

SUPPLEMENTARY MATERIAL IN BACK OF BOOK

PLACE IN RETURN BOX to remove this checkout from your record. TO AVOID FINES return on or before date due.
MAY BE RECALLED with earlier due date if requested.

DAIE DUE	DATE DUE	DAIE DUE

A Thesis Subinitted to
 Tne Fac lly of

THE MICHIGAN STATE COLLEGE
OF

AGRICULTUFE AND APFIIED SCIENCE

by

A. F. Sheldon
F. W. Robb

Candilates for the Degree of

Bachelor of Science
in
Civil Engineering.

June 1925.

Fore word

In view of the fact that all of the states are passing laws compelling all sewage to be treated before dumping, into natural water courses and forbidding the use of private vaults and cesspools in municipalities; the writers deemed it wise to investirate a suitable small town in view of desiening a sanitary sewer system and disposal plant.

The writers have chosen the tom of Ovix, Michigan, for this purpose due to the fact that is is a weneral problem with n: existing system. It is also deisirable as it is the home of one of the writers and interest in the welfare of his to"nspeople was uppermost in his mind.

Location and Present Condition

The town of Ovia up until the present time has no systan to care for the seware. ihe town is loc ted along the Kale River waicn for a few weeks in the Sring mifnt care for the sewage by dilution. Ine rest of the year, however, the flow is so slixnt that any quantity of seware dumped by a municipality would polute it.

The land lies in small ridges with intervening valleys makin: a simple svstem hard to obtain. The southern portion of the town is very flat and low and can be drained directly to the river. Ine north part of town arains into a valley and the water is orouwht down a natural ditch to the river throukn the west portion $0:$ the to:n. lhese two natural divisions orought to:yether in the soutnwest part of town.

Ovid being of small population has never deemed it necessary to install a sever systen. It is inevitable that in the near future they will be forced to do so. It will be much more necessary if the population should increase and ine pro ell which is now relatively easy will becone much rore difficult. There are at present a few old sewars extending throuwn the business section to care for storm water. The sewtage problem is carei for by privste outside vaiults and cesspools. these are far from being
the best of their kind and some improvement must be made in these if the problem is not solvod otherwise.

The storm sewers empty into the river at the foot of the main street and consequently all its effluent, of winch sone is sewage, must flow past a large portion of the town. The sewer line from the school empties into a small natural open ditch and thus causes a seat deal of odor before it reaches the river.

As the town is located in a very fine dairy district it has its snare of cremeries. The largest of the two is the Uvid Creamerv Company. This in itself presents a big proolem for Ovid as this Creamery is a substation for the Connor Ice Crean Company and consequently has a great deal of waste. It uses 238,000 gallons of water and as near as can be figured pours the same quantity into the river during the morning hours. At the present time this creamery has an eight inch line from its plant to the river emptring just outside tae tom.

The other creamery called the Cinton Creanery is a great deal swaller using 4,000 mallons and durnping 3,800 allons during the day. They dump this into an open ditch. This strean is slov floving and the area around the ditch is contaminated with slimy precipitates and a very foul odor is emitted.

The only solution of this problem is to allo\% these plants to use the municiral system or install suitable drains to a point well do instrean from the to n. The latter wiil be tne logical solution as will be snown later. some action must be taken immediately due to orders from the Board of Healtn of the State of Michipan.

The writers having chosen this to n thought it advisable to consider any existing lines with the thourht in view of including them in the provosed system. Tness were carefully investipated but were found to be so inefficient and so undesirably located that any tnournt of incorporating them in a new system was dronped.

The first field work to be done was to make a toporraphic map of the town. This was made during the winter vacation 1924, ' 25 . It wes thournt sufficient, after looking over the rround, to take elevations at street intersections and at intermediate points on the east anci west streets as this is the lone way of the blookn. In some cases it wis recessary to take them oftener due to sharp breaks in grade. After this rork was done and the elevations fiutured, the map was plotted whicn will be seen as Plate 1 in the bacx of this book. A system of semi-p rmaient bench maras w.s left the whole lensth of main Strest, takinr tie elevation of the mean river water as 100. The water elevation on the west side of town on front Street was taken and found to be about five feet lower than at Main Street. This slope insures sufficient velocity to carry off treated sewage. The high wat \rightarrow mark was taken and at the location of the disposal takk the elevation wis found to be 104.

Prelirinary Desion

The next roblem to be faced was the desirn of the sewer spstem. Because of the lowness of the southeast porti n of town, it proved very aifficult to ret a satisfactory gravity system. We, however, overcame this but found that we had five places at which we mast secure permission to cross the railroad. We were assisted by the fact that the city is using the river bank as its dunping ground. Eventually tne wround outline on the included map will be raised to an apiroximate elevation of 110.

We tnen interviewed the proper railroad officials as to crossings under their right of way. They would under no consideration allos five crossin's. The raximum number of crossinys they would allow was twn and these on one condition. This was that they be allowed to lay the pipe with their $0: n$ ang or to be allowed to send an engineer to superintend tne work.

This obstacle caused an almost entire abandorment of tne ori inal system. We then started in on an entirely new desion. The primary idea or thought that hai to be held in the mind of the writers wis to cut tne cost i:: a minimum and yet to have as effecient a svetem as possible. Tnis is due to the fact that Uvid is made up of retired farmers
who are more or less well to do. They do not wish to spend an exhorbitant amount of money but still wish to have everything nece:sary to comfort and well-beinッ̈. Tnerefore we were forced to keep as near as possible to their conservative ideas of finance.

Final Lesion

These oostacles surmounted and the nev desirn under way we found that a sravity system would be enti ely inadequate. This necessitated a pumping plant to raise the sewage at the disposal plant. Tnis pave us approximately nine more feet of fall. Ths meant that we had slope enourh at almos all points to obtain cleansinir velocities. These velocitie: as piven to $u s$ by Col. Ricn, head of the lichician State Board of Health, are as follows:

As was stated, at almost all pants sufficient fall was to be had to give these slopes and velocities. At the points where there was not, we put flush tanks into our desion. These tanks which will be shown later are of the atomatic tyoe flusning four times ezch day. These require very little care and as the municipal water suprly is unmetered it will prove a verv cheap and efficient means of cleansin the sewers.

In designing the size of the pipes we took an average block and counted the people living in it. Pnen after computing the area we found the averare population per acre. This figure we took as fifty for the residential section. For the business section we took a higher figure of ninety. As the water is not metered we har little to on as to the water consumption. We arrived at the fipure of eightyfive gallons per capita per day after study of conditions of oth:r small towns and what little data we were able to collect at the water pumpinr station. We decided that the greater portion of this water would eventualy find its way to the sewer and with the increased quantity due to cistern water the same arcount could be used as the sewage per capita per day. From the study of charts it was found that the raximum hourly flow was approximately three hundrea percent of the averace hourly flow. This larye quantity is the quantity for whicn the sewere must be desianed. After the amount flowins in each lise was found the size and velocity were determinei from charts drawn uy fror Kutters formula.

The lots in Uvid are on the averae sixty feet wide. This made it easy to stop the lines back a considerable distance rom the intersecti n and save considerable expense. It ras at first thought advisable to run all tne lines at each intersection to one manhole but after proving the above
statement it wis decided not to. This systeri has one advantause, however, that during the cleaning of the system there is only one manhole to locate ratner than three or four. This is often a great nelp especially on gravelled or oiled streets. Values will be given to prove tne econony of the stopping the manholes back from the intersection. Fake for example a corner where there are two lines ending and one going straight across.

Cost per ft. for digeiner, laying and backfilling $\$ 1.00$ Cost per ft. of tile, average,

Total
Cost of one manhole $\$ 35.00$
If tile are stopped fifty feet from property line we have: $50+50+50($ for stre $t)=150^{\prime}$ saved . $150 \times \$ 1.90=4245.00$ Saving on tile. $2 x \$ 35.00=\$ 75.00$ Extra cost of mannoles. i245.00-\$7C.00 = \$1'5.00 Total saving on one intersection.

These figures are, of course, only approximate but $\in \mathbb{O}$ to snow that tre plan amoted was by far the most econumical.

Our final design naa only two railroad crossings ana after further negotiatisns with the railroad company they agreed to put these in for cost plus fifty percent. The section under ine track is to be male of acast iron pipe as clay tile would crack under the vibration of the trains. It wis possicle at most points to keep the sewer down to a minimum deptn of seven feet so thit it might be used. as a cellar drain. At the greater number of such places as it was not possiole there are no housus and so it will be possiole to set the houses at sucn an elevation as to still de aole to arain tneir cellars to the sever. Tins eliminates the exira expense of a storm cirain at a great enouph deytn to care for these drains.

Disposal Plant

The disposal plant as has been previolustv mentisned was placed in the soutnwest portion of town on the river bank. ine purping plant is to be on the east siae of the river while the lmhofif tank, dosing chamber, filtir beds, ana arying bea are to be on the west side.

I'he sewage will enter the well pit at an elevation of 101. Lhere will be a small tanx here to care for the maximun flow. lt wiil flow from tnis tank through a screen made of iron rods placed at an ansle of 45 aegrees across the opening to the sump. Lt will be pumped up by means of a centrifueal punip capable of carine for 250,00 rallons per da/. This purcp will be supplanented by a pump of twice the capacity to be user in case of emergency. The sewage will be raised tu an elevation of ilo. It will oe carried across tne river in an $13^{\prime \prime}$ cast iron pressure line. From this it will go to the 1 mhoff tank. It is here that all of the solias are deposited. The tank sill be described in detail later in this wite-up. 'ine effluent will leave the tank at an approximate elevation of 109.5. It will fo to the dosing chamber. Tais is a tank which collects the effluent and discnarges it at regular intervals onto the filter beds. Ihis is aone oy alternating siphons. As we have only two beds there will be only two siphons necessary.

These are so set tnit they will trin approximately every six hours. Tnis gives eacn bed a aose every twelve hours. Each dose is large enourn so that it will taxe approximately six nours for it to irain throumn the bed. Tnis gives the bed six nours to rest or aerate.

The bexs are underlaid witn tile whaca carry the effluent to the river. This effluent is not in a nearly stable condition. Phat is, ali solis nave been removed and all of the nitrogen oxidized into nitrites and nitrates. There is no ouor emittea and there wili be no danser to plant and animal life in tne water. It will tiot, nowever, be entirely free froh bacteria but near enoush so that it will de free fron the..: within a very fewmiles. There vill be no other treatment necessiary to comply witn the new state law of micnigan.

Pumping rlant

The se age is taken into the well oit through a
 between them. Tais takes out all debris thiat might fiall into the sewer, also anythine in tne nature of clotns wnich misht be flushed down the sewer. Tnis material if allowea to pass into tne pump might break it or at least cloy it and cause a great deal of expense and delay. Also thoy would not be ainested if they reachea the Iminoff tarik. Tris screen sho du de cleaned at regular intervals.

The seware pit is ten feet deep and twenty feet square. Tnis מives a storape capacity of 25,000 gallons to care for the rush flow.

The bottom of the well pit is seven feet above the bottor of the sewage pit. Tris means that a flap valve willnave to be installed in the top of the suction line in order that the pumb will prime automatical y. The rump is to be operatea by an electric motor. Inere is an automatic shut-oif and starting box so that in p me will stop automatically if the sewase pit becomes ary or the pump brerks or will start automatically if the sewase rises above a certin point wnen it is not owerating.

There is to ve an auxilary pum: to care for flood flow and to care for fine flow in case ne repuitar pump breaxs. lne motor on this pump is to be autonatically startea if the sewage reaches a danerous level.

The ciraci:y of the resular pumy is to $0=250,000$ galions. adily and of the auxiliary pump twice thit amount.

A detailed draning of the well chamoer will be found on the next sinet.

Design of Well Chamber
Capacity of Pit 25000 gal.
Max. in flow 12000 gal

Detail of Screen in
Pumping Chamber

Imhoif Tank

This tank is for the most part merely a sexementation chamber. 'he sewase will remain in the tank for an average of four hours. At the tirne of day whon the maximum flow occurs there will a larger percent of liquid so that a four hour retention pericd will not be necessary. There are baffels at botn ends of the tank to break up any currents which might form at the entrance or outlets. This insures an even undistrubed flow causing the solids to drop out very rapidly. These solids are collected in the lower portion of the tank in the sludge chamber. Tne sludge is allowed to remain here for a period of eifnt so ten months to ripen. At the end of this time the solids are in a form of sludge of waich about eignty-five percent is water. The portion of the sludae in the power portion of the tank is dravn off and spread on the drying bed. After a short time this will have drained out and be in a spadeable condition. Only a small poction of these solicis are drawn off each tire except in the fall when it is drawn down as far as ossible and still not nave riw material cone out. l'his is because tnere can be none iraw off during the winter. The hydrostatic pressure is as a usuall thing enoupn to force the sluage out as the outlet is below the water level. If, nowever,
the pressure is not great enouxh it can usually be started by loosening the sludse by means of a strean of water forced cown the vens in the outlet pipe.

There is a consixerable amount of gias formed in the digestion of the solids and sometimes tais does not escape readily due to a tnick scum whicn forms on top of the sludge. This scum must be bror a u or the tank will overflow. Tnis is done by forcing rois or strearns of wates down through the gas vents on eacn side of the flow chambers.

Pnis tank is tyenty-five by fifty-one feet inside measuremenss. These is a wall extending through the center of the tank the short way to divide the two sludge pits. line flow chambers extend the whole lengtn or the tank. They are nine feet and one-half wide and fifteen feet deep. The last six feet is on a slope of one and one-nalf to one forming a V botton. The detail view of this tank will be found in the bacs as Plate 2.

Drying Bed

The dry ny bel as has bega mentioned proviously is to
 butistraty-five fert square. It is conn ructed ith a floor of puadeled cisy. On to: ot is is hlaid the dran tile. The e are eix in. vitrified diy drain tile lai: $\because \mathrm{ith}$ a wiae joint to permit tav abiok driwing off of the liquid in the sludre. On to: of thent ire sprem graded cindens .ith fine on to: The tile shoula be covered to a aertin of about six inches. The silus are vaie the sate as the floor ani extent four feet hiove the dinde.t. The effluent from this bed is carriei directly to the river. The dry slude is $1 s$ oiorless as for and fores very rood fertilizer.

Dosing Chamber

Pinis tank is fifty feet square and seven feet deep. Its use, as has been stated, is to collect the sewage and dose it onto the filter beas at regular intervals. The averape interval for eacn bed being twelve nours. fnis dosing is done by means of twin alternating siphons. linese work together so that one dumps every six hours approximately. There is a slight loss in head of three and one-half feet through the tank. Tne effluent entering at an elevation of 109 and leaving at 105.5.
'he sines and bot tom or this tank are of reinforced concrete. fnere shoula be a roof over the tana but tais can be of woun construction.

A detailed view of this chamber will be found on Plate 2.

Filter Beds

Abstract

'I'hese beds are to be two in number eain containing one-half an acre. the sides and bottom are to be formen of puarielea clay. Whe bottom to be twelve inches thiok aitn tne sides thirtv-six inches thion ani twenty-fuur inches niEh.

Un the bottom there is to be laid six inch vitrified

 clay tile with oren joints as in the drying bed. Uver this there is to be six inches of coarse gravel or enourh to just cover all of the tile. Abcive this is jo be three inches of graded gravel between $\frac{1}{2}$ and $\frac{1}{4}$ inch. Un the top is to be three inches of fine sand oi. 3 mm diameter.The sewaee is to be distributed by means of troushb. These troughs are built so tha; they discharge at severil points over the surface. Tnis insures an even aistribution of the liquid.

The surface of tine filter must not ba ailower to bacome clorsed or the filter will lose its efficiency. Durino the winter months the surface shoula be furrowed in order that the sewage can thaw througn mor \ddagger readily.

The action of the íilter will not be very great for about six or eight weeks after it is first put into operation or after a washing of the sand, which should $b e$ done annually.

This is because the bacteria must have a chance to collect on the sand particles and it is these o!ganisms that do the greater part of the breaking down of the free ammonia or nitrogen.

There is to be a by-pass around the dosing cnamber and the filter beds so that if any thing should napoen to either one the effluent from the linhoff tann can be sent directly to the river. Also there will be a gate valve in the pressure line across the river leading to the lmhoff tank so that during repairs and during hish water the sewage can be aumped directly into the river. However, it snould not be run directly to tne river unless absolutely necessary as it is $a p$ to $b=$ dangerois. It may be that it can de sent to the river without filtering aring hign water without serious danger.

Cost Estimate

Ihe data for the cost estimate was collected fron several different sources. mie prices of tile wera obtainea from Bripgs Company and Young brothers ana Daley, both dealers in Lansing. For prices on excavation, concrete work, trenching, laying and back filling we went to several of tne prominent contractors of Lansing and East Lansing,also to the City Engine.ring Department of Lansing. We were given comparative costs on lmhoff tanks by the Stiate Board of Public Health. We divided the town into districts to facilitate the computing of the cost. l'hese districts are shown on Plate 1. For each of these districts we found the amount of each size tile needed also the number of tees, of winch we left two every sixty feet for house connections, the number of manholes, and flish tanks. The cost of each of these were then found and the total of each district fo: f .

This metnod of computins will make it possible to tell how much it will cost to construct any portion in case the people dia not feel able to pay the whole cost at once. After the aistrict totals were found we totaled these and added the general expenses which do not fall on any particular district. These include the cost of the pumping plant, the limhoff tank, the dosins chamber, filter beds, and engineering expenses.

The complete estimate of cost will be found iminediatel" following.

District I Cost.

District II Cost.

District III Cost.

District IV Cost

9	Clean UP	sum	sum	20.00
10	Traffic	sum	sum	5.00
	Total			5596.99

District I Cost

District VIII Cost

Total Cost of System.

Conclusion

This plant will wisn proper care dispose of all the sewage that the town of Uvia will proauce for many years to come. Its capacity is approximately 2500 people. Tiis is almost 75% increase over the present population. Ine units installed are, hovever, as smali as will operate effectively and efficiently.

As has been stated the two creameries should be refused permission to dump tneir wastes into this system. This is because dairy wastes are very difficult to digest. They also are apt to precitipate on the walls of the tile causing then to stop up frequently. lhere are cases on record where dairy irains had to be cleaned at least every two weeks. This woild cause a great deal of extra expense. Also, the Ovid Creamery Comoany dumps as much waste as the rest of tine town which would mean that the town would have to build a plant of tivice the capacity of the roposed one. Uf course one might argue that if the comrany paid the extra expense incurrea it would be fair. It must, however, be approached from the sanitary view point. If these dairy wastes got into the tans and were not disested it wo ly cause a weakening of the ction on the rest of the sludre. The sludge then dravn off would be very offensive and not fit to be cared for properly. 'i'he sludse content of the dairy waste is much
higher than that of sevare and this would itill further increase the cost of the plant as the sludge tank is one of the mosi expensive items.

In this desirn no effort was maxe to olan the smaller details of reinforcing and othur parts of the various tanks but have rather sp nt the time on the things actually concerning the caring for the seware.

The main sources of information on whicn we bised our design were Sewerage and Sewage Disposal by Ketcalf and Eddy, and Sewase Disposal by Fuller. We also received much helpful information from Col Fich, wr. Heppler, and Lr. Faust, all of the Hichigan State board of Public Health, also Professor Allen of the Michiran State College.

The problem of Seware Disposal is at best an unpleasant one to plice before the porle of a municipality as it is one of our natural tendencies to look only to our own confort. However, we must take proper precautions to safeguard our neighbor who may live downstream from us. To do this properly all mastes must be properly treated before allowing them to enter any natural boiy of water or watercourse. It is cormonly understood that this is one of the bigoest fields open at the present time.

A Digram Showing Elevations at
all points in the Disposal Plant

 8 $\frac{1}{2}$ 0 0 0	$\begin{aligned} & \text { win } \\ & \tilde{m} \end{aligned}$	$\begin{aligned} & \tilde{N} \\ & \underset{\sim}{N} \end{aligned}$	$\stackrel{\infty}{\infty}$	-	\%	$\begin{aligned} & 0 \\ & 8 \\ & \leqslant \end{aligned}$	$\begin{aligned} & m \\ & \infty \\ & 2 \end{aligned}$	$$	$\begin{aligned} & m \\ & \infty \\ & \hline \end{aligned}$	$\begin{aligned} & \nabla \\ & \vdots \end{aligned}$	$\begin{aligned} & \grave{2} \\ & \stackrel{0}{2} \end{aligned}$	0	$\begin{aligned} & \text { N} \\ & 0 \\ & \text { ® } \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 3 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { \$ } \\ & \infty \\ & 8 \end{aligned}$	$\begin{aligned} & \text { y } \\ & 8 \\ & 0 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & 0 \end{aligned}$	N
	$\begin{aligned} & N \\ & 8 \\ & 8 \end{aligned}$	\% N 2	3 \cdots \cdots \cdots	\cdots	¢	$$	$\begin{aligned} & \text { N} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & 3 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & \infty \\ & \$ \\ & \$ \end{aligned}$	$\begin{aligned} & m \\ & 0 \\ & \hline \end{aligned}$	$\stackrel{\otimes}{2}$	$\begin{aligned} & \text { N } \\ & 0 \\ & i \end{aligned}$	$\begin{aligned} & \text { V } \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & v^{2} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{m}{2} \\ & 0 \end{aligned}$	0 0 0 0	8 8 0	\%
$\begin{aligned} & \because \\ & \stackrel{y}{0} \\ & \stackrel{3}{3} \\ & \stackrel{4}{4} \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & \text { b } \\ & \text { pi } \end{aligned}$	$\begin{aligned} & N \\ & \underset{\sim}{2} \\ & \end{aligned}$	7 \pm	$\begin{aligned} & \bullet \\ & \stackrel{v}{2} \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{8}{2} \\ & \stackrel{y}{2} \end{aligned}$	$\stackrel{\infty}{\infty}$	$\begin{aligned} & 6 \\ & 0 \\ & \text { in } \end{aligned}$	$\begin{array}{r} v \\ 0 \\ -\infty \end{array}$	$\begin{aligned} & 0 \\ & \sim \\ & \sim \end{aligned}$	$\begin{aligned} & a \\ & \infty \end{aligned}$	$\begin{aligned} & N \\ & \dot{N} \end{aligned}$	$\begin{aligned} & b \\ & i \\ & i \end{aligned}$	$\begin{aligned} & N \\ & N \end{aligned}$	$$	$\stackrel{2}{2}$	$\begin{aligned} & \vartheta \\ & \stackrel{\imath}{\wedge} \end{aligned}$	6 0 0	b N N
$0^{\circ} \frac{0}{6}$	$\begin{aligned} & i \\ & \dot{N} \end{aligned}$	2	$\stackrel{N}{n}$	$\stackrel{\rightharpoonup}{2}$	b	$\stackrel{b}{2}$	$\stackrel{m}{v}$	$\stackrel{\circ}{m}$	$\stackrel{\circ}{9}$	\dot{m}	$\begin{aligned} & n \\ & N \end{aligned}$	\mathfrak{v}	∇	8	\%	$\begin{aligned} & b \\ & x \end{aligned}$	8	$\stackrel{\bigcirc}{\sim}$	○
80	$\begin{aligned} & 6 \\ & m \end{aligned}$	$\stackrel{\rightharpoonup}{*}$	$\stackrel{\rightharpoonup}{7}$	\vec{v}	$\stackrel{\rightharpoonup}{\sim}$	$\begin{aligned} & N \\ & N \end{aligned}$	$\begin{aligned} & b \\ & 0 \\ & \alpha \end{aligned}$	n	\vec{m}	$\begin{aligned} & m \\ & m \end{aligned}$	$\stackrel{m}{N}$	$\stackrel{\nabla}{\mathrm{v}}$	\vdots	\pm	$\begin{aligned} & \gamma \\ & v \end{aligned}$	$\begin{aligned} & \underset{\sim}{n} \\ & \stackrel{n}{2} \end{aligned}$	\pm	$\stackrel{\sim}{\imath}$	$\stackrel{3}{\sim}$
$0^{2 x}$	0	α	σ	\bigcirc	\uparrow	ミ	∞	α	a	∞	N	N	m	m	N	N	m	$\dot{\alpha}$	a a
$\frac{0}{N}$	\checkmark	v	\checkmark	\bigcirc	N	N	v	v	v	v	V	v	v	\checkmark	N	N	\checkmark	\square	$?$
	v	γ	9	$\stackrel{\infty}{\sim}$	n 0 $?$	$\begin{aligned} & 9 \\ & 0 \end{aligned}$	$?$	$\frac{2}{0}$	5	$\stackrel{\rightharpoonup}{v}$?	$\stackrel{N}{V}$	\cdots	0	$\stackrel{n}{n}$	$\stackrel{N}{n}$	$\begin{aligned} & a \\ & b \end{aligned}$	$\stackrel{\infty}{+}$	\cdots
1-1	$\frac{m}{0}$	$\begin{gathered} \text { N} \\ 0 \end{gathered}$	$\begin{gathered} 0 \\ 0 \\ 0 \end{gathered}$	$\overline{5}$	$\begin{aligned} & \hat{0} \\ & 0 \end{aligned}$	$\begin{aligned} & \infty \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & m \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\circ}{8} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\frac{3}{0}$	$\begin{aligned} & \text { N } \\ & \text { o } \end{aligned}$	$\begin{aligned} & \alpha \\ & \alpha \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & m \\ & 0 \\ & 0 \end{aligned}$	0	$\begin{gathered} \infty \\ 0 \end{gathered}$	$\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & 0 \end{aligned}$?	N
$\frac{1}{2}$ $\substack{2 \\ 0}$ 0	$\begin{aligned} & 7 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \infty \\ & 0 \\ & 0 \end{aligned}$	$\frac{N}{0}$	$\frac{9}{0}$	$\begin{gathered} \hat{N} \\ 0 \end{gathered}$	\bar{N}_{0}	ò	$\begin{aligned} & b \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 5 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & b \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & n \\ & \hat{N} \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & \text { v } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	ò	$\begin{gathered} N \\ 0 \end{gathered}$	$\begin{aligned} & 7 \\ & 3 \\ & 0 \end{aligned}$	$\underset{0}{N}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	ob o
$\begin{aligned} & 4 \leqslant \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & a \\ & 0 \\ & 0 \end{aligned}$	$\frac{\infty}{0}$	$\begin{aligned} & \hat{N} \\ & 0 \end{aligned}$	$\begin{aligned} & 6 \\ & 2 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { of } \end{aligned}$	$\begin{aligned} & \text { N } \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & m \\ & M \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { e} \\ & 0 \\ & 0 \end{aligned}$	\hat{i}	\bigcirc	$\begin{aligned} & 3 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} m \\ 0 \\ 0 \end{gathered}$	$\begin{aligned} & N \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \mathrm{r} \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & \text { N} \\ & 0 \\ & 0 \end{aligned}$	0 0 0	b ∞ 0
${ }^{\circ}$	2	$\stackrel{\circ}{0}$	$\begin{aligned} & b \\ & \infty \\ & b \end{aligned}$	2 0 i	3 0	$\begin{aligned} & 6 \\ & ? \\ & 0 \end{aligned}$	$\stackrel{8}{8}$	n	$\stackrel{?}{?}$	$\stackrel{y}{v}$	$\begin{aligned} & v \\ & w \end{aligned}$	$\stackrel{N}{2}$?	\$	$\begin{aligned} & \infty \\ & \vdots \end{aligned}$	$\begin{aligned} & h \\ & 9 \\ & 9 \end{aligned}$	0	b 2 $\stackrel{1}{2}$	or
\%	2	\circ	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\stackrel{0}{0}$	$\stackrel{\ominus}{i}$	3	8	n	$\frac{1}{2}$	\%	n	N	9	8	!	$?$	$\begin{aligned} & 0 \\ & 3 \end{aligned}$	6	$\frac{7}{7}$
y	$\begin{aligned} & 0 \\ & 5 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & \text { y } \\ & \text { n } \end{aligned}$	$\begin{aligned} & 0 \\ & b \\ & \text { m } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 8 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 8 \end{aligned}$	b	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 5 \end{aligned}$	$\begin{aligned} & 0 \\ & 5 \\ & 7 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \text { or } \end{aligned}$	$\frac{h}{2}$	$\frac{b}{v}$	b	$\begin{aligned} & \circ \\ & \stackrel{0}{v} \\ & \text { N } \end{aligned}$	$\begin{aligned} & h \\ & \stackrel{n}{2} \end{aligned}$	$\frac{h}{n}$	$\begin{aligned} & w \\ & v \\ & 2 \end{aligned}$	$\begin{aligned} & 0 \\ & b \\ & 2 \end{aligned}$	0 \sim \sim
$\begin{gathered} x \\ \stackrel{y}{x} \end{gathered}$	$\begin{aligned} & x \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & k \\ & 0 \\ & 0 \\ & 0 \\ & 2 \end{aligned}$	$\begin{aligned} & x \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 6 \\ & \varepsilon \\ & \vdots \\ & \vdots \\ & i \end{aligned}$	$\begin{aligned} & n \\ & \text { E } \\ & 0 \\ & \vdots \\ & \vdots \end{aligned}$	$\begin{aligned} & x \\ & n \\ & y^{2} \end{aligned}$	$\begin{aligned} & x \\ & y \\ & 0 \\ & 4 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \\ & R \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} x \\ 8 \\ y^{2} \end{gathered}$	n \vdots \vdots \vdots \vdots	$\begin{aligned} & n \\ & \text { f } \\ & 0 \\ & \vdots \\ & j \end{aligned}$	$\begin{aligned} & { }^{+} \\ & Q^{+} \end{aligned}$	R^{t}	$\begin{aligned} & \text { y } \\ & 0 \\ & \vdots \\ & j \end{aligned}$	$\begin{aligned} & n \\ & \text { i } \\ & 0 \\ & \vdots \\ & i \end{aligned}$	$\begin{aligned} & \text { § } \\ & \text { j } \end{aligned}$	$\begin{aligned} & i \\ & i \end{aligned}$	¢
\bigcirc	ω	N	∞	0	\bigcirc	ミ	N	\hbar	$\underset{\sim}{*}$	\	\cdots	\bigcirc	\bigcirc	\bigcirc	a	\square^{∞}	$\stackrel{\infty}{\infty}$	8	3
$\begin{aligned} & \text { í } \\ & \text { है } \end{aligned}$	5	\checkmark	N	∞	σ	\bigcirc	\cdots	क	$\bar{\square}$	N	\leqslant	\cdots	V	\checkmark	${ }^{\circ}$	5	$\hat{6}$	0	*
2	\checkmark	v	\cdots	T	b	ϑ	N	∞	σ	\bigcirc	<	N	3	∇	2	ϑ	<	@	0

\$0	\%	0 0 0 0	980	$\begin{aligned} & \text { हु } \\ & \stackrel{1}{0} \end{aligned}$	$$	$\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 8 \\ & \text { o } \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & m \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	j	$\begin{aligned} & \infty \\ & b \\ & 0 \end{aligned}$	$\begin{aligned} & 3 \\ & 6 \\ & 0 \end{aligned}$	$\begin{aligned} & 9 \\ & x^{\prime} \\ & 0 \end{aligned}$	$\begin{aligned} & x \\ & \text { vi } \end{aligned}$	$\begin{aligned} & n \\ & \theta \\ & 0 \end{aligned}$	$\begin{aligned} & 3 \\ & 7 \\ & 0 \end{aligned}$	$\begin{aligned} & \infty \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { N} \\ & \text { N } \\ & \stackrel{y}{n} \end{aligned}$	$\begin{aligned} & 17 \\ & 2 \end{aligned}$
N N N	8 $\%$ $\%$	\%	$\begin{aligned} & \text { a } \\ & \text { à } \\ & 0 \end{aligned}$	$\begin{aligned} & 90 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { y } \\ & \text { Ni } \end{aligned}$	$\begin{aligned} & \text { k } \\ & \text { N } \\ & \stackrel{y}{n} \end{aligned}$	$\begin{aligned} & * \\ & \stackrel{\alpha}{*} \\ & \stackrel{1}{2} \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & 6 \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \infty \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 9 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \infty \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \infty \\ & b \\ & 0 \end{aligned}$	$\begin{aligned} & \alpha \\ & \dot{\theta} \\ & 0 \end{aligned}$	$\begin{aligned} & m \\ & 3 \\ & \hline \end{aligned}$	y	$\begin{aligned} & \text { i } \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \infty \\ & 6 \\ & 0 \end{aligned}$	$\begin{aligned} & y \\ & \text { y } \\ & 0 \end{aligned}$	${ }^{\circ}$
$\underset{\sim}{N}$	$\begin{aligned} & \hat{N} \\ & \dot{N} \end{aligned}$	$\begin{aligned} & \dot{0} \\ & \dot{N} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \mathbf{N} \end{aligned}$	$\begin{aligned} & \lambda \\ & \text { i } \end{aligned}$	$$	-	N	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & ? \\ & ? \end{aligned}$	\mathfrak{b}	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0	$\stackrel{\rightharpoonup}{\dot{v}}$	$\stackrel{0}{0}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	0
9	8	$\hat{\gamma}$	N	∞	0	0	\forall	∞	∇	γ	∞	\oplus	7	∇	V	V	7	γ	V	
$\frac{2}{2}$	8	0	2	$\begin{aligned} & 6 \\ & b \\ & s \end{aligned}$	$\stackrel{\circ}{\dot{\alpha}}$	$\stackrel{0}{\alpha}$	∇	$\stackrel{\circ}{\stackrel{\rightharpoonup}{v}}$	\forall	\%	$\begin{array}{r} 0 \\ \text { N } \end{array}$	$\stackrel{\rightharpoonup}{v}$	8	0	\hat{i}	\hat{N}_{i}	∇	\leqslant	$\stackrel{\infty}{\sim}$	
θ	$\begin{gathered} \infty \\ 7 \end{gathered}$	$\begin{gathered} \infty \\ m \end{gathered}$	$\begin{aligned} & \infty \\ & m \end{aligned}$	$\begin{aligned} & h \\ & \infty \end{aligned}$	b	b	7?	$\begin{aligned} & 5 \\ & 7 \end{aligned}$	\%	¢	$\frac{8}{4}$	8	?	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\underset{\sim}{2}$	$\stackrel{\lambda}{v}$	\%	ฑ๐	N	
∞	\checkmark	ϑ	\checkmark	\bigcirc	9	\bigcirc	v	\bigcirc	\checkmark	v	N	N	ϑ	\checkmark	∞	∞	v	v	∞	¢
$\hat{*}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \infty \\ & m \\ & \hline \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { N } \end{aligned}$	$\begin{aligned} & 6 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	\approx	6	0	0	\bigcirc	$\frac{2}{2}$	$\begin{aligned} & \text { N } \\ & \stackrel{y}{n} \end{aligned}$	6	0	m \sim $\%$	m 8 m	$\begin{aligned} & 6 \\ & 0 \end{aligned}$	9	N N	$\underset{\sim}{N}$
$\begin{aligned} & \text { ve } \\ & \text { vo } \end{aligned}$	$\begin{aligned} & 7 \\ & 0 \\ & 0 \end{aligned}$	8	$\stackrel{N}{2}$	$\begin{aligned} & 6 \\ & 8 \\ & 0 \end{aligned}$	$\begin{aligned} & \infty \\ & 8 \\ & 0 \end{aligned}$	$\begin{aligned} & 5 \\ & 0 \end{aligned}$	$\begin{aligned} & \infty \\ & 8 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \infty \\ & b \\ & 0 \end{aligned}$	8	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & m \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { v. } \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} N \\ 0 \\ 0 \\ 0 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{N}{N}$	N	$\begin{gathered} N \\ 0 \\ 0 \\ \hline \end{gathered}$	\%	$\stackrel{\gamma}{\mathbf{N}}$	
$\begin{aligned} & \infty \\ & 0 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & \infty \\ & \sim_{2}^{2} \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & x \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\frac{8}{0}$	$\frac{b}{0}$	$\begin{aligned} & 9 \\ & 0 \end{aligned}$	$\begin{aligned} & 2 \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{\infty}{0}^{\infty}$	$\begin{aligned} & \text { Fin } \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & v_{1} \\ & 0 \\ & 0 \end{aligned}$	$\frac{b}{0}$	$\begin{gathered} \text { ט} \\ \text { N } \\ 0 \end{gathered}$	$\begin{aligned} & \text { ò } \\ & \text { of } \end{aligned}$	$\begin{gathered} \text { y } \\ 0 \\ 0 \\ 0 \end{gathered}$	$\begin{aligned} & N \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & N \\ & 0 \end{aligned}$	$\begin{aligned} & \hat{0} \\ & 0 \end{aligned}$	$\begin{gathered} \text { N} \\ 0 \\ 0 \end{gathered}$	$\stackrel{6}{6}$	
0	$\begin{gathered} 19 \\ 0 \\ 0 \end{gathered}$	$\stackrel{9}{0}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	y_{0}^{2}	$\begin{aligned} & m \\ & 0 \\ & 0 \end{aligned}$	$\frac{6}{6}$	$\begin{aligned} & N \\ & \text { N } \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \end{aligned}$	$\begin{gathered} \mathrm{N} \\ \mathrm{~N} \\ 0 \\ 0 \end{gathered}$	$\begin{aligned} & 8 \\ & 8 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & b \\ & \text { N } \\ & \text { v } \end{aligned}$	$\begin{aligned} & b \\ & b \\ & 8 \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { N } \\ & 0 \end{aligned}$	$\begin{aligned} & b \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{\sigma}{6}$	n	$\begin{aligned} & \hat{N} \\ & \alpha_{1} \\ & 0 \end{aligned}$	\% \% 0 0	?	v
χ	ค	\pm	n	\bigcirc	b	∞°	$\begin{aligned} & 0 \\ & 5 \end{aligned}$	a	$\begin{aligned} & 0 \\ & 4 \end{aligned}$	$\stackrel{0}{0}$	$\begin{aligned} & k \\ & \alpha \end{aligned}$	$\begin{aligned} & m \\ & 0 \end{aligned}$	5	$\stackrel{N}{N}$	$\begin{aligned} & 0 \\ & \dot{9} \\ & m \end{aligned}$	$\begin{aligned} & 0 \\ & \text { mi } \end{aligned}$	5	\bigcirc	$\stackrel{N}{2}$,
\bigcirc	\bigcirc	$\stackrel{\square}{*}$	\bigcirc	0	\%	?	5	o	$\begin{aligned} & 0 \\ & ? \end{aligned}$	b	-	$\stackrel{0}{\circ}$	फ	$\stackrel{0}{\sim}$	0	0	$\stackrel{\circ}{6}$	\square°	0	
$\begin{aligned} & 0 \\ & 0 \\ & \text { in } \end{aligned}$	$\begin{aligned} & 0 \\ & b \\ & 9 \end{aligned}$	$\begin{aligned} & 0 \\ & \text { m } \\ & \text { m } \end{aligned}$	$\begin{aligned} & 0 \\ & h \\ & m \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & m \end{aligned}$	$\begin{aligned} & w \\ & v \\ & v \end{aligned}$	$\begin{aligned} & n \\ & n \\ & \sim \end{aligned}$	$\begin{aligned} & b \\ & \text { v } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & m \end{aligned}$	$\begin{aligned} & \mathfrak{w} \\ & \mathfrak{v} \end{aligned}$	$\begin{aligned} & \mathbf{k} \\ & \underset{\sim}{n} \end{aligned}$	$\frac{h}{x}$	$\begin{aligned} & n \\ & N \\ & N \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{2} \\ & \underset{\sim}{n} \end{aligned}$	b	$\begin{aligned} & \circ \\ & \text { in } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \text { m } \end{aligned}$	$\begin{aligned} & \stackrel{y}{2} \\ & \stackrel{y}{n} \end{aligned}$	$\underset{\sim}{2}$	¢	
x 8 0 4	$\begin{aligned} & \text { y } \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & x \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { r} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & x \\ & b \\ & y^{2} \end{aligned}$	$\frac{E}{4}$	$\frac{\xi}{4}$	$\begin{aligned} & t \\ & R^{o} \end{aligned}$	$\begin{aligned} & t \\ & \frac{1}{o} \end{aligned}$	$\underset{4}{\xi}$	$\frac{E}{4}$	$\begin{array}{r} x \\ x \\ 0 \\ 0 \end{array}$	$\begin{aligned} & x \\ & x \\ & 0 \\ & 0 \\ & b \end{aligned}$	$\begin{aligned} & x \\ & 0 \\ & x \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & x \\ & 0 \\ & x \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \frac{1}{0} \\ & \stackrel{1}{0} \\ & 0 \\ & 0 \\ & x^{0} \\ & k \end{aligned}$	$\begin{aligned} & \frac{1}{0} \\ & x^{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\frac{i}{4}$	$\underset{4}{E}$		$\begin{aligned} & \text { u } \\ & \dot{k} \end{aligned}$
- 0	-	∞	∞	∞	∞	∞	$\stackrel{\square}{0}$	0	α	2	\downarrow	0	σ	0	a	${ }^{\circ}$	¢	0	5	6
\cdots	ω^{\sim}	∞	∞	∞	∞	$\begin{aligned} & \infty \\ & \infty \end{aligned}$	ゅ	$\frac{a}{\infty}$	0	N	0	σ	\%	a	0	0	0	2	0^{∞}	E
*	N	$\stackrel{8}{7}$	7	8	*	*	8	$\frac{a}{8}$	\bigcirc	5	${ }^{6}$	4	b	b	${ }^{6}$	\hat{i}	5	$\stackrel{a}{b}$	8	S

3	8	k	$\underset{N}{\infty}$	$\begin{aligned} & \text { w } \\ & \text { के } \end{aligned}$	$\underset{N}{N}$	$\begin{aligned} & \text { N } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \underbrace{2} \\ & \hat{2} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{N}{2} \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \underset{\sim}{*} \end{aligned}$	$\begin{aligned} & \sigma \\ & \text { N } \end{aligned}$	$\begin{aligned} & \stackrel{y}{8} \\ & \stackrel{y}{2} \end{aligned}$	$$	$\begin{aligned} & \underset{\sim}{\sim} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & 6 \\ & \text { ஸे } \end{aligned}$	$\begin{aligned} & \text { s } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \underset{\sim}{N} \\ & \text { N } \end{aligned}$	$\begin{aligned} & N \\ & \sim \\ & 2 \end{aligned}$	à	$\stackrel{i}{i}$	$\stackrel{*}{*}$
$\begin{aligned} & 8 \\ & \frac{8}{12} \end{aligned}$	$\begin{aligned} & m \\ & m \\ & m \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\underset{~}{\text { s }}$	$\begin{aligned} & x \\ & \\ & \hline \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { (i) } \end{aligned}$	$\frac{\mathrm{x}}{\mathrm{x}}$	$\begin{aligned} & N \\ & N \\ & N \end{aligned}$	$\begin{aligned} & \text { לo } \\ & 2 \end{aligned}$	$\begin{aligned} & \infty \\ & \dot{\infty} \\ & \dot{m} \end{aligned}$	$\begin{aligned} & \hat{\infty} \\ & \infty \\ & \text { w } \end{aligned}$	$\begin{aligned} & \text { oे } \\ & \text { پ̈ } \end{aligned}$	$\begin{aligned} & \stackrel{\alpha}{\gamma} \\ & \stackrel{\sim}{\alpha} \end{aligned}$	$\begin{aligned} & 2 \\ & \text { y } \\ & \text { v } \end{aligned}$	$\begin{aligned} & 4 \\ & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & \text { 3 } \\ & \text { w } \end{aligned}$	$$	$\begin{aligned} & \text { Y } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \mathscr{2} \\ & \stackrel{1}{*} \end{aligned}$	$\begin{aligned} & 0 \\ & \text { n } \\ & \text { n } \end{aligned}$	ה
0 3 7	$\begin{aligned} & 0 \\ & 7 \\ & 7 \end{aligned}$	$\begin{aligned} & 0 \\ & \dot{9} \\ & \text { x } \end{aligned}$	$\frac{0}{2}$	$\begin{aligned} & 0 \\ & p^{2} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \text { in } \end{aligned}$	$\begin{aligned} & b \\ & b \\ & b \end{aligned}$	$\begin{aligned} & o \\ & \dot{b} \\ & \text { n } \end{aligned}$	$\begin{aligned} & 0 \\ & \dot{p} \end{aligned}$	$\begin{aligned} & v \\ & 0 \\ & m \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & 0 \\ & \sim \end{aligned}$	$\begin{aligned} & \text { a } \\ & \text { a } \\ & \text { j } \end{aligned}$	$\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & 0 \\ & m \end{aligned}$	$\begin{aligned} & \infty \\ & \cdots \\ & \cdots \end{aligned}$	$\begin{aligned} & 0 \\ & \underset{u}{u} \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \\ & i \end{aligned}$	$\begin{aligned} & \hat{b} \\ & \dot{a} \\ & \text { in } \end{aligned}$	$\begin{aligned} & \stackrel{m}{n} \\ & \stackrel{\rightharpoonup}{2} \\ & \stackrel{v}{2} \end{aligned}$	$\begin{aligned} & \dot{\sim} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & 0 \\ & \text { x } \end{aligned}$	0 0 N
V	V	$\stackrel{\sim}{V}$	N	$\begin{aligned} & 0 \\ & \text { o } \end{aligned}$	$\stackrel{0}{\dot{\alpha}}$	$\begin{aligned} & 0 \\ & 8 \end{aligned}$	of	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \bullet \\ & h \end{aligned}$	$\begin{aligned} & n \\ & n \end{aligned}$	h°	$\begin{aligned} & 6 \\ & b \end{aligned}$	∞	$\begin{aligned} & \stackrel{\rightharpoonup}{i} \\ & \text { in } \end{aligned}$	$\stackrel{v}{\mathrm{v}}$	$\underset{\sim}{v}$	m	a	N	a ?
$\stackrel{\circ}{\mathrm{i}}$	$\stackrel{\gamma}{i}$	i	$\stackrel{\alpha}{i}$	$\underset{N}{N}$	*	N	$\stackrel{O}{\mathrm{~N}}$	$\stackrel{N}{N}$	$\stackrel{ }{-}$	∞	$\underset{\sim}{N}$	$\underset{N}{N}$	$\begin{gathered} \mathrm{N} \\ \mathrm{~m} \end{gathered}$	$\stackrel{\otimes}{\sim}$	$\underset{\sim}{\infty}$	$\begin{gathered} N \\ m \end{gathered}$	$\stackrel{N}{v}$	$\underset{N}{N}$	8	N
a b	b	b	$\begin{aligned} & a \\ & b \end{aligned}$	n	h	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & \nabla \end{aligned}$	$\stackrel{\circ}{8}$	$\begin{aligned} & a \\ & m \end{aligned}$	$\begin{aligned} & a \\ & m \end{aligned}$	a	$\begin{aligned} & a \\ & 3 \end{aligned}$	ヘ	a	0	0	3	3	b	9
0	\checkmark	\checkmark	\checkmark	v	v	v	v	v	\checkmark	\checkmark	ϑ	v	∞	\checkmark	ϑ	\checkmark	\bigcirc	\bigcirc	\checkmark	\bigcirc
$\begin{aligned} & N \\ & 0 \\ & 0 \end{aligned}$	*	N	$\begin{aligned} & \text { ob } \\ & \text { v } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { N } \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & N \\ & \hat{N} \end{aligned}$	$\begin{aligned} & b \\ & n \end{aligned}$	$\begin{aligned} & N \\ & N \end{aligned}$	$\stackrel{N}{\hat{N}}$	\forall	\grave{N}	\hat{N}	b	$\begin{aligned} & 0 \\ & b \\ & 0 \end{aligned}$	\oplus	\star	$\frac{2}{2}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \end{aligned}$	0	0
$\begin{aligned} & 7 \\ & 8 \\ & 0 \end{aligned}$	$\begin{aligned} & N \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\frac{\infty}{N}$	$\stackrel{*}{*}$	$\begin{aligned} & \pm \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & N_{1} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 9 \\ 0 \end{gathered}$	$\begin{aligned} & \hline 8 \\ & 0 \\ & \mathbf{N}^{2} \end{aligned}$	$\begin{aligned} & 5 \\ & 8 \\ & 0 \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { y } \\ & 0 \\ & 0 \end{aligned}$	K	$\begin{aligned} & y \\ & 0 \end{aligned}$	$\begin{aligned} & 8 \\ & \text { \% } \\ & 8 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \mathrm{F} \\ & 0 \end{aligned}$	$\frac{8}{5}$	$\begin{aligned} & 3 \\ & b \\ & b \\ & 0 \end{aligned}$	N \% 0 0	8 0 0
$\begin{aligned} & \text { w } \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { v} \\ & \text { N } \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & b \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & m \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { v } \\ & \text { v } \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & N^{2} \\ & b \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & b \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & y \\ & 7 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & b \\ & 0 \\ & 0 \end{aligned}$	$\frac{1}{0}$	$\begin{aligned} & N \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { X } \\ & \text { N } \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 3 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 9 \\ & 0 \end{aligned}$	$\frac{n}{2}$	0	N
$\begin{aligned} & \infty \\ & v^{2} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { b } \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & m \\ & \infty \\ & 0 \end{aligned}$	$\frac{\mathrm{N}}{\mathrm{O}}$	$\begin{gathered} \infty \\ N \\ 0 \\ 0 \end{gathered}$	$\begin{aligned} & 6 \\ & b \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} b \\ m \\ 0 \\ 0 \end{gathered}$	$\begin{aligned} & b \\ & 0 \end{aligned}$	$\begin{aligned} & m \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & h \\ & m \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { r} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & a \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \mathcal{N} \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & { }^{2} \end{aligned}$	$\begin{aligned} & v \\ & \text { v } \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { N } \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \alpha \\ & h \\ & m \\ & 0 \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & m \\ & 0 \end{aligned}$	N y 0 0 0	8
$\begin{aligned} & h \\ & 6 \end{aligned}$	3	$$	$\stackrel{\lambda}{N}$	$\begin{aligned} & 6 \\ & b \end{aligned}$	\cdots	b	$\begin{aligned} & y \\ & 3 \\ & \text { i } \end{aligned}$	$\begin{aligned} & n \\ & n \\ & m \end{aligned}$	n	$?$	$\begin{aligned} & n \\ & v \\ & \sim \end{aligned}$	$\begin{aligned} & n \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & b \\ & b \end{aligned}$	\bigcirc	N	∞	$\begin{aligned} & 10 \\ & 0 \\ & \infty \end{aligned}$	$\begin{aligned} & 0 \\ & \infty \\ & \infty \\ & \hline 0 \end{aligned}$	\bigcirc	\bigcirc
$\begin{aligned} & h \\ & b \end{aligned}$	$\begin{aligned} & h \\ & 6 \end{aligned}$	$\stackrel{\square}{\square}$	\bigcirc	$\begin{aligned} & b \\ & b \end{aligned}$	$\begin{aligned} & b \\ & b \end{aligned}$	n	\bigcirc	0	n	n	n	b°	5	0	0	io	\cdots	n	b	\bigcirc
$\begin{aligned} & 0 \\ & 5 \\ & \text { v } \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{y}{2} \end{aligned}$	$\begin{aligned} & n \\ & n \end{aligned}$	$\begin{aligned} & \text { n } \\ & \text { n } \end{aligned}$	$\begin{aligned} & 0 \\ & \text { N } \end{aligned}$	$\begin{aligned} & 0 \\ & \text { n } \end{aligned}$	$\begin{aligned} & 0 \\ & \text { h } \end{aligned}$	$\begin{aligned} & \stackrel{3}{2} \\ & \stackrel{1}{2} \end{aligned}$	$\begin{aligned} & 0 \\ & b^{2} \end{aligned}$	$\begin{aligned} & 0 \\ & \vdots \\ & \text { m } \end{aligned}$	$\begin{aligned} & 0 \\ & 5 \\ & 0 \end{aligned}$	$\begin{aligned} & 5 \\ & \text { के } \end{aligned}$	$\begin{gathered} 0 \\ 0 \\ \text { Q } \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{0} \\ & \stackrel{y}{n} \end{aligned}$	$\begin{aligned} & \stackrel{0}{2} \\ & \text { N } \end{aligned}$	$\begin{aligned} & 0 \\ & b \\ & र \end{aligned}$	$\begin{aligned} & 0 \\ & 5 \\ & m \end{aligned}$	$\begin{aligned} & 0 \\ & \text { ion } \end{aligned}$	0 0 0	\%
$\begin{aligned} & \text { k } \\ & i \\ & 0 \\ & 2 \end{aligned}$	$\begin{aligned} & k \\ & i \\ & i \end{aligned}$	$\begin{aligned} & x \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & n \\ & \dot{w} \\ & 0 \end{aligned}$	$\begin{aligned} & x \\ & 0 \\ & 0 \\ & 0 \\ & 5 \end{aligned}$	$\begin{aligned} & k \\ & 0 \\ & 0 \\ & 0 \\ & 5 \end{aligned}$	$\begin{aligned} & k \\ & j \\ & 0 \\ & 0 \\ & \delta \end{aligned}$	$\begin{aligned} & x \\ & u \\ & u \\ & b \\ & b \\ & 0 \\ & n^{2} \end{aligned}$	$\begin{aligned} & x \\ & 0 \\ & 0 \\ & 0 \\ & n \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & x \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & x \\ & u \\ & 0 \\ & 0 \\ & n \\ & 0 \\ & R^{2} \end{aligned}$	$\begin{aligned} & x \\ & u \\ & 0 \\ & 0 \\ & b \\ & 0 \\ & 0^{2} \end{aligned}$	$\begin{aligned} & x \\ & u \\ & u \\ & Q^{2} \\ & R^{2} \end{aligned}$	$\begin{aligned} & x \\ & h \\ & y \\ & 4 \end{aligned}$	$\begin{aligned} & x \\ & h \\ & i \\ & i \end{aligned}$	$\begin{aligned} & x \\ & k \\ & i \end{aligned}$	$\begin{aligned} & x \\ & y \\ & 0 \\ & y \end{aligned}$	$\begin{aligned} & x \\ & x \\ & x \\ & 0 \end{aligned}$	$\begin{aligned} & x \\ & x^{u} \\ & \ddot{0} \end{aligned}$	2^{t}	x
k	$\stackrel{m}{\sim}$	$\xrightarrow{2}$	$\stackrel{\sim}{2}$	N	m	m	N	\hat{N}	¢	α	$\stackrel{0}{2}$	N	N	\cdots	θ	\cdots	3	N	7 7	\bigcirc
v	N	$\underset{\sim}{2}$	N	λ	N	\forall	m	N	m	m	Q	N \sim \sim	\hat{v}	N	\bigcirc	0	\cdots	m m	b m	7
v	3	8	ち	๒	\bigcirc	∞	$\stackrel{\sim}{0}$	\bigcirc	N	N	\cdots	N	\cdots	\cdots	^	$\stackrel{\infty}{\sim}$	$\stackrel{\sim}{0}$	∞	∞	O

coseof

$\begin{aligned} & 6 \\ & \text { s } \end{aligned}$	$\begin{aligned} & \stackrel{y}{6} \\ & \stackrel{y}{2} \end{aligned}$	$\begin{aligned} & a \\ & 6 \\ & \xi \end{aligned}$	$\begin{aligned} & q \\ & \vdots \\ & k \end{aligned}$	$\begin{aligned} & \text { a } \\ & m \\ & \text { m } \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \mathbf{m} \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\rightharpoonup}{2} \\ & \end{aligned}$	$\begin{aligned} & 0 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & \infty \\ & \dot{p} \\ & \underset{\sim}{2} \end{aligned}$	$\underset{\sim}{N}$	$\begin{aligned} & \mathbf{v} \\ & N \\ & N \end{aligned}$	$\begin{aligned} & \forall \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \stackrel{v}{x} \\ & Q_{0} \end{aligned}$	$\begin{aligned} & N \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & a \\ & m \\ & m \\ & m \end{aligned}$	$\begin{aligned} & a \\ & \underset{y}{v} \\ & \underset{y}{2} \end{aligned}$	$\begin{aligned} & a \\ & \leqslant \end{aligned}$	$\stackrel{\infty}{i}$	0 0 0 0	0 0 0
$\frac{5}{2}$	$\begin{aligned} & a \\ & 9 \\ & \leqslant \end{aligned}$	$\frac{k}{2}$	$\begin{aligned} & \text { אे } \\ & \stackrel{y}{2} \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & * \\ & 9 \\ & 7 \end{aligned}$	en	$\begin{aligned} & 0 \\ & 8 \\ & 8 \end{aligned}$	$$	$$	$\begin{aligned} & 0 \\ & \infty \\ & m \end{aligned}$	$\begin{aligned} & v \\ & \underset{\sim}{v} \end{aligned}$	$\begin{aligned} & \text { x } \\ & \dot{y} \\ & \text { N } \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \text { N} \end{aligned}$	$\begin{aligned} & N \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & { }_{2}^{2} \\ & m \\ & m \end{aligned}$	$\begin{aligned} & \underset{\sim}{x} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \leqslant \end{aligned}$	$\begin{aligned} & \sigma \\ & \vdots \\ & \vdots \end{aligned}$	a
$\stackrel{\rightharpoonup}{v}$	$\begin{aligned} & \infty \\ & \text { v } \\ & \text { v } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 3 \end{aligned}$	$\stackrel{N}{N}$	$\stackrel{\infty}{\infty}$	$\begin{aligned} & 0 \\ & b \\ & 8 \end{aligned}$	$\begin{aligned} & a \\ & \dot{p} \\ & \dot{8} \end{aligned}$	$\begin{gathered} v \\ 5 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{r} \end{aligned}$	$\begin{aligned} & \hat{N} \\ & \hat{n} \end{aligned}$	$\begin{aligned} & 0 \\ & 6 \\ & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & m \\ & m \\ & m \\ & m \end{aligned}$	$\begin{aligned} & w \\ & w \\ & w \end{aligned}$	$\begin{aligned} & 0 \\ & 6 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & n \\ & n \\ & n \\ & n \end{aligned}$	$\stackrel{x}{*}$	$\begin{aligned} & m \\ & p \\ & k \end{aligned}$	$\begin{aligned} & 0 \\ & \text { N } \\ & \text { N } \end{aligned}$	$\begin{aligned} & h \\ & 9 \end{aligned}$	$*$ 0 \vdots \vdots
8	8	$\frac{n}{\gamma}$	8	8	∞	\oplus	$\begin{aligned} & \infty \\ & \underset{\sim}{2} \end{aligned}$	∞	∞	$\xrightarrow[\sim]{0}$	∞	∞	9	\checkmark	∇	＊	γ	γ	7
a	N	N	$\stackrel{0}{0}$	$$	0	\dot{v}	$\stackrel{\underset{\sim}{v}}{\stackrel{1}{2}}$	$\stackrel{N}{N}$	$\underset{\sim}{i}$	$\stackrel{N}{N}$	$\stackrel{N}{N}$	$\dot{\alpha}$	a	$\begin{aligned} & 5 \\ & 3 \end{aligned}$	\dot{b}	vi	¢	$\stackrel{Q}{\sim}$	\dot{N}
m	m	\bigcirc	m	m	N	N	a	b	b	\cdots	x	\bigcirc	6	$\stackrel{*}{*}$	？	3	m	3	$?$
ϑ	v	v	ϑ	v	∞	\checkmark	∞	0	\bigcirc	v	\bigcirc	\bigcirc							
$\begin{aligned} & \text { eे } \\ & 0 \end{aligned}$	$\stackrel{\infty}{\uparrow}$	b	$\begin{aligned} & x \\ & z \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \vdots \end{aligned}$	$\begin{gathered} a \\ 0 \end{gathered}$	\pm	$\underset{\sim}{*}$	$$	$\begin{gathered} 7 \\ 5 \\ m \end{gathered}$	$\begin{aligned} & 6 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { N} \\ & \text { x } \end{aligned}$	$\begin{aligned} & \text { e } \\ & b \end{aligned}$	B	$\begin{aligned} & \text { y } \end{aligned}$	a	$\begin{aligned} & 6 \\ & 0 \\ & 6 \end{aligned}$	$\begin{aligned} & h \\ & 0 \end{aligned}$	\checkmark	N
$\begin{gathered} \infty \\ 0 \\ 0 \\ 0 \end{gathered}$	$\begin{aligned} & \mathrm{O} \\ & 0 \end{aligned}$	$\begin{aligned} & \mathbb{N} \\ & \text { w } \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & b \\ & \frac{b}{0} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & \text { © } \\ & 0 \end{aligned}$	$\begin{aligned} & \infty \\ & \text { m } \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & 8 \end{aligned}$	0	N	$\begin{gathered} \infty \\ \tilde{\sim} \\ \text { Nै } \end{gathered}$	$\begin{aligned} & \text { N } \\ & \text { o } \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ 0 \\ 0 \end{gathered}$	$\begin{aligned} & \text { a } \\ & \text { ion } \\ & 0 \end{aligned}$	$\begin{gathered} N \\ { }_{2}^{2} \\ 0 \\ 0 \end{gathered}$	$\begin{aligned} & 9 \\ & \frac{\gamma}{x} \\ & 0 \end{aligned}$	$\begin{aligned} & \text { x } \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \infty \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & { }^{2} \\ & 8 \\ & 0 \end{aligned}$	合	a
$\stackrel{N}{2}$	$\begin{gathered} x^{2} \\ 0 \\ \hline \end{gathered}$	$\begin{aligned} & i \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 7 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \infty \\ & 5 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & N \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \forall \\ & N \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & b \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { N } \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & i \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \psi \\ & \underset{y}{*} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} \mathbf{M} \\ \underset{\sim}{n} \end{gathered}$	$\begin{gathered} N \\ 0 \end{gathered}$	$\begin{gathered} \hat{N} \\ 0 \end{gathered}$	$\begin{aligned} & i \\ & 0 \\ & 0 \end{aligned}$	$*$ \sim \sim 0	h 2 0
$\begin{aligned} & 9 \\ & { }^{2} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \hat{W} \\ & \hat{0} \\ & 0 \end{aligned}$	$\begin{aligned} & \mathcal{N} \\ & \text { v } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { a } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} \stackrel{\sim}{N} \\ 0 \end{gathered}$	$\begin{aligned} & v \\ & \text { v } \\ & 8 \end{aligned}$	$\begin{aligned} & v^{2} \\ & 0^{2} \end{aligned}$	$\begin{aligned} & 6 \\ & m \\ & 0 \\ & 0 \end{aligned}$	$\frac{N}{0}$	$\begin{aligned} & b^{2} \\ & 0 \end{aligned}$	$\begin{gathered} \underset{z}{x} \\ 0_{1} \\ 0 \end{gathered}$	$\begin{gathered} \text { N} \\ \dot{\gamma} \\ 0 \end{gathered}$	$\begin{aligned} & \underset{z}{2} \\ & \underset{\sim}{r} \end{aligned}$	$\begin{gathered} \frac{1}{2} \\ \underset{N}{N} \\ 0 \end{gathered}$	$\begin{gathered} 0 \\ 0 \\ \stackrel{0}{2} \end{gathered}$	$\begin{aligned} & 7 \\ & 8 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 7 \\ & 0 \end{aligned}$	V V 0 0	h h 0	4 0 0
\bigcirc	$\underset{N}{N}$	$\stackrel{0}{6}$	$\stackrel{m}{2}$	$\stackrel{a}{v}$	0	$\underset{\sim}{N}$	n	$\begin{aligned} & h \\ & i \end{aligned}$	$\begin{aligned} & 5 \\ & b \\ & m \end{aligned}$	b	$\begin{aligned} & \stackrel{\rho}{x} \\ & \dot{\gamma} \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{n}{2} \end{aligned}$	5	$\begin{aligned} & 0 \\ & 6 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	\bigcirc	－	v v
8	8	¢	0	\bigcirc	8	\bigcirc	n	∞	∞	b	8	$\begin{aligned} & 0 \\ & 0 \end{aligned}$?	\bigcirc	$\begin{aligned} & 0 \\ & 9 \end{aligned}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\begin{aligned} & 0 \\ & \stackrel{y}{2} \end{aligned}$	$\begin{aligned} & 0 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \text { N } \end{aligned}$	$\begin{aligned} & h \\ & \sim \end{aligned}$	$\frac{n}{n}$	$\begin{aligned} & 0 \\ & v^{2} \end{aligned}$	$\begin{aligned} & \text { b } \\ & \text { vै } \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{2} \\ & \text { n } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 8 \end{aligned}$	$\begin{aligned} & 0 \\ & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { N } \end{aligned}$	$\begin{aligned} & n \\ & \stackrel{n}{2} \end{aligned}$	$\frac{n}{2}$	$\begin{aligned} & 0 \\ & 0 \\ & \text { i人 } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { n } \\ & \underset{\sim}{n} \end{aligned}$	$\frac{\mathfrak{n}}{\stackrel{n}{2}}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\frac{2}{N}$	2 2 2
8	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & Q^{0} \end{aligned}$	$\begin{aligned} & \star \\ & \frac{1}{\theta} \end{aligned}$	$\begin{aligned} & \frac{1}{\theta} \\ & \Omega^{0} \end{aligned}$	$\begin{aligned} & \text { I } \\ & 0 \\ & \text { R } \end{aligned}$	is	$\begin{aligned} & i \\ & i \end{aligned}$	$\begin{aligned} & x \\ & y \\ & 0 \\ & 4 \end{aligned}$	$\begin{aligned} & i \\ & i \\ & i \end{aligned}$	$\begin{aligned} & i \\ & i \end{aligned}$	$\begin{aligned} & \text { t } \\ & R^{\sigma} \end{aligned}$	$\begin{aligned} & \text { it } \\ & \text { it } \end{aligned}$	j	$\begin{aligned} & \text { E } \\ & \text { } \end{aligned}$	$\begin{aligned} & \text { E } \\ & 0 \\ & \text { ₹ } \end{aligned}$	$\begin{aligned} & \text { a } \\ & 0 \\ & R^{0} \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} x \\ 0 \\ x \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 1 \\ { }^{\circ} \\ R^{0} \end{gathered}$	i
）	5	4	5	5	b	α	＊	$\stackrel{\infty}{*}$	$\hat{\nabla}$	\hat{i}	x	2	$\frac{2}{8}$	h	$\underset{N}{N}$	※	V	V	$\stackrel{\square}{i}$
0	6	$\dot{\sigma}$	5	$\begin{aligned} & b \\ & b \end{aligned}$	\bigcirc	そ	ヘ	\＄	8^{80}	x^{2}	$\hat{\gamma}$	\forall	＊	$\frac{6}{6}$	5	N	$\stackrel{\rightharpoonup}{2}$	N	${ }^{2}$
8	$\frac{1}{h}$	9	©	$\begin{aligned} & \infty \\ & 0 \end{aligned}$	$\begin{aligned} & \text { o } \\ & 0 \end{aligned}$	$\stackrel{\bigcirc}{\bigcirc}$	ミ	N	$\stackrel{2}{2}$	\pm	$\underline{5}$	\cong	$\stackrel{\text { N }}{ }$	9	$\stackrel{\sim}{*}$	®	V	N	$\stackrel{\sim}{\sim}$

\begin{tabular}{|c|}
\hline \& a
0
0
0 \& 2
2
2 \& N
0
0
0 \& N
0
0 \& E
0
0 \& N
a
0
0 \& $$
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
$$ \& a
\cdots

0 \& N
\sim
\sim

0 \& $$
\begin{aligned}
& \text { of } \\
& \text { gे }
\end{aligned}
$$ \& n

n
0
0 \& N
a

- \& N
0
0

0 \&	1
0	
0	
0	\& \[

$$
\begin{aligned}
& 5 \\
& 5 \\
& 5
\end{aligned}
$$
\] \& 5

5

5 \& $$
\begin{aligned}
& 7 \\
& 8 \\
& 8
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 5 \\
& 6 \\
& 6 \\
& 0
\end{aligned}
$$
\] \& A

$\stackrel{0}{2}$
i \& n
m
0
0

\hline \& in \& $$
\begin{aligned}
& \infty \\
& \infty \\
& \infty
\end{aligned}
$$ \& N

\cdots
\vdots \& ¢
0
0 \& 5
4

0 \& $$
\begin{aligned}
& 5 \\
& 0 \\
& 5
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \text { A } \\
& \text { 0 } \\
& 0
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 2 \\
& 2 \\
& 0 \\
& 0
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 8 \\
& 8 \\
& 8
\end{aligned}
$$

\] \& \[

\] \& \[

$$
\begin{aligned}
& \mathrm{N} \\
& \text { n } \\
& 0 \\
& 0
\end{aligned}
$$

\] \& \[

\stackrel{N}{N}

\] \& \[

$$
\begin{aligned}
& k \\
& 0 \\
& 0 \\
& 0
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { s } \\
& \text { à } \\
& 0
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { N } \\
& 0 \\
& 0 \\
& 9
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0 \\
& 0 \\
& 8
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 5 \\
& 5 \\
& 0
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 5 \\
& 6 \\
& 9
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \hat{N} \\
& \underset{N}{*}
\end{aligned}
$$
\] \& 5

\vdots
\vdots

\hline \& +

2 \& $$
b
$$ \& \[

+0^{\circ}

\] \& \[

$$
\begin{aligned}
& y \\
& 9 \\
& 9
\end{aligned}
$$
\] \& 0

N \& \[
$$
\begin{aligned}
& 0 \\
& i
\end{aligned}
$$

\] \& \[

\] \& \& \[

$$
\begin{aligned}
& 0 \\
& 0 \\
& i
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& N \\
& \dot{N}
\end{aligned}
$$

\] \& \[

6

\] \& \[

$$
\begin{aligned}
& 0 \\
& 0
\end{aligned}
$$

\] \& \[

\] \& \[

$$
\begin{aligned}
& 0 \\
& 0
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0 \\
& i
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \infty \\
& \gamma
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& i \\
& i \\
& x
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& v \\
& b \\
& i
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0 \\
& 0
\end{aligned}
$$

\] \& \[

\stackrel{i}{2}
\]

\hline \& γ \& \[
\frac{a}{7}

\] \& 7 \& 7 \& X \& 7 \& ∇ \& 8 \& V \& \[

\cdots

\] \& \[

$$
\begin{aligned}
& a \\
& i
\end{aligned}
$$
\] \& γ \& ∇ \& χ \& γ \& V \& \forall \& ∇ \& 8 \& V

\hline \& N \& $$
\dot{N}
$$ \& \checkmark \& N \& \checkmark \& \cdots \& \[

\dot{v}

\] \& \[

\stackrel{N}{v}

\] \& v \& \[

\cdots

\] \& \[

$$
\begin{array}{r}
N
\end{array}
$$

\] \& \& \[

\stackrel{N}{N}

\] \& \[

$$
\begin{aligned}
& 6 \\
& x \\
& r
\end{aligned}
$$

\] \& \[

\cdots

\] \& \[

?

\] \& \[

\stackrel{0}{\dot{N}}

\] \& \[

\underset{i}{N}

\] \& \[

5

\] \& \[

\infty
\]

\hline) \& 3 \& 0

x \& (1) \& M \& in \& \cdots \& m \& \[
4

\] \& m \& \[

\vartheta

\] \& \[

\vartheta

\] \& m \& m \& (1) \& m \& m \& \[

\frac{h}{n}

\] \& \[

$$
\begin{aligned}
& 5 \\
& n
\end{aligned}
$$
\] \& m \& m

\hline \bigcirc \& \bigcirc \& \[
b

\] \& v \& ϑ \& v \& v \& \cdots \& ∞ \& v \& \[

\infty
\] \& ∞ \& v \& v \& \Downarrow \& ϑ \& 0 \& ∞ \& 00 \& v \& v

\hline a
h

0 \& $$
\infty
$$ \& \[

$$
\begin{gathered}
\infty \\
m
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& a \\
& b \\
& 0
\end{aligned}
$$

\] \& ∞ \& \[

$$
\begin{aligned}
& 6 \\
& 0
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 4 \\
& 0
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \infty \\
& \stackrel{0}{2}
\end{aligned}
$$

\] \& \[

\stackrel{\rightharpoonup}{m}

\] \& \[

$$
\begin{aligned}
& \forall \\
& 0
\end{aligned}
$$

\] \& \& \[

$$
\begin{aligned}
& x \\
& m \\
& \%
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& a \\
& m
\end{aligned}
$$

\] \& \[

{ }^{\infty}

\] \& \} \& \[

$$
\begin{aligned}
& \text { N} \\
& i
\end{aligned}
$$
\] \& N

M \& $\frac{1}{2}$ \& N
\sim
0 \& 8

\hline $$
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
$$ \& \[

$$
\begin{gathered}
2 \\
0 \\
0
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& \stackrel{y}{*} \\
& \underset{\sim}{n}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { \%0 } \\
& 0 \\
& 0
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 2 \\
& 0 \\
& 0
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& y^{2} \\
& 0 \\
& 0 \\
& 0
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
\text { v} \\
\text { रे } \\
0 \\
0
\end{gathered}
$$

\] \& \[

0

\] \& \[

$$
\begin{gathered}
N \\
0
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 3 \\
& v_{1} \\
& 0 \\
& 0
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& m \\
& N
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& N \\
& N
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 7 \\
& 8 \\
& 0
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
\infty \\
\mathbf{\alpha} \\
0
\end{gathered}
$$

\] \& \[

\stackrel{N}{N}

\] \& \[

$$
\begin{aligned}
& 7 \\
& 6 \\
& 0 \\
& 0
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { N } \\
& \text { k } \\
& 0
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& a \\
& v \\
& 0
\end{aligned}
$$
\] \& 7

7
0
0
0 \& + 0

\hline $$
\begin{gathered}
\mathcal{V} \\
0 \\
0
\end{gathered}
$$ \& \[

$$
\begin{aligned}
& 8 \\
& \mathbf{\gamma} \\
& 0 \\
& 0
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& N \\
& 0 \\
& 0
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathfrak{N} \\
& 0 \\
& 0
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
\underset{\gamma}{\gamma} \\
0 \\
0 \\
0
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 0 \\
& 0
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \infty \\
& 0 \\
& 0 \\
& 0
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1 \\
& 0 \\
& 0
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& v \\
& 0 \\
& 0
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \infty \\
& 0 \\
& 0 \\
& 0
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& b \\
& \infty \\
& 0
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \infty \\
& \infty \\
& 0
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \forall \\
& 0 \\
& 0
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
\infty \\
N \\
0 \\
0
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& x \\
& 0 \\
& 0
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \hat{v} \\
& b^{2} \\
& 0
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \theta \\
& 0 \\
& 0 \\
& 0
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& a \\
& 0 \\
& 0
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0 \\
& 0 \\
& 9
\end{aligned}
$$
\] \& ∞

0
0
0

\hline $$
\begin{aligned}
& 9 \\
& \hat{N} \\
& 0 \\
& 0
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \text { w } \\
& b \\
& 0 \\
& 0
\end{aligned}
$$

\] \& a \& \[

$$
\begin{aligned}
& \mathbf{s} \\
& \hat{N} \\
& 0 \\
& 0
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& v \\
& w^{2} \\
& 0 \\
& 0
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& N \\
& N \\
& 0 \\
& 0
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \infty \\
& 0 \\
& 0 \\
& 0
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1 \\
& 0 \\
& 0
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& * \\
& 0
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& N \\
& 0 \\
& 0
\end{aligned}
$$

\] \& \[

\infty

\] \& \[

\theta

\] \& \[

$$
\begin{aligned}
& 7 \\
& 0 \\
& 0
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& N \\
& 0 \\
& 0 \\
& 0
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \infty \\
& \infty \\
& 0 \\
& 0
\end{aligned}
$$

\] \& \[

\underset{0}{N}

\] \& \[

$$
\begin{aligned}
& m \\
& m \\
& 0 \\
& 0
\end{aligned}
$$
\] \& n

0 \& 1
0 \& 6
m
0
0 \& 1
0
0

\hline $$
\begin{aligned}
& 0 \\
& 0
\end{aligned}
$$ \& \[

\stackrel{N}{2}

\] \& \[

$$
\begin{aligned}
& h \\
& p \\
& \infty \\
& 7
\end{aligned}
$$
\] \& 0

9 \& N \& 5 \& 8 \& $$
\stackrel{n}{n}
$$ \& \[

m

\] \& \[

\stackrel{\circ}{8}
\] \& n

n

\sim \& \[
\frac{m}{m}

\] \& $\stackrel{0}{\sim}$ \& \[

\therefore

\] \& \[

\stackrel{0}{\sim}

\] \& \[

\stackrel{v}{i}

\] \& \[

\frac{b}{2}

\] \& \[

$$
\begin{aligned}
& b \\
& m
\end{aligned}
$$
\] \& b \& $\frac{n}{}$ \& b

\hline $$
\begin{aligned}
& 0 \\
& 0
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 0 \\
& 0
\end{aligned}
$$

\] \& \bigcirc \& \[

0

\] \& \bigcirc \& \[

5^{0}

\] \& 8 \& \[

$$
\begin{aligned}
& 0 \\
& 0 .
\end{aligned}
$$

\] \& 8 \& 8 \& \[

0

\] \& \[

$$
\begin{aligned}
& 0 \\
& 0
\end{aligned}
$$

\] \& $\stackrel{\bigcirc}{\sim}$ \& $\stackrel{0}{0}$ \& 9 \& 0 \& \[

\frac{1}{n}

\] \& \[

$$
\begin{aligned}
& 0 \\
& 0
\end{aligned}
$$
\] \& ¢ \& b \& b

\hline $$

$$ \& \[

$$
\begin{aligned}
& \text { oे } \\
& \text { pे }
\end{aligned}
$$
\] \& 0

0

0 \& $$
\begin{aligned}
& n \\
& n
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& k \\
& i
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0 \\
& 0 \\
& \text { i }
\end{aligned}
$$

\] \& \[

5

\] \& \[

\frac{5}{n}

\] \& \[

$$
\begin{aligned}
& i \\
& i
\end{aligned}
$$

\] \& \[

b

\] \& \[

$$
\begin{aligned}
& n \\
& r
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \frac{2}{2} \\
& 2
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0 \\
& 0 \\
& \text { m }
\end{aligned}
$$
\] \& \circ

0

0 \& $$
\begin{aligned}
& n \\
& n
\end{aligned}
$$ \& \[

\frac{6}{n}
\] \& 0

n
m \& n
n \& n
n \& 0
\cdots
m \& 0
m

\hline $$
\begin{aligned}
& \text { a } \\
& \text { a } \\
& \text { R }
\end{aligned}
$$ \& 2 \& \[

i
\] \& n

E
\vdots
\vdots

\vdots \& \[
$$
\begin{aligned}
& n \\
& i \\
& i \\
& i \\
& i
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
x \\
\underset{x}{x} \\
0 \\
0
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& x \\
& 0 \\
& x \\
& 0 \\
& 0
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& n \\
& 8 \\
& 0 \\
& 3 \\
& 3
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& n \\
& i \\
& i \\
& i
\end{aligned}
$$

\] \& \[

\stackrel{\Sigma}{\Sigma}
\] \& n

5
0
5

3 \& $$
\begin{aligned}
& n \\
& E \\
& i \\
& i
\end{aligned}
$$ \& \[

\frac{4}{4}

\] \& \[

\frac{0}{4}
\] \& n

8
\vdots
\vdots

\vdots \& \[
$$
\begin{aligned}
& n \\
& i \\
& i \\
& i
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& x \\
& \vdots \\
& 0 \\
& \text { r }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& y \\
& E \\
& i \\
& i \\
& 2
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& b \\
& E \\
& i \\
& i \\
& i
\end{aligned}
$$
\] \& i \& 6

-6
-6

\hline 0 \& 2 \& \$ \& ํ \& $\underset{\sim}{2}$ \& N \& $\stackrel{N}{N}$ \& * \& \% \& 8 \& $\stackrel{8}{*}$ \& \[
9

\] \& 9 \& \[

\geqslant
\] \& N \& \cdots \& n \& n \& \bigcirc \& 9 \& \bigcirc

\hline $$
\underset{y}{2}
$$ \& 8 \& \cdots \& a \& \% \& ∞ \& N \& $\stackrel{\chi}{\chi}$ \& 7 \& \[

8

\] \& 5 \& \[

\frac{6}{2}

\] \& a \& \[

\stackrel{8}{2}
\] \& N \& N \& N \& $\stackrel{7}{17}$ \& $\stackrel{\sim}{2}$ \& 9 \& 5

\hline $$
\begin{aligned}
& * \\
& i
\end{aligned}
$$ \& \% \& v \& $\stackrel{N}{N}$ \& $\stackrel{\infty}{\sim}$ \& \% \& O \& 2 \& \% \& m

m \& \% \& 6
3 \& 3 \& i \& $\stackrel{\infty}{0}$ \& a \& 8 \& 7 \& \% \& 3 \&

\hline
\end{tabular}

N ¢	N \vdots	$\begin{aligned} & \text { w } \\ & \text { b } \\ & 0 \end{aligned}$	$\begin{aligned} & 6 \\ & 5 \\ & 8 \end{aligned}$	W 0 0	$\begin{aligned} & n \\ & n \\ & 0 \end{aligned}$	$\begin{aligned} & \hline \text { e } \\ & \text { m } \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{\sim}{2} \\ & \underset{\sim}{\sim} \end{aligned}$	$\begin{aligned} & \mathrm{o} \\ & \mathrm{j} \\ & \mathrm{o} \end{aligned}$	$\begin{aligned} & \text { vi } \\ & \text { n } \\ & \text { ju } \end{aligned}$	0	N N 0 \vdots	N^{2} 6 \vdots	$\begin{aligned} & 2 \\ & \infty \\ & \vdots \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \vdots \end{aligned}$	N 0 0	$\begin{aligned} & \sigma \\ & \stackrel{1}{2} \\ & \stackrel{y}{2} \end{aligned}$	$\stackrel{*}{\infty}$	$\stackrel{*}{\text { m }}$	$\stackrel{\infty}{\infty}$	N 0 0
$\begin{aligned} & \text { à } \\ & 2 \\ & 0 \end{aligned}$	8	$\begin{aligned} & \text { N } \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { s } \\ & \text { Bे } \\ & \text { B } \end{aligned}$	$\begin{aligned} & 6 \\ & 5 \\ & 8 \end{aligned}$	$\stackrel{\grave{N}}{\aleph}$	$\begin{aligned} & \text { n } \\ & \stackrel{y}{n} \\ & 0 \end{aligned}$	$\begin{aligned} & \text { x } \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 8 \\ & \% \\ & 0 \end{aligned}$	$\begin{aligned} & \text { a } \\ & \text { ü } \\ & \text { on } \end{aligned}$	$\begin{aligned} & \text { w. } \\ & \text { w } \\ & \text { vi } \end{aligned}$	$\begin{aligned} & N \\ & \text { N } \\ & 0 \end{aligned}$	$\begin{aligned} & 7 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & y^{2} \\ & b \\ & b \end{aligned}$	$\begin{aligned} & \hat{N} \\ & \stackrel{\sim}{*} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{N}{\infty} \end{aligned}$		$\begin{aligned} & \text { \% } \\ & \stackrel{y}{*} \end{aligned}$	\％ $\stackrel{y}{*}$ \vdots	$\stackrel{8}{m}$	∞ $\stackrel{\infty}{\infty}$ $\stackrel{1}{*}$
$\begin{aligned} & \text { N } \\ & \text { ® } \\ & \text { N } \end{aligned}$	$\begin{aligned} & x \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 3 \\ & i \end{aligned}$	$\begin{aligned} & 0 \\ & j \end{aligned}$	$\underset{\sim}{2}$	$\begin{aligned} & 0 \\ & 0 \\ & b \\ & 5 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \circ \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & w \\ & \underset{\sim}{*} \end{aligned}$	$$	$$	$\begin{aligned} & \dot{0} \\ & \text { 叉 } \end{aligned}$	$\begin{aligned} & v \\ & \underset{\sim}{v} \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{N}{N} \end{aligned}$	$\begin{aligned} & \sigma \\ & N \end{aligned}$	0 6 2	$\begin{aligned} & \mathbb{Q} \\ & \underset{N}{N} \end{aligned}$	\％ \％ w
8	∇	γ	$\begin{aligned} & a \\ & m \end{aligned}$	$\frac{0}{9}$	ϑ	$\stackrel{\square}{*}$	$\begin{aligned} & a \\ & n \end{aligned}$	N	N	$\begin{aligned} & a \\ & m \end{aligned}$	＇n	σ	$\stackrel{y}{6}$	b	a	$\stackrel{N}{*}$	$\underset{\sim}{*}$	\％	\forall	N
¢	0	N	$\dot{\gamma}$	$\frac{b}{r}$	9	$\stackrel{*}{v}$	$\begin{array}{r} 7 \\ 7 \end{array}$	0	\div	x^{x}	\bigcirc	i	iv	$\stackrel{?}{0}$	$\stackrel{r}{n}$	0	$\underset{\sim}{N}$	\bigcirc	b	N
9	9	b	$\begin{aligned} & v \\ & 0 \end{aligned}$	$\stackrel{v}{~}$	\bigcirc	v	$\stackrel{\rightharpoonup}{\bullet}$	N	V	$\begin{aligned} & \vartheta \\ & 0 \end{aligned}$	$\begin{aligned} & m \\ & m \end{aligned}$	b	b	\cdots	b	3	m	m m	\cdots	m
\checkmark	v	∞	9	∞	ϑ	\checkmark	9	\checkmark	ϑ	∞	ϑ	ϑ	ϑ	v	v	ϑ	v	v	\checkmark	v
$\frac{9}{2}$	$\begin{aligned} & \alpha \\ & \alpha \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & 6 \end{aligned}$	$\frac{b}{5}$	$\begin{aligned} & \stackrel{y}{n} \\ & \dot{b} \end{aligned}$	$\begin{aligned} & b \\ & b \\ & 0 \end{aligned}$	$\begin{aligned} & a \\ & 0 \end{aligned}$	\dot{b}	$\begin{aligned} & 5 \\ & b \\ & 0 \end{aligned}$	0	\dot{b}	$\begin{aligned} & 6 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\stackrel{a}{i}$	$\begin{aligned} & b \\ & 0 \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \sim \end{aligned}$	$\begin{aligned} & 0 \\ & \text { b } \\ & 0 \end{aligned}$	$\stackrel{\infty}{\infty}$	$\begin{gathered} b \\ 0 \end{gathered}$	$\frac{\infty}{N}$	c \sim \sim
$\begin{aligned} & \hat{m} \\ & \hat{0} \end{aligned}$	$\begin{aligned} & 0 \\ & \frac{0}{0} \end{aligned}$	$\begin{aligned} & \hat{N} \\ & \underset{N}{n} \\ & 0 \end{aligned}$	$\begin{aligned} & n \\ & n \\ & n \end{aligned}$	$\begin{aligned} & v \\ & n \\ & 3 ? \end{aligned}$	$\begin{aligned} & 6 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \infty \\ & 8 \\ & 9 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 5 \\ & 0 \\ & 0 \end{aligned}$	m	$\begin{gathered} 3 \\ 0 \\ 0 \end{gathered}$	$\begin{aligned} & \text { A } \\ & 0 \\ & \hline \end{aligned}$	$\frac{5}{0}$	$\begin{aligned} & n \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 9 \\ & 0 \end{aligned}$	$\begin{gathered} \infty \\ \hline \infty \\ 0 \\ 0 \end{gathered}$	$\begin{aligned} & 0 \\ & \stackrel{0}{0} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & m \\ & 0 \\ & 0 \end{aligned}$	$\frac{8}{2}$	a 0 0
$\begin{aligned} & 7 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & a \\ & b \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { * } \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \gamma \\ & 0 \end{aligned}$	$\begin{aligned} & b \\ & 0 \end{aligned}$	$\begin{aligned} & 2 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \mathcal{N} \\ & \mathcal{N} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 2 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} \mathcal{N} \\ \mathbf{N} \\ 0 \\ 0 \end{gathered}$	i	0	$\begin{gathered} N \\ N \\ 0 \\ 0 \end{gathered}$	$\begin{aligned} & 0 \\ & m \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { ò } \\ & 0 \end{aligned}$	$\begin{aligned} & 60 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} N \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} \gamma \\ \alpha \\ 0 \\ 0 \end{gathered}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & 0 \\ & 0 \end{aligned}$	9 6 0 0
$\begin{aligned} & \text { N } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 3 \\ & 0 \end{aligned}$	$\begin{aligned} & 3 \\ & 2 \\ & 0 \end{aligned}$	$\begin{aligned} & \infty \\ & {\underset{N}{2}}^{2} \end{aligned}$	$\begin{aligned} & \grave{2} \\ & \text { vin } \end{aligned}$	$\begin{gathered} \chi \\ \chi \\ 0 \\ 0 \end{gathered}$	$\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & a \\ & n \\ & v \end{aligned}$	$\begin{gathered} \gamma \\ \gamma \\ 0 \\ 0 \end{gathered}$	$\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$	$\begin{gathered} v \\ 0 \\ 0 \end{gathered}$	$\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { a } \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { V } \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{\infty}{N}$	$\begin{aligned} & \text { v} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & v \\ & v \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & N \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{n}{n}$
$\underset{\sim}{\gamma}$	6 2 2	\hat{i}	$\frac{6}{6}$	n	b	\pm	$\begin{aligned} & 9 \\ & 5 \end{aligned}$	b	T	5	$\stackrel{\circ}{8}$	\pm	∞	$\stackrel{\circ}{8}$	$\stackrel{\rightharpoonup}{N}$	\bigcirc	V	∇	$\underset{\sim}{v}$	$\begin{aligned} & \infty \\ & \sim \end{aligned}$
\therefore	n	n	5°	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	b	5	○	$\begin{aligned} & 6 \\ & ? \end{aligned}$	$\begin{aligned} & 6 \\ & b \end{aligned}$	n	8	\bigcirc	\bigcirc	$\stackrel{\circ}{\gamma}$	\bigcirc	\bigcirc	0	8	0	－
$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbf{m}^{2} \end{aligned}$	$\begin{aligned} & 0 \\ & \text { - } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \sim \end{aligned}$	$\begin{aligned} & n \\ & n \\ & n \end{aligned}$	$\begin{aligned} & \text { o } \\ & \text { iे } \end{aligned}$	$\stackrel{\circ}{\dot{\alpha}}$	$\begin{aligned} & \circ \\ & 0 \\ & \text { O } \end{aligned}$	$\stackrel{0}{\sim}$	$\begin{aligned} & \text { o } \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & 0 \\ & b \\ & m \end{aligned}$	b	$\begin{aligned} & 0 \\ & 0 \\ & \text { is } \end{aligned}$	$\begin{aligned} & \circ \\ & 0 \\ & \end{aligned}$	$\frac{2}{2}$	$\begin{gathered} 0 \\ \text { n } \\ \text { n } \end{gathered}$	$\frac{n}{n}$	$\begin{aligned} & 6 \\ & k \\ & N \end{aligned}$	O	$\frac{k}{k}$	$\frac{p}{x}$
$\begin{aligned} & \text { is } \\ & \text { is } \end{aligned}$	$\begin{aligned} & x \\ & \mathrm{u} \\ & \mathbf{u} \end{aligned}$	$\begin{aligned} & x \\ & 0 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & x \\ & 0 \\ & \vdots \\ & \vdots \end{aligned}$	$\begin{aligned} & x \\ & 8 \\ & 3 \end{aligned}$	$\begin{aligned} & x \\ & \xi^{2} \\ & k^{2} \end{aligned}$	k \vdots \vdots	$\begin{aligned} & x \\ & b \\ & e \\ & 3 \end{aligned}$	$\begin{array}{r} 5 \\ 0 \\ \vdots \\ \vdots \end{array}$	$\begin{aligned} & \text { K } \\ & \text { i } \\ & i \end{aligned}$	$\begin{aligned} & \text { E } \\ & \frac{0}{\mathrm{E}} \end{aligned}$	$\begin{aligned} & x \\ & 0 \\ & x \\ & 0 \\ & t \end{aligned}$	$\begin{aligned} & x \\ & \text { f } \\ & 0 \\ & 4 \end{aligned}$		$\stackrel{N}{N}$	$\stackrel{\Sigma}{\Sigma}$	$\begin{array}{r} f \\ + \\ +\quad \\ \hline i \end{array}$	$\begin{aligned} & \text { E } \\ & \text { io } \\ & \text { in } \end{aligned}$	$\begin{aligned} & x \\ & \stackrel{y}{0} \\ & x_{0}^{\prime} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \frac{5}{i} \\ & \frac{5}{i} \end{aligned}$	f 0 ¢ S
$\begin{aligned} & y \\ & s \end{aligned}$	y	3	$\begin{gathered} \text { Ň } \\ \text { N } \end{gathered}$	¢	$\stackrel{0}{6}$	§	5	－	2	ϑ	\underline{n}	－	$\stackrel{\otimes}{8}$	8	N	－	\％	$\stackrel{0}{9}$	ミ	\underline{N}
¢	¢	\＄	3	勺ै	7	ל	\bigcirc	5	v	\％	\div	\cdots	N	＊	8	\bigcirc	\bigcirc	$\stackrel{\bigcirc}{*}$	\bigcirc	三
？	से	＊	8	\％	ל	5	v^{2}	$\stackrel{7}{2}$	5	5	5	$\hat{5}$	$\stackrel{\infty}{2}$	5	©	3	§ै	3	＊	8

