

 \mathcal{L}^{\pm}

PLACE IN RETURN BOX to remove this checkout from your record. TO AVOID FINES return on or before date due. PLACE IN RETURN BOX to remove this checkout from your record.
TO AVOID FINES return on or before date due.
MAY BE RECALLED with earlier due date if requested. MAY BE RECALLED with earlier due date if requested. PLACE IN RETURN BOX to remove this checkout from your record.
TO AVOID FINES return on or before date due.
MAY BE RECALLED with earlier due date if requested.
DATE DUE DATE DUE DATE DUE

 \sim

 $\mathcal{L}^{\text{max}}_{\text{max}}$ and $\mathcal{L}^{\text{max}}_{\text{max}}$

 \sim

6/01 c:/CIRC/DateDue.p65—p. 15

The Apparent Density

Of

Silica Gel Measured in Various Liquids

Thesis

Submitted to the Faculty of Michigan State College in Partial Fulfillment of the requirements for the Degree of Master of Science.

> BY Reuben Warren Leisy June 1929

It has been definitely proven that such physical properties of an adsorbent, as density, available pore volume, and adsorptive power vary with the liquid employed.

The variation in density or apparent density of activated carbon was studied by Harkins and $Ewing¹$. Their conclusions were that the liquid at the surface of the carbon was compressed, giving a variation in density relative to the compressibility of the liquid used and varying inversely as the surface tension.

Cude and Hulett² observed this same phenomena, but interpreted it differently. They assumed incomplete penetration of the capillarys in the carbon and show that the densities obtained were proportional to the surface tension of the liquids employed and inversely proportional to their viscosities. They also observed that there appeared to be a lag or drift and that the density measurements increased with time. Howard and Hulett³ attributed this increase to more complete penetration.

The apparent density of silica gel has been measured in various liquids by several investigators, but the data is meager and the measurements have been made for only a few liquids.

Berle and Urban $⁴$ studied the variation in</sup> density of silica gel when activated under varying conditions and also of quartz, using ether as the liquid 102365

 $\mathbf{1}$

for their density determinations. Their choice of ether was based on the assumption that it would have a greater penetrating power than water.

Nutting⁵ calculated the pressure necessary to produce these apparent densities in the case of water with silica gel by determining the heat of wetting on gels of various water contents. He plotted the water adsorbed as a function of the heat of wetting and computed the pressure. He found that when a layer of water, 100 mols thick, had been adsorbed there was a decided break in the curve and assumed this to be the limit of the range of adsorption. He gives a value of 17,410 atmospheres pressure for a layer 100 moles thick with a pressure gradient near the silica gel surface of 257 atmospheres per mol layer.

In this work the apparent density of silica gel has been measured in 13 liquids in order that a comparison may be made with similar existing measurenents on activated carbon and also gain information as to the magnitude of the pressure necessary to produce these abnormal densities.

2

 $\mathcal{L}(\mathcal{$

 $\label{eq:2.1} \mathcal{L}_{\mathcal{A}}(\mathcal{A}) = \mathcal{L}_{\mathcal{A}}(\mathcal{A}) = \mathcal{L}_{\mathcal{A}}(\mathcal{A}) = \mathcal{L}_{\mathcal{A}}(\mathcal{A})$ $\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L$ \blacksquare $\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}})$. The set of $\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}})$ $\label{eq:2.1} \mathcal{L}(\mathcal{L}^{\mathcal{L}}_{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}_{\mathcal{L}})) = \mathcal{L}(\mathcal{L}^{\mathcal{L}}_{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}_{\mathcal{L}})) = \mathcal{L}(\mathcal{L}^{\mathcal{L}}_{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}_{\mathcal{L}}))$

 \mathcal{L}_{max} and \mathcal{L}_{max} are the set of \mathcal{L}_{max} $\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}})$ and $\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}})$ are the contribution of the contribut \mathcal{L}_{max} and \mathcal{L}_{max}

 $\label{eq:2.1} \mathcal{L}(\mathcal{L}^{\text{max}}_{\mathcal{L}}(\mathcal{L}^{\text{max}}_{\mathcal{L}})) \leq \mathcal{L}(\mathcal{L}^{\text{max}}_{\mathcal{L}}(\mathcal{L}^{\text{max}}_{\mathcal{L}}))$ $\label{eq:2.1} \frac{1}{2} \int_{\mathbb{R}^3} \frac{1}{\sqrt{2}} \, \frac{1}{\sqrt{2}} \,$ $\mathcal{A}=\{x_1,\ldots,x_n\}$, where $\mathcal{A}=\{x_1,\ldots,x_n\}$, $\mathcal{A}=\{x_1,\ldots,x_n\}$

 $\mathcal{L}(\mathcal{L}^{\mathcal{L}})$ and $\mathcal{L}(\mathcal{L}^{\mathcal{L}})$ and $\mathcal{L}^{\mathcal{L}}$ are $\mathcal{L}^{\mathcal{L}}$. Then $\mathcal{L}^{\mathcal{L}}$

Apparatus

The apparatus consists essentially in a high vacuum system for evacuating the tubes filled with gel. It is unique in that the vacuum system proper is made entirely of pyrex glass, has no stopcocks, and is sealed from the atmosphere on one side by the mercury column in the McLeod gage and on the Hyvac pump side by a mercury seal.

Figure l is a detailed drawing of the apparatus. Two Central Scientific Hyvac pumps are used, Pump No. l to pull the mercury out Of the McLeod gage (b) and control the mercury seal (a) ; pump No. 2 as an exhausting pump to the atmosphere from the Langmuir mercury vapor pump which is in series with it. In sealing off the vacuum system, stopcock (c) and (d) are Opened and the mercury rises in the two arms of the mercury seal (a) to barometric height from the reservoir (e) . Then stopcock (d) is closed. To continue evacuating the system after it has been sealed, stopcode (d) is Opened (c) closed and the mercury pulled from the mercury seal with pump No. 1. Pulling the mercury down until the seal is open, but not to the stopcock. Now (d) is closed (0) opened to the atmosphere and the pump stopped. Stopcock (f) is used to open the McLeod gage to vacuum pump No. 1 and the atmosphere. (g) is the Langmuir mercury vapor pump. (h) 1. 2 and 3 are tubes filled with gel ready to evacuate. (i) is a calcium chloride tower to remove moisture from the air entering the gage. (j) 1, 2 and 3 are mercury traps.

3

Iigure 2 is a detailed drawing of the tube used. C is an etched graduation on the stem to which the meniscus of the liquid under investigation is adjusted. The tubes have a capacity of approximately 25 cc. and will hold about 10 grams of gel. The side arm of the tube is constricted at (b) in order to facilitate breaking d f the tip when immerced in the liquid.

+ Cooling Water A Cooling Water \mathcal{L} HYVOR NOZ $\overline{\cdot}$ σ с **I WOOANY** نحت \boldsymbol{c} \mathbf{v}

Figure I

Preparation of Materials

(1) Mercury

The mercury was aerated over night by bubbling air through it while covered with l : 3 nitric acid, passed thrua capillary into a column of $1:3$ nitric acid, through another capillary into a column of distilled water, dried with caustic soda, and then again passed through a capillary to remove the caustic soda.

(2) ISOprOpyl Alcohol

A commercial c.p. product. The iscpropyl alcohol was distilled from lime and then fractioneted.

 $B.P. 79.70 - 79.80$ 738.9 mm.

(3) Chloroform

A commercial c.p. product. The chloroform was treated with concentrated sulphuric to remove the alcohol, washed with dilute sodium hydroxide and finally with water. It was dried over fused calcium chloride, followed by anhydrous copper sulphate then fractionally distilled.

 $B. P. 60.60 - 60.80$ 746.2 mm.

(4) Carbon tetrachloride

Product - Central Scientific $c_{\bullet}p_{\bullet}$ The carbon tetrachloride was washed with water, sulphuric acid, water, sodium hydroxide and finally water. It was then dried over calcium chloride and fractionally distilled.

B. P. 75.80 734.9 mm.

(5) Carbondisulphide

Product - Central Scientific Co. c.p.

The same method of purification was used as for carbon tetra chloride.

B. P. 44.50 747.5 mm.

(6) Nitrobenzene

Product - Central Scientific Co. c.p.

The nitrobenzene was shaken with an equal volume of 10% solution of sodium silphite and stood in contact with the solution for 24 hours. The nitrobenzene was separated by use of a separatory funnel and washed with water. It was then dried over calcium chloride and fractionally distilled.

B.P. 209.9 — 210.20 744.6 mm.

(7) Benzene

Product - Wilkins Anderson Co., c.p. Thiophene free.

The benzene was treated with concentrated sulphuric acid until a sample of acid did not darken on standing in contact with the benzene for a day. It was treated with sodium hydroxide to neutralize the acid washed with distilled water, dried over calcium chloride and fractionally distilled three times. The purified benzene was stored in glass stoppered bottles over metallic sodium.

 $B.P. 77.9 - 780$ 738.6

(8) Pentane

Product - Eastman Kodak Co. Practical No purification B. P. 27.40 740.1 mm.

(9) Water

Distilled water collected directly from the still which supplies the laboratories with water.

(10) Petroleum Ether (Benzene)

Product - baker Analyzed. B.P. 300 - 600 NO purification.

(ll) Ethyl Alcohol

The ethyl alcohol used was purified in this laboratory by Clark G. Sinclair (1) .

B. P. 77.60 740.1 mm.

(12) Acetone

Product - Wilkins and Anderson Co., c.p. The acetone was fractionally distilled and dried over calcium chloride.

 $B.P. 55.20-560$ 743.7 mm.

(15) Ether

Product - Wilkins and Anderson Co. c.p. over sodium.

The ether was washed with water, then alkaline permanganate until there was no green coloration Of the

 $\mathcal{L}(\mathcal{A})$. The set of $\mathcal{L}(\mathcal{A})$

 $\mathcal{L}^{\text{max}}_{\text{max}}$ and $\mathcal{L}^{\text{max}}_{\text{max}}$ $\mathcal{L}(\mathcal{A})$, and $\mathcal{L}(\mathcal{A})$, and $\mathcal{L}(\mathcal{A})$

 $\mathcal{A}^{\text{max}}_{\text{max}}$ $\label{eq:2.1} \mathcal{L}_{\text{max}}(\mathcal{L}_{\text{max}}) = \mathcal{L}_{\text{max}}(\mathcal{L}_{\text{max}})$

 $\mathcal{O}(\mathcal{O}_\mathcal{O})$. The set of the set of the set of the set of the $\mathcal{O}_\mathcal{O}$

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac$

 $\label{eq:1} \mathcal{L}(\mathcal{L}(\mathcal{L}^{\text{max}}_{\mathcal{L}^{\text{max}}_{\mathcal{L}^{\text{max}}_{\mathcal{L}^{\text{max}}_{\mathcal{L}^{\text{max}}_{\mathcal{L}^{\text{max}}_{\mathcal{L}^{\text{max}}_{\mathcal{L}^{\text{max}}_{\mathcal{L}^{\text{max}}_{\mathcal{L}^{\text{max}}_{\mathcal{L}^{\text{max}}_{\mathcal{L}^{\text{max}}_{\mathcal{L}^{\text{max}}_{\mathcal{L}^{\text{max}}_{\mathcal{L}^{\text{max}}_{\mathcal{L}$ $\label{eq:3.1} \bullet \quad \text{and} \quad \bullet$

 $\label{eq:2.1} \mathcal{L}_{\mathcal{A}}(\mathcal{A}) = \mathcal{L}_{\mathcal{A}}(\mathcal{A}) \mathcal{L}_{\mathcal{A}}(\mathcal{A})$ $\label{eq:2.1} \frac{d\mathbf{r}}{dt} = \frac{1}{2} \left(\frac{d\mathbf{r}}{dt} + \frac{d\mathbf{r}}{dt} \right) \left(\frac{d\mathbf{r}}{dt} + \frac{d\mathbf{r}}{dt} \right) \left(\frac{d\mathbf{r}}{dt} + \frac{d\mathbf{r}}{dt} \right) \, .$

 $\mathcal{A}(\mathbf{z})$ and $\mathcal{A}(\mathbf{z})$

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\$ $\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}})$. $\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}})$, and the $\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}})$

 $\mathbf{r}^{(1)}$ and $\mathbf{r}^{(2)}$ $\label{eq:2.1} \frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac$ $\label{eq:2} \frac{1}{\sqrt{2}}\int_{0}^{\pi}\frac{1}{\sqrt{2\pi}}\left(\frac{1}{\sqrt{2\pi}}\right)^{2}d\mu_{\rm{eff}}\,.$

permanganate over a period of ten minutes and with water until free from alkali. The green coloration shows the presence of alcohol. The purified product was dried over calcium chloride then phosphorus pent-Oxide and fractionally distilled.

B.P. 340 743.0 mm.

All the liquids were shaken in a flask under reduced pressure before using in order to remove any absorbed air.

Silica Gel

Product - Silica Gel Corporation, Battemore. This gel was hand picked to remove the obvious blanks, crushed and screened through a 3 mm. sieve.

EXperimental

Evacuation:

The tubes in groups of three as shown under description of apparatus were filled with silica gel, sealed on to the apparatus, and evacuated for a period of six hours at a temperature of 250ºC, then sealed off under vacuum. All tubes were sealed at a pressure from 10^{-4} mm. to 10^{-5} mm. as shown by the McLeod gage.

Weighings:

After the sealed tube had cooled to room temperature it was scratched with a file at the points (a) and (b), then its weight in air (\mathbb{W}_1) and water (\mathbb{W}_2) determined. The end of the side arm was then immersed in the liquid under investigation and the tip broken off with forceps at the file scratch (b), thus filling the evacuated system with liquid. The top of the tube was broken Off at the file mark (a), the tube placed in a thermostat regulated to 25° \pm .0100 and the meniscus adjusted to the etched mark on the stem. The tube adjusted to volume was stoppered and weighed (W_5) . In most cases this adjustment was made two or more times and the mean weight used. The tube was emptied and filled with the liquid, meniscus adjusted to the mark and weighed as before $(\mathbf{W}_{\mathbf{A}})$. The liquid was emptied out of the tube and the dry weights of the top and tip (W₄) and tube (W₃) determined.

Formulae & Computation:

From the above weights the

apparent density of the silica gel was calculated with the following formulae: mulae & Compu
Fr
of the silic
.ae:
(W₁ - W₂) Da e & Computation:
From the above wei
the silica gel was calcul
 $-\frac{W_2}{D_0}$ Da $-\frac{W_1}{D_0}$ Da

$$
W_{t-g} + W_1 + (W_1 - W_2) \text{ Da } - \frac{W_1}{D_b} \text{ Da}
$$

 W_1 = Weight of evacuated tube gel system in air W_2 = Weight of evacuated tube gel system in water Da $=$ density of air D_h = density of brass D_{\blacksquare} = density of water at temperature of weighings W_{t-g} = corrected weight of tube and gel

Wt = corrected weight Of tube, tip and top Wt8(W3+W4)+(W3+W4) D8. (l'i) Db W3 . weight of dry tube W4 2 weight of t0p and tip DP . density of pyrex glass

 $W_{\mathcal{R}}$ = corrected weight of gel $W_g = W_{t-g} - W_t$

 W_{d1} = Corrected weight of displaced liquid

$$
W_{d1} = W_6 - (W_5 - W_g) + (W_5 - W_6) D_a \underline{1}
$$

$$
W_5 = Weight of tube liquid gel stopper
$$

$$
W_6 = Weight of tube liquid stopper
$$

$$
D_{gel} = apparent density of gel
$$

 $\label{eq:2.1} \mathcal{L}(\mathcal{L}(\mathcal{L}))=\mathcal{L}(\mathcal{L}(\mathcal{L}))=\mathcal{L}(\mathcal{L}(\mathcal{L}))=\mathcal{L}(\mathcal{L}(\mathcal{L}))=\mathcal{L}(\mathcal{L}(\mathcal{L}))=\mathcal{L}(\mathcal{L}(\mathcal{L}))=\mathcal{L}(\mathcal{L}(\mathcal{L}))=\mathcal{L}(\mathcal{L}(\mathcal{L}))=\mathcal{L}(\mathcal{L}(\mathcal{L}))=\mathcal{L}(\mathcal{L}(\mathcal{L}))=\mathcal{L}(\mathcal{L}(\mathcal{L}))=\mathcal{L}(\mathcal{L}(\$

 $\label{eq:2.1} \mathcal{L}(\mathcal{L}) = \frac{1}{2} \sum_{i=1}^n \mathcal{L}(\mathcal{L}(\mathcal{L})) \mathcal{L}(\mathcal{L}(\mathcal{L})) \mathcal{L}(\mathcal{L}(\mathcal{L})) \mathcal{L}(\mathcal{L}(\mathcal{L}))$ $\mathcal{L}^{\mathcal{L}}$, where $\mathcal{L}^{\mathcal{L}}$ is the contribution of the following properties of the contribution of the contri

 $\mathcal{L}^{\text{max}}_{\text{max}}$ and $\mathcal{L}^{\text{max}}_{\text{max}}$

 $\label{eq:1.1} \mathbf{P}_{\mathbf{u}}(t) = \mathbf{P}_{\mathbf{u}}(t) + \frac{1}{2} \sum_{i=1}^n \mathbf$

 $\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L$

 $\label{eq:2.1} \mathcal{L}(\mathcal{L}^{\text{max}}_{\mathcal{L}}(\mathcal{L}^{\text{max}}_{\mathcal{L}}(\mathcal{L}^{\text{max}}_{\mathcal{L}}(\mathcal{L}^{\text{max}}_{\mathcal{L}^{\text{max}}_{\mathcal{L}}})))))$

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2.$

 $\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L$

$$
D_{\text{gel}} = W_{\text{gl}} \times D_1
$$

 D_1 = density of liquid used

 $\sim 10^{11}$ km $^{-1}$

Precision of Measurements

The least accurate measurements are the weight of the bulb liquid gel and the weight of the bulb liquid. Their accuracy is determined by the ability to reproduce exact adjustments Of the meniscus.

The following series of weights were made on a tube plus water to determine with what accuracy the weights could be duplicated:

A.D.
$$
\frac{0.002}{16}
$$
 = 1.00008

This degree of accuracy is of the same order as the accuracy Of the analytical balances used, thus the determinate errors are all of the same magnitude.

 \mathcal{L}_max and the second contract of the second contract $\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\right)\frac{1}{\sqrt{2}}\right)\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2$

 $\label{eq:2.1} \mathcal{L}(\mathcal{L}) = \frac{1}{2} \sum_{i=1}^n \mathcal{L}(\mathcal{L}) \mathcal{L}(\mathcal{L}) \mathcal{L}(\mathcal{L}) \mathcal{L}(\mathcal{L}) \mathcal{L}(\mathcal{L})$

 $\mathcal{L}^{\text{max}}_{\text{max}}$ and $\mathcal{L}^{\text{max}}_{\text{max}}$ $\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L$

 $\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}})$ and the contribution of the con

 $\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L$

 $\frac{1}{2}$

 \mathcal{L}

Example of Calculation:

Run #9 Ethyl Alcohol Bar 734.3 mm. 21ºC Tube No. 4 Evacuated 6 hrs to 10^{-5} mm.

 λ

Tomperature of thermostat 25ºC

$$
w_{t-g} = w_1 + \frac{w_1 - w_2}{D_w} D_a - w_1 \frac{1}{D_b} D_a
$$

 $W_1 = 51.9884$ Dw at 734.3 mm. 21°C = 0.99602 $W_2 = 8.9000$ D_a at 734.3 mm. 21^oC = 0.001161 $W_1 - W_2$ 43.0884 $\frac{1}{D_{\rm D}}$ $= 0.1184$

 W_{t-g} = 51.9884 + 43.0884 X .001161 - 51.9884 X .1184 X .001161

$$
= 51.9884 + .0501 - .0071
$$

$$
W_{t-g} = 52.0514
$$

\n $W_t = (W_3 + W_4) + (W_3 + W_4) (\frac{1}{D_n} - \frac{1}{D_n}) D_8$

- $\frac{1}{D_D}$ = $\frac{1}{2.25}$ = 0.4444 $W_3 = 28.6295$ $\frac{1}{D_b} = \frac{1}{8.85} = 0.1184$ $W_4 = 10.3060$ $\frac{1}{D_p} - \frac{1}{D_b}$ 0.3260 $D_A = 0.001161$
- W_t = (28.6295 + 10.3060) + (28.6295 + 10.3060) X .3260 X .001161 $= 38.2209 + 38.2209$ X.3260 X.001161 $= 38,2209 + .0144$

 $= 38,2353$

 $\mathcal{L}^{\text{max}}_{\text{max}}$ and $\mathcal{L}^{\text{max}}_{\text{max}}$

 $\label{eq:2.1} \mathcal{L}(\mathcal{L}) = \frac{1}{2} \sum_{i=1}^n \frac{1}{2} \sum_{i=1}^n \frac{1}{2} \sum_{j=1}^n \frac{1}{2} \sum_{i=1}^n \frac{1}{2} \sum_{j=1}^n \frac{1}{2$ $\label{eq:2.1} \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\$

 $\label{eq:2.1} \mathcal{L}_{\mathcal{A}}(\mathcal{A})=\mathcal{L}_{\mathcal{A}}(\mathcal{A})\otimes\mathcal{L}_{\mathcal{A}}(\mathcal{A})\otimes\mathcal{L}_{\mathcal{A}}(\mathcal{A})\otimes\mathcal{L}_{\mathcal{A}}(\mathcal{A})\otimes\mathcal{L}_{\mathcal{A}}(\mathcal{A})\otimes\mathcal{L}_{\mathcal{A}}(\mathcal{A})\otimes\mathcal{L}_{\mathcal{A}}(\mathcal{A})\otimes\mathcal{L}_{\mathcal{A}}(\mathcal{A})\otimes\mathcal{L}_{\mathcal{A}}(\mathcal{A})\otimes\mathcal{$

 $\mathcal{L}^{\mathcal{A}}$ and $\mathcal{L}^{\mathcal{A}}$ are the set of the s

 $\label{eq:2.1} \mathcal{L}(\$

 $\mathcal{L}(\mathcal{A},\mathcal{A})$ and the set of the set

ست موجود العامل المعاملة العاملية العاملية العاملية المتعاملية المتعاملية

 $\mathcal{L}^{\mathcal{A}}(\mathcal{A})$, where $\mathcal{L}^{\mathcal{A}}(\mathcal{A})$, $\mathcal{L}^{\mathcal{A}}(\mathcal{A})$ and

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\$

 $\label{eq:2.1} \mathcal{L}(\mathcal{L}^{\mathcal{L}}_{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}_{\mathcal{L}})) \leq \mathcal{L}(\mathcal{L}^{\mathcal{L}}_{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}_{\mathcal{L}})) \leq \mathcal{L}(\mathcal{L}^{\mathcal{L}}_{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}_{\mathcal{L}}))$

$$
W_g = W_{t-g} - W_t
$$

= 52.0314 - 38.2353
= 13.7961

$$
\mathbf{W}_{d1} = \mathbf{W}_6 - (\mathbf{W}_5 - \mathbf{W}_8) + (\mathbf{W}_5 - \mathbf{W}_6) \mathbf{D}_8 \frac{1}{D_0}
$$

$$
\mathbf{W}_5 = 54.0150
$$

$$
\Psi_6 = 44,8937
$$

 $\mathcal{L}^{\text{max}}_{\text{max}}$

$$
W_{d1}
$$
 = 44.8937-(54.0150-13.7961)+(54.0150-44.8937) X .1184 X
.001161 = 44.8937 - 40.2189 + 9.1213 X .1184 X .00161
= 44.8937 - 40.2189 + .0013
= 4.6716

$$
\frac{D_{g01}}{W_{d1}}
$$
\n
$$
D_1 = 0.7851
$$
\n
$$
\frac{D_{g01}}{4.6716} = 2.9503 \times 0.7851
$$
\n
$$
= 2.3163
$$

D A T A

 $\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}})$ and $\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}})$ and $\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}})$ and $\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}})$ $\mathcal{L}(\mathcal{L})$, and $\mathcal{L}(\mathcal{L})$, and $\mathcal{L}(\mathcal{L})$

- $\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}})$. The contribution of the contribution of the $\mathcal{L}^{\mathcal{L}}$ $\mathcal{L}(\mathcal{A})$ and $\mathcal{L}(\mathcal{A})$ are $\mathcal{L}(\mathcal{A})$. In the contribution of $\mathcal{L}(\mathcal{A})$
	- $\mathcal{A}^{\mathcal{A}}$, and the set of t
- $\mathcal{L}^{\mathcal{L}}$ and $\mathcal{L}^{\mathcal{L}}$ are the set of the set of the set of the set of the $\mathcal{L}^{\mathcal{L}}$
- \bullet . The second contract \bullet $\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}})$. The contract of $\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}})$
	- $\mathbf{A}^{(1)}$ and $\mathbf{A}^{(2)}$ are $\mathbf{A}^{(1)}$. The contribution of $\mathbf{A}^{(1)}$
	- $\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}})$ and $\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}})$. The contribution of $\mathcal{L}^{\mathcal{L}}$ \mathcal{L}^{max} , \mathcal{L}^{max}
	- \mathcal{L}^{max} , where \mathcal{L}^{max}
- $\mathcal{L}(\mathcal{A})$ and $\mathcal{L}(\mathcal{A})$ are the set of the set of the set of \mathcal{A}
- $\mathcal{L}(\mathcal{M})$ is the set of the s
- $\mathcal{L}^{\mathcal{L}}$ and $\mathcal{L}^{\mathcal{L}}$ are the set of the set of the set of $\mathcal{L}^{\mathcal{L}}$
	- $\mathcal{L}(\mathcal{A})$. The $\mathcal{A}(\mathcal{A})$ $\mathcal{L}(\mathcal{L}^{\mathcal{L}})$ and $\mathcal{L}^{\mathcal{L}}$ are $\mathcal{L}^{\mathcal{L}}$. In the following $\mathcal{L}^{\mathcal{L}}$
	- $\mathcal{L}(\mathcal{$
	- $\label{eq:2.1} \frac{1}{\sqrt{2\pi}}\left(\frac{1}{\sqrt{2\pi}}\right)^{1/2}\frac{d^2}{d\omega^2}$ $\mathcal{L}^{\text{max}}_{\text{max}}$
	- $\mathcal{A}^{\mathcal{A}}_{\mathcal{A}}$, and $\mathcal{A}^{\mathcal{A}}_{\mathcal{A}}$ $\label{eq:2.1} \frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}^3}\frac{1$

 $\mathcal{L}(\mathcal{L})$ and $\mathcal{L}(\mathcal{L})$.

 $\mathcal{L}^{\text{max}}_{\text{max}}$ and $\mathcal{L}^{\text{max}}_{\text{max}}$

- $\mathbf{r} = \mathbf{r}$ $\mathcal{L}(\mathbf{z})$ and $\mathcal{L}(\mathbf{z})$ are $\mathcal{L}(\mathbf{z})$. Then $\mathcal{L}(\mathbf{z})$
- \bullet \bullet . The second constraints of the second constraints \mathcal{L}_c
- $\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L$
	- $\mathcal{L}=\mathcal{L}(\mathcal{L}^{\mathcal{L}})$, where $\mathcal{L}^{\mathcal{L}}$ is the contribution of the contribution of $\mathcal{L}^{\mathcal{L}}$
	- $\mathcal{L}^{\mathcal{L}}(\mathcal{A})$ and the set of the set
		-
- $\mathcal{A}^{\mathcal{A}}$ and $\mathcal{A}^{\mathcal{A}}$ are the set of the set of the set of the $\mathcal{A}^{\mathcal{A}}$
- $\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}})$ and $\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}})$ and $\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}})$ \mathcal{L}_{max} , where \mathcal{L}_{max}
	-
- $\label{eq:2} \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \left(\frac{1}{2} \right) \left(\frac{1}{2} \right)$ $\mathcal{L}(\mathcal{L}(\mathcal{L}))$ and $\mathcal{L}(\mathcal{L}(\mathcal{L}))$
	- $\mathcal{L}^{\text{max}}(\mathbf{q},\mathbf{q})$, where $\mathcal{L}^{\text{max}}(\mathbf{q},\mathbf{q})$
-

20

Summary of Data

*Values by J. A. Ikerman

 $\mathcal{A}^{\mathcal{A}}$

Table 1 and Table 1-a are a comparison

of the apparent densities of silica gel with those determined by Harkins and Ewing¹ for gas mask charcoal, and they are arranged in order of increasing apparent densities. This table also contains the calculated pore volume, per cent compressibility at 12,000 atmospheres, surface tension γ , viscosity η in absolute units, the ratio \mathcal{V}_η and the value of \boldsymbol{b} for Vander Waal's equation. The pore volumes in these tables are calculated not on a basis of compressibility of the liquids, but on a change in density of the silica gel and charcoal as calculated by Harkins.

This is not a true assumption, but was used as a basis of calculation due to the uncertainty of the true block density of carbon. The pore volume is given by the following equation:

1 - d in mercury d in liquid

The density determined with mercury being the weight of 1 cc. of charcoal in vacuum, for the mercury does not wet the surface or enter the pores of the charcoal. On this basis any increase in density is due to the weight of liquid entering the charcoal system. This same reasoning applys to a silica gel system. There appears to be no correlation between the two sets of data which is not at all unexpected.

22

SILICA GEL

Table I

23

Values berle and brban#; H
H $J \bullet A \bullet L$

24

 \sim ϵ

Table 2 and 2-a shows the pore volumes for carbon and silica gel recalculated on a basis of density change. Using a density of 2.26 for the true density Of the charcoal for this was the value found by howard and Hulett³ using helium as a non-polar indifferent medium and checks very closely with their value determined for graphite. This density is also verified by the fact that the xray analysis made by Debye and Scherrer 6 shows no difference between graphite and charcoal.

In recalculating it should be pointed out that the pore volume of silica gel, a density of $2.651⁽⁷⁾$, has been used as the true density for the gel. 2.651 is the density of quartz and is based on the work Of Berle and Urban⁴ using ether as a liquid. They obtained a value of 2.625 for a gel that had been dehydrated with hydrochloric acid and a walue of 2.685 for quartz. This same gel when activated at 3000 gave an apparent density with ether of 2.390 at 200. This is in agreement with our value determined with ether.

The value 2.651 may be too high, but in calculating the degree to which the various liquids must be compressed to give the apparent density measured, we are using the limiting value,for 2.651 is the maximum density of quartz and will give the maximum pore value for 1 cc. of gel. Thus in calculating the volume change in the various liquids, we are determining the minimum possible.

The following values are also tabulated in tables 2 and 2-a: Normal density of liquid at 250, grams of $\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2.$ \bullet . The contract of the co

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\right)\frac{1}{\sqrt{2}}\right)\frac{1}{\sqrt{2}}\right)=\frac{1}{2}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\frac{1}{\$ $\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L$ $\mathcal{L}(\mathcal{L})$ and $\mathcal{L}(\mathcal{L})$. The set of $\mathcal{L}(\mathcal{L})$ $\label{eq:2.1} \frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\left(\frac{1}{\sqrt{2}}\right)^2\left(\frac{1}{\sqrt{2}}\right)^2.$

 $\mathcal{L}^{\text{max}}_{\text{max}}$ and $\mathcal{L}^{\text{max}}_{\text{max}}$ $\label{eq:2.1} \mathcal{L}_{\text{max}} = \frac{1}{2} \sum_{i=1}^{N} \frac{1}{2} \sum_{i=$ $\label{eq:2.1} \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\$ $\label{eq:2.1} \mathcal{L}_{\mathcal{A}}(\mathcal{A}) = \mathcal{L}_{\mathcal{A}}(\mathcal{A}) = \mathcal{L}_{\mathcal{A}}(\mathcal{A})$

 $\label{eq:2.1} \frac{1}{\sqrt{2\pi}}\sum_{i=1}^n\frac{1}{\sqrt{2\pi}}\sum_{i=1}^n\frac{1}{\sqrt{2\pi}}\sum_{i=1}^n\frac{1}{\sqrt{2\pi}}\sum_{i=1}^n\frac{1}{\sqrt{2\pi}}\sum_{i=1}^n\frac{1}{\sqrt{2\pi}}\sum_{i=1}^n\frac{1}{\sqrt{2\pi}}\sum_{i=1}^n\frac{1}{\sqrt{2\pi}}\sum_{i=1}^n\frac{1}{\sqrt{2\pi}}\sum_{i=1}^n\frac{1}{\sqrt{2\pi}}\sum_{i=1}^n\$ $\label{eq:2.1} \mathcal{L}(\mathcal{L}(\mathcal{L})) = \mathcal{L}(\mathcal{L}(\mathcal{L})) = \mathcal{L}(\mathcal{L}(\mathcal{L})) = \mathcal{L}(\mathcal{L}(\mathcal{L})) = \mathcal{L}(\mathcal{L}(\mathcal{L}))$

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\right)\frac{1}{\sqrt{2}}\right)\frac{1}{\sqrt{2}}\right)=\frac{1}{2}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\frac{1}{\$ $\label{eq:2.1} \mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}) \otimes \mathcal{L}(\mathcal{A})$

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\$ $\mathcal{L}(\mathcal{$

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\$ $\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2.$

liquid adsorbed per cc. of system, grams liquid adsorbed per gram gel or carbon, density of adsorbed liquid, compression of 1 cc. of liquid, volume of liquid adsorbed per cc. of system, available data per cent compressibility of liquids at 8000 atmospheres, and pressure necessary to cause compression. The pressure calculations are only approximations,as no exact data exists for the higher pressures.

Table 2

Water⁺
No Temp.given

No Temp.given

0.7844 0.7077

1.0390 1.0918

0.8091 0.8502 .7694

2.0151 2.1175

0.3893 0.3342

1.3244 1.5428

23.87 26.68

12,580 19,980

Ether Water Pentane Ethyl-Alcohol Acetone

0.9971 0.6219 0.7851

0.9414 0.9661 1.0167

0.7331 0.7524 0.7918

1.8258 1.8737 1.9719

0.5461 0.3319 0.3981

0.9441 1.5534 1.2951

17.64

20,550

22.92

20,975

+ Nutting
1 International Uritical tables 1 international critical tables 27

 $\frac{1}{\sqrt{2}}\sum_{\substack{\alpha\in\mathbb{Z}^d\\ \alpha\in\mathbb{Z}^d}}\left|\frac{\alpha}{\alpha}\right|^{2\alpha} \leq \frac{1}{\sqrt{2}}\sum_{\substack{\alpha\in\mathbb{Z}^d\\ \alpha\in\mathbb{Z}^d}}\left|\frac{\alpha}{\alpha}\right|^{2\alpha} \leq \frac{1}{\sqrt{2}}\sum_{\substack{\alpha\in\mathbb{Z}^d\\ \alpha\in\mathbb{Z}^d}}\left|\frac{\alpha}{\alpha}\right|^{2\alpha} \leq \frac{1}{\sqrt{2}}\sum_{\substack{\alpha\in\mathbb{Z}^d\\ \alpha\in\$ $\label{eq:2} \mathbf{a}_i \cdot \mathbf{a}_j = \mathbf{a}_i \cdot \mathbf{a}_j \cdot \mathbf{a}_j \cdot \mathbf{a}_j$

 $\mathcal{L}^{\text{max}}_{\text{max}}$ $\mathcal{L}^{\text{max}}_{\text{max}}$ $\mathcal{L}(\mathcal{L}^{\text{max}})$. The set of \mathcal{L}^{max}

1 International Critical 1 International Critical Tables

Table 2-a

 $\frac{1}{\sqrt{2}}\sum_{i=1}^{n} \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\left(\frac{1}{\sqrt{2}}\right)^2.$ $\label{eq:2} \mathbf{u}^{\mathbf{v}} \left(\mathbf{v}^{\mathbf{v}} \right) = \mathbf{v}^{\mathbf{v}} \left(\mathbf{v}^{\mathbf{v}} \right) = \mathbf{v}^{\mathbf{v}} \left(\mathbf{v}^{\mathbf{v}} \right) = \mathbf{v}^{\mathbf{v}} \left(\mathbf{v}^{\mathbf{v}} \right)$ ϵ , ϵ \bullet .

> $\label{eq:2.1} \mathcal{L}(\mathcal{L}^{\mathcal{L}}_{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}_{\mathcal{L}})) = \mathcal{L}(\mathcal{L}^{\mathcal{L}}_{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}_{\mathcal{L}})) = \mathcal{L}(\mathcal{L}^{\mathcal{L}}_{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}_{\mathcal{L}}))$ $\mathcal{A}^{\text{max}}_{\text{max}}$ and $\mathcal{A}^{\text{max}}_{\text{max}}$

 \cdots $\begin{array}{ll} \bullet & \bullet & \bullet & \bullet \\ \bullet & \circ & \bullet & \circ \\ \bullet & \circ & \end{array}$ $\ddot{}$

 $\label{eq:2.1} \mathcal{L}(\mathcal{L}^{\mathcal{L}}_{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}_{\mathcal{L}})) \leq \mathcal{L}(\mathcal{L}^{\mathcal{L}}_{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}_{\mathcal{L}})) \leq \mathcal{L}(\mathcal{L}^{\mathcal{L}}_{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}_{\mathcal{L}})) \leq \mathcal{L}(\mathcal{L}^{\mathcal{L}}_{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}_{\mathcal{L}})) \leq \mathcal{L}(\mathcal{L$

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2.$

 $\ddot{}$

 \mathbf{r}^{\prime} , \mathbf{r}^{\prime} , \mathbf{r}^{\prime} $\ddot{}$ $\ddot{}$ $\label{eq:2.1} \begin{split} \mathcal{D}_{\text{max}}(\mathcal{D}_{\text{max}}) = \mathcal{D}_{\text{max}}(\mathcal{D}_{\text{max}}) \,,\\ \mathcal{D}_{\text{max}}(\mathcal{D}_{\text{max}}) = \mathcal{D}_{\text{max}}(\mathcal{D}_{\text{max}}) \,, \end{split}$

 \cdots

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{\mathbb{R}^3} \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\left(\frac{1}{\sqrt{2}}\right)^2\left(\frac{1}{\sqrt{2}}\right)^2\left(\frac{1}{\sqrt{2}}\right)^2\left(\frac{1}{\sqrt{2}}\right)^2\left(\frac{1}{\sqrt{2}}\right)^2.$ $\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2.$ $\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2.$

 $\mathcal{L}^{\text{max}}_{\text{max}}$, $\mathcal{L}^{\text{max}}_{\text{max}}$

Table 3 is a tabulation of data in regard to change in apparent density with time.

Table 3

Water shows no increase over a period of 5 to 20 days,and alcohol no increase at the end of 19 days. The tube which run 41 days does show an increase, but this being an isolated case and not checked on definite conclusions can be made in regard to it.

 $\mathcal{L}^{\text{max}}_{\text{max}}$, where $\mathcal{L}^{\text{max}}_{\text{max}}$

 $\label{eq:2.1} \mathcal{L}(\mathcal{L}^{\mathcal{A}}_{\mathcal{A}}(\mathcal{A}^{\mathcal{A}}_{\mathcal{A}})) = \mathcal{L}(\mathcal{L}^{\mathcal{A}}_{\mathcal{A}}(\mathcal{A}^{\mathcal{A}}_{\mathcal{A}})) = \mathcal{L}(\mathcal{L}^{\mathcal{A}}_{\mathcal{A}}(\mathcal{A}^{\mathcal{A}}_{\mathcal{A}})) = \mathcal{L}(\mathcal{L}^{\mathcal{A}}_{\mathcal{A}}(\mathcal{A}^{\mathcal{A}}_{\mathcal{A}}))$ $\label{eq:2} \mathcal{L}(\mathcal{L}^{\text{max}}_{\mathcal{L}}(\mathcal{L}^{\text{max}}_{\mathcal{L}}(\mathcal{L}^{\text{max}}_{\mathcal{L}}(\mathcal{L}^{\text{max}}_{\mathcal{L}})))$

 $\mathcal{L}(\mathcal{L}^{\mathcal{L}})$ and $\mathcal{L}^{\mathcal{L}}$ are $\mathcal{L}^{\mathcal{L}}$. In the $\mathcal{L}^{\mathcal{L}}$

Conclusions

The apparent density of silica gel was determined in thirteen liquids. There seems to be no correlation between the densities in this series and the corresponding apparent densities determined with the same liquids in charcoal.

Evacuated silica gel treated with a liquid reaches equilibrium conditions with it in a few hours.

30

 $\mathcal{L}^{\text{max}}_{\text{max}}$, where $\mathcal{L}^{\text{max}}_{\text{max}}$

 $\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}})$. In the $\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}})$

 \mathcal{L}_{max} and \mathcal{L}_{max}

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\$

 \mathcal{A}^{c} .

Bibliography

2. Jour. Amer. Chem. Soc., 42, 391 (1920) 5. Jour. Phys. Uhem., 28, 1083 (1924) 4. z. Agnew Chemie 38, 57-80 (1923) 6. Physik z. 18, 291 (1917) 7. International Critical Table1. Jour. Amer. Chem. Soc., 43, 1787 (1921) J. Phys. Chem. 31, 531-534 (1927)

