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ABSTRACT

ARTIFICIAL LATERAL LINE SYSTEMS FOR FEEDBACK CONTROL OF
UNDERWATER ROBOTS

By

Ahmad Taha Abdulsadda

A lateral line system, consisting of arrays of flow-sensing neuromasts, allows fish and

amphibians to probe their ambient environment and plays a vital role in their behaviors

spanning predator/prey detection, schooling, rheotaxis, courtship and communication. The

feats of biological lateral lines have inspired an increasing interest in engineering a similar

sensing module for underwater robots and vehicles. Often known as artificial lateral lines,

these sensors could potentially enable an underwater robot to detect and identify moving

or stationary objects, and exploit ambient flow energy for efficient locomotion. Despite the

advances made in this area, realizing a practical artificial lateral line still faces significant

challenges in both signal processing and flow sensor fabrication.

In this dissertation we describe our effort in developing signal processing methods for

hydrodynamic object localization and tracking using an artificial lateral line (ALL). We

consider two types of objects, a vibrating sphere and a non-vibrating cylinder, both of which

are of interest in underwater applications. A vibrating sphere, known as a dipole source,

is widely used in the study of biological lateral lines and it emulates the rhythmic body or

fin movement. A non-vibrating cylinder (with unknown cross-section shape), on the other

hand, represents a general moving or stationary object underwater with a 2D flow profile.

First, a novel bio-inspired artificial lateral line system is proposed for underwater robots

and vehicles by exploiting the inherent sensing capability of ionic polymermetal composites

(IPMCs). Analogous to its biological counterpart, the IPMC-based lateral line processes



the sensor signals through a neural network, and we demonstrate the performance of this

approach in the localization of a dipole source.

Second, with an assumption of potential flows, we formulate nonlinear estimation prob-

lems for the localization and tracking of a dipole source based on analytical flow models, and

propose and compare several algorithms for solving the problem. For the case of a moving

cylinder, we use conformal mapping to represent a general cross-section profile, and explore

the use of Kalman-filtering-type techniques in the tracking and size/shape estimation of the

object.

We have conducted extensive experiments to validate the developed algorithms with an

artificial lateral line prototype made of millimeter-scale IPMC sensors, with sensor-to-sensor

separation of 2 cm, which is determined through an optimization process based on the

Cramer-Rao bound (CRB) analysis.

Finally, we experimentally explore the use of IPMC sensors for estimating the hydrody-

namic parameters involved in a Kármán vortex street that is created by a stationary cylinder

in a flow. We validate that the vortex shedding frequency, which can be extracted from the

sensor signal, shows clear correlation with the flow speed and the obstacle size.
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Chapter 1

Introduction

1.1 Research Background

Most fish and aquatic amphibians use the lateral line system as an important sensory organ

to probe their environment [20, 21]. A lateral line consists of arrays of hair cell sensors,

known as neuromasts. Each neuromast contains bundles of sensory hairs, encapsulated in a

gelatinous structure called cupula, as illustrated in Fig. 1.1(a). An impinging flow deflects

the cupula, and thus the hairs inside, eliciting firing of the hair cell neurons. Neuromasts can

be divided into two types, superficial neuromasts, which are distributed on the skin surface,

and canal neuromasts, which are recessed in the scales or in bony canals underneath the skin

(Fig. 1.1(b)). With the same basic structure, the two types of neuromasts show distinct sens-

ing characteristics [52]. The lateral line system allows an aquatic animal to identify near-field

objects of interest and perform hydrodynamic imaging of the environment, typically within

one to two Body Lengths (BLs) of the animal. Consequently, the lateral line is involved in

various behaviors of aquatic animals, such as prey/predator detection [70], schooling [69],

1



rheotaxis [36], courtship and communication [21]. In addition to the qualitative roles the

lateral line plays in behaviors, there have been studies on how probed information is encoded

and decoded in the nervous systems [26]. For example, Fishes frequently exploit unsteady

forcing of wake flows to extract energy for efficient locomotion and maneuvering. The re-

searchers in [56, 55] observed that, when trout perform Kármán gaiting to hold station in

the wake of vortices shed from a cylindrical obstacle, their muscle activity is significantly

reduced comparing to swimming in steady flow. The role of the lateral line organ in such

behavior is further described in [93].

An engineering equivalent of a biological lateral line is of great interest to the navigation

and control of underwater robots and vehicles. In particular, an artificial lateral line will rep-

resent a new, noiseless sensing modality for underwater applications that is complementary

to traditional sensors such as vision and sonar [20, 59]. A number of micromachined flow

sensors, inspired by neuromasts in fish lateral lines [74, 31, 96, 60] or by wind receptor hairs

in insects [67, 29], have been reported in the last decade. These sensors typically have an

out-of-plane beam structure that bends or deforms during the interaction with a flow. The

bending or deformation, which carries information about the flow, is captured via resistance

change [67, 92, 74, 31, 60, 97] or capacitance change [78, 29]. Hair cell-inspired sensors have

also been developed at slightly larger scales, exploiting optical transduction [50] or novel

sensing materials such as ionic polymer-metal composites (IPMCs) [1, 2] and gel-supported

lipid bilayers [80].

Extensive behavioral and neurophysiological studies have been conducted by biologists to

understand how hydrodynamic stimuli are encoded and processed in the lateral line system

[26, 24, 94, 9, 22, 23], which could potentially provide insight into information processing
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(a)

(b)

Figure 1.1: (a) Illustration of the structure of a neuromast (image credit: C. H. Mallery);
(b) distribution of superficial (small dots) and canal neuromasts (dots within shaded areas)
on the Lake Michigan mottled sculpin [20]. For interpretation of the references to color in
this and all other figures, the reader is referred to the electronic version of this dissertation.

for artificial lateral lines. Theoretical work on flow modeling in the context of lateral lines

is often instrumental in both explaining hydrodynamic imaging by fish and guiding the

information extraction in artificial lateral lines. For example, Hassan modeled the flow field

around a fish when the latter passes by or approaches an obstacle [40], moves in open water

or approaches a plane surface [41], glides alongside or above a plane surface [42], and is near

an oscillating sphere (also known as dipole) [43]. Ren and Mohseni derived the pressure
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field around a flat body as well as the flow inside a trunk canal in the presence of vortex

street and explored its implications in vortex sensing [75]. Sichert et al. explored the use

of hydrodynamic multipole expansion to explain how aquatic animals distinguish shapes of

moving objects [83], and in another work Sichert and van Hemmen investigated the shape

influence of a submerged moving object on the lateral line perception using the conformal

mapping theory [84]. Bouffanais et al. performed analytical and numerical studies on the

pressure field around a cylindrical object in a uniform flow and examined the estimation of

location, size, and cross-section shape of the object based on the measured pressure field

[11]. There has also been experimental work in exploring the strategies for vortex sensing

[50, 4, 91] and object tracking and recognition [33].

Barring some of the aforementioned research in vortex sensing and object imaging, much

of the work in information processing for biological and artificial lateral lines has been fo-

cused on dipole source localization. The dipole source emulates the rhythmic movement of

fins and body appendages, and has been widely used as a stimulus (playing the role of preda-

tor, prey, or conspecific) in the study of biological lateral lines [26, 22, 23, 39]. Dipole source

localization has also become a benchmark problem in the development of artificial lateral

lines, for demonstration of the latter’s capability in mimicking their biological counterpart.

In addition, for underwater applications, localization of dipole sources has implications in de-

tecting and estimating nearby fish-like robots and therefore is relevant to robot coordination

and control.

Dagamseh et al. proposed the use of characteristic points (zero-crossings, maxima, etc.)

in the measured velocity profile along the lateral line for dipole source localization [27],

similar to what was proposed by Franosch et al. for modeling the localization by the clawed
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frog Xenopus [34]. However, this approach would require prohibitively many sensors to

determine the characteristic points, and it is limited to a maximum detection distance of

1/
√
2 body length (BL). Franosch et al. also suggested a maximum-likelihood estimator-type

model for dipole localization by Xenopus [34], although no algorithms were presented to solve

for the optimal source location. Data-matching/table-lookup approaches were presented by

Pandya et al., where the measured signal pattern was compared with a large, pre-obtained

set of templates or an empirical model fitted with sufficient amount of data [68]. These

approaches suffered from the need for excessive computing and storage resources, or the

difficulty in system-level implementation [68]. Recently, a beamforming algorithm for array

signal processing was used to localize a dipole source and a tail-flicking crayfish, and showed

better performance than the matched filter [98].

1.2 Research Objective

Inspired by the sensing capabilities of biological lateral lines, our goal in this dissertation

is to investigate signal processing approaches for an artificial lateral line, which will be

ultimately mounted on an underwater robot such as a robotic fish (Fig. 1.2). Realization of

this goal could have significant implications. First, it will directly benefit many underwater

applications. For example, autonomous underwater vehicles can navigate in narrow spaces

with a near-field sensing capability. Second, by learning the mechanisms used by most fish

and underwater species, we will be able to develop new algorithms for sensor signal processing

that will find use beyond hydrodynamic sensing.
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Figure 1.2: Illustration ot the potential use of an artificial lateral line system on a robotic
fish.

1.3 Contributions

1.3.1 An Artificial Lateral Line System Using IPMC Sensor Ar-

rays

The first contribution of this dissertation is a novel approach to the realization of artificial

lateral lines, which exploits the inherent sensing properties of ionic polymer-metal compos-

ites (IPMCs)[81, 19, 58]. As illustrated in Fig. 1.3, An IPMC has three layers, with an

ion-exchange polymer membrane sandwiched by metal electrodes. Inside the polymer, (neg-

atively charged) anions covalently fixed to polymer chains are balanced by mobile, (positively

charged) cations. Deformation under a mechanical perturbation redistributes the cations,

producing a detectable electric signal (e.g., short-circuit current) that is well correlated

with the mechanical stimulus, which explains the sensing principle of an IPMC. Conversely,

under an applied voltage, transport of hydrated cations and water molecules within the

membrane, together with the associated electrostatic interactions, leads to bending motion
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of the IPMC sample. Many researchers have studied the fabrication [49, 6, 18], characteri-

zation, and modeling [63, 86, 10, 17, 14, 28, 71, 72, 73, 100] of IPMC sensors and actuators.

Recent years have seen significant interest in using IPMC materials for underwater actuation

[87, 15, 7, 99, 12, 48, 88], sensing [35], and energy harvesting [8].
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Figure 1.3: Illustration of IPMC sensing principle.

We have chosen the IPMC material for creating artificial lateral line in this work for

several reasons. First, IPMC works well in water and has direct mechanosensory property,

which makes it relatively easy to construct the sensor and its readout circuitry. Another

advantage of IPMC sensors (over, e.g., hot-wire flow sensors) is that they automatically

capture the flow polarity. Furthermore, the softness of IPMC material allows it to respond

to small flows and thus attain high measurement sensitivity. Finally, the fabrication processes

for IPMCs are relatively simple and have been studied extensively over the past decade. In

particular, for millimeter-scale and above, one can fabricate an IPMC sheet using well known
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processes [49] and then cut into any desired sizes.

1.3.2 Localization of a Fixed Dipole Using Neural Network

In this dissertation, we propose an artificial neural network-based scheme for processing the

signals from IPMC sensor arrays, to localize a dipole source. In general, the relationship

between the source location and the resulting flow field (and thus the sensor outputs) is

highly nonlinear and complex. While there is an analytical but nonlinear model for a dipole-

generated flow field under ideal assumptions [53], this model may not capture the flow field

well under more realistic conditions, an example of which is the frequent scenario that in-

volves fluid-structure interactions. Artificial neural networks are capable of approximating

nonlinear mappings, and in particular, when such mappings are unknown, there are estab-

lished methods for training the approximating neural networks [79]. For this reason, we have

adopted a neural network-based scheme for the dipole-source localization. The concept of an

IPMC lateral line and its neural network-based processing scheme are examined experimen-

tally. A prototype comprising six millimeter-scale IPMC sensors, with a body length (BL) of

10 cm, is constructed. The localization experiments are conducted for a dipole source that

is vibrating at 40 Hz. Note that this frequency is consistent with the typical range of dipole

frequencies adopted in the study of biological and artificial lateral lines (e.g., 50 Hz in [24]

and 45 Hz in [98, 65]).

1.3.3 Nonlinear Estimation-based Dipole Source Localization

An engineering equivalent of a biological lateral line is of great interest to the navigation and

control of underwater robots and vehicles. A vibrating sphere, also known as a dipole source,
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can emulate the rhythmic movement of fins and body appendages, and has been widely used

as a stimulus in the study of biological lateral lines. Dipole source localization has also be-

come a benchmark problem in the development of artificial lateral lines. In this dissertation

we present two novel iterative schemes, called Gauss-Newton (GN) and Newton-Raphson

(NR) algorithms, for simultaneously localizing a dipole source and estimating its vibration

amplitude and orientation, based on the analytical model for a dipole-generated flow field.

The performance of the GN and NR methods is first confirmed with simulation results and

the Cramer-Rao bound (CRB) analysis. Experiments are further conducted on an artifi-

cial lateral line prototype, consisting of six millimeter-scale ionic polymer-metal composite

(IPMC) sensors with intra-sensor spacing optimized with CRB analysis. Consistent with

simulation results, the experimental results show that both GN and NR schemes are able to

simultaneously estimate the source location, vibration amplitude and orientation with com-

parable precision. Specifically, the maximum localization error is less than 5% of the body

length (BL) when the source is within the distance of one BL. Experimental results have

also shown that the proposed schemes are superior to the beamforming method, one of the

most competitive approaches reported in literature, in terms of accuracy and computational

efficiency.

1.3.4 Localization of a Moving Dipole Source Underwater

We further investigate the problem of localizing a moving dipole source using an artificial

lateral line (ALL). Such a moving source could represent a swimming fish or robotic fish,

which demonstrates a combination of translational motion and oscillatory body/fin motion.

First, we formulate a nonlinear estimation problem based on an analytical model for the
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moving dipole-generated flow field, where we assume that the source location, vibration

amplitude, and moving speed are unknown. We also assume that the amplitudes of the

flow velocities at the DC and dipole vibration frequencies are available as measurements.

Such amplitudes can be obtained by conducting sliding digital Fourier transform (SDFT) of

the measured signal in the time domain. The estimation problem is solved recursively with

the Gauss-Newton method, and we illustrate the proposed approach with simulation and

experimental results.

1.3.5 Underwater Tracking and Size-Estimation of a Moving Ob-

ject

We investigate the problem of tracking a moving but non-vibrating cylindrical object and

estimating its size and shape using an artificial lateral line system. Instead of using pressure

sensing as done in the literature for similar problems [11, 33, 91], we consider the measure-

ment of flow velocities as is believed to be what is adopted in biological lateral lines. Based

on a nonlinear analytical model for the moving object-induced flow field, two-stage nonlinear

filtering algorithms are proposed to estimate the location, velocity, size, and shape of the

object. Using two-stage filtering instead of one stage is motivated partly by the progressive

information extraction conjectured for biological lateral lines [11], and partly by computa-

tional efficiency. The approach is first illustrated with simulation results, where a moving

cylinder with ellipsoidal cross-section is tracked and its shape parameter estimated. Exper-

imental validation is then conducted with an artificial lateral line prototype comprising six

IPMC flow sensors. Experimental results show that the proposed approach is able to track

the movement of a cylindrical and an ellipsoidal objects with a circular profile and provide
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an estimate of the object size, and shape, respectively.

1.3.6 Localization and Identification of an Stationary Obstacle

Underwater

Fish exploits the vortex streets generated by leading fish (schooling behaviors) or by a

static obstacle in flow. First, a fish swimming between the vortex streets created by two

leading fish will experience a flow assisting its forward motion (Fig. 1.4(a)) [95]. Second, a

fish can extracting energy from oncoming vortices. For example, if the caudal fin counter-

spins a vortex shed by leading fish or a static obstacle, the energy wasted in the wake can

be minimized (Fig. 1.4(b)) [90]. Such a strategy for autonomous underwater vehicles will

require detecting, tracking and manipulating oncoming vortices using artificial lateral lines.

For a robot-like fish or an underwater vehicle, the information sensed via the artificial

lateral line reflects the combined effect of an unknown number of vortices, the flow due to

its own motions, and other disturbances. Biologically, fish are able to easily identify stimuli

of interest in a noisy environment through its lateral line system [20]. We experimentally

explore the use of IPMC sensors for estimating the hydrodynamic parameters involved in a

Kármán vortex street that is created by a stationary cylinder in a flow. We validate that

the vortex shedding frequency, which can be extracted from the sensor signal, shows clear

correlation with the flow speed and the obstacle size.
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Figure 1.4: Benefit of exploiting vortex streets (adapted from [57]): (a) Exploiting flow due
to vortex streets of leading fish; (b) harvesting energy from oncoming vortices.

1.4 Organization of This Dissertation

The remainder of this dissertation is organized as follows. Chapter 2 presents a complete

development of an IPMC artificial lateral line. Using IPMC sensors designed and fabricated
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by our Smart Microsystems Laboratory in Michigan State University (MSU), we assemble

and model the response of an IPMC sensor array, and conduct the sensor calibration. We

then perform fast Fourier transform to analyze the signal spectrum and/or extract signal

amplitudes at frequencies of interest. The performance of the system is demonstrated and

tested through a range of experiments involving various hydrodynamic stimuli. We further

demonstrate the performance of the IPMC lateral line in localizing a dipole source, where an

artificial neural network is used for signal processing. Chapter 3 first reviews an analytical

model for a dipole-generated flow field. The digital particle image velocimetry (DPIV) system

(LaVision, Ypsilanti, MI) and Cramer-Rao bound optimization technique are also introduced

in this chapter. New nonlinear estimation algorithms are investigated for localizing a dipole

source with unknown vibration amplitude and orientation. Both simulation and experimental

are presented to support the proposed methods. Chapter 4 and Chapter 5 focus on tracking of

a moving dipole source and a moving but non-vibrating object, respectively. For the moving

dipole case, we demonstrate in both simulation and experimentation that the Gauss-Newton

scheme is able to successfully accomplish the localization and tracking task. For a moving

but non-vibrating cylinder, we propose several two-stage Kalman-filtering-type algorithms,

and conduct simulation and experiments to examine their performance. Chapter 6 presents

the experimental results on how an IPMC lateral line might be used for hydrodynamic

imaging of vortex streets shed by a stationary object in a flow. Chapter 7 draws conclusions

on the research, while the recommendations for future work on the project are proposed in

Chapter 8.
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Chapter 2

Dipole Source Localization Using

Neural Networks

The signals from IPMC sensors of the artificial lateral line are complex functions of the

source location. Even for the dipole stimulation, the flow field measured with digital particle

image velocimetry (DPIV) deviates appreciably from the theoretical predictions, because

of nonideal fluid conditions and interactions of fluid with structures (e.g., with the IPMC

beams and the walls of the tank). In addition, the sensing characteristics of individual sensors

could be different from each other in practice because of imperfect fabrication processes. The

sensor outputs are further contaminated with noises due to ambient water movement and

thermal fluctuations [35]. As a result, it is difficult to decode the sensor signals analytically.

Biological fish are faced with similar challenges in extracting relevant sensing information

from vast amount of data that are corrupted by noises. However, they manage to accomplish

source localization and other missions robustly through neural network-based information

processing. Taking this biological inspiration, we construct an (artificial) neural network to
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process the signals acquired by the IPMC-based lateral line.

The remainder of the chapter is organized as follows. The model for an IPMC sensor

interacting with a flow is first discussed in Section 2.1. The neural network-based processing

scheme and the optimal design of the neural network using genetic algorithm are described

in Section 2.2 and Section 2.3, respectively. The experimental setup and basic sensor char-

acterization are presented in Section 2.4. Experimental results on the localization of a dipole

source are shown in Section 2.5. Finally, concluding remarks are provided in Section 2.6.

2.1 Hydrodynamic Model for an IPMC Sensor Under

Oscillatory Flow

In a biological lateral line system, under an AC flow, the flow field around the cilium is very

different from what it would be under a DC flow. Due to a viscous flow, a boundary layer

symmetric about the cilium will develop at the substrate (Fig. 2.1), and the drag force acting

on the cilium will have some phase shift along the length. As the starting point of this

analysis, we assume that there is an oscillatory flow with angular frequency ω, and the local

fluid velocity at the ith sensor site is denoted as v(xi, yi), where sensor i has dimensions of

h ×W × t (height, width, thickness) and is located at (xi, yi). Under the small-deflection

assumption, the Euler-Bernoulli equation for the IPMC beam is given as,

Y J
∂4q

∂y4
+ ρ̄m

∂2q

∂t2
+ c1

(
∂q

∂t
− U

)

+ ρ̄a

(
∂2q

∂t2
− ∂U

∂t

)

= ρ̄w
∂U

∂t
, (2.1)
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Figure 2.1: Illustration of the beam dynamics of an IPMC sensor in flow.

where the first term represents elastic force (Fe) acting on the beam [45]:

Fe = Y J
∂4q

∂y4
, (2.2)

Y is the Yong’s modulus of the IPMC beam, J is the second moment of inertia J = 2
3Wt3.

The second term in (2.1) represents the inertial force Fm, given as [61]

Fm = ρ̄m
∂2q

∂t2
, (2.3)

where ρ̄m = ρmWt, and ρm is the density of the IPMC material. The model treats the

stimulus as an oscillating pressure field and we can calculate the flow near the boundary
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over the flat surface as [38]

U = v(xi, yi)

(

1− e

(−y
δ

)

cos

(−y
δ

))

, (2.4)

where δ is the boundary layer thickness. This is calculated by [38]

δ =

√
2µ

ρwω
, (2.5)

where ρw and µ are the density and dynamic viscosity of water, respectively. The viscous

drag force Fu, on an element of the IPMC beam, is given as the third term in (2.1) [61]

Fu = c1

(
∂q

∂t
− U

)

, (2.6)

where c1 = 4πµk, and k is a viscous drag coefficient, which is calculated as

k =
L

L2 + (π/4)2
, (2.7)

where L is the hydrodynamic force coefficient. L can be calculated as

L = γ + ln

(
W√
2δ

)

, (2.8)

where γ is Euler’s constant (γ ≈ 0.5772). The acceleration reaction force Fa, is represented

as the fourth term in (2.1) [37]

Fa = ρ̄a

(
∂2q

∂t2
− ∂U

∂t

)

. (2.9)
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Pressure field that develops around the IPMC beam as flow accelerates results in a buoyant

force, Fb, that can be calculated as

Fb = ρ̄w
∂U

∂t
, (2.10)

where ρ̄w = ρwWt. By converting the equation (2.1) from the time-domain to the Laplace

(s) domain, we can derive the transfer function that relates the beam tip deformation q1

to the local velocity v. With typical parameters, the transfer function turns out to be

approximated well by

q1(s)

v(s)
=
ca
s
, (2.11)

where ca is constant. On the other hand, Chen et al. [16] have developed a dynamic for

IPMC sensors, where the transfer function from the tip displacement q1 to IPMC current

output I can be approximated as

I(s)

q1(s)
= cbs, (2.12)

where cb is a constant. The overall approximate model from local velocity v to the IPMC

current output I is then given as

I

v(s)
= η, (2.13)

where η = cacb is constant gain that will be calibrated in experiments. Note that the ap-

proximations used to arrive at (2.11) and (2.12) are only valid for an intermediate frequency

range, where the IPMC sensor behaves like a band-pass filter. For DC or high-frequency

range, the sensor model will need to be adapted appropriately.

18



2.2 Source Localization Using Neural Network Pro-

cessing

We consider the localization of a dipole source in a two-dimensional (2D) plane with co-

ordinates (x, y). The proposed approach can be extended readily to the localization in a

3D space, although that will require more training points for the neural network. Fig. 2.2

illustrates the problem setup. Here (x, y) denotes the location of the source, and the IPMC

sensor arrays are placed at a known location. As illustrated in Fig. 2.3, we adopt the

y

Dipole source

at ),( yx

IPMC sensor array

x

Figure 2.2: Schematic of the dipole source localization problem.

multilayer perceptron (MLP) architecture for the neural network. An MLP network consists

of an input layer, a hidden layer, and an output layer, and is the most widely used network

structure for nonlinear classification and prediction applications [79].

One could use different features extracted from the sensor output data as the input to

the neural network. In this work, we use the signal amplitude at the stimulus frequency
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Figure 2.3: Schematic of the MLP neural network for signal processing of the IPMC lateral
line.

because of its robustness to measurement noises. The amplitude is obtained through fast

Fourier transform (FFT) of the raw sensor signal. The number of inputs is the same as the

number of IPMC sensors considered. For comparison purposes, in this work we investigate

the performance of the artificial lateral line when different numbers of sensors are adopted.

The number of the hidden-layer nodes is chosen through a genetic algorithm (GA)-based

optimization process, which will be further described below. Each hidden layer node repre-

sents the operation of nonlinear activation, which takes the form of a sigmoid function. The

output layer has two nodes, representing the x and y coordinates of the vibrating source.

The number of hidden-layer nodes and the connective weights between the layers are

determined through a two-phase training procedure, using the software NeuroSolutions [64].

The training data are obtained by placing the stimulus at known locations (xi, yi), 1 ≤ i ≤

M , measuring the corresponding sensor outputs and computing the signal amplitudes. In

the first training phase, a genetic algorithm is used to find an appropriate value for the

number of hidden-layer nodes and a reasonable set of values for the connective weights. In

particular, each genome encodes both the number of hidden-layer nodes and the weights of
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all connecting edges. The maximum number of hidden-layer nodes is limited to 24 based on

the numbers of network inputs and outputs. We consider a population size of 25 genomes

and run 40 generations of evolution (crossover/mutation). The fitness function (or more

appropriately, the cost function) used in the selection process is the mean square error J :

J =
1

2M

M∑

i=1

(xi − x̂i)
2 + (yi − ŷi)

2 , (2.14)

where (x̂i, ŷi) denotes the predicted value for (xi, yi) under the current network structure

and weights.

The values of the connective weights obtained in the first training phase then serve as the

initial condition for weights refinement in the second phase, where the network structure is

fixed as determined in the first phase. Delta-bar-delta learning [79], with adaptive learning

rate, is used for weights optimization. Let K be the total number of weights. For each

weight wk, 1 ≤ k ≤ K, the update rule is

wnew
k = wold

k − ηnewk
∂J

∂wold
k

, (2.15)

where the adaptive learning rate ηk is updated as

ηnewk =







ηoldk + a, if ∂J

∂wold
k

> 0

bηoldk , if ∂J

∂wold
k

≤ 0

, (2.16)

and a, b are constants satisfying 0 < a, b < 1.
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2.3 Optimum Design of the Neural Network Using Ge-

netic Algorithm

The genetic algorithm (GA) is a search technique, based on an abstraction of biological evo-

lution, used to find solutions of optimization problems. In GA, a population of chromosomes,

which are represented as binary vectors, evolves into a new population of chromosomes using

the natural selection forces of crossover and mutation. Some chromosomes are selected and

allowed to reproduce and the more “fit” chromosomes produce more offspring. Recombi-

nation is achieved via the crossover operator, which exchanges parts of two chromosomes.

Mutation can randomly change some segments in the chromosome. Chromosomes are used

to encode possible solutions to an optimization problem. The quality of a solution is rep-

resented by its fitness, which is the objective function to be optimized. In our case, the

objective function is the mean-square error. The GA is implemented according to the fol-

lowing steps: (i) Randomly generate an initial chromosome population; (ii) calculate the

minimum square error to indicate the fitness function value for each chromosome in the

population; (iii) create a new chromosome population from mating of current chromosomes

and applying mutation and recombination; (iv) select a fixed number of chromosomes such

that more fit chromosomes are more likely to be selected; (v) compute the fitness of the new

population; (vi) increment the current number of generation. Finally, if not (end-test) go

to step (iii), or else stop and return the best chromosome. We use the genetic algorithm

to determine the optimal initial weights and the optimum number of nodes in the hidden

layer of the neural network. The optimal initial weights will guarantee a faster convergence

to the global minimum of the objective function, and the optimum number of nodes in the
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hidden layer will avoid the bias-variance dilemma of neural networks. Given a data set, it is

known that a small number of nodes in the hidden layer captures the data trend only in a

small region of the pattern, whereas a large number of nodes in the hidden layer results in

overfitting the data [79].

2.4 Experimental Setup and Sensor Characterization

Fig. 2.4 shows the constructed lateral line prototype, consisting of six IPMC sensors. Each

sensor, with dimensions 8 mm × 2 mm × 200 µm, has been cut from an IPMC sheet

fabricated by the Smart Microsystems Laboratory at Michigan State University, following a

recipe similar to the one described in [49]. The IPMC material contains lithium ions (Li+)

as cations. The sensor-to-sensor separation is 2 cm, resulting in a total span of 10 cm, which

will be regarded as the Body Length (BL) in later discussions.

Figure 2.4: A prototype of IPMC-based lateral line system.

Under a mechanical stimulus, an open-circuit voltage or a short-circuit current can be

measured across the two electrodes of an IPMC. We have chosen to take the short-circuit cur-

rent as the sensor output because current measurement is less susceptible to noises. Fig. 2.5

shows the schematic of the measurement circuit, which consists of two cascaded operational
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amplifiers (op-amps)[35]. A low-noise, low-bias precision op-amp (OPA 124 from Texas

Instruments) is adopted for the first-tier amplification, to reduce both the noise and the

spurious DC bias in the sensor output induced by the leakage current. Since the “−” ter-

minal of Op-amp 1 is virtually the ground (following standard op-amp circuit analysis), the

two electrodes of IPMC can be considered short-circuited. The sensing current generated

under this configuration, i(t), is proportional to the voltage output v1(t) = R1i(t). The

second op-amp is introduced for gain adjustment, where the resistor R3 is tunable. The

output v2(t) is related to the current signal i(t) via v2(t) =
R3R1
R2

i(t). In the circuit we

used, R1 = 470 kΩ, R2 = 10 kΩ, and R3 was adjustable from 0 to 50 kΩ. Acquisition and

processing of the IPMC sensor output are conducted through a dSPACE system (DS1104,

dSPACE Inc., Germany). A digital low-pass filter with cutoff frequency 55 Hz is further

implemented to remove high-frequency noises from the sensor signals .

+
+

R1

GND
Op-amp 1

Op-amp 2

R2

R3

IPMC

)(ti

)(td

)(1 tv )(2 tv

Figure 2.5: The schematic of circuit for measuring the short-circuit current generated by the
IPMC sensor.

All experiments are conducted in a water tank, shown in Fig. 2.6(a). The tank mea-

sures 6× 2× 2 ft3, and is equipped with a digital particle image velocimetry (DPIV) system
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(LaVision, Ypsilanti, MI). In a DPIV system, small particles are dispersed in a fluid and a

laser sheet is created in the fluid to illuminate the particles. Processing of images taken in

quick successions can reveal the movement of particles and thus provide information about

the flow field. In our experiments, the DPIV system is used for preliminary characterization

of the flow field under the stimulating source. A dipole source is created with a mini-shaker

(4810, Brüel & Kjaer, Denmark) (Fig. 2.6(b)), the vibration amplitude and frequency of

which can be readily controlled through a voltage input to the shaker. A lightweight bar

firmly attached to the mini-shaker then translates the vibration to a sphere rigidly coupled

to the bar. The sphere, which is a steel ball, has a diameter of 19 mm. The frequency range

of the dipole spans DC–20 kHz. The source location and vibration direction with respect to

the IPMC lateral line can be adjusted by moving the stand holding the IPMC lateral line or

by moving the source itself.

Laser

Camera Tank

(a) (b)

Figure 2.6: Experimental setup: (a) Experimental tank equipped with a DPIV system; (b)
the mini-shaker-based dipole source.

DPIV experiments have been conducted to observe the flow field around the IPMC

sensors, for different source-sensor separation, to get a sense of the flow magnitude un-
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der the stimuli. For example, Fig. 2.7 shows the flow fields around an IPMC sensor for a

19 mm × 14 mm window, under a 20 Hz stimulus produced with a dipole source described

in [35], where both the source vibration axis and the illuminated plane are perpendicular to

the IPMC beam plane. In other words, the IPMC beam would bend left and right in Fig. 2.7,

although the IPMC thickness did not look to scale because of laser light scattering around

the beam. Fig. 2.7(a) and (b) correspond to dipole-IPMC separations of 10 and 45 cm,

respectively, which clearly indicates that that the flow velocity decreases as the separation

between source and sensor increases.

(a) (b)

Figure 2.7: Flow field around one IPMC sensor under a dipole stimulation: (a) Dipole-sensor
separation 10 cm, with maximum flow amplitude of 9.3 mm/s in the field; (b) dipole-sensor
separation 45 cm, with maximum flow amplitude of 4.1 mm/s in the field.

Fig. 2.8 shows typical sensor responses under the mini-shaker-based stimulation (40Hz),

indicating that the current output from the IPMC sensor is at the order of µA, which can

be captured very well by the sensing circuit. Fig. 2.8(a) shows the signal from sensor #2

of the IPMC lateral line, when the source is 1 cm away from this sensor, while Fig. 2.8(b)

shows the response from sensor #4 (4 cm from sensor #2) under the same stimulus. In this
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experiment the lateral line axis is perpendicular to the vibration axis of the dipole source,

and perpendicular to the beam plane of each sensor.
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Figure 2.8: Typical IPMC sensor signals: (a) Signal from sensor #2, which is close to the
dipole source; (b) signal from sensor #4.

Fig. 2.9 shows the amplitude of the signal from one IPMC, located at (7,0), as a function

of the location (x, y) of the mini-shaker-based dipole stimulus vibrating parallel and per-

pendicular to the IPMC beam plane. It can be seen that, while in general the signal gets

stronger when the source gets closer, the overall amplitude landscape has a sophisticated

profile. The results in Fig. 2.9 clearly illustrate the challenge in underwater localization.

In particular, it would be difficult to localize unambiguously a source with a single sensor;
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Figure 2.9: Sensor characterization, measured sensor signal magnitude as a function of source
location, The dipole vibration axis is: (a) Parallel to the IPMC beam plane; (b) perpendicular
to the IPMC beam plane.
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instead, a lateral line-like array structure will be needed.

2.5 Experimental Results on Diploe Source Localiza-

tion

As shown in Fig. 2.11, a working area of about 20 × 10 cm2 is used in the experiments.

The frequency of the dipole source is 40 Hz, the vibration is along the y direction with

an amplitude of 1.91 mm. The lateral line is placed in parallel with the x-axis, at y = 0

and spanning from x = 5 cm to x = 15 cm. The beam plane of each IPMC sensor is

perpendicular to the lateral line direction. Both the dipole source and the lateral line are

placed 6 cm underwater. First, for the purpose of training the neural network, we define a grid

of 1× 1 cm2 lattices in the working area, resulting in a total of 180 grid points. The dipole

source is placed at each grid point, where the amplitude of the signal from each IPMC sensor

in the lateral line is obtained. Subsets of these data are used to train the neural network in

different cases. Fig. 2.10 shows the evolution of the cost function J in (2.14) during the first,

genetic algorithm-based training phase, for the case involving six sensors and 180 training

points. It can be seen that the cost function converges to a steady-state value as the number

of generations approaches 40. As explained in Section 2.2, the connective weights obtained

in the first training phase are then refined in the second phase using delta-bar-delta learning.

To test the performance of the lateral line, we place the dipole source at each of 16 points

along an elliptical track centered at (10, 5.5), obtain the amplitudes of sensor signals from

the lateral line and feed them to the trained neural network, and compare the output of the

network to the actual location.
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Figure 2.10: Evolution of the fitness function (the mean square error J) over generations,
in the genetic algorithm-based training phase. This example involves all six sensors and 180
training points.

Fig. 2.11(a) and (b) show the localization results when all six sensors are used, where

90 (2× 1 cm2 lattices) and 50 (2× 2 cm2 lattices) training points are utilized, respectively.

The locations of the training points are denoted with squares in the figures. Fig. 2.12(a) and

(b) further show the actual localization errors at all 16 validation points for the two cases.

It is clear from Fig. 2.12(b) that, for a training grid of 2× 2 cm2 lattices (50 points), the

maximum localization error is 0.3 cm. The maximum error drops to 0.2 cm when the number

of training points is increased to 90 (Fig. 2.12(a)). Note that the resulting neural networks

are different when different numbers of training points (or different numbers of sensors) are

used. For example, the neural network has 13 hidden nodes for the case in Fig. 2.11(a),

while it has 10 hidden nodes for the case in Fig. 2.11(b).

In order to examine the effect of the number of sensors on the localization performance,

we have repeated the localization with four and two sensors of the lateral line, as shown
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Figure 2.11: Localization of the dipole source using all six sensors of the lateral line: (a)
With 90 training points; (b) with 50 training points.

in Figs. 2.13 and 2.14, respectively. In each case, the sensors are taken from the middle

section of the lateral line. It is clear that with fewer sensors, the localization error increases.

Fig. 2.15 further shows the maximum and average localization errors when different numbers
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Figure 2.12: Localization error at 16 validation points when all six sensors are used: (a)
With 90 training points; (b) with 50 training points.

of sensors and training points are used. From the figure, we can see that the localization

performance with four sensors becomes comparable to that with six sensors when the number

of training points is quadrupled (from 2× 2 cm2 lattices to 1× 1 cm2 lattices). And for two

sensors, even with all 180 training points, the maximum localization error is bigger than that

with all six sensors when only 25 training points are used.

2.6 Chapter Summary

In this chapter, we investigated a new approach to the realization of artificial lateral lines

for underwater robots and vehicles, including both the proposal of using IPMC materials as
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sensing elements and the neural network-based signal processing algorithm. The effectiveness

of the proposed approach was validated in experiments involving localization of a dipole

source. Experimental results show that the IPMC-based lateral line can localize the dipole

source 1-2 BLs away, with a maximum localization error of 0.3 cm, when the data for training

the neural network are collected from a grid of 2 cm by 2 cm lattices. The performance of the

lateral line using fewer sensors is also studied, and it is found that, with fewer sensors, more

training data are needed to achieve a given localization precision. For example, when four

sensors are used, it requires training data on a grid of 1 cm by 1 cm lattices to yield the same

level of localization accuracy as achieved by six sensors with training data from 2× 2 cm2

lattices. These results have not only demonstrated the feasibility of using arrays of IPMC

sensors as artificial lateral lines, but also provided interesting insight into the tradeoffs in

design and implementation.
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Figure 2.13: Localization of the dipole source using four sensors of the lateral line: (a) With
90 training points; (b) with 50 training points.
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Figure 2.14: Localization of the dipole source using two sensors of the lateral line: (a) With
90 training points; (b) with 50 training points.
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Figure 2.15: Error in localization of the dipole source using the lateral line: (a) Maximum
error along the track; (b) average error along the track.
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Chapter 3

Nonlinear Estimation-based Dipole

Source Localization

Most existing work deals with a dipole source that has fixed vibration amplitude and orien-

tation. In this chapter we consider the dipole localization problem where both the vibration

amplitude and vibration orientation are unknown. When the vibration amplitude is varying,

the problem becomes challenging, partly because a source far away but with large vibration

and another source nearby but with small vibration could produce signals of similar ampli-

tudes. If we consider the scenario of one fish detecting a predator using its lateral line system,

the solution to the aforementioned problem would imply that the fish not only knows where

the predator is, but also which way it is swimming toward. There are similar implications

for artificial lateral line systems.

To solve these problems, we treat the source location, vibration amplitude, and orienta-

tion of vibration axis as unknowns of a nonlinear estimation problem, and then present two

recursive algorithms. In the first scheme, we solve a linearized estimation problem with the
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Gauss-Newton (GN) method. In the second scheme, we solve the nonlinear equations cor-

responding to the first-order optimality condition using the Newton-Raphson (NR) method.

We will also compare the proposed methods with the beamforming method proposed by [98],

which is among the most competitive methods reported in the literature. In this chapter we

also exploit the Cramer-Rao Bound (CRB) for the assessment of estimation performance.

The remainder of the chapter is organized as follows. The estimation problem is for-

mulated in Section 3.1. The GN, NR, and beamforming algorithms are described in Sec-

tion 3.2, along with the CRB analysis. Simulation and experimental results are presented

in Section 3.3 and Section 3.4, respectively. Finally, chapter conclusions are provided in

Section 3.5.

3.1 Problem Formulation

As widely assumed in the literature [46, 39, 43], we consider a potential flow generated by

a vibrating sphere, the dipole source. The velocity potential ϕ at a spatial point can be

expressed as [53]

ϕ(r) =
a3(vd · r)
2‖r‖3 , (3.1)

where a is the diameter of vibrating sphere, vd is the instantaneous velocity of the dipole

source, r represents the relative location of the point of interest with respect to the dipole,

and ‖ · ‖ denotes the Euclidean norm of a vector. At the point r, the flow velocity v(r) is

v(r) = −∇ϕ(r) = a3
(
3(vd · r)r− ‖r‖2vd

)

2‖r‖5 . (3.2)
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Since our goal in this dissertation is to localize the dipole source, we redefine r hereafter as

the location of the dipole source with respect to a known point. Note that the formula (3.2)

for the dipole-generated velocity field remains valid under the new definition of r, because

v(−r) = v(r).

To ease the discussion, we will focus on the case where the lateral line sensor and the

dipole source are located in the same plane (denoted as the x− y plane) in which the axis of

dipole oscillation lies; see Fig. 3.1 for illustration. This is a scenario widely adopted in the

study of biological and artificial lateral lines, and our proposed method will extend to the

more general, three-dimensional case in a straightforward manner. As depicted in Fig. 3.1,

the dipole source is located at (xs, ys) and vibrates with velocity vd, where the angle between

the vibration axis and the x−axis is φ. Let an array of N sensors be located in parallel to

the x-axis, with their locations assumed to be known and denoted as (xi, yi), 0 ≤ i ≤ N − 1.

We assume that the presence of sensors has negligible effect on the flow distribution as

characterized in (3.2); further discussion on sensor-flow interactions will be provided in

Subsection 3.4.3. We assume that each sensor is able to provide a noisy measurement of

the local flow velocity v along one direction, which, without loss of generality, is taken to be

the x−direction in this dissertation. The latter consideration is motivated by the fact that

most beam-like flow sensors [92, 74, 31, 60, 97, 78, 29, 1] can only sense one component of

the flow velocity. In the absence of noise, from (3.2), we get

v(xi, yi) =
a3vd

2‖ri‖5
((2(xi − xs)

2 − (yi − ys)
2) cosφ

+ 3(xi − xs)(yi − ys) sinφ), (3.3)

where ri = (xi − xs, yi − ys)
T , with “T ” denoting the transpose. Let the sphere vibrate
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Figure 3.1: Illustration of the problem setup. The dipole source is located at (xs, ys).

with angular frequency ω and amplitude A, i.e.,

vd = A sin(ωt).

Furthermore, due to the periodic nature of the dipole-generated flow, we consider extracting

the signal amplitude at frequency ω from each sensor as themeasurement. In particular, given

the raw signals from time n1 to n2, {si(n)}
n2
n=n1

, the signal amplitude at ω can be readily

obtained through techniques such as fast Fourier transform (FFT) [66] or sliding discrete

Fourier transform (SDFT) [44, 82], and this inherent filtering process greatly reduces the

noise contained in the raw sensor signal. For sensor i, the measurement Mi can then be

40



written as

Mi =

∣
∣
∣
∣

a3((2(xi − xs)
2 − (yi − ys)

2)α1 + 3(xi − xs)(yi − ys)α2)

2‖ri‖5
+ di

∣
∣
∣
∣
, (3.4)

where α1 = A cosφ, α2 = A sinφ, and di is the (amplitude) measurement noise for sensor

i. Note that, to accommodate the nonnegativity constraint for the extracted amplitude, we

have placed the noise di inside | · |, since in general the noise could be positive or negative.

The noises {di}N−1
i=0 are assumed to have zero means and be uncorrelated with each other.

Based on the sensor measurements, we are interested in estimating the location (xs, ys),

vibration amplitude A, and vibration direction φ of the dipole source. For ease of presenta-

tion, for i = 0, · · · , N − 1, define

fi(θ) =
a3

2‖ri‖5
((2(xi − xs)

2 − (yi − ys)
2)α1 + 3(xi − xs)(yi − ys)α2), (3.5)

where θ = (α1, α2, xs, ys) represents the set of parameters to be estimated. Once θ is

obtained, we can find the vibration amplitude A =
√

α21 + α22 and vibration orientation

φ = arctan(α2/α1)). We further define

M
△
= (M0, · · · ,MN−1)

T ,

f(θ)
△
= (f0(θ), · · · , fN−1(θ))

T ,

d
△
= (d0, · · · , dN−1)

T .

We then have

M = |f(θ) + d| , (3.6)
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where | · | denotes the component-wise absolute value of the vector. The estimation problem

is formulated as follows. Let the dipole diameter a, frequency ω, and the sensor locations

{(xi, yi)}N−1
i=0 be known. Given the sensor measurement M , provide an estimate θ̂ for the

parameter θ, such that

J(θ̂) =
(

M −
∣
∣
∣f(θ̂)

∣
∣
∣

)T (

M −
∣
∣
∣f(θ̂)

∣
∣
∣

)

(3.7)

is minimized, where
∣
∣
∣f(θ̂)

∣
∣
∣ is the predicted measurement based on the estimated parameters.

Before presenting the estimation algorithms, we briefly comment on the assumptions

made on the knowledge of a, ω, and {(xi, yi)}N−1
i=0 . Clearly, it is natural to assume knowing

{(xi, yi)}N−1
i=0 . If the frequency ω is not given a priori, it can be identified through FFT

of the sensor signals and scan to capture the frequency that has a maximum magnitude.

Finally, if a is unknown, one will be able to estimate a3A as a lump parameter, since that is

how a and A collectively affect the flow field.

3.2 Estimation Algorithms

In this dissertation we propose and compare two recursive algorithms to obtain the parame-

ter estimate θ̂ for minimizing the cost function J in (3.7). The function f(θ) is linear in α̂1

and α̂2, but highly nonlinear in (x̂s, ŷs). In the first algorithm, briefly summarized in Subsec-

tion 3.2.1, |f(θ)| is linearized at each intermediate parameter estimate, and the estimate at

the next iteration is obtained by solving a standard least-squares problem. This algorithm

is also known as the Gauss-Newton method [47]. In the second algorithm, described in

Subsection 3.2.2, we first derive the (nonlinear) equation capturing the first-order necessary
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condition for minimizing J , and then solve the equation using the Newton-Raphson method

[47].

We will further compare our proposed algorithms experimentally with the beamforming

algorithm, which was one of the most competitive algorithms reported for dipole localization

[98]. The algorithm will be briefly reviewed in Subsection 3.2.3.

The Cramer-Rao bound (CRB) [25] establishes the lower limit for the variance of any

unbiased estimator, and we have conducted CRB analysis for both the optimal design of

a lateral line sensor and the evaluation of the proposed algorithms. The CRB analysis is

presented in Subsection 3.2.4.

3.2.1 Gauss-Newton Algorithm

Linearizing the function
∣
∣
∣f(θ̂)

∣
∣
∣ about some nominal point θ̄, we have

∣
∣
∣f(θ̂)

∣
∣
∣ ≈ fL(θ̂)

△
=
∣
∣f(θ̄)

∣
∣+ B(θ̄)(θ̂ − θ̄), (3.8)

where

B(θ̄) =
∂ |f(θ)|
∂θ

∣
∣
∣
∣
θ=θ̄

.

The estimation problem is then converted to finding θ̂, such that

J1(θ̂) =
(

M − fL(θ̂)
)T (

M − fL(θ̂)
)
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is minimized. This becomes a standard least squares estimation problem, the solution of

which is

θ̂ = θ̄ + λ
(

B(θ̄)TB(θ̄)
)−1

BT (θ̄)
(
M −

∣
∣f(θ̄)

∣
∣), (3.9)

where λ is a stepping parameter. To minimize the impact of error introduced by the lin-

earization, a recursive version of (3.9) is used, where θ̄ is replaced by the estimate at the

previous iteration:

θ̂k+1 = θ̂k + λ
(

B(θ̂k)
TB(θ̂k)

)−1
BT (θ̂k)(M −

∣
∣
∣f(θ̂k)

∣
∣
∣), (3.10)

with θ̂1 = θ0, an initial guess for the parameters. The algorithm is stopped when ‖θ̂k+1 −

θ̂k‖ ≤ ǫ, where ǫ > 0 is a specified tolerance.

3.2.2 Newton-Raphson Algorithm

The necessary condition for minimizing (3.7) is

∂J

∂θ̂
= 0, (3.11)

which implies

g(θ̂)
△
= (

∂ |f |
∂θ̂

)T (M −
∣
∣
∣f(θ̂)

∣
∣
∣) = 0. (3.12)
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An estimate of the parameter θ can then be obtained by solving the nonlinear equation

(3.12) using the Newton-Raphson method:

θ̂k+1 = θ̂k − λG−1(θ̂k)g(θ̂k), (3.13)

where λ is stepping parameter, and G(θ̂) denotes ∂g

∂θ̂
and can be evaluated as

G(θ̂) =
N−1∑

i=0

(

Mi −
∣
∣
∣fi(θ̂)

∣
∣
∣

) ∂2 |fi|
∂θ̂2

−
(
∂ |fi|
∂θ̂

)T (∂ |fi|
∂θ̂

)

.

The starting value θ̂1 in (3.13) is set to be θ0, an initial guess of the parameters. Similar to

the Gauss-Newton method, the iteration in (3.13) is stopped when ‖θ̂k+1 − θ̂k‖ ≤ ǫ for a

prespecified ǫ.

3.2.3 Beamforming Algorithm

The beamforming algorithm based on Capon’s method was used by Yang et al. to estimate

a five-dimensional (5D) dipole state (3D location and 2D vibration orientation) [98]. In

our dipole localization setup, the dipole state is fully captured by the 4D parameter vector

θ. Given the raw sensor signals for instantaneous flow velocities (projected into the sensing

axes), denoted as {s0(n), · · · , sN−1(n)}
n2
n=n1

, one constructs an energy-like map E(θ̂), which

indicates how likely the actual dipole state is θ̂. The optimal estimate of θ is then obtained

as

θ̂∗ = argmax
θ̂

E(θ̂). (3.14)

In order to evaluate E(θ̂), one first evaluates the correlation matrix R based on the
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measurements from all sensors:

R =
1

n2 − n1

n2∑

n=n1

S(n)ST (n),

where S(n) = [s0(n), s1(n), · · · , sN−1(n)]
T . The energy-like function E is then computed

as

E(θ̂) =
1

|f(θ̂)|TR−1|f(θ̂)|
. (3.15)

To search for the maximizing θ̂ for E, one typically scans through the space for the dipole

state [98]. The latter involves creating a discrete grid of dipole state components, and the

resulting total number of grid points increases exponentially with the dimension of the dipole

state.

3.2.4 Cramer-Rao Bound Analysis

Consider (3.4). For the Cramer-Rao bound (CRB) analysis, we assume that the noise di

from each sensor is Gaussian with zero mean and variance σ2m. Given the dipole state θ, the

probability for the sensors to have the measurement M = (M0, · · · ,MN−1)
T is expressed as

P (M, θ) =
N−1∏

i=0

1

(2πσ2m)1/2

(

e

−1
2σ2m

(Mi−fi(θ))
2

+ e

−1
2σ2m

(−Mi−fi(θ))
2)

, (3.16)

=
N−1∏

i=0

2

(2πσ2m)1/2




e

−M2
i

2σ2m e

−f2i (θ)

2σ2m cosh
Mifi(θ)

σ2m




 . (3.17)
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The log-likelihood function is then

lnP (M, θ) = N
2

(2πσ2m)1/2
− 1

2σ2m

N−1∑

i=0

M2
i − 1

2σ2m

N−1∑

i=0

f2i (θ)

+
N−1∑

i=0

ln

(

cosh
Mifi(θ)

σ2m

)

. (3.18)

Taking the first derivative,

∂ lnP (M, θ)

∂θ
=

1

σ2m

N−1∑

i=0

{

−fi(θ)
∂fi(θ)

∂θ
+ tanh

(
Mifi(θ)

σ2m

)

Mi
∂fi(θ)

∂θ

}

,

and consequently,

∂2 lnP (M, θ)

∂θ2
=

1

σ2m

N−1∑

i=0






− fi(θ)

∂2fi(θ)

∂θ2
−
[
∂fi(θ)

∂θ

] [
∂fi(θ)

∂θ

]T

+tanh

(
Mifi(θ)

σ2m

)

Mi
∂2fi(θ)

∂θ2
+
M2

i

σ2m

[
∂fi(θ)

∂θ

] [
∂fi(θ)

∂θ

]T

×
[

1− tanh2
Mifi(θ)

σ2m

]}

. (3.19)
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Taking the negative expectation on (3.19) results in

− E

{
∂2 lnP (M, θ)

∂θ2

}

= − 1

σ2m
E







N−1∑

i=0






− fi(θ)

∂2fi(θ)

∂θ2
−
[
∂fi(θ)

∂θ

] [
∂fi(θ)

∂θ

]T

+tanh

(
Mifi(θ)

σ2m

)

Mi
∂2fi(θ)

∂θ2
+
M2

i

σ2m

[
∂fi(θ)

∂θ

] [
∂fi(θ)

∂θ

]T

[

1− tanh2
Mifi(θ)

σ2m

]}}

=
1

σ2m

N−1∑

i=0

{

fi(θ)
∂2fi(θ)

∂θ2
+

[
∂fi(θ)

∂θ

] [
∂fi(θ)

∂θ

]T

−E

{

tanh

(
Mifi(θ)

σ2m

)

Mi
∂2fi(θ)

∂θ2
+
M2

i

σ2m

[
∂fi(θ)

∂θ

] [
∂fi(θ)

∂θ

]T

[

1− tanh2
Mifi(θ)

σ2m

]}}

,

The Fisher information matrix I(θ) can then be derived as

I(θ) = −E

[
∂2 lnP (M ; θ)

∂θ2

]

=
1

σ2m

N−1∑

i=0






fi(θ)

∂2fi(θ)

∂θ2
+

[
∂fi(θ)

∂θ

] [
∂fi(θ)

∂θ

]T

−
∫ ∞

Mi=0
gi(Mi, θ)Pi(Mi, θ)dMi

}

, (3.20)

where E[·] denotes the expectation,

gi(Mi, θ)
△
= tanh

(
Mifi(θ)

σ2m

)

Mi
∂2fi(θ)

∂θ2

+
M2

i

σ2m

[
∂fi(θ)

∂θ

] [
∂fi(θ)

∂θ

]T [

1− tanh2
Mifi(θ)

σ2m

]

, (3.21)

Pi(Mi, θ) =
1

(2πσ2m)1/2

{

e

−1
2σ2m

(Mi−fi(θ))
2

+ e

−1
2σ2m

(−Mi−fi(θ))
2}

. (3.22)
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Note that I−1(θ) represents the lower bound (CRB) on the estimation variance for any

unbiased estimator of θ; specifically, the variance of the j-th component of θ̂, denoted as θ̂[j],

satisfies

Var(θ̂[j]) ≥
[

I−1(θ)
]

j,j
, j = 1, · · · , 4. (3.23)

In Section 3.3, we will illustrate the use of (3.23), with j = 1, 2, for the optimal design of a

lateral line sensor (with given vibration amplitude and orientation) and for the localization

performance evaluation of the proposed estimation algorithms. Appendix A provides the

first and second derivatives of the fi(·).

3.3 Simulation Results

3.3.1 CRB-based Optimal Design of Lateral Line Sensor

The CRB analysis presented in Subsection 3.2.4 can be used for the optimal design of a lateral

line system, including both the number of flow sensors and the geometric arrangement of

these sensors. The latter point is illustrated here with an example of optimizing the intra-

sensor spacing, which is later adopted in the construction of an experimental prototype. We

consider a working area of 20 × 10 cm2 (−10 ≤ x ≤ 10, 0 < y ≤ 10), and assume that the

lateral line consists of 6 flow sensors, uniformly distributed along the x−axis and centered

at the origin. We would like to determine the sensor-to-sensor spacing that minimizes the

localization error, in a sense that will be described next.

Additional parameters for the optimization problem, largely motivated by our experi-

mental setup, include sphere diameter a = 1.9 cm, vibration axis angle φ = 0◦, vibration

frequency 40 Hz, and vibration amplitude A = 0.191 cm. In order to ensure good lo-
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calization performance when the dipole is at different locations within the working area,

we divide the area into a grid of 1 × 1 cm2 cells, resulting in a total of 210 grid points

(x = 0,±1, · · · ,±10, y = 1, 2, · · · , 10). For a given intra-sensor spacing, for each grid point

(x(k), y(k)), 1 ≤ k ≤ 210, we evaluate the corresponding CRBs Cx(k) and Cy(k) for the

estimation variances σ2x(k) and σ2y(k), assuming that the dipole is located at (x(k), y(k)).

Note that Cx(k) and Cy(k) represent the minimum uncertainty in estimating x(k) and y(k),

respectively. There are two potential ways to define a single quantity characterizing the

localization uncertainty. The first criterion is based on the so-called D-optimality [30] and it

represents the area of the ellipsoidal region of maximum confidence and can be evaluated us-

ing the determinant of the corresponding 2×2 sub-matrix of I−1(θ). This criterion could be

misleading, especially when the ellipsoidal region is thin. Therefore, we have adopted an al-

ternative based on A-optimality and capture the bound on the localization uncertainty using

U(k) = π
(
Cx(k) + Cy(k)

)
. The cumulative uncertainty for a given intra-sensor spacing is

then obtained as Uc =
∑

k U(k). Fig. 3.2 shows the cumulative uncertainty Uc as a function

of the intra-sensor spacing, for three different noise variances σ2m for the measurement noise.

Here m1 = 0.0065 cm2/s2 represents a typical value of variance for our IPMC prototype flow

sensors. It is clear that there is an optimal range (around 2 cm) for the intra-sensor distance

where the cumulative localization uncertainty is minimized. Larger or smaller spacing leads

to bigger uncertainty. This can be explained as follows. When the sensors are too packed,

they cannot pick up sufficiently distinct signals (think about the extreme case of all sensors

stacked together) and cannot cover a wide area with large signal-to-noise ratio. On the other

hand, when the sensors are very far apart, some sensors become too distant from the dipole

source and their signal-to-noise ratios become very low, negatively impacting the localization
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performance. Another interesting observation from Fig. 3.2 is that, the optimal intra-sensor

spacing is not sensitive to the value of the noise variance. This is a positive news for the

design, since it is often difficult to know the precise value of σ2m in practice.
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Figure 3.2: CRB-based cumulative uncertainty in localization as a function of intra-sensor
spacing.

3.3.2 Localization of Dipole Source with Unknown Vibration Am-

plitude and Orientation

We now present simulation results on the performance of the proposed Gauss-Newton and

Newton-Raphson schemes on localizing a dipole source with unknown vibration amplitude

and orientation. Fig. 3.3 illustrates the simulation setup. The lateral line system, consisting

of 6 flow sensors with intra-sensor spacing of 2 cm, is placed parallel to the x−axis and

centered at the origin. The dipole source is placed at 19 different locations along an ellipsoidal
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track that is centered at (0, 6) cm. Specifically, the dipole locations are prescribed by

(xs(k), ys(k)) = (10 cosψ(k), 6 + 4 sinψ(k)) , k = 1, 2, · · · , 19, (3.24)

where ψ(k) =
(k−1)π

9 . Note that point 1 and point 19 overlap, as shown in Fig. 3.3. In order

to test the algorithms’ capability in estimating vibration amplitude A and orientation φ in

addition to the source location, we vary A (in cm) and φ along the track as follows:

A(k) = 0.191− 0.01(k − 1), (3.25)

φ(k) =
(k − 1)π

9
. (3.26)

The sphere diameter a, vibration frequency, and the measurement noise variance σ2m are set

to be 1.9 cm, 40 Hz, and m1 (0.0065 cm2/s2), respectively. The stopping criterion ǫ for both

the Gauss-Newton algorithm and the Newton-Raphson algorithm is chosen to be 0.01.

Fig. 3.4(a) shows the actual and estimated source locations under the Gauss Newton

(GN) method and the Newton Raphson (NR) method for a typical run. It can be seen the

localization is well accomplished under both schemes. Furthermore, Fig. 3.4(b) shows the

localization error for each of the 19 points on the track, where the error is defined as the

Euclidean distance between the actual and estimated locations. The two proposed methods

have comparable performance in terms of the localization error. The maximum error under

the GN method is 0.38 cm and that under the NR method is 0.39 cm.

Fig. 3.5 shows the estimated source vibration amplitudes and the estimation errors for

both methods. The maximum amplitude error is 0.0013 cm and 0.0015 cm for the GN and

NR methods, respectively. Fig. 3.6 shows the estimated source vibration orientations and
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Figure 3.3: Illustration of the simulation setup, where 19 points as indexed in the figure will
be localized.

the corresponding errors. The maximum orientation error is 0.12 rad and 0.13 rad for the

GN and NR methods, respectively.

From Figs. 3.4, 3.5, and 3.6, we can see that both the GN and NR methods are able

to simultaneously estimate the location, vibration amplitude, and vibration orientation suc-

cessfully. In addition, while the GN method has slightly higher estimation accuracy for all

variables, the overall performances of the two methods are quite close.

3.3.3 Further CRB Analysis on Performance

We have further used the CRB analysis to evaluate the localization performance of our

proposed methods. In this evaluation, a similar setup as in Subsection 3.3.2 is considered,
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Figure 3.4: Simulation results: (a) Estimation of source locations; (b) localization errors at
the 19 points.
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Figure 3.5: Simulation results: Estimation of the source vibration amplitudes.

except that we fix the vibration amplitude and orientation at all points to be 0.191 cm

and 0◦, respectively, and treat them as known. We run the simulation of localizing the

19 points using the GN and NR algorithms for 20 times, based on which the empirical

estimation variances σ2x and σ2y for xs and ys are obtained. Fig. 3.7 shows the comparison

of the square-roots of empirical variances with the corresponding CRBs. It is clear that the

CRBs are lowest when the source location is closest to the lateral line (points # 13–16),

which is explained the highest signal-to-noise ratio (SNR) at those locations. The empirical
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Figure 3.6: Simulation results: Estimation of the source vibration orientations.

estimation variances under both schemes are higher than the CRBs; however, the differences

are not big, especially at the points where the SNR is large. This analysis confirms that the

proposed GN and NR schemes deliver close-to-optimal estimation performance.
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Figure 3.7: Simulation results: Comparison of square-root of empirical estimation variances
(a) σx and (b) σy with the corresponding CRBs.
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3.4 Experimental Setup and Flow Model Verification

3.4.1 Experimental Setup

We have experimentally examined the performance of the proposed GN and NR algorithms

and the beamforming algorithm reported in the literature, using an artificial lateral line

prototype consisting of six ionic polymer-metal composite (IPMC) sensors, shown in Fig. 2.4.

An IPMC has three layers, with an ion-exchange polymer membrane sandwiched by metal

electrodes. Inside the polymer, (negatively charged) anions covalently fixed to polymer

chains are balanced by mobile, (positively charged) cations. Deformation under a mechanical

perturbation redistributes the cations, producing a detectable electric signal (e.g., short-

circuit current) that is well correlated with the mechanical stimulus, which explains the

sensing principle of an IPMC [81]. Each sensor in our lateral line prototype, measuring 8 mm

long, 2 mm wide, and 200 µm thick, was cut from an IPMC sheet fabricated by the Smart

Microsystems Laboratory at Michigan State University, following a recipe similar to the one

described in [49]. Based on the optimization results from CRB analysis (Subsection 3.2.4),

the intra-sensor separation was set to be 2 cm, resulting in a total span of 10 cm for the

sensor. The latter can be considered as the Body Length (BL) of the lateral line system,

and we will test its capability in localizing a dipole source within a distance of about one

BL, which is the typical working range for biological lateral lines. All sensors can bend in

the direction that is parallel to the lateral line, thus measuring the flow component in the

same direction.

Fig. 3.8(a) illustrates the experimental setup. Experiments are conducted in a tank

that is 6 feet long, 2 feet wide, and 2 feet deep. The short-circuit current output of each
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IPMC sensor is amplified with a two-stage amplification circuit, the details of which can

be found in [35]. Acquisition and processing of the IPMC sensor output are conducted

through a dSPACE system (DS1104, dSPACE Inc., Germany). A digital low-pass filter is

further implemented to remove high-frequency noises from the sensor signals. The dipole

source is created with a mini-shaker (Model 4810, Brüel & Kjaer, Denmark)(Fig. 2.6(b)), the

vibration amplitude and frequency of which can be readily controlled through a voltage input

to the mini-shaker. A lightweight bar firmly attached to the mini-shaker then translates the

vibration to a sphere rigidly coupled to the bar. The sphere, which is a aluminum ball, has

a diameter of 1.9 cm. The sphere and the IPMC sensors are submerged underwater, about

5 cm from the water surface. The dipole source location and vibration direction with respect

to the IPMC lateral line can be adjusted by moving the stand holding the IPMC lateral line.

The dipole frequency is chosen to be 40 Hz, which is in the typical range for the study of

biological and artificial lateral lines. The vibration amplitude of the sphere is measured with

a laser displacement sensor (OADM 20I6441/S14F, Baumer Electric).

3.4.2 Flow Model Validation

The basis of our estimation algorithms is the analytical model (3.5) for a dipole source-

generated flow field. It is thus of interest to examine the validity of this model experimentally.

The validation has been conducted using a digital particle image velocimetry (DPIV) system

(LaVision, Ypsilanti, MI). In a DPIV system, small particles are dispersed in a fluid and a

laser sheet is created in the fluid to illuminate the particles. Processing of images taken in

quick successions can reveal the movement of particles and thus provide information about

the flow field.
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Figure 3.8: Experimental setup: Schematic of the experimental system.

We measured the x−component of the flow velocity at the origin when a dipole source,

enabled with a slightly different mechanism from that in Fig. 3.8(b) [3], was placed at

eight different locations: (±1.5, 1.5) cm, (±3, 1.5) cm, (±1.5, 3) cm, and (±3, 3) cm. Since

the DPIV system has a measurement frequency of 15 Hz, we have obtained the velocity

amplitude by taking the maximum measurement over a sufficiently long period (over 10 s).

Fig. 3.9 shows the comparison of the DPIV measurement with the prediction from the

theoretical model (3.5). As can be seen, the match between the model and the experimental
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Figure 3.9: Experimental results: Comparison of DPIV-measured flow velocity with the
model prediction.

measurement is good, with the maximum error being 0.2 cm/s among the eight sampled

points.

3.4.3 Calibration of IPMC Sensors

The relationship between the current output I of an IPMC sensor and the local flow velocity

v can be captured by the cascaded connection of fluid-structure interaction dynamics G1 and

IPMC transduction dynamics G2, both of which can be treated as linear when the flow is

relatively small. The dynamics G1 describes how the tip displacement q of the sensor beam

responds to the flow v, and can be modeled following the approach presented by McHenry et

al. in modeling the interactions between a superficial neuromast and the ambient flow [61].
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The dynamics G2, on the other hand, relates the current output I to the tip displacement

q and can be captured with a physics-based model [16]. It can be shown that, based on the

physical parameters for the IPMC sensors and the operating frequency in our experiments,

the transfer function G1(s) can be approximated by [61]

G1(s) =
q(s)

v(s)
=
c1
s
, (3.27)

and G2 by [13]

G2(s) =
I(s)

q(s)
= c2s, (3.28)

where s is the Laplace variable, and c1 and c2 are lumped physical constants. The detailed

derivation and approximation of G1 and G2 are explained earlier in Chapter 2.

From (3.27) and (3.28), the short-circuit current output of an IPMC sensor is (approxi-

mately) proportional to the instantaneous local flow velocity. The proportionality constant

can vary from sensor to sensor because of the spatial inhomogeneity in the fabricated IPMC

material, difference in exact sensor dimensions, and discrepancy across different channels

of the sensing circuit. The constant is identified through a calibration procedure described

next. We put the mini-shaker-based dipole source at different locations with respect to each

sensor and extracted the amplitude of sensing current with FFT. The theoretical value of

the flow velocity at the location of the sensor was obtained using (3.5). Fig. 3.10 shows

the IPMC signal amplitude versus the theoretical local velocity for one IPMC sensor, from

which an approximately linear relationship between the sensor output I and the flow velocity

v parallel to the lateral line can be observed. The proportional constant η = I
v is identified
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using the Matlab command polyfit(·, ·, 1).

The proportionality constants identified for the six IPMC sensors are η1 = 0.49 µA/(cm · s−1),

η2 = 0.21 µA/(cm · s−1), η3 = 0.165 µA/(cm · s−1), η4 = 0.23 µA/(cm · s−1), η5 =

0.24 µA/(cm · s−1), and η6 = 0.3 µA/(cm · s−1). Given ηi, the flow velocity at the site

of sensor i is calculated from the sensor output Ii via

vi =
Ii
ηi
.
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Figure 3.10: Illustration of IPMC sensor calibration.
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3.4.4 Experimental Results on Dipole Source Localization

We have conducted localization experiments in a very similar setup as for the simulation (see

Fig. 3.3). Specifically, we have placed the dipole source (relative to the lateral line) at 19

points along an ellipsoidal track centered at (0, 6) cm, as prescribed by (3.24). The vibration

amplitude at each point varies according to (3.25). Due to the difficulty in precisely orienting

the dipole vibration axis, we have chosen to use only two different orientations, 0 and π
2 rad.

In particular, we set

φ(k) =







0, k = 1, · · · , 10
π
2 , k = 11, · · · , 19

For each location, sensor outputs of 10 s are acquired at a sampling rate of 1 kHz. FFT

is performed on the data to extract the signal amplitudes, which are then used for esti-

mation with the GN and NR methods. For comparison purposes, the same (raw) sensor

data have been used for estimation using the beamforming algorithm; see the description in

Subsection 3.2.3.

Fig. 3.11 shows the experimental results on the localization. It is notable that the lo-

calization performance has only slightly degraded from that in simulation (Fig. 3.4). The

maximum localization errors for the GN and NR methods are 0.46 cm and 0.48 cm, respec-

tively, which occur at point #19, where the vibration amplitude is the smallest. Fig. 3.12(a)

and (b) show the estimated source vibration amplitudes and source vibration directions at

the 19 points. For both methods, the maximum errors in the amplitude estimation are

around 0.002 cm, about 50% larger than those in simulation. The maximum errors in the

orientation estimation are around 0.12 rad, which are almost the same as those in simulation;

this might be explained by the fact that only two different orientations were tested in the
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experiments. Another observation is that, in consistency with the simulation results, the

GN method has demonstrated slightly better performance than the NR method.
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Figure 3.11: Experimental results: (a) Estimation of source locations; (b) localization errors
at the 19 points.

We have further examined the performance of the beamforming algorithm on the same
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Figure 3.12: Experimental results: (a) Estimation of the source vibration amplitudes; (b)
estimation of the source vibration orientations.
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data. In order to create the energy-like map for each dipole state, one needs to discretize the

space for the dipole state (location, vibration amplitude, and vibration orientation). Clearly,

the resolution of the discretization has a direct impact on the estimation performance; a

finer grid is expected to produce more accurate resolution (sharper map), but at the cost of

computational time. To ease the computation, we have assumed that the vibration amplitude

and orientation at each location are known, and thus focused on only the estimation of

source location. We have used three different resolutions for discretizing the working area,

0.02 × 0.02 cm2, 0.05 × 0.05 cm2, and 0.1 × 0.1 cm2. The dipole location is estimated by

visually finding the maximum of the energy-like map. As an illustration, Fig. 3.13 shows

the energy-like map when the dipole source was placed at point #3, with the 0.1× 0.1 cm2

discretization grid, where the peak is clearly visible.
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Figure 3.13: Experimental results: Constructed energy-like map when the dipole is located
at point #3 (0.1× 0.1 cm2 grid).

Fig. 3.14 shows the localization results corresponding to the three discretization schemes
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Table 3.1: Experimental results: maximum and average estimation errors under different
algorithms. “BF (0.02)” stands for beamforming with 0.02 × 0.02 cm2 grid, and similar
interpretations apply for “BF (0.05)” and “BF (0.1)” . Note that vibration amplitude and
orientation are assumed known for the BF algorithms.

Algorithms GN NR BF (0.02) BF (0.05) BF (0.1)

Average localization error (cm) 0.21 0.21 0.48 0.65 0.89
Max. localization error (cm) 0.46 0.48 0.91 1.1 1.33
Average amplitude error (cm) 0.0014 0.0014 - - -
Max. amplitude error (cm) 0.0019 0.0021 - - -

Average orientation error (rad) 0.1 0.1 - - -
Max. orientation error (rad) 0.12 0.14 - - -

under the beamforming approach. As one would expect, the localization error decreases as

the grid gets finer; however, the error does not scale linearly with the grid resolution. The

maximum localization errors for the three discretization schemes (finer to coarser) are 0.91

cm, 1.1 cm, and 1.33 cm, respectively. For a more clear comparison, Table 3.1 summarizes

the average and maximum localization errors for the 19 points, for the Gauss-Newton (GN),

Newton-Raphson (NR), and three beamforming (BF) algorithms. It can be seen that, with

the finest grid (0.02 × 0.02 cm2), the BF algorithm results in an average/maximum local-

ization error that is twice as much as what is resulted from the GN and NR algorithms.

To put the comparison in perspective, we have further recorded the computation time

taken by each algorithm. All algorithms have been run on Samsung laptop with a 2.53 GHz

processor and 4 GB RAM. The localization problem at all 19 points is executed under each

algorithm for seven times, and Table 3.2 summarizes the average time per point taken by

each algorithm. Note that for GN and NR, the computation includes FFT and executing

the recursive update until convergence, and for the beamforming algorithm, the computation
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Figure 3.14: Experimental results: Localization of the dipole source using the beamforming
algorithm: (a) Estimation of the source locations; (b) localization errors at the 19 points.
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Table 3.2: Average computational time per localization point for different algorithms.

Algorithms Average time (s)

GN 1.1
NR 1.2

BF (0.02 × 0.02 cm2) 11.2

BF (0.05 × 0.05 cm2) 2.1

BF (0.1 × 0.1 cm2) 1.26

includes evaluating the correlation matrix and constructing the energy-like map. From Ta-

ble 3.2, it can be seen that GN is slightly more efficient than NR. With a discretization grid

of 0.02× 0.02 cm2, the beamforming algorithm takes a comparable amount of computation

time as GN or NR; however, from Table 3.1, the corresponding maximum localization error

is three times as much. Considering that the GN and NR algorithms simultaneously esti-

mate four variables while the beamforming algorithm only does two (in this setup), we can

conclude that the proposed GN and NR algorithms are more accurate and computationally

efficient than the beamforming algorithm. One likely reason that the beamforming algorithm

produces larger estimation error is the noise in the raw signals from IPMC sensors, which

would have a lesser impact for the GN and NR schemes because of the FFT procedure.

3.5 Chapter Summary

In this chapter, using the analytical model for a dipole-generated flow field, we formulate

a nonlinear estimation problem and present two novel iterative schemes for simultaneously

localizing a dipole source and estimating its vibration amplitude and orientation. The first

scheme, which is based on the Gauss-Newton (GN) method, solves the nonlinear estimation

problem through iterative linearization. In the second scheme, the Newton-Raphson (NR)
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method is used to solve the nonlinear equation resulting from the first-order optimality

condition. The flow model, with measurement noise properly incorporated, is also used to

derive the Cramer-Rao bound (CRB). Analysis based on the CRB is subsequently exploited

for the optimal design of intra-sensor spacing of the lateral line. Simulation is conducted

to localize a dipole source placed at different points along an ellipsoidal track, with its

vibration amplitude and orientation varying from one point to next. Simulation results have

shown that both the GN and NR algorithms are able to simultaneously estimate the source

location, vibration amplitude and orientation with comparable precision. Furthermore, the

comparison with the CRB shows that the algorithms achieve near-optimal performance at

many points.

We have further validated the algorithms using an experimental prototype of lateral line

that is comprised of six millimeter-scale ionic polymer-metal composite (IPMC) flow sensors.

With excellent agreement with the simulation results, the experimental results confirm that

the GN and NR schemes have comparable performance in accuracy and computational effi-

ciency with the GN scheme having a slight advantage. Specifically, for the body length (BL)

of 10 cm, the maximum localization error is less than 5% of BL when the source is within

the distance of one BL. Experimental results have also shown that the proposed schemes

are superior to the beamforming method; when the beamforming method is only required

to determine the dipole location (with vibration amplitude/orientation given), its maximum

(average, resp.) localization error is three (four, resp.) times of those under the GN and NR

schemes while consuming comparable computing time.
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Chapter 4

Localization of a Moving Dipole

Source

Existing studies on artificial lateral lines (ALLs) have been mostly focused on the localization

of a fixed underwater vibrating sphere (dipole source). In this chapter we introduce a novel

analytical model for the problem of localizing a moving dipole source using an ALL. Such

a moving source could represent a swimming fish or robotic fish, which demonstrates a

combination of translational motion and oscillatory body/fin motion.

First, we formulate a nonlinear estimation problem based on an analytical model for

the moving dipole-generated flow field, where we assume that the source location, vibration

amplitude, and moving speed are unknown. We also assume that the amplitudes of the flow

velocities at the DC and dipole vibration frequencies are available. Such amplitudes can

be obtained by conducting sliding digital Fourier transform (SDFT) of the measured signal

in the time domain. The estimation problem is solved recursively with the Gauss-Newton

method, and we illustrate the proposed approach with simulation and experimental results.
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The remainder of the chapter is organized as follows. The localization of the traveling

dipole source is formulated in Section 4.1. The sliding discrete Fourier transformation algo-

rithm is described in Section 4.2, and the Gauss-Newton recursive estimation algorithm is

presented in Section 4.3. Simulation and experimental results are presented in Section 4.4

and Section 4.5, respectively. Finally, concluding remarks are provided in Section 4.6.

4.1 Localization of a Traveling Dipole Source: Problem

Formulation

We now formulate the problem of localizing a moving dipole source in the two-dimensional

x − y plane. Consider Fig. 4.1, where an ALL comprising N sensors is located in parallel

to the x-axis, with the sensor locations denoted as (xi, yi), 0 ≤ i ≤ N − 1. We denote the

location of a dipole source at time t by (xs(t), ys(t)). The source is assumed to move with a

constant speed vm parallel to the ALL, and vibrating with a velocity vd with the vibration

axis perpendicular to the ALL. We further assume that the presence of sensors has negligible

effect on the flow distribution generated by the moving source. Each sensor is assumed to

provide a (noisy) measurement of the local flow velocity v along the x−direction.

Under an assumption of ideal flows, the flow velocity (x-component) at the site of sensor

i can be derived as [53]

v(xi, yi, t) =
a3

2‖ri(t)‖5
(

(2(xi − xs(t))
2 − (yi − ys(t))

2vm

+3(xi − xs(t))(yi − ys(t))v
d(t)

)

, (4.1)

where ri(t) = (xs(t)− xi, ys(t)− yi)
T , a represents the radius of the sphere, and T denotes
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Figure 4.1: Illustration of the problem setup for the localization of a moving dipole source.

the transpose. Assume that the sphere vibrates with angular frequency ω and amplitude A:

vd(t) = A sin(ωt).

When the source location (xs(t), ys(t)) is changing relatively slowly with respect to the dipole

motion vd(t), Eq. (4.1) can be viewed as the sum of a constant term and an oscillatory term,

corresponding to the source translation and vibration motions, respectively. Denote the

amplitudes of the two terms as m1,i and m2,i, respectively; namely,

m1,i
△
=

a3

2‖ri‖5
(2(xi − xs)

2 − (yi − ys)
2)vm, (4.2)

m2,i
△
=

a3

2‖ri‖5
(3(xi − xs)(yi − ys)A), (4.3)

where θ = (vm, A, xs, ys) represents the set of parameters to be estimated. Note that θ

will have a dependence on t since the source location (xs(t), ys(t)) changes over time, the
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magnitude of these components namely f1,i =
∣
∣m1,i

∣
∣, and f2,i =

∣
∣m2,i

∣
∣. We assume that

noise-corrupted measurements of m1,i, m2,i, i = 0, 1, · · · , N − 1, are available:

m̂1,i =
∣
∣m1,i + d1,i

∣
∣ ,

m̂2,i =
∣
∣m2,i + d2,i

∣
∣ ,

where d1,i and d2,i are noises associated with the sensor i. We assume the noises {d1,i, d2,i}N−1
i=0

are of zero mean and not correlated with each other. We further define

m1
△
=

(
m1,0, · · · ,m1,N−1

)T
,

m2
△
=

(
m2,0, · · · ,m2,N−1

)T
,

m̂1
△
=

(
m̂1,0, · · · , m̂1,N−1

)T
,

m̂2
△
=

(
m̂2,0, · · · , m̂2,N−1

)T
,

f1(θ)
△
=

(
f1,0(θ), · · · , f1,N−1(θ)

)T
,

f2(θ)
△
=

(
f2,0(θ), · · · , f2,N−1(θ)

)T
,

The estimation problem is formulated as follows. Let the sphere diameter a, the sensor

locations {(xi, yi)}N−1
i=0 , and the frequency ω be known. Given the sensor measurements m̂1

and m̂2 at the time t, provide an estimate of the parameter θ(t), θ̂(t) = (v̂m, Â, x̂s(t), ŷs(t)),

such that

J(θ̂) = β(m̂1 − f1(θ̂))
T (m̂1 − f1(θ̂)) + (1− β)(m̂2 − f2(θ̂))

T (m̂2 − f2(θ̂)) (4.4)
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is minimized, where β ∈ [0, 1] is a parameter weighing the importance of the DC term relative

to the oscillatory term.

4.2 The Sliding Discrete Fourier Transform (SDFT)

Algorithm

Since the actual sensor output is a discrete-time signal, discrete Fourier transform (DFT) can

be used to extract the signal amplitudes at different frequencies. However, because the target

is moving, the amplitudesm1 andm2 evolve with the time index n and it is thus not practical

to collect a large sequence of sensor data and perform DFT to extract the measurements

m̂1 and m̂2. The SDFT algorithm [44, 82] is particularly suitable for computing a specific

spectral bin in real-time application based on a sliding window of time samples. For this

reason, the SDFT algorithm has been adopted to compute the two frequency components of

interest in this paper.

For a window ofM time samples, {x [n− (M − 1)] , · · · , x [n]}, we can evaluate the p−th

spectral bin using DFT:

Xp [n] =
M−1∑

i=0

x [n−M + 1 + i] e−2jπpi/M , for 0 ≤ p ≤M − 1. (4.5)

Recall (4.1). In our target localization problem, there are two frequencies that are of interest,

the DC signal (spectral bin p = 0) and the signal with angular frequency ω (spectral bin

p =
[
ωM
2πFs

]

), where [·] denotes rounding to the nearest integer and Fs is the sampling

frequency for obtaining sensors signals x [·]. Exploiting the fact that all elements but one

in neighboring windows are identical, the SDFT algorithm can efficiently evaluate Xp[n]
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recursively:

Xp [n] = e−jω0(Xp [n− 1]− x [n−N ] + x [n]), (4.6)

where ωo = 2πp/M .

For p = 0, from (4.5), we can see that X0[n] essentially sums up the M signal samples

in the window. Consequently, the magnitude of the DC component for {x[·]} is
|X0[n]|

M . For

the AC component (p =
[
ωM
2πFs

]

) is given as

Xp[n] =
M−1∑

i=0

m2 sin(wo(n−M + 1 + i))e−2jπpi/M

=
m2e

−jwo(M−n)

2j

M−1∑

i=0

(1− e−2jwoi)

=
m2e

−jwo(M−n)

2j

(

M −
(

1− e−2jwoM

1− e−2jwo

))

=
m2e

−jwo(N−n)

2j
M

(4.7)

where e−2jwoM − 1 = 0, because p is an integer number. Taking the norm for both sides:

∣
∣Xp[n]

∣
∣ =

∣
∣
∣
∣

m2M

2

∣
∣
∣
∣

(4.8)

Then, the corresponding AC component is

f2 = |m2| =
∣
∣2Xp[n]

∣
∣

M
(4.9)
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4.3 The Gauss-Newton Method for Solving the Esti-

mation Problem

While f1(θ) and f2(θ) are linear in vm and A, they are highly nonlinear in (xs, ys). To

efficiently solve the estimation problem, we adopt the Gauss-Newton method. First we

approximate f1 and f2 by linearizing them around some nominal point θ̄:

f̄1(θ) = f1(θ̄) + B1(θ̄)(θ − θ̄),

f̄2(θ) = f2(θ̄) + B2(θ̄)(θ − θ̄),

where

B1(θ̄) =
∂f1
∂θ

∣
∣
∣
∣
θ=θ̄

, B2(θ̄) =
∂f2
∂θ

∣
∣
∣
∣
θ=θ̄

.

Accordingly, we modify the cost function for the estimation problem from (4.4) to

J(θ̂) = β(m̂1 − f̄1(θ̂))
T (m̂1 − f̄1(θ̂)) + (1− β)(m̂2 − f̄2(θ̂))

T (m̂2 − f̄2(θ̂)), (4.10)

which becomes a standard least squares estimation problem. A solution to this problem is

θ̂ = θ̄ + λ1

(

βB1(θ̄)
TB1(θ̄) + (1− β)B2(θ̄)

TB2(θ̄)
)−1

(

βBT
1 (θ̄)(m̂1 − f1(θ̄)) + (1− β)BT

2 (θ̄)(m̂2 − f2(θ̄))
)

, (4.11)

where λ1 is a stepping parameter for the DC component.

In order to minimize the impact of error introduced by linearization, we use a recursive
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version of (4.11) to update the estimate:

θ̂k+1 = θ̂k + λ1

(

βB1(θ̂k)
TB1(θ̂k) + (1− β)B2(θ̂k)

TB2(θ̂k)
)−1

(

βBT
1 (θ̂k)(m̂1 − f1(θ̂k)) + (1− β)BT

2 (θ̂k)(m̂2 − f2(θ̂k))
)

, (4.12)

where the initial estimate θ̂0 is chosen properly. When β = 0 (i.e., considering the oscillatory

component only), the algorithm (4.12) is simplified to

θ̂k+1 = θ̂k + λ1

(

B2(θ̂k)
TB2(θ̂k))

)−1 (

BT
2 (θ̂k)(m̂2 − f2(θ̂k))

)

. (4.13)

The iteration is stopped when ‖θ̂k+1 − θ̂k‖ ≤ ǫ, where ǫ > 0 is a specified tolerance.

4.4 Simulation Results

Fig. 4.2 illustrates the simulation setup. The lateral line system is placed parallel to the

x−axis and centered at (0, 5) cm. It consists of 6 sensors, with the sensor-to-sensor separation

of 2 cm. The dipole source (sphere diameter 1.9 cm) vibrates at 40 Hz with amplitude

A = 0.191 cm. The source moves from left to right with a constant speed of 1.5 cm/s. The

initial location of the source is (0, 2) cm, and the time duration for the movement is 6.667 s,

resulting in a terminal location of (10, 2) cm.

Fig. 4.3 shows the simulated flow velocities (x−component) at each sensor site. Figs. 4.4

and 4.5 show the magnitudes of the DC and AC components, respectively, obtained through

SDFT. The sampling frequency used is 20 kHz, and the sliding window size is 500 samples

(25 ms).
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Figure 4.2: Illustration of the simulation setup.

It is clear from Figs. 4.4 and 4.5 that both the DC and AC components contain relevant

information for localizing the source, as can be seen from the shifting magnitude profiles in

the figures. We assume a zero-mean Gaussian noise with a variance of 0.0065 (cm2/s2) for

the sensors.

It is of interest to investigate how the weighting parameter β in (4.4) impacts the estima-

tion performance. Fig. 4.6 shows the actual and estimated source locations and the tracking

error at each point under the proposed method for a typical run, where the stopping criterion

ǫ is chosen to be 0.01, and at period time ∆ = 0.2 s over the period (10 s), we have estimated

the source locations and the other parameters. The maximum tracking errors are 0.044 cm

for β = 0 and 0.0441 for β = 0.5, respectively. Table 4.1 summarizes the averages of the

estimates for other parameters (vm and A), where each average is obtained by taking the

mean of the estimated values over the period [0.2, 10] s. When β = 0, we do not have direct
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Figure 4.3: Simulation results: Time trajectories of the flow velocities at the sensor locations.

information to estimate the moving velocity, so we have used an indirect method to do so

by defining v̄m as:

v̄m,k =
x̂k − x̂k−1

∆
, (4.14)

where k is the discrete time index. It is clear from Table 4.1 that, the difference between

v̄m and v̂m is small, which will be our justification for using just the AC-component in the

experimental section.

We have further examined the case where the amplitude of vibration varies while the

81



0 5
0

0.2

0.4

0.6

0.8

Time (s)

S
en

so
r 

1(
cm

/s
)

(a)

0 5
0

0.2

0.4

0.6

0.8

Time (s)
S

en
so

r 
2(

cm
/s

)

(b)

0 5
0

0.2

0.4

0.6

0.8

Time (s)

S
en

so
r 

3(
cm

/s
)

(c)

0 5
0

0.2

0.4

0.6

0.8

Time (s)

S
en

so
r 

4(
cm

/s
)

(d)

0 5
0

0.2

0.4

0.6

0.8

Time (s)

S
en

so
r 

5(
cm

/s
)

(e)

0 5
0

0.2

0.4

0.6

0.8

Time (s)
S

en
so

r 
6(

cm
/s

)

(f)

Figure 4.4: Simulation results: Magnitude trajectories of the DC component at the sensor
sites.

sphere is moving. Fig. 4.7 shows the actual and estimated locations under a typical run,

where the moving velocity is 3 cm/s and the vibration amplitude changes with the time as

shown in Fig. 4.8. From Figs. 4.7 and 4.8, the proposed scheme can effectively estimate

both the location and the vibration amplitude of the dipole. The estimated dipole traveling

speed is v̄m = 2.87 cm/s, which is close to the actual value of 3 cm/s.
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Figure 4.5: Simulation results: Magnitude trajectories of the AC component at the sensor
sites.

4.5 Experimental Setup and Results

4.5.1 Experimental Setup

The artificial lateral line prototype consists of six IPMC sensors as shown in Fig. 4.9. Each

sensor has dimensions 8 mm × 2 mm × 200 µm. The sensor-to-sensor separation was

2 cm, resulting in a total span of 10 cm. Each sensor is mounted in such a way that it would

bend in the direction parallel to the sensor array, which is denoted as x−direction.

83



0 1 2 3 4 5 6 7
0

2

4

6

8

10

12

x 
(c

m
)

 

 

0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

Time (s)

y 
(c

m
)

 

 

Actual locations
Estimated locations β = 0

Estimated locations β = 0.5

0 1 2 3 4 5 6 7
0

0.02

0.04

0.06

Time (s)

T
ra

ck
in

g 
er

ro
r 

(c
m

)

 

 β = 0
β = 0.5

Figure 4.6: Simulation results on the estimation of the source location: (a) Localization; (b)
tracking error.

84



Table 4.1: Simulation results: Estimated velocity (vm), vibrating amplitude (A).

Parameter Actual v̄m(β = 0) v̄m(β = 0.5) v̂m(β = 0.5)

Velocity (cm/s) 1.5 1.41 1.414 1.46
Amplitude (mm) 1.91 1.87 - 1.86

Fig. 4.10 shows the schematic of the experimental setup, while Fig. 4.11 shows the pic-

ture of the actual experimental system. The experiments were conducted in a water tank

measuring 6 ft long, 2 ft wide, and 2 ft deep. A custom-built, DC motor-driven conveyor

was used to move a moving dipole in the water. The conveyor track was separated from

the lateral line system by 2 cm. The signals from the IPMC sensors were conditioned and

amplified before the acquisition and processing by a PC equipped with dSPACE (DS 1104,

dSPACE). The relationship between the current output I of an IPMC sensor and the

local flow velocity of the AC component m2 can be captured by the cascaded connection

of fluid-structure interaction dynamics G1 and IPMC transduction dynamics G2, both of

which can be treated as linear when the flow-induced beam deformation is relatively small.

The short-circuit current output of an IPMC sensor is (approximately) proportional to the

instantaneous local flow velocity; the detailed derivation and approximation of G1 and G2

are explained earlier in Chapter 2. The proportionality constant can vary from sensor to

sensor because of the spatial inhomogeneity in the fabricated IPMC material, difference in

exact sensor dimensions, and discrepancy across different channels of the sensing circuit.

The constant is identified through a calibration procedure described next. We put the mini-

shaker-based dipole source at different locations with respect to each sensor and extracted

the amplitude of sensing current with DFT. The theoretical value of the flow velocity at

the location of the sensor is obtained using (4.3). Fig. 4.12 shows the IPMC signal ampli-
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tude versus the theoretical local velocity for one IPMC sensor, from which an approximately

linear relationship between the sensor output I and the flow velocity f2 parallel to the

lateral line can be observed. The proportional constant η = I
f2

is identified using the Mat-

lab command polyfit(·, ·, 1). The proportionality constants identified for the six IPMC

sensors are η1 = 0.4 µA/(cm · s−1), η2 = 0.25 µA/(cm · s−1), η3 = 0.22 µA/(cm · s−1),

η4 = 0.33 µA/(cm · s−1), η5 = 0.28 µA/(cm · s−1), and η6 = 0.23 µA/(cm · s−1). Given ηi,

the flow velocity at the site of sensor i is calculated from the sensor output Ii via

vi =
Ii
ηi
.

.

4.5.2 Experimental Results on Moving Dipole Source Localization

For a typical run, the dipole source vibrates at 40 Hz with amplitude A = 0.191 cm. The

source moves from left to right with a constant speed of 1.5 cm/s. The initial location of the

source is (0, 2) cm, and the time duration for the movement is 6.667 s, resulting in a terminal

location of (10, 2) cm. During experiments both the IPMC sensors and the vibrating sphere

are completely submerged underwater with a depth of approximately 5 cm. Fig. 4.13 shows

the measured flow velocities (x−component) at each sensor site.

Fig. 4.14 and 4.15 show the experimental magnitudes of the DC and AC components,

respectively, obtained through SDFT. The sampling frequency used is 20 kHz, and the

sliding window size is 500 samples (25 ms). It is clear from Fig. 4.14 that the magnitude

trajectories of the DC flow component at the sensor sites are subject to uncertain drifts.

Therefore, in the following experimental localization results, we take β = 0 so that only the

86



AC component is used.

Fig. 4.16 shows the actual and estimated source locations and the tracking error at each

point under the Gauss Newton method for a typical run. Table 4.2 lists the estimated moving

speed and vibrating amplitude. The maximum tracking error was 0.33 cm and the errors

in estimating vm and A were less than 10%, which demonstrates the effectiveness of the

proposed estimation approach.

Table 4.2: Experimental results: Estimated velocity (vm), vibrating amplitude (A).

Parameter Actual Estimated Error

Velocity (cm/s) 1.5 1.4 0.1
Vibrating amplitude (mm) 1.91 2.1 0.19

4.6 Chapter Summary

In this chapter we investigated an analytical model-based estimation approach to the local-

ization of a moving dipole source using an artificial lateral line consisting of an array of flow

sensors. The moving speed, vibration amplitude, and location of the moving source were

assumed to be unknown, and we proposed a Gauss-Newton algorithm to solve the nonlin-

ear estimation problem based on the evolving signal magnitudes obtained with SDFT. The

effectiveness of the approach was illustrated with simulation and experimental results.
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Figure 4.7: Simulation results on the estimation of the source location, vibration amplitude
changing with the time: (a) Localization; (b) tracking error.
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Figure 4.13: Experimental results: Time trajectories of the flow velocities at the sensor
locations.
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Figure 4.14: Experimental results: Magnitude trajectories of the DC component at the
sensor sites.
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Figure 4.15: Experimental results: Magnitude trajectories of the AC component at the
sensor sites.

94



0 1 2 3 4 5 6 7
0

2

4

6

8

10

12

x 
(c

m
)

 

 
Actual locations
Estimated locations β = 0

0 1 2 3 4 5 6 7
0

1

2

3

Time (s)

y 
(c

m
)

 

 

(a)

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

Time (s)

T
ra

ck
in

g 
er

ro
r 

(c
m

)

(b)

Figure 4.16: Experimental results on the estimation of the source location: (a) Localization;
(b) tracking error.
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Chapter 5

Underwater Tracking and

Size-Estimation of a Moving Object

In this chapter we investigate the problem of tracking a moving but non-vibrating cylindrical

object and estimating its size and shape using an artificial lateral line system. Based on a

nonlinear analytical model for the moving object-induced flow field, a two-stage extended

Kalman filter is proposed to estimate the location, velocity, size, and shape of the object.

For comparison purposes, unscented Kalman filtering and particle filtering are also explored.

The flow model is validated with digital particle image velocimetry (DPIV) measurement.

Simulation results on tracking a cylinder with ellipsoidal cross-section are presented to illus-

trate the approach. The approach has been further verified experimentally with an artificial

lateral line prototype consisting of six ionic polymer metal composite (IPMC) flow sensors.

The remainder of this chapter is organized as follows. We first present the model for

the flow field generated by a moving object in a two-dimensional (2D) potential flow, and

formulate the estimation problem in Section 5.1. The filtering schemes are described in
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Section 5.2, followed by the simulation example in Section 5.3 . The experimental setup and

results are presented in Section 5.4. Finally concluding remarks are provided in Section 5.5.

5.1 Flow Model and Problem Formulation

In this dissertation we assume a two-dimensional (2D) potential flow. Consider a cylindrical

object moving through an otherwise still fluid. We first present the special case of circular

cross-section, and then generalize the model to an arbitrary cross-section profile using the

conformal mapping theory.

Consider the 2D plane z = x+iy. Without the loss of generality, assume that the cylinder

is moving along x−direction with its cross-section lying in the x − y plane. The complex

potential wc(z), where z is outside the region occupied by the cylinder, is given by [77]

w c(z) = vx
R2

z − z1
, (5.1)

where the superscript c indicates the case of a circular profile, vx denotes the moving speed,

R is a radius of the circular cross-section, and z1 = xs+ iys denotes the center of the moving

cylinder. The corresponding complex flow velocity W c is then given by

W c(z) =
dw c(z)

dz
= −vx

R2

(z − z1)2
. (5.2)
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If we write W c(z) = vcx + i vcy, then

vcx = −vxR
2((x− xs)

2 − (y − ys)
2)

((x− xs)2 + (y − ys)2)2
, (5.3)

vcy =
2vxR

2(y − ys)(x− xs)

((x− xs)2 + (y − ys)2)2
. (5.4)

For a cylinder with a general shape (Fig. 5.1), its cross-section profile can be obtained by

mapping the circular profile with the Laurent series expansion [11]:

ζ(z) = (z − z1) +
λ1

(z − z1)
+

λ2
(z − z1)2

+ . . . , (5.5)

where λ1, λ2, · · · , are the shape parameters. When the shape parameters are real, the

obtained shape will be symmetric with respect to the x−direction. It can be shown that the

complex flow velocity W g(z) around the moving object with a general profile is

W g(z) =
dw c(z)

dz

dz

dζ

= vx

(

− R2

(z − z1)2

)

︸ ︷︷ ︸

Wc(z)

(

1− λ1
(z − z1)2

− . . .

)−1

︸ ︷︷ ︸

dz
dζ

. (5.6)

In (5.6), z ∈ D, the domain exterior to the object with the general profile. Since the impact

of higher-order terms in (5.5) decays quickly with the distance from the object [11], in this

chapter, we consider the case of ellipsoidal profile only, namely, λ1 6= 0, λi = 0, ∀ i > 1.

Furthermore, we assume that λ1 is real. Using (5.6), we can derive the complex flow velocity
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Figure 5.1: Illustration of the Laurent series expansion : (a) Circle ζ(z) = z; (b) the shape
fingerprint ζ(z) = z + 1/(2z); (c) the shape fingerprint ζ(z) = z + 1/(2z) + 1/(6z2); (d) the
shape fingerprint ζ(z) = z + 1/(2z) + 1/(6z2) + 1/(12z3)(adapted from [11]).

W e(z) around an ellipsoidal cylinder:

W e(z) = vx

(

− R2

(z − z1)2

)(

1− λ1
(z − z1)2

)−1

. (5.7)
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If we write W e(z) = vex + i vey, then

vex = − vxR
2
(
(x− xs)

2 − (y − ys)
2 − λ1

)

(
(x− xs)2 − (y − ys)2 − λ1

)2
+ 4(x− xs)2(y − ys)2

, (5.8)

vey =
2vxR

2(y − ys)(x− xs)
(
(x− xs)2 − (y − ys)2 − λ1

)2
+ 4(x− xs)2(y − ys)2

. (5.9)

We now formulate the problem of localizing a moving object with ellipsoidal profile and

estimating its size/shape in the x−y plane using an array of flow sensors. Consider Fig. 5.2,

where an artificial lateral line comprising N sensors is located in parallel to the x-axis, with

the sensor locations denoted as (xi, yi), 0 ≤ i ≤ N − 1. We denote the center of the moving

cylinder at time t by (xs(t), ys(t)). The object is assumed to move with a constant speed

vx parallel to the lateral line. We further assume that the presence of sensors has negligible

effect on the flow field generated by the moving object. Each sensor is assumed to provide
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Figure 5.2: Illustration of the problem setup for the tracking and estimation of a moving
object.
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a noisy measurement of the local flow velocity vx along the x−direction. In particular, the

measurement mi(t) by sensor i at time t is given by

mi(t) = fe(xi, yi, xs(t), ys(t), vx, R, λ1) + di(t), (5.10)

where the function fe follows from (5.8), and di is the measurement noise. We introduce a

compact notation for the measurements from all sensors,

M(t) = [m1(t) · · · mN (t)]T = F e(xs(t), ys(t), vx, R, λ1) + d(t),

where T denotes transpose,

F e(xs, ys, vx, R, λ1)
△
= [fe(x1, y1, xs, ys, vx, R, λ1) · · ·

fe(xN , yN , xs, ys, vx, R, λ1)]
T ,

and d(t) = [d1(t) · · · dN (t)]T .

The estimation problem is then formulated as: given the measurements from the artificial

lateral line, M(·), determine the object location (xs(t), ys(t)), speed vx, size parameter R,

and shape parameter λ1.

5.2 Nonlinear Filtering

Several filtering schemes will be explored in this chapter, including extended Kalman filtering,

unscented Kalman filtering, and particle filtering. We first provide a brief review of each

method.
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5.2.1 Extended Kalman Filter

In this chapter we propose to solve the tracking and estimation problem with extended

Kalman filtering. We first provide a brief review of extended Kalman filtering, when the

measurement equation involves nonlinearities [76]. The discrete-time setting is considered

in this work, where the time index is denoted by k. Suppose that the system dynamics is

given by

Xk = Ak−1Xk−1 + wk−1,

Mk = f(Xk) + dk. (5.11)

where Xk ∈ R
n denotes the state vector, Ak−1 has dimensions n× n, Mk ∈ R

p denotes the

measurement, f(·) is a nonlinear function, and wk−1 ∈ R
n and dk ∈ R

p denote the process

noise and the measurement noise, respectively. It is assumed that wk−1 and dk are white,

zero-mean, Gaussian noises, with covariance matrices denoted as Qk and Ck, respectively.

It is also assumed that wk−1 and dk are uncorrelated with each other.

Since f(Xk) is a nonlinear function, in extended Kalman filtering, it is linearized at

X̂k|k−1, the prediction for Xk at time k − 1. In particular, f(Xk) is approximated by

f(Xk) ≈ f(X̂k|k−1) + Ĥk(Xk − X̂k|k−1), (5.12)

where Ĥk is the Jacobin matrix of f(·) evaluated at X̂k|k−1:

Ĥk =
∂f(Xk)

∂Xk

∣
∣
∣
∣
Xk=X̂k|k−1

. (5.13)
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At k = 0, the initial state estimate X̂0|0 = X0 is a random vector with known mean

µ0 = E[X0], and the initial covariance matrix is given by P0|0 = E[(X0 − µ0)(X0 − µ0)
T ].

The main steps in an extended Kalman filter are outlined next. The state prediction is given

by

X̂k|k−1 = Ak−1X̂k−1|k−1 . (5.14)

For k ≥ 1, the prediction of state covariance matrix follows

Pk|k−1 = Ak−1Pk−1|k−1A
T
k−1 +Qk−1, (5.15)

and the optimal gain matrix Kk is given by

Kk = Pk|k−1 Ĥ
T
k

(

Ck + ĤkPk|k−1 Ĥ
T
k

)−1
. (5.16)

Finally, the estimates of the state and its covariance matrix are updated via

X̂k|k = X̂k|k−1 +Kk

(

Mk − f
(

X̂k|k−1

))

, (5.17)

Pk|k = (I −KkĤk)Pk|k−1 , (5.18)

where I denotes the identity matrix.

5.2.2 Unscented Kalman Filter

Unlike the EKF, the Unscented Kalman Filter (UKF) does not approximate nonlinear func-

tion f(Xk). Instead, it approximates the posterior p(Xk |Mk ) by a Gaussian density, which

is represented by a set of deterministically chosen sample points [76]. Consider the non-
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linear filtering problem defined by (5.11). The assumption is that the posterior density at

time k − 1 is Gaussian: p(Xk−1 |Mk−1 ) = N (Xk−1; X̂k−1|k−1 , Pk−1|k−1 ). The first step is

to represent this density by a set of Ns sample points X i
k−1|k−1

and their weights W i
k−1,

i = 0, . . . , Ns − 1. The prediction step is then performed as follows:

X̂k|k−1 =

Ns−1
∑

i=0

W i
k−1 · X i

k−1|k−1 , (5.19)

Pk|k−1 = Qk−1 +

Ns−1
∑

i=0

W i
k−1

[

X i
k−1|k−1 − X̂i

k|k−1

] [

X i
k−1|k−1 − X̂i

k|k−1

]T
.

(5.20)

The predicted density p(Xk |Mk−1 ) ≈ N (Xk; X̂k|k−1 , Pk|k−1 ) is represented by a set of Ns

sample points, given as

X i
k|k−1 = Ak−1X i

k−1|k−1 , (5.21)

the predicted measurement step is given by

M̂k|k−1 =

Ns−1
∑

i=0

W i
k−1fk

(

X i
k|k−1

)

, (5.22)

and the update step is given as

X̂k|k = X̂k|k−1 +Kk

(

Mk − M̂k|k−1

)

, (5.23)

Pk|k = Pk|k−1 −KkSkK
T
k , (5.24)
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where

Kk =





Ns−1
∑

i=0

W i
k−1

[

X i
k|k−1 − X̂k|k−1

] [

fk

(

X i
k|k−1

)

− M̂k|k−1

]T



S−1
k , (5.25)

Sk = Ck +

Ns−1
∑

i=0

W i
k−1

[

fk

(

X i
k|k−1

)

− M̂k|k−1

] [

fk

(

X i
k|k−1

)

− M̂k|k−1

]T
.

(5.26)

The n dimensional random variable X(k) with mean X̂ (k |k ) and covariance P (k |k ) is

approximated by 2n weighted samples or sigma points selected by the algorithm [76]

X0 (k |k ) = X̂ (k |k ) W0 = α
(n+α)

,

Xi (k |k ) = X̂ (k |k ) +
(√

(n+ α)P (k |k )
)

i
Wi =

α
2(n+α)

,

Xi+n (k |k ) = X̂ (k |k )−
(√

(n+ α)P (k |k )
)

i
Wi+n = α

2(n+α)
,

where α is scaling parameter, such that α+n 6= 0,
(√

(n+ α)P (k |k )
)

i
is the ith column of

the lower Cholesky factorization of (n+ α)P (k |k ), and Wi is the weight that is associated

with the ith point.

5.2.3 Particle Filter

Particle filter (PF) is a suboptimal filter. It performs sequential Monte Carlo (SMC) esti-

mation based on particle representation of probability densities. In this chapter, we have

chosen the modified particle filter, called regularized particle filter (RBF) [62]. Regular-

ization consists of resampling the particles according to a continuous approximation of the

target distribution so that all the particles obtained have different locations. The smoothing

is performed by convoluting the discrete PF approximation with a kernel whose properties
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are provided by the density estimation theory [85]. The resulting continuous approximation

takes the following form:

p̂ (Xk |M1:k ) ≈
Ns∑

i=1

wi
kKβ(Xk −Xi

k), (5.27)

where

Kβ(X) =
1

βn
K

(
X

β

)

(5.28)

is the rescaled kernel function density K(·), β > 0 is the kernel bandwidth (a scalar param-

eter), Ns is the total number of particles, and wi
k, i = 0, . . . , Ns are the normalized weights.

The particle system evolves according to an importance-sampling rule; more precisely, the

particles are simulated sequentially according to a proposal distribution given as

Xi
k ∼ q

(

Xk

∣
∣
∣Xi

1:k−1 ,M1:k

)

for i = 1, . . . , Ns, (5.29)

where q(·) is a proposal density. They are then assigned importance weights to correct for

the discrepancy between the proposal and the target distributions given by

wk = w̃i/

Ns∑

j=1

w̃j , (5.30)

where

w̃i =
wi
k−1p

(
Mk

∣
∣Xi

1:k ,M1:k−1

)
p
(

Xi
k

∣
∣
∣Xi

1:k−1

)

q (Xk |X1:k−1 ,M1:k)
. (5.31)

According to (5.31), the most likely particles yield high importance weights. A selection

step is finally introduced to prevent degeneracy. This selection is performed by resampling

the set of particles according to the obtained approximation of the posterior distribution.
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However, systematic resampling is known to result in a loss of sample diversity. A measure

of degeneracy, called effective sample size and denoted Neff , has been introduced in [51] to

decide whether resampling is useful or not:

Neff =
1

∑Ns
i=1

(
wi
k

)2
(5.32)

The selection procedure is carried out whenever Neff is below a given threshold.

For our tracking and estimation problem, the dynamics of interest can be described as

follows:

xs[k] = xs[k − 1] + vx[k − 1]∆ + w1[k − 1], (5.33)

ys[k] = ys[k − 1] + vy[k − 1]∆ + w2[k − 1], (5.34)

vx[k] = vx[k − 1] + w3[k − 1], (5.35)

vy[k] = vy[k − 1] + w4[k − 1], (5.36)

R[k] = R[k − 1] + w5[k − 1], (5.37)

λ1[k] = λ1[k − 1] + w6[k − 1], (5.38)

where ∆ is the sampling time, and w1, · · · w6 denote the process noises, which are assumed

to be uncorrelated. The measurement equation is given by

M [k] = F e(xs[k], ys[k], vx[k], R[k], λ1[k]) + d[k], (5.39)

where d[k] denotes the vector of measurement noises with uncorrelated components.

In this work, we propose a two-stage nonlinear filtering scheme, as illustrated in Fig. 5.3.
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In the first stage, five state components, (5.33) – (5.37), are estimated while assuming the

shape parameter λ1 = 0. Correspondingly, the measurement equation for the first stage is

obtained by plugging λ1 = 0 in (5.39):

M [k] = F e(xs[k], ys[k], vx[k], R[k], 0) + d[k]. (5.40)

In the second stage, the state estimate involves λ1 only (equation (5.38)), while the mea-

surement equation is obtained from (5.39) by plugging in the state estimates from the first

stage:

M [k] = F e(x̂s,k|k, ŷs,k|k, v̂x,k|k, R̂k|k, λ1) + d[k]. (5.41)

State estimation at each stage is then carried out following the general nonlinear filtering

procedure, as outlined earlier.

Figure 5.3: Illustration of the two-stage filtering scheme.

There are two motivations for estimating the desired information in two cascaded stages.

108



First, as discussed in [11], it is likely that a biological lateral line extracts the relevant

information in a progressive manner. Second, the proposed scheme leads to reduced compu-

tational complexity because of the reduced dimensions for the state dynamics – for example,

one only needs to invert 5× 5 matrices instead of 6× 6 matrices.

5.3 Simulation Results

5.3.1 Recursive Information Matrix

Generally, a nonlinear filtering problem does not have a close-form analytical solution, and

in all practical applications, nonlinear filtering is performed by some sort of approximation.

Despite the absence of a closed-form solution, we would like to find the best achievable error

performance for nonlinear filtering; to do so, a theoretical Cramer-Rao lower bound has been

formulated for such problems. Consider the system which is described in (5.11), the recursive

information matrix Jk for such system has been derived in [76] as

Jk = Q−1
k−1 + H̃T

k C
−1
k H̃k −Q−1

k−1Ak−1

(

Jk−1 + AT
k−1Q

−1
k−1Ak−1

)−1
AT
k−1Q

−1
k−1, (5.42)

where

H̃ =
∂f(Xk)

∂Xk
. (5.43)

is the Jacobian of f(·) evaluated at the true value of Xk.

Fig. 5.4 shows the square root of the CRB,
√
CRB, corresponding to the components of

the state vector: (i) xs-coordinate, (ii) ys-coordinate, (iii) size parameter R , and (iv) shape

parameter λ1, for two-stage and one-stage schemes, respectively. These bounds are obtained
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as:

CRB(Xk[i]) = J−1[i, i], i = 1, 2, 3, 4. (5.44)

The close-form analytical solution for our problem has derived in Appendix B.1. It is clear
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Figure 5.4:
√
CRB for: (a) Moving object xs coordinate; (b) moving object ys coordinate;

(c) size parameter R; (d) shape parameter λ1.

from Fig. 5.4 that, a two-stage scheme yields smaller estimation errors than a one-stage

scheme. Consequently, we will employ two-stage schemes in our estimation.
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5.3.2 Simulation Results on Nonlinear Filtering

Fig. 5.5 illustrates the simulation setup. The lateral line system is placed parallel to the

x−axis and centered at (5, 0) cm. It consists of 6 sensors, with the sensor-to-sensor separation

of 2 cm. The ellipsoidal cylinder, with a shape parameter (λ1 = 1.5 cm) and a size parameter

R = 2.5 cm, moves from left to right with a constant speed of 6 cm/s. The initial location of

the moving object is (0, 7) cm, and the time duration for the movement is 1.667 s, resulting

in a terminal location of (10, 7) cm. The initial state estimates are set to be x̂s,0|0 = 0.1 cm,

ŷs,0|0 = 5 cm, v̂x,0|0 = 4 cm/s, v̂y,0|0 = 1 cm/s, R̂0|0 = 1 cm, and λ̂1,0|0 = 0.1 cm. The

sampling time ∆ is chosen to be 0.01 s. Fig. 5.6 shows the simulated measurements of

flow velocities (x−component) at all sensor sites, where a zero-mean, Gaussian noise with a

variance of (σ2m = 0.01 cm2/s2) is added to each measurement.
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Figure 5.5: Simulation setup for tracking of a moving cylinder.

Fig. 5.7(a) shows the actual object locations and those estimated using the proposed

two-stage extended Kalman filtering scheme for a typical run. Here three different val-
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Figure 5.6: Simulated time trajectories of sensor measurements.

ues of variance σ2 for the process noises (w1, · · · , w6) are tested, to examine the impact

of the process noise variance on the estimation results. Fig. 5.7(b) shows the localiza-

tion error for each actual x−coordinate (xs[k]) of the object, where the error is defined as
√

(x̂s,k|k − xs[k])2 + (ŷs,k|k − ys[k])2.

It can be observed that the estimated object location quickly converges to the neighbor-

hood of the actual location after a short transient period (less than 0.15 s). In addition, while

the variance of the process noises does influence the transients, its impact on the estimation

performance at the steady state is not pronounced. The insensitivity of the estimation per-

formance to the process noise variances is a positive news, since it is difficult to precisely

characterize these noise variance values in practice. Table 5.1 summarizes the averages of

the estimates for other parameters (vx, R, and λ1), where each average is obtained by taking
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the mean of the estimated values over the period [0.33, 1.67] s. We have further studied
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Figure 5.7: Simulation results on tracking the ellipsoidal cylinder using two-stage extended
Kalman filtering: (a) The estimation of the moving object location for different variance
values for the process noises; (b) localization error at each x-coordinate of the object. The
measurement noise variance is held at 0.01 cm2/s2.

the impact of the measurement noise variance σ2m. Fig. 5.8 shows the localization results for

different values of σ2m, while the variance for each process noise, σ2, is held constant at 0.3
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Table 5.1: Simulation results: Estimated velocity, size parameter, and shape parameter
under different process noise variances. Two-stage extended Kalman filtering is used.

Parameter Actual Estimated (σ2 = 0.1) (σ2 = 0.3) (σ2 = 0.5)

Velocity (cm/s) 6 6.22 6.35 6.44
Size R (cm) 2.5 2.34 2.41 2.32

Shape λ1 (cm) 1.5 1.23 1.42 1.43

Table 5.2: Simulation results: Estimated velocity, size parameter, and shape parameter
under different measurement noise variances. Estimation is done with two-stage extended
Kalman filtering.

Parameter Actual Estimated (σ2m = 0.01) (σ2m = 0.03) (σ2m = 0.05)

Velocity( cm/s) 6 6.45 7.23 7.24
Size R (cm) 2.5 2.38 2.24 2.258

Shape λ1 (cm) 1.5 1.45 1.42 1.63

(in its respective unit), while Table 5.2 lists the averages of estimated values for vx, R, and

λ1.

It can be seen that, overall, the measurement noise variance has an appreciable impact on

the estimation performance; in general, larger measurement noise variance leads to longer

transient and larger estimation error, which is consistent with one’s intuition. We have

further studied the impact of the input and measurement noise variances for a one-stage

extended Kalman filtering scheme in Appendix B.2.

Finally, the performance of the three nonlinear tracking filters, designed for this problem,

are compared against each other. The considered filters include the extended Kalman filtering

(EKF), unscented Kalman filtering (UKF), and regularized particle filtering (RPF). Under

two-stage typical run, the results for the actual object locations and those mean estimated

and their estimation errors are shown in Fig. 5.9.
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From Fig. 5.9, we can see that the three nonlinear filters are unbiased and all of them

demonstrate almost similar tracking accuracy. Table 5.3 summarizes the averages of the

estimates for other parameters (vx, R, and λ1) for the three nonlinear filters.

Table 5.3: Simulation results: Estimated velocity, size parameter, and shape parameter
under three nonlinear filtering algorithms.

Parameter Actual Estimated (EKF) Estimated (UKF) Estimated (RPF)

Velocity (cm/s) 6 6.45 6.33 6.23
Size R (cm) 2.5 2.83 2.24 2.25

Shape λ1 (cm) 1.5 1.45 1.42 1.55

In terms of the computational load of the three algorithms, the following results are

obtained (based on MATLAB implementation). The UKF requires 5 times more CPU time

than the EKF. The RPF (with 1000 particles) requires 110 times more time than the EKF.

Therefore, the EKF is the most efficient scheme among those compared.

5.4 Experimental Results

Fig. 5.10 shows the schematic of the experimental setup, while Figs. 5.11(a) and (b) show

the picture of the actual experimental system. The artificial lateral line consisted of six

IPMC sensors. The sensor-to-sensor separation was 2 cm, resulting in a total span of 10 cm.

Each sensor was mounted in such a way that it would bend in the direction parallel to the

sensor array, which is denoted as x−direction. The experiments were conducted in a water

tank measuring 6 ft long, 2 ft wide, and 2 ft deep. A digital particle image velocimetry

(DPIV) system (LaVision, Ypsilanti, MI), not shown in Fig. ??, which was explained earlier

in Chapter 3, was used to measure the flow for model validation. A custom-built, motor-

driven conveyor was used to move an object in the water. The system can be driven by a DC
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motor or an AC motor. In our experiments, two objects were used, the first one is a circular

cylinder with outer radius of 3.02 cm and an ellipsoidal cylinder with the minor and major

diameters of 2.5 cm and 5 cm, respectively. Both objects had a height of 10 cm. The speed

of the object can be adjusted by varying the voltage to the motor or changing the setup of

the gearbox that is associated with the AC motor. The conveyor track was separated from

the lateral line system by 7 cm. The signals from the IPMC sensors were conditioned and

amplified before the acquisition and processing by a PC equipped with dSPACE (DS 1104,

dSPACE).

We first conducted DPIV measurements (using DC motor driving the moving object) to

validate the flow model (5.3). Fig. 5.12 shows the comparison of the measured flow velocity

(x−component) with the prediction by (5.3) at a particular sensor site, when the circular

cylinder was moved to pass by the sensor site at a speed of 6.67 cm/s. The reasonably good

match between the model and the measurement in Fig. 5.12 supports the use of the flow

model in this work.

Before running the tracking experiments, we performed the calibration of all IPMC sen-

sors using the mini-shaker. The details of the calibration process are explained earlier in

Chapter 3.

Fig. 5.13 shows the measured flow velocities by all six IPMC sensors when the cylin-

drical and ellipsoidal object traveled by the lateral line system at 6.67 cm/s and 40 cm/s,

respectively, which demonstrates a similar shape pattern as in Fig. 5.6.

Fig. 5.14(a) shows the actual trajectory of the moving cylinder and its estimate using the

first-stage Kalman filtering shown in Fig. 5.3, and Fig. 5.14(b) shows the tracking error. Since

it was known that the cross-section of this cylinder was circular, the shape parameter was
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not identified in these experiments. The process noise variances were chosen to be σ2 = 0.3

(in its respective unit of each state component) and the measurement noise variances were

set to be σ2m = 0.01 (cm/s)2. Table 5.4 lists the estimated moving speed and size parameter.

The tracking error was less than 0.5 cm and the errors in estimating vx and R were less

than 25%, which demonstrates the effectiveness of the proposed modeling and estimation

approach.

Table 5.4: Cylindrical object experimental results: Estimated velocity and size parameter.

Parameter Actual Estimated Error

Velocity (cm/s) 6.667 8.3 1.6
Size R (cm) 3.02 3.51 0.49

Fig. 5.15 (a) shows the actual trajectory of the moving ellipsoidal object and its estimate

using the two-stage Kalman filtering shown in Fig. 5.3, and Fig. 5.14(b) shows the tracking

error. The actual size and the shape parameter of the ellipsoidal object were identified to be

R = 1.5 cm and λ1 = 1.25 cm, respectively. The process noise variances and measurement

noise were chosen as explained earlier in the cylindrical experiment setup.

Table 5.5 lists the estimated moving speed, size, and shape parameter. The tracking

error was less than 0.45 cm and the errors in estimating vx and R were less than 33%, which

demonstrates the effectiveness of the proposed modeling and estimation approach.

Table 5.5: Ellipsoidal object experimental results: Estimated velocity, size parameter, and
shape parameter.

Parameter Actual Estimated Error

Velocity (cm/s) 40 41 1
Size R (cm) 1.5 1.9 0.4

Shape λ1 (cm) 1.25 1.6 0.35
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5.5 Chapter Summary

In this chapter we proposed new nonlinear filtering algorithms for object tracking and es-

timation using artificial lateral lines. Based on a 2D potential flow model, an estimation

problem was proposed and solved with a two-stage nonlinear filtering method. Extended

Kalman filtering was shown to have similar tracking accuracy performance as unscented

Kalman filtering and regularized particle filtering while having the least computational com-

plexity. Simulation results were presented to illustrate and demonstrate the effective of the

proposed approach, where the impacts of process noises and measurement noises were ex-

plored. Experimental results were also reported, where an artificial lateral line prototype

consisting of six IPMC sensors was used to track and estimate the size and the shape of both

a cylinder and an ellipse moving object.
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Figure 5.8: Simulation results on tracking the ellipsoidal cylinder using the two-stage ex-
tended Kalman filtering: (a) The estimation of the moving object location for different
variance values for the measurement noises; (b) localization error at each x-coordinate of
the object. The process noise variance is held at 0.3 (in its respective unit for each state
component).
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Figure 5.13: Measured flow velocities by six IPMC sensors: (a) DC motor driving the
cylindrical object, with digital low pass filter (fc = 42) Hz; (b) AC motor driving ellipsoidal
object, with digital low pass filter (fc = 4) Hz.
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Figure 5.14: Experimental results on tracking a cylinder with circular profile with two-stage
extended Kalman filtering: (a) The estimation of the object location; (b) localization error
at each x−coordinate of the object.
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Figure 5.15: Ellipsoidal object experimental results on tracking an ellipse: (a) The estimation
of the object location; (b) localization error at each x−coordinate of the object.
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Chapter 6

Exploration of IPMC Sensors in

Vortex Street Sensing

Most fish frequently exploit unsteady forcing of ambient/wake flow to extract energy for

efficient locomotion and for obstacle avoidance. In this chapter, we first describe an analytical

model for a pair of stable vortices outside an obstacle and then for a Kármán vortex street.

Second, with extensive experiments, we explore the problem of identifying hydrodynamic

parameters associated with on obstacle in a flow using IPMC sensors. In particular, we show

that it is feasible to identify flow velocity and obstacle size based on the measurement of

vortex shedding frequency.

The remainder of the chapter is organized as follows. In Section 6.1 the model for a

stationary vortex and that for a Kármán vortex street are described. The localization of a

static obstacle is discussed in Section 6.2. The experimental setup and results are described

in Section 6.3. Finally, chapter summary is provided in Section 6.4.
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6.1 Stationary Vortex and Kármán Vortex Street

The circle theory reported in [89] proves that any pair of vortices behind a cylinder is stable.

Therefore, for every point z outside the circle of radius R in the complex plane, there is

another opposite point (its complex conjugate), z̄ = R2/z, which lies inside the circle. Thus,

we have two singularities at these points: f(z), where a point z lies outside the circle, and

f̄(z̄) = f̄(R2/z), where a point z̄ lies inside the circle. The complex potential w(z) of these

singularities is given by

w(z) = f(z) + f̄(R2/z). (6.1)

Generally, the circle theory says that for each vortex outside the circle has a vortex of equal

strength but opposite direction inside the circle, which provides an analytical tool for mod-

eling vertex shedding behind a circular cylindrical obstacle. First, we consider two vortices

located in the complex plane. The first vortex at position p1 has a complex coordinate z1

and strength k, and the other vortex at position p2 has a complex coordinate z̄1 and strength

−k, as shown in Fig. 6.1. The complex potential w in presence of the cylinder |z| = R is

given as

w = ik ln (z − z1) + wz,

wz = −ik ln (z − z̄1)− V
(

z +R2/z
)

− ik ln

(
R2
z − z̄1

)

(
R2
z − z1

) . (6.2)

Here V is the nominal cross flow velocity. The vortex at p1 will be at rest if dwz
dz = 0, which

means that its velocity is zero. With this condition, it can be demonstrated [89] that the
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Figure 6.1: Illustration of the analytical model for cylinder-shed vorticity.

vortices behind a cylinder in flow are stable with the vortex strength of k given by

k = V (‖r‖2 −R2)(‖r‖2 +R2)/ ‖r‖5 , (6.3)

where r = (x, y)T , and T denotes the transpose. Accordingly, we can find the exact position

of the stable vortices behind the cylinder when we use the transformation z = ‖r‖ eiθ, where

0 ≤ θ ≤ 90o, implying

‖r‖2 =
R2

1− sin(θ)
. (6.4)

Fig. 6.2 shows the stable vortices behind a cylinder (R = 1 cm) in a flow with nominal

velocity of 2 cm/s.

Second, we consider the case of a shed Kármán vortex street which consists of two parallel
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semi infinite columns of vortices of the same spacing, say a. We denote the vertical distance

between the columns as b. The vortex strength is k for all vortices with y > 0 and it is −k

for all vortices with y < 0 as shown in Fig. 6.3.
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Figure 6.3: Illustration of the analytical model for cylinder-shed Kármán vortex street.
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The complex potential for the vortex street at instant t = 0 is given as [89],

wc
o(z) = V (z +R2/z) + ik ln

(

sin
π

a

(

z − ib

2

))

− ik ln

(

sin
π

a

(

z − a

2
+
ib

2

))

, (6.5)

which implies that complex flow velocity W c
o =

dwco(z)
dz at time t = 0 is given by

W c
o (z) =

{

V (1− (R/z)2) +
iπk

a

{

cot
π

a

(

z − ib

2

)

− cot
π

a

(

z − a

2
+
ib

2

)}}

, (6.6)

where z is outside the region occupied by the cylinder. The complex flow velocity at any

instant t is given by

W c
o (z) = V (1− (R/z)2) +

iπk

a

{

cot
π

a

(

z − uvt−
ib

2

)

− cot
π

a

(

z − uvt−
a

2
+
ib

2

)}

,(6.7)

where uv, the velocity of the vortex street, is given by

uv = V − πk

a
tanh

(
b

a
π

)

. (6.8)

Finally, the relationship between a and b is approximately [89]

b

a
=

1

π
cosh−1

√
2. (6.9)

The initial configuration will repeat itself after it has moved a horizontal distance equal to

a.

Now, we need to relate this solution to an ellipsoidal obstacle shape. To accomplish this,

we use a conformal mapping function called the Joukowsky transformation. The Joukowsky
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transformation transforms circles in the ζ plane into shapes that resemble ellipses in the z

plane [77]. In contrast to the usual way, we will not study the flow velocity in the ζ-plane,

but in the original z-plane. Consider, ζ(z) := z+λ2/z with a real shape parameter λ, which

implies that the obtained obstacle shape will be symmetric with respect to the x-direction.

It can be shown that the complex flow velocity W e
o around an ellipsoidal obstacle is given

by

W e
o (z) =

(
dwc(z)

dz

)

︸ ︷︷ ︸

Wc
o

(
dζ

dz

)−1

=

{

V (1− (R/z)2) +
iπk

a

{

cot
π

a

(

z − uvt−
ib

2

)

− cot
π

a

(

z − uvt−
a

2
+
ib

2

)}}

{

1− (λ/z)2
}−1

. (6.10)

In (6.10), z ∈ D, the domain outside an ellipsoidal obstacle. Fig. 6.4 shows the visualization

of a Kármán vortex street behind an obstacle, where Table 6.1 summarizes the values of the

setup parameters.

Table 6.1: Simulation results: Setup parameters.

Parameter Value

Nominal flow velocity (cm/s) 2
Distance between vortices a (cm) 1

Vortex strength 1
Radius R (cm) 1

Shape parameter λ (cm) 0.5
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Figure 6.4: Visualization of a Kármán vortex street flow filed around: (a) Circular cylinder;
(b) ellipsoidal cylinder.

6.2 Localization of an Obstacle: Problem Formulation

We now defined the problem in the two-dimensional x− y plane. As illustrated in Fig. 6.5,

suppose that a cylindrical static obstacle is located at (xo, yo), where (zo = xo + iyo) is

the center of that obstacle and its size parameter (radius of circle) is Ro, in a flow with

constant nominal flow velocity V that has an angle α with respect to the x-axis. It will

generate a vortex street with the vortex sheding frequency fsh. The Strouhal number (St)

is a dimensionless index, given by

St =
fsh(2R)

vc
, (6.11)

where vc is the actual flow velocity in the region behind the cylindrical obstacle. The Strouhal

number depends on the Reynolds number; however, it remains at an almost constant value

of 0.22 for Reynolds number > 2000 [4]. Consider Fig. 6.5, where an artificial lateral line

comprising N sensors is located in parallel to the x-axis, with the sensor locations denoted
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Figure 6.5: Illustration of the problem setup. The obstacle is located at (xo, yo).

as (xi, yi), 0 ≤ i ≤ N − 1. We assume that the presence of sensors has negligible effect

on the flow distribution. For a circular cylinder, we can derive the complex flow velocity

W c
o = vcx + ivcy around the cylinder:

vcx(xi, yi, t) = V cos(α)

(

1 +
R2
o

(xi − xo)2 + (yi − yo)2
− 2R2

o(xi − xo)
2

((xi − xo)2 + (yi − yo)2)2

)

+Re

(
iπk

a

{

cot
π

a

(

(xi − xo) + i(yi − yo)− uvt−
ib

2

)

− cot
π

a

(

(xi − xo) + i(yi − yo)− uvt−
a

2
+
ib

2

)})

, (6.12)

vcy(xi, yi, t) = −V sin(α)

(

2R2
o(xi − xo)(yi − yo)

(
(xi − xo)2 + (yi − yo)2

)2

)

+Img

(
iπk

a

{

cot
π

a

(

(xi − xo) + i(yi − yo)− uvt−
ib

2

)

− cot
π

a

(

(xi − xo) + i(yi − yo)− uvt−
a

2
+
ib

2

)})

. (6.13)
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Using Joukowski transformation, we can obtain the flow velocity W e
o = vex + ivey around an

ellipsoidal cylinder:

vex(xi, yi, t) = V cos(α)

(

1 +
(R2

o − λ2)((xi − xo) + λ)

2λ
[
((xi − xo) + λ)2 + (yi − yo)2

]

− (R2 − λ2)((xi − xo)− λ)

2λ
[
((xi − xo)− λ)2 + (yi − yo)2

]

)

+
2πk(xi − xo)(yi − yo)λ

2

a
((

(xi − xo)2 − (yi − yo)2 − λ2
)2

+ 4(xi − xo)2(yi − yo)2
)

Re

({

cot
π

a

(

(xi − xo) + i(yi − yo)− uvt−
ib

2

)

− cot
π

a

(

(xi − xo) + i(yi − yo)− uvt−
a

2
+
ib

2

)})

, (6.14)

vey(xi, yi, t) = −V sin(α)
(

2(R2
o − λ2)(xi − xo)(yi − yo)

λ4 − 2λ2
(
(xi − xo)2 − (yi − yo)2

)
+
(
(xi − xo)2 − (yi − yo)2

)2

)

+
πk
(
(xi − xo)

2 + (yi − yo)
2
)2 − λ2

(
(xi − xo)

2 − (yi − yo)
2
)

a
((

(xi − xo)2 − (yi − yo)2 − λ2
)2

+ 4(xi − xo)2(yi − yo)2
)

Img

({

cot
π

a

(

(xi − xo) + i(yi − yo)− uvt−
ib

2

)

− cot
π

a

(

(xi − xo) + i(yi − yo)− uvt−
a

2
+
ib

2

)})

. (6.15)

Fig 6.6 shows a typical flow velocity behind a circular cylinder (Ro =2 cm) and an ellipsoidal

obstacle shape (λ = 1.5 cm), respectively. The obstacle’s center is located at (xo = −2, yo =

5) cm. The obstacles are exposed to a cross flow with nominal flow velocity of 15 cm/s, and

the vortex strength is set to be k = 0.08.

Each sensor is assumed to provide a noisy measurement of the local flow velocity vx along
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Figure 6.6: Simulation results: 3D illustration of flow velocity behind the obstacles: (a)
Along the x−direction; (b) along the y−direction. In each subfigure, the left plot shows the
velocity for the circular cylinder while the right plot shows the velocity for the ellipsoidal
cylinder.

the x−direction. In particular, the measurement mi(t) by sensor i at time t is given by

mi(t) = fe(xi, yi, xo, yo, V, α,Ro, λ, a, b, uv, k) + di(t), (6.16)
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where the function fe follows from (6.14), and di is the measurement noise. We introduce a

compact notation for the measurements from all sensors,

M(t) = [m1(t) · · · mN (t)]T = F e(xo, yo, V, α,Ro, λ, a, b, uv, k) + d(t),

where T denotes transpose,

F e(xo, yo, V, α,Ro, λ, a, b, uv, k)
△
= [fe(x1, y1, xo, yo, V, α,Ro, λ, a, b, uv, k) · · ·

fe(xN , yN , xo, yo, V, α,Ro, λ, a, b, uv, k)]
T ,

and d(t) = [d1(t) · · · dN (t)]T .

The estimation problem is then formulated as: given the measurements from the artificial

lateral line, M(·), estimate the obstacle location (xo, yo), size Ro and shape parameter λ,

flow velocity V , and angle α. In the next section, we provide some experimental evidence

on how part of the estimation problem can be solved.

6.3 Experimental Setup and Results

6.3.1 Swim Tunnel Flow Calibration

We have conducted experiments in a swim tunnel (Loligo Systems) measuring (length = 146

× width = 68 × height = 35) cm3, with a working section of (65 × 20 × 20) cm3, as shown

in Fig. 6.7.

The nominal flow velocity in the working section of the swim tunnel tank is controlling

through a knob. In order to calibrate the swim tunnel, we measured the nominal flow
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Figure 6.7: Loligo Systems swim tunnel: (a) Side view; (b) top view.

velocity using a 515/2536 Rotor-X paddle wheel flow sensor. We mounted the flow sensor

to the swim tunnel as shown in Fig. 6.8. The knob readings of 7 to 30 were used, and the
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flow was allowed to stabilize at the new flow speed for a minimum of 3 minutes between the

experiments. The calibration curve is shown in Fig. 6.8(c), where we can clearly see an affine

relationship between the sensor output (cm/s) and the knob reading.

Flow sensor
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Figure 6.8: Rotor-X flow sensor for swim tunnel calibration: (a) Side view; (b) top view; (c)
calibration curve

6.3.2 Differentiation of Steady and Unsteady Flow

We first mounted an IPMC sensor measuring (long = 3.5 cm × wide = 4 mm × thick =

0.25 mm) and used a Cannon digital camera, to visualize each flow regime experimentally.
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In the experimental setup, the IPMC sensor was mounted in such a way that it would bend

in the direction parallel to the x-axis. To generate the vortex street, a hollow cylindrical

obstacle with a diameter 6 cm was placed upstream the sensor. The IPMC sensor was

attached, first, 4 cm behind the obstacle. Second, the sensor was aligned with the obstacle

edge, which made the cylinder 5 cm upstream from it.

The authors of [5] have reported that, the flow behind obstacle regime can be divided

into three main regions, according to the velocity conditions present in each: (i) base suction

region, (ii) vortex formation region, and (iii) vortex street. First, the average flow frequency

of region (ii) bigger than that region (iii). Second, the suction region (region (i)) has average

flow frequency smaller than those in regions (ii) and (iii). The overall goal is to better

understand the sensing environment from the local perspective of a situated sensor. Three

sensing tasks will be investigated here, differentiating between steady and unsteady flows,

differentiating between suction and shed Kármán vortex region, and finally, differentiating

between big and small size obstacles.

Fig. 6.9 shows the image of an IPMC beam in a uniform flow (in the absence of the

obstacle). We can see that the beam is deflected with small-amplitude vibration.

Fig. 6.10 shows that the IPMC sensor is sucked toward the cylinder (predominantly

negative flow) when the sensor is placed right after the cylinder. Then, when the obstacle is

shifted to the right, the sensor bends differently (predominantly positive flow), as shown in

Fig. 6.11.

This global analysis is useful to reveal that , first, the differences between the uniform

flow and the Kármán vortex street can be captured by the sensor beam. Second, it is clear

from Figs. 6.10 and 6.11 that, visually, the IPMC sensor would be able to differentiate the
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(a) (b)

(c)

Figure 6.9: IPMC sensor in a uniform flow in the absence of the obstacle: (a) Sensor at to;
(b) sensor at t1, (b) sensor at t2.

(a) (b)

Figure 6.10: IPMC sensor right behind obstacle (predominantly negative flow): (a) Illustra-
tion; (b) typical sensor configuration.

suction region from the vortex region.

We further examined the IPMC sensor outputs under different experimental conditions.

Fig. 6.12 shows a typical sensor response under various flow conditions with a nominal flow
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(a) (b)

Figure 6.11: IPMC sensor behind obstacle but shifted from center (predominantly positive
flow): (a) Illustration; (b) typical sensor configuration.

velocity of 10.6 cm/s. It is clear from Fig. 6.12 that, the water movement behind (at the

center or shifted to the right) a cylinder shows much larger fluctuations than in the free

stream (running water). The frequency of the suction region is different (smaller) from the

frequency of the Kármán vortex region, as expected.

6.3.3 Differentiation of Obstacle Size

We tested whether one IPMC sensor could potentially detect and recognize an upstream

cylindrical obstacle. For this purpose, we placed an IPMC sensor first behind a cylinder

with larger diameter (6 cm) and then replaced the cylinder with another one that has a

smaller diameter (4 cm), as shown in Fig. 6.13(b). The center coordinates of both cylindrical

obstacles had the same distance away from the IPMC sensor, around 8 cm. The nominal

flow velocity was chosen to be 10.6 cm/s in these experiments.

We can observe from the experiments that, the sensor vibrated with different frequencies

and amplitudes when the obstacle size was different. Typical IPMC sensor signals for two

cases and the corresponding frequency spectra are shown in Fig. 6.14.

From Fig.6.14, we can see that the vortex shedding frequency does vary with the obstacle
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size, and the good agreement between the measured and theoretical (Eq. (6.11)) values of

fsh is particularly promising.

6.3.4 Differentiation of Flow Velocity

We tested whether an IPMC sensor could be used to estimate the free-stream velocity based

on the measurement of vortex shedding frequency. For this purpose, we placed an IPMC

sensor behind a upstream cylinder with a diameter of 6 cm, where the obstacle-sensor-

separation distance was 5 cm. We used two nominal flow velocities, 7.5 cm/s and 10.6 cm/s.

Typical IPMC signals are the corresponding frequency spectra are shown in Fig. 6.15.

It can be observed that, when the flow velocity was increased, the vortex-shedding fre-

quency fsh increased as well. The observed trend was consistent with that predicted by

the model (6.11); however, the discrepancy between the measured and predicted values was

relatively large. Quantitative understanding of the relationship between free-stream velocity

and the vortex-shedding frequency needs to be pursued further.

6.3.5 Two IPMC Sensors

We also conducted preliminary experiments on a pair of IPMC sensors, separated out with

a fixed distance (3 cm), to examine the potential of an IPMC array in vortex sensing. In

particular, we tested the capability of the sensors in detecting object movement in air. To

stimulate the two IPMC sensors, a human finger was moved alongside the sensors at a

distance of 1.5 cm. Fig. 6.16 shows the sensor responses when the finger was moved in

one direction and then in the opposite direction. It can be observed that there was strong

correlation between the responses of the two sensors, based on which one can compute the
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time delay between the two responses and consequently the object moving speed.

We conducted further experiments using the two-sensor array, to test whether it could

provide more hydrodynamic information than a single sensor. From those experiments, we

found that: (i) The two sensors were sucked toward the cylinder if both of them were in the

suction region (negatively dominant flow); (ii) they were both bent away from the obstacle

if both of them were in the shed Kármán vortex street region (positively dominant flow);

(iii) sensor #1 was sucked toward the obstacle and sensor #2 repelled from the obstacle

when they were in the suction and vortex regions, respectively. Fig. 6.17 shows the case (iii),

where the leading sensor was separated from the obstacle by 4 cm and the nominal velocity

was 10.6 cm/s.

Fig. 6.18 shows typical IPMC signals for the latter scenario, where we can see that the

vortex-shedding frequency in the vortex region is higher than that in the suction region.

These experiments indicate that an IPMC sensor array could potentially be used to map

different flow regions in a vortex street.

6.4 Chapter Summary

In this chapter we formulated an estimation problem for Kármán vortex street formed by

an obstacle in a flow. While we did not provide a full solution to this problem, a number

of experiments were conducted in a water tunnel with a single or a pair of IPMC sensors,

to shed light on a potential estimation approach. Specifically, we found that one could use

the vortex-shedding frequency fsh to infer the information about the flow region, obstacle

size, or the nominal flow velocity. The correlation between the signals from multiple sensors

could be used to measure the vortex traveling speed.
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Figure 6.12: Typical IPMC sensor signals and frequency spectrum of the response under dif-
ferent flow conditions with nominal flow velocity of 10.6 cm/s: (a) Running water (free flow);
(b) predominantly negative flow (suction region), frequency = 0.61 Hz; (c) predominantly
positive flow (vortex region), frequency = 0.67 Hz.
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(a)

(b)

Figure 6.13: IPMC sensor was attached behind of the: (a) 6 cm diameter cylindrical obstacle;
(b) 4 cm diameter cylindrical obstacle.
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Figure 6.14: Typical IPMC sensor signals for different-size cylindrical obstacles with diam-
eter: (a) 6 cm, theoretical / measured fsh: 0.56/0.6 Hz; (b) 4 cm, theoretical / measured
fsh: 0.73/0.79 Hz.
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Figure 6.15: Typical IPMC sensor signals under 6 cm upstream cylinder, the nominal flow
velocity of: (a) 7.5 cm/s, Theoretical / Measured fsh:0.4/0.61 Hz;(b) 10.6 cm/s, Theoretical
/ Measured fsh: 0.56/0.67 Hz.
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Figure 6.16: Typical IPMC sensor signals to the human fingers that moved alongside the
two IPMC sensors with velocity of about 25 cm/s, direction of the movement: (a) Toward
positive x-axis; (b) toward negative x-axis.
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Obstacle 3 cm

Sensors

4 cm

(a)

(b)

Figure 6.17: Two IPMC sensors were attached behind a 6 cm cylinder: (a) Setup at time
to; (b) sensor #1 sucked toward the obstacle, while sensor#2 repelled from the obstacle at
time t1.
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Figure 6.18: Signals from the two IPMC sensors and their frequency spectra: (a) Sensor #1,
dominant frequency = 0.55 Hz; (b) sensor #2, dominant frequency = 0.73 Hz.
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Chapter 7

Conclusion

The first contribution of this dissertation was a new approach to the realization of artificial

lateral lines for underwater robots and vehicles that uses IPMC materials as sensing elements.

For example, we showed that, with a neural network-based processing scheme, a dipole

source can be successfully localized when its vibration amplitude and orientation are known.

Experimental results showed that, with relatively few sensor elements, the IPMC-based

lateral line was able to localize sources at least 1-2 BLs away, and the localization accuracy

at source-sensor separation of 1 BL was comparable to the resolution of manually placing

the source (1-2 mm).

Second, we proposed and examined in detail two iterative schemes for dipole source lo-

calization based on measurements from an artificial lateral line. The schemes, referred to

as Gauss-Newton (GN) algorithm and Newton-Raphson (NR) algorithm, respectively, were

derived with a nonlinear estimation perspective to simultaneously estimate the dipole loca-

tion, vibration amplitude, and vibration orientation. We performed CRB analysis based on

the analytical flow model, and demonstrated its use in the design of the lateral line system
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via the example of optimizing intra-sensor spacing. The CRB analysis was also used later

to confirm the near-optimality of the proposed algorithms. We conducted both simulation

and physical experimentation to validate the proposed algorithms. The good consistency be-

tween the simulation results and the experimental results does not only suggest the physical

relevance of our simulation setup, but also supports the validity of the analytical models and

algorithms for the physical system. With a body length (BL) of 10 cm for the lateral line

system, simulation and experimental results showed that both the GN and NR algorithms

can successfully localize the dipole source and estimate its vibration amplitude and orien-

tation within 1 BL, with the maximum localization error less than 5% of the BL. We also

found that, while the GN algorithm did consistently better than the NR algorithm, the over-

all performance and computational complexity of the two algorithms are very comparable.

We also found that the proposed algorithms showed clear advantage over the beamforming

algorithm in terms of accuracy and computational efficiency.

Third, we investigated an analytical model-based estimation approach to the localization

of a moving dipole source using an artificial lateral line consisting of an array of flow sensors.

The moving speed, vibration amplitude, and location of the moving source were assumed to

be unknown, and we proposed a Gauss-Newton algorithm to solve the nonlinear estimation

problem based on the evolving signal magnitudes obtained with SDFT. The effectiveness of

the approach was illustrated with simulation and experimental results.

Fourth, a novel two-stage extended Kalman filter was proposed to track and estimate

a moving but non-vibrating object in water. Simulation and experimental results have

demonstrated that, with a few IPMC sensors, the ALL was able to identify and estimate the

moving object speed, location, size, and shape parameter, respectively.
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Fifth, we conducted experimental exploration of using IPMC sensors for detecting hy-

drodynamic parameters associated with a Kármán vortex street. In particular, our work

showed that it was promising to use IPMC lateral line for the estimation of obstacle size,

free-stream flow velocity, distance to the obstacle, etc.

Although this work has demonstrated the promise of IPMC sensors in underwater flow

sensing, we note that the behavior of IPMCs depends on environmental conditions and

could vary over time. While the continuing advances in IPMC fabrication may alleviate such

problems, appropriate compensation schemes (see, e.g., [35]) and periodic sensor calibrations

are expected to be essential for practical IPMC lateral line systems.
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Chapter 8

Future Work

The work reported in this dissertation can be extended in several directions. First, in this

work we largely ignored the effect of sensor beams on the flow field. On the sensor modeling

side, we primarily took the short-circuit current output of the sensor as proportional to the

flow velocity. It will be of interest to extend the modeling work on the sensor-flow interaction,

which can potentially lead to improved sensing performance for the artifical lateral line.

Second, while we had demonstrated the effectiveness of a two-stage extended Kalman

filtering scheme in object tracking and estimation, the convergence and stability properties

of such schemes were not examined in this dissertation. The study of these issues, possibly

in a more general n-stage setting (Fig. 8.1), would be of interest.

Third, while we formulated an estimation problem for the case of vortex street sensing,

we did not provide a systematic solution to this problem. It would be interesting to develop

a complete, analytical approach for the estimation of obstacle location, size, flow speed, and

flow direction, and validate the approach experimentally.

Fourth, comparing to the size (less than 1 mm long) of neuromasts in a biological lateral
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Figure 8.1: Illustration of the n-stages nonlinear filtering scheme.

line, the IPMC sensors used in this dissertation are relatively big. In addition, a biological

lateral line may have many more (from tens to over a thousand [20]) neuromasts. There

are many challenges in realizing an IPMC-based artificial lateral line system with sensor

size and number comparable to those of a live fish. For example, while the processes for

micro fabrication of IPMCs have been reported by a number of groups [18, 101, 32], existing

results deal mostly with planar processes, and new polymer MEMS techniques have to be

developed to create micro IPMC devices standing on a substrate as in [54]. On the system

integration side, the processing of signals from tens to hundreds of IPMC sensors is far from

trivial. It will be of interest to extend the signal processing approaches developed in this

dissertation to accommodate a much larger number of sensors. To address this challenge, it
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will be critical to seek inspiration from how such processing is achieved in biology [21].

Finally, artificial lateral line system can be mounted on a robot, such as a robotic fish,

for the investigation of processing schemes that decouple external signals from self-motion-

induced flow signals. Such an extension would be particularly relevant for practical applica-

tions of artificial lateral lines.
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Appendix A

Artificial Lateral Line Design: CRB

With θ = [xs, ys], the first and second derivatives are given as:

∂fi(θ)

∂xs
=

k1

‖ri‖5
[−4(xi − xs)α1 − 3(yi − ys)α2] +

5k1

‖ri‖7
{

(2(xi − xs)
3 − (xi − xs)(yi − ys)

2)α1 + (3(xi − xs)
2(yi − ys))α2

}

,

∂2fi(θ)

(∂xs)2
=

4k1α1

‖ri‖5
+

5k1

‖ri‖7
{

(−10(xi − xs)
2 + (yi − ys)

2)α1 − (9(xi − xs)(yi − ys))α2

}

35k1

‖ri‖9
{

(2(xi − xs)
4 − (xi − xs)

2(yi − ys)
2)α1 + (3(xi − xs)

3(yi − ys))α2

}

,

∂fi(θ)

∂ys
=

k1

‖ri‖5
[2(yi − ys)α1 − 3(xi − xs)α2] +

5k1

‖ri‖7
{

(2(xi − xs)
2(yi − ys)− (yi − ys)

3)α1 + (3(xi − xs)(yi − ys)
2)α2

}

,
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∂2fi(θ)

(∂ys)2
=

−2k1α1

‖ri‖5
+

5k1

‖ri‖7
{

(−2(xi − xs)
2 + 5(yi − ys)

2)α1 + (−9(xi − xs)(yi − ys))α2

}

35k1

‖ri‖9
{

(2(xi − xs)
2(yi − ys)

2 − (yi − ys)
4)α1 + (3(xi − xs)(yi − ys)

3)α2

}

,

∂2fi(θ)

∂ys∂xs
=

∂2fi(θ)

∂xs∂ys

=
3k1α2

‖ri‖5
+

5k1

‖ri‖7
{

(−2(xi − xs)(yi − ys))α1 − 3((xi − xs)
2 + (yi − ys)

2)α2

}

35k1

‖ri‖9
{

(2(xi − xs)
3(yi − ys)− (xi − xs)(yi − ys)

3)α1

+(3(xi − xs)
2(yi − ys)

2)α2

}

, (A.1)

where k1 = a3πf .
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Appendix B

Appendix for Chapter5

B.1 Derivation of CRB

Based on the measurement equation (5.11), the likelihood function is given by

p(M ;X) =
1

2πσ2m
e

(

−1
2πσ2m

∑N−1
i=0 (Mi−fi(X))2

)

. (B.1)

Differentiating the log of the likelihood function twice, we get:-

∂2

∂2X
ln (p(M ;X)) =

1

σ2m

N−1∑

i=0

{

(Mi − fi(X))
∂2fi(X)

∂2X
−
[
∂fi(X)

∂X

] [
∂fi(X)

∂X

]T
}

. (B.2)

The Fisher information matrix is defined by −E
[

∂2(ln p(M ;X))

(∂X)2

]

, which is given by

F =
1

σ2m

N−1∑

i=0

[
∂fi(X)

∂X

] [
∂fi(X)

∂X

]T
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where E[·] is the expectation taken over all possible measurement M . the ith diagonal of

the inverse of F , which is denoted by F−1
i,i , provides a lower bound on the variance of the

ith element of the state estimate X̂. Generally, V ar(X̂) ≥ F−1
i,i . In our case we have four

elements and F is just a 4 × 4 matrix. The Fisher information matrix can be expressed as

F = [F11, F12;F
T
12, F22], where the sub-matrix blocks F11, F12, and F22 are 2× 2 matrices,

F11 =
1

σ2m






∑N
i=1

(
∂fi(·)
∂xs

)2 ∑N
i=1

(
∂fi(·)
∂xs

)(
∂fi(·)
∂ys

)

∑N
i=1

(
∂fi(·)
ys

)(
∂fi(·)
xs

)
∑N

i=1

(
∂fi(·)
ys

)2




 ,

F12 =
1

σ2m






∑N
i=1

(
∂fi(·)
∂xs

)(
∂fi(·)
∂R

)
∑N

i=1

(
∂fi(·)
∂xs

)(
∂fi(·)
∂λ1

)

∑N
i=1

(
∂fi(·)
∂ys

)(
∂fi(·)
∂R

)
∑N

i=1

(
∂fi(·)
∂ys

)(
∂fi(·)
∂λ1

)




 ,

F22 =
1

σ2m






∑N
i=1

(
∂fi(·)
∂R

)2 ∑N
i=1

(
∂fi(·)
∂R

)(
∂fi(·)
∂λ1

)

∑N
i=1

(
∂fi(·)
∂λ1

)(
∂fi(·)
∂R

)
∑N

i=1

(
∂fi(·)
∂λ1

)2




 ,

where

∂f(·)
∂xs

= vxR
2

{

2(x− xs)
(
(x− xs)2 − (y − ys)2 − λ1

)2
+ 4(x− xs)2(y − ys)2

−4(x− xs)
(
(x− xs)

2 − (y − ys)
2 − λ1

) (
(x− xs)

2 + (y − ys)
2 − λ1

)

((
(x− xs)2 − (y − ys)2 − λ1

)2
+ 4(x− xs)2(y − ys)2

)2







,

162



∂f(·)
∂ys

= vxR
2

{

−2(y − ys)
(
(x− xs)2 − (y − ys)2 − λ1

)2
+ 4(x− xs)2(y − ys)2

+
4(y − ys)

(
(x− xs)

2 − (y − ys)
2 − λ1

) (
−(x− xs)

2 − (y − ys)
2 − λ1

)

((
(x− xs)2 − (y − ys)2 − λ1

)2
+ 4(x− xs)2(y − ys)2

)2







,

∂f(·)
∂R

= −2vxR

{ (
(x− xs)

2 − (y − ys)
2 − λ1

)

(
(x− xs)2 − (y − ys)2 − λ1

)2
+ 4(x− xs)2(y − ys)2

}

,

∂f(·)
∂λ1

= vxR
2

{

1
(
(x− xs)2 − (y − ys)2 − λ1

)2
+ 4(x− xs)2(y − ys)2

− 2
(
(x− xs)

2 − (y − ys)
2 − λ1

)2

((
(x− xs)2 − (y − ys)2 − λ1

)2
+ 4(x− xs)2(y − ys)2

)2







,

and the Cramer-Rao bound is defined as F−1, where F−1 is given by

F−1 =






J−1 −JF12F−1
22

F−1
22 F21J

−1 F−1
22 (I + F21J

−1F12)




 ,

where J = F11 − F12F
−1
22 F21. J is a 2× 2 matrix given by

J =






J1,1 J1,2

J2,1 J2,2




 ,
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The CRBs for the estimates of xs and ys are given by J−1
1,1 = |J |−1·J2,2 and J−1

2,2 = |J |−1·J1,1,

respectively. Specifically,

CRB(xs) = J−1
1,1 , CRB(ys) = J−1

2,2 . (B.3)

B.2 More Results for One-stage Extended Kalman Fil-

tering Scheme

In this appendix we present similar results as in Section 5.3 but with a one-stage extended

Kalman filtering scheme. First, we have tested the impact of the process noise on the one-

stage scheme as shown in Fig. B.1.

Table B.1 summarizes the other estimated parameters. It is clear from the simulation

results of the one-stage scheme that, the model process noise has slight impact on the esti-

mation results.

Table B.1: One-stage scheme: Estimated velocity, size parameter, and shape parameter
under different process noise variances.

Parameter Actual Estimated (σ2 = 0.1) (σ2 = 0.3) (σ2 = 0.5)

Velocity (cm/s) 6 6.33 6.53 6.56
Size R (cm) 2.5 2.45 2.45 2.12

Shape λ1 (cm) 1.5 0.63 1.66 0.71

Fig. B.2 shows the impact of the measurement noises on the estimation localization results

when the process noise is held at 0.3. Table B.2 lists the other estimated parameters. It can

be seen that, overall, the measurement noise variance has a large impact on the estimation

performance; in general, larger measurement noise variance leads to much longer transient
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Figure B.1: Simulation results on tracking the ellipsoidal cylinder for one-stage scheme: (a)
The estimation of the moving object location for different variance values for the process
noises; (b) localization error at each x-coordinate of the object. The measurement noise
variance is held at 0.01 cm2/s2.
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Figure B.2: Simulation results on tracking the ellipsoidal cylinder for one-stage scheme: (a)
The estimation of the moving object location for different variance values for the measure-
ment noises; (b) localization error at each x-coordinate of the object. The process noise
variance is held at 0.3 (in its respective unit for each state component).

166



and larger estimation error.

Table B.2: One-stage scheme: Estimated velocity, size parameter, and shape parameter
under different measurement noise variances.

Parameter Actual Estimated (σ2m = 0.01) (σ2m = 0.03) (σ2m = 0.05)

Velocity( cm/s) 6 6.45 6.63 7.23
Size R (cm) 2.5 2.33 2.15 2.64

Shape λ1 (cm) 1.5 0.85 0.58 0.42
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tions for energy economy during the kármán gait. Journal of Experimental Biology,
207:3495–3506, 2004.

[56] J. C. Liao, D. N. Beal, G. V. Lauder, and M. S. Triantafyllou. Fish exploiting vortices
decrease muscle activity. Science, 302:1566–1569, 2003.

[57] James C Liao. A review of fish swimming mechanics and behaviour in altered flows.
Phil. Trans. Royal Society, 2082:1973–1993, 2007.

[58] C. Lim, H. Lei, and X. Tan. A dynamic, physics-based model for base-excited IPMC
sensors. In Y. Bar-Cohen, editor, Electroactive Polymer Actuators and Devices (EA-
PAD) XIV, volume 8340 of Proceedings of SPIE, page 83400H, Bellingham, WA, 2012.
SPIE.

[59] C. Liu. Micromachined biomimetic artificial haircell sensors. Bioinsp. Biomim.,
2:S162–S169, 2007.

[60] M. E. McConney, N. Chen, D. Lu, H. A. Hu, S. Coombs, C. Liu, and V. V. Tsukruk.
Biologically inspired design of hydrogel-capped hair sensors for enhanced underwater
flow detection. Soft Matter, 5:292–295, 2009.

[61] M. J. McHenry, J. A. Strother, and S. M. van Netten. Mechanical filtering by the
boundary layer and fluidstructure interaction in the superficial neuromast of the fish
lateral line system. J. Comp. Physiol. A, 194:795–810, 2008.

[62] C. Musso, N. Oudjane, and F. LeGland. Improving regularity particle filters. Springer-
Verlag, New York, 2001.

[63] S. Nemat-Nasser and J. Li. Electromechanical response of ionic polymermetal com-
posites. J. Appl.Phys., 87(7):3321–3331, 2000.

[64] NeuroSolutions. http://www.neurosolutions.com/.

[65] Nam Nguyen, Douglas L. Jones, Yingchen Yang, and Chang Liu. Flow vision for
autonomous underwater vehicles via an artificial lateral line. EURASIP Journal on
Advances in Signal Processing, 2011:806406:1–11, 2011.

[66] A. V. Oppenheim and R. W. Schafer. Discrete-Time Signal Processing. Pearson Higher
Education, Inc., Upper Saddle River, New Jersey, 3rd edition, 2010.

174



[67] Y. Ozaki, T. Ohyama, T. Yasuda, and I. Shimoyama. An air flow sensor modeled on
wind receptor hairs of insects. In Proceedings of the 13th IEEE International Confer-
ence on Micro Electro Mechanical Systems, pages 531–536, Miyazaki, Japan, 2000.

[68] S. Pandya, Y. Yang, D. L. Jones, J. Engel, and C. Liu. Multisensor processing algo-
rithms for underwater dipole localization and tracking using MEMS artificial lateral-
line sensors. EURASIP Journal on Applied Signal Processing, 2006, 2006. Article ID
76593, 8 pages, 2006. doi:10.1155/ASP/2006/76593.

[69] T.J. Pitcher, B. L. Partridge, and C. S. Wardle. A blind fish can school. Science,
194:963–965, 1976.

[70] K. Pohlmann, J. Atema, and T. Breithaupt. The importance of the lateral line in
nocturnal predation of piscivorous catfish. Journal of Experimental Biology, 207:2971–
2978, 2004.

[71] M. Porfiri. Charge dynamics in ionic polymer metal composites. J. Appl.Phys.,
104(10):104915:1–10, 2008.

[72] D. Pugal, K. J. Kim, and A. Aabloo. Modeling the transduction of IPMC in 3D con-
figurations. In Behavior and Mechanics of Multifunctional Materials and Composites
2010, volume 7644 of Proceedings of SPIE, page 76441T, San Diego, CA.

[73] D. Pugal, K.Jung, A. Aabloo, and K. J. Kim. Ionic polymer-metal composite mechano-
electrical transduction: Review and perspectives. Polymer International, 59:279–289,
2010.

[74] A. Qualtieri, F. Rizzi, M.T. Todaro, A. Passaseo, R. Cingolani, and M. De Vittorio.
Stress-driven AlN cantilever-based flow sensor for fish lateral line system. Microelec-
tronic Engineering, 88(8):2376–2378, 2011.

[75] Z. Ren and K. Mohseni. A model of the lateral line of fish for vortex sensing. Bioinspir.
Biomim., 7:036016, 2012.

[76] Branko Ristic, Sanjeev Arulampalam, and Neil Gordon. Beyond the Kalman Filter.
Artech House, London, 2004.

[77] Panton RL. Incompressible flow. Wiley, New York, 1985.

175



[78] M. M. Sadeghi, R. L. Peterson, and K. Najafi. Micro-hydraulic structure for high
performance bio-mimetic air flow sensor arrays. In Proceedings of the 2011 IEEE
International Electron Devices Meeting, pages 29.4.1–29.4.4, 2011.

[79] Sandhya Samarasinghe. Neural Networks for Applied Sciences and Engineering: From
Fundamentals to Complex Pattern Recognition. Auerbach, Boca Raton, FL, 2007.

[80] S. A. Sarles, P. Pinto, and D. J. Leo. Hair cell sensing with encapsulated interface
bilayers. In Proceedings of Bioinspiration, Biomimetics, and Bioreplication, volume
7975 of Proceedings of SPIE, page 797509, San Diego, CA, 2011.

[81] M. Shahinpoor and K.J. Kim. Ionic polymer-metal composites: I. Fundamentals.
Smart Materials and Structures, 10:819–833, 2001.

[82] S. Shatara and X. Tan. An efficient, time-of-flight-based underwater acoustic ranging
system for small robotic fish. IEEE Journal of Oceanic Engineering, 35(4):837846,
2010.

[83] A. B. Sichert, R. Bamler, and J. L. van Hemmen. Hydrodynamic object recognition:
When multipoles count. Physical Review Letters, 102:058104, 2009.

[84] A. B. Sichert and J. L. van Hemmen. How stimulus shape affects lateral-line perception:
analytical approach to analyze natural stimuli characteristics. Biol. Cybern., 102:177–
180, 2010.

[85] B.W. Silverman. Density Estimation for Statistics and Data Analysis. Chapman and
Hall, 1986.

[86] K. Takagi, Y. Nakabo, Z. Luo, T. Mukai, M. Yamamura, and Y. Hayakawa. An
analysis of the increase of bending response in IPMC dynamics given uniform input.
In Smart Structures and Materials 2006: Electroactive Polymer Actuators and Devices
(EAPAD), volume 6168 of Proceedings of SPIE, page 616814, San Diego, CA.

[87] K. Takagi, M. Yamamura, Z. Luo, M. Onish, S. Hirano, K. Asaka, and Y. Hayakawa.
Development of a rajiform swimming robot using ionic polymer artificial muscles. In
Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 1861–1866, Beijing, China, 2006.

[88] Xiaobo Tan. Autonomous robotic fish as mobile sensor platforms: Challenges and
potential solutions. Marine Technology Society Journal, 45(4):31–40, 2011.

176



[89] Milne Thomson. Theoretical hydrodynamics. Macmillan Company, New York, USA,
5th edition, 1955.

[90] M. S. Triantafyllou, D. K. P. Yue, and G. S. Triantafyllou. Hydrodynamics of fishlike
swimming. Annu. Rev. Fluid Mech., 32:33–53, 2000.

[91] R. Venturelli, O. Akanyeti, F. Visentin, J. Jezov, L. D. Chambers, G. Toming,
J. Brown, M. Kruusmaa, W. M. Megill, and P. Fiorini. Hydrodynamic pressure sens-
ing with an artificial lateral line in steady and unsteady flows. Bioinspir. Biomim.,
7:036004, 2012.

[92] Y. Wang, C. Lee, and C. Chiang. A MEMS-based air flow sensor with a free-standing
microcantilever structure. Sensors, 7:2389–2401, 2007.

[93] D. Weihs. Hydrodynamics of fish schooling. Nature, 241:290–291, 1973.

[94] S. P. Windsor, D. Tan, and J. C. Montgomery. Swimming kinematics and hydrody-
namic imaging in the blind Mexican cave fish (astyanax fasciatus). Journal of Experi-
mental Biology, 211:2950–2959, 2008.

[95] T. Y. Wu. Hydromechanics of swimming propulsion. Part 1. Swimming of a two-
dimensional flexible plate at variable forward speeds in an inviscid fluid. Journal of
Fluid Mechanics, 46:337–355, 1971.

[96] Y. Yang, J. Chen, J. Engel, S. Pandya, N. Chen, C. Tucker, S. Coombs, D. L. Jones, and
C. Liu. Distant touch hydrodynamic imaging with an artificial lateral line. Proceedings
of the National Academy of Sciences, 103(50):18891–18895, 2006.

[97] Y. Yang, A. Klein, H. Bleckmann, and C. Liu. Artificial lateral line canal for hydro-
dynamic detection. Applied Physics Letters, 99:023701, 2011.

[98] Y. Yang, N. Nguyen, N. Chen, M. Lockwood, C. Tucker, H. Hu, H. Bleckmann, C. Liu,
and D. L. Jones. Artificial lateral line with biomimetic neuromasts to emulate fish
sensing. Bioinsp. Biomim., 5:016001, 2010.

[99] W. Yim, J. Lee, and K. J. Kim. An artificial muscle actuator for biomimetic underwater
propulsors. Bioinspiration & Biomimetics, 2:S31–S41, 2007.

[100] U. Zangrilli and L. M. Weiland. Prediction of the ionic polymer transducer sensing of
shear loading. Smart Materials and Structures, 20:094013:1–9, 2011.

177



[101] J. W. L. Zhou, H.-Y. Chan, A. K. H. To, K. W. C. Lai, and W. J. Li. Polymer
mems actuators for underwater micromanipulation. IEEE/ASME Transactions on
Mechatronics, 9(2):334–342, 2004.

178


