , . 0.0 R - Ropt (a 0) l f I 0.2 0.4 Figure 8. Distance dependence of (9 for C1; calculated with various models using the aug-cc-pqu basis. 77 6) (e302) _ 1 + C12(Zg) 4- -------------- SCF ' --------- CASSCF - —— CASSCF+1 +2 I l I '71 l l l I T F ' Ij 6 7 a 9 10 11 12 R (ao) Figure 9. The quadrupole moment of C12 as a function of internuclear separation with various models using the aug-cc-pqu basis. 78 Table 3-2. Selection of C12 quadrupole moments. R(a0) @(eag ) Reference Comment 3.7568 2.2696 4 SCF 3.757 2.686 5 SCF 3.7568 2.270 6 SCF 3.7568 2.2884 This Work aug-cc—vaz HER“, 3.7267 2.23 73 This Work CBS-HERO,“ 3.757 2.652 5 SCF+1+2 3.7568 2.244 6 SDQ-MP4;vibrational average 3.7568 2.274 10 SDQ-MP4;vibrational average 3.7875 2.3559 This Work CBS-CASSCF+1+2; Ropt 3.7568 2.2896 This Work aug-cc-vaZ CASSCF+1+2; Rexp experimental 3 6810.38 9 optical birefiingence experimental 2.405i0. 120 8 optical birefringence vibrational average 2.3860 This Work CBS-CASSCF+1+2 Table 3-3. CASSCF + 1 + 2 results for Ropt and 9. Molecule aug-cc-pqu estimated complete basis set limit P2 82 C12 * @opt (ea: ) +0.5035 +1.467O +2.380l Ropt(‘1'0) 3.6055 3.5978 3.7875 @opt(eag) vibration correction 0.5241 +0.0197 (v + x) 1.4585 +0.0102(v + x) 2.3559 +0.0301 (v + x) 79 D. On the Distance Dependence of Sz and C12 We study the distance dependence of 0, using the aug-cc-pqu basis and the SCF, CASSCF, and CASSCF+1+2 wavefunctions. The calculated potential energy curves for N2, P2, 02, S2, F2, and C12 are shown in Figure 10, and the calculated properties (R., De, and to.) are very close the CBS CASSCF+1+2 limits. The calculated spectroscopic properties, also compare well with the experimental values taken from Herzberg.ll The wavefunctions provide a reasonably accurate description of the molecule’s electronic structure over a large range of internuclear distances, and we expect the calculated quadrupole-moment function to be realistic. The quadrupole moment fiinctions for the molecules of interest are shown in Figure 11. The behavior of (9 of the second row molecules at large R is the same as discussed for N2, 02, and F2 in Chapter 2. As with H2 and N2, (9 for P2 is zero at large R because the molecule separates to atoms in S states. (9 for S2 and C12 separates to the sum of the atomic quadrupole moments of the atoms. For S2, the oriented S atoms are in 3PM=1 state. For C12, the oriented C] atoms are in the 2PM=0 state. As shown in Figure 10, the minimum in the potential energy of the second row homonuclear molecules is at larger R then the first row molecules. In Figure 11, ('9 begins descending at larger R relative to the first row molecules. The core electrons of the second row molecules shield the bonding electrons making the electronic distribution of the second row molecules more diffuse. The more diffuse the electronic distribution the greater the magnitudes of the various 80 Energy (eV) J N CASSCF+1+2 'I'T'I'TfF'fi 789101112 1 F l 3 4 5 6 R (a0) Figure 10. CASSCF+1+2 potential energy curves for N2, 02, F2, P2, S2, and C12 using the aug-cc-pqu basis. 81 CASSCF+1+2 'l'l'l'l'l 89101112 Figure 11. Molecular quadrupole moments of N2, 02, F2, P2, S2, and C12 using the CASSCF+1+2 and the aug-cc-pqu basis. 82 quadrupole components. This effect is also enhanced by the r2 term in Equation 13 of chapter 2. In describing the distance dependence of (9, we first consider S2 and C12, returning to P2 latter. As in Chapter 2, we first partition (9 into its 0 and 1: components. For technical reasons, this is done using the natural orbitals from the MRCI wavefunctions. By setting the occupations of the 1: or o electrons to zero, we can select which symmetry components of the electronic distribution we are interested in. These are not precisely in the symmetry determined ratio because our wavefiinction has D211 symmetry and our correlated wavefunction results in asymptotic p fiinctions that are not equivalent. The 0 components of the quadrupole-moment curves for N2, P2, 02, S2, F2, and C12 are given in Figure 12 for a MRCI wavefiinction in an aug-cc-pqu basis. The 1t components of the quadrupole-moment curves for the same molecules are given in Figure 13. Note that for all molecules 6)., is always negative and (9,. is always positive. The sign of (9 depends on the relative magnitudes of these contributions and (9 usually decreases from its asymptotic value with decreasing R. The relative asymptotic values of S2 and C12 depend on the signally occupied atomic orbitals and is structurally identical to those of O2 and F2, respectively. For S2 we have, in an orbital model ®.(S) = (9(3p.) (93(8) = -3/2 (90(8) and for C12 (95(Cl) = @(3pz) o..(c1) = -2 0.,(01) 83 (9 (ea02) Figure 12. Distance dependence of the sigma component of the quadrupole moment of N2, 02, F2, P2, 82, and C12. 84 (~) (eaoz) Figure 13. Distance dependence of the pi component of the quadrupole moment of N2, 02, F2, P2, 52, and C12. 85 Our numeric asymptotic values for O2 and S2 are (9.10) = +2435 ea: e..(S) = +6326 ea; 03(0) = -1.499 ea; (90(3) = -4.261 eag and the relative asymptotic values for F2 and C12 are 9.07) = +2517 eag e..(C1) = +6575 eag 0.0?) = -1.170 eag (90(0) = —3.473 eag Again, note relative magnitudes of (9., and (9,. of the second row molecules are much larger their first row counterparts due the larger spatial distribution of the electronic charge. Referencing each molecular quadrupole-moment fimction to is asymptotic atomic contribution, we obtain Figures 14-16, which are simply 0...,(11) and its component 9°...“ and (9"m1. In the region near R0,”, for S2 there is an increase in (9"...01, which is a result of spilling of Sn, (see Chapter 2) into the P region. For @“ml in C12 there is a small decrease due to 5n,I spilling into the N region. These characteristics are illustrated by the contour plots in Figures 17 - 22. The equilibrium bond length in these molecules is smaller than the internuclear distance where (9"...01 is maximum, so, the slopes of both the 1: and 6 component of (9 are both positive around Re. The fiinctions for S2 and C12 are very similar to those of O2 and F2 . The sign of the quadrupole moment is determined by the relative internuclear separation while the magnitude of the quadrupole moment is dominated by the (9,. contribution. 86 opt 2 (ea0 ) 1‘ ®=C9 mol L. o I . 1 ‘2 3 - MRCI fir ' 1 . l - I ' u 7 9 10 11 12 (a0) I I ' I I f I 1 2 3 4 5 6 8 R Figure 14. Distance dependence of the quadrupole moment of P2 partitioned into its (9;, and (9,1,0, components. 87 2 (ea0 ) O 1 mol I —l l (9 Figure 15. Distance dependence of the quadrupole moment of S2 partitioned into its (9;, and (9:0, components. 88 54 C1 (12 +) 2 g (6802 ) (9 mol 0 J l I 89101112 Figure 16. Distance dependence of the quadrupole moment of C12 partitioned into its (9;, and (9;, components. 89 .24st $5852 .62 v5 6.39:8 3.386 80852 035 30.3 23 .683 .683 £83 .393 .803 48.3 do 63 .63.; 5380 83.863 2: Ba 8856:; HOME 53, 33.336 8 fin 3 .2 8m 233:8 beach—383:: 33688 65 Ba 853% b_80?=oboo_m .2 ouamfi 33. 538...: a: 53262 c c or o c or Ll 1 P r i n P > 1 l p 01. b p l 1 i b 1 b > > P 01 | In AI OOOOOOOOOOOO I I ‘I p n P bl O P . I it n n b 5.59.3193 5&2 5.313193 5&2 «Z mama—ow 22.5.6.3: NZ Eu 5.95.. .358? 90 426:5: 3:323: :2 an: 233:8 338: $8052 035 .voodH :5 .deH .053 .893“ food“ .893" .SodH 6.0 Ba 82.3 38:00 .Nc>a.oo-w3 05 :5 5365833 HOME .23 358—8 3 mN “a so :8 953:8 $836—$833: 33683 05 v5 386% Bagueefio—m .2 onE .3 333.32 .3. 53%: o c or o o 9| i l P n - hi hi b p 0' b b P n 1 L1 0' ..nl- \-l-/ \ \Illr/I/ \ I I .\-/.,: ..... <5 I O I oooooooooo i p L. Ll o P u l s n p p P p flatworms: 5.x: 31—131»:- Um: NO 5.9:... 22.—:92... «O .5: 5.9.2. 533.9 91 .0333: $5853 3.. 98 «.5033 03:8; 2.0852 035 .353 93 .deH .293 £83 .303 .893 48.2” do 03 82? 5380 .Naaéaa 2: Ba 5850:; HOME .33 33323 8 ed 3 am 5m 232:8 biscéfiqgac 33083 05 98 383% bane—vanvboofi .2 eBwE .3 838...: 2.2 ...—3%: o c 0.. o o w... . L or b r n n r u >1 - . 0| . L p I L h t . . P 0. P n. u n n 0 H n n > b I? h - Saloon»:- 5.3: fl..— .Ec 3.2.2. 5:82» b p r I? p L n 0 "cannula; 5&2 um >323. 22.5.5.3: 92 .ozaawo: 3:80am: 3.. 93 «58:3 2632. 8823.. 2.5 +8.3 23 .202“ 68.3 £83 {8.2“ .83“ .893 do as 8:? 5980 .Nc>a-8-m3 2: as cassava"; HUM—2 £5, wean—318 8 9m 3 am 8m 833:8 $836—$235: 33083 2: 28 353% £83.:oboofi .om onE 3338...: 33.28932 0 c on o 0 cl r [ L - p b p! + +<\- 0' n U h h b > p L 0.! 1 u o ... ... § - . s v v ... ... fi .. \ M.,/, ...\\- / /. ....... . ......m\\m /. ,_\ j ‘. ....HJ \ j. \\\..M.. ...; v Hr... . . . ..U ~\ e) ..5m....... .. .. 1...; .M ..‘._.._. .N- / ,. .2. //,A...... . . . Az/ . 1A.. . ... / II\ \ g r ....... . a” ,I.-\ _/ y/. \\ / 1|- \\ /l\\ r .- fl 1 $ b h bl ..I > “K! h o n p .- n-.. v P P ...» > b p 0 «5.13:»... Cu: gala??? 512 na— .Emcoc 22.5.65... um .56 3.2.0.. c9533 93 .ozuamo: $8858 3.. v5 E3088 02:85. 80852 2.5 «8.3 Ba NS? 68.3 a80.9.H .393 .83“ .893 do as 829, 3880 NE???“ 2: Ea 8386053 HOME ~33 35:28 8 o. m as am .8 mBoEoo Emmy—ocb—onacga 33688 on“ 93 3:80am“. bfiaovéoboo—m AN oSwE a3 338...: 3.2 3:83: o 0 on c 0 0| .{ L Jr I p L b P uw - 9 can .1 p p u h n b ? n to WI L k be h b; 0 O D b ‘ h o > n > ; n p sex—noon? 5&2 annual»... 5.52 um E82. 22.2.5... 8 as $89.. 5:82» 94 .0503: 0.800050: .00.. 0:0 338:3 03:8: 0:00.050: 02m +8.3 05 :83 .083 .083 .393 .893 :83 do an 829 5880 0998-03 2: 05 885033 5%: 5;» 003.3200 8 Wm 00 £0 :8 £30an bag—0-0.8333: 003083 05 0:0 00:80.3: b_m:0c-:o=00_m .mm 0.5me 0.2 3:862 82 53%: 0 c on 0 o cl r 3 u u t n y > 3 p p b > > » p p » b r . 0- on r .- . u I! F \F n n. k 0 n n r P b 52.73:»: 6&2 SKIRT»: 5&2 so :30: 22.202... so :8 :35: 5:8.» F D I F O 95 E. The Quadrupole Moments of N 2 and P2 The isovalent molecules of N2 and P2 have significantly different quadrupole moments. In Chapter 2, we developed methods of analyzing the quadrupole moment in terms of the bonding density. It is our intention to use these techniques to evaluate the significant differences between the quadrupole moment functions of N2 and P2. First lets consider the quadrupole moments of the separate atoms. Both the N atom and the P atom are in the 4S state and therefore the quadrupole moment is zero. The N; and P2 potential energy surface and the quadrupole moments as a fimction of internuclear separation is given in Figures 23 and 24. As two nitrogen atoms come together to form N2, the quadrupole moment immediately becomes negative. With two approaching P atoms, however, the quadrupole moment first shifts positive. Then as the two P atoms approach the energy optimized separation (sz < 5.0 a0) the magnitude of the quadrupole moment begins to decrease. The reason for this can be seen by breaking the quadrupole moment in o and 1!: symmetry contributions. At infinity the (9,. and (9:, must sum to zero for both N2 and P2, as shown in Figure 25. Our numeric asymptotic values of 9., and (9,. for N2 and P2 are (MN) = +2.041 ea: (9,0)) = +5.592 ea: (MN) = -2.041 eag (90(1)) = 65% ea: Referencing each molecular quadrupole-moment fimction to is asymptotic atomic contribution as in Figure 21, as R approaches Rap, 9,. increases more in P2 then in N2. In the region near Rom, for P2 there is a greater increase in @"mol, which is a result of spilling of 8nfl into the P region. The effect in P2 is magnified by the greater spatial distribution 96 Energy (eV) CASSCF+1+2 Figure 23. CASSCF+1+2 potential energy curves for N2 and P2 using the aug-cc-pqu basis. 97 2.0 - Ropt(N2) R (P) opt 2 -0.5- {4‘ q o 8‘: -1.0-: ® 4.5-1 -2.04 '2‘“. CASSCF+1+2 -3.0- 1 35 - 5' N2( 29+) - . - 5 ............... 1 + 4 P2( 29) Figure 24. Distance dependence of the molecular quadrupole moments of N2 and P2 using the CASSCF+1+2 and the aug-cc-pqu basis. 98 P o... ..... N29 =+2.041 m .3. 2 _ N2 9 =-2.041 4 -l ‘5‘ on =-5.592 . MRCI I I l r r I I ll 89101112 Figure 25. Distance dependence of the molecular quadrupole moments of N2 and P2 partitioned into (9., and (9,, components. 99 ®=®mol (eao) . 2 P R N & P MRCI . 2 opt 2 2 'l'l'l'l'l'l I 6(789101112 Figure 26. Distance dependence of the quadrupole moment of N2 and P2 partitioned into their 9;, and 6):”, components. 100 and the r2 term of the operator, thus giving P2 its positive quadrupole moment. Since this spatial distribution increases moving down the periodic table, the magnitude of the quadrupole moment should also increase. F. Conclusion We have studied the quadrupole moments of P2, 82, and C12 and have estimated the CASSCF+1+2 basis-set limit for the latter two. The C1; quadrupole moments are in excellent agreement with calculated values by others and in good agreement with the existing experimental data. The rather large values of the quadrupole moment derivatives, shown in Table 3-1, result in the quadrupole moment being a very sensitive function of R around Re. We have provided the global quadrupole-moment function as the sum of an atomic contribution and a molecular contribution 0mg]. We have also provided reasons for the differences in the quadrupole moment between the first and second row molecules. Additional contour plots and three-dimensional images of Sn and 69, as well as detailed numerical values of G) as a firnction of K are available via our web page, www.cem.msu.edu/~harrison. Table 3-4. Comparison of MP2 and CASSCF + 1 + 2 results. Molecule MP2 (estimated CBS) CASSCF + 1 + 2 (estimated CBS) Ropt(a 0) eopt (ea: ) Ropt(aO) 90m (ea: ) P; 3.6171 +0.5317 3.6055 +0.5241 52 3.5801 +1.4812 3.5978 +1.4585 C12 3.7440 +2.3566 3.7875 +2.3559 101 G. References 1. 10. 11. Shepard, R., Shavitt, I., Pitzer, R. M., Comeau, D. C., Pepper, M., Lischka, H., Szalay, P. G., Ahlrichs, R., Brown, F. B., and Zhao, J. G., Int. J. Quantum Chem. Symp, 1988, 22, 149. MOLPRO is a package of ab initio programs written by H.J.Wemer and P.J.Knowles, with contributions from J .Almof, R.D.Amos, M.J.O.Deegan, S.T.Elbert, C.Hampel, W.Meyer, K.Peterson, R.Pitzer, A.J.Stone, P.R.Taylor, R.Lindh, M.E.Mura, and T.Thorsteinsson Gaussian 92, Revision A, Frisch, M. J ., Trucks, G. W., Head-Gordon, M., Gill, P. M. W., Wong, M. W., Foresman, J. B., Johnson, B. G., Schlegel, H. B., Robb, M. A., Replogle, E. S., Gomperts, R., Andres, J. L., Raghavachari, K., Binkley, J. S., Gonzalez, C., Martin, R. L., Fox, D. J., Defrees, D. J., Baker, J ., Stewart, J. J. P., and Pople, J. A., Gaussian, Inc., Pittsburgh PA, 1992. Glasier R., Horan Cl, and Haney P.E., J.Phys.Chem. 1993, 97, 1835 G. Maroulis, J.Mol.Struct.(THEOCI-IEM), 279 (1993) 79 J .F.Williams and R.D.Amos, Chem.Phys.Lett. 70 (1980) 162 G.Maroulis, Chem.Phys.Lett. 199 (1992) 244 AD. Buckingham, C.Graham and J .H. Williams, Mol. Phys, 1983, 49, 703. R.J.Emrich and W. Steele, Mol.Phys. 40 ( 1980) 469. E.F.Archibong and A.J.Thakkar, Chem.Phys.Lett. 201 (1993) 485 Huber, K. P. and Herzberg, G., “Molecular spectra and molecular structure,” Vol. 4, Constants of Diatomic Molecules (Van Nostrand-Reinhold, New York, 1979) CHAPTER 4 The Quadrupole Moment of H2, Liz, and Na; A. Introduction From the preceding discussions of Chapters II and III, we see that the sign of G) for N2, 02, F2, P2, 52, and Cl; depends on the relative values of (Bar (negative) and 6),, (positive). The relative magnitudes of (9., and 6),. depends on the extent of hydridization. The magnitude of (9,. depends on the distance between the nuclei and the number of 1c orbitals involved in the bonding. The F2 6 contribution, for instance, is less negative then N2 because of only slight sp hybridization in F2. In N2, the large sp hybridization causes the 90 to be dominant and (9 is decidedly negative. For systems such as H2, Liz, and N32, however, the situation is fimdamentally different. As previously discussed in Chapter H, the sign in H2 is always positive because at large R the s-s bond results man, being negative in the region where the quadrupole operator (cosze-l) inverts the sign to positive. As the nuclear separation decreases @(HzR) increases and reaches a maximum before R reaches Rom, after which (9 decreases toward zero. This Chapter presents our results for Li; and Na; and compares these results with H; of Chapter 2. B. Methods The Dunning cc-vaz basis sets are unavailable for Li and Na, so a (14s7p4d3f) Li basis contracted to [6sSp4d3f] was derived from vanDuijenveldtl plus J. Williams2 p fimctions and augmented with an evenly spaced set of d and f functions. This basis will be refered to as the V52 basis. A (19512p3d2f) contracted to [6sSp3d2f] VQZ basis fi'om the MolPro96 library3 was employed for Na. An AN 0 basis fiom Widmark, Malmquist, and Roos4 (WMR) was used for both Li and Na as comparison basis sets. These basis 103 104 sets consisted of (14s9p4d3f) contracted to [655p4d31] for Li and a (17512p5d4t) contracted to [7s6p4d3f] for Na. Both, the V52 basis for Li; and the VQZ basis for Na; gave a lower total energy then did the WMR basis, therefore, we use these results and our ‘best’ results. The CASSCF for Li; consisted of 8 orbitals including 208, 2c“, 308, 3o“, 2mm, 21:”, 21%, and the 27:”. The CASSCF+1+2 wavefirnction include all single and double excitations out of the CASSCF reference space. The Na; CASSCF wavefunction consisted of similar 8 orbital space including the 408, 46“, 503, Son, 37:“, Buy“, 37%, and the 3a,,8 orbitals. Again, the CASSCF+1+2 wavefimction was derived from the CASSCF reference space and included all single and double excitations. This wavefunction is deemed the best due to its flexibility. All RHF, CASSCF and CASSCF+1+2 calculations were done using the MolPro96 package3. C. Results The values for calculated properties of U; are collected in Table C-2 of Appendix C. Our SCF quadrupole moment for U; was 11.1478 eag at the equilibrium geometry of 5.2610 a0 using our largest basis, the VSZ. This compared well with SCF quadrupole of 11.1486 ea: calculated with the WMR basis at ROP. of 5.2609 a0. The SCF quadrupole moment for both the V52 basis and the WMR basis calculated at the experimental geometry of 5.0510 a0 was 10.6432 ea: and 10.6411 eag, respectively. 105 11.50 - 11.25 - 11.00 - (“go 10.75 - 3 ® . 10.50 - 10.25 - """ " """ RHF --------0 CASSCF —A— CASSCF+1 +2 10-00 I w I ' I T I . I -0.4 -02 0.0 02 0.4 R-Ropt (ao) Figure 1. Distance dependence of G) for Li; near Rap. calculated with various models using the VSZ basis. 106 By comparing the optimized SCF geometry, total energy, and dissociation energy to other large basis calculations”, we conclude that our values are very close to the SCF limit. Our CASSCF quadrupole moment was 10.8891 eag at the optimized geometry of 5.0986 a0 using the V5Z basis, while the values determined with the WMR basis was 10.8846 eag at an Rap, of 5.0972 a0. The CASSCF quadrupole moment at the experimental separation using the V5Z basis and the WMR basis was 10.8016 ea: and 10.8034 ea: , respectively. Correlation from configuration interaction of the CASSCF+1+2 changes the quadrupole by a small amount. The CASSCF+1+2 quadrupole moment using the V5Z basis was 10.9213 eag at the optimized separation of 5.0971 a0. Using the WMR basis the optimal separation was the same and the quadrupole moment was 10.9210 eag. The CASSCF+1+2 quadrupole moment at the experimental geometry was 10.8367 ea: using the V52 basis and 10.8372 ea; using the WMR basis. A plot of the @(R) in the region of R0,, is given with the VSZ for the 3 wavefunctions employed is shown in Figure 1. From the plot we can see the CASSCF and CASSCF+1+2 quadrupole functions are virtually on top of one another while the RHF has a much larger slope then either the CASSCF or the CASSCF+1+2. The first and second derivatives of @(R) near Rep. are given in Table 4-1. The first derivative of the SCF ©(R) was 2.4293 eao and the second derivative was -0. 1976 e. The first derivatives of the CASSCF and CASSCF+1+2 was 1.7718 ea0 and 1.7974 eao, 107 respectively, while the second derivatives for the CASSCF and CASSCF+1+2 were -0.7220 e and -0.7154 e. Using the CASSCF+1+2 derivatives, we estimate the vibrational dependence of the CASSCF+1+2 quadrupole moment as @(Liz; v) = +109213 + 0.0650(v+ -;-) and so our vibrationally corrected quadrupole moment is @(Li2;v = 0)= +10.9538 eag There is no reported experimental quadrupole moment for Li2. Plots of @(R) over larger distances is given in Figure 2. The RHF does well near the optimized geometry but fails at larger separations. The CASSCF corrects the SCF curve and follows the CASSCF+1+2 closely. Table 4-1. First and second derivatives of @(R) near Rap, using various models and the V52 basis for Li; and the VQZ basis for N32. [9L9] (e) Molecule Wavefunction Ropt(ao) (213%,, (eao) dR2 Ropt Li2 SCF 5.2609 2.4293 -0. 1976 Li2 CASSCF 5.0986 1.7718 -0.7220 L12 CASSCF+1+2 5.0971 1.7974 -0.7154 N32 SCF 6.0365 2.7023 -0. 1583 Naz CASSCF 6.0118 1.6013 -1.0010 N32 CASSCF+ 1 +2 6.0030 1.6377 -0.9963 Our results for Na; are collect in Table C-3. Our calculated RHF quadrupole moment for Na; was 12.1456 eag at 6.0365 a0 using the VQZ basis. The RHF results with the WMR basis was 12.1456 ea: at a separation of 6.0414 a0. The RHF results at the experimental geometry of 5.8182 a0 was 11.5392 eag with WMR basis 108 1 . 1 + , .................... L12( 2g ) (9 (eaoz) 2- --------- CASSCF ' CASSCF+1+2 0 . r I I I I I I I I I I I I 2 4 6 8 10 12 14 16 R(a0) Figure 2. Distance dependence of 9 at large R for Li2 calculated with various models using the V5Z basis. 109 and 11.5359 ea: with the VQZ basis. Our WMR basis, CASSCF quadrupole moment was 11.6614 eag at a nuclear separation of 6.0141 a0 and our VQZ, CASSCF quadrupole moment was 11.5966 eag at a separation of 6.01 18 a0. At the experimental geometry, both the WM CASSCF and the VQZ, CASSCF gave quadrupole moments of 11.3183 ea: and 11.2665 eag. The CASSCF+1+2 quadrupole moments for the WMR and VQZ basis was 11.6905 eag at 6.0055 a0 and 11.6264 eag at 6.0030 a0, respectively. The CASSCF+1+2 results at the experimental geometry were 11.3565 eag for the WMR and 11.3054 ea: for the VQZ. A plot of the @(R) in the region of Rep. is given with the VQZ basis for the various wavefunctions in Figure 3. The plot shows the CASSCF and CASSCF+1+2 @(R) are very similar while the RHF curve is above and has a larger slope. The RHF first derivative is 2.7023 ea0 and the second derivative is 01583 e. The CASSCF first derivative is 1.6013 eao , and as with Li2, the N32 CASSCF+1+2 first derivative has a similar value of 1.6377 eao. The second derivatives for the CASSCF and CASSCF+1+2 @(R) are - 1.0010 e and -0.9963 e, respectively. Using the CASSCF+1+2 first and second derivatives our vibrationally corrected quadrupole moment for Na; is @(Na2 ;v) = +11.6264 + 0.0215(v + g) G) (eaoz) 13.25 - 110 1 Na (12 +) .- 13.00 — 2 g .- . ..... 12.75 - .-" u .3” 12.50 a .'I .1 I.' 12.25 - u- .‘l 12.00 4 11.75 - , . 3'" 11.50 - In" a I". 11.25 "‘ ...... I ...... RHF 11.00 q —------—o CASSCF —A— CASSCF+1 +2 10.75 I I l I ' l I 1 -0 4 -02 0.0 02 0.4 opt (30) Figure 3. Distance dependence of (9 for Na; near R0,. calculated with various models using the V5Z basis. 25- 20- 111 1 + Naz(2g) ..... .......... .“ ‘ 10- 5- ............... RHF . --------- CASSCF CASSCF+1+2 0IIIIIIIIIIIII1 2 4 6 8 10 12 14 16 R (a0) Figure 4. Distance dependence of (II) for Na; at large R calculated with various models using the VQZ basis. 112 and so our vibrationally corrected quadrupole moment is ®(Na2;v = 0)= +1 1.63 72 eag. The large magnitude of the quadrupole moment makes the vibrational corrections relatively small for both Li2 and Na2 . There is no reported experimental quadrupole moment for Na2 dimer. Plots of @(R) over larger distances is given in Figure 4. The figure shows how closely the CASSCF and CASSCF+1+2 follow one another, while the RHF does rather well near the Rap. but fails at larger separations. D. H2, Liz, and Na2 Figure 5 contains the relative potential energy functions and Figure 6 contains @(R) for H2, Li2, and Na2. The dissociation energy of H2 is much larger than Li2 or Na2, while the quadrupole moment is much smaller. A maximum in @(R) occurs on each curve before the nuclear separation reaches the optimized geometry. This maximum in @(R) is attributed to a maximum in the decrease of electron density on either side of the nuclei along the bond axis. As the bond length moves towards zero, the electron density moves towards spherical symmetry and the associated quadrupole density approaches zero. All three molecules have similar shaped @(R) and differ only by magnitude. Li2 and Na2 have a significantly larger quadrupole moment due to their difl‘use charge distribution and is discussed in the next section. E. The Quadrupole Density of Li2 and Na2 The left-hand diagrams of Figures 7, 8, and 9 are contour plots of the density difference 5n(r) of H2, Li2, and Na2. Looking first at H2, we see a density increase, 113 Energy (eV) . H CASSCF+1+2 1 I I l I l fl I I I l r I I l 1 0 2 4 5 8101214161820 Ra (0) Figure 5. CASSCF+1+2 potential energy curves for H2, Li2, and Na2 using the aug-cc- pv52, ASZ, and VQZ, respectively. (9 (eaoz) 2: R 114 IrlTl ~~~~~ 1214 .0 - ‘0 -.-.—‘.'L ------- 18 ' I I 10 16 1a,) Figure 6. Distance dependence of (9 for H2, Li2, and Na2 using the CASSCF+1+2 wavefimcvtion and aug-cc-vaz, V5Z, and VQZ basis, respectively. 115 633%... 3:888.— vou new 233:8 0338a 8383.. 02m .0 SdH £83 «8.3” .893 .803 .383 on 825, 58:8 5998-?“ 2: 23 86.5.2353 ”635 55, 3832.8 8 v; 3 am .8 333:8 bamaovéoqacmzc 33688 05 v5 cog—ebb? baconéohoofi s ousmfi 82 558.52 53. 585.52 2 o- . o o-I NT .2 2 o OT NT I h I .I I I p I I I l n I l - I L Ii N~I I n I I I b I I I n I I I I n I I I I n N—I r .2. 1 .21 i v t \. .\ l- . .\. .103, . I. . 2 . . 2 m. .o f a /. //,/..F.o......... ,. /fl//.\ I'l"... / I: / I I 4 .2 . .2 .I.IIIhIIII-IIII-IlIuIbrN- I-IIILLIrIi—IIII-IIIIBIIN— bmm 2: :5 88:33:? momm 05 :5 855053 mommdr+§Z. (9) p. =21 «molt +§Z.r. (10) Gal, 2 —%Iq(F)[3rarfl —r26afi]dr+:i=:Zk[3rarfl —r25afl] m (11) =—}/ F 23cosztfil—l 1+ Zr2 3c0526—l 2 21m )4 Z ( )/ oringeneral: :__(_ 1)m- 2m+l a”. (1) M05 d I“) are, .a T (12) +""“( "3"" ——Zr 2m+1 5'" (l) ! " a,a,...a,, r where Q, 11..., Gap, and Map”... are components of the charge, dipole, quadrupole, and in general'm‘h rank tensors, respectively. 125 B. Experimental Evaluation Most experimentally determined values of molecular quadrupole moments were obtained by indirect methods involving the interaction between two or more molecules. Thus pressure broadening of the pure rotational and inversion spectra of gases can lead to information about molecular quadrupole moments.‘"5 Other indirect methods involve the use of the second virial coefficients6, heats of sublimation of single crystals at 0 °K 7, and dielectric constants!”9 Quadrupole moments determined by any of these methods depend on assumptions made about the sign of the quadrupole and the interaction potential. 1° In 1958, AD. Buckingham presented a direct experimental technique to determine the molecular quadrupole moment of gaseous non-dipolar molecules.11 The apparatus consisted of a glass tube enclosing four parallel wires acting as condensers. The gaseous molecules between the wires experience a torque in the field gradient created by the wires with charge. The quadrupole moment of the molecules can then be evaluated from the index of refraction by the relationship n, - ny = 27zNF,;[B’ + 29(a” _ an] (13) 1 SkT where (a // - a .L) is the anisotropy in the molecular polarizability; B describes the change in the effective polarizability induced by the field gradient, Fxx’ is the externally generated fieled gradient, and T is temperature. This technique has given N2 (12;) a quadrupole moment of -1.05 803 .12 This direct experimental technique, however, 126 has proven to be extremely difficult, especially for diatomic gases that are highly reactive. 12'” C Theoretical Evaluation 1. A b-Initio Methods Throughout this work, we use the Augmented Dunning Correlation Consistent 16‘1“ and refer to them as aug-cc-vaz, where X is a cardinal number (2-5) basis sets characterizing the basis. Because of technical limitations in the COLUMBUS properties program, we deleted angular functions of g or greater. The SCF, Moner- Plesset and CISD calculations were done using g92/DFT[17], MCSCF and MRCI calculations used the COLUMBUS” suite of codes and the fun CASSCF and CASSCF+1+2 were done using MOLPRO”. We use the traceless form of the quadrupole-moment operator‘, which, for a homonuclear diatomic, reads " 1 N' 2 2 1 2 (9,, Eek—5262,. —r, )+EZR (14) where Z is the atomic number of the nuclei in the diatomic and R is the internuclear separation. We use atomic units throughout, except where explicitly noted. In these units, one atomic unit of quadrupole moment (eag) contains 1.344911 Buckinghams, 4.4866x10-40 CMZ, and 1.344911 x 10-26 esu cm2. We estimate the complete basis set(CBS) limit!“ of a property by fitting the property values to a function of the form P(X)= P(oo)+Be'CX (15) where X is the cardinal number of the basis set and P00 is the property calculated with that basis. 127 Appendix C contains the collected tables of the quadrupole moments and other properties of 11262;), Li2(‘>:,*), 13262,), C262,“), N2 (12;), 02(328'), F2 (12;), Ne2 (12;), 16.12623), $262,), P2 (12;), $262,), and Cl; (12;) for various wavefimctions as a fimction of basis set. The MPZ wavefimctions include excitations from the log and lou orbitals of H2 through F2. For molecules N2 through F2, the MCSCF wavefunctions are CASSCF fimctions over 6 MO’s derived from the valence p orbitals (the 36g, 30“, lnux, lnuy, lrtgx, Ingy). The MRCI incorporates all single and double excitations from these six orbitals, as well as all double excitations from the 20g and Zou orbitals. The CASSCF wavefunctions include the 203 and 26.. orbitals along with the 6 orbitals described above, and the CASSCF+1+2 wavefunction consists of all single and double excitations from the CASSCF reference space. For 02, both ROI-IF and UHF results are reported. For the second row homonuclear diatomics (Na; through C12), The MPZ wavefirnctions include excitations from the 40g and 4011 orbitals. The CASSCF wavefiJnctions include all valence electrons and the 8 orbitals (the 463, 4c“, 50g, Sou, 21tux, 27tuy, Zagx, any), and the CASSCF + 1 + 2 wavefirnction consists of all single and double excitations from the CASSCF reference space. As with 02, both ROHF and UHF results are reported for 82. Of the wavefunctions used, the best is expected to be the CASSCF+1+2. This wavefimction utilizes the optimized orbitals from the CASSCF to provide much of the correlation energy and a large active space able to accurately describe the valance region of the molecule. 128 2. Expectation Values The general procedure for calculating physical properties requires each of the dynamical variables of the system to be represented in the formalism by a linear operator. The process of evaluating a physical quantity then corresponds to operating on the wave firnction by the corresponding Operator. Consider an arbitrary dynamical variable which is represented by the operator 0. Then the ‘expectation value’ of 6, when the system is in the state 111, is given by (0) = IT'O‘I’dT (16) This is the mean value of 0 which will be obtained by making repeated measurements when the system is known to be in the state w prior to each measurementzo'”. Permanent multipole moments of molecules are first order properties that can be given as expectation values of the corresponding one-electron operator. 93%Z(3’ic’ip —6aflri2)q, (17) resulting in (9,, = —%jn(r)[3rar, — #5,, ]dr (18) where ra and I") are a Cartesian coordinates and r2 = (x2 + y2 + 22). For a cylindrically symmetric system —%Oa=®n=® =—%O (19) W The corresponding quantum mechanical expectation value is N Z -}2[3’ia’tp ‘ 525a51w> + GZUC (20) i=1 129 where om: Z 3 :25 21 :2 %Z A[ralrfll ’31 afl ( ) ,1 where 7t is the index of the nucleus. Given a wavefiinction determined by ab initio techniques, the quadrupole moment can be determined by effectively operating the wavefunction on the appropriate operator and adding in the nuclear contribution.” 3. Point Charge Method An alternate approach to the calculation of moments and polarizabilities uses one or more fixed charges placed in a vicinity of the molecule.23 One or more charges are placed around the molecule in regions where the molecular wavefunctions are negligible. This technique allows for the incorporation of uniform and nonuniform electric field contributions due to gradients and higher order field derivatives. The static properties are then determined as extrapolations fi'om the diminishing interaction energies. It is important that the basis set used be adequate to describe any polarization of the molecule in the presence of this field.24 In this method the field applied should be small enough to let a truncated expansion accurately represent the moment or energy and strong enough to ensure an efi‘ect can be calculated with numerical significance. Generally charges are place 30 - 60 a0 from the center of the molecule depending on the magnitude of the charge, and the resulting uniform field components range from 0.002 to 0.05 eao. If the charges are placed in special arrangements around the molecule, the contributions from the field gradients can be eliminated. For instance, with a homonuclear diatomic, two 130 charges could be placed along the molecular axis at distances equal but opposite in magnitude to the center of the molecule. This would prevent an additional induced dipole and dipole-quadrupole contribution to the potential. The Hamiltonian of a molecule If” -in the presence of a field may be expanded about the field free Hamiltonian [30 in terms of the molecular multipole moment tensors as Hp = 190 —i1aFa _%®aflFafl—%SaaflyFafly "” (22) and the corresponding perturbed energy[25] E” = E0 'flaFa —%®¢Fafi -%,Q¢7Fafi7 ‘ )6 AafirFaFflr " % Cafi.75FaflFn5 "" (23) — %Bam,FanFfl,+-~ where Fa, F043, are the field, field gradient, etc. at the origin. E0, 1.1., O, Q are the energy, dipole, quadrupole, and octopole moment tenors, respectively and A, B, and C are the pure dipole, dipole-quadrupole, and pure quadrupole polarizability tensors of the field free molecule.26 From Equation 23 it can be seen that the energy of a charge system in an electrostatic field is the sum of the energies of a point charge in a potential, a dipole in a uniform field, a quadrupole in a field gradient, and an octopole in the gradient of a field gradient. In general, there will be a torque acting on a rigid charged body in an electric field, the torque about any point being proportional to the multipole moments about that point as origin. As stated earlier, if the charges are placed in special arrangements around the molecule, the contributions fiom the field gradients can be eliminated and induced 131 dipoles can be prevented in such a way to conveniently determine the quadrupole moment for a homonuclear diatomic. By placing two point charges at equi-distant yet opposite sides of the origin along the z axis, the quadrupole moment can be determined by the interaction energy as shown in the figure below. Where IRLl = lRRl, for a symmetric charge distribution about the Z axis E”=E°-#E-%®F;-%QE;~ (24) becomes E’—E°=-}§®F,;—%QF;... (25) where ‘ = 4 - "‘ 1 F. /R., F... cc 4. (26) where 6 becomes the intercept of the line y.(AE)R3 =—®—% , (27) 4. Finite Field Method The ab initio calculation of moments and polarizabilites can be accomplished directly from the solution of the Schrodinger equation with an augmented Hamiltonian. The finite-field approach incorporates the electric field terms directly 132 into the Hamiltonian for a fixed field strength and the wavefunction is solved at that strength.25 This method has not been employed in this work and is mentioned only briefly. This method is more thoroughly described by Sadjle26 in and the references therein. 133 D. References l. 10. 11. 12. 13. 14. 15. 1 6a. 16b. A. Shadowitz, “The Electromagnetic Field”, Dover Publications, Inc., New York, 1988, p.242 R. Becker,”Electromagnetic F ielda and Interactions”, Dover Publications, Inc., New York, 1982, p.80 A.D. Buckingham, Trans. Faraday Soc. 1956, 52, 747 Gordy, Smith, and Trambarulo, “ Microwave Spectroscopy”, John Wiley & Sons, Inc., New York, 1953, Chap. 7 W.V. Smith, J.Chem. Phys. 1956, 25, 510 J .A. Pople, Proc. Roy. Soc. (London) 1954, A221, 508 Jansen, Michels, and Lupton, Physica 1954, 20, 1235 AD. Buckingham and IA. Pople, Trans. Faraday Soc. 1955, 51, 1029 R.W. Zwanzig, J. Chem. Phys. 1956, 25, 211 DE. Stoygryn and AP. Stogryn, Mol. Phys, 1966, 11, 371 AD. Buckingham, J.Chem.Phys., 1959, 30, 1580. AD. Buckingham, C. Graham, and J .H. Williams, Mol. Phys, 1983, 49, 703 AD. Buckingham, R.L. Disch, and D.A.Dunmur, J. Amer. Chem, 1968, 90, 3104 C. Graham, J. Pierrus, and RE. Raab, Mol. Phys, 1989, 67, 939 RA. Bonham and M. Fink, Phys. Rev. A 1986, 33, 1569 Dunning, T. H., Jr., J. Chem. Phys. 1989, 90, 1007; Kendall, R. A., Dunning, T. R, Jr., and Harrison, R. J., J. Chem. Phys. 1992, 96, 6796; Peterson, K. A., Kendall, R. A., and Dunning, T. H., Jr., J. Chem. Phys. 1993, 99, 9790. Basis sets were obtained from the Extensible Computational Chemistry Environment Basis Set Database, Version 1.0, as developed and distributed by the Molecular Science Computing Facility, Environmental and Molecular Sciences Laboratory, which is part of the Pacific Northwest Laboratory, P. O. Box 999, Richland, Washington 99352, USA, and firnded by the U. S. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 134 Department of Energy. The Pacific Northwest Laboratory is a multi-program laboratory operated by Battelle Memorial Institute for the U. S. Department of Energy under contract DE-ACO6-76RLO 1830. Contact David Feller, Karen Schuchardt, or Don Jones for firrther information. Gaussian 92, Revision A, Frisch, M. J ., Trucks, G. W., Head-Gordon, M., Gill, P. M. W., Wong, M. W., Foresman, J. B., Johnson, B. G., Schlegel, H. B., Robb, M. A., Replogle, E. S., Gomperts, R., Andres, J. L., Raghavachari, K., Binkley, J. S., Gonzalez, C., Martin, R. L., Fox, D. J., Defrees, D. J., Baker, J ., Stewart, J. J. P., and Pople, J. A., Gaussian, Inc., Pittsburgh PA, 1992. Shepard, R., Shavitt, 1., Pitzer, R. M., Comeau, D. 0, Pepper, M., Lischka, H., Szalay, P. G., Ahlrichs, R., Brown, F. B., and Zhao, J. G., Int. J. Quantum Chem. Symp. 1988, 22, 149. MOLPRO is a package of ab initio programs written by H.J.Wemer and P.J.Knowles, with contributions from J .Almof, R.D.Amos, M.J.O.Deegan, S.T.Elbert, C.Hampel, W.Meyer, K.Peterson, R.Pitzer, A.J.Stone, P.R.Taylor, R.Lindh, M.E.Mura, and T.Thorsteinsson P.A.M.Dirac,The Priciples of Quantum Mechanics. Oxford Science Publications, 4th Ed., 1991 E.Merzbacher, Quantum Mechanics, John Wiley & Sons, 2nd Ed., 1970 A. Szabo and N.S.Ostlund, Modern Quantum Chemistgg, McGraw-Hill Publishing, lst. Ed. rev., 1982 AD. Buckingham, in Intermolecular Interactions: From Diatomics to Biopolymers, edited by B. Pullman (Wiley, New York, 1978), p. 1. GO Maitland, M. Rigby, E.B.Smith, and WA. Wakeharn, Intermolecular Forces: Thier Origin and Determination (Clarendon, Oxford, 1981). AD. Buckingham, Adv. Chem. Phys, 1967, 12, 107 (a) A.J. Thakkar, J .Chem. Phys.,1981, 75, 4496; A.Koide, W.J. Meath, and A.R.Allnatt, J .Phys.Chem., 1982, 86, 1222; (b) D.M. Bishop and B.Lam, Phys. Rev.A, 1988, 37, 464 APPENDIX B Basis Sets A. Description The Dunning correlation consistent basis sets have been defined as to contain all of the correlating functions which lower the correlation energy by similar amounts as well as all correlating firnctions which lower the energy by larger amounts.1 For example, the Nitrogen (9s4pld) primitive set contracted to [3 s2pld] is the simplest correlation consistent basis set, since the 3s and 2p spatial firnctions lower the correlation energy by approximately the same amount as the 1d set; all other functions lower the correlation energy by substantially smaller amounts. This is referred to as the correlation consistent polarized valence double-zeta (cc-pvdz) set. Other correlation consistent basis sets for Boron through Fluorine include a (1055p2dlf) set contacted to [453 p2d1f] referred to as the correlation consistent polarized valence triple-zeta (cc-pvtz), a (1236p3 d2fl g) contracted to [554p3 d2fl g] referred to as the correlation consistent polarized valence quadrupole-zeta (cc-pqu) set, and a (1438p4d3f2g1h) contracted to [6sSp4d3f2g] as the correlation consistent polarized valence 5-zeta (cc-vaz). Due to technical limitations, calculations in this work have only included 5, p, d, and, f basis firnctions unless otherwise stated. Augmenting these basis sets with spatially diffuse basis firnctions dramatically improves the description of certain properties, especially those strongly influenced by the outer electron charge distribution. Dunning provides a series of augmented basis functions, constructed specifically for the evaluation of electron affinities of atomsz'3 For each correlation consistent basis set, an additional 5, p, d, f, g, h basis function is available. Since these functions are spatially diffiJse, their contribution to the shape of the molecular potential energy surface is negligible. They do, however, have a 136 137 significant effect on the charge distribution, and therefore, properties, away from the nuclei. Figure 1 shows a comparison of the molecular potential energy surface of the cc-pvtz basis set and a CASSCF+1+2 wavefunction to RKR data“. Figure 2 is a comparison of the total energy of 02(323') using the augmented and non-augmented basis sets at the ROHF and MPZ level. As can be seen in the figure, both the augmented and non-augmented converge rather well to the basis set model limit. The quadrupole moment, however, is much more sensitive to the basis sets used, as can be seen in Figure 3. Figure 3 is a plot comparing 02(328') ROHF and MP2 quadrupole moments computed with augment to non-augmented basis firnctions. By looking at Figure 3, its immediately apparent to the importance of augmenting the basis functions when modeling a property such as the quadrupole moment. This appendix lists the Dunning Correlation Consistent Basis Sets5 used in the main component of this thesis. Attached at the end of each basis set are the augmented functions optimized for each particular set. The basis sets are listed in a format that is compatible with the input file for the Gaussian946 suite of codes. cm -1 138 4mm- .................................... 3mm- - 3 - 30000 . 9‘ O2 ( 2g) 25000- I I --------- CASSCF+1+2 . 9’ —0—-RKR 200004 . é o 0" 1mm4 5 ‘ ' CASSCF+1+2 / Experiment 100W 9: 1" Re= 1.2018 Ang. / 1.208 Aug. ‘3 7 De=5.1197eV / 5.241 eV _ c c 5000 3, (0 =1616cm'1 /1556 cm-1 1 t e 0- ‘0’ I 1 I ' I ' l ' l T l ' l 2 5 R (a0) Figure 1. Comparison of 02 RKR data to CASSCF+1+2 potential energy curve using the cc-pvtz basis. 139 ROI-IF limit ) L. 5‘3 8 I -14995 _ ...... .. ..... cc_vaZ - o... —-— aug-cc-vaz Energy (ea '55 '8 J. .8 N o r 2 3 4 aug-cc-vaz Figure 2. Comparison of ROHF and UMP2 total energy for 02 using the cc-pvtz and aug-cc-pvtz basis sets. 140 -0.10 _ - a O (32 _) 2 g 0.15 _ -0.20 _ -0.25 - "\E UMP2 hrrut '- . ................. . 0.30 - . ....... (210° -0.35 _ 3 . 6) 0.40 4 l \E R0 t .045 - .......... .. ................. .. ,,,,,,,,,,, d .... ..... —0.5o _ . .. ...... O ..... CC-pVXZ -0.55 A —a— auQ_Cc_vaZ ‘ 0' ‘060 I j l T l 2 3 4 5 6 aug'CC-pvxz Figure 3. Comparison of the ROHF and UMP2 quadrupole moment of 02 using the cc-pvtz and aug-cc-pvtz basis sets. 141 B. References 1. 2. Dunning, T. R, Jr., J. Chem. Phys. 1989, 90, 1007 Woon,D.E., and Dunning, T. H., Jr., J. Chem. Phys. 1993, 98, 1358 Woon,D.E., and Dunning, T. H., Jr., J. Chem. Phys, 1993, 99, 3730 Flugge,S., Walger,P., and Weiguny, A., J. Mol. Phys, 1967, 23, 243 Basis sets were obtained from the Extensible Computational Chemistry Environment Basis Set Database, Version 1.0, as developed and distributed by the Molecular Science Computing Facility, Environmental and Molecular Sciences Laboratory, which is part of the Pacific Northwest Laboratory, P. O. Box 999, Richland, Washington 993 52, USA, and funded by the U. S. Department of Energy. The Pacific Northwest Laboratory is a multi-program laboratory operated by Battelle Memorial Institute for the U. S. Department of Energy under contract DE-AC06-76RLO 1830. Contact David Feller, Karen Schuchardt, or Don Jones for further information. Gaussian 94, Revision D.3,M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. MW. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 1995. Hydrogen aug-cc-pvdz H 0.000000 S 4 1 .00 1 3.01 0000 1 .962000 0.444600 0.122000 S 1 1 .00 0.122000 P 1 1 .00 0.727000 8 1 1 .00 0.029740 P 1 1 .00 0.141000 0.019685 0.137977 0.478148 0.501240 1.000000 1.000000 1.000000 1 .000000 142 aug-cc-pvtz H S 5 1.00 S 1 1.00 S 1 1.00 P 1 1.00 P 1 1.00 D 1 1.00 S 1 1.00 P 1 1.00 D 1 1.00 0.000000 33.870000 5.095000 1 .1 59000 0.325800 0.102700 0.325800 0.102700 1 .407000 0.388000 1 .057000 0.025260 0.102000 0.247000 0.006068 0.045308 0.202822 0.503903 0.383421 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 Hydrogen aug—cc-pqu S 0 U '0 TI 0.000000 82.640000 12.410000 2.824000 0.797700 0.2581 00 0.089890 0.797700 0.258100 0.089890 2.292000 0.838000 0.292000 2.062000 0.662000 1 .397000 0.023630 0.084800 0.1 90000 0.360000 0.002006 0.01 5343 0.075579 0.256875 0.497368 0.296133 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 143 aug—cc-vaz H 0.000000 S 8 1.00 402.000000 60.240000 13.730000 3.905000 1.283000 0.465500 0.181100 0.072790 S 1 1.00 1.283000 S 1 1.00 0.465500 S 1 1.00 0.181100 S 1 1.00 0.072790 P 1 1.00 4.516000 P 1 1.00 1.712000 P 1 1.00 0.649000 P 1 1.00 0.246000 D 1 1.00 2.950000 D 1 1.00 1.206000 D 1 1.00 0.493000 F 1 1.00 2.506000 F 1 1.00 0.875000 G 1 1.00 2.358000 S 1 1.00 0.020700 P 1 1.00 0.074400 D 1 1.00 0.156000 F 1 1.00 0.274000 G 1 1.00 0.543000 0.000279 0.0021 65 0.01 1201 0.044878 0.1 42299 0.330979 0.436269 0.1 76440 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 Boron aug-cc-pvdz B 0.000000 S 9 1.00 4,570.000000 685.900000 156.500000 44.470000 14.480000 5.131000 1.898000 0.332900 0.104300 S 9 1.00 4,570.000000 685.900000 156.500000 44.470000 14.480000 5.131000 1.898000 0.332900 0.104300 S 1 1.00 0.104300 P 4 1.00 6.001000 1.241000 0.336400 0.095380 P 1 1.00 0.095380 D 1 1.00 0.343000 S 1 1.00 0.031050 P 1 1.00 0.023780 D 1 1.00 0.090400 0.000696 0.005353 0.027134 0.101380 0.272055 0.448403 0.290123 0.014322 -0.003486 -0.000139 -0.001097 -0.005444 -0.021916 -0.059751 -0.138732 -0.131482 0.539526 0.580774 1 .000000 0.035481 0.198072 0.505230 0.479499 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 144 aug-cc-pvtz 8 0.000000 S 12 1.00 23,870.000000 3,575.000000 812.800000 229.700000 74.690000 26.81 0000 10.320000 4.1 78000 1 .727000 0.470400 0.189600 0.073940 S 12 1.00 23,870.000000 3,575.000000 812.800000 229.700000 74.690000 26.81 0000 10.320000 4.178000 1 .727000 0.470400 0.189600 0.073940 S 1 1 .00 0.470400 S 1 1 .00 0.189600 S 1 1.00 0.073940 P 6 1 .00 22.260000 5.058000 1 .487000 0.507100 0.1 81200 0.064630 P 1 1 .00 0.507100 P 1 1 .00 0.181200 P 1 1 .00 0.064630 D 1 1 .00 1 .1 10000 0.000088 0.000687 0.003600 0.014949 0.051435 0.143302 0.300935 0.403526 0.225340 0.015407 -0.003955 0.001 124 -0.000018 -0.000139 -0.000725 -0.003063 -0.010581 -0.031365 -0.071012 -0.132103 -0.123072 0.261819 0.586662 0.290494 1 .000000 1 .000000 1 .000000 0.005095 0.033206 0.1 32314 0.331 81 8 0.472063 0.257979 1 .000000 1 .000000 1 .000000 1 .000000 145 1 .00 0.402000 1.00 0.145000 1.00 0.882000 1.00 0.311000 1.00 0.673000 1.00 0.027210 1.00 0.018780 1.00 0.046600 1.00 0.113000 1.00 0.273000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1.000000 ’ 1 .000000 1 .000000 1 .000000 Boron aug-cc-pqu 8 0.000000 S 101.00 5,473.000000 820.900000 186.800000 52.830000 17.080000 5.999000 2.208000 0.587900 0.241500 0.086100 S 101.00 5,473.000000 820.900000 186.800000 52.830000 17.080000 5.999000 2.208000 0.587900 0.241500 0.086100 S 1 1.00 0.587900 S 1 1.00 0.086100 P 51.00 12.050000 2.613000 0.747500 0.238500 0.076980 P 1 1.00 0.238500 P 1 1.00 0.076980 D 1 1.00 0.661000 D 1 1.00 0.199000 F 1 1.00 0.490000 S 1 1.00 0.029140 P 1 1.00 0.020960 D 1 1.00 0.060400 0.000555 0.004291 0.021949 0.084441 0.238557 0.435072 0.341955 0.036856 -0.009545 0.002368 -0.0001 12 -0.000868 -0.004484 -0.017683 -0.053639 -0.1 19005 -0.165824 0.120107 0.595981 0.411021 1 .000000 1 .000000 0.0131 1 8 0.079896 0.277275 0.504270 0.353680 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 146 aug-cc-vaz 8 0.000000 S 14 1 .00 68,260.000000 10,230.000000 2,328.000000 660.400000 216.200000 78.600000 30.980000 12.960000 5.659000 2.556000 1 .175000 0.424900 0.171200 0.069130 S 14 1 .00 68,260.000000 10,230.000000 2,328.000000 660.400000 216.200000 78.600000 30.980000 12.960000 5.659000 2.556000 1 .175000 0.424900 0.171200 0.069130 S 1 1 .00 1 .175000 S 1 1.00 0.424900 S 1 1.00 0.171200 S 1 1.00 0.069130 P 8 1.00 66.440000 15.710000 4.936000 1 .770000 0.700800 0.290100 0.121 100 0.049730 P 1 1 .00 0.000024 0.000185 0.000970 0.004056 0.014399 0.043901 0.1 1 3057 0.233825 0.353960 0.301 547 0.087521 0.002819 0.000043 0.000078 -0.000005 -0.000037 -0.0001 96 -0.000824 -0.002923 -0.0091 38 -0.0241 05 -0.054755 -0.096943 -0.1 37485 -0.044565 0.324345 0.570414 0.243444 1 .000000 1 .000000 1 .000000 1 .000000 0.000838 0.006409 0.028081 0.092152 0.224164 0.369915 0.374441 0.139086 F 1 1.00 0.163000 1.000000 147 I G) 0 "1 (0 0.700800 1.00 0.290100 1.00 0.121 100 1.00 0.049730 1.00 2.010000 1.00 0.796000 1.00 0.316000 1.00 0.125000 1.00 1.215000 1.00 0.525000 1.00 0.27000 1.00 1.124000 1.00 0.461000 1.00 0.834000 1.00 0.026100 1.00 0.015700 1.00 0.043100 1.00 0.084300 1.00 0.202000 1.00 0.384000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 Carbon aug-cc—pvdz C 0.000000 S 9 1.00 6,665.000000 1 ,000.000000 228.000000 64.710000 21.060000 7.495000 2.797000 0.521500 0.159600 S 9 1.00 6.665.000000 1 ,000.000000 228.000000 64.710000 21.060000 7.495000 2.797000 0.521500 0.159600 S 1 1.00 0.159600 P 4 1.00 9.439000 2.002000 0.545600 0.151700 P 1 1.00 0.151700 D 1 1.00 0.550000 8 1 1.00 0.046900 P 1 1.00 0.040410 D 1 1.00 0.151000 0.000692 0.005329 0.027077 0.101718 0.274740 0.448564 0.285074 0.015204 -0.003191 -0.000146 -0.001 154 -0.005725 -0.023312 -0.063955 -0.149981 -0.127262 0.544529 0.580496 1 .000000 0.038109 0.209480 0.508557 0.468842 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 148 aug-cc-pvtz C 0.000000 8 101.00 8236000000 1 235000000 280.800000 79.270000 25.590000 8.997000 3.319000 0.905900 0.364300 0.128500 S 101.00 8236000000 1 235000000 280.800000 79.270000 25.590000 8.997000 3.319000 0.905900 0.364300 0.128500 S 1 1.00 0.905900 S 1 1.00 0.128500 P 51.00 18.710000 4.133000 1.200000 0.382700 0.120900 P 1 1.00 0.382700 P 1 1.00 0.120900 D 1 1.00 1.097000 D 1 1.00 0.318000 F 1 1.00 0.761000 S 1 1.00 0.044020 P 1 1.00 0.035690 D 1 1.00 0.100000 0.000531 0.004108 0.021087 0.081853 0.234817 0.434401 0.346129 0.039378 -0.008983 0.002385 -0.0001 13 -0.000878 -0.004540 -0.01 81 33 -0.055760 -0.1 26895 -0.1 70352 0.1 40382 0.598684 0.395389 1 .000000 1 .000000 0.01 4031 0.086866 0.29021 6 0.501 008 0.343406 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 149 F 1 1.00 0.268000 1 .000000 Carbon aug-cc-pqu C S 0.000000 12 1 .00 33,980.000000 5,089.000000 1 .157.000000 326.600000 106.100000 38.1 10000 14.750000 6.035000 2.530000 0.735500 0.290500 0.1 1 1100 12 1 .00 33,980.000000 5,089.000000 1 .157.000000 326.600000 106.100000 38.1 10000 14.750000 6.035000 2.530000 0.735500 0.290500 0.1 11 100 1 1.00 0.735500 1 1.00 0.290500 1 1.00 0.1 1 1100 6 1 .00 34.510000 7.915000 2.368000 0.813200 0.289000 0.100700 1 1.00 0.813200 1 1.00 0.289000 1 1.00 0.100700 1 1.00 1 .848000 1 1.00 0.000091 0.000704 0.003693 0.01 5360 0.052929 0.147043 0.305631 0.399345 0.217051 0.015894 -0.003084 0.000978 -0.000019 -0.000151 -0.000785 -0.003324 -0.011512 -0.034160 -0.077173 -0.141493 -0.118019 0.273806 0.586510 0.285430 1 .000000 1 .000000 1 .000000 0.005378 0.0361 32 0.142493 0.3421 50 0.463864 0.250028 1 .000000 1 .000000 1 .000000 1 .000000 150 aug-cc-vaz C S S 0.000000 14 1 .00 96770000000 14500000000 3,300.000000 935.800000 306.200000 1 1 1 .300000 43.900000 1 8.400000 8.054000 3.637000 1 .656000 0.633300 0.254500 0.1 01900 14 1 .00 96,770.000000 14,500.000000 3,300.000000 935.800000 306.200000 1 1 1.300000 43.900000 18.400000 8.054000 3.637000 1 .656000 0.633300 0.254500 0.101900 1 1 .00 1 .656000 1 1 .00 0.633300 1 1 .00 0.254500 1 1 .00 0.101 900 8 1 .00 101 .800000 24.040000 7.571 000 2.732000 1 .085000 0.449600 0.187600 0.076060 1 1 .00 0.000025 0.000190 0.001000 0.004183 0.014859 0.045301 0.1 16504 0.240249 0.358799 0.293941 0.077665 0.002333 0.000505 0.000030 -0.000005 -0.000041 -0.00021 3 -0.000897 -0.003187 -0.009961 -0.026375 -0.060001 -0.106825 -0.144166 -0.024644 0.349009 0.558737 0.228102 1 .000000 1 .000000 1 .000000 1 .000000 0.000891 0.006976 0.031669 0.104006 0.241633 0.371946 0.354200 0.131568 0.649000 1 .00 0.228000 1 .00 1 .419000 1 .00 0.485000 1 .00 1 .01 1000 1 .00 0.041450 1 .00 0.032180 1 .00 0.076600 1 .00 0.187000 1 .00 0.424000 1 .000000 1 .000000 1.000000 1.000000 1.000000 1.000000 1 .000000 1 .000000 1 .000000 1 .000000 151 TI 0 G) 1 .085000 1 .00 0.449600 1 .00 0.187600 1 .00 0.076060 1 .00 3.134000 1 .00 1 .233000 1 .00 0.485000 1 .00 0.191000 1 .00 2.006000 1 .00 0.838000 1 .00 0.350000 1 .00 1 .753000 1 .00 0.678000 1 .00 1 .259000 1 .00 0.039400 1 .00 0.027200 1 .00 0.070100 1 .00 0.138000 1 .00 0.319000 1 .00 0.586000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 Nitrogen aug-cc-pvdz N 0.000000 S 91.00 9,046.000000 1 ,357.000000 309.300000 87.730000 28.560000 10.210000 3.838000 0.746600 0.224800 8 91.00 9,046.000000 1 ,357.000000 309.300000 87.730000 28.560000 10.210000 3.838000 0.746600 0.224800 3 1 1.00 0.224800 P 4 1.00 13.550000 2.917000 0.797300 0.218500 P 1 1.00 0.218500 D 1 1.00 0.817000 S 1 1.00 0.061240 P 1 1.00 0.056110 D 1 1.00 0.230000 0.000700 0.005389 0.027406 0.103207 0.278723 0.448540 0.278238 0.015440 -0.002864 -0.000153 -0.001208 -0.005992 -0.024544 -0.067459 -0.1 58078 -0.121 831 0.549003 0.57881 5 1 .000000 0.039919 0.217169 0.51031 9 0.462214 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 152 aug-cc-pvtz N 0.000000 8 10 1 .00 11 ,420.000000 1 ,712.000000 389.300000 1 10.000000 35.570000 12.540000 4.644000 1 .293000 0.51 1800 0.1 78700 S 10 1 .00 1 1 ,420.000000 1 ,712.000000 389.300000 1 10.000000 35.570000 12.540000 4.644000 1 .293000 0.51 1800 0.178700 S 1 1 .00 1 .293000 S 1 1 .00 0.1 78700 P 5 1 .00 26.630000 5.948000 1.742000 0.555000 0.172500 P 1 1 .00 0.555000 .0 —A 1 .00 0.172500 1 1 .00 1 .654000 0 U 1 .00 0.469000 .11 A 1.00 1.093000 S 1 1.00 0.057600 P 1 1.00 0.049100 D 1 1.00 0.151000 0.000523 0.004045 0.020775 0.080727 0.233074 0.433501 0.347472 0.041 262 -0.008508 0.002384 —0.0001 15 -0.000895 -0.004624 -0.01 8528 -0.057339 -0.1 32076 -0.1 7251 0 0.1 51 814 0.599944 0.387462 1 .000000 1 .000000 0.01 4670 0.091 764 0.298683 0.498487 0.337023 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 153 F 1 1 .00 0.364000 1 .000000 Nitrogen aug-cc-pqu 0.000000 S 12 1.00 45,840.000000 6.868.000000 1 ,563.000000 442.400000 144.300000 52.1 80000 20.340000 8.381 000 3.529000 1 .054000 0.41 1800 0.1 55200 S 12 1.00 45,840.000000 6,868.000000 1,563.000000 442.400000 144.300000 52.180000 20.340000 8.381 000 3.529000 1.054000 0.41 1800 0.1 55200 S 1 1.00 1.054000 S 1 1 .00 0.41 1800 S 1 1.00 0.1 55200 P 6 1 .00 49.330000 1 1 .370000 3.435000 1 .1 82000 0.417300 0.142800 P 1 1.00 1 .1 82000 P 1 1.00 0.41 7300 P 1 1.00 0.142800 D 1 1 .00 2.837000 D 1 1.00 0.000092 0.000717 0.003749 0.015532 0.053146 0.146787 0.304663 0.397684 0.217641 0.016963 -0.002745 0.000953 -0.000020 -0.000159 -0.000824 -0.003478 -0.01 1966 -0.035388 -0.080077 -0.146722 -0.1 16360 0.279919 0.585481 0.284028 1 .000000 1 .000000 1 .000000 0.005533 0.037962 0.149028 0.348922 0.458972 0.244923 1 .000000 1 .000000 1 .000000 1 .000000 154 aug-cc-vaz N 0.000000 S 141.00 129,200.000000 19,350.000000 4,404.000000 1,248.000000 408.000000 148.200000 58.500000 24.590000 10.810000 4.882000 2.195000 0.871500 0.350400 0.139700 S 141.00 129,200.000000 19,350.000000 4,404.000000 1 ,248.000000 408.000000 148.200000 58.500000 24.590000 10.810000 4.882000 2.195000 0.871500 0.350400 0.139700 S 1 1.00 2.195000 S 1 1.00 0.871500 S 1 1.00 0.350400 S 1 1.00 0.139700 P 81.00 147000000 34.760000 11.000000 3.995000 1.587000 0.653300 0.268600 0.106700 P 1 1.00 0.000025 0.0001 97 0.001 032 0.004325 0.01 5380 0.046867 0.1201 16 0.245695 0.361379 0.287283 0.070171 0.001 831 0.000835 -0.000006 -0.000006 -0.000043 -0.000227 -0.000958 -0.003416 -0.01 0667 -0.028279 -0.064020 -0.1 13932 —0. 1 46995 -0.007251 0.3661 83 0.547908 0.216645 1 .000000 1 .000000 1 .000000 1 .000000 0.000892 0.007082 0.032816 0.1 08209 0.248094 0.37451 3 0.348414 0.1 28340 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.968000 0.335000 2.027000 0.685000 1 .427000 0.054640 0.044020 0.111000 0.245000 0.559000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 155 G) (D 'T' I 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1 .587000 0.653300 0.268600 0.1 06700 4.647000 1.813000 0.707000 0.276000 2.942000 1 .204000 0.493000 2.511000 0.942000 1 .768000 0.051800 0.036900 0.097100 0.1 92000 0.436000 0.788000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 Oxygen aug-cc-pvdz 0 0.000000 S 91.00 1 1 ,720.000000 1,759.000000 400.800000 113.700000 37.030000 13.270000 5.025000 1.013000 0.302300 S 91.00 1 1 .720.000000 1 ,759.000000 400.800000 113.700000 37.030000 13.270000 5.025000 1.013000 0.302300 S 1 1.00 0.302300 P 4 1.00 17.700000 3.854000 1.046000 0.275300 P 1 1.00 0.275300 D 1 1.00 1.185000 S 1 1.00 0.078960 P 1 1.00 0.068560 D 1 1.00 0.332000 0.000710 0.005470 0.027837 0.104800 0.283062 0.448719 0.270952 0.015458 —0.002585 -0.000160 -0.001263 -0.006267 -0.025716 -0.070924 -0.16541 1 -0.1 16955 0.557368 0.572759 1 .000000 0.043018 0.228913 0.508728 0.460531 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 156 aug-cc-pvtz 0 0.000000 8 10 1.00 1 5,330.000000 2,299.000000 522.400000 147.300000 47.550000 16.760000 6.207000 1.752000 0.688200 0.238400 8 10 1.00 1 5,330.000000 2,299.000000 522.400000 147.300000 47.550000 16.760000 6.207000 1.752000 0.688200 0.238400 S 1 1.00 1.752000 S 1 1.00 0.238400 P 5 1.00 34.460000 7.749000 2.280000 0.715600 0.214000 P 1 1.00 0.715600 P 1 1.00 0.214000 1.00 2.314000 0 U ..l 1 1.00 0.645000 11 .5 1.00 1.428000 8 1 1.00 0.073760 P 1 1.00 0.059740 D 1 1.00 0.214000 0.000508 0.003929 0.020243 0.0791 81 0.230687 0.4331 18 0.350260 0.042728 -0.0081 54 0.002381 -0.0001 15 -0.000895 -0.004636 -0.01 8724 -0.058463 -0. 1 36463 -0.1 75740 0.160934 0.60341 8 0.378765 1 .000000 1 .000000 0.01 5928 0.099740 0.31 0492 0.491 026 0.336337 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 157 F 1 1 .00 0.500000 1.000000 Oxygen aug-cc-pqu 0 0.000000 S 12 1 .00 61 ,420.000000 9,199.000000 2,091 .000000 590.900000 1 92.300000 69.320000 26.970000 1 1 .100000 4.682000 1 .428000 0.554700 0.206700 S 12 1 .00 61 .420.000000 9,199.000000 2,091.000000 590.900000 192.300000 69.320000 26.970000 1 1 .100000 4.682000 1 .428000 0.554700 0.206700 S 1 1 .00 1 .428000 S 1 1 .00 0.554700 S 1 1 .00 0.206700 P 6 1 .00 63.420000 14.660000 4.459000 1 .531000 0.530200 0.1 75000 P 1 1 .00 1 .531000 P 1 1 .00 0.530200 P 1 1 .00 0.1 75000 D 1 1 .00 3.775000 D 1 1 .00 0.000090 0.000698 0.003664 0.015218 0.052423 0.145921 0.305258 0.398508 0.216980 0.017594 -0.002502 0.000954 -0.000020 -0.0001 59 -0.000829 -0.003508 -0.01 21 56 -0.036261 -0.082992 -0.1 52090 -0.1 1 5331 0.288979 0.586128 0.277624 1 .000000 1 .000000 1 .000000 0.006044 0.041799 0.1 61 143 0.356731 0.448309 0.244940 1 .000000 1 .000000 1 .000000 1 .000000 aug-cc—vaz O 0.000000 S 14 1 .00 164,200.000000 24,590.000000 5, 592.000000 1.582.000000 51 6.1 00000 1 87.200000 73.930000 31 .220000 1 3.810000 6.256000 2.776000 1 .1 38000 0.460000 0.1 82900 S 14 1 .00 164,200.000000 24,590.000000 5,592.000000 1 ,582.000000 516.1 00000 187.200000 73.930000 31 .220000 1 3.810000 6.256000 2.776000 1 .138000 0.460000 0.182900 S 1 1 .00 2.776000 S 1 1 .00 1 .138000 S 1 1 .00 0.460000 S 1 1 .00 0.182900 P 8 1 .00 195.500000 46.160000 14.580000 5.296000 2.094000 0.8471 00 0.336800 0.128500 P 1 1 .00 0.000026 0.000205 0.001076 0.004522 0.016108 0.049085 0.124857 0.251686 0.362420 0.279051 0.063552 0.001063 0.001 144 -0.000040 -0.000006 -0.000046 -0.000244 -0.001 031 -0.003688 -0.01 1 514 -0.030435 -0.068147 -0.120368 -0.148260 0.009905 0.384286 0.536805 0.202667 1 .000000 1 .000000 1 .000000 1 .000000 0.000918 0.007368 0.034958 0.1 15431 0.256803 0.373938 0.343447 0.129706 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1 .300000 0.444000 2.666000 0.859000 1 .846000 0.069590 0.053480 0.154000 0.324000 0.714000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 159 I C) O 71 (D 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2.094000 0.847100 0.336800 0.128500 5.879000 2.307000 0.905000 0.355000 4.016000 1 .554000 0.601000 3.350000 1.189000 2.319000 0.065500 0.044600 0.131000 0.237000 0.517000 1 .024000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 Fluorine aug-cc-pvdz F 0.000000 S 91.00 14,710.000000 2,207.000000 502.800000 142.600000 46.470000 16.700000 6.356000 1.316000 0.389700 S 91.00 14,710.000000 2,207.000000 502.800000 142.600000 46.470000 16.700000 6.356000 1.316000 0.389700 S 1 1.00 0.389700 P 41.00 22.670000 4.977000 1.347000 0.347100 P 1 1.00 0.347100 D 1 1.00 1.640000 S 1 1.00 0.098630 P 1 1.00 0.085020 D 1 1.00 0.464000 0.000721 0.005553 0.028267 0.106444 0.286814 0.448641 0.264761 0.015333 -0.002332 -0.000165 -0.001308 -0.006495 -0.026691 -0.073690 -0.170776 -0.1 12327 0.562814 0.568778 1 .000000 0.044878 0.235718 0.508521 0.4581 20 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 160 aug-cc-pvtz F 0.000000 8 101.00 19,500.000000 2,923.000000 664.500000 187.500000 60.620000 21.420000 7.950000 2.257000 0.881500 0.304100 8 101.00 19,500.000000 2,923.000000 664.500000 187.500000 60.620000 21.420000 7.950000 2.257000 0.881500 0.304100 S 1 1.00 2.257000 S 1 1.00 0.304100 P 51.00 43.880000 9.926000 2.930000 0.913200 0.267200 P 1 1.00 0.913200 P 1 1.00 0.267200 D 1 1.00 3.107000 D 1 1.00 0.855000 F 1 1.00 1.917000 S 1 1.00 0.091580 P 1 1.00 0.073610 D 1 1.00 0.292000 0.000507 0.003923 0.020200 0.079010 0.230439 0.432872 0.349964 0.043233 -0.007892 0.002384 -0.0001 17 -0.000912 -0.004717 -0.019086 -0.059655 -0.140010 -0.176782 0.171625 0.605043 0.369512 1 .000000 1 .000000 0.01 6665 0.1 04472 0.31 7260 0.487343 0.334604 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 161 F 1 1 .00 0.724000 1 .000000 Fluorine aug-cc-pqu F 0.000000 S 12 1 .00 74,530.000000 11.170.000000 2,543.000000 721 .000000 235.900000 85.600000 33.550000 1 3.930000 5.915000 1 .843000 0.712400 0.263700 S 12 1 .00 74,530.000000 1 1 ,170.000000 2,543.000000 721 .000000 235.900000 85.600000 33.550000 1 3.930000 5.91 5000 1 .843000 0.712400 0.263700 S 1 1 .00 1 .843000 S 1 1 .00 0.712400 S 1 1 .00 0.263700 P 6 1 .00 80.390000 18.630000 5.694000 1 .953000 0.670200 0.216600 P 1 1 .00 1 .953000 P 1 1 .00 0.670200 P 1 1 .00 0.216600 D 1 1 .00 5.014000 D 1 1 .00 0.000095 0.000738 0.003858 0.015926 0.054289 0.149513 0.308252 0.394853 0.21 1031 0.017151 -0.002015 0.000869 -0.000022 -0.0001 72 -0.000891 -0.003748 -0.012862 -0.038061 -0.086239 -0.1 55865 -0.1 1 0914 0.298761 0.585013 0.271 159 1 .000000 1 .000000 1 .000000 0.006347 0.044204 0.168514 0.361 563 0.4421 78 0.243435 1 .000000 1 .000000 1 .000000 1 .000000 162 aug-cc-vaz F 0.000000 S 14 1.00 21 1 ,400.000000 31 ,660.000000 7,202.000000 2,040.000000 666.400000 242.000000 95.530000 40.230000 17.720000 8.005000 3.538000 1.458000 0.588700 0.232400 S 141.00 21 1 ,400.000000 31 ,660.000000 7,202.000000 2,040.000000 666.400000 242.000000 95.530000 40.230000 17.720000 8.005000 3.538000 1.458000 0.588700 0.232400 S 1 1.00 3.538000 S 1 1.00 1.458000 S 1 1.00 0.588700 S 1 1.00 0.232400 P 81.00 241.900000 57.170000 18.130000 6.624000 2.622000 1.057000 0.417600 0.157400 P 1 1.00 0.000026 0.000201 0.001056 0.004432 0.015766 0.0481 12 0.123232 0.251519 0.364525 0.279766 0.063545 0.001 1 1 1 0.001258 -0.000035 -0.000006 -0.000047 -0.000244 -0.001031 -0.003683 -0.01 1 513 -0.030663 -0.069572 -0.123992 -0.1 50214 0.016460 0.392550 0.532164 0.196524 1 .000000 1 .000000 1 .000000 1 .000000 0.001002 0.008054 0.038048 0.123779 0.266060 0.371796 0.332890 0.128491 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1 .725000 0.586000 3.562000 1 .148000 2.376000 0.085940 0.065680 0.207000 0.460000 0.924000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 163 'TI 6) C) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2.622000 1 .057000 0.41 7600 0.157400 7.760000 3.032000 1 .185000 0.463000 5.398000 2.078000 0.800000 4.338000 1.513000 2.995000 0.080600 0.055000 0.1 72000 0.331000 0.663000 1 .326000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 Aluminum aug-cc-pvdz Al 0.000000 8 12 1 .00 64,1 50.000000 9,617.000000 2.189.000000 620.500000 202.700000 73.1 50000 28.550000 1 1.770000 3.300000 1 .1 73000 0.175200 0.064730 S 12 1 .00 64,1 50.000000 9,617.000000 2,189.000000 620.500000 202.700000 73.150000 28.550000 1 1.770000 3.300000 1 .1 73000 0.175200 0.064730 S 12 1 .00 64,1 50.000000 9,617.000000 2,189.000000 620.500000 202.700000 73.1 50000 28.550000 1 1.770000 3.300000 1 .173000 0.1 75200 0.064730 S 1 1 .00 0.064730 P 8 1 .00 258.800000 60.890000 1 9.140000 6.881000 2.574000 0.957200 0.000290 0.002251 0.011646 0.046738 0.146299 0.330283 0.415861 0.189253 0.011589 -0.001284 0.000426 -0.000199 -0.000076 -0.000582 -0.003081 -0.01231 1 -0.041978 -0.103371 -0.1 96308 -0.083000 0.541040 0.578796 0.028815 -0.009538 0.000018 0.0001 34 0.000712 0.002843 0.009768 0.0241 85 0.047499 0.020362 -0.1 58788 -0.31 1694 0.620147 0.520943 1 .000000 0.004068 0.030682 0.129149 0.320831 0.453815 0.275066 164 aug-cc-pvtz AI 0.000000 S 1 5 1 .00 205,500.000000 30,780.000000 7,006.000000 1,985.000000 649.1 00000 235.000000 91 .620000 37.670000 1 5.910000 5.850000 2.542000 1 .057000 0.2931 00 0.145500 0.056500 S 15 1 .00 205,500.000000 30,780.000000 7,006.000000 1 ,985.000000 649.1 00000 235.000000 91 .620000 37.670000 15.910000 5.850000 2.542000 1 .057000 0.293100 0.145500 0.056500 S 1 5 1 .00 205,500.000000 30,780.000000 7,006.000000 1 985000000 649.1 00000 235.000000 91 .620000 37.670000 1 5.910000 5.850000 2.542000 1 .057000 0.2931 00 0.145500 0.056500 0.000068 0.000527 0.002762 0.01 1473 0.039819 0.1 15040 0.260887 0.396386 0.284597 0.044458 -0.004898 0.00261 3 -0.001 089 0.000722 -0.000178 -0.000018 -0.000137 -0.000719 -0.003011 -0.010601 -0.032135 -0.080316 -0.156794 -0. 168376 0.126879 0.561494 0.436613 0.035729 -0.01 1456 0.002202 0.000004 0.000032 0.000166 0.000695 0.002455 0.007446 0.01 8825 0.037277 0.041 950 -0.035438 -0. 1 751 32 -0.276203 0.1 08729 0.652809 0.394587 8 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00 0.209900 0.059860 258.800000 60.890000 19.140000 6.881000 2.574000 0.957200 0.209900 0.059860 0.059860 0.189000 0.023100 0.015300 0.053500 0.019081 -0.003128 -0.000748 -0.005458 -0.024537 -0.058214 -0.098376 -0.026006 0.464020 0.648870 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 165 S S p p U U 13 TI 1 1.00 1 1.00 9 1.00 9 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00 0.293100 0.056500 444.400000 1 05.1 00000 33.470000 12.330000 4.869000 1 .961 000 0.783400 0.1 88800 0.055570 444.400000 1 05.100000 33.470000 1 2.330000 4.869000 1 .961 000 0.783400 0.1 88800 0.055570 0.783400 0.055570 0.1 09000 0.333000 0.244000 0.0221 00 0.014600 0.035600 0.085800 1 .000000 1 .000000 0.001626 0.013069 0.061234 0.187870 0.360452 0.408454 0.188640 0.009765 -0.001151 -0.000286 -0.002423 -0.01 0866 -0.036431 -0.0641 07 -0.097224 0.01 4744 0.503448 0.597984 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 Aluminum aug-cc-pvtz Al 0.000000 S 16 1 .00 419,600.000000 62,830.000000 14,290.000000 4,038.000000 1 ,312.000000 470.500000 1 81 .800000 74.460000 31 .900000 1 3.960000 5.1 80000 2.265000 0.966400 0.244700 0.1 18400 0.050210 S 16 1 .00 419,600.000000 62,830.000000 14,290.000000 4,038.000000 1 ,312.000000 470.500000 1 81 .800000 74.460000 31 .900000 13.960000 5.180000 2.265000 0.966400 0.244700 0.1 18400 0.050210 8 16 1 .00 419,600.000000 62,830.000000 14,290.000000 4,038.000000 1 ,312.000000 470.500000 181 .800000 74.460000 31 .900000 1 3.960000 5.180000 2.265000 0.966400 0.000028 0.000216 0.001 138 0.004796 0.017239 0.053807 0.141326 0.289268 0.384825 0.232852 0.029333 -0.003006 0.001667 -0.000606 0.000431 -0.000123 -0.000007 -0.000056 -0.000297 -0.001249 -0.004551 -0.014439 -0.040346 -0.092262 -0.164510 -0.141296 0.195365 0.572475 0.374041 0.023412 -0.009052 0.0021 12 0.000002 0.000013 0.000069 0.000288 0.001 053 0.003339 0.009392 0.021605 0.039587 0.034918 -0.052842 -0.191876 -0.2541 15 166 aug-cc-pqu Al ' 0.000000 8 20 1 .00 3,269,000.000000 489,400.000000 1 1 1 ,400.000000 31 ,560.000000 1 0,320.000000 3,731 .000000 1 ,456.000000 604.1 00000 263.500000 1 19.800000 56.320000 27.1 90000 1 3.260000 6.052000 2.981 000 1 .476000 0.733400 0.244700 0.1 08800 0.046720 S 20 1 .00 3 269,000.000000 489,400.000000 1 1 1 ,400.000000 31 ,560.000000 1 0,320.000000 3,731 .000000 1 ,456.000000 604.1 00000 263.500000 1 19.800000 56.320000 27.1 90000 1 3.260000 6.052000 2.981 000 1 .476000 0.733400 0.244700 0.1 06800 0.046720 8 20 1 .00 3 269,000.000000 489,400.000000 1 1 1 ,400.000000 31 ,560.000000 1 0,320.000000 0.000002 0.00001 7 0.000088 0.000369 0.001 339 0.004356 0.01 2896 0.034820 0.084353 0.1 75907 0.292091 0.32820 0.1 86927 0.031 043 -0.000509 0.001488 -0.000278 0.0001 19 -0.000066 0.00001 8 -0.000001 -0.000004 -0.000023 -0.000096 -0.000348 -0.001 138 -0.003387 -0.00931 5 -0.023302 -0.052349 -0.099950 -0.1 50560 -0.1 1 9121 0.1 08091 0.41 1 129 0.45721 4 0.1 75938 0.007706 -0.001662 0.000445 0.000000 0.000001 0.000005 0.000022 0.000081 p 1 1.00 1 1.00 1 1.00 11 1.00 0.244700 0.118400 0.050210 0.244700 0.118400 0.050210 891 .300000 21 1 .300000 11 1.00 68.280000 25.700000 1 0.630000 4.602000 2 .01 5000 0.870600 0.297200 0.1 10000 0.039890 891 .300000 21 1 .300000 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00 68.280000 25.700000 10.630000 4.602000 2.01 5000 0.870600 0.297200 0.1 10000 0.039890 0.297200 0.1 10000 0.039890 0.080400 0.1 99000 0.494000 0.1 54000 0.401000 0.357000 0.275070 0.604743 0.287629 1 .000000 1 .000000 1 .000000 0.000492 0.0041 58 0.021254 0.076406 0.194277 0.334428 0.375026 0.204041 0.021374 -0.002021 0.00081 7 -0.000089 -0.000746 -0.003870 -0.013935 -0.036686 -0.062780 -0.078960 -0.028859 0.238256 0.551 363 0.354385 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 167 p p 3,731 .000000 1 ,456.000000 604.1 00000 263.500000 1 19.800000 56.320000 27. 1 90000 1 3.260000 1 1.00 1 1.00 1 1.00 1 1.00 12 1.00 6.052000 2.981000 1 .476000 0.733400 0.244700 0.108800 0.046720 0.733400 0.244700 0.1 08800 0.046720 1 .461 .000000 346.200000 1 12.200000 12 1.00 42.51 0000 1 7.720000 7.852000 3.571 000 1 .637000 0.738200 0.257700 0.097730 0.036900 1 ,461.000000 346.200000 1 12.200000 1 1.00 42.51 0000 1 7.720000 7.852000 3.571000 1 .637000 0.738200 0.257700 0.097730 0.036900 0.738200 0.000263 0.000784 0.002150 0.005420 0.012169 0.023682 0.036094 0.030328 -0.030903 -0.1 1 9126 -0.21 1 145 -0.157944 0.339038 0.613097 0.235168 1 .000000 1 .000000 1 .000000 1 .000000 0.000209 0.001810 0.009734 0.037827 0.1 10898 0.234295 0.345245 0.331430 0.147064 0.012141 -0.000872 0.000438 -0.000037 -0.000329 -0.001 743 -0.006948 -0.020281 -0.044866 -0.064328 -0.075267 0.000616 0.28781 9 0.543030 0. 301 865 1 .000000 1.00 1.00 1.00 1.00 1.00 0.018300 0.012100 0.028200 0.058200 0.153000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 168 G) G) I 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.257700 0.097730 0.036900 1.317000 0.526000 0.210000 0.084000 0.1 30000 0.258000 0.513000 0.252000 0.543000 0.446000 0.017700 0.011500 0.029400 0.050900 0.106900 0.227000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1.000000 1 .000000 1 .000000 Silicon aug-cc-pvdz Si 0 S 12 1 .00 78,860.000000 1 1 ,820.000000 2,692.000000 763.400000 249.600000 90.280000 35.290000 1 4.51 0000 4.053000 1 .482000 0.251700 0.092430 S 12 1 .00 78,860.000000 1 1 ,820.000000 2,692.000000 763.400000 249.600000 90.280000 35.290000 14.51 0000 4.053000 1 .482000 0.251 700 0.092430 S 12 1 .00 78860000000 1 1 ,820.000000 2,692.000000 763.400000 249.600000 90.280000 35.290000 14.510000 4.053000 1 .482000 0.251 700 0.092430 S 1 1 .00 0.092430 P 8 1 .00 31 5.900000 74.420000 23.480000 8.488000 3.21 7000 1 .229000 0.000270 0.002097 0.010851 0.043675 0.137653 0.316644 0.418581 0.210212 0.014495 -0.002036 0.000624 -0.000283 -0.000072 -0.000555 -0.002938 -0.01 1769 -0.040291 -0.1 00609 -0.1 96528 -0.1 02382 0.5271 90 0.593251 0.033265 -0.009737 0.00001 9 0.000142 0.000752 0.003023 0.01 0368 0.026256 0.052399 0.029096 -0.1 78003 -0.346874 0.623020 0.537712 1 .000000 0.003927 0.029881 0.127212 0.320943 0.455429 0.268563 169 aug-cc-pvtz Si 0 S 1 5 1 .00 254,900.000000 38,190.000000 8,690.000000 2,462.000000 804.800000 291 .300000 1 1 3.600000 46.750000 1 9.820000 7.708000 3.340000 1 .402000 0.438700 0.207000 0.079440 S 1 5 1 .00 254,900.000000 38,1 90.000000 8,690.000000 2,462.000000 804.800000 291 .300000 1 13.600000 46.750000 1 9.820000 7.708000 3.340000 1 .402000 0.438700 0.207000 0.079440 S 1 5 1 .00 254,900.000000 38,1 90.000000 8,690.000000 2,462.000000 804.800000 291 .300000 1 1 3.600000 46.750000 1 9.820000 7.708000 3.340000 1 .402000 0.438700 0.207000 0.079440 0.000063 0.000486 0.002545 0.01 0587 0.036879 0.1 07479 0.247936 0.390927 0.302026 0.055924 -0.004024 0.002580 -0.001 038 0.000608 -0.0001 54 -0.00001 7 -0.0001 29 -0.000679 -0.002841 -0.01 0055 -0.030577 -0.077726 -0.1 54236 -0.1 80368 0.079822 0.547441 0.4801 19 0.047485 -0.01 0700 0.0021 99 0.000004 0.000033 0.000174 0.000728 0.002583 0.007864 0.020216 0.040732 0.049936 -0.024940 -0.190350 —0.318350 0.094804 0.681 180 0.395672 8 1.00 0.296400 0.087660 315.900000 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00 74.420000 23.480000 8.488000 3.21 7000 1 .229000 0.296400 0.087680 0.087680 0.275000 0.033200 0.025000 0.062300 0.018834 -0.002624 -0.000858 -0.006303 -0.028826 -0.069456 -0.1 19493 -0.019958 0.510268 0.600382 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 170 S S p p U U '0 'TI 1 1.00 1 1.00 9 1.00 0.438700 0.079440 481 .500000 1 13.900000 9 1.00 36.230000 1 3.340000 5.252000 2.120000 0.8561 00 0.252800 0.078890 481 .500000 1 13.900000 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00 36.230000 1 3.340000 5.252000 2.1 20000 0 .8561 00 0.252800 0.078890 0.8561 00 0.078890 0.1 59000 0.481 000 0.336000 0.033000 0.023700 0.055600 ' 0.1 25000 1 .000000 1 .000000 0.001920 0.01 5355 0.071399 0.21 3052 0.390354 0.393721 0.1 32565 0.003956 0.000332 -0.000405 -0.003359 -0.01 5286 -0.048922 -0.085501 -0.1 121 37 0.061 827 0.551 91 9 0.523492 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 Silicon aug-cc-pqu Si 0 S 16 1 .00 513,000.000000 76,820.000000 17,470.000000 4,935.000000 1 ,602.000000 574.1 00000 221 .500000 90.540000 38.740000 16.950000 6.452000 2.874000 1 .250000 0.359900 0.169900 0.070660 S 16 1 .00 513,000.000000 76,820.000000 1 7,470.000000 4,935.000000 1 ,602.000000 574.1 00000 221 .500000 90.540000 38.740000 16.950000 6.452000 2.874000 1 .250000 0.359900 0.169900 0.070660 S 16 1 .00 51 3,000.000000 76,820.000000 17,470.000000 4,935.000000 1 ,602.000000 574.1 00000 221 .500000 90.540000 38.740000 16.950000 6.452000 2.874000 1 .250000 0.000026 0.000203 0.001067 0.004506 0.016236 0.050891 0.135155 0.281292 0.385336 0.245651 0.034315 -0.003349 0.001876 -0.000693 0.000438 -0.000123 -0.000007 -0.000054 -0.000285 -0.001202 -0.004384 -0.01 3978 -0.039352 -0.091428 -0.165609 -0.1 52505 0.168524 0.569284 0.398056 0.0291 51 -0.008490 0.001996 0.000002 0.000014 0.000073 0.000308 0.001126 0.003584 0.010173 0.023752 0.044348 0.041904 -0.050250 «0.216578 -0.286448 171 aug-cc-vaz Si 0 S 20 1.00 3,948,000.000000 591 ,100.000000 134,500.000000 38,120.000000 12,460.000000 4,504.000000 1 ,758.000000 729.1 00000 31 8.000000 144.600000 67.970000 32.820000 16.030000 7.396000 3.661000 1 .823000 0.914700 0.339300 0.1 50000 0.064360 8 20 1 .00 3948,000.000000 591 ,1 00.000000 134,500.000000 38,120.000000 12,460.000000 4,504.000000 1 ,756.000000 729.1 00000 31 6.000000 144.600000 67.970000 32.820000 16.030000 7.396000 3.661000 1 .823000 0.914700 0.339300 0.1 50000 0.064380 S 20 1 .00 3948,000.000000 591 ,100.000000 134,500.000000 38,120.000000 12,460.000000 0.000002 0.000016 0.000083 0.000351 0.001277 0.004152 0.012303 0.033310 0.080985 0.170290 0.286879 0.330340 0.196602 0.035454 -0.000535 0.001615 -0.000373 0.000146 -0.000079 0.000019 -0.000001 -0.000004 -0.000022 -0.000094 -0.000340 -0.001 11 1 -0.003309 -0.0091 16 -0.022879 -0.051 712 -0.099909 -0. 1 52747 -0.1 27508 0.094696 0.41 4036 0.467934 0.1 73927 0.008439 -0.000998 0.000362 0.000000 0.000001 0.000006 0.000024 0.000087 P 1 1.00 1 1.00 1 1.00 11 1.00 0.359900 0.169900 0.070660 0.359900 0.169900 0.070660 1 ,122.000000 266.000000 11 1.00 85.920000 32.330000 1 3.370000 5.800000 2.559000 1 .124000 0.398800 0.1 53300 0.057280 1 ,122.000000 266.000000 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00 85.920000 32.330000 1 3.370000 5.800000 2.559000 1 .124000 0.398800 0.1 53300 0.057280 0.398800 0.1 53300 0.057280 0.120000 0.302000 0.760000 0.212000 0.541000 0.461000 0.263256 0.634900 0.290832 1 .000000 1 .000000 1 .000000 0.000448 0.003816 0.01981 1 0.072702 0.189839 0.335672 0.379365 0.201 193 0.020852 -0.001703 0.000750 -0.000096 -0.000812 -0.004301 -0.01 5750 -0.042954 -0.075257 -0.097145 -0.022751 0.291 988 0.550670 0.29761 8 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 172 p p 4,504.000000 1 ,758.000000 729.1 00000 31 8.000000 144.600000 67.970000 32.820000 16.030000 7.396000 3.661000 1 .823000 0.914700 0.339300 0.1 50000 0.064380 1 1 .00 0.914700 1 1 .00 0.339300 1 1 .00 0.150000 1 1 .00 0.064380 12 1 .00 1 ,780.000000 421 .600000 1 36.700000 51 .81 0000 21 .600000 9.563000 4.350000 2.006000 0.920500 0.350000 0.1 381 00 0.053380 12 1 .00 1 ,780.000000 421 .800000 1 36.700000 51 .810000 21 .600000 9.563000 4.350000 2.006000 0.920500 0.350000 0.1 381 00 0.053380 1 1 .00 0.920500 0.000284 0.000850 0.002335 0.005905 0.01 3346 0.026289 0.040743 0.036148 -0.030392 -0.135961 -0.250144 -0.158050 0.369655 0.61 7718 0.222514 1 .000000 1 .000000 1 .000000 1 .000000 0.000201 0.001749 0.009481 0.037231 0.1 10763 0.237933 0.353691 0.328839 0.132373 0.010330 -0.0001 50 0.000266 -0.000043 -0.000377 -0.002022 -0.008128 -0.024227 -0.054383 ~0.079905 -0.088896 0.01 8400 0.335096 0.532288 0.254374 1 .000000 1.00 1.00 1.00 1.00 1.00 0.027500 0.020000 0.043500 0.084600 0.212000 1 .000000 1 .000000 1.000000 1 .000000 1 .000000 173 U U U U I O 0 (D 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.350000 0.138100 0.053380 0.126000 0.321000 0.817000 2.082000 0.169000 0.341000 0.688000 0.320000 0.705000 0.583000 0.026000 0.019200 0.046800 0.073500 0.151000 0.323000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 Phosphorous aug-cc-pvdz P 0.000000 S 12 1 .00 94,840.000000 14,220.000000 3,236.000000 91 7.1 00000 299.500000 1 08.1 00000 42.1 80000 17.280000 4.858000 1 .81 8000 0.337200 0.1 23200 S 12 1 .00 94,840.000000 14,220.000000 3,236.000000 917.1 00000 299.500000 108.1 00000 42.1 80000 17.280000 4.858000 1 .818000 0.337200 0.123200 S 12 1 .00 94,840.000000 14,220.000000 3,236.000000 917.1 00000 299.500000 108.1 00000 42.1 80000 1 7.280000 4.858000 1 .818000 0.337200 0.123200 S 1 1 .00 0.123200 P 8 1 .00 370.500000 87.330000 27.590000 10.000000 3.825000 1 .494000 0.000256 0.001982 0.010276 0.041482 0.131984 0.308662 0.420647 0.222878 0.016404 -0.002543 0.000748 -0.000331 -0.000070 -0.000535 -0.002837 -0.01 1398 -0.039293 -0.099636 -0.197983 -0.1 14860 0.51 8595 0.601 847 0.036861 -0.009708 0.000019 0.000147 0.000778 0.003145 0.010820 0.027996 0.056398 0.035819 -0.193387 -0.372097 0.624246 0.551721 1 .000000 0.003950 0.030249 0.129554 0.327594 0.456992 0.253086 174 aug-cc-pvtz P 0.000000 S 1 5 1 .00 312,400.000000 46,800.000000 1 0,650.000000 3,018.000000 986.800000 357.400000 1 39.600000 57.630000 24.600000 1 0.120000 4.283000 1 .805000 0.61 5800 0.278200 0.105500 8 1 5 1 .00 312,400.000000 46,800.000000 1 0,650.000000 3,018.000000 986.800000 357.400000 1 39.600000 57.630000 24.600000 1 0.120000 4.263000 1 .805000 0.615800 0.278200 0.105500 S 1 5 1 .00 312,400.000000 46,800.000000 10,650.000000 3,018.000000 966.800000 357.400000 1 39.600000 57.630000 24.600000 1 0.120000 4.283000 1 .805000 0.61 5800 0.278200 0.105500 0.000058 0.000448 0.002349 0.009783 0.034147 0.100204 0.234372 0.382434 0.31 8088 0.070779 -0.001818 0.002162 -0.000835 0.000432 -0.0001 14 -0.000016 -0.000122 -0.000640 -0.002674 -0.009498 -0.028935 -0.074512 -0. 149938 -0.189467 0.036327 0.528816 0.51 91 1 5 0.060555 -0.009257 0.002104 0.000004 0.000033 0.000176 0.000734 0.002618 0.007979 0.020794 0.042445 0.056344 -0.012736 -0.196495 -0.353555 0.074141 0.700912 0.404739 8 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00 0.392100 0.118600 370.500000 87.330000 27.590000 10.000000 3.825000 1 .494000 0.3921 00 0.1 18600 0.1 18600 0.373000 0.041 700 0.034300 0.113000 0.016880 -0.002071 -0.000960 -0.0071 12 -0.032712 -0.079578 -0.135016 -0.009106 0.537802 0.569066 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 175 S S p p 1 1.00 1 1.00 9 1.00 9 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00 0.615800 0.105500 504.900000 1 19.400000 37.960000 1 3.950000 5.457000 2.1 77000 0.801 000 0.287700 0.097140 504.900000 1 19.400000 37.960000 1 3.950000 5.457000 2.1 77000 0.601 000 0.287700 0.0971 40 0.801 000 0.0971 40 0.21 6000 0.652000 0.452000 0.040900 0.030700 0.077500 0.1 65000 1 .000000 1 .000000 0.002337 0.018541 0.084969 0.24461 5 0.422766 0.368439 0.077273 -0.003790 0.001 599 -0.000555 -0.004459 -0.020635 -0.061 769 -0.1 08924 -0.1 05599 0.1 53483 0.576981 0.422439 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 Phosphorous aug-cc-pqu 0.000000 S 1 6 1 .00 615,200.000000 92,120.000000 20,950.000000 5,920. 000000 1 ,922.000000 688.000000 265.000000 1 08.200000 46.220000 20.230000 7.859000 3. 547000 1 .564000 0.488800 0.226600 0.09331 0 S 16 1 .00 615,200.000000 92,1 20.000000 20,950.000000 5,920.000000 1 ,922.000000 688.000000 265.000000 1 08.200000 46.220000 20.230000 7.859000 3.547000 1 .564000 0.488800 0.226600 0.09331 0 S 16 1 .00 61 5,200. 000000 92,120.000000 20,950.000000 5,920. 000000 1 ,922.000000 688.000000 265.000000 1 08.200000 46.220000 20.230000 7.859000 3.547000 1 .564000 0.000025 0.000192 0.001012 0.004273 0.015416 0.048598 0.130060 0.274514 0.385402 0.255934 0.039124 -0.003680 0.002082 -0.000788 0.000454 -0.000127 -0.000007 -0.000052 -0.000275 -0.001 163 -0.004243 -0.01361 1 -0.03851 1 -0.090664 -0.166584 -0.161447 0.146781 0.566682 0.416433 0.034364 -0.007806 0.001923 0.000002 0.000014 0.000076 0.000319 0.001 169 0.003743 0.010682 0.025266 0.047928 0.047710 -0.046653 -0.234968 -0.31 1337 176 aug-cc-vaz P 0.000000 S 20 1 .00 4 ,666,000.000000 698,600.000000 159,000.000000 45,040.000000 14,720.000000 5,323.000000 2 ,076.000000 861 .1 00000 375.700000 1 70.800000 80.290000 38.770000 1 8.930000 8.796000 4.358000 2.1 74000 1 .095000 0.440000 0.1 94500 0.083760 S 20 1 .00 4,666,000.000000 698,600.000000 159,000.000000 45,040.000000 14,720.000000 5,323.000000 2,076.000000 861 .1 00000 375.700000 1 70.800000 80.290000 38.770000 18.930000 8.796000 4.358000 2.1 74000 1 .095000 0.440000 0.1 94500 0.083760 8 20 1 .00 4,666,000.000000 698,600.000000 159,000.000000 45,040.000000 14,720.000000 0.000002 0.00001 5 0.000080 0.000340 0.001233 0.004013 0.01 1912 0.032251 0.078664 0.166458 0.283039 0.331942 0.203352 0.038318 —0.000385 0.001587 -0.000413 0.000153 -0.000083 0.000018 -0.000001 -0.000004 -0.000022 -0.000092 -0.000335 -0.001 095 -0.003268 -0.009000 -0.022653 -0.051 465 -0.1 00186 -0.1 55075 -0.1 33818 0.087636 0.422581 0.474899 0.1 65002 0.008469 -0.000292 0.000285 0.000000 0.000001 0.000006 0.000025 0.000092 p 0.488800 0.226600 0.093310 1 1 .00 0.488800 1 1 .00 0.226600 1 1 .00 0.09331 0 1 1 1 .00 1 ,367.000000 324.000000 1 04.600000 39.370000 16.260000 7.056000 3.130000 1 .394000 0.517900 0.203200 0.076980 1 1 1 .00 1 ,367.000000 324.000000 104.600000 39.370000 16.260000 7.056000 3.130000 1 .394000 0.517900 0.203200 0.076980 1 1 .00 0.517900 1 1.00 0.203200 1 1.00 0.076980 1 1.00 0.165000 1 1.00 0.413000 1 1.00 1 .036000 1 1.00 0.280000 1 1.00 0.703000 1 1.00 0.597000 0.257109 0.653655 0.294212 1 .000000 1 .000000 1 .000000 0.000421 0.003610 0.018922 0.070556 0.188157 0.338709 0.381943 0.195261 0.019942 -0.001351 0.000517 -0.000101 -0.000855 -0.004571 -0.017033 -0.047520 -0.085279 -0.109676 -0.0161 1 8 0.322893 0.545738 0.268538 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 177 5.323.000000 2,076.000000 861 .100000 375.700000 1 70.800000 80.290000 38.770000 18.930000 8.796000 4.358000 2.174000 1 .095000 0.440000 0.194500 0.083760 S 1 1 .00 1 .095000 S 1 1 .00 0.440000 S 1 1 .00 0.194500 S 1 1 .00 0.063760 P 12 1 .00 2,010.000000 476.300000 154.400000 58.510000 24.400000 10.800000 4.913000 2.269000 1 .043000 0.431300 0.176700 0.070090 P 12 1 .00 2,010.000000 476.300000 154.400000 58.510000 24.400000 10.800000 4.913000 2.269000 1 .043000 0.431300 0.176700 0.070090 P 1 1 .00 1 .043000 0.000301 0.000900 0.002474 0.006266 0.014260 0.028277 0.044512 0.040722 -0.030191 -0.152894 -0.28241 1 -0.148522 0.393563 0.617327 0.214612 1 .000000 1 .000000 1 .000000 1 .000000 0.000216 0.001875 0.010174 0.039986 0.118563 0.251816 0.366565 0.316177 0.104700 0.006099 0.000502 -0.000030 -0.000051 -0.000448 -0.002423 -0.009698 -0.029097 -0.0641 73 -0.094507 -0.093470 0.052061 0.374624 0.509097 0.21 51 16 1 .000000 1.00 1.00 1.00 1.00 1.00 0.035400 0.027200 0.059400 0.109000 0.250000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 178 '0 U U U I 0 C) '0 (D 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1 .00 1.00 1.00 1.00 . 1.00 1.00 1.00 1.00 0.431300 0.176700 0.070090 0.1 66000 0.418000 1 .054000 2.656000 0.219000 0.450000 0.923000 0.412000 0.903000 0.745000 0.033500 0.025300 0.062400 0.095000 0.184000 ' 0.372000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 Sulfur aug-cc-pvdz S 0.000000 S 12 1 .00 110,800.000000 16,610.000000 3,781 .000000 1,071 .000000 349.800000 126.300000 49.260000 20.160000 5.720000 2.182000 0.432700 0.157000 S 12 1 .00 1 10,800.000000 16,610.000000 3,781.000000 1 ,071 .000000 349.800000 126.300000 49.260000 20.160000 5.720000 2.182000 0.432700 0.157000 S 12 1 .00 1 10,800.000000 16,610.000000 3,781 .000000 1 ,071 .000000 349.800000 126.300000 49.260000 20.160000 5.720000 2.182000 0.432700 0.157000 3 1 1 .00 0.157000 P 8 1 .00 399.700000 94.190000 29.750000 10.770000 4.1 19000 1 .625000 0.000248 0.001920 0.009962 0.040298 0.128604 0.303480 0.421432 0.230781 0.017897 -0.002975 0.000850 -0.000368 -0.000069 -0.000528 -0.002797 -0.01 1265 -0.038883 -0.099503 -0.199740 -0.123360 0.513194 0.607120 0.039675 -0.009469 0.000020 0.000153 0.000810 0.003290 0.01 1297 0.029639 0.059985 0.041325 -0.207474 -0.392889 0.632840 0.556924 1 .000000 0.004475 0.034171 0.144250 0.353928 0.459085 0.206383 179 aug-cc-pvtz S 0.000000 S 15 1.00 374,100.000000 56,050.000000 12,760.000000 3,615.000000 1 ,183.000000 428.800000 1 67.800000 69.470000 29.840000 12.720000 5.244000 2.21 9000 0.776700 0.349000 0.1 32200 S 1 5 1 .00 374,1 00.000000 56,050.000000 12,760.000000 3,61 5.000000 1 ,183.000000 428.800000 167.800000 69.470000 29.840000 12.720000 5.244000 2.21 9000 0.776700 0.349000 0.1 32200 S 1 5 1 .00 374,1 00.000000 56,050.000000 12,760.000000 3,61 5.000000 1 ,183.000000 428.800000 167.800000 69.470000 29.840000 12.720000 5.244000 2.21 9000 0.776700 0.349000 0.1 32200 0.000054 0.000421 0.002207 0.0091 93 0.0321 12 0.094668 0.223630 0.374393 0.3291 08 0.084704 0.000441 0.001648 -0.000622 0.000301 -0.000084 -0.00001 5 -0.0001 16 -0.000612 -0.002554 -0.009087 -0.027705 -0.072002 -0.146439 -0.1 951 50 0.008192 0.516601 0.5421 78 0.068843 -0.0091 81 0.002268 0.000004 0.000034 0.0001 78 0.000741 0.002646 0.008075 0.021228 0.043832 0.061272 -0.00361 5 -0.204510 -0.381 871 0.082684 0.714147 0.393791 8 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00 0.472600 0.140700 399.700000 94.1 90000 29.750000 10.770000 4.1 19000 1 .625000 0.472600 0.140700 0.140700 0.479000 0.050700 0.039900 0.1 52000 0.010214 -0.000060 -0.001 163 -0.008657 -0.039089 -0.093463 -0.147994 0.030190 0.561573 0.534776 1 .000000 1.000000 1 .000000 1 .000000 1 .000000 180 S S p P 1 1.00 1 1.00 9 1.00 9 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00 0.776700 0.1 32200 574.400000 135.800000 43.190000 15.870000 6.208000 2.483000 0.868800 0.32900 0.1 09800 574.400000 1 35.800000 43.1 90000 1 5.870000 6.208000 2.483000 0.868800 0.322900 0.1 09800 0.868800 0.1 09800 0.269000 0.81 9000 0.557000 0.049700 0.0351 00 0.1 01 000 0.216000 1 .000000 1 .000000 0.002423 0.01 9280 0.088540 0.254654 0.433984 0.354953 0.061894 -0.005030 0.002098 -0.000620 -0.004939 -0.023265 -0.068520 -0. 1 23896 -0.096950 0.22821 5 0.569394 0.366302 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 Sulfur aug-cc-pqu 0.000000 S 16 1 .00 727,800.000000 109,000.000000 24,800.000000 7,014.000000 2,278.000000 81 4.700000 31 3.400000 1 27.700000 54.480000 23.850000 9.428000 4.290000 1 .909000 0.627000 0.287300 0.1 17200 S 16 1 .00 727,800.000000 1 09,000.000000 24,800.000000 7,014.000000 2,278.000000 814.700000 31 3.400000 1 27.700000 54.480000 23.850000 9.428000 4.290000 1 .909000 0.627000 0.287300 0.1 17200 S 16 1 .00 727,800.000000 1 09,000.000000 24,800.000000 7,014.000000 2,278.000000 81 4.700000 31 3.400000 1 27.700000 54.480000 23.850000 9.428000 4.290000 1 .909000 0.000024 0.000183 0.000964 0.004065 0.014697 0.046508 0.125508 0.268433 0.384809 0.265372 0.043733 -0.003788 0.002181 -0.000837 0.000448 -0.000125 -0.000007 -0.000051 -0.000267 -0.001 126 -0.0041 12 -0.01 3245 -0.037700 -0.089855 -0.167098 -0.169354 0.127824 0.564862 0.431767 0.038940 -0.007303 0.001 923 0.000002 0.00001 5 0.000078 0.000327 0.001 197 0.003848 0.01 1054 0.026465 0.050877 0.053003 -0.042552 -0.250853 -0.3331 52 181 aug-cc-vaz S 0.000000 8 20 1 .00 5,481 ,000.000000 820,600.000000 186,700.000000 52,880.000000 17,250.000000 6,226.000000 2,429.000000 1 007000000 439.500000 1 99.800000 93.920000 45.340000 22.1 50000 1 0.340000 5.1 1 9000 2.553000 1 .282000 0.545000 0.241 100 0.1 03500 S 20 1 .00 5,481 ,000.000000 820,600.000000 186,700.000000 52,880.000000 17,250.000000 ‘ 6,226.000000 2,429.000000 1 ,007.000000 439.500000 199.800000 93.920000 45.340000 22.1 50000 10.340000 5.1 19000 2.553000 1 .282000 0.545000 0.241 100 0.1 03500 S 20 1 .00 5,481 ,000.000000 820,600.000000 1 86,700.000000 52,880.000000 1 7,250.000000 0.000002 0.000015 0.000078 0.000327 0.001 194 0.003884 0.01 1534 0.031275 0.076439 0.162700 0.279328 0.333145 0.209836 0.041597 -0.000451 0.001689 -0.000517 0.000169 -0.000100 0.000021 -0.000001 -0.000004 -0.000021 -0.000090 -0.000330 -0.001 078 -0.00321 9 -0.008872 -0.022377 -0.051 058 -0.1 00225 -0.1 56795 -0.1 39748 0.081 006 0.430883 0.481 688 0.1 56662 0.007888 0.000394 0.000224 0.000000 0.000001 0.000006 0.000026 0.000096 p 0.627000 0.287300 0.1 17200 1 1 .00 0.627000 1 1 .00 0.287300 1 1 .00 0.1 17200 1 1 1 .00 1 ,546.000000 366.400000 1 18.400000 44.530000 18.380000 7.965000 3.541000 1 .591000 0.620500 0.242000 0.090140 1 1 1 .00 1 ,546.000000 366.400000 1 18.400000 44.530000 18.380000 7.965000 3.541000 1 .591000 0.620500 0.242000 0.090140 1 1 .00 0.620500 1 1.00 0.242000 1 1.00 0.090140 1 1 .00 0.203000 1 1.00 0.504000 1 1.00 1 .250000 1 1.00 0.335000 1 1.00 0.869000 1 1.00 0.683000 0.263796 0.666849 0.288451 1 .000000 1 .000000 1 .000000 0.000441 0.003776 0.019836 0.074206 0.197327 0.351851 0.378687 0.170931 0.015159 0.000067 0.000405 -0.0001 13 -0.000959 -0.0051 35 -0.01 9264 -0.053598 -0.096033 -0.1 181 83 0.009232 0.358841 0.52581 8 0.248872 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 182 6,226.000000 2,429.000000 1,007.000000 439.500000 1 99.800000 93.920000 45.340000 22.1 50000 1 0.340000 5.1 19000 2.553000 1 .282000 0.545000 0.241 100 0.1 03500 S 1 1 .00 1 .282000 S 1 1 .00 0.545000 S 1 1 .00 0.241 100 S 1 1 .00 0.103500 P 12 1 .00 2,200.000000 521 .400000 169.000000 64.050000 26.720000 1 1.830000 5.378000 2.482000 1 .1 16000 0.484800 0.200600 0.079510 P 12 1 .00 2,200.000000 521 .400000 169.000000 64.050000 26.720000 1 1 .830000 5.378000 2.482000 1 .1 16000 0.484800 0.200600 0.079510 P 1 1 .00 1 .1 16000 0.000313 0.000936 0.002578 0.006541 0.014963 0.029894 0.047695 0.044956 -0.029301 ' -0.168916 -0.31 1014 -0.136491 0.423195 0.613888 0.200473 1 .000000 1 .000000 1 .000000 1 .000000 0.000239 0.002077 0.01 1236 0.044069 0.129168 0.269083 0.37861 1 0.296779 0.077966 0.002052 0.001436 ~0.000060 -0.000061 -0.000530 -0.002879 -0.01 1440 -0.034276 -0.073581 -0.1 07782 -0.087977 0.108261 0.407082 0.468994 0.1 84877 1 .000000 1.00 1.00 1.00 1.00 1.00 0.042800 0.031700 0.074800 0.140000 0.297000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 183 I C) G) "'1 (I) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.484800 0.200600 0.079510 0.205000 0.512000 1 .281000 3.203000 0.255000 0.529000 1 .096000 0.463000 1.071000 0.872000 0.042000 0.029400 0.079400 0.118800 0.220000 0.472000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 Chlorine aug-cc-pvdz Cl 0.000000 S 12 1 .00 127,900.000000 19,170.000000 4,363.000000 1 236000000 403.600000 145.700000 56.810000 23.230000 6.644000 2.575000 0.537100 0.193800 S 12 1 .00 127,900.000000 19,170.000000 4,363.000000 1 236000000 403.600000 145.700000 56.810000 23.230000 6.644000 2.575000 0.537100 0.193800 S 12 1 .00 127,900.000000 19,170.000000 4,363.000000 1 236000000 403.600000 145.700000 56.810000 23.230000 6.644000 2.575000 0.537100 0.193800 S 1 1 .00 0.193800 P 8 1 .00 417.600000 98.330000 31 .040000 1 1 .190000 4.249000 1 .624000 0.000241 0.001871 0.009708 0.039315 0.125932 0.299341 0.421886 0.237201 0.019153 -0.003348 0.000930 —0.000396 -0.000068 -0.000522 -0.002765 -0.01 1 154 -0.038592 -0.099485 -0.201392 -0.130313 0.509443 0.610725 0.042155 -0.009234 0.000021 0.000158 0.000834 0.003399 0.01 1674 0.030962 0.062953 0.046026 -0.219312 -0.408773 0.638465 0.562362 1 .000000 0.005260 0.039833 0.164655 0.387322 0.457072 0.151636 184 aug-cc-pvtz Cl 0.000000 8 1 5 1 .00 456,100.000000 68,330.000000 15,550.000000 4,405.000000 1 ,439.000000 520.400000 203.1 00000 83.960000 36.200000 1 5.830000 6.334000 2.694000 0.976800 0.431 300 0.162500 S 1 5 1 .00 456.1 00.000000 68,330.000000 1 5,550.000000 4,405.000000 1 ,439.000000 520.400000 203.1 00000 83.960000 36.200000 1 5.830000 6.334000 2.694000 0.976800 0.431 300 0.162500 8 1 5 1 .00 456,1 00.000000 68,330.000000 1 5,550.000000 4,405.000000 1 ,439.000000 520.400000 203.1 00000 83.960000 36.200000 1 5.830000 6.334000 2.694000 0.976800 0.431 300 0.162500 0.000049 0.000383 0.002009 0.008386 0.029470 0.087833 0.21 1473 0.365364 0.340884 0.1 021 33 0.0031 17 0.001058 -0.000376 0.0001 56 -0.000051 -0.000014 -0.0001 07 -0.000565 -0.002361 -0.008459 -0.025964 -0.068636 -0.141 874 -0.1 99319 -0.01 9566 0.499741 0.563736 0.079033 -0.008351 0.002325 0.000004 0.000032 0.0001 71 0.000714 0.002567 0.007886 0.021 087 0.044226 0.065167 0.006030 -0.206495 -0.405871 0.075956 0.725661 0.394423 8 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00 0.532200 0.162000 417.600000 98.330000 31 .040000 11 .190000 4.249000 1 .624000 0.532200 0.162000 0.162000 0.600000 0.060800 0.046600 0.1 96000 0.001816 0.001883 -0.001436 -0.010780 -0.047008 -0.1 1 1030 -0.153275 0.089461 0.579444 0.483272 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 185 S S P p 1 1.00 1 1.00 9 1.00 9 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00 0.976800 0.162500 663.300000 1 56.800000 49.980000 1 8.420000 7.240000 2.922000 1 .022000 0.381 800 0.1 301 00 663.300000 1 56.800000 49.980000 1 8.420000 7.240000 2.922000 1 .022000 0.381800 0.130100 1 .022000 0.130100 1 .046000 0.344000 0.706000 0.059100 0.041900 0.135000 0.312000 1 .000000 1 .000000 0.002404 0.019215 0.088510 0.256020 0.436927 0.350334 0.058550 -0.004584 0.002270 -0.000652 -0.0051 94 -0.024694 -0.07281 7 -0.1 34030 -0.094774 0.262289 0.564667 0.341 250 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 Chlorine aug-cc-pqu Cl 0.000000 S 1 6 1 .00 834,900.000000 125,000.000000 28,430.000000 8,033.000000 2,608.000000 933.900000 360.000000 147.000000 62.880000 27.600000 1 1 .080000 5.075000 2.278000 0.777500 0.352700 0.1431 00 S 16 1 .00 834,900.000000 125,000.000000 28,430.000000 8,033.000000 2,608.000000 933.900000 360.000000 1 47.000000 62.880000 27.600000 1 1 .060000 5.075000 2.278000 0.777500 0.352700 0.1431 00 S 16 1 .00 834,900.000000 125,000.000000 28,430.000000 8,033.000000 2,608.000000 933.900000 360.000000 147.000000 62.880000 27.600000 1 1 .080000 5.075000 2.278000 0.000023 0.000180 0.000948 0.004001 0.014463 0.045659 0.123248 0.264369 0.382989 0.270934 0.047140 -0.00371 8 0.002192 -0.000850 0.000425 -0.000120 -0.000007 -0.000050 -0.000266 -0.001 125 -0.004105 -0.01 31 99 -0.037534 -0.089723 -0.1 67671 -0.1 74763 0.1 14909 0.56361 8 0.441 606 0.042670 -0.006672 0.001 907 0.000002 0.000015 0.000081 0.000340 0.001246 0.003996 0.01 1475 0.027550 0.053292 0.057125 -0.039520 -0.264343 -0.349291 186 aug-cc-vaz CI 0.000000 S 20 1.00 6,410,000.000000 959600000000 218300000000 61 ,810.000000 20,140.000000 7,264.000000 2,832 .000000 1 ,175.000000 51 2.600000 233.000000 1 09.500000 52.860000 25.840000 12.1 70000 6.030000 3.012000 1 .51 1000 0.660400 0.292600 0.125400 S 20 1 .00 6,410,000.000000 959,600.000000 218,300.000000 61 ,810.000000 20,140.000000 7,264.000000 2 ,832.000000 1 ,175.000000 51 2.600000 233.000000 1 09.500000 52.860000 25.840000 1 2 .1 70000 6.030000 3.012000 1 .51 1000 0.660400 0.292600 0.125400 8 20 1 .00 6,410,000.000000 959,600.000000 218,300.000000 61 ,810.000000 20,140.000000 0.000002 0.000014 0.000074 0.000314 0.001146 0.003739 0.011095 0.030115 0.073915 0.158258 0.274753 0.334066 0.217589 0.045728 -0.000135 0.001639 -0.000522 0.000181 -0.000100 0.000019 -0.000001 -0.000004 -0.000021 -0.000088 -0.000322 -0.001 053 -0.0031 42 -0.008664 -0.021 935 -0.050258 -0.099541 -0.1 57647 -0. 1 46024 0.069223 0.43041 2 0.490802 0.1 58390 0.008399 0.000768 0.000227 0.000000 0.000001 0.000006 0.000027 0.000097 p 0.777500 0.352700 0.143100 1 1 .00 0.777500 1 1 .00 0.352700 1 1 .00 0.143100 1 1 1 .00 1 ,703.000000 403.600000 130.300000 49.050000 20.260000 8.787000 3.919000 1 .765000 0.720700 0.283900 0.106000 1 1 1 .00 1 ,703.000000 403.600000 130.300000 49.050000 20.260000 8.787000 3.919000 1 .765000 0.720700 0.283900 0.106000 1 1 .00 0.720700 1 1.00 0.283900 1 1.00 0.106000 1 1.00 0.254000 1 1.00 0.628000 1 1.00 1.551000 1 1.00 0.423000 1 1.00 1 .089000 1 1.00 0.827000 0.269671 0.676073 0.284679 1 .000000 1.000000 1 .000000 0.000474 0.004064 0.021336 0.079461 0.208927 0.364945 0.371725 0.146292 0.010791 0.001 170 0.000339 -0.000128 -0.001094 -0.005834 -0.021926 -0.060139 -0.106929 -0.122454 0.038362 0.385256 0.507265 0.22721 8 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 187 7,264.000000 2,832.000000 1 ,175.000000 51 2.600000 233.000000 1 09.500000 52.860000 25.840000 12.1 70000 6.030000 3.012000 1 .51 1000 0.660400 0.292600 0.125400 S 1 1 .00 1 .51 1000 S 1 1 .00 0.660400 S 1 1 .00 0.292600 S 1 1 .00 0.125400 P 12 1 .00 2.548.000000 603.700000 1 95.600000 74.1 50000 30.940000 1 3.690000 6.229000 2.878000 1 .282000 0.5641 00 0.234800 0.093120 P 12 1 .00 2,548.000000 603.700000 1 95.600000 74.1 50000 30.940000 1 3.690000 6.229000 2.878000 1 .282000 0.5641 00 0.234800 0.093120 P 1 1 .00 1 .282000 0.00031 8 0.000952 0.002624 0.006682 0.01 5360 0.030943 0.050064 0.048978 -0.026081 -0.1 78426 -0.332324 -0.132008 0.440556 0.61 1891 0.1 931 72 1 .000000 1 .000000 1 .000000 1 .000000 0.000236 0.002052 0.01 1 154 0.043962 0.129994 0.272959 0.383690 0.291870 0.070446 0.001288 0.001 826 0.000020 -0.000064 -0.000553 -0.003026 -0.01 2065 -0.036635 -0.079076 -0.1 1742 -0.086094 0.140308 0.422336 0.446363 0.166634 1 .000000 1.00 1.00 1.00 1.00 1.00 0.051900 0.037600 0.095200 0.217000 0.378000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 188 I G) C) 71 (I) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.564100 0.234800 0.093120 0.250000 0.618000 1 .529000 3.781000 0.320000 0.656000 1 .345000 0.556000 1 .302000 1 .053000 0.047900 0.034800 0.1 00300 0.164000 0.277000 0.607000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 1 .000000 APPENDIX C Tabulated Properties In this appendix tables are given of properties for various types of wavefirnctions and basis sets. Selected experimental values are given for comparison. The properties computed are: re the internuclear separation in atomic units at the model energy minimum, E the model total energy minimum, Dc the energy difference between model minimum and asymptotic limit, On the expectation of quadrupole t-l-Z 32—r2' "k f dth momen 2 q,- z,- ,- 1n atomic umts ta en at center 0 mass, an qa e i 2 2 32. —- r. expectation value of the field gradient 2 q ,- ——'A 5 [A but riA in atomic units taken at nucleus. In both the quadrupole moment and the field gradient q. denotes the charge of particle i, and the summation index runs over nuclei and electrons. The last table contains experimental spectroscopic values used in the determination of vibration corrections of calculated properties. 190 Table C-l. Calculated and experimental constants for the ground state, X ‘22:, of H2 Method/basis r. (00) E1 (e/ao) D. (ev) 9.: (eag ) (la (e/ag ) RHF aug-cc-pvdz 1.4137 -l.128826 3.5066 0.4613 -0.3665 aug-cc-pvtz 1.3880 -1. 133056 3.6207 0.4916 -0.3639 aug-cc-pqu 1.3865 -1. 133508 3.6330 0.4867 -0.3608 aug-cc-vaz 1.3863 -l.l33648 3.6368 0.4852 -0.3591 CBS limit 1.3863 -l.l336 3.6355 0.4845 -0.3589 MP2 aug-cc-pvdz 1.4271 -1. 156216 4.2509 0.4401 -0.3513 aug-cc-pvtz 1.3933 -1. 165023 4.4906 0.4719 -0.3550 aug-cc-pqu 1.3912 -1.166740 4.5373 0.4679 -0.3520 aug-cc-vaz 1.3902 -1. 167191 4.5496 0.4662 -0.3507 CBS limit 1.3893 4.5498 0.4649 -0.3504 CASSCF aug-cc-pvdz 1.4332 -1. 149819 4.0769 0.4589 -0.3350 aug-cc-pvtz 1.4273 -1. 151743 4.1292 0.4455 -0.3l64 aug-oc-pqu 1.4262 -1. 152121 4.1395 0.4422 -0.3147 aug-cc-vaz 1.4258 -1. 152259 4.1433 0.4408 -0.3l44 CBS limit 1.4256 4.1439 0.4404 -0.3142 CISD . aug-cc-pvdz 1.4392 -1. 164900 4.4873 0.4275 -0.3383 aug-cc-pvtz 1.4041 -1. 172636 4.6978 0.4616 -0.3447 aug-cc-pqu 1.4022 -1. 173867 4.7313 0.4585 -0.3393 aug-cc-vaz 1.4014 -1. 174175 4.7397 0.4569 -0.3380 CBS limit 1.4010 4.7403 0.4552 -0.3374 CASSCF+1+2 aug-cc-pvdz 1.4117 -1. 168170 4.5762 0.4666 -0.3606 aug-cc-pvtz 1.4043 -1.172910 4.7052 0.4620 -0.3014 aug—cc-pqu 1.4021 -1. 173905 4.7323 0.4587 -0.3392 aug-cc-vaz 1.4014 -1. 174187 4.7400 0.4570 -0.3380 CBS limit 1.4012 4.7405 0.4567 -0.3377 Exptl. 1.401112 4.748712 0.460 :t 0.02110 192 Table C-2. Calculated and experimental constants for the ground state, X 12;. of Liz Method/basis re (ao) ET (e/ao) D. (av) @u (808 ) Clzz (e/ (13) RHF roos 5.2609 -l4.87l8858 0.1758 11.1486 0.005577 352 5.2609 -l4.8719081 0.1759 11.14507 0.005468 CASSCF roos 5.0972 -l4.9032651 1.0272 10.8846 0.004657 352 5.0986 -l4.9033815 1.0273 10.8891 0.004653 CASSCF+1+2 roos 5.0971 -l4.9037444 1.0396 10.9210 0.004896 852 5.0971 -14.9037781 1.0397 10.9213 0.004653 Exptl. 5.0510 1.046 Table C-3. Calculated and experimental constants for the ground state, X 12;, of Na; Method/basis r. 020) E.- (e/ao) D. (av) 69.. (eag) qn(e/a3) RHF roos 6.0414 -323.715883 -0.01458 12.1456 0.02574 qu 6.0365 -323.7l6628 -0.01973 12.1212 0.02541 CASSCF roos 6.0141 -323.742751 0.7117 11.6614 0.02054 qu 6.0118 -323.743497 0.7079 11.5966 0.02041 CASSCF+1+2 roos 6.0055 -323.743156 0.7227 11.6905 0.02134 qu 6.0030 -323.743890 0.7175 11.6264 0.02112 Exptl. 5.8182 0.720 193 Table C-4 Calculated and experimental constants for the ground state, X 328', of B2 Method/basis r. (a0) Er (e/ao) D. (ev) (9.. (eag) qu(e/ag) UHF aug-cc-pvdz 3.1188 49.088087 0.7331 1.5809 -0.1310 aug-cc-pvtz 3.0942 49.092796 0.7743 1.4246 -0. l 132 aug-cc-pqu 3.0900 49.094648 0.7805 1.4000 -0.1126 aug—cc-vaz 3.0897 49.094949 0.7807 1.3758 -0.1123 CBS limit 3.0867 0.7808 1.2103 —0.1122 MPZ aug-cc-pvdz 3.0642 49.229733 2.4950 1.0072 0.034542 aug-cc-pvtz 3.0205 49.255513 2.7043 0.8777 -0.007246 aug-cc-pqu 3.0118 49.261555 2.7245 0.8528 0.005252 aug-cc-vaz 3.0103 49.263164 2.7309 0.8476 -0.006043 CBS limit 3.0081 2.7338 0.8462 CASSCF aug-cc-pvdz 3.0698 49.2144360 2.4825 1.0066 0.03152 aug-cc—pvtz 3.0525 49.2192017 2.2614 0.9064 0.04575 aug-cc-pqu 3.0507 492210594 2.2781 0.8887 0.04870 aug-cc-vaz 3.0503 492213994 2.2792 0.8843 0.04804 CBS limit 3.0503 0.8832 0.04800 CASSCF+1+2 aug-cc-pvdz 3.0753 492815040 2.2868 1.0414 0.01255 aug-cc-pvtz 3.0283 492995716 2.4153 0.9260 0.03609 aug-cc-pqu 3.0214 493030189 2.4347 0.8931 0.04108 aug-cc-vaz 3.0198 493039741 2.4358 0.8858 0.05683 CBS limit 3.0152 0.8802 Exptl. 194 Table C-S. Calculated and experimental constants for the ground state, X '22:, of C2 Method/basis r. (no) 131 (e/ao) D. (ev) 6.. (egg) q..(e/a§) RHF aug-cc-pvdz 2.3673 -75.388372 0.6017 2.9023 -0.8553 aug-cc-pvtz 2.3442 -75.401798 0.7653 2.7844 -0.8274 aug-cc-pqu 2.3408 45.405643 0.7891 2.7693 -0.8265 aug-cc-pv52 2.3406 45.406302 0.7894 2.7657 -0.8239 CBS limit 2.3405 0.7896 2.7645 -0.8231 MP2 aug-cc-pvdz 2.4153 45.706322 6.1068 2.2683 -0.6051 aug-oc-pvtz 2.3805 45.760793 6.5844 2.1823 -0.5828 aug-cc-pqu 2.3737 45.772458 6.6526 2.1615 -0.5843 aug-cc-vaz 2.3726 45.775764 6.6730 2.1556 -0.5848 CBS limit 2.3721 6.7104 2.1533 -0.5852 CASSCF aug-cc-pvdz 2.3877 45.6266524 4.7080 2.3403 -0.4309 aug-oc-pvtz 2.3704 45.6396363 5.9879 2.2628 -0.4051 aug-cc-pqu 2.3688 45.6432811 6.1743 2.2505 -0.4002 aug-cc-pvsz 2.3685 -75.64404ll 6.1765 2.2463 -0.3987 CBS limit 2.3683 2.2425 -0.3980 CASSCF+1+2 aug-oc-pvdz 2.3963 45.7429896 4.7480 2.3700 -0.4815 aug-cc-pvtz 2.3631 45.7839690 6.0386 2.2987 -0.4554 aug-cc-pqu 2.3575 45.7914593 6.2266 2.2757 -0.4489 aug-cc-vaz 2.3562 457936075 6.2287 2.2694 -0.4470 CBS limit 2.3557 2.2684 -0.4464 Exptl. 2.074412 9.906512 409100731 195 Table C-6. Calculated and experimental constants for the ground state, X '53:, of N2 Method/basis r. (am ET (e/ao) D. (ev) 0.. (egg) q..(e/ag) RHF aug-cc-pvdz 2.0377 408.961925 4.9576 -0.9490 1.1237 aug-cc-pvtz 2.0163 408.987796 5.2404 4.0090 1.3857 aug-cc-pqu 2.0135 408994616 5.2836 4.0118 1.4060 aug-cc-vaz 2.0133 408995999 5.2870 4.0149 1.4042 CBS limit 2.0133 5.2891 4.0158 MPZ aug-cc-pvdz 2.1388 409280650 9.4100 4.1262 0.8417 aug-cc-pvtz 2.1053 409364800 10.0293 4.1626 1.0637 aug-cc-pqu 2.0985 409383055 10.1363 4.1710 1.0858 aug-cc-vaz 2.0976 409388586 10.1731 4.1747 1.0854 CBS limit 2.0970 10.1724 4.1751 MCSCF aug-oc-pvdz 2.1076 409097018 8.6337 4.1683 aug-cc-pvtz 2.0853 409120694 8.8568 4.2260 aug-cc-pqu 2.0825 409127412 8.8973 4.2292 CBS limit 2.0821 8.9063 4.2294 CASSCF aug-cc-pvdz 2.1063 409111025 9.0131 4.1263 1.0345 aug-cc-pvtz 2.0873 409133920 9.2165 4.1675 1.1462 aug-cc-pqu 2.0860 409139872 9.2364 4.1753 1.1763 aug-cc-vaz 2.0856 409141326 9.2759 4.1790 1.1780 CBS limit 2.0857 4.1795 1.1870 MRCI aug-oc-pvdz 2.1144 409284004 8.7673 4.1079 aug-cc-pvtz 2.0866 409367229 9.5037 4.1390 aug-cc-pqu 2.0806 409383822 9.5698 4.1464 CBS limit 2.0789 9.5721 4.1487 CASSCF+1+2 aug-cc-pvdz 2.1135 409305121 8.9126 4.0878 0.9881 aug—cc-pvtz . 2.0855 409372107 9.5294 4.1162 1.1095 aug-cc-pqu 2.0827 409386811 9.6725 4.1247 1.1432 aug-cc-vaz 2.0802 409388891 9.7291 4.1322 1.1478 CBS limit 2.0810 4.1345 1.1518 Exptl. 2.074412 9.906512 4.09100731 Table C-7. Calculated and experimental constants for the ground state, X 323', of Oz 196 Method/basis r. (a0) ET (e/ao) D. (ev) (9.. (gag) q..(e/a3) ROHF aug-cc-pvdz 2.1840 449625220 1.1784 4.2833 4.4415 aug-cc-pvtz 2.1779 449660506 1.2923 4.3928 -2.4657 aug-cc-pqu 2.1749 449670308 1.3110 -0.4085 4.4927 aug-cc-vaz 2.1747 449672974 1.3186 4.4183 4.5006 CBS limit 2.1739 1.3181 04188 4.5012 UHF aug-cc—pvdz 2.1979 449646215 1.7497 4.2341 4.2547 aug-cc-pvtz 2.1915 449682470 1.8899 4.3134 4.2472 aug-oc-pqu 2.1885 449692404 1.9124 4.3273 4.2591 aug-cc-vaz 2.1885 449695099 1.9207 -0.3356 4.2578 CBS limit 2.1889 1.9172 4.3427 4.2565 UMP2 aug-cc-pvdz 2.3314 450.011480 5.2852 4.1107 4.3375 aug-cc-pvtz 2.3138 450.128401 5.6078 4.2178 4.3771 aug-cc-pqu 2.3064 450.153761 5.6322 4.2421 4.3934 aug-cc-vaz 2.3049 450.162153 5.6548 4.2537 4.3901 CBS limit 2.3032 5.6472 4.2546 4.3894 MCSCF aug-cc-pvdz 2.3022 449718078 3.7982 4.1457 aug-cc-pvtz 2.2975 449752814 3.9146 4.2618 aug-cc-pqu 2.2939 449763505 3.9606 4.2858 CBS limit 2.2936 3.9906 4.2920 CASSCF aug-cc-pvdz 2.3065 449725943 3.9798 4.1669 4.3470 aug-cc-pvtz 2.3009 449759501 4.0959 4.2650 4.3442 aug-oc-pqu 2.2973 449768890 4.1072 4.2822 4.3465 aug—cc-vaz 2.2970 449771592 4.1161 4.2930 4.3532 CBS limit 2.2957 4.1189 4.2921 4.3548 MRCI aug-cc-pvdz 2.3072 450003808 4.4229 4.1213 aug-cc-pvtz 2.2921 450114527 4.9575 4.2156 aug-cc-pqu 2.2864 450138411 5.0034 4.2474 CBs limit 2.2830 5.0077 4.2636 CASSCF+1+2 aug-cc-pvdz 2.3069 450027600 4.7815 4.1448 4.3594 aug-cc-pvtz 2.2944 450.118085 4.8974 ' 4.2269 4.3543 aug-cc-pqu 2.2907 450.140112 5.0056 4.2368 4.3605 aug-cc-vaz 2.2868 450142995 5.0148 4.2612 4.3639 CBS limit 2.2854 5.0152 4.2588 4.3643 Exptl. 2.281812 5.231812 4.310136 Table 08. Calculated and experimental constants for the ground state, X ‘ZJ, of F2 197 Method/basis r. (a0) ET (e/ao) D. (ev) 0.. (egg) q..(e/a3) RHF aug-cc-pvdz 2.5288 498.703251 1.3847 0.5229 6.4144 aug-cc-pvtz 2.5099 -l98.760936 1.1764 0.3558 6.6284 aug-cc-pqu 2.5090 498774915 1.1770 0.3321 6.7109 aug-cc-vaz 2.5071 498779081 1.1786 0.3149 -6.7190 CBS limit 2.5079 498.7801 1.1792 0.3180 6.7198 MP2 aug-cc-pvdz 2.6959 499126917 1.5039 0.9254 -5.7669 aug-cc-pvtz 2.6490 499290907 1.7987 0.7588 -6.1000 aug-cc-pqu 2.6471 499326593 1.7931 0.7374 -6.1953 aug-oc-vaz 2.6452 499338340 1.8004 0.7199 6.2094 CBS limit 2.6460 499.3399 1.7970 0.7236 6.2109 MCSCF aug-cc-pvdz 2.8257 498777612 0.6388 0.9873 aug-oc-pvtz 2.7643 498832379 0.7677 0.7899 aug-cc-pqu 2.7632 498846561 0.7658 0.7651 CBS limit 2.7632 498.8515 0.7681 0.7616 CASSCF aug-cc-pvdz 2.8021 -l98.780304 0.7041 0.9585 -6.0449 aug-oc-pvtz 2.7654 498834724 0.7305 0.7778 6.2151 aug—cc-pqu 2.7586 498848763 0.8257 0.7611 6.2788 aug-cc-vaz 2.7560 498852728 0.8261 0.7426 6.2969 CBS limit 2.7560 0.8262 0.7481 6.3098 MRCI aug-cc-pvdz 2.7520 499119575 1.2603 0.9370 aug-oc-pvtz 2.6838 499277054 1.4875 0.7356 aug-cc-pqu 2.6825 499310003 1.4879 0.7111 CBS limit 2.6827 4993187 1.4906 0.7077 CASSCF+1+2 aug—cc-pvdz 2.7329 499158133 1.2056 0.9032 -5.9777 aug-cc-pvtz 2.6955 499285251 1.4407 0.7352 -6. 1519 aug-cc-pqu 2.6853 499311735 1.4421 0.7165 6.2275 aug-oc-vaz 2.6802 499320173 1.4490 0.6927 6.2496 CBS limit 2.6791 1.4496 0.6985 6.2699 Exptl. 2.668112 1.691612 None Available 198 Table C-9. Calculated and experimental constants for the ground state, X 323’, of A12 Method/basis r. too) 131 (e/ao) D. (ev) 0.. (egg) q..(e/a3) UHF aug-cc-pvdz 4.8475 483.762718 0.3919 7.9896 -0.3016 aug-cc-pvtz 4.8180 483.774231 0.4322 7.6578 4.3168 aug-cc-pqu 4.8048 483.776836 0.4351 7.5442 4.2935 aug-cc-vaz 4.8027 483.777656 0.4365 7.5292 -O.3275 CBS limit 4.8023 7.5269 MP2 aug-oc-pvdz 4.7366 483853878 1.1071 7.2889 -0.2365 aug-oc-pvtz 4.6765 483879735 1.2532 7.1173 -0.2381 aug-cc-pqu 4.6599 483884449 1.2616 7.0273 -0.2205 aug-cc-vaz 4.6553 483.777050 1.2625 7.0348 -0.2422 CBS limit 4.5542 CASSCF aug-cc-pvdz 4.7984 483826309 1.1890 6.6022 -0.2122 aug-cc-pvtz 4.7766 483837438 1.2381 6.3208 ~0.2006 aug-cc-pqu 4.7661 483840329 1.2431 6.2268 -0. 1965 aug-cc-vaz 4.7634 483841074 1.2511 6.2208 CBS limit 4.7625 6.2204 CASSCF+1+2 aug-cc-pvdz 4.7957 -483 888899 1. 1989 6.6022 aug-cc-pvtz 4.7263 483.910444 1.3468 6.3208 aug-cc-pqu 4.7086 483.914596 1.3906 6.1937 aug-cc-vaz 4.7063 483.915684 1.5268 6.1914 CBS limit 4.7060 6.1912 Exptl. 4.660 1.55 199 Table C-10. Calculated and experimental constants for the ground state, X 323', of Si; Method/basis r. (ao) Er (e/ao) De (CV) Ga (eag) qu (e/ag) UHF aug-cc-pvdz 4.2256 677.764760 1.71 13 4.6444 1.6932 aug-cc-pvtz 4.2016 677.779332 1.7981 4.7239 2.0001 aug-cc-pqu 4.1927 677.783621 1.8183 4.7584 1.8211 aug-cc-pvsz 4.1884 -577.785048 1.8317 4.7514 2.0860 CBS limit 4.1880 MP2 aug-oc-pvdz 4.3122 677897246 2.7258 4.2857 1.4929 aug-oc-pvtz 4.2689 677939991 3.0221 4.1696 1.7909 aug-cc-pqu 4.2541 677947457 3.0519 4.1973 1.6408 aug-cc-vaz 4.2517 677951384 3.1002 4.1834 1.8302 CBS limit 4.2511 CASSCF aug-oc-pvdz 4.3555 677814916 2.6587 4.3142 aug-cc-pvtz 4.3300 -577.82833O 2.7862 4.3936 aug-cc-pqu 4.3205 677832431 2.8095 4.4238 aug-cc-pvsz 4.3162 677833570 2.8241 4.4151 CBS limit 4.3158 CASSCF+1+2 aug-cc-pvdz 4.3429 677932991 2.6835 4.0188 aug-cc-pvtz 4.2952 677970127 3.0642 4.0175 aug-cc-pqu 4.2788 677976584 3.1821 4.0593 aug-cc-vaz 4.2750 677978619 3.2318 4.0425 CBS limit 4.2741 Exptl. 4.2443 3.21 200 Table C-1 1. Calculated and experimental constants for the ground state, X 12;, of P2 Method/basis r. (ao) Er (e/ao) D. (eV) 92 (e613) 0:. (e/ag ) RHF aug-cc-pvdz 3.5345 681.470428 1.3826 0.7231 1.6350 aug-oc-pvtz 3.5096 -681.491898 1.6232 0.7870 1.8942 aug-cc-pqu 3.5007 681.498395 1.6788 0.7785 1.8316 aug-cc-vaz 3.4969 681.500786 1.7288 0.7920 2.0363 CBS limit 3.4950 MPz aug-cc—pvdz 3.6895 -68l.707199 4.1800 0.4203 1.1365 aug-cc-pvtz 3.6421 -681.775016 4.7259 0.5137 1.3700 aug-cc-pqu 3.6256 681.786020 4.8047 0.5080 1.3519 aug-oc-vaz 3.6201 681.790680 4.8396 0.5317 1.5039 CBS limit 3.6171 CASSCF aug-cc-pvdz 3.6698 -681.564365 3.9380 0.3758 1.4625 aug-cc-pvtz 3.6425 681.583508 4.1160 0.3042 1.5462 aug-cc-pqu 3.6330 681589364 4.1543 0.3001 1.5705 aug-oc-vaz 3.6288 681591273 4.1882 0.3162 1.5712 CBS limit 3.6268 CASSCF+1+2 aug-cc-pvdz 3.6704 681.731599 4.0398 0.4989 1.3901 aug-cc-pvtz 3.6259 -68l.79l347 4.5810 0.5166 1.5007 aug-cc-pqu 3.6114 681.800869 4.6585 0.5035 1.5323 aug-cc-vaz 3.6077 -68l.804154 4.7094 0.5241 1.5319 CBS limit 3.6055 Exptl. 3.5780 5.033 201 Table C-12. Calculated and experimental constants for the ground state, X 328’, of S; Method/basis r. (00) ET (e/ao) D. (ev) 9.1 (eag ) qn(e/ag ) ROHF aug-cc-pvdz 3.5654 -795.054156 2.1420 1.4897 -1.7751 aug-cc-pvtz 3.5321 -795.083129 2.4563 1.4286 -1.7635 aug-cc-pqu 3.5216 -795.090308 2.5118 1.3940 -1.7337 aug-cc-vaz 3.5146 -795.093390 2.5791 1.3931 -1.7639 CBS limit 3.5123 1.3930 UHF aug-cc-pvdz 3.5712 -795.067319 2.5002 1.7471 -0.8210 aug-ec-pvtz 3.5373 -795.098276 2.8685 1.4342 -0.7869 aug-ec-pqu 3.5268 -795. 105711 2.9309 1.4001 -0.7198 aug-cc-vaz 3.5194 -795. 109046 2.9768 1.3911 -0.7730 CBS limit 3.5171 1.3910 UMP2 aug-oc-pvdz 3.6679 -795.323675 3.9239 1.7466 -0.9704 aug-oc-pvtz 3.6109 -795.420906 4.0521 1.5373 -0.9648 aug-cc-pqu 3.5937 495.435561 4.4509 1.4916 4.8856 aug-oc-vaz 3.5831 -795.44196l 4.4968 1.4845 -0.9510 CBS limit 3.5801 1.4831 CASSCF aug-cc-pvdz 3.6975 -795. 104169 3.1746 1.8238 -1. 1505 aug-cc-pvtz 3.6570 -795. 130461 3.4201 1.4922 -1.0727 aug-ec-pqu 3.6457 -795. 137012 3.4541 1.4660 -1.0454 aug-ec-vaz 3.6372 -795.139513 3.5000 1.4614 -1 .0226 CBS limit 3.6354 3.4927 1.4604 4.0112 CASSCF+1+2 aug-cc-pvdz 3.6780 -795.337615 3.6018 1.7322 -l.1505 aug-cc-pvtz 3.6258 -795.423487 3.9994 1.5075 -l.0249 aug-cc-pqu 3.6101 -795.435364 4.0591 1.4670 -0.9931 aug-cc-vaz 3.6005 -795.440183 4.1289 1.4602 -0.9689 CBS limit 3.5978 4.1191 1.4585 -0.9656 Exptl. 3.5701 4.3693 202 Table C-l3. Calculated and experimental constants for the ground state, X 12;, of C12 Method/basis r. (40) ET (e/ao) D. (ev) 0.. (egg) q..(e/a3) RHF aug-cc-pvdz 3.7915 -918.966152 0.7945 2.7868 6.5182 aug-cc-pvtz 3.7496 -919.000062 1.0793 2.2923 -5.8076 aug-CC-pqu 3.7309 -919.007029 1.1005 2.2401 -5.7488 aug-CC-pVSZ 3.7308 -919.009640 1.1441 2.2400 -6.0858 CBS limit 3.7267 2.2400 -6.0866 MP2 aug-cc-pvdz 3.8532 -9l9.259803 2.0128 2.8937 -5. 1629 aug-cc-pvtz 3.7770 -919.387079 2.4579 2.4349 -5.4837 aug-cc-pqu 3.7538 -919.404287 2.4938 2.3833 6.4457 aug-cc-vaz 3.7471 -9l9.410504 2.5252 2.3476 -5.7545 CBS limit 3.7440 2.3412 -5.7520 CASSCF aug-cc-pvdz 3.9130 -918.993656 1.7089 3.0242 -6.1467 aug-cc-pvtz 3.8652 -919.024862 1.7526 2.5262 -6.0555 aug-cc-pqu 3.8554 -9l9.031537 1.7668 2.4962 -6.0503 aug-CC-pVSZ 3.8439 -919.033687 1.7982 2.4725 -6.0136 CBS limit 3.8434 1.7935 2.3833 -6.0168 CASSCF+1+2 aug-cc-pvdz 3.8846 -9l9.277887 1.8873 2.8560 -5.9721 aug-CC-pvtz 3.8182 -919.388888 2.2294 2.4251 -5.8841 aug-cc-pqu 3.8050 -919.402437 2.2633 2.3801 -5.8801 aug-CC-pVSZ 3.7881 -9l9.407181 2. 3082 2.3468 -5.83 89 CBS limit 3.7875 2.3159 2.3214 -5.8390 Exptl. 3.7566 2.4794 2.405zt0. 120 APPENDIX D Distance Dependence of Select Properties 204 This Appendix contains lists of the total energy(E), quadrupole moment((~)) and the field gradient (qu) in atomic units as functions of internuclear separation for SCF, CASSCF, and CASSCF+1+2. The CASSCF and CASSCF+1+2 wavefunctions as those described in chapter 2,3, and 4. Molecules with multiplicities greater than 1 use the Restricted Open Shell Hartree-Fock wavefilnction. All calculations use the Dunning aug-cc-pqu basis sets which are described in Appendix B. The quadrupole moment and the field gradient were computed using the MOLPRO package. 205 68666 22.66 6566.6. 3666.6 3366 68666. 666666 2686 $66— .6 6N6 246666 65666 2.6666. @5666 m6m566 2.6666. 62.666 663.66 nun: .6 66.6 3656 m _ 2 _ .6 386.6. 6566.6 46866 $6666. 2 566 43466 3.66— .6 666 2.6666 6463 .6 63666. mm6666 mwfl _ .6 5666.6. 86666 3686 2 m2 .6 69m 666 66.6 6666— .6 42666. 45666 633 .6 62666. 666666 mm-6.~ 632 .6 6.9m 6m _ 66.6 m: 8.6 66866. «6366 SS: .6 62666. 42 S6 463m." 653 .6 6~.m 3: 66.6 whmw~6 3.6666. 6.2666 2 ~26 2.866. 6N2 6.6 6636.6 6663 .6 666. $866 6336 34666. 62666 m6n6~6 $866. $266 .3686 63 2 .6 66.4 3866 5296 456666. 63666 $356 3566. 3:266 «223 ENS .6 66.4 43.666 69% .6 66666.6. 2.866 SE 46 2 4.666. 3266 Smwmd 62 _ _ .6 64.4 46566 46306 326.6. 63666 2.636 36666. 3:66 66m6m.~ 366— .6 624 63666 $566 2266. 2.566 63% .6 «6266. $266 SSNN 635.6 66.4 86666 623.6 mm _ ~66. 63666 66366 62; 66. 56.666 462 _.N 66366 ow.m NS 86 «46666 66266. 666666 669.66 3366. 64266 m6~66.~ A(66666 66.m 66266 62.86 5266. 2686 6:456 «RN66. 3.866 895.6 4346.6 6.8m 66366 63566 32.66. 64.266 4366.6 2686. $486 $62..— umw~66 6~.m 52 6.6 $26; 5366. $266 46866 26466. 2.486 6436.6 .3686 66.m 2266 6926.— 22.66. 2266 a: 3.6 56666. 3266 46.6.64; 63666. 666 $266 3956 3.256. moo—66 «6366 3366. «mm—6.6 63m: $556. 66.~ 3666.6 3266 none .6. 356.6 3266 $566. 2 _ ~66 2 m3 ._ 36466. 646 5866. 633.6 2.6— _ 6. 6626.6. 6562.6 6262 6. 63666. 3646; 364.66. 6n.m -mm6.6. 4662.6 6:2 .6. 5686. 666:6 25.2 .6. “E 56. @2666 mm 366. 66.N 5356. $6666 6642 .6. 69666. 46636 666m _ .6. 3:56. «336 m5— _6. 66.— 46:; 6. 63.6w .6 Swo— 6. 664: .6. m _ Sn .6 www.6— 6. SMS 6. 6386 ~32 .6. 664 2.2%.? «2.9.6 63: .6. 2.94.6. 2636 66~2 6. 3356. 4.6346 $52 6. 6.: 52.66. 433.6 65.2 .6. 66656. 513.6 4663 6. 5566. $656 332 .6. 6m; $662- 66626 652 6. 2664.7 3686 6366.6. 6364.7 6662.6 3456. 66A 652 .m- 2.:— .6 66366. NEE .m- 24% _ .6 2566 $6216.- 666: .6 $366 666 6+ _+mfim§ac 318685666 natufimfivm 15.406106 815.6666 gum—r. nbmvuw 6366 BE M 6666; 2:6 35: 3836 E Econ—m— 8 N6 .5 388865 5.36665 .m.> 6668468 8266885 U 88-8.63 meb N: .79 933. 206 66666.6 M6686 66666.6. 66666.6 66:66 66666.6 w44666 66mmn.~ 363 .6 66.“. m _ 666.6 6668.6 26666. 666666 n6h~66 46666.6. 664666 66666 .N 69.3 .6 66.6 2666.6 3646.6 2666.6. 2666.6 6426.6 3666.6. 64666.6 646666 6663 .6 66.6 26666 666666 6866.6. 6566.6 4346.6 ”—6666. 666666 66366 6666— .6 64.6 207 66666.6. 66—666 6446—6. 66666.6. 66666.6 46666.6. 66666.6. 6266.6 6662.6. N666.— 666666- 66646.6 6N66 ~ .6. ~32 .6. N66666 4662 .6. 66666.6. 666~66 666 6 6 .6. N666.— 66626. 6.6.6.66 666666. 6226. 66666.6 6464—6. 66626. 666.666 666:6. N666.— 66646 .6. 66~66 .6 66666 .6. 6644— .6. 66666 .6 6664— .6. 66 646 .6. 64666.6 66N- .6. «N66.— _6666 .6. 66666.6 6666_ .6. 666: .6. 46666 .6 66646 .6. 66666 .6. 66666.6 6662 .6. ~86; 6663.6. 66666 .6 6666— .6. 4m66n6. 66666 .6 66646 .6. ~646N6. 66666 .6 ~66N~ .6. NN66.~ 6:4N6. 6626.6 636—.6. 666466. 6864.6 6266.6. 66646.6. 46666.6 6:26. NN66.~ 64666.6. 666646 64666 .6. 6N66~.6. 6~6646 866— .6. 66666.6. 66666.6 ~6~2 .6. NN64A 66666. 6.66646 ~66: .6. 6246.6. 6~6646 N662 .6. 66646.6. 64664.6 6466— .6. N664.— 66_64.6. 66664.6 N46: .6. 66664.6. 66664.6 66 66 .6. 2664.6. 46664.6 6~66~ .6. 6666.6 66664.6. 66664.6 m6_6_ .6. 6 6664.6. 66666.6 6664— .6. 66664.6. 666 64.6 46_ 66 .6. «~66.— 66666.6. 3666 .6 6666_ .6. 6~666.6. 666666 66646 .6. 64666.6. 466646 6662 .6. 266.— 6m~66.6. 6646 66 6643 .6. 666666. 26666 66646.6. 66666.6. 666666 66666 .6. 6666.— _4_66.6. m66~m6 4~66~ .6. 666666. N46666 6—42 .6. 36666. 46646.6 666_ _ .6. ~66 _ A 666666. 666666 6664— .6. 64666.6. 666666 6662 .6. 66666.6. 66666.6 666— 6 .6. ~62 A 6466— .6- 626~6 6666— .6. 6466— .7 64N6~6 6666 6 .6. 66666 .7 66666.6 66666.6. NN66.~ 46666. T 66666.6 6442 .6. 66666.6- 36466 66666.6. 66666.7 66 ~6N6 5666.6. 266.6 2? 1.563856 Riiommlxovmw 21+ hummfiuvm 206940606 20620666 Cpmlm 6068663 826:5an H £398-66“ CNL NE .6-: 93.6.6 208 M66666. 9—6666 66— 66.7 696666. 66—666 69666.6. NNN6~ .6. 96669.N 69666.6 666N.6 6N~66.6. 6m6~66 66— 66.7 66666.6. N6—666 66666.6. 6666— .6. ~6666.N 96666.6 6666.6 66—666. 69~ ~66 9636.7 66666.6. 6N—666 ~66666. 696:6. 66666.N 6~m966 6666.6 6— N666. 6NN— 6.6 96Nn6. 7 9N—666. 6— 666.6 M66666. 696— — .6. 6N666.N 96m 666 6666.6 66N666. 99N—66 6—Nm6.7 ~6~66.6. 66—666. 96666.6. 696— ~ .6. 9— ~N6.N 666—66 6669.6 66— ~66 NMN66.7 69666.6. 66666.6. 66N96.N ~69666 666N.6 66666.6. 666~66 66Nn6.7 6— 666.6. N66—66. 66666.6. N99— u .6. 66666.N 966~6.6. 6666.6 66666.6. N66666 M6Nn6.7 96966.6. NN6~6.6. N66666. N66~ — .6. 6—N66.N 666N66. 6666.6 66666.6. 69—666 N6666.7 ~66666. 6—6N66. 66666.6. 6696—6. 966M6.N ~N6966. 6666.6 66— ~66. N66666. 69666.7 66666.6. ~69966. N66666. 66666.6. N6666.N N66666. 6669.6 66646.6. «hm—Q6. ~6666.7 N6— ~66. N66666. N66666. N6~66.6. 66666.N 6NN666. 666N.6 666.666. 666m66. ~69m6.7 6—6—66. 69966.6. 66666.6. 66666.6. 66966.N 666— u .6. 6666.6 666N66. 66666.6. 66666.7 666N6.6. 66— m— .6. 6N~66.6. 96696.6. 699N9.N N669— .6. 6666.9 96666.6. 66—666. 6m 666.7 —N6N6.6. 6666— .6. 66~666. 666—66. aamNmN 66—6— .6. 6666.9 66696.6. 666N~ .6. 66666.7 N66666. 6966N.6. N6m666. 666N66 668N.N 696—N6. 6669.9 NM6666. 6m—6~ .6. 66696.7 N—6966. 66966.6. 6N6666. 6m~666 666666 66~6N.6. 666N.9 6~ 6666. N66—N6. 66666.7 2666.6. 66666.6. N66666. 6—6N~ .6 66666; ~666m6. 6666.9 66966.6. 96NmN6. 66666.7 ~96966. N96696. N66~6.6. 6MN6— .6 66666.— 66— 66.6. 6666.6 666NN6. 66666.7 ~66696. 66:66. 2699A 666N96. 6666.m 69666.6 m6m—N6. 6— ~6~ .7 666666 69N6m6. ~69666. 66666.6 6666~ A 66669.6. 6669.6 9666— .6 666MN6. 292 .7 6696— .6 6296.6. ~66666. 2669.6 69666.6 66666.6. 666N.m 6666m6 6m96m6. 6—66— .7 666Nm.6 66666.6. 6~6666. 66666.6 66N666 #66666. 6666.6 66969.6 6N6n96. 666NN. 7 696696 9—9666. 6~ ~666. 66666.6 66—9N6 696N66. 6666.N 66N966 66N—66. 6N—6N. 7 N66666 6N6666. N6666. 7 666N66 9N6666. 966~6.6. 6666.N 66666.6 66666.6. 69666.7 ~m9666 ~N~66.6. 69—66.7 96669— 666N96. 96666.6. 6669.N 66966; 96666.7 NN66M.7 6~ ~66.~ 66~66.7 ~6—m—.7 6666N.— 66696.6. 96666.6. 666N.N 66N~N.~ 6666N. 7 66666.7 6669N.— 9666N. 7 666»: .7 666~9A N66m6.7 N69666. 6666.N 6669”.“ 66666.7 N6666.7 636664 66N69.7 66N66.7 666664 6666N.7 666666. 6666.— 666~ MA 6N966. 7 NM666.7 66696.4 96696.7 66966.6. 66669; ~6696.7 966666. 6666.— 666666 666—6.7 69969.6. mm~N6.l— 69666.7 N666N6. ~666H— 66~_6.7 6N66~.6. 6669.~ +_+ m< u A~+~+momm 606888 Sofia—:85 ” $3-863 6»me NZ 6.6 263. 209 66666.6 66666.6 66666.6 ~ 6666.6 ~ 6666.6 ~ 6666.6 ~ 6666.6 5666.6 66666 ~ 6666.6 6666.6 ~6666.6 66666.6 66666.6 8666.6. 66666.6. 66666.6. 66666.6- 66666.6. 66666.6. 6 _ 666.6. 6366.6. 66666.6. 66666.6. 66666.6. 66666.6. 66666.6 66666.6 66666.6 66666.6 66666.6 3666.6 66666.6 6666.6 6666.6 66666.6 66666.6 66666.6 ~6666.6 66666.6 V66666 66666.6 66666.6 66666.6 66666.6 66666.6 6~ 666.6 6366.6 6686.6 66 6666 66666.6 66666.6 66666.6 66666.6 66666.6 V6~66.~- Q6~66.~- Q6~66.~- ¢6~66.~- v6~66.~- V6~66.~- V6~66.~- 66~66.~- 66~66.~- 66_66.~- 66~66.~- 66~66.~- 66~66.~- 66~66.~- 66—66.~- 66~66.~- 66~66.~- 66~66.~- 66~66.~- 66~66.~- 6266.7 66~66.~- 66~66.~- ~6~ 66.~- 66_66.~- 66~66.~- 66~66.~- 66~66.~. 9:66;- 8666.6 8666.6 8666.6 66666.6 66666.6 66666.6 66666.6 66666.6 66666.6 66666.6 66666.6 66666.6 66666.6 66666.6 66666.6 66666.6 66666.6 66666.6 66666.6 66666.6 6666.6 66666.6 66666.6. 66666.6. 2666.6. 6866.6. 66666.6 66666.6 66666.6 66666.6 8666.6 66666.6 ~6666.6. 66666.6. 66666.6. 66666.6. 3666.6. 6366.6. 66666.6. 66666.6. $666.6. 66666.6. 66666.6. 66666.6. 66666.6. ~6666.6. 66666.6. 96666.6. 66666.6. 3666.6. 66666.6. 66666.6 66666.6 6636.6 66~ 66.6 6 366.6. 3666.6. 66666.6. 2666.6. 6.3666. 66666.6. 3666.6. 66666.6. 2666.6. 6 «6666. 66666.6. 3666.6. 6.6666. 3666.6. 3666.6. 66666.6. $666.6. $666.6. 3666.6. 3666.6. 6366.6. 66666.6. 3666.6. 6366.6. 5666.6. 66.6666. $666.6. 66666.6. 69666.6. 6665.6. 6668.6. 66_ 3.6. 6636.6. 666 ~66. 6663.6. 6663.6. ~6~66.6. 66666.6. 66666.6. 69666.6. 62 66.6. 6666.6. 66666.6. ~66¢6.6. 6663.6. 6696.6. 66— 66.6. 66666.6. 8666. 66666.6. 66666.6. 6666.6. 6366.6. 66666.6. 6~666.6. 6636.6 6~6¢6.6 66666.6 66666.6 66666.6 ~6666.6 66666.~ 66666.~ 666.66.— 66~v~ .~ 6666~ .~ 666664 66~66.~ 6~666.~ 666:; 66666.; 66666; 666—6.~ 66666.— 66666.~ -~66.~ 63664 66666.— 6366.6 6666— .6 6V66~ .6 66666.6 66666.6 66666.6 6.828 823 3.28 22.3 8?; 28:8 683 R83 283 253 82.8 N828 $38 29.3 ”8:... 223 ”228 ”2.2.8 £28 E28 9328 8:8 323 :83 6.22.8 58.8 828.8 358.8 66666.6 88.2 88.2 2688.2 88.2 88.2 88.2 8a.: 88.: 88.: 88.: 88.: 88.2 883: 882: 88.2 88.2 88.8 o8: 88.... 88.8 88.8 88.” 88.» 88.” o8? 88¢.” .83 88.2. 6666.6 210 «mm-go $30.0- hmmomg- -~0§o 203.6. 0200.7 0003.0 553.0. m0~nw.o- mm—m.m Sig-.0 33:0. *9: m7 02 3.0 N0036- 3307 0384 9.32.. mums;- 30.; vmmmwd 802.6- 832- 330”... «3.33. 3000.7 3.20.— 3036. 023.0. 23% mwmhwd 330.c- ovvva- $03.0 5030.0. 032.7 0:24 $03.0- 0a~8.o. mm0m.~ 038.0 0323. 3002- 08030 0053.0- ~::.7 025: 2000.0. 32.3- 22d nomad 303.c- nwm0m7 0025.— 3230- w0_~_.7 033; 390.0. vaad- nm0~.~ 0.884 303.0. 032.7 «Smog 533.7 «33.7 00024 083.0- 0mm0ad- 02nd N300; :03. 7 000%. T mung A o— 08.7. N002 .7 $33— 3025. 803.0- nm0~ .N 32 ~ A 302:- muvwmA- 5—24 03.3.7 mam—.7 30mm; cmm0wd. 0anwad- anN 3002 «$3.7 2.33.7 2.32 392.7 ”32.7 82.: ~236- cvmamd. mm0o.~ 28: 032.7 023.7 Ebm: 083.7 2.02.7 28¢.— vw—SA- €30.0- 02A: Moog-.0 033.7 292- 2?“; 83:- SZZ- 039.4 398.7 nomad. 30¢.— Gmb: 303.7 08007 88: 03:7 002—.7 300v.“ $03.7 $306- 33.— wahmmA- 052.7 8807 380.7 ”33.7 550a,? 30».— ~0w~m.— 00mm:- 0837 3002 033.7 «£007 0080; 252.7 235.0. 2;.— 332 $217 ELK-«.7 fink“.— mwtzl- «38.7 5022 83:- 353.? 20: 3002 00:37 082.7 Sow: 203.7 E god. «Rom; 203.7 2000.0. 2:: filiufifiwé aiiomwéovm-v aifiomm 508.33 3203885 ” Nga-oo-wsa Cub NZ .v-G 03:. 2'11 00000.7 00000.0 00000.0. 00000.7 00000.0 000—00. 000—00- 00000.— 00000.0. 00.0 0— 000. 7 00000.0 00000.0. 8807 00000.0 000—00. 00000.0- 00000.— 000—00. 00.0 00000.7 00—00.0 00000.0. —0—00.7 00000.0 000—00. 00000.0- 00000.— 000—00. 00.0 8000.7 00000.0 00000.0. 0080.7 0800.0 000—00. 0280- 0—000.— 00000.0. 00.0 00000. 7 00000.0 00000.0- 00000.7 00000.0 000—00. 00000.0. 00000.— 00000.0. 00.0 00000. 7 0— 000.0 00000.0. 00000.7 00000.0 000—00. 0800.0- 00000A 00000.0. 00.0 00000. 7 —0000.0 00000.0. 00000.7 00000.0 000—00. 000—00- 00000.— 00000.0. 00.0 00000. 7 00 —00.0 00000.0. —0000.—- 00000.0 000—00. 00000.0- 0—000.— 00000.0. 00.0 00000. 7 00000.0 0—0000. 00000.7 00000.0 000—00. 0—000.0- 00000A 00000.0- 00.0 00000. 7 00000.0 8080. 00000.7 00000.0 000—00. 00000.0- 0— 000A 00000.0. 00.0 00000. 7 00000.0 00000.0. 8000.7 00000.0 000—00. 00000.0- 00000.— 00000.0. 00.0 00000. 7 00000.0 00000.0. 8307 00000.0 000—00. —0000.0- 0000— A 00—0— .0. 00.0 00—00. 7 00000.0 00000.0. 00000.7 00000.0 000—00. 000—00- 00000.— 000— — .0. 00.0 00—00. 7 —0000.— —0000.0. 00000.7 00—000 —00—0.0. 000—00- 00000.0 0000— .0. 00.0 00000. 7 0— 000. — 00000.0- 00000.7 00000.0 000—00. 000—00- 00 000.0 0000— .0. 00.0 20007 00000.— —0000.0. 000—07 0280 000—00. 00000.0- 00000.0 00 —0— .0. 00.0 00000. 7 0008— 00000.0. 00000.7 00000.0 —00—0.0. 00000.0- —00—0 .0 ——00— .0. 00.0 00000. 7 0—000.— 00000.0. 000—0. 7 00000.0 00000.0. 00000.0- 000000 0000— .0. 00.0 00000. 7 00000.— 8000.0. —0000.7 8000.0 00000.0. 00000.0- 000— — .0 00000.0. 00.0 00000.7 00000.0 00000.7 0 —000.7 00000.0 00000.0. 00000.0- —000— .0. 00000.0. 00.0 0— 000. 7 00000.0 00000.7 —0000.—. 00000.0 0 —000.0. 00000.0- 0000 0.0. 00000.0- 00.0 —008.7 —0000.0 00000.7 00—00.7 00000.0 2000.0. 0—000.0- 00000.0. 00000.0. 00.0 80—0. 7 00000.0 0—000.7 000—07 0300 .0 000—00. —0000.0- 00000.0. 000—00. 00.0 00000. 7 0000— .0 —00— — .7 00000.7 0000— .0 00000.0. 00000.0- 0000— .7 0 —00— .0. 00.0 00000. 7 00000.0. 0000—.7 0—000.—- 0000— .0. 00000.0. 00000.0- 00000.7 0—0— — .0. 00.0 00000. 7 00000.0. 0000— .7 000—07 8200. 0 —000.0. 00000.7 00 0 87 00000.0 00.0 00000.0. 00000.0. 00000. 7 0008.0. 2000.0. 00000.0. —0000.7 00000.7 000—00 00.0 00000.0- 00000.0. 00000.0. 00000.0. 00000.0. ——000.0. 00000.7 00000.0- 00000.0 00.— 000— 0.0. 00000.7 00000.0. 00000.0- 0—0007 00000.0. 0—000.0. 0—000.0- 0000—.— 00.— 000000. —0— 00.7 000 —0.0 000 —0.©. 00000.7 00000.0 0— —0b.0 00000.7 000—00 00.— aiéomlmfivuc 00+ ...-6005000 filiomméwm Ewmmgpfi Ammmgovmw 0.6005va 0500”" 0.60000 Sow-Mm m 92: 3.30% 2:52 a .20 3 0.0 00 35822: M— 58080 .m.> 0008003 3202535 H 0020-00-03 mev NC .0-9 030.0. 212 00—00—- 00—00—- 00—00—- 00—00—- 00—00—- 00—00—- 00—00—- —0—00—- 00—00—- 00—00—- 00—00—- 00—00—- 00—00—- 00—00—- 00—00—- 00—00—- 00—00—- 00—00—- 00—00—- 00—00—- 00—00—- —0—00—- 00—00—- 00000—- 0—000—- 00000—- 00000—- 00000—- —0000—- 00000.0 00000.0 00000.0 00000.0 00000.0 00000.0 00000.0 0— — 00.0 00— 00.0 00000.0 00000.0 00000.0 00000.0 00000.0 00000.0 00000.0 00000.0 00000.0 0—0000 00000.0 00000.0 0— —00.0 00000.0 00000.0 0—0000 00000.0 00000.0 00000.0 00000.0 00000.0. 00000.0- 00000.0- 00000.0- 00000.0. 00000.0. 00000.0- 00000.0. 00000.0- 00000.0- 00000.0- 00000.0. 00000.0. 00000.0- 00000.0. 000006- 00000.0. 00000.0- 00000.0. 00000.0- 00000.0- 00000.0. 00000.0- 00000.0- 00000.0. 00000.0. $000.0. 00000.0- 00000.0- 00000.7 00000.7 00000.7 00000.7 00000.7 00000.7 00000.7 00000.7 00000.7 00000.7 —0000.—- 00000.7 00000.7 00000.7 00000.7 —0000.—- 00000.7 00000.7 00000.7 00000.7 00000.7 00000.7 00000.7 0—000.—- 00000.7 00000.7 00000.7 00000.7 00000.7 —0——0.0 00——0.0 00— —0.0 00:00 0—0—00 000—00 —00—0.0 0—0—00 000—00 000—00 000—00 000—00 000—00 —00—0.0 000—00 000—00 000—00 000—00 000—00 00000.0 ———00.0 00000.0 0— 000.0 00000.0 00000.0 00000.0 —0000.0 0—0000 0—0000 000—00. 000—00- 000—00. 000—00- 000—00. 000—00. 000—00. 000—00. 000—00. 000—00. 000—00. 000—00- 000—00- 000—00. 000—00. 000—00- 000—00. 000—00. 000—00. 000—00- 000—00- 000—00. 000—00. 000—00. 000—00- 000—00. 000—00. 000—00. 000—00. —0000.0- 00— 00.0- —0— 00.0- 00000.0- 00000.0- 0—000.0- 00000.0- 00000.0- 00000.0- 00—000- 00 000.0- 00000.0- 00000.0- —0 —00.0- 00000.0- 00000.0- 00000.0- —0000.0- 00000 .0- 00000.0- 000— 0 .0- —0000 .0- 00000 .0- 00000 .0- —0000 .0- 0000 0 .0- 00000 .0- 00000 .0- 00000 .0- 0—0000 00000.0 00000.0 00000.0 00000.0 00000.0 00000.0 000—00 00000.0 0—0000 —0000.0 8000.0 000—00 00000.0 00000.0 00—000 0—000— —0000.— 0—000— 00—0— .— 0000— .— 00—0— .— 0—000.— 00000.— 00000.— ——000.— 00000.— 00000.— 00000.— 00000.0 2000.0 —0000.0 00000.0 0— 000.0 00—000 0—0000 00000.0 00000.0 00000.0 00000.0 00—000 00000.0 00000.0 00000.0 00000.0 00—000 00000.0 00000.0 00000.0 00000.0 00000.0 00000.0 00—000 000—00 000—00 00000.0 00000.0 0—0000 00.0— 00.0— 00.0— 00.0— 00.0— 00.0— 00.—— 00.—— 00.: 00.: 00.: 00.0— 00.0— 00.0— 00.0— 00.0— 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 213 $35.7 mm66m6 966:- 935.7 6226 2356. 6d5add- 5ddm6._- 3d6d6. 55wod 8665.7 6836 352..- 385.7 5826 563.56. nmomdd- dmdoz- 668—6. 558d fiwoog- wom5_6 wwm:._- 533,—- 3526 5w5e56. awddd- 39:- 2:36. 55wmd $36.7 w_w6~6 6662.7 5626.7 66366 8356. 363d- Emvda- $526. 55mnd 665? . T wwwm66 Smd— .7 536m: 7 $266. d5wn56. 3.5— _ d- 562 m..- 62 n _ .6. 5de 665%.? «5266. 6662.7 mg 3.7 nmow66. 3856. Snood- :vwmA- 3366. 553d cows. 3.2: 6. 55.2 .T 363.7 2.526. @3656. ovaood- dmvmvg- 63 _ _ .6.. 55wmd w65_v._- 6665—6. 262.7 363.7 3636. mvwo56. 683.7 Sedng- 65ow66. 55mmd «.562. T 3536. 6652 . 7 53mm. 7 3636. 56356. .mv5ww. T 6360—. _6wm66. 55wdd 663.517 Endm6. comm—.7 _nwod._- 2306. 85656. 656dw._- 336.7 96266. 55mdd «dog..- Q5606. m5d2._- 862.7 3236. 66356. 53.5.? 235.7 65266 55w_d amen—.7 n25v6. 6562.7 852.7 vdm6m6. 352.6. 53.50.? 3565.7 2636 559d wmmw6.7 3306. 32 _ .T mdmno. T nmm5n6. 66:56. 2307 evmowg- 66mg .6 55w6d ddw66._- $866. «.36— .T 63566. wmmvc6. 8356. 2: EA- 55wd6._- wmdg .6 558d 3686. 53666. 336.7 w666w6. .3256. M5256. Dddvg- 336.7 d—5dd6 55wm._ dan6. 56656. £36.? 66656. _dmw56. $366. dmwdmg- mwonod- 626m6 55mm; 36556. nmvvw6. m2 8.7 $256. m—nmw6. $6666. wnw656. 6vmmw6. :w6m6. 55ww._ A? imam/Qua 3+ _+.._omm 53838 3203525 U Ngqéowsm anmv NO 6.9 035,—. 214 6350m- Eds-m6- Nomad- M6d5m.m- mod-509 m6d5m.m- ©3590. 5350m- cod-5nd- 66m5m.m- d6m5m.m- 9350m- 56m5m.m- m5d5n.m- wv~5m.m- _md5m.m- mmd5m.m- 6350m- ood5m.m- m5d5m.m- ~wd5m.m- 6350m- ~6m5m.m- 3 m5m.m- _mm5w.m- Ens-ww- o5w5m.m- mwgmw- vo~mmg 6d_mmA mm—mmg mw~mm4 m—dmmA mvmmmg 65dmmg mfimmmg VmMWmA 66mmm4 ~vvmmA 669mm; ~vmmmA 666mm; doommg 5d5mmg 565mm; d5wmm4 vmomma dvoomg wm_om4 ~v~cmA mmmcmg m5v6m4 cooomA 6V56m4 nooomA n565m4 _©d5mA on5mA vanda- V5wnd._- Q5wmd4- V5wmd._- ¢5wmd.—- v5wmd.—- ¢5wmd._- m5wmd._- m5wmd.- m5wmd._- m5wmd.—- m5wmd._- m5wmd._- o5wnd._- w5wmd._- w5wmd._- w5wmd._- 55wmd.- 55wmd.—- 55wmd._- 55wmd._- ©5wmd._- o5wnd.- m5wmd._- V5wmd._- m5wmd.~- d5wmd._- 65wmd._- wowmd.- wwwmdA- 5mmmm.m- wmmmn.n- 6836- 63.36- gnaw- mamma- nvmnhn- evmmmw- wvmnmd- 6326- mmmmm.m- nnnnn.m- wnnmmw- Snowd- vomnmw- oowmnd- m5mmm.m- w5mmm.m- ewmmmd- ammon- ammon- 56636- wGwnfi- 6836- gonna- Senna- 6wcnm.m- G526- d-¢mg om_vm4 ~o~vm4 5w_¢mg o~NVmA cedeg w5dva d—MQmA 6vam4 wwMVmA 6m¢¢mg m5vvm4 Mdmvmg n5n¢mA ~m6vm4 ~6ovm4 mm5vm4 mdwvmg 666cm; dwavwg wocnma m0—mm4 modnmg m5mmm4 mavnmg mdcmmg 665nm; m—ammA 5w66m4 ~5dom4 ~vw~w6- ~vw~w6. ~vw—w6- 3w—w6. ~¢w~w6. :w—w6- ~vw—w6- $w~w6- :wuw6. :w—wd- 6vw_w6. 6336. 6vw_w6. 6vw~w6. 6vw~w6. 6356. mmw~w6- 6mw~w6. 6mw~w6- 6mw_w6- wmw_w6- wmw_w6- 5mw_w6- 5mw~w6- omw~w6- omw_w6- mmw_w6. vmw~w6- mmw~w6u ~Mw_w6. 6586.5- 2666.5- 3666.5- 363.5- w56~6.5- a: 3.5- add—6.5- $26.5- 336.5- 326.5- w5c—6.5- 236.5- 363.5- m6dd6.5- 598.5- 6536.5- 638.5- dwdm6.5- 368.5- 363.5- 23.6.5- 6663.5- 353.5- 6366.5- 5356.5- 6686.5- 236.5- 632 .5- 3636 w5mm66 mmwm66 3866 Nan-666 32.66 3366 56ww66 wmn666 wdm66._ vw~ 66.— 3 :64 wdzog 2364 5334 $566.— 52w?— 8566." nmfl d .— 653: A 6602; was A 636mg 3— mm.— wooed.— M663; medma 6662.— 33m.— wvodvg 6066?? 5836. 666:6. mm _ $6. d236- dad—v6. n33.6- 63.36. 3216.. 66036- 3636- M5536. cow—v6- 86:6. 3696. ~596- mwddv6. doggy. 5236- 68:6- Swdv6. d336- 2 _ 9.6- owdmv6- N5396- M5636. ~336- £34.6- 5wm36- 65036- «.2 2 wd— od~ vd~ dd— d— w.: 6.: 9.: N: : w6~ 6.2 v6— N66 6— w6 66 v6 d6 w.w ow ¢.w d.w w.5 6.5 V5 215 wvm5m.n- 365m; wnwnd._- 853-.m- 653: 635.? 39.6.5- 22ch $636. d5 3552 63nd;- 8562 wdw_w6- canal 33:.- 5 dde: Swag- 33m.— edw_w6- nnadng 5659.6- wd wow5m.m- w5mwm.~ 35nd,? mam?“- med5m.— #356. «.335. :32 6236- 66 dm_wm.m- 86w: 25nd,? 5660.».- N665: ddw_w6- 53.2.5- 382 8636- v6 65w5m.m- wag: d5wmd._- 6286- N352 odw_w6- gwwvd.5- 3584 "255.6. d.@ wvowmw- 63$”.— V5wnd._- Enema- anew: 2w—w6. 635N5- 5dv¢o._ 3556- c vmdwmw- 33: 55nd..- 563%? Saw: 5_w_w6- 586M5- 336; damwv6- w.m mw_wm.m- womzl 65E:- Saofim- 232 538.? dd5dm.5- 5856; 633.6. 9n wmowmd- w56d: Emma:- 6wm5m.m- $8: 6536- 6325- v~5wo._ $63.6- vw Svamw- oawd: 9.5m:- m_owm.n- odwoz mdw_w6. 56:35- 35w: $6606. dd N639? ww5m¢.~ mmwnd._- wawmd- 32.: wmw_w6- ~wm6¢.5- $556; wmcdn6. m Zwan- 55632 m an:- omsew- d—ddvg dew—w? 5659.5- 359: 8306. wé 5mwmo.m- 3%.; 28d;- deQn- wowd: 8656- 2 «3.5- 65.36; 2536- 6.». 339m- 8—3; d262- m_6nw.m- 629; 65536- wdemv5- $.ch d286- .1. 225w- 88: 2.8:. mwcaow- wag: 556dw6. «663.5- cwdmg ~d_wm6- NJ. 3565.? 359; 586:- 3356- 62?.— dew6. 363.5. .5332 9:666. v 32w...“- anomva 365d? anodww- dawa: macaw? 633.5- 366: ndvdo? wd 33: ~d©5d._- wvvmmg onwdw6- 5dmmd.~ wda36- 6d 33m.— w5mwd._- m5a5d.~ wdmmw6- 552: 18566- ed £62.6- m_8d._ wwdad._- enddfio- :8: 66636- vavvd5- 2366 3356. d.m n92 6- 26:: undo:- wwm _ d6. 6586.6 wwvvw6- 6w_ 2 .5- ~..dodw6 wmdm56. m 3686. emwvw6 262.7 352.6- 65wow6 mcwvw6. 5336- 6336 £856. wd 2 _ :6. «65666 SE n. T n6d5d6- «.336 5omvw6. 36656- n¢nm¢6 w5d556- 6d 33 6 6. of Q6 563d? 63w. @- oddod6 $.5dw6- 65636- 3636 d— ~556- ed 3686- wvom66 nw5v~._- de666- 2.666. 6555.? 6326- 55536. 5396. dd 65366- 6dowd6. 863 . 7 $25.? dmm6m6- 62566. oncww.n- 66626- vwamo6. d moewdw- a5w666. 6386. 235-.m- 3266. wwdnv6- emode- $536. 8636- w.— 62 mwf d386- n5mwv6- E Fwd- namdm6. 6986. wm58é- wwdmm6- w56666- 6; 82:.- mSwNA- down}. m5dmm.v- 2552- 25.56 e533.- vodwdf Sedw6 v; ~+ + 0 ac A~1+Bmm<8® miimmm 56838 3203585 U Nag-8&3 QNL «m .5-: 03.:- 216 $66— 6- 362 4 waam. 7 36: .6- n5666._ 39.6.6- nmmfi .5- 58666 vw6m56- 6366. m 6.52: 6- 6356.6 «666.5. 7 ~5—6N6- 6626.— 85.36- mvmm _ .5- 363.6 m55~56- 6386 ~32 6- 66 264 manom. T 52 26- 336.6 3366- mm _ 2 .5- vow—w6 533.6- 63.36 5.3 6 N6- 666666 vvmom. T 66626.. 2536 ~356- mm566.5- «2556 666956- 69.36 622.6. 3686 $5607 2336- 25666 $536- mn_m6.5- 3356 3356- 63666 56636- 56366 263.7 3536- 93.66 33.66- 6355- 665566 66356- 6936 «2 26. 6668.6 6m6— m._- ~an5m6- 26656 «56366- :;566- 2686 6m6w56- 6mvw5N 523.c- mmm556 3:»:- m5owm6- 52m56 33.66- 3586. 65656 5mm656- @9456 3526- 3256 «52¢;- 6Ewm6- 62566 52366- 3—666- m56~m6 $5656- omvwod 86:6- 2 :66 62::- ~m55~.¢. 666666 66366- vSMwé- 5— .566 666556- 6336 ~566N6- gown .6 22 m. T 65636- 633 .6 3366- 63556- 8636 @3556- cmvwnd 6366 6- m66~m .6 6653.7 N326. $6596 6236- v6m~56- 626m .6 5:556- 6mvmm .N 352 6- 63 3.6 omvomA- 6336- 3.66 V6 66536- 63666. v6~6m6 556.556- emu-wed N6636- 66~6m6 363.7 3636- 66636 3366- 62666- —6mv~6 -m556- 639.6 69666 6- ~666m6 Ewan. T max: .6- N336 V6366- 6mmmm6- mm _ M: .6 36656.. 69.me 5.656.6- Emm~6 6334- 33; 6- :52 .6 $266- :movd- $2 6 .6 69.656- 69.2.5. N6686- v66£ .6 m6m5m. T am566.W ~32 .6 «3.666- 65636. 836.6 3356- envwmd 31.636qu azémmémv a-rbmmém comméu Abe-hob EMEm Ewan :86 5.me a 6.63 33 3:5 2:88 E 590cm 5 mod 60 35822: m 5.535 .m.> cozmsaom 3202885 ” $3-863 Fawn mm .65 935. 217 566666- 666666 566666- 66 6666- 666666 666666- 66666 .6.. 66666.6 66666.6 6666.6 56666.6- 66656.6 566666- 666666- 665666 666666- 66666 .6. 66666.6 66666.6 6666.6 665666- 666666 666666- 666666. 666666 666666- 66666 .6. 66566.6 66666.6 6666.6 666666- 66 666 .6 666666- 666666- 656666 665666- 66666 .6- 66666 .6 665666 6666.6 656 666- 6666 6 .6 666666- 666666- 56666.6 66566.6- 66666 .6. 66556.6 66666.6 6666.6 666666- 6656 6 .6 666 66.6- 656666- 666566 665666- 66666 .6- 66666.6 56666.6 6666.6 566666- 6666 6 .6 566 666- 666666- 666666 665666- 6666 6 .6- 666666 666666 6666.6 666666- 56666 .6 656 66.6- 56666.6- 66666.6 665666- 66566 .6- 66665.6 66666.6- 6666.5 66566.6- 566666 666666- 666666. 6666 6 .6 665666- 6666 6 6- 666656 666666- 6666.5 666666- 656666 666666- 666666- 66666 .6 6 66666- 66666 .6- 66665.6 66666.6- 6666.5 666666- 666666 666666- 666666- 6656 66 666666- 66666.6- 65665.6 65566.6- 6666.5 666666- 666666 566666- 666666- 66666 .6 666666- 666666. 66 665.6 666666- 6666.5 656666. 56566.6 666666- 666666- 66666.6 56666.6- 66666.6- 66666.6 66656.6- 6666.6 656566- 666666 655666- 66566.6- 66666.6 66666.6- 666666- 56666 .6 66666.6. 6666.6 666666- 66666 .6 66666.6- 656666. 66666.6 55666.6- 6 6 6666 66666.6 6666 6 .6. 6666.6 666666- 666666 6 6 6666- 666566- 66666.6 66666.6- 566666 66566.6 66666 .6- 6666.6 66666.6. 66665.6 665666- 665566. 66666.6 66566.6- 66666 .6 56666 .6 66666 6- 6666.6 66 666.6- 566666 666666- 66656.6- 66666.6 666 66.6- 66666 .6 66666.6 66666 .6. 6666.6 665666- 666666 666666. 665666- 66666.6 66566.6- 56666.6 66565.6 56666.6- 6666.6 66666.6. 66666.6 666666- 666666 66666.6 666666- 66666.6 66566.6 66666.6- 6666.6 6666.6 6 6666.6 66656.6- 66556.6 56666.6 66656.6- 566666 56666 .6 566666- 6666.6 66666 .6 56666.6 666666- 66666 .6 66666.6 665666- 66666 .6 66666.6 66 666.6- 6666.6 66666.6 66666.6 56665.6- 666666 66656 .6 66666 .6. 666666 66666.6 56666.6- 6666.6 66666.6 66656.6 666656- 665666 66666.6 666666- 65666.6 66666.6 66666.6- 6666.6 666666 66666.6 666656- 666566 65666.6 665666- 66666.6 66656.6 66 6666- 6666.6 666666 65666.6 666656- 66656.6 66666.6 66666 .6- 66 666 .6 66666.6 66666.6- 6666.6 666666 66666 .6 56 665.6- 666666 66656.6 66656.6- 66666.6 66566.6 66666.6- 6666.6 66666.6 666566 66665.6- 666666 655666 666666- 66666.6 56665.6 66666.6- 6666.6 66666 .6 666566 666666- 656666 655666 66666 .6- 65666.6 66666 .6 666666- 6666.6 66666. 6: 566666 666656- 656666 666666- 66656 .6. 6566 6 .6 56666.6 55666.6- 6666.6 6~+6+bmm 65668663 636382666 H $3-863 QNL ~56 .6-9 06.6.6.6. 218 66666.6- 66666.6- 6 6666.6- 666666- 566666- 666666- 666666- 666666- 66666.6- 66666.6- 66666.6- 66666.6- 66 6666- 666666- 666666- 666666- 666666- 666666- 666666- 666666- 656666- 666666.. 666666- 66666.6- 666666- 666666- 666666- 66 6666- 666666- 666666 666666 666666 666666 666666 666666 566666 66666.6 56666.6 566666 66666.6 65666.6 66666.6 55666.6 56666.6 66666.6 66666.6 65566.6 66666.6 666 666 666666 666666 566666 666666 666666 666666 66666.6 56666.6 666666 666666 656666- 656666- 656666- 556666- 556666- 556666- 556666- 556666- 656666- 656666- 65666.6- 65666.6- 65666.6- 66666.6- 666666- 66666.6. 66666.6- 66666.6- 66666.6- 66666.6- 66666.6- 56666.6- 66666.6- 666666- 666666- 566666- 666666- 666666. 6 66666- 666666- 66666.6 66666.6 66666.6 666666 666666 666666 666666 666666 666666 666666 666666 666666- 666666- 666666- 66666.6- 66666.6- 56666.6- 66 6666- 666666- 66 6666- 66666.6- 666666- 666666- 666666- 666666- 66 6666- 566666- 66666.6- 56666.6- 66666.6- 666666- 666666- 666666- 66666.6- 65666.6- 56666.6- 56666.6- 66666.6- 66 6666- 66 666.6- 66 6666.. 66666.6- 666666- 666666- 6 66666- 666666 656666 66666.6 66666.6 66666.6 65666.6 66666.6 66566.6 56666.6 666666 666666 566666 66666.6 66666.6 656666- 656666- 656666- 65666.6- 656666- 656666- 656666- 656666- 656666- 656666- 656666- 656666- 656666- 656666- 656666- 656666- 656666- 656666- 656666- 656666- 65666.6- 65666.6- 656666- 656666- 656666- 656666- 656666- 556666- 656666- 666666- 566666- 666666- 66666.6- 56666.6- 66566.6- 666666- 666666- 666666- 666666- 656666- 665666- 556666.. 6 6666.6- 656566.. 666566- 656666- 666666- 66 6666- 665666- 66666 6- 66666 .6- 6666 6 .6- 66666 6- 66566 6- 66666 .6- 66666 .6- 66666 6- 66666 .6- 6666 6 .6- 66665.6 66665.6 66656.6 55666.6 66666.6 66666.6 66666.6 66666.6 66666.6 66666.6 66566.6 66665.6 66666.6 56666.6 66666 .6 56666.6 66666.6 66666.6 66566.6 66665.6 56666.6 66666.6 66666.6 66666.6 66656.6 66666.6 66665.6 66666.6 56666.6 66666 .6 65666 .6 665666 666666 66666 .6 ,6 5666 .6 566 66 .6 66666 .6 66566 .6 65666 .6 66666 .6 66666 .6 6566 6 .6 6656 6 .6 6666 6 .6 5666 6 .6 6666 6 .6 65566 .6 66666 .6 66666 .6 666666 666666 666666 666666 66666.6 66666.6 66656.6 666566 666666 666666 666666 6666.6 6 6666.6 6 6666.66 6666.66 6666.66 6666.66 6666.66 6666.66 6666.66 6666.66 6666.66 6666.66 6666.66 6666.66 6666.66 6666.66 6666.66 6666.66 6666.66 6666.66 6666.66 6666.66 666666 666666 666666 666666 666666 6666.6 6666.6 6666.6 219 66666.6 6666 6. 6 66665.6- 66666.6 65666.6 66656 .6- 66666.6 66666.6 66666.6- 6666.6 66666.6 66666 .6 666656- 666666 66666.6 55656.6- 55666.6 66666.6 66666.6- 6666.6 56666 .6 56666.6 56665.6- 66666.6 55666.6 66656 .6- 66666.6 66666.6 66666.6- 6666.6 65666.6 66656.6 666656- 66566.6 56665.6 66666 .6- 66666.6 66566.6 66656.6- 6666.6 66666.6 66666.6 56665.6- 66666.6 66666.6 666666- 66666.6 66665.6 65656.6- 6666.6 66666.6 56666.6 56565.6- 56666.6 56666.6 66666 .6- 56656.6 66666.6 66666.6- 6665.6 66666.6 666656 666656- 66666.6 56666.6 666666- 65565.6 66656.6 66666.6- 66 65.6 66666.6 65666.6 66666.6- 6 6 6 66 .6 666666 66666 .6- 66 666.6 66666.6 66666.6- 6666.6 66666 .6 66666 .6 56666.6- 666666 66666.6 66666 .6. 666666 65566 .6 666666- 6666.6 66666.6 66666.6 666666- 666566 65666 .6 66666.6- 66666.6 566666 665666- 6666.6 6 6656.6 56666.6 66665.6- 66665.6 66666.6 66666 .6.. 66666.6 66666.6 66666.6- 6666.6 665656 66656.6 66665.6- 66566.6 66666.6. 566666.. 66666.6 66666.6 66666.6- 6666.6 566666 66666.6 66665.6- 66666.6 656666- 666566- 66666 .6 66 656.6 66666.6. 6666.6 66566.6 666566- 66565.6- 56666.6 665666- 65656 .6. 66666.6 66566.6 56666.6- 6666.6 666566 66566 .6- 65665.6- 56666.6 66656.6. 666666- 666666 66666.6 66666.6- 6666.6 56666.6 666666- 666556- 66666 .6 66666.6. 66566.6- 66666.6 665666- 666666- 6666.6 66666 .6 666666- 66665.6- 66666.6 566656- 66666.6- 66666.6 66666.6. 66656.6- 6666.6 6~+6+5mm<8§6u 6? 1.6.0.3866 R+6+molmmbwm6I-prm 6068863 3286:3666 ” $2660-63 6.me “6 .66-9 0666.6. 220 66666.6- 66666.6 66566.6- 66666.6- 66666.6 66666.6- 66666.6- 66666.6 666666 66.5 66666.6- 66656.6 66666.6- 66666.6- 56666.6 666 66.6- 66666.6- 66666.6 66566.6 66.5 66666.6- 66666.6 66666.6- 66666.6- 66666.6 666 66.6. 666 66.6- 66666.6 66666.6 66.5 66666.6- 65566.6 66666.6- 66656.6- 66666.6 666666- 56666.6- 66666.6 66666.6 66.5 66666.6- 66666.6 66666.6- 66666.6- 66666.6 666666- 66666.6- 66666.6 66656.6 66.5 66556.6- 66566.6 66666.6- 66666 .6- 6656 6.6 66666.6- 66666.6- 66666.6 65566.6 66.6 66666.6- 66666.6 666666- 66666.6- 66566.6 666666- 66666.6- 65666.6 66666.6 66.6 56666 .6- 65666.6 666666- 66666 .6- 66656.6 666666- 665666- 66666 .6 656666 66.6 66666.6- 66666.6 66666.6- 66656.6- 66666.6 66666.6- 56665.6- 66656.6 66666.6 66.6 66566 .6- 66666.6 66566.6- 56566.6- 66666.6 66566.6- 66665.6- 66666.6 6666 6.6 66.6 66666.6- 66666.6 66 666.6- 66666.6- 66666.6 66666.6- 66665.6- 66656.6 56666 .6 66.6 66566.6- 66666.6 66666.6- 66656.6- 56666.6 666666- 66666.6- 66665.6 65656 .6 66.6 66 666.6- 66665.6 6666 6.6- 66666.6- 55666.6 666666- 56666 .6- 66566 .6 6666 6 .6 66.6 66566.6- 65665.6 56666.6- 66666.6- 66666.6 66666.6- 666 66 .6- 66656.6 66666 .6 66.6 56666.6- 66665.6 666666- 66666.6- 66666.6 65666.6- 66666.6- 66566.6 666666 66.6 66666.6- 66665.6 666666- 66666.6- 66666.6 66666.6- 66666.6- 66666.6 656666 66.6 5566 6 .6- 56666.6 66566.6- 65666 .6- 66666.6 665666- 56666 .6- 66666.6 55666.6 66.6 65666.6- 66666.6 66656.6- 66666.6- 66666.6 666666- 66566.6- 66666.6 66666.6 66.6 66666.6- 66666.6 66666.6. 66666.6- 66666.6 66666.6- 66565.6- 66666.6 656666 66.6 66666.6- 66666.6 66666.6- 66666.6- 66666.6 66666 .6- 66666.6- 65666.6 666666- 66.6 6666 6.6- 66666.6 666666- 66666.6- 66666.6 6666 6 .6- 66666.6- 66666.6 666666- 66.6 656666- 666666 666666- 56656.6- 66666.6 66666.6- 56566.6- 56666.6 666666- 66.6 56666 .6- 66665.6 65666.6- 6 6 666 .6- 66666.6 66666 .6- 66666.6- 66666.6 65566.6- 66.6 65566 .6. 66656.6 666566- 66666.6. 66656.6 666666- 566666 66 656.6 666666- 66.6 666 66.6 665566- 66666.6- 55656.6 66666.6. 566666- 66656 .6 66666.6- 665666 66.6 65666.6 66666.6- 65666 .6. 66666 .6 66666.6- 66666.6 66666.6 66666.6- 66666.6 66.6 66666.6 66566.6- 65666.6 66665.6 56666.6- 66666.6 66656.6 66666.6- 666666 66.6 65666.6 65666.6- 66666.6 66666.6 66666.6- 66656.6 6 6566 .6 66666.6- 56665.6 66.6 66666.6 66666.6- 66666.6 66 665.6 55666.6- 66666.6 66665.6 66666.6- 66666.6 66.6 66566.6 56666.6- 66655.6 66666.6 66666.6- 66666.6 66566.6 66666.6- 66666 .6 66.6 aziommfivfic Ami-6066560 6~+6+uomm 60668868 3203585 U N63696:“ huwmv N6 .6 6.66 0666.6. 221 66666.6- 66666.6- 66666.6- 66666.6- 66666.6- 66666.6- 66666.6- 66666.6- 66666.6- 66666.6- 66666.6- 65666.6- 56666.6- 66666.6- 56666.6- 66666.6- 66666.6- 66666.6- 666 66.6- 666 66.6- 666 66.6- 66666.6- 56666.6- 66666.6- 56666.6- 56666.6- 66666.6- 65666.6... 66666.6- 56666.6- 66666.6 66666.6 66666.6 66566.6 65666.6 65656.6 66656.6 66656.6 66656.6 66666.6 65666.6 55666.6 66666.6 66666.6 66566.6 66666 .6 66666 .6 6666 6 .6 6666 6 .6 66666 .6 65666 .6 66666 .6 65666 .6 66666 .6 66666 .6 66656 .6 56666 .6 56666 .6 66666.6 56666.6 66566.6- 66566.6. 66566.6- 66566.6- 66566.6- 66566.6- 66566.6- 66566.6- 66566.6- 66566.6- 66566.6- 66566.6- 66566.6- 66566.6- 66566.6- 66566.6- 66566.6- 66566.6- 66566.6- 56566.6- 66566.6- 66566.6- 66566.6- 66566.6- 66566.6- 66566.6- 66566.6- 66566.6- 66566.6- 65566.6- 66666.6- 66666.6- 66666.6- 66666.6- 66666.6- 56666.6- 66666.6- 65666.6- 66666.6- 66666.6- 66666.6- 66666.6- 66666.6- 66666.6- 66666.6- 66666.6- 66666.6- 66566.6- 66566.6- 66566.6- 66566.6- 66666.6- 66666.6- 66666.6- 66666.6- 66666.6- 65666.6- 66666.6- 66666.6- 66666.6- 66666.6 65666.6 66666.6 66566.6 66666.6 65666.6 66666.6 65666.6 66566.6 66666.6 66656.6 65656.6 65556.6 66666.6 66666.6 66666.6 66666.6 66666.6 66666.6 66666.6 66666.6 66566.6 66666.6 65666.6 56666.6 66666.6 66666.6 66666.6 66666.6 66666.6 66666.6- 66666.6- 66666.6- 66666.6- 66666.6- 66666.6- 66666.6- 66666.6- 66666.6- 66666.6- 66666.6- 66666.6- 66666.6- 66666.6- 66666.6- 56666.6- 56666.6- 66666.6- 66666.6- 66666.6- 66666.6- 66666.6- 66666.6- 66666.6- 66666.6- 66666.6- 66666.6- 56666.6- 666 66.6- 66666.6- 65566.6- 66656.6- 66656.6- 66656.6- 66656.6- 66666.6- 66566.6- 66666.6- 66566.6- 66666.6- 66666.6- 66666.6- 66666.6- 66666.6- 66566.6- 66666.6- 65666.6- 66666.6- 66656.6- 56566.6- 66666.6- 666 65.6- 66665.6- 66565.6- 66665.6- 66665.6- 56555.6- 66665.6- 66666.6- 656 66.6- 66666.6 66566.6 56566.6 66666.6 6666 6 .6 66666 .6 66666.6 66666.6 66666.6 55666.6 66666.6 66666.6 66666.6 66665.6 66666.6 65666.6 566 66.6 66666.6 66666 .6 65666.6 66666.6 66656.6 66566.6 66666.6 66565.6 66666.6 66666.6 66666.6 65666.6 66666.6 66666.6 56666.6 66666.6 66666.6 66666.6 66666.6 66566.6 66666.6 66666.6 66666.6 66666.6 66666.6 66566.6 66666.6 66666.6 66666.6 66656.6 66656.6 66656.6 66666.6 66666.6 66666.6 66666.6 66666.6 66666.6 66666.6 66666.6 66666.6 66666.6 66666.6 66.66 66.66 66.66 66.66 66.66 66.66 66.66 66.66 66.66 66.66 66.66 66.66 66.66 66.66 66.66 66.66 66.66 66.66 66.66 66.66 66.6 66.6 66.6 66.6 66.6 66.6 66.6 66.6 66.6 66.6 222 66666.6- 66666.6 66666.6- 66656.6- 66566 .6 66666 .6- 66656.5- 66665.6- 66666.6 6666.6 66666. 6- 66666 .6 666 66.6- 66666. 6- 66656.6 66666 .6. 66666.5- 66666.6- 65666.6 6666.6 66666. 6- 56656.6 66666.6- 56666.6- 66666.6 66666 .6- 65666.5- 66666.6- 66666.6 6666.6 66556.6- 56666.6 66566.6- 56556.6- 66666.6 65666.6- 66666.5- 66666 .6- 66666.6 6666.6 65566.6- 66666.6 66666.6- 66666.6- 66666.6 65666 .6- 66665.5- 66666.6- 66666.6 6666.6 65666.6- 66665.6 66666.6- 666 66.6- 66665.6 56666 .6- 66655.5- 66666.6- 66666.6 6665.6 66666 .6- 66666.6 66666.6- 66666.6- 66666.6 56666 .6. 65665.5- 66666.6- 56666.6 6665.6 56556.6- 66656.6 66666.6- 66666.6- 66666.6 66666 .6- 65665.5- 66656.6- 66666.6 6666.6 66 666.6- 66666.6 66666.6- 66666.6- 65666.6 66666 .6. 66666.5- 656 66.6- 66666.6 6666.6 56666.6- 66666.6 56666.6- 66666.6- 66556.6 6666 6.6- 66666.5- 66666.6- 66666.6 6666.6 66666.6- 65566.6 65666.6- 65565.6- 66666.6 66666 .6- 66656.5- 65666 .6- 66666.6 6666.6 66665.6- 6666 6 .6 66666.6- 66666.6- 66666.6 66666 .6- 66 666.5- 66666.6- 66666.6 6666.6 66666.6- 66666.6 66666.6.- 56666.6- 66666.6 66566.6- 66666.5. 66666.6- 65666.6 6666.6 56566.6- 66666.6 66666.6- 66666.6- 666666 66666 .6- 66666.5- 66665.6- 55666.6 6666.6 66566.6- 66665.6 66566.6- 66656.6- 66656.6 6666 6 .6- 66666.5- 66666.6- 66666.6 6666.6 666 66.6- 66666.6 66666.6- 66666.6- 66666.6 6 6566 .6- 65665.5- 66666.6 6 6666.6 6666.6 66666 .6- 66656.6 66666.6- 66666.6- 66666.6 66566.6- 55666-6- 66666.6 66666.6- 6666.6 aliommfivmc 661+§m<8® 66+ .ioM-mfivm cow-kgnd 6.6636666 $566666 3666"» 68666.6 Evian-6 m 6.665 6666616666: 06886 :6 6662666 8 66.6 .60 3888266 6 66.8686 .m.> 686686606 6860:8226 6 6663-00-63 6.»me N6 .66-66 0666-6. 223 66666.6 6666 6.6- 66666.6 66666.6 66666.6 66666.6 66.5 66666.6 5666 6.6- 66666.6 66666.6 66666.6 66666.6 66.5 66665.6- 66656.6 6666 6.6- 66666.6- 66666.6 66666.6 65666.5- 66666.6 66666.6 66.5 66665.6- 65666.6 6666 6.6- 66666.6- 66666.6 66666.6 66666.5- 66666.6 66666 .6 66.5 66 655.6- 66666.6 66666.6- 66666.6- 66666.6 66666.6 66566.5- 65666 .6 66566 .6 66.5 66665.6- 66666.6 56666.6- 66666.6- 66666.6 65666.6 66 666.5- 66666.6 65666 .6 66.6 66666.6- 65666 .6 66666.6- 56 666.6- 55666.6 66666.6 6666 6.5- 66666.6 66656 .6 66.6 66666.6- 66666.6 66666.6- 666 66.6- 66666.6 66666.6 66666.5- 66566 .6 66666 .6 66.6 66666.6- 66666.6 66666.6- 66666.6- 66666.6 66666.6 666 66.5- 66666.6 6666 6 .6 66.6 66666.6- 66666.6 65666.6- 56666.6- 66665.6 66666.6 65566.5- 66666.6 66666 .6 66.6 65566.6- 66656.6 66666.6- 66666.6- 66665.6 56666.6 66666.5- 66666.6 56 66 6 .6 66.6 66666.6- 66665.6 66666.6- 66566 .6- 66655.6 66666.6 666 66.5- 66666.6 6666 6 .6 66.6 6666 6 .6- 66665.6 66566.6- 666 66.6- 66665.6 66666.6 66666.5- 66666.6 66666 .6 66.6 66566 .6- 66665.6 66666.6- 66666.6- 66665.6 66666.6 56666.5- 56666.6 66666.6 66.6 66666.6- 66666.6 556 66.6- 6666 6.6- 56665.6 66666.6 66666.5- 66666.6 66 656.6 66.6 666 6 6.6- 66666.6 66 666.6- 66666.6- 66666.6 66666.6 55666 .5- 65665.6 65666.6 66.6 66666.6- 66666.6 66656.6- 66666.6.. 66566.6 56566.6- 66666.5- 66666.6 66666.6 66.6 66666.6. 66666.6 66666.6- 66666 .6. 66666.6 66666.6- 66556.6- 65666.6 66666.6 66.6 66666.6- 66666.6 66666.6- 6666 6.6- 56666.6 56666.6- 66665.6- 66666.6 66666.6 66.6 65656.6- 56665.6 566666- 56566 .6- 666 65.6 66666.6- 66656.6- 65665.6 66666.6- 66.6 66656.6- 66 6566 66666.6- 66666.6- 66666.6 666 66.6- 66666.6- 66666.6 65666.6- 66.6 66666.6- 66666.6 66566.6- 66566.6- 56666.6 66666.6- 66666.6- 66666.6 66666.6- 66.6 6 6666.6- 66666.6 66656.6- 6666 6.6- 66666.6 66666.6- 66666.6- 56656.6 66666.6 66.6 65665.6- 66666.6 66666.6- 65666.6- 5656 6 .6 66566.6 66666.6- 66666.6 66666.6 66.6 656 66 .6- 66666.6 66566.6- 66656 .6- 66666.6 6666 6 .6 66666.6- 66566 .6 66666 .6 66.6 66666.6- 66666.6 66666 .6- 666 56.6- 66666.6 56666.6 65666.6- 66666.6 66666.6 66.6 66566.6- 66666.6- 66 656.6 66666.6- 66666 .6- 66666.6 66666.6- 66666.6- 55666.6 66.6 66666.6- 66666.6- 66666.6 66666.6- 66666.6- 66666.6 66666.6- 66 666.6- 66666.6 66.6 56566.6- 66566.6- 66666.6 66666.6 66566.6- 65666.6 66666.6 66666.6- 666666 66.6 65666.6 66665.6- 56666.6 66666m 66665.6- 66666.6 66666.6 66665.6- 66566.6 66.6 66+6+6pmm 666688668 8066:8266 ” 6626-8-63 Cub 60 .66-9 0666.6. 224 66665.6- 66665.6- 56665.6- 66665.6- 65665.6- 66665.6- 66665.6- 66665.6- 66665.6- 66665.6- 66665.6- 66665.6- 65665.6- 66665.6- 66 665.6- 66665.6- 66665.6- 66665.6- 66665.6- 66665.6- 56665.6- 65665.6- 66665.6- 56565.6- 66665.6- 65665.6- 666 65.6- 66665.6- 66665.6- 66565.6- 66666.6 66666.6 66666.6 66666.6 66666.6 66666.6 66666.6 56666.6 66666.6 66666.6 66666.6 66666.6 66666.6 65656.6 65656.6 66666.6 66666.6 66666.6 66666.6 66666.6 66666.6 66666.6 55666.6 66666.6 66666.6 65666.6 66666.6 66656.6 65666.6 66666.6 66666.6- 66666.6- 66666.6- 66666.6- 66666.6- 66666.6- 66666.6- 66666.6- 66666.6- 66666.6- 56666.6- 56666.6- 56666.6- 66666.6- 66666.6- 66666.6- 66666.6- 66666.6- 66666.6- 66666.6- 66666.6- 66666.6- 56666.6- 66666.6- 66666.6- 66666.6- 65666.6- 66666.6- 66666.6- 66666.6- 66665.6- 66666.6- 66666.6- 66666.6- 66666.6- 66666.6- 66666.6- 66666.6- 66666.6- 65666.6- 66666.6- 66666.6- 66666.6- 66666.6- 66666.6- 66666.6- 66666.6- 66666.6- 65666.6- 56 6666. 66666.6- 66666.6- 65666.6- 66666.6- 66666.6- 66566.6- 66666.6- 66666.6- 66666.6- 66666.6- 66566.6 66666.6 66666.6 66666.6 66666.6 66566.6 66666.6 66666.6 66666.6 66666.6 66666.6 66666.6 66666.6 65666.6 66666.6 65666.6 66666.6 66666.6 66666.6 66666.6 66666.6 66666.6 66666.6 66556.6 66666.6 66666.6 66666.6 65566.6 66666.6 66666.6 66666.6 66666.6 66666.6 66666.6 66666.6 66666.6 66666.6 66666.6 66666.6 66666.6 66666.6 66666.6 56666.6 56666.6 66666.6 66666.6 66666.6 66666.6 66666.6 66666.6 66666.6 66666.6 66666.6 66666.6 66666.6 66666.6 66666.6 66666.6 66666.6 66666.6 65566.6- 66666.6- 66666.6. 66666.6- 66666.6- 55666.6- 666 66.6- 66666.6- 66666.6- 66666.6- 65566.6- 66656.6- 66656.6- 66666.6- 66666.6- 66666.6- 66666.6- 66666.6- 666 66.6- 56666.6- 65666.6- 66656.6- 66566.6- 66666.5- 66 666.5- 66 666.5- 66666.5- 66566.5- 666 6 6 .5- 66666 .5- 56666.6 65666 .6 56666 .6 66666.6 66666.6 66666.6 66666.6 66656.6 66566.6 65666.6 65656.6 56566.6 66666.6 66666.6 66666.6 66666.6 66666.6 66666.6 66665.6 66666.6 66656.6 65666.6 66666.6 66666.6 55666 .6 66666 .6 66666.6 66666.6 66666.6 65566.6 66666.6 66666.6 66566.6 66566.6 66666.6 66666.6 66666.6 66666.6 66666.6 66666.6 65666.6 66666.6 66666.6 55666.6 66566.6 66666.6 66666.6 65666.6 66666.6 66666.6 66666.6 66566.6 66666.6 66666.6 66666.6 66566.6 66666.6 65666.6 66666.6 66666.6 66.66 66.66 66.66 66.66 66.66 66.66 66.66 66.66 66.66 66.66 66.66 66.66 66.66 66.66 66.66 66.66 66.66 66.66 66.66 66.66 66.6 66.6 66.6 66.6 66.6 66.6 66.6 66.6 66.6 66.6 225 65666.6- 66666.6 66666.6- 6666 6.6- 66566.6 66666.6- 66666.6- 66666.6 65666.6 6666 .6 66656.6- 66666.6 66666.6- 66566.6- 66666.6 66666.6- 66666.6- 66666.6 66566.6 6666.6 56666 .6- 66666.6 56666.6- 66666.6- 66566.6 66566.6- 65666.6- 56666.6 56666.6 6666.6 65666 .6- 55565.6 66666.6- 66666.6- 66665.6 66666.6- 66666.6- 56665.6 65666.6 6666.6 66666.6 66666.6- 66665.6 66666.6- 66666.6 65666.6- 6666.6 66666.6- 56666.6 666666. 66666 .6- 66666.6 666 66.6- 66666.6- 66666.6 6668.6- 6666.6 66656.6- 66666.6 65666.6- 66666.6- 66666.6 66666.6- 66666.6.- 66666.6 66666.6- 6666.6 66666.6 66666.6- 66666.6 666 66.6- 66666.6 66666.6- 6666.6 66666.6 66666.6- 66556.6 66666.6- 66566.6 66666.6- 6665.6 65666.6 66666.6- 66666.6 66666.6- 65666.6 66566.6- 6665.6 666 65.6- 66566 .6 66666.6- 66666.6- 66666 .6 55666.6- 66 666.6- 66666 .6 65666.6- 6666.6 6 6666.6- 66666.6 66666.6- 65665.6- 66666.6 66666.6- 66666.6- 66566.6 6568.6. 6666.6 66656.6- 66666.6 56566.6- 66666.6- 66666.6 55666.6- 66566.6- 66666.6 66666.6.- 6666.6 66666.6- 66666.6 66666.6- 66666.6- 56666.6 66666.6- 66565.6- 66666.6 66 666.6- 6666.6 56666.6- 66665.6 55666.6- 66666.6- 66665.6 66666.6- 66666.6- 66665.6 66666.6 6666.6 66666.6- 66666.6 66666.6- 66666.6- 66556.6 66666.6- 56666.6- 65566.6 66566.6 6666.6 66666.6- 66566.6 66656.6- 66666.6- 66666.6 65666.6- 66666.6- 66666.6 66666.6 6666.6 66+ : .6.-6696636 66+ 16866666 66+ 1.5665666 666-#65an 6.6865666 £96666.va 666W 666.666 666-em ”6 6.666 6:666 666:: 068068 :6 6660666 8 66.6 .60 $588066 .6 666626266 .m.> 6866886606 68603525 6 6626-00-63 Cub N60 .66-: 9666-6- 226 66366 666666 666666 666666 6666666 ~566666 6666666 662666 6666666 6656666 666666 6666666 6656666 6666666 6666666 666666 6566666 6656666 6656666 6666666 #66666 6666666 6566666 6666666. 6666666. ~566666. 56666. 666666. 6666666. 666656.5 6666666 6666666 5666666 6— 66666 6666666— 66~ 666.6— 65— 656.: 666666.: 5666.: 66666_ .6~ 666—66.6— 36566.66 666656.6— 86666.2 66:66.66 66666—6— 63666.: 566565.: 66666.: 65666—.2 666665.6~ 666666.6~ 6666666 656666 6566566 6656666 6— 656_ .6 66566.5 66666_ .5 6666566. 5666566. 6666566. 6656566. 6665566. 6666566. 6666666. 565666. 5566666. 666666. 6665666. 6666666. 66666.6. 666666. 6566666. 6665666. 6— 3666. 6656666. 66_ 666.6. 66_ 6666. 5666666. 6656666. 66666.6. 663666. 6656666. 6656666. 6666666. 666666. 6666566. 6666666. 62666 666566 665—666 6 86666 6666666 6666666 5666666 ~6— 666.6 6666666 6— 5666.6 6666666 5666666 6666666 6666666 666666 5666666 6666666 6666666 6666666 6666666 6666666 6666666 66_ 6666 6666666. 6666666. 6666666. 62666. 6666666. 6666666. 666666.5 666666 6666666 5626—6 5655656 66666.2 666656— 666656.: 656666.: 666666.: 666666.6~ 566666.6— 66666.2 55666.6— 666566.6~ 566656.6— 66666~.6_ 566666.: 566656.: 565666.: 566666.: 656665.6~ 666566.6~ 6666666 6566666 666—666 656~ .66 ~6—66— .6 6" 656.5 66666_ .5 6— 6656.6. 6566566. 5666566. 6666566. 6666566. 6666566. 6666566. 666 666. 6666666. 56— 666.6. 6665666. 6666666. 666—66.6. 5666666. 6666666. 6566666. 6656666. 6566666. 66:66.6. 6656666. 6666666. 6666666. 666666. 666—66.6. 5666666. 6666666. 6666666. 666 666.6. 5: 656.6. 6666666. 66666.6 66_ 666.6 6666666 6666666 6656666 66666.6 656666 6666666 666666 6666666 6566666 6666666 666666 6—56666 666666 6666666 666666 6— 6666 6666666 6656666 6— 66666 6666666 5666666 663666. 66— 666.6. 6665666. 6568.6. 6666.6. 6666666. 666666.6~ 566566.5— 666656.5— 566666.5— _6~66_ .5~ 666666.6— 666566.6— 666666.6— ~666~6.6_ 666666.66 666566.6~ 36666.3 36656.: 66662 .6_ 26665.2 66666.2 666666.6~ 666666.6~ 666666.: 666666.: 665666.: 666—6.2 ~566—66— 6656666 6665666 6666666 66666.5 66666.5 66666.6 66266.6 6666666. 6656666. 6665666. 568666. 6666666. 6666666. 6665666. 6666666. ~65— 66.6. 6666666. 666666. 6666666. 5666666. 6666666. 66666. 6665666. 6566666. 6566566. 66_ ~566. 66:56.6. 656—566. 666—566. 6666566. 6655666. 6666666. 6566666. 6666666. 666666. 6666666. 6666666. 66.6 66.6 66.6 66.6 66.6 66.6 66.6 66.5 66.5 66.5 66.5 66.5 66.6 66.6 66.6 66.6 66.6 66.6 66.6 66.6 66.6 66.6 66.6 66.6 66.6 66.6 66.6 66.6 66.6 66.6 6.6_ 33 3E: 288m 5 668:...”— cm 66.6 6o 35882: x 5.5626 .m.> 56838 3202565 ” N63696:“ CNL a: .67: 0.6a. 227 6666666 6666666 5666666 6666666 6666666 5566666 5666666 6666666 66 66666 663666 63 666.6 66_ 666.6 66~ 666.6 6 _ 6666.6 6666666 666666 666666 6666666 666666 6666666 66 6666.6 6666666 5656666 6 66666.6 6666666 666— 66.6 666—66.6 6566666 663666 ~566_ 6.6 666666 6666666 6666666 626666 6666666 6666666 666666 6666656 6666666 6666666 66666.“ 666666; 656:6; 6666664 62665.— 666666; 66656_ .6 6666666 6_ 6665.6 6566566 6666666 6666666 5_ 6666.6 6666656 66666.6 6666656 6666666 6656666 6666666. :66666. 6666666. 6666666. 366666. 6666666. 6656666. 5656666. 6656666. 5666666. 6666666. 666666. 6666666. 6566666. 66666.6. 666666. 6566666. 6666666. 6666666. 6 66666.6. 6665666. 66 6566.6. 5— 6566.6. 6665666. 656666. 6566666. 6666666. 6666666. 666566. 6666566. 6—6—566. 636666 6666666 6666666 6666666 6666666 666666 ~566666 6666666 6666666 26666 66—6666 66566.6 65366.6 666666 6666666 6666666 6666666 6666666 6666666 6666666 6666666 66666.6 25666.6 666666 6666666 65636.6 66686.6 5665666 6566666 666666 6566 6 6.6 6665566 5666666 665566 666566 .6 6666666 666—66.6 6666656 666666 6666566 66 65664 6666 66.— 666666.— 56666.— 55565.— 666656.— 66666.6 66666.6 6656556 666—2 .6 6666666 6665666 6666566 6666656 653 6.6 666_ 65.6 6666566 6566666 6666666. 6666666. 6566666. 5666666. 56666.6. 666666. 6666666. 6666666. 6 65666.6. 6556666. 6666666. 6566666. 36666.6. 666666. 6666666. 666666. 6666666. 6666666. 6666666. 6656666. 6666666. 663666. 6665666. 6655666. 6_ 6666. 666666. 6666666. 6666666. 66656.6. 6656566. ~66 g 56.6. 6666666 5666666 6656666 666666 6666666 266666 6666666 26366 566—666 66— 36.6 56~ 56.6 66666.6 66666.6 66636.6 656—666 566—666 666—666 56:66.6 66636.6 666866 6666666 566666 6666666 666666 6666666 6656666 6666666 66666.2 566666.: 666565.: 665556.: 666666.6~ 66556— .6— 6666666~ 6656;6— ~666666~ 66566.6— 62665.3 5666666— 656— _6.6_ 6666666— 6666666_ 566666.6_ 6_ ~66.— .6— 66656_ .6— 56666_ 6" 6266— .6~ 66565— 6— 65666_ .6— 6666— ~ .6~ 566566.6~ 566~666~ 6666666~ 66666.6— 6666:6— 66666.6— 6556666— 666656.6_ 6666656. 626656. .666656. 666656. 6666656. 6— 6565.6. 65665.6. ~566656. 5666656. 6666666. 666—66.6. 666666. 6666666. 66_ 666.6. 5666666. 6665666. 6656666. 6563 6.6. 3 6g 66. 6666—66. 6666—66. 6656 6.6. 55656.6. 656666. 6666666. 6666666. 6666666. 6666666. 255666. 6666666. 666— 66.6. 66.6— 66.6— 66.6— 66.6— 66.6— 66.6— 66.6— 66.6— 66.6— 66.6— 66.2 66.66 66.6— 66.6— 66.6— 66.6— 66.6— 66.6~ 66.: 66.: 66.: 66.: 66.: 666— 66.6— 66.6— 66.6— 66.2 66.6 66.6 66.6 228 566—5.: 6666666 66666.2 66666.6. 6666666 66666.2 66666.6. 6666666 66 256.6- 6665666 6666666 66666 .2 2 666666. 5666666 2666.2 666666. 6666666 66666.2 66256.6. 6665666 66666.2 62 666.6. 56666.2 65666.6- 66266.2 55256.6- 6665666 66666.6 66666.2 66666.6- 5666666 6 666.2 66666.6. 5666666 66666 .2 2 66.566. 6665666 56 6666.6 66566.2 66666.6- 6666666 66566. 22 66666.6. 6666666 62666.2 66256.6. 6665666 6666666 62 662 .2 6666.6. 6666666 6666— .22 66666.6. 6666666 2662 2 .2 262 56.6. 6665666 62666.6 66666.2 65666.6. 6666666 66666.2 6666.6. 26666.6 66666.6_ 66256.6. 6665626 66666.6 65626.2 65666.6. 66666.6 66656.62 66666.6- 66 6666 66656.62 26256.6. 666562 .6 6266666 66 2 66.62 65666.6- 6666666 66666.62 66666.6. 66666.6 562 6562 66256.6. 6665666 6666666 66666.62 656666- 6666666 66665.62 66666.6- 6666666 6666.62 66 256.6. 6665666 66565.62 65666.6- 5666562 66666.6. 62666.62 62566- 6665666 6666666 66666.62 66 666.6- . 66666.6 662 26.62 62 666.6. 6666666 66656.62 66_ 56.6. 6665666 6666666 6666.62 666666. 6656666 6662 6 .62 66666.6- 62666.6 66666.62 55656.6. 6665666 6666666 66666.62 66666.6. 6566666 5666.62 66666.6- _ 66666.6 5. 662 .62 26656.6- 6665666 26666.62 56666.6. 66266.62 66666.6. 66666.62 66666.6. 6665656 62 6666.6 66666.62 66666.6. 66666.6 62666.62 66666.6- 562 666.6 66556.6 66666.6. 6665656 6666666 6 2562 .62 66666.6. 6666666 66262 .62 66266.6. 26666.6 26665.6 66666.6. 6665666 3+ IBMMJQNNU 8+ 1.6.0.3866 2? 2&6va CUM-@856 $89866 Eomnfiovm ENG @0866 EDEN m 6.62 33 £65 2803 E 66356 on 66.6 .60 35882: 6 «$8626 .m.> coufimaom 8202535 U $3-863 Cub NS .676— 03:5 229 6665666 565662 .6 6666656. 6655666 6666666 6266656. 62 2626.6 662666.62 6665666. 66.6 6656666 6266656 6666656. 6666666 2 26566.6 6666656. 6666266 656566.62 62 6666.6. 66.6 6656666 56526.6 6566656. 6256666 2626666 2666656. 6655266 666666.62 662 2666. 66.6 5666266 6662566 6666656. 5666266 5626556 2666656. 6566266 666666.62 5666666. 66.6 6666266 66666662 6566656. 6562 266 66666662 6666656. 6666266 666665.62 6656666. 66.6 6566266 66666662 6665656. 6266266 65666662 6665656. 5666666 666666.62 6666666. 66.6 6666266 2656622 6666656. 2266266 666666.22 5656656. 6662666 666666.62 2666666. 66.6 6666266 265265. 22 6626656. 6666266 626566. 22 6566656. 6666666 262556.52 66 6665.6. 66.6 6665266 662662 .62 6662 65.6. 6665266 266666.62 6562656. 6666666 562666.52 6666656. 66.6 6656266 666566.62 6266656. 6266266 626566.62 6666656. 6666666 666666.62 5666656. 66.6 665666.62 6626656. 666666.62 6566656. 666656.62 5666656. 66.5 666665.62 6666656. 556566.62 2666656. 656266.62 6665656. 66.5 2666666 66 2666.62 6666656. 6266666 266665.62 6666656. 6665666 266666.62 62 6665.6. 66.5 6656666 66626662 6666656. 2666666 666665.62 6666656. 2655666 666662 .6 2 6656256. 66.5 666665.62 6666656. 666625.62 6666656. 566266.62 2626256. 66.5 2666666 666656.62 6656656. 2566666 666666.62 6566656. 6666666 666662 .62 6666256. 66.6 2666666 666266.62 6662656. 6666666 566666.62 6662656. 6666666 666666.62 6566256. 66.6 6666666 666656.62 6666656. 6666666 666666.62 6666656. 6665666 66662 2.62 6566256. 66.6 6626666 66666662 6566656. 6666666 666266.22 6666656. 6656666 666656.62 6656256. 66.6 6666666 666266.22 66 2 665.6. 6562666 666566. 22 6656656. 6656666 266666.62 6566256. 66.6 626666.22 6666656. 666666.22 6666656. 666666.22 6666256. 66.6 5666266 66666662 6666656. 6666266 66666662 6552656. 6665266 66666662 6256256. 66.6 6655666 256666 .62 6666656. 6665666 66665662 6666656. 6562 26.6 65566662 6666256. 66.6 6662666- 66666662 6266656. 6562666. 65666662 6666656. 6666666 6656656 622256. 66.6 6666266. 6666666 6626656. 6666266. 6662566 6666656. 6626666. 66662 6.6 6626656. 66.6 6666666. 266562 .6 6666656. 5666666. 6662666 6662 65.6. 6552666. 6626666 6666656. 66.6 6665666. 6666266 2665656. 6666666. 6666666 6665656. 6666666. 6626666 6666666. 66.6 6666666. 6666 2 2 .6 5552656. 6666566. 666662 .6 6662656. 6256666. 656666 .5 6626666. 66.6 6666666- 666626.5 2666256. 6666666. 662 2 26.5 6666256. 6666666. 266666.5 2666666. 66.6 66652 2 .6- 566662 .5 5666656. 66662 2 .6. 656262 .5 6266656. 66626I2 .6. 6256266 6666566. 66.6 26+ TmUmeOLfiG 26+ 2+mbmm<06® 26+ _+..2.066 606889.. 3020:5082 H $360-63 Cub 372 .52.62 0263—. 230 6666666 62 6666.6 6666666 6666666 6666666 6666666 2666666 6656666 6666666 6662666 6662666 6662666 6652666 6662666 2566666 6666666 6266666 6656666 6666666 6666666 6666666 6626666 6666666 6665666 6666666 6666666 6666666 6666666 6662666 6665666 6662656 6656666 6666666 6666662 666662 .2 6666662 2266662 6666662 6666652 6666662 565262 .6 2656666 2 62 666.6 6266666 66662 6.6 6565666 6626666 6266566 2666266 6656666 6666666 662 666.6 2566666 626656.5 6666256. 6266256. 6666256. 666625.6- 6566256. 5656256. 6656256. 6556256. 6266256. 6666256. 6266256. 6666256. 6665256. 62 25256. 6625256. 6665256. 2265256. 6665256. 6665256. 6665256. 6666256- 6666256. 6266256. 6666256. 6626256. 6666256. 2266256. 656665.6- 6666656. 6662656. 6626656. 6666666 6626666 6666666 6666666 6666666 6666666 62 6666.6 6666666 6656666 662 2666 6662666 6262666 6652666 6662666 2666666 6666666 6666666 6656666 6666666 6666666 6666666 6626666 2 26666.6 6656666 6666666 6666666 5666666 6666666 6666266 5666666 6666656 5666666 6666666 6556662 665662 .2 6626662 6562662 6666662 6666652 6666662 5666666 2665666 5666256 6266266 666666 .6 66 6666.6 62 2666.6 6526566 2666266 6665666 6666666 6666666 6666666 66662 6.5 23.3. $823. $823. 8823- 2323. $823. $623. 2523.. $323. 6823. 56:6. 2823. 38:8. 63:3- 22:3. 666:;- 62:3. 36:3. 68:3. 68:3. 8828. 26:3. 366:6. 82:5. 668:6. 2223. 8623. $863. 286;. 9.65.2.- .823. 6666666 6266666 2626666 2566666 6666666 6566666 6666666 5626666 6666666 6665666 5665666 6666666 6556666 6666666 6266266 6656266 62 62 26.6 6662 266 6666266 6526266 6666266 5566266 5666266 655662 .66 66265666 526666.66 666666.66 656655.66 656666.66 662666.26 652662 .26 656666.26 666666.26 6662 26.2 6 662666.26 266666.26 666666.26 666656.26 666566.26 666666.26 662666.26 566656.26 625666.26 656566.26 666666.26 625666.26 626566.26 566662 .26 666626.26 666566.66 266665.66 666666.66 26662666 656662 .66 6562666. 6666666. 2666666. 6666666- 5666666. 6666666. 5666666. 6665666. 6265666. 6666666. 6256666. 6666666. 6662666. 6666666. 2666666. 655666.6- 6666666- 2665666. 5666666. 6666666. 6656566. 6566566. 5666566. 6666566. 6666566. 6655566. 6666566. 6666666. 2666666. 6626666- 6666666. 66.62 66.62 66.62 6662 66.62 66.62 66.62 66.62 66.62 66.62 66.62 66.62 66.62 66.62 66.62 66.62 66.62 66.62 66.62 66.62 66.62 66.22 66.22 66.22 66.22 66.22 66.62 66.62 66.62 66.62 66.62 231 6666666 656652.62 6656656. 6666666 62662 2.62 6666656. 6565666 666566.62 6666256. 6562 6.6 6666666 666262.62 6666656. 6666666 666666.62 6666656. 6525666 666665.62 6666 2 5.6. 65666.6 5666666 666666.62 6666656. 5666666 666656.22 6666656. 6666666 666666.62 6656256. 65626.6 666666.22 5666656. 666666.22 6666656. 656666.62 6656256. 65662 .6 6666666 566556.22 6666656. 6626666 666666.22 5666656. 6666666 66666662 2666256. 65622.6 6666666 666565.22 662 665.6. 6666666 666265.22 6656656. 6566666 666666.62 6566 256. 65666.6 6666666 666625.22 662 665.6. 6626666 226656.22 2656656. 6266666 56566662 2666256. 65626.6 2662666 666666.22 662 665.6. 6662666 666666.22 2656656. 6666666 666266.22 6666256. 65666.6 262 2666 256266.22 6226656. 6656666 666666.22 6656656. 6666666 666626.22 6666256. 65626.6 6666666 666266.22 6666656. 6666266 666226.22 2666656. 6266666 665656.22 6256256. 65666.6 656666.22 2566656. 666266.22 6666656. 566666.22 6666256. 65626.6 6666266 626666.22 6666656. 6566266 666566.22 5666656. 6662666 656666.22 2666256. 65665.6 666662.22 6656656. 665662.22 6566656. 666666.22 6666256. 65625.6 6666266 626666.22 2666656. 6656266 626666.22 6666656. 6666266 662262.22 2566256. 65666.6 6666266 66666662 6666656. 6666266 66266662 5662656. 6665266 25626662 6666256. 65626.6 66666662 2666656. 66666662 6262656. 66666662 6666256. 65666.6 2666266 62 666562 2652656. 6262 266 6662 6562 5262656. 2266266 66656562 6266256. 65626.6 2 T 28.0.3836 2? 1.56.3866 26+ 2+Bmm 2068668 3202:6262 ” 6663-00-63 CNL 872 62-62 0.66.2. CHAPTER 5 The Electronic Structure of ScLi, TiLi, VLi, CrLi, and CuLi and Their Positive Ions A. Introduction In an earlier study, Harrisonl showed that those states of ScLi that dissociate to ground state Li and Sc in a 4323d configuration are characterized by a small ( 0.24.. 8, 0.0 d —Zo (4s23d) —3F (4523d2) —4F._g4523d3) — so (4s23d4) Lu , < -O.5 - 231.00 -1.0 1 : 7s (453d5) . -1.08 '1 '5 l l l l Sc Ti V Cr Figure 1. Energy separation between the lowest terms of the 52dn and sdn+1 configurations. Calculated(MRCI) and experimental separations are presented with the experimental results connected by a dotted line. 236 second f set of four primitive functions, contracted to 3, were taken from Langhofi‘ and Bauschlicher8 and were used in the CuLi calculations. For the Lithium basis, a Williams and Streitwieser9 4p representation of the Li 2p orbital was added to a 12 s primitive set of van Duijneveldt.10 The Lithium basis set was contracted to 352p and proves flexible enough to describe both the ground- and the low- lying excited 2P state of Lithium. All calculations were performed on Silicon Graphic Workstations, using the Columbu592ll set of codes. Multiconfigurational Self-Consistent Field wavefimctions (MCSCF) were constructed, using two orbitals to describe the bonding electron pair and permitting the d electrons to occupy orbitals so that the angular momentum (electronic symmetry) was accurately described. For the Configuration Interaction wavefunction, all single and double excitations were calculated from the MC SCF wavefirnction, MCSCF+1+2. Unlinked clusters were accounted for by an Averaged Coupled-Pair Functional12 (ACPF) over the same MCSCF+1+2 CSF space. In what follows, we will refer to the MCSCF+1+2 as the multireference CI or MRCI. We show, in Figure 2, the basic form of the MCSCF wavefunction and, in Table 5-1, the number of configuration state functions (C SF’s) used in the MC SCF and MRCI wavefimctions. C. Neutral Lithides We will consider, first, the states that result when a Li atom interacts with the ground state of the transition elements. This means we will consider the szdn configurations for Sc, Ti, and V and the sdn”1 configuration of Cr and Cu. To orient the discussion, Figures 3 and 4 show the potential energy curves for the states of TiLi that 237 Ground State MCSCF WaveFunctions Neutral Ions ScLi‘I’ mcscf— —(core) (b b*)2 cr3d5+l TiLi ‘Pmcscf— —(core) (b b"‘)2 o[3d,rx 3d5+-3d7ry 3d5.]2 VLi rum: (core) (b b*)2 3d..1 3d5+1 3d,...l 3d,,1 CrLi W.,... = (core) (b b*)2 3d,.l 3a..1 3d5+1 3d,...l 3d,,l CuLi \rlmcscf = (core) (b b*)2 3.1.."- 3a..2 3.15.2 3d...2 3a.,2 Positive Ions ScLiW mcscf— (core) (b b"‘)2 3d5+l TiLi+ Wm... = (core) (b b*)2 [3.1.x 3d8+ - 3d,, 3d.» ]2 VLi+ Wm... = (core) (b b*)2 3.15.1 3d,...l 3d...1 CrLi+ Irmcscf= (core) 0' 3d,,1 3d5.1 3.15.1 3d,...l 3.1.,l CuLi+ rpm... = (core) 0' 3d,2 3.1.} 3d5+2 3an 3d...2 Figure 2. Orbitals involved in the MCSCF wavefimctions for the neutral and monopositive transition-metal lithides. 238 Table 5-1. Energy separation between the lowest terms of the 52d“ and sd'"l configurations. Calculated (MRCI) and experimental separations are presented with the experimental results connected by a dotted line. Molecule State High-Spin Electron CSF ’5 Configuration MCSCF MRCI ScLi 3A od5 4817 ScLi+ 2A d5 4 1619 ScLi+ 4A oold5 1 721 TiLi 4(1) Gdnds 12 17723 TiLi 4A dnxdnydg 6 9770 TiLi+ 3CD dnda 4622 TiLi+ 5A o dflxdnyds 1 1293 VLi 5A o dnxd.,[yd5 7 17641 VLi 5A do dnxdflydgg 7 17641 VLi+ 4A duxdnyd5 6 9770 VLi+ 62+ 0 dfixdnydm d5_ 1 2056 CrLi 6H o dodnyd5+ d5_ 8 27338 CrLi 62+ d5 8 27338 CrLi+ 52+ dflxdflydg+ d5_ 7 16970 CrLi+ 72+ od5 1 2833 CuLi 3A od5 5 98030 CuLi 12+ — 3 24747 CuLi+ 2A d5 4 49166 CuLi“ 22+ 6 4 49166 239 . TiLi MC SCF ‘1‘“. " Energy (m Hartree) Figure 3. Calculated (MCSCF) potential energy curves for the lowest quartet and doublet states of TiLi that correlate with the ground-state products, Ti(3F) + Li(ZS). 240 41 TiLi MCSCF+1+2 Ti (39mm Energy (mHartree) r. Figure 4. Calculated (MCSCF+1+2) potential energy curves for the lowest quartet and doublet states of TiLi that correlate with the ground-state products, Ti(3 F) + Li(2S). Energy (m Hartree) O l 241 TiLi 4(1) Ti (534p3d2f) + Li (332p) _..- —-__.. l.— .. ............... mCSCf ......... mcscf+1 +2 acpf Figure 5. 4(1) ground-state potential curve of TiLi, calculated with the MCSCF, MCSCF+1+2, and ACPF techniques. 242 40 _ 30 _ _ .1 '. Cr (554p3d2f) + Li (352p) 20 _ 717 10 _ e ‘I t ' z ‘1“ . 0 q ................................ é .................... 3 d ........... 53 -1o _ c m - 20 J ............... mcscf --------- mCScf+1+2 . acpf '30 .. I I I I ' I ' I ' I ' I I T t l I I Figure 6. 62+ ground-state potential energy curves of CrLi, calculated with MCSCF, MCSCF+1+2, and ACPF techniques. 243 M236 :2 6: 666 666.6 626.2 20.62 666 666.6 6 66.2 ..EU< I6 +6 .9 b 236 A262 236 A «2» «6 «666$ 62580 +26. 666 66 6.6 66 2 .2 68236 266 6063230 202 2062 2.230 666 566.6 666.6 666 666.6 666.6 "2.2066 6.6.9.26 -mééev 226 A 6. 6» 2» 3 6v 256 A 6» 6» 6» Eb 2:580 +N.» 666 2 6 5.6 666.6 63286 2.26 66 2 66 2 . 6 2 66.6 20622 2.260 2: $3 ”2: 39280 32 "Eu... 2.» .9 Q b 6 A: H: v 286 A6» 6» 6» Ev 286 A6» 6» 65 22590 <6 566 665.6 6666 6328mm 4“ 666 62 2. .6 666.6 2062 2.2> 62 6 666.6 66 2 .2 662 666.6 666.6 "2.2026 6 An .Q A6 k bv 22m A 6 6 62 22m 6 6 2.820662 266 656 565.6 666.6 62580 06 6 2 6 66 2 . 6 66 6.6 20632 2.22.2. 626 666.6 666.6 "2.206. A: E a» V 365 A 6» fiv 023m A 3 .0 6820662 run 6063280 202 6.520 <6 6 2 6 666. 6 66 6.6 2062 2.206 9.256 62.50% 2:05:80 236 “8 $6 96 93 90 225—60 836 o3 A3 962 6022202 02392022 252666 2.66666 .837. 02826 .....66m6 2:8 =66~m6 282: 2862225: 226 2 02296563 2.220 6:6 .225 .2.2> .242 .2. .2206 .20 mos; 5.2 6220:2626 26256863 228 .5652 6:22 .6655 256620865 66 0266 .2. 244 correlate with the 3F ground state of Ti. The MCSCF results in Figure 3 suggest strongly that this level of theory is incapable of describing bond formation in this molecule. The MRCI results in Figure 4, however, are much improved and predict that TiLi is bound in all of the quartet and doublet states that derive from Ti(3F) + Li(ZS). Note, also, the remarkably small binding energies and the large density of states predicted for this system. The ACPF12 approximation corrects for unlinked cluster effects in the MRCI, and we compare, in Figure 5, the results of this technique with the MCSCF and MRCI prediction for the ground 4(1) state of TiLi. This figure illustrates a recurring theme when Li interacts with a transition metal atom in the szdn configuration; i. e., most of the bond energy is correlation energy. Similar results obtain for ScLi (3A) and VLi (5A). The ground-state terms of both Cr and Cu are derived from the sdn+1 configuration, and when Li interacts with these terms, we form 62* and 12* states, respectively. The potential energy curves for CrLi are shown for various levels of calculations in Figure 6. Note that, in this instance, the MC SCF seems qualitatively correct, although correlation effects are crucial to the accurate representation of these interactions. A similar result obtains for CuLi in the 12“ state. Summarized in Table 5-2, the dissociation energy, bond length, and vibrational frequency for these states and several others yet to be discussed. The ground state of ScLi, TiLi, CrLi, and CuLi each correlate with the lowest term of the transition element. The ground state of VLi is not the 5A (szd3) state described above but a second 5A state that correlates to the sd4 configuration. These two 245 can a 89:83 was a? 2: was? +63: +63: 2: 8: ms: 82 o o I so 32 22 ._ Ewe 89o wood 58 we - mm ho mm: $2 ~32 memo wood 53 no - 9. > 83 3: 8: 86o 82 .o 83 mm - n: a. I | l I 83 23 n: - mm om ..Eo< 562 ”53» 562 60:85 $3 no 93 on 29$ .56 $3 qmm 863m 235 $6 3 + ENE £2626 use 252» 2: a? 22850 85 32.2. 6o 83% 326306 666 22:36 39502 222 .06 82:0 668:0 2628206 QUmUSG 62623260 .66 0266.6. 246 states are shown in Figure 7. The MRCI binding energy for the 5A (sd4) state is 0.868 eV, relative to the 6D asymptote, while the binding energy of the 5A (szd3) state is 0.264 eV, relative to the 4F asymptote. Since our calculated $2d3-sd4 splitting is 0.342 eV, the 5A (sd4) is the ground state by 0.262 eV. This raises the question of how far above the ground states of the other transition metal lithides are the states that correlate with the excited state of the transition metal? To address this, wavefimctions were constructed for TiLi that trace their lineage to the 5F (sd3) configuration of Ti and for CrLi that traces their lineage to the 5D (szd4) of Cr. We were unsuccessful in constructing the corresponding multireference CI functions that correlate with the 4F (sdz) state of Sc or the 2D (52d9) state of Cu. The results are collected in Table 5-2. Figures 8-11, the summarized results of bonding to the 52d“ or sdn“l states, for all of the lithides except CuLi. From Table 5-2, we see that those states that correlate with the den configuration of the transition element have bond energies (at the MRCI level) between 0.2 and 0.3 eV; and further, the De’s increase with increasing bond length. Also, the vibrational frequencies are all ~ 200 cm]. The states that correlate with the sdn+1 configurations have somewhat different characteristics. The bond strengths, relative to the adiabatic asymptote, are larger than those of the 52dn states, and the vibrational frequencies are also uniformly larger. It is expected that, in order for Li to bond to a high-spin state of the sdn+1 configuration, the transition metal must uncouple the 4s spin from the remaining high- spin 3d electrons. The energy involved in this randomization of the 4s spin, the exchange 247 15 — VLi 5A MCSCF+ 1+2 ‘ v (5s4p3d2f) + Li (382p) 1o - V(GD) + Li(28) 'l 5 A V(4F) + LJ'(Z’S) Energy (mHartree) I 7 8 9 10 11 12 R (a 0) Figure 7. Two 5A states of VLi that correlate with the 52d3 and sd4 asymptotes. 248 .+ . 8ch So SCLI 0.08 ev _.__ 4F(spd)/ \ ..-... I ’ \ / 4 2 F d \ 0.94 ev / (S ) l / \ / \ / 1.69 ev ‘ 4 I \ 1.47«ev 2‘ _ l 20(32d1 1.92 ev l \\ 0.60 ev ,/ 0.30 ev\ / .L__ ___ aA / . / l / l ’ 1.09 ev 2A __l I __._l Figure 8. Comparison of the neutral and positive ion states of ScLi, calculated at the MRCI level. 249 TiLi+ Ti TiLi. __ .. 5F sd3 .____ I \\ l 1 I, \‘ 890 1.13 ev / 0.914 ev \ 0. av / \ / \ / X / 3F(32d2) \ 4 / I i x A 5,, ... / I 0305 SW. 0.324 ev l __L _ __ \__L__ 4(1) l / / . v / 0.784 ev / I l’ 1 00 ev 3 ’ —--- Figure 9. Comparison of the neutral and positive ion states of TiLi, calculated at the MRCI level. 250 VLi+ v 60(sd4) I"_"-_]—\ I’ 0.342 ev\ "l- .0.933 ev I I / / _l__ I, I” 6 + _ / I E _l— , 4 0.323 ev,’ 0.914 ev A __.l__’ _L.._ VLi fF(82d3) \\ ’ ' 0'264 e0\‘\ 0.868 ev \\ 5 A \ 0.262 ev \___l_ 5A Figure 10. Comparison of the neutral and positive ion states of VLi, calculated at the MRCI level. 251 .+ . CrLI Cr CrLi 5D(82d4) _ .. I x .. ...... 1 I, l . \ 0.20 ev 6H / 0.88 ev /’ 1.08 ev / / 1.56 ev 52+ ' I 78(sd5) ll \ / \\ 1.10 ev I, 0-68 eV \\ / / l \x 6 + 7 + L/ 0.90 ev'”'""' _— E z I ....L- Figure 11. Comparison of the neutral and positive ion states of CrLi, calculated at the MRCI level. 252 energy loss,3 is easily estimated as half of the difference between the state in which the 45 is high-spin coupled to the 3d“1 system and in which it is low-spin coupled. For example, in Sc, the 4F term corresponds to the 45 being high-spin coupled to the high- spin 3d2 core, while the lowest 2F term corresponds to it being low-spin coupled to this same high-spin 3d2 core. This energy difference4 is 0.424 eV and, therefore, the EEL is 0.212 eV. Continuing in this way, we construct Table 5-3 in which we tabulate the total EEL for Sc-Cr as well as the BEL per 3d electron. Note that this latter quantity decreases slightly in going from Sc-Cr, reflecting the contracting 3d shell. The calculated De(both the MRCI and ACPF values) was augmented with the experimental EEL to produce the tabulated “intrinsic” bond energies. These results suggest that the intrinsic bond strength of Li and a 45 transition element orbital is ~ 1.62 eV (ACPF result) or 1.40 eV (MRCI result). This allows us to estimate the as—yet-calculated De for the 32‘ (sdz) state of ScLi as 1.4 - 1.2 eV. Summarized in Figure 12 are the ground-state potential curves for these lithides. D. Positive Lithides The asymptotic products for M-Li+ are M + Li+, M+ + Li, and M“ + Li+, where M* is an excited state of the transition metal. The relative experimental energies of these asymptotes are shown in Figure 13. The lowest asymptote for all transition elements is the ground-state M, interacting with Li+, and we will consider this interaction first. Once again, there are two classes of interaction. With Sc, Ti, and V, the Li+ ion encounters a 52dn configuration, while, for Cr and Cu, it is an sdn+1 configuration. 253 20- . M - L1 106 04 a g -10— . (In ‘ “‘ TI ‘1‘ ‘-.‘ Cr 6% _20 _ l“ '3,“ \," a; ‘3‘. - -' 21:3 ‘ ‘1. --------------- ScLi 3A (4323d1) L“ -30— ...... V --------- TiLi4 (4Sz3d2) - ------------- VLi5A (4813d4) -40 1 CrLi 6):*'(4s1 3d5) , Cu Li 123“(4Sl3d10) '50 fil'f'l'l'l'l‘l'l'l 3 4 5 6 7 8 9 10 11 12 R (30) Figure 12. MRCI ground-state potential curves for the neutral lithides. 254 M‘ + Li+ 7 " 5'82 “21‘“ ..§£3.§€‘.?.lff). 6.74 sd3 (SF) 676. $0945.01 ----- £8 32”” (2°) , . 6:56am; ----------- —.... I..- M + Ll " ......... g sd3 (5F) "-.._,.-"" .ZZSd‘OOS) 6 '1 .................. ,5&3-5'32-(30).I.."‘£6d5183)m. M + Lit ' 134952“ (20) _52d2(~‘F) :32d3(4F) _s2d4(so) _sd1°(?S) 5 21 4 d m 1 v 3 _, “J 1 < 2 2. Mt + U 1 EWUF) L19 82(19 (20) 1 d ................. 0.?! sd3 (5F) ..... .EOde‘ISD) . . ................ 124-6‘00) M + Li 0 .. _ 52d (20) _52d2(3F) _ s2d3(4F) _ sd5 (75) _sd1°(~’S) q '1 I I l r 1 SC Ti V Cr Cu Figure 13. Experimental energy levels for the low-lying asymptotic products M + Li, M + Li, M + Li*, and M* + Li“. 255 5‘. VLi+ 4A 0 4 v (5s4p3d2f) + Li (332p) -10... Energy (m Hartree) -35- " I, --------------- mcscf . ......... mcscf+1+2 acpf Figure 14. 4A ground-state potential curves of VLi”, calculated with the MCSCF, MCSCF+1+2, and ACPF techniques. 256 30— 20-1 104 O I L -20 2 Energy (mHartree) <13 . ~----«-----~ VLi+ 4A -40- '''' --------- CrLi+ 72+ . CuLi+ 22+ '50 ' I ' I ' I I I T I ' I I I r I . I 3 4 5 6 7 8 9 10 1 1 12 Figure 15. MRCI ground-state potential energy curves for the monopositive lithides. 257 336 886 a. a c 2520 22282.? CNN 23 2S 2.8.26.2 23336.62: 6: $3 $6 +55 i .2 88m 88m A 6662» «65.20 6.02 2520 £823 5 286 ”no 2032226 +6“ SN 83 86 35 i a 836 2620.62. 0.656 02 256 2 x 3me P. N: a; 86 9520 216.633 :6 ~86 So +15 88m 6 x: 88m 8:me 30 .6 if» :N 93 m: 2.555 3133 on E $3. 8.2 +56. 386 256 8:26 3% as. :2 2%.». as 2.555 3 Novqm 8N and 8.2 Sam 5558 saw 6.53 as 3 J 93 an “5558 25m 6-53 as :6 on $3 so 2832 2+:Uva au66mv 282260 062.222..— 280260226682. anew—22> 6o 32626883220 63623260 ....6 0266.6 258 In the presence of Li+, the 2D of Sc generates 22+, 2H, and 2A symmetries; the 3F of Ti generates 32', 3H, 3A, and 3CD, and the 4F of V generates 42‘, 4IT, 4A, and 4(1). We have considered the 2A of ScLi+, the 3CD of TiLi+, and the 4A of VLi+. The potential energy curves for each of these states were calculated at several theoretical levels, and representative curves for VLi+ are shown in Figure 14. It is interesting that, relative to the more correlated techniques, the MCSCF level of theory overestimates the interaction energy between L‘i+ and these transition metals in the 32d“ configurations. Since this interaction energy will depend strongly on the in-situ charge on Li, we speculate that the MC SCF function does not permit as much charge transfer from M to Li+ as the ACPF and MRCI calculations. Another viewpoint is that the CI techniques more accurately order the various mono-positive asymptotes shown in Figure 13. These results also indicate that, unlike the neutral lithides, these systems can be adequately described without significant electron correlation. The potential energy curves for these systems are compared in Figure 15, while the dissociation energies, bond lengths, and vibrational frequencies calculated at the MRCI level are collected in Table 5-4. In each of these states, the transition element starts out with a 52dn configuration. If the interaction was purely ionic, the number of electrons on Li at the equilibrium separation in MLi+ would be 2, the 152 pair. From the population analysis shown in Table 5-5, we see that Lithium has gained between 0.39 and 0.35 electrons, attesting to a significant covalent interaction. Cr and Cu are fimdamentally different, in that their ground states have a 5d“1 configuration and the bare Li+ interacts with a configuration without any singlet coupled electron pairs. When interacting with Li+, the 7S state of Cr generates a 72+ state, while the 2S state of Cu generates a 22*“ state. The potential 259 curves for these states are also shown in Figure 15, and their dissociation energies, bond length, and vibrational frequencies are collected in Table 5-4. The population analysis (Table 5-5) suggests that, in addition to the long-range electrostatic interaction, a small but significant amount of charge is transferred to Li+, resulting in a one-electron, two- center bond. The data in Table 5-4 show that the bond energies of the ground-state M-Li+ ions increase with increasing bond length. The correlation is almost linear, as we can see in Figure 16. This is remarkable, considering that the bonding in the ScLi+, TiLi+, and VLi+ is quite different from CrLi+ and CuLi+. To pursue this further, we constructed wavefunctions for the states derivable from the M“ + Li+ asymptote. For Cr and Cu, this means Li+ will interact with the 5D and 2D (szdn) asymptote, respectively, so, we studied the 521+ state of CrLi+ and the 2A state of CuLi+. These results are shown in Table 5-4 and the corresponding population analysis in Table 5-5. Note that the correlation between the bond length and bond energies is maintained. It is also noteworthy that, while the bond energies change by a factor of two and the bond lengths by 0.4 A, the vibrational frequencies of all of the 32d“ states changes by only 7 cm"1 in going fi'om the lowest (240 cm'l) to the highest (247 cm'l). States derivable from the M“ + Li+ asymptote for Sc, Ti, and V were also considered. For Ti and V, this means that Li+ will interact with the 5F (sd3) and 6D (sd4) states, respectively, so also studied was the 5A state of TiLi+ and the 62* state of VLi+. These results are collected in Tables 5-4 and 5-5. The 5A (sd3) state of TiLi+ is bound by 260 83+ 83+ 83+ 83+ 83+ 83+ 83+ 83+ 83+ 83+ 3 o 83 83 83 83 83 83 83 83 3 3 .3 8 2 3 83 83 83 83 3 83 3 3 x33 5 83 83 W 83 83 W 83 83 W 83 83 W 3 3 a. 8 2 .3 83 83 83 83 3 83 3 3 3 x33 2 3 83 83 83 83 3 83 3 3 3 333 5 u . . u . . u . . u . . 3 83 83 m 83 3 83 3 m 83 _ 38 _ m 83 3 38 3 m 3 3 a 8 2 3 83 M 83 83 M 83 .3 M 83 3 3 3 3% 2 33 £3 83 :3 83 83 83 3:3 83 83 D33 3 83 83 83 83 83 83 33 83 83 83 mm 5 83 83 W 83 83 W 83 83 M 83 83 W 83 83 +38 2 83 83 m 83 383 W 83 83 M 83 3.3 w 32 3 33 o8 2 83 83M 83 33M 33 83M 83 33W 383 23 832 E3 83 83 83 83 83 83 83 E3 83 8 2 AS??? @313 Q” Fumv +w> $33 +Nm 98v +wo @333. A233 S+ + e' MC SCF MRCI ACPF A] 5.4281 5.9623 5.9755 Li 5.4320 5.3796 5.3804 AlLi 5.1354 6.5034 7.2461 Initially, Multireference-Self-Consitent-Field(MCSCF) wavefunctions were generated fiom the valance space consisting of Al 3s3pz3px3py and the Li 25 space. Multireference-Configuration-InteractionmeI) wavefunctions were constructed from the MCSCF reference space. A larger set of MRCI active space calculations were derived from the same MCSCF reference space, in which, single and double excitations were also included out of Al 252px2py2pz orbitals and from the Li ls orbital. Averaged Coupled Pair Functional(ACPF) wavefiinctions used the same MCSCF reference space both with and without the single and double excitations from the core electrons as in the MRCI calculations. All calculations were performed in sz symmetry using the Columbus suite of codes. 271 C. Results Three MCSCF wavefimctions were considered to describe electronic states that dissociate to the ground state atoms and 2 MCSCF wavefunctions dissociate to the first excited state of Li. Table 6-2 shows the various spectroscopic properties and Figure 2 gives the relative potential energy surfaces of each electronic state. The ground state was determined by MCSCF to be the 'Y with a bond energy of De=0.959 ev relative to the ground state atoms and a vibrational frequency of me=3 19 cm'1 and a bond length of Rapt=5.379 a0. Mulliken population analysis shows the bond to be from the atomic Al 3p, orbital and a Li 252pz hybrid orbital as expected. Four other states are also summarized by Table 6-2 and Figure 2. The MRCI and ACPF results are also given in Table 6-1 along with results of the larger active space calculations. MRCI correlation increases the bond energy by +0055 ev and decreases the. bond length by -0.011 a0. The relative populations of the 5 low lying states are provided in Table 6-3. The Al atom in the ground state acquires a charge of -0.206 and this state has the smallest charge on A1 of any of the low lying states. The larger active space of the MRCI and ACPF wavefiinctions increase the MCSCF bond energy of the ground state by 0.060 ev and 0.112 ev respectively. Both the MRCI and the ACPF gave the fundamental vibrational frequency as coe=3 03 cm“. Though changing the total energy by as much as 21.1 Hartrees, these large active space calculations indicate the insignificance of correlation in bonding to the core orbitals. 272 Table 6-2. Characteristics of low lying states State Method Total Energy De (mH / eV) ch (a0) u(debye) (De(cm'l) '2‘“ MCSCF -249.344441 35.229 / 0.9587 5.3787 3.752 319 MRCI -249.404096 40.034/ 1.0894 5.3800 3.083 318 -249.444066 37.450/ 1.0191 5.3522 3.279 308 ACPF -249.431216 38.398/ 1.0449 5.3437 303 -249.452287 39.340/ 1.0753 5.3107 308 expt.‘ 27.729 / 0.7545 318 Boldyrev, Gonzales, and Simons5 37.1 / 1.01 12' MCSCF -249.295088 28.273 / 0.7694 4.6222 4.236 391 MRCI -249.355194 52.347/ 1.4245 4.5537 4.226 419 -249.393786 51.019/ 1.3883 4.4931 4.074 439 ACPF -249.361025 57.129/ 1.5546 4.6093 399 -249.404229 58.432/ 1.5900 4.5583 407 32' MCSCF -249.311093 44.279/ 1.2049 4.5359 4.033 412 MRCI -249.394522 69.896/ 1.9020 4.5041 4.056 428 -249.412987 70.208/ 1.9150 4.4836 4.153 431 ACPF -249.398735 72.418/ 1.9706 4.5087 428 -249.419624 74.918 / 2.0387 4.4854 432 1II MCSCF ---.--- --.---- / --.---- - ---- --- MRCI -249.398901 6.641 / 0.1807 5.2181 5.007 242 -249.416317 6.839 / 0.1861 5.2056 5.121 241 ACPF -249.402313 8.368 / 0.2277 5.1979 251 -249.421863 9.524 / 0.2592 5.1689 255 31'1 MCSCF -249.343916 9.433 /0.2567 5.0684 5.485 317 MRCI -249.420417 28.158 / 0.7662 4.9769 5.260 341 -249.437743 28.737 / 0.7820 4.9680 5.276 382 ACPF -249.423809 29.864 / 0.8126 4.9443 367 -249.443119 32.614 / 0.8875 4.9390 374 Energy (eV) 2.2 - 2.0 ~ 1.8 - 1.6 - 1.4 5 12 - 1.0 4 0.8: . 0.6 n 0.4 -' 02 - 0.0 — -o.2 - -o.4 - -0.6 5 -o.8-3 -1.o-' -1.2 273 Alw-r-LiGPO) ...------:::.- .......... ................ ...... ,. 1:,- NHHC‘FP) + L? (’3) o ...... ... .... I oooooooooooooooo ... ........ ........................ 0'. .- D I. ‘. ‘- o AlLi --------------- MCSCF —— MRCI I 1 'l‘l 1314 l I ' l ' l a 9 11 12 R (a0) 1 10. Figure 2. Potential energy curves of the low lying electronic states of AlLi using MCSCF and MRCI. 274 Table 6-3. Population analysis of low lying states of AlLi 112* 1‘2' 132' m I311 Al 35 1.9370 1.8112 1.7467 1.8319 1.8469 A1 3pz 1.1673 0.0823 0.0824 0.4983 0.5997 Al 3py 0.0187 0.7902 0.8259 0.9757 0.8398 Al 3px 0.0187 0.7902 0.8259 0.0339 0.0373 Li 25 0.7082 0.0505 0.0625 0.5348 0.4048 Li 2p, 0.0530 0.0454 0.0601 0.0602 0.0833 Li 2py 0.0148 0.1835 0.1780 0.0102 0.1292 Li 2px 0.0148 0.1835 0.1780 0.0002 0.0000 Q(M) +0.2092 +0.5049 +0.5214 +0.3944 +0.3825 The bond dissociation energy is inconsistent with the experimental value of Duncan and co-workers (0.755 ev, 6089 cm") and a previous theoretical value of Rosenkrantz (De=0.793 ev). However, it is consistent with Boldyrev and co-workers (De=1.01 ev). Duncan regards his value as an estimate since it is based on a fit of four vibrational hotband energy levels to a Morse potential. Based on initial calculations of the excited states A1 atom, a large diffuse basis set is required to characterize the electronic states with any degree of accuracy. D. Excited States A variety of other excited states of AlLi have been characterized by optimizing the higher roots fi'om the MRCI wave. Figure 3 gives the potential energy curves of all states computed by MRCI. The asymptotes of the potential energy curves are ordered according to the energies of the corresponding atomic products. The ground state is labeled I 12+ and higher roots of the same multiplicity and electronic symmetry 275 3 >5 U) L— OJ C NJ 0.0_ 132? ___A1(ZP°)+Li(28) fi 1 -0.5-4 In NH \ . -1.0- 112* . ' A1L1 rI'I'I'I'l'l'l'r'l'l'l 3 4 5 6 7 8 91011121314 R a (0) Figure 3. Potential energy curves of the low lying electronic states of AlLi using MRCI. are labeled II, 111,... in order of increasing energy. Both of the A states come from the 276 second roots of the singlet and triplet A2 wavefunction. electronic state. Table 6-4. Calculated characteristics of MRCI roots Table 6-4 provides the total energies of the roots corresponding to each State MRCI Total Energy TE(eV) De (mH / eV) Req (a0) mc(cm‘1) 112+ ROOT 1 -249.404096 0.0 40.034 / 1.089 5.3800 317 1112.:+ ROOT 2 -249.318327 2.3372 52.602 / 1.431 5.4734 206 11112:+ ROOT 3 -249.308791 2.6620 55.188 / 1.502 4.9678 457 112' ROOT 1 -249.355194 1.5504 52.347/ 1.424 4.5538 419 11A ROOT 2 -249.284764 3.2966 9.985 / 0.272 6.7297 130 132:- ROOT 1 -249.394522 0.5172 69.884/ 1.902 4.5041 428 13A ROOT 2 -249.290997 3.2610 16.203 /0.441 7.5073 355 111-1 ROOT 1 -249.377533 0.7233 7.010 / 0.191 5.2638 238 1111-1 ROOT 2 -249.317899 2.3633 36.965 / 1.006 5.6686 254 111111 ROOT 3 -249.284391 3.4157 3.771 /0.1026 7.4928 73 ~ 131-1 ROOT 1 -249.398905 0.1751 28.362 / 0.772 5.0056 337 1131-1 ROOT 2 -249.321009 2.3598 40.915 / 1.113 6.1799 222 111311 ROOT 3 -249.299366 3.9665 20.677 / 0.563 5.8474 254 The adiabatic transition energy, optimized separation, and vibrational frequency are also provided. All of the computed transition energies are within 4 ev of the ground state. The potential energy curves of the first three electronic state are asymptotic to the ground state atoms. The next 10 excited states dissociate to a ground state Al atom and the first excited state of the Li atom. The remaining 3 electronic states 277 dissociate to products of a ground state Li atom and various electronic configurations of the Al atom. E. Positive Ion The MCSCF first adiabatic ionization potential of AlLi was 5.1354 ev. MRCI and ACPF give an ionization potential of 6.5034 ev and 7.2461 ev respectively. The ground state of AlLi+ was determined to be the 222+ state. The positive ion was bound at the MCSCF level by De=1. 1837 ev. MRCI and ACPF both increased the bonding by less than 6 mev. The positive charge in the system reduces the bonding to an electrostatic interaction of a positive Li ion and a neutral polarizable Al atom. Thus correlation offers little change in the bonding energy. The correlation difference between the MCSCF and MRCI ionization potential is attributed to the increase in total energy of the neutral system with correlation. Two other states, 211 and 411, also obtained minima in their potential energy curves. As shown in Figure 4, the 211 dissociates to a ground state Al atom and a Li+, while the asymptotic limit of the ‘II is an Al atom with a 333p2 configuration and a positive Li atom. Populations for all bound states are given in Table 6—6. F. AlLi AND ScLi The ground state orbital configuration of the Sc atom is 4523dl while the Al atom has a similar ground state of 3523p’. Similarities between the bonding of ScLi and AlLi ground states might be expected, however, the two molecules have 278 3.5 ~ Li+ (IS) + A1 (4P) Li*(15) + A1 (2P) Dissociation Energy (eV) .0 O l N :1 j 5'3 0| 1 1 _.s '0 J N *2 AlLi+MRC1 l'l'l'l'l'l'l'l 7 8 91011121314 R(a0) .L bl U 0|— 0)— Figure 4. Potential energy curves of the low lying electronic states of AlLi" using MRCI. 279 Table 6-5. Characteristics of Low Lying States of the Positive Ion State Method Total Energy De (mH / eV) ch (a0) c0¢(cm'l) 22* MCSCF —249. 156876 43.499/ 1.1837 5.3824 206 MRCI -249.166473 43.717/ 1.1896 5.8449 663 ACPF -249.166382 43.620/ 1.1869 5.9138 321 Boldyrev, Gonzales, and Simons5 37.131 / 1.0104 5.6786 242 211 MCSCF -249010094 26.567 / 0.7229 5.3799 269 MRCI -249.180183 8.599 / 0.2340 5.4433 208 ACPF -249.199630 9.751 /0.2653 5.3419 228 Boldyrev, Gonzales, and Simons5 5.3309 205 41'1 MCSCF -249.059376 30.198 / 0.8217 5.8064 232 MRCI -249.077067 30.192 / 0.8216 5.7890 235 ACPF -249.077286 30.194 / 0.8216 5.7897 234 Table 6-6. Population anaylsis of A1Li+ 22+ 22- 4“ Al 35 1.9894 1.2591 0.9983 Al 3pz 0.7323 0.0306 0.8093 A] 3py 0.0003 0.6266 0.9478 Al 3px 0.0003 0.6266 0.0040 Li 25 0.2555 0.0089 0.1467 Li 2pz 0.0002 0.0114 0.0162 Li 2py 0.0000 0.0272 0.0225 Li 2px 0.0000 0.0272 0.0001 Q(M) +0.2555 +0.1097 +0.1785 280 significantly different chemistry. As stated in Chapter 5, there is a repulsive interaction between the Sc 452 and the Li 25 orbitals and remains repulsive until the Sc hybridizes. The singly occupied Sc 3d is unable to bond with the Li 25 due to its compact nature, or rather the diffuse nature of the Li 25 orbital prevents it from passing the Sc 35. The energy required for hybridization of the Sc 35 leaves an optimal bonding configuration for the ground state of ScLi as a Sc atom with 4s‘3d2 configuration and the Li 251 atomic configuration. For an A1 atom the 3s2 orbital is also repulsive to an approaching Li 25, however, the single occupied 2p orbital extends well beyond the Al 35. There is no energy 1055 required for hybridization and the Li 25 orbital readily forms a bond with the A1 3p orbital. It is also of interest to point out that the energy need for an Sc atom to go fi'om a 4523dl state to a 4s'3d2 state is 1.427 ev while the energy needed for an Al atom to go from 3523pl configuration to a 3513p2 configuration is 3.605 ev. G. Conclusion In this study we computed the spectroscopic properties (re, we, Te, and De) of 16 electronic states of AlLi using MCSCF followed by MRCI and ACPF. The ground state of the AlLi was determined to be 12* state with a bond length of ROP‘=5.311 a0 (2.8103 Angstroms), a vibrational frequency of (0e=308 cm'1 and a dissociation energy of De=1.071 ev relative to the ground state asymptotes. 281 H. References 1. 2. L. R. Brock, J .S. Pilgrim, M.A. Duncan, Chem. Phys. Lett. 1994, 230, 93 ME. Rosenkrantz, University of Dayton Interim Report No. PL-TR-3088, Phillips Laboratory, Edwards Air Force Base, CA(1992) A.I. Boldyrev, J. Simons and P. Von Schleyer, J .Chem.Phys., 1993, 99, 8793 HP. Cheng, R.N. Barnett and U. Landman, Phys. Rev. B, 1993, 48, 1820 AI. Boldyrev, N. Gonzales, and J. Simons, J. Phys. Chem., 1994, 98, 2098 CE. Moore, Atomic Energy Levels, NSRDS-NBS, Circular No. 35 (US GPO, Washington, 1971) van Duijneveldt, F. B., IBM Research Report No. R1945, 1971. Basis sets were obtained from the Extensible Computational Chemistry Environment Basis Set Database, Version 1.0, as developed and distributed by the Molecular Science Computing Facility, Environmental and Molecular Sciences Laboratory which is part of the Pacific Northwest Laboratory, P.O. Box 999, Richland, Washington 993 52, US, and fimded by the US. Department of Energy. The Pacific Northwest Laboratory is a multi-program laboratory operated by Battelle Memorial Institue for the U. S. Department of Energy under contract DE-AC06-76RLO 1830. Contact David Feller, Karen Schuchardt, or Don Jones for further information. Shepard, R.; Shavitt, 1.; Pitzer, R. M.; Comeau, D. C.; Pepper, M. T.; Lischka, H.; Szalay, P. G.; Ahlrichs, R.; Brown, F. B.; and Zhao, J. G. Intemat. J. Quantum Chem. 1988, S22, 149. "11111111111111.1111“