WCAT TO THE A? CHILDREN W TAK WICHIGAN STATE COLWES NURS思Y \$CHOOL

Fixesis for tha Dagras ot ki. E.

1947

This is to certify that the
thesis entitled A STUDY OF THE RELATIONSHIP OF HUMIDITY,
TEMPERATURE, AND LIGHT TO THE AFTERNOON
SLEEP OF THE CHILDREN IN THE MICHIGAN
STATE COLLEGE NURSERY SCHOOL
presented by

Helen Elizabeth Campbell
has been accepted towards fulfillment of the requirements for M. S. degree in Child

Development

Date June 20, 1947
(28iche

A STUDY OF THE REMATIONSEIP OF HUMIDITY, THMPRRATURT, AND IIGHT TO THE AFTERNOON
 SLEFP OF CHILDREN IN THE
 MICHIGAN STATE COLLEGF NURSERY SCHOOL

By
Helon Elizabeth Campbell

4 THESIS
Submitted to the Graduate Sohool of Michican State College of Agrieulture and Applied Soience in partial fulfilment of the requirements for the degree of

MASTER OF SCIRNCF

Departmont of Home Management and Child Development Division of Home Eoonomios

June 1947

ACKNOWLEDGEMENT

The writer wishes to express her sincere appreoiation to Miss Shirley Newsom for her never failing interest throughout this study, and for her assistance and oritioisms during the preparation of this thesis.

TABLF OF CONTENTSCHAPTERPAGR
I. INTRODUCTION 1
II. RRVIEN OF THE IITERATURB. 3
General Findings
Findings on Total Sleep 4
Duration of the Afternoon Nap. 6
Presleep for the Afternoon Nap. 7
Presleop at Night 9
Faotors Influencing Sleep
Individual Sleop Patterns
a. Age as a Faotor in Presleop. 10
b. Sex Differences in Children's Sleop 11
0. The Relationship of Total
Sleep to Intelligence 12
d. Postural Habits During Sleep. 13
Variations in the Daily Routine Fhich Influence Sleep
a. Relationships of Night Sleop to Day Sleop. 14
b. Influence of Play Aotivities 14
c. The Effect of Food Eaten Before Sleep. 15
Invironmontal Faotors Influencing Sleep
a. Number of Children in the Room. 16
b. Temperature, Humidity and Seasonal Variations. 17

Description of the Nap Situation.......... 20

Preparation for the Nap....................... 21
Preliminary Study.............................. . . . 21
Record Keeping. 23
Statistical Method............................. 24
IV. RESULTS OF THE STUDY
V. SUMMARY AND CONCLUSIONS

BIBLIOGRAPHY

APPRNDIE

IIST OF TABIES

TABLS PAGS
I. Afternoon Sleep in Minutes 7
(A summary of the other studies)
II. Afternoon Sleep in Minutes. 8 (A sumary of the other stuaies)
III. Initial Analysis of Variance. 25
IV. Analysis of Covariance (Formulae) 26
V. Presleop Averages for Each Day of the Week 28
VI. Afternoon Sleep Averages for Each Day of the Week 31
VII. Sleop AVerages for Each Child 31
VIII. Summary of the Analysis of Variance and Covariance 35

CHAPTER I

INTRODUCTION

When young ohildren stay at a nursery school or ohild care center for a longer period of time than two or three hours, it is necessary to plan facilities for sleoping. Very fet nursery schools have space onough to provide each child with a separate room for sleeping, therefore. most of them arrange for a group nap situation. Nursery sohool naps tend to be shorter than naps at home, according to Foster (9), although some children revive the nap habit which has been dropped at home.

Authorities advise that fresh air, 0001 temperature, and comparative quiet are important factors in putting children to sleep. For example, Rose Alschuler (1, page 67) tells us that:
"Shades should be drawn so that light is -aubdued. Good ventilation without draft is important..... The temperature of the sleeping room should be between fifty and sixty degrees. Individual cots should be placed sufficiently far apart so that one child cannot touch the bed of another. Light but warm blankets are desirable."

In most nursery schools, the actual practioe varies considerably from the suggested measures. Some rooms for sleeping are diffioult to darken satisfactorily. Those schools using canvas cots find it necessary to maintain a
higher temperature than that advised. In many cases the space is too limited to place the cots the desired distance apart and therefore soreens are used betweon the oots to reduce the social and visual influences. Canvas cots, because of ease of storage, are used in nursery sohools that have to use the nap room for other purposes, but some have amall beds with mattresses.

With many factors influencing group naps, it is very difficult to determine which ones are important in giving optimum conditions for sleep. Previous studies give information as to positions and motility during sloep, the influonces of group nap versus sleeping in rooms alone, the effect of food on sleep, and age in relation to sleep duration. It is the purpose of this study to investigate the relationship of temperature, humidity and light in the sleeping room to the duration of presleep, and afternoon nap of young ohildren.

1. Throughout this study the term "presleep" refers to the interval elapsing from the time the ohild gets into bed until he falls asleep.

GHAPTER II

REVIEW OF THE LITERATURE

General Findines

Children's sleep has long been an object of concern mong parents, pediatrioians, and authorities on ohild care. Since it is such an important factor in the health and wellbeing of an individual, a number of studies have been made to investicate the funotion of children's sleep and the factors involved. For many years authorities have been advanoing theories on the various aspeots of children's sleep, but it has been only during the last twenty-five years that oareful studies have been made of the sleep of presohool ohildren in order to oheok the validity of these recommendations.

Several methods of investigation have been used, one of which is the analysis of reoords kept by parents. This method enables investigators to study large numbers of children in their regular sleep situation, but has the disadvantage of possible inaceuracies because of the dependance upon untrained observers. Another way of seouring data on sleep is by direct observation of ohildren in either of two situations, one being a twenty-four hour ohild care institution and the other the afternoon nap in nursery schools or child oare centers where the children attend
during a six to eight hour day. Since group oare of normal young ohildren in a trenty-four hour institution is deoreasing, most studies have dealt with the afternoon sleep in nursery schools. While both of these situations permit observation by trained observers and some control of the variables, the number of children that can be studied is limited. There is the advantage of observing ohildren in a group sleeping situation, thus enabling the study of the effects of the ohildren upon each other. The findings of studies on this aspect would be of little value to parents but are of real interest to nursery sohool teachers who conduct group naps.

Some phases of ohildren's sleep that have been studied include the duration of sleep (both day and night); length of presleep; factors affeoting sleep such as age of the children, sex differences, intelligence, routine habits of the ohildren, and auch onviromental influences as the number of ohildren in the room, teachers in oharge, temperature, humidity and light, all of whioh may affect sleep in varying degrees. A large number of studies have been made of these various factors, but conclusive information about some of them is yet to be obtained.

Findings on Total Sleep
A number of early studies have compared the recommendations of authorities regarding the amount of sleep noeded
by ohildren at various age levels with the amount aotually taken by them. Quoting authorities at the time of their study (1928), Anderson, Foster and Goodenough (2 p.202) said:

```
"Between the ages of two and three, various standards given are: fourteen hours (MoCarthy), fourteen (Reed), twelve (Luoas),............ Between the ages of three and four McCarthy recommends thirteen hours, Lucas twelve, Reed fourteen. Between the ages of four and five the standards given are: twelve to thirteen hours at night and half an hour to one hour in the daytime (MoCarthy), eleven hours (Iucas), and thirteen hours (Reed)."
```

"It appears obvious that the mother who desires
-to rear her child according to soientific methods will find it very diffioult to resolve these conflicting standards into any sort of useful guide."

Iangdon (13), writing in 1931, said that a ohild from two to three years of age should have fourteen to sixteen hours of sleep out of twenty-four, and a child three to five years of age needs between 11 to 14 hours of sleep. An early study done by Ravenhill (1908) wich might have been available to these authorities would have influenced their conclusions. This study, quoted by Kleitman (12), was done in England and involved 6,000 ohildren from three to thirteen years of age. It was found that the average sleep for three to five year olds was about eleven hours whioh is less than the findings of some more recent studi es.

Brwin (7), whose study was published in 1934 analysed reoords kept by parents and found the daily sleep average of two to five year olds to be 12 hours and six minutes. Reynolds and Mallay (17), studying the children whose mothers were attending the Futhenics Institute at Vassar, found that two to five year olds slept about eleven hours and thirty-six minutes. In this study, observers reoorded day sleep and the mothers kept records of the night sleep in the dormitories where they slept with their ohildren. The findings from all of these studies showed on the average that children were not receiving the amount of sleep that was recommended for them by the early authorities. At the present time studies have changed the opinions of authorities and recommendations are more in keeping with the amounts of sleep actually taken by ohildren.

Duration of the Afternoon Nap

Quite number of studies have investigated the length of the afternoon nap in nursery sohools. A variation of almost a full hour within one age grouping is seen when oxamining the data reported by the different authors. A sumary of the se findings is given in Table I.

Probably many factors caused the differences in these figures, one of whioh may have been the routine sohedule in the nursery sohools where some of the children may have been wakened to go home, thus limiting the total afternoon sleop pioture.

Table I
AFTERNOON SLEEP IN MINUTES
(Ranked in order of duration)

Presleep for the Afternoon Nap
Most studies of the afternoon sleep of children inoluded a record of the length of time required to go to sleep. The data reported by those investigators varies in a range of about fifteen minutes whioh is reasonable considering the difforences in the conditions under which these studies were done. A summary of these findings is given in Table II.

In Reynold's study (16) it was found that all of the children required more time to go to sleep than the twenty minute time limit set by the authorities of that time. The fallacy of this time limit is easily seen apon examining the figures quoted in the studies, all of whioh exceed the twenty minute time limit in their arerages.

Table II
AFTERNOON PRESLEEP IN MLNUTES
(Ranked in order of Duration)

INVESTIGATOR	$\begin{aligned} & \text { NUMBER OF } \\ & \text { CHILDREN } \end{aligned}$	$\begin{array}{r} Y \\ 2-5 \\ \hline \end{array}$	$\begin{aligned} & \text { AGB } \\ & 8 Z-5 \end{aligned}$
Wagner	30	24.14	
Staples	30		29.6
Beokman	18		29.6
Shinn (Honolulu)	79	31.0	
Reynolds	77	33.0	
Boynton and Goodenough	56	34.8	
Shinn (Vassar)	27	36.8	
Soott	27	38.2	

Soott (18), atudying the afternoon sleeping habits of twenty seven ohildren at Vassar College Nursery Sohool, found no significant relationship between presleep and length of nap. This is in agreement with the findings of Beckman (3) and Chant and Blatz (5).

Presleep at Night
A fow studies have considered the presleep time at night. In general the result indioated that most children take longer to go to sleep at night than they do in the afternoon. The night presleep of Reynold's (16) two to five year olds areraged one hour as compared to the halfhour presleep at nap. Shinn(20) reported a range of presleep at night of 25 to 75 minutes at Vassar, and 5 to 25 at Honolulu as compared with nap figures of 25 to 45 and 15 to 45 respectively. Wagner recorded presleep at night to be 43.9 minutes to 118.6 minutes as compared with 30 minutes in the afternoon.

Factors Influencing Sleep

Among the many factors believed to be directly related to the sleep of children that have been studied are the individual factors such as age, sex, intelligence, and habits of the child. Another group of factors thought to be influences on sleep are the daily routines, for example, the amount and kind of food eaten, the length of sleep at night as well as in the daytime, and the type of aotivity in whioh the ohild ongages.

Then, too, some environmental factors which may onter in are the number of children in the nap room, or the atmospheric conditions such as temperature, humidity and light.

Studies have been done on most of these factors and the findings are conolusive in varying degrees.

Individual Sleep Patterns
Research on sleep reveals that most ohildren have a regular sleep pattern though it may be reoognizable only over a period of several days. Giddings (11), studying older ohildren between the ases of nine and fourteen, found that ohildren have a definite sleep pattern rarely disturbed except through illness. Reynolds (16) reported that the amount of sleep taken by presohool ohildren varies considerably from day to day, but there is a fairly constant average over several weeks' time.
"The date pointed to the conclusion that over a longer period of time than 24 hours, most of the ohildren maintained an acoeptable consistency in the amount of sleep they took.. Daily fluctuations (in amount of sleep) were creat, but weokly, biweokly, and triweekly averages were in olose agreement." (16,p.349)

Are as factor in presisep and sleop. Practioally
all investigators have noted a ohange in the amount of
sleop taken by children as they grow older. The studies by Anders on, Foster and Goodenough (2), Dales (6), Erwin (7), Chant and Blatz (5) and others conoluded that the total sleep aotually taken by children deoreases with advancing age. The deorease in the amount of sleep from thirteen or fourteen hours in the second year to twelve in the fifth
year is due mainly to the shortening, and later abandonment of the afternoon nap, according to Anderson, Foster, and Goodenough (2). Reynolds and Mallay (17) said the results of their study indioate that both night sleep and nap were responsible for the deorease in total sleep, not merely the nap alone. Chant and Blatz (5) and Flemming (quoted by Kleitman - 12) noted that afternoon naps deorease to one hour and then drop out on the all or none prinoiple as the age of the child increased. The studies of Shinn (20) and that of Reynolds and Mallay (17) are in agreement with these findings.

There have been very fow studies done of presleep as it is influenced by age. Dales (6), studying afternoon sleep, reported that there is an increase in presleep as age increases. White (25), who studied presleop at night, found that two to three year olds required an average of twenty-seren minutes to go to sleep and that three to four year olds went to sleep, on the average, within twenty minutes. Shinn (20) concluded from her findings that the mean time to go to sleep at nap does not show any tendenoy to inorease or decrease during the presohool period.

Sox differences in children's sleep. It has long been felt that there are sex differences in the sleep habits of young ohildren, but results of studies on this point are not
conclusive. Garvey's (10) study of children in the University of Minnesota Nursery Sohool showed that boys went to sleep more promptly and slept more quietly than girls. MoCoy and Fowler (14) found no sex differences in the time to go to sleep, but did find that girls slept longer then boys. Scott (18) also found no marked differences between boys and girls in the time they required to go to sleep. Anderson, Foster and Goodenough (2), Chant and Blatg (5), and Flomming (quoted by Kloitman - 12) found very slight sex differences at the preschool age level. Hrwin (7) also found slight sex differences showing a tendonoy toward longer sleep for girls.

The relationship of total sloen to intelligence. AOcording to White (25) presohool ohildren with higher intelligence quotients slept less than ohildren with lower I.Q.s. Shinn's (20) study of the two groups of ohildren of the same age, 30 at Vassar College and 136 in Honolulu, showed that the Vassar ohildren slept less, and their mental ase was higher. She felt that the higher intelligence may have been a factor in the shorter sleep. Wagner (24) found a negative correlation between mental age and total sleop, whioh she felt indicated that the decrease in the amount of sleep as the child grows older depends more upon the increase in mental age than upon the increase in chronological age. Kleitman (12) says that a negative correlation between intelligence quotient
and total sleop is not true of older children.
Postural habits durinc sleep. Some work has been done on the study of postural habits of ohildren while sleoping. Beokman's (3) findings agreod with Boynton and Goodenough (2). They found that ohildren whose positions during presleep were most uniform tended to go to sleep more quiokly. Kleitman (18) stated that young ohildren are less completely relaxed wile asleep than older ohildren, but did not give any age range to olarify the limits of his statement. Shorman (19) reported that an habitual thumbsucker cannot go to sleep unless his thumb is in his mouth.

Variations in the Daily Routine
Which Influence Sleep
Most persons feel that the quantity and quality of their sloep is directly influenced by their aotivities during their waking hours. Many of these influencing factors are not know, but among those reoognized are the effects of routine habits. Children as well as adults respond differently when their routine is disrupted by ohanges in meal time or place, and in bed time or place.

Relatively fev attempts have been made to study these influences on the sleep of preschool ohildren. Findings pertaining to these variables in relation to sleep are reported in the following paragraphs.

Relationship of night sleep to day sleep. Fow investigators have had the advantage of a twenty-four hour nursery school situation in which to study the night sleep in relation to the day sleep of ohildren. Amone those who did, Wagner (24) found that in the majority of cases there was a tendency for a longer nap to be followed by a shorter night sleep, or the shorter afternoon sleep to be followed by a longer night sleep.

Brwin (7), using records made by parents, said that children who slept relatively long in the daytime, slept relatively long at night. Chant and Blatz (5) are of the opinion that the afternoon nap reinforces the night sleep in early years of life, but later interferes with it. Anderson, Foster and Gooi enough (2), reported a slight nogative oorrelation between the langth of the nap and the amount of night sloep taken by two to five year olds. Below two years the oorrelation was zero. Anderson, Foster, and Goodenough (2, page 214) say:

> "....the slight tendenoy toward longer night sioep in the case of ohildren who sioep little during the day is not sufficiently marked to oompensate for the loss of the day nap. In practionly every instance there is a regular falling off in the total amount of sleep with deorease in the amount of sleop during the day".

The influence of play activitios. How much does the variation and amount of the day's aotivities affeot the
total sleep pattern? Several investigators have studied the influence of outdoor aotivities on the length of the afternoon nap of presohool children. Acoording to Sherman (19) there was no marked influence of the intensity of outdoor play on the amount or oharaoter of the nap. After indoor play, however, the children went to sleep more quiekiy and slept longer than after outdoor play. According to this study a direct relationship between the length of the presleep period and the intensity of the morning aotivity appeared. That is, the less the degree of aotivity the more quickly the ohild fell asleep. Staples (22) found little or no relationship between outdoor play and nap.

The effect of food eaton before sleap. The effect of rood eaten on the sleep of children is rather diffioult to measure. Staples (22), using calories consumed auring the meal in relation to sleep, found that there was little if any interrelationship between the noon meal and the nap or presleep time. Giddings (11) reports in his study of older childron that a heary night meal produced restlessness in the night sleop, and that warm milk taken at bed time resulted in quiet sleep. Also, a beverage containing threefifths of a grain of caffione taken at bedtime caused no more restlessness than did orange juice.

Environmental Faotors Influencinc Sleep

There are very fow studies on the environmental factors whioh influence the sleep of ohildren. The one upon whioh most study has been done is the offect of the number of children in the naproom on the sleep and the number of naps taken. Another group of influences which have bean studied are the atmospheric variables which are rather hard to measure and control.

Number of ohildren in the room. A considerable number of studies have been done on the influence of the number of ohildren in the sleoping room. Reynolds and Mallay (17) found that it required nursery sohool ohildren about the same length of time to fall asleep in a group nap as when they slept in rooms by themselves; and that more naps were taken when there were several ohildren in the same room. However, the mean length of nap was greater then a ohild slept in a room by himself. Among younger ohildren, the optimum situation for sleep is in a room with other children acoording to Erwin's (7) Iindings. Dales (6) recorded that whether ohildren slept in a room with others or alone had little or no effect on the afternoon sleep.

It is believed by the writer that the fact of adult supervision in the nap, together with the type of rapport maintained by the teacher in charge of the nap room, have considerable influence when children sleep in a group and
may acoount for the variation in these findings. Staples (22, p.227) states that:

> "The particular adult in oharge of the children during the afternoon nap may influence both the length of time ree quired by the children to go to sleep and the number of naps missed."

Temporature humidity and seasonal variations. Relatively few studies have considered temperature and humidity in relation to sleep. Garvey (l0) studied eight girls and fourteon boys between the ages of two and five years by means of kinetographs whioh recorded the motility of the children during sleep. The ohildren slept in standardized beds in their own homes. The findings stated that room temperature read at the ohild's bedtime showed no relationship to the quietness of sleep. Renshaw, Marquis and Miller (15) studied 107 children, ages six to sixteen, at the Ohio Bureau of Juvenile Research. The beds were equipped with hypnographs to record the movements of the ohildren during sleep. Although this study investigated many phases of children's sleep, the ones most pertinent here are the findings on the hourly motility in relation to temperature and humidity. They concluded that oven within wide limits, temperature and relative humidity were not important faotors in influencing hourly motility.

Soott (18) recorded the temperature of the nap room and found little signifioant relation of temperature to
presleop or total nap time. The range of temperature in Soott's study was $68.5^{\circ} \mathrm{F}$. to $82.5^{\circ} \mathrm{F}$. Boynton (4), studying the nap of nursery school children, found that extremes of room temperature were unfavorable for the continuity of sleep although the tendency was for longer sloep on cooler days.

Shinn (21) found that variations in humidity did not influence the sleep of the children she observed. The humidity readings for this study were not made in the nap room, but were the readings taken by the weather bureau in New York City, 72 miles from Vassar College where the experiment was conducted.

Related to humidity and temperature are the studies done on seasonal variations and their effect on sleep. Dales (6) found little or no influence of seasonal variation on the duration of afternoon sleep. On the other hand, Erwin (7) found that night sleep was longer in fall and winter.

At the time of this study the writer was unable to find reports of any studies having been done on the relationship of light intensity in the room to presleep and total sleop either in the afternoon or night sleep or preschool children.

CHAPTER III

PROCEDURE

The subjects used in this study were the ohildren of the younger group in attendance at the Miohigan State College Nursery Sohool during the fall term of 1946. At the beginning of the period studied, the ages of the six boys ranged from two years three and one-half months to three years seven months, and the ages of the six girls ranged from two years ten months to three years six months.

Although none of the studies of the nursery sohool nap situation previously reviewed gave any clue as to how long a period was allowed for the ohildren in the study to become acoustomed to their ∞ ots and to the nap routine, Renshaw, Marquis, and Miller (15) in their study of the night sleep of older ohildren stated that five nights were required for the children to adjust to their sleeping oonditions. The actual recordings of the present study were begun during the fourth week of the nursery sohool so that these ohildren were well acoustomed to the nap procedure. Even those who had been absent for a time had at least ten days in the nursery sohool nap routine before the actual readings began.

The conditions under which this study was made were controlled only to the extent of establishing an optimum
sleoping environment in accordance with the reoommendations of persons experienoed in conducting a group nap situation. The variables of temperature, humidity, and light fluotuated as the weather conditions influenced them.

Desoription of the Nap Situation

The room used for the afternoon nap in the nursery sohool was a playroom used by the four and five year olds in the morning and adapted for sleeping in the afternoon for the younger ohildren by moving the toys to one corner and surrounding them with soreens. Moveable wooden soreens were used to separate the cots, which were arranged in a hollow square about the room. The oots consisted of a wooden frame ovor which canvas was strotched and held in place by lacings. Each ohild used the same oot, placed in the same location in the room, every day throughout the study. The blankets used were furnished by the parents, and although they were not uniform for all the children, that used by each ohild was the same throughout the study. The tan treated-fabric shades in the room were drawn at nap time, admitting a dim diffused daylight, the intensity of which varied acoording to the weather conditions outside. One-half hour before nap began, the room was aired by opening the windows. The windows that remained open during the nap period had glass soreens to direot the air upward into the room, thus preventing drafts on the ohildren.

The personnel in the nap room was the same throughout the study. Ocoasionally when a ohild needed special attention an assistant sat near him to help him to relax, but at all other times the experimenter was the only adult in the room. She made readings of the instruments and recorded all of the neoessary data with the exception of the time the ohildren awakened on Tuesdays and Thursdays when the experimenter had to be absent after two o'olock. On those days the assistant recorded the time of the ohildren's awakening.

Preparation for the Nap

In preparing for nap the ohildren came upstairs from the dining room and went direotly to the bathroom where they went to the toilet, rinsed their hands, and removed their outer elothing down to their undershirts and penties. Shoes and sooks were removed and bedroom slippers were worn to the nap room. When ready for bed the children entered the nap room quietly, went to their oots, removed their silppers and wore oovered by the assistant if they were unable to cover themselves without too much commotion. Thoy came to the nap room as they wore ready, and by one o'clock all of them wore on their oots.

The Preliminary Study

For one weok preceding the study, reoordings were made to standardize the technique in handing the instruments.

All of the readings were begun at 12:30 and the last readings were made at $2: 000^{\prime}$ olock.

The dry bulb thermometer on the sling psychrometer was used for the temperature readings. This reading was taken at the level of the children's heads in the same central location in the rocn each day. During the preliminary study, readings were taken at ten and fifteen minute intervals and it was found that in the period of one and one-half hours the temperature did not vary more than two degrees. The average of the records taken at fifteenminute intervals equaled the averages taken at the ten-minute intervals. Since these preliminary readings varied 80 little, two temperature readings were made during the actual study, one at 12:30 and one at 2:00 o'olock. If these differed, an average of the two was taken.

The humidity readings were made by the use of a sline payohrometer, and the readings were then interpreted for relative humidity from a Bulkley Psyohometric ohart. During the preliminary study these readings were taken at 30 minute intervals, rather than more frequently, because the operation of the instrument required considerable movement (it was neeessary to whirl it for fire minutes to insure acourate reading). Since no variation in relative humidity during the nap period was noted in the weck of preliminary reoording, only one humidity reading per day was felt to be necessary.

This was taken at $1: 30$ after most of the ohildren were asleep and in a section of the room screened from view.

A Weston Illumination meter model 603 was used to take the reading of the light intensity. The readings were taken with the sensitized plates of the meter turned to the optimum souree of light, the windows on the south side of the room. The meter was located in the approximate center of the room at about the level of the onildren's heads. In testing it was found that the light intensity in the different areas of the room varied as much as one foot-candle fram one place to another. However, the light intensity in these different areas in the room was relative to the trial at the central location. As the light varied in the central location, the variation in the other areas tras in direct relationship. Care was taken to see that readings were made in the same place every day. In comparing the averages of readings made at ten and fifteen minute time intervals a variation of 0.08 foot-candles was noted. Therefore the light meter readings were made at fifteen minute intervals throughout the study, and the average of these readings was used as the light reading for the day.

Reoord Keoping

The time in bed, time asleop and time awake were recorded daily for each ohild for a period of 34 days. All of the time records were made to the nearest five minute interval
because it was impossible to determine the exact minute that a child fell asleep or awakened. The oriterion for sleep was the same used by all of the experimenters in previous studies, namely: eyes closed, cessation of body movement, and slow even breathing.

Daily records of temperature, humidity and light were made as previously desoribed. Notations of the amount of night sleep, as reported by the mother on the child's daily report from home, amount of outdoor play and weather conditions during the morning aotivity, any unusual oocurrenees during nap or during the day which might have inIluenced the nap were also recorded each day.

Statistical Method

The statistical method chosen for dealing with the data in this thesis problem is that of analysis of variance and oovariance.

The data were recorded on charts (See Appendix A and B) and then sorted by means of evaluating the record acoording to the factors considered in the notation column on ohart B. For example, on same days a child may have had a normal presleep, but his afternoon sleep was interrupted by sudden waking due to coughing, enuresis, loud noise or another uncontrollable factor. Therefore the presleep reoord was retained but the total sleep record was not retained for that
day. Occasionally a child was removed from the room because he was disturbing the others and then later returned to his cot, thus disrupting his presleep. His afternoon sleop was recorded unless it was felt that the inoident disrupted both presleep and afternoon sleep, then both records were disearded.

When the data were assembled, the variables of temperature, humidity, and light were the $y^{\prime} s$ and these were correlated against the $x^{\prime} s$ of presleep and afternoon sleep.

In a group nap situation there is seen a considerable difforence between individuals in the way in whioh they respond. This difference between ohildren is a disturbing factor and should be eliminated. To prove the signifioance of these factors an initial analysis of variance was made of the presleep and afternoon sleep records. Snedecor's (21) F test was used. (See Table III.)

TABLE III
INITIAL ANALYSIS OF VARIANCE
Presleop

	D,	E2	M.S.
Between Children	11	6,162.92	560.265
Within Children	300	5,353.75	17.845

$P=31.39^{* *}$

	D. F	E2	M.S.
Between Children	11	5,892.7	535.7
Within Children	299	8,643.7	28.91

We assume for each child that some relationship exists between sleep and the variable considered. However, individual defferences are so great that the relationship is olouded. Therefore, the analysis of covariance is used to remove the individual differences and obtain the "average" correlation of the group's response to the variable. Table IV shows the interrelationship of the formula used.

TABLE IV
ANALYSIS OF COVARIANCE

	$\sum x^{2}$	$\sum x y$	$\sum y^{2}$	r
$\begin{aligned} & \text { Bntire } \\ & \text { A Group } \\ & \hline \end{aligned}$	$\Sigma x^{\prime 2}-\frac{\left(\Sigma x^{\prime}\right)^{2}}{\Sigma n}$	$\Sigma x y^{\prime}-\frac{(\Sigma x)(\Sigma y}{\Sigma x}$	$\Sigma y^{\prime 2}-\frac{(\Sigma y)}{\Sigma y}$	$\frac{\sum x^{\prime} y^{\prime}}{\sqrt{\left(\sum x^{\prime} 2\right)\left(\sum y^{\prime 2}\right)}}$
Between B Children	$\begin{aligned} & \frac{\left(\Sigma x_{1}^{\prime}\right)^{2}}{n_{1}}+\frac{\left(\Sigma x_{2}^{\prime}\right)^{2}}{n_{2}}+\cdots \\ & \left(\sum_{x_{i}}^{2}\right)^{2}-\frac{\left(\Sigma x_{1}\right)^{2}}{\sum_{n}} \end{aligned}$	$\begin{aligned} & \frac{\Sigma x_{1} y_{1}^{\prime}}{x_{1}^{\prime}}+\frac{\sum x_{2}^{\prime} y_{1}^{\prime}}{x_{2}} \\ & . \frac{\Sigma x_{\mu}^{\prime} y_{0}^{\prime}}{n_{12}}-\frac{\left(\Sigma x_{1}\right)\left(\Sigma_{y}\right.}{\Sigma x} \end{aligned}$	$\begin{aligned} & \left(\frac{\left.\Sigma y_{1}^{\prime}\right)^{2}}{n_{1}}+\frac{\left(\Sigma y_{n}^{\prime}\right)^{2}}{n_{2}}\right]_{1} \\ & \left(\sum_{\left.y^{\prime}\right)^{2}}-\frac{\left(\Sigma y_{1}^{\prime}\right)^{2}}{n_{1}}\right. \end{aligned}$	
Within C Children	$\begin{aligned} & \text { difference } \\ & \text { of } \\ & \text { above } \\ & \hline \end{aligned}$	```difference Of above```	differenoe 01 above	$\frac{\sum x^{\prime} y^{\prime}}{\sqrt{\left(\sum x^{\prime 2}\right)\left(\sum y^{\prime 2}\right)}}$

First the entire group was oorrelated, taking each child in relation of one of the variables. This gave 311 readings for the duration of the nap and 310 for presleep after eliminating the absences. The formulae in blocks A show the way in which the figures were computed.

The next procedure was to compute the variances and covariances due to differences between ohildren, that is, as ohild one differed from ohild two and three, etc. These
were then subtracted from those of the total group ($A-B=C$) and the figures whioh remained represented the average individual's reaction to the variable under consideration. This is known as the variance and covariance "within ohildren" eliminating the effect of individual differences. The oorrelation coeffioient was computed by substituting the data in blooks C for r .

The significance for the correlation coefficient was interpreted from the table in Snedecor. (21, p.149)

CHAPTER IV

THE RESULTS OF THE STUDY

The findings of this study, the purpose of which was to investigate the interrelationships of presleep and afternoon sleep with temperature, humidity and light, are sumarized in the following ohapter. In addition to the findings on these interrelationships, there are some interesting comparisons and observations that oan be cleaned from the data.

The average presleep of the group of aotual sleepers during the period of the study was 31.47 minutes, which seems to be in line with the averages of others who studied ohildren's sleep. Although the averages from other studies varied from 24.14 to 38.2 minutes, all of them, inoluding the present study, found the twenty minute norm suggested by some writers to be exceeded. See table II, page 8 whioh gives the summary of the findings of the other studies.

Dales' study was the only one which considered presleep in relation to the day of the week. Table V. shows how the results of the present study compare with those of Dales.

Table V
PRESLEEP AVERAGES FOR EACH DAY OF THE WEEK

	Prosent Study	Dales
Monday	34.32	30.1
Tuesday	31.11	
Wednesday	32.67	
Thursday	29.43	
Friday	29.24	30.5

The longest presleep foll on Monday which was in keeping with the beliefs of others who feel that it is diffioult to get children back into the routine of nursery sohool after a weokend at home. The fact that Fridays had the shortest presleep also bears out the reasoning that by Friday the ohildren have beoome aoustomed to the routine.

It appeared to the writer that most of the ohildren observed in this study had a certain position in which they fell asleep, and it has been her experience that encouraging a child to assume this position after getting into bed promoted his going to sleep in a relatively short time. This observation is in agreement with the findings of Boynton and Goodenough (2). It was also noted that one of the ohildren had such a regular sleep pattern that, regardless of other influences or variations in environment or routine, he fell asleep regularly within fifteen minutes after getting into bed, and always slept at least sixty minutes. This indicates that sleep pattern may be a definite influence on the sleep of some individuals, outweighing the effect of other variables.

The afternoon sleep average for the actual sleepers of the group was 76.03 minutes. Averages given by other investigators vary from 52.7 to 114.9 for two to five year olds. Dales (6), and Beokman (3) whose studies were done under circumatances aimilar to those of the present study
found the average afternoon sleep for their $2 \frac{1}{2}$ to $3 \frac{1}{2}$ year olds to be 77,3 and 78.2 respeotively. Anderson, Foster and Goodenough (2), and Flemming (quoted in Kleitman - 12) who relled upon parents' reoords for their data, gave averages, for $2 \frac{1}{8}$ to $3 \frac{1}{2}$ year olds, of 109.4 and 131 minutes respectively. These children were sleeping in their own beds at home, had less adjustment to the environment to make than those who slept at nursery sohool, and thus slept longer.

It is belleved that the ohildron in this study slept as long as they wanted to except in a very few cases when a child had to be wakened to go home. Those ohildren who had been awakened at three o'clock to go home were usually ones who fell asleep late in the nap period. Those whose presleep was relatively short usually awakened of their own acoord before three o'clock.

In comparing the averages of each day of the week there did not seem to be any consistent relationship of length of nap to the day of the weak. See Table VI. In this study there did seem to be a tendency toward longer sleep on Thursdays, as is the case in the study of Chant and Blatz (5), and that of Soott, all of whom found Fridays to have a lower sleep average than Thursdays. Dales (16) found no significant difference in the duration of the afternoon sleep on Mondays and Fridays. Chant and Blatz (5)
pointed out the importance of individual differences in relation to day to day variation.

Table VI
AFTERNOON SLEEP AVERAGES (IN NIINUTES) OF EACH DAY OF THE WEEK

	Present Study	Scott	Dales	Chant and Blatz
Mondays	71.44	74	74.4	62
Tuesdays	76.68	75		67
Wednesdays	70.98	75		67
Thursdays	84.43	75		65
Tridays	78.47	73	73.06	64

Although records of the total night sle ep of each ohild were kept, the data were not considered reliable enough to use because many of the parents recorded the time in bed but failed to observe the time the ohild fell asleep. In the nap records of the children who made up this group a wide range of individuel response was apparent. These individurl differences are shown in Table VII. Presleep averages varied from 11.5 to 43.3 minutes, and afternoon sleep averages varied from 58.3 to 95.0 minutes. Table VII
THE SLEEP AVERAGES OF EACH CHILD RECORDED IN MINUTES

Child	Aso	Average Presleep	Average Total Nap
Eddie E.	3 yr .7 mo	31.7	56.7
Sandy S.	3 yr .6 mo	39.6	80.1
Hosalind T.	3 yr .5 mo .	43.3	65.4
Linda D.	3 yr. 3 mo.	33.1	87.7
Kenny C.	3 yr. 3 mo.	42.6	91.6
Teddy P.	$3 \mathrm{yr} .1 \mathrm{mo}$.	40.0	86.6
Beth B.	3 yr .1 mo.	31.7	68.6
Libby A.	2 yr .11 mo .	27.0	69.6
Thomas R.	2 yr .10 mo	25.7	89.3
Julie B.	2 yr .10 mo .	31.4	58.3
John C.	2 yr .5 mo.	40.9	74.4
Atbert R .	2 yr .3 mo	11.5	95.0

The six boys of the group had a shorter presleep and a longer nap than the six girls during the time of the study, the averages for the boys being 32.6 minutes prem sleop and 82.27 minutes nap, and for the girls 34.35 minutes presleep and 71.6 minutes nap. Scott (18) found no marked sex differences in presleep time. In McCay and Howler's (l4) study of night sleep the girls were found to sleep longer than the boys. The figures for the present study can not be considered conclusive as showing a sex difference because the number of ohildren studied was so limited.

The findings indicated a relationship between the length of presleep or duration of nap and some of the variables studied. Table VIII gives a complete summary of these findings.

Presleep correlated with temperature gave a ooeffioient of 0.071 which failed to indicate a relationship Within the temperature range of 690 to $79^{\circ} \mathrm{F}$. When temperature was correlated with afternoon sleep it gave a coefficient of 0.027 again showing no relationship. These findings are in adreement wi th those of Shinn (20), whose temperature range was comparable $\left(66^{\circ}\right.$ to $82.5^{\circ} \mathrm{F}$. at Vassar, and 74° to 80° F. at Honolulu). Boynton and Goodenough (2) stated that extremely low and extremely high temperature were alike unfavorable for the duration of sleep. The
temperature range for their study was 54° to $58^{\circ} \mathrm{F}$.
During the period of this study the relative humidity in the nap room ranged from 26 per cent to 60 per cent. The negative correlation of -0.106 found between presleep and relative humidity was not significant, but the tendency which it implies was toward a shorter presleep with inoreasing humidity up to 60 per cent. The correlation for relative humidity and afternoon sleep was 0.219 whioh was significant at the one per cent level', indicating that a higher relative humidity (within the range of 26 to 60 per cent) was as conducive to a longer sleep. This finding differs from Shinn (20) who reported that humidity did not seem to influence the amount of total sleep in her study of nursery sohool naps at Vassar and at Honolulu. The humidity range was 56 to 94 per cent in New York and 66 to 89 per cent in Honolulu in Shinn's study.

Light intensity during the period of the present study varied from 0.1 to 4.4 foot-oandles. The correlation coeffioients of light in relation to both presleep and nap were aignificant at the one per cent level2, that for presleep being 0.180 and for nap duration -0.195 . This indicated

[^0]that subdued light or dark sleeping rooms encouraged a shorter presleep and a longer total nap, which has been the assumption but has not been reported as being tested in the literature reviewed.

From the findings of this study it appeared that variation in temperature, within the us ual range for comfort, did not seem to affect the presleep or length of nap of the children. Although the correlations between humidity and nap duration, light and nap duration, and light and presleep were significant, $l_{\text {they }}$ wore low. This indicated that other factors existed which were probably of greater influence on the sleep duration than those that were studied. Since the amount of sleep taken by young ohildren over the twenty-four hour period is so important to their health and well being, it seems wise to plan the best possible onvironment for promoting sleep. Therefore, it would seem desirable to darken the nap room as muoh as possible, and to maintain a relative humidity as high as 60 per cent, in order to control these two faotors whioh do appear to influence the duration of presleep and nap to some extent.

1. Snedecor, G.W., Statistical Mothods, (21) p.149.

Table VIII
SUMMARY OF THE ANALYSIS OF VARIANCE AND COVARIANCE
Temperature Correlated with Presleep

	Σx^{12}	$\sum x^{\prime} y^{\prime}$		r
Total Group	11,516.67	311.71	2,784.10	. 055
Between Children	6,162.92	70.20	29.57	
Within Children	$5,353.75$	241.51	2,154.43	.071

Temperature Correlated with Afternoon Sleep

	\underline{x} x	E $x^{\prime} y^{\prime}$	E y^{12}	r
Total Group	14,536.4	63.16	2,735.40	. 010
Between Children	5,892.7	-67.80	27.89	
Within Children	8,643.7	130.96	2,707.61	. 027

Relative Humidity Correlated with Presleep

	Σx^{12}	$\sum x^{\top} y^{1}$	$\underline{E} \mathrm{Y}^{12}$	r
Total Group	11,516.67	-1,261.63	24,989.68	-. 074
Between Children	6,162.92	43.01	433.28	
Within Children	5,353.75	-1,218.62	24,556.40	-. 106

Relative Humidity Correlated with Afternoon Sleep

	$\sum x^{\prime 2}$	$\sum x^{\prime} y^{\prime}$	$\sum y^{\prime 2}$	r
Total Group	$14,536.4$	$3,628.91$	$25,335.75$.189
Between Children	$5,892.7$	411.78	436.36	
Within Children	$8,643.7$	$3,217.13$	$24,899.39$.219

Light Correlated with Presleep

	$x^{\prime 2}$	$\sum x^{\prime} y^{\prime}$	$\sum y^{\prime 2}$	
Total Group	$11,516.67$	207.65	240.00	.124
Between Children	$6,162.92$	3.50	2.24	
Within Children	$5,353.75$	204.15	237.76	.180

Light Correlated with Afternoon Sleep

	$\sum x^{\prime 2}$	$\sum x^{\prime} y^{\prime}$	$\sum y^{\prime 2}$	r
Total Group	$14,536.4$	-302.58	239.63	-.162
Between Children	$5,892.7$	-23.12	2.07	
Within Children	$8,643.7$	-279.46	237.56	-.195

CHAPTER V
 SUMMARY AND CONCLUSIONS

This study deals with the relationship of such environmental factors as temperature, humidity and light to the duration of presleep and afternoon sleep of nursery school children.

The study was conducted in the nursery school at Michigan State College for a period of 34 sohool days during the fall tem of 1946. The subjects were six boys and six girls in the younger group of children with ages ranging between two and one-half and three and one-half years.

The room used for nap is a playroom during the mornint and is rearranged for sleeping in the afternoon by placing cots and screens in a hollow square around the room. The shades are drawn and three windows with draft soreens are opened for ventilation. There was no attempt to control the three variables studied except the usual procedures followed in establishing comfortable sleeping conditions. The variables fluctuated as the weather conditions influenced them.

Records of time in bed, time asleep, and time awake were kept, from which the duration of presleep and sleep were computed. In addition, daily records were made of the temperature, relative humidity, and light intensity through-
out the first hour and a half of the nap period. Notations were also kept of the morning activity and unusual ocourrences during the day which might have influenced the nap. Certain records were eliminated on the basis of unusual oocurrences or interruptions of the presleep or nap. The time records whioh remained were correlated with each of the variables by means of analysis of variance and covariance.

1. The six boys in this study had a slightly shorter presleep and a slightly longer nap than the six girls. no definite conclusions as to sex differences can be drawn because of the small number of either sex studied.
2. Presleep was longer and tatal nap was shorter on Mondays than on the other days of the week during the 34 days of the study.
3. Temperature, within the range of 69° to $79^{\circ} \mathrm{F}$. was found to have no significant influence on the length of presleep or total afternoon sleep.
4. Although no significant relationship appeared between presleep and relative humidity, a aignificant, though low, positive correlation was found between relative humidity and the length of nap, which implies (within the range of 26 per cent - 60 per cent) some tendency
toward the relative humidity, the longer sleep with increased relative humidity (within the range of 26 per cent to 60 per cent).
5. A low positive correlation exists between light and presleep; and a low negative relationship betweon light and the duration of nap. This would imply that inoreasing the light within the range of 0 to 4 footcandles has some influence toward shortening the nap and lengthening the time to go to sleep.
6. Alschuler, Rose H. Children's Centers. National Commission for Young Children. Wim. Morrow, New York, N.Y., (1942).
7. Anderson, John E., Foster, J. C., and Goodenough. The sleep of young ohildren. J. Genetio Psyohol., 35:201-218, (1928).
8. Beckman, W.B. Daytime sleep of nursery sohool children, Unpublished Theses, University of Chicago, (1932).
9. Boyton, B., and Gooden ough, F.L. The posture of nursery sohool children during sleep. Amer. J. of Psyohol., 42:270-278, (1930).
10. Chant, N., and Blatz, W.A study of sleep habits of ohildren. Genotio Psyohology Monographs., 4:13-43, (1928).
11. Dales, Ruth J. Afternoon sleep in a group of nursery 8ohool ohildren. J. of Genetio Psyohology, 58: 161-180, (1941).
12. Erwin, Doris An analytical study of children's sleep. Pedegogioal Som. and J. of Genetio Psyohol., 45:199-226, (1934).
13. Fisher, R.A. Statistical Methods for Researoh Workers. Oifver and Boyd, London, (1934).
14. Foster, J., and Miattson, M. Nursery Sohool Fduoation, D. Appleton-Century Co.
15. Garvey, C. R. Activity of Young Children During Sleen. University of Minn. Press, (1939).
16. Giddings, G. Normal sleep patterns for children. J. Qf Amerioan Medical Assoo., (1939).
17. Kleitman, Nathanial, Sleep and Wakefulness, University of Chioago Press, Chioago, (1939).
18. Langdon, Grace, Home Guidance for Young Children. John Day Co. New York, N.Y., (1931).
19. MoCay and Fowler, M.B. Some sex differences observed in a group of nursery school children. Child Development, 12:75-79, (1941).
20. Renshaw, Miller and Marquis, Children's Sleen, MoMillan Co., New York, N.Y., (1933).
21. Reynolds, M.M. The sleep of young children in a 24 hour nursery school. Mient. Hygiene, (1835).
22. Reynolds and Mallay, the sleep of young children. J. of Genotio Psyoh., 42-43:322-351, (1933).
23. Scott, F. A study of the sleeping habits of twentynine children of preschool age. Child Development 2:326-328, (1931).
24. Sherman, M. The afternoon sleep of young ohildren: some influenoing factors. J. of Genetio Psych., 38:114-126, (1930).
25. Shinn, A. V. A study of the sleop habits of two groups of preschool ohildren, one in Hawaii and one on the Mainland. Child Development, 2:159-169, (1932).
26. Snedecor, G. W., Statistical Methods, Iowa State College Press, Ames,Iowa, (1946).
27. Staple, R. Some factors influencing the afternoon sleep of young children. J. of Genetio Psyoh., 41:222-228, (1932).
28. Staples and Anderson, A.C. A study of outdoor play, appetite, and afternoon sleep of young children. Ch11d Development 4:191-195, (1933).
29. Wagner, Miary A. Day and night sleep in a group of young orphanage children. J. of Genetic Psych., 42:442-459, (1933).
30. White, M. R. Some factors affecting night sleep of ohildren. Child Development, 2:234-235, (1931).

APPENDIX

APPENDIX A－SAMPLBE SLEEP RECORD

	$\left\lvert\, \begin{aligned} & c \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}\right.$		$\begin{aligned} & \text { H } \\ & 0 \\ & 0 \\ & \text { 曷 } \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { H } \\ & 0 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	\|o		정 o $\stackrel{1}{9}$ o 品	H 0 0 0 0	发	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & < \\ & 0 \end{aligned}$	览	号
abs．12：2512：25 abs．12：4012：35abs．12：5512：3012：4012：3012：25 In Bed												
	2：55	1：45	，	2：15	1：45		0	2：00 2：00，2：25 1：50 Avake				
	80	25	，	20	25	1	2：15	15	40	30	50	Pres．
	70	55	＇	75	45	，	0	75	40	85	35	Min．
	150	110	＇	75	100	＇	80	105	95	115	110	$\begin{aligned} & \text { Mn }{ }^{\text {s }} \\ & \text { in Ded } \end{aligned}$
	12：35	12：40	abs	12：45	12：45	abs	11：05	$12: 40$	1：00	12：4	12：30	In Bed
	12：55	1：10		1：05	1：05		1：15	1：00	1：40	0	1：35	Aslepp
	2：15	2：10	1	1：55	2：20		2：50	2：25	2：50	2：15	2：40	Arake
	120	30		20	20		10^{*-}	20	40	0	65	Pres．${ }^{0}$
1	80	60	＇	50	75	＇	95	； 85	70	0	65	
	100	90	，	95	95	＇	105	105	110	90	130	Min．${ }^{\text {in }} \mathrm{B}$ d

	12：45	1：15	＋	1：001	12：50		1：15	1：45	1：40	1：50	1：50	Aslepp
	2：00	2：00		2：15	2：15		3：00	2：45	2：15	2：45	2：40	Avake 4
	20	45	1	20	25	1	35	80	65	85	85	Pres．
＇	75	45	＇	75	85	，	105	60	45	55	50	Min． Asliepp
	95	105	＇	95	110	＇	140	140	110	140	135	Min． in Bed

$\overline{12}: 3012: 2512: 25 \mathrm{abs.12:3012}: 40$ abs．12：4012：20 12：3012：3512：35

12：35	0	12：50	＇	12：50	1：50	＇	0	12：40	0	12：4	12：5	Bloa
2：15	0	11：40		2：00	2：25		0	2：15	0	2：05	2：00	ke
20	2：15	25		20	70		2：15	20	2：15	10	20	Pres．
100	0	50	1	70	35	＇	0	95	0	80	65	Min．
120	110	105	＇	105	105	＇	95	115	105	100	100	Min． in Ded

12：35	2：00	1：45	＋	1：00	＋		0	12：50	1：15	1：20	1：00	AsJ．esp
2：15	2：40	2：30	1	2：10	1		0	2：40	2：10	2：40	2：00	Avake
5	85	75	1	15	1	1	2：15	20	35	45	30	Pres．${ }^{\text {S }}$
100	40	45	＇	70	＇	＇	0	110	55	80	60	$\begin{aligned} & \text { Min. } \\ & \text { Asleen } \end{aligned}$
105	125	120	＇	90	＇	，	90	130	90	125	105	Min． in Led

[^0]: 1.
 2. Loc. oit.
