
SPECTRALLY EFFICIENT ANTI-JAMMING SYSTEM DESIGN IN WIRELESS
NETWORKS

by

Lei Zhang

A DISSERTATION

Submitted
to Michigan State University

in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Electrical Engineering

2011



ABSTRACT

SPECTRALLY EFFICIENT ANTI-JAMMING SYSTEM DESIGN IN WIRELESS
NETWORKS

by

Lei Zhang

In wireless networks, one of the most commonly used techniques for limiting the effec-

tiveness of an opponent’s communication is referred to as jamming, in which the legitimate

user’s signal is deliberately interfered by the adversary. Along with the wide spread of var-

ious wireless devices, especially with the advent of user reconfigurable intelligent devices,

jamming attack is no longer limited to military applications, but has become an urgent and

serious threat to civilian communications as well. Motivated by this observation, in this

dissertation, we consider hostile jamming modeling, classification, and spectrally efficient

anti-jamming system design and analysis.

First, we investigate the cognitive jamming modeling and classification in wireless com-

munications. Instead of using existing jamming models that assume the jamming remains

invariant during the signal transmission period, we focus on time-varying jamming and its

classification based on time-frequency analysis and the relative correlation between the signal

and the jamming interference: (i) We introduce the general concepts of time-varying jam-

ming coherence time and time-frequency jamming coherence bandwidth, and propose a new

jamming classification scheme based on these parameters; (ii) We introduce the concept of

disguised jamming, where the jamming is highly correlated with the signal, and has a power

level close or equal to the signal power; (iii) Based on time-frequency analysis and approxi-

mation theory, we propose algorithms to estimate the time-varying coherence time and the

time-frequency coherence bandwidth for both stationary and locally stationary jamming.

Next, we break new ground on anti-jamming system design in wireless networks based

on message-driven frequency hopping (MDFH). MDFH is a highly efficient spread spectrum



technique that is particularly robust under strong jamming. However, it experiences consid-

erable performance losses under disguised jamming. To overcome this drawback, we propose

an anti-jamming MDFH (AJ-MDFH) system. The main idea is to transmit a secure ID

sequence along with the information stream. The ID sequence is generated through a cryp-

tographic algorithm using the shared secret between the transmitter and receiver, it is then

exploited by the receiver for signal extraction. It is shown that AJ-MDFH can effectively re-

duce the performance degradation caused by disguised jamming while remains robust under

strong jamming. We investigate ID constellation design and its impact on the performance

of AJ-MDFH under both noise jamming and disguised jamming. In addition, we extend

AJ-MDFH to a multi-carrier scheme, which can increase the system efficiency and jamming

resistance significantly through jamming randomization and frequency diversity, and can

readily be used as a collision-free multiple access system. Our analysis indicates that: while

AJ-MDFH has strong anti-jamming property, its spectral efficiency is very close to that of

MDFH, which is several times higher than that of the conventional FH.

Finally, we analyze the capacity of MDFH and AJ-MDFH under disguised jamming using

the arbitrarily varying channel (AVC) model. We show that under the worst case disguised

jamming, as long as the secure ID sequence is unavailable to jammer (which is ensured by

AES), the AVC corresponding to AJ-MDFH is nonsymmetrizable. This implies that the

deterministic code capacity of AJ-MDFH with respect to the average probability of error

is positive. On the other hand, due to lack of shared randomness, the AVC corresponding

to MDFH is symmetric, resulting in zero deterministic code capacity. We further calculate

the capacity of AJ-MDFH and show that it converges as the ID constellation size goes to

infinity, which echoes with convergence result for the probability of error of AJ-MDFH. We

also extend the capacity analysis to multiuser AJ-MDFH system (MC-AJ-MDFH) and show

that it outperforms the multiple access scheme for conventional FH (FHMA).

Future research will be conducted on adaptive transceiver design under cognitive jamming

scenario.
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Chapter 1

INTRODUCTION

In the past few decades, wireless communication has fundamentally changed people’s way of

lives. Accelerated by the breakthroughs in wireless technologies such as OFDM and MIMO,

wireless communication nowadays is able to provide high speed connections for broadband

multimedia applications including Video on Demand (VoD) and videoconferencing [1, 2, 3].

Comparing with its wireline counterpart, wireless communication does not only provide

comparable data rate but also possesses other attractive features such as ubiquitous network

coverage and mobility support. Due to these notable features, wireless communication sees

an explosive growth in the recent years [4].

As more and more critical information is transmitted wirelessly for applications such

as e-commerce and e-banking services, the security issues in wireless communication pose

serious challenges for the development of next generation wireless networks, and wireless

communication security becomes an active research field [5, 6, 7]. Although most of the

higher layer security threats against wireline network can also be applied to wireless net-

work, the latter suffers from additional vulnerabilities. Due to lack of the protective physical

boundary, wireless communication systems are susceptible to PHY layer vulnerabilities such

as unauthorized detection, interception and jamming interference [8, 9]. Jamming interfer-

ence can introduce several forms of distortion to the transmitted signal and disrupt the legal

user’s communication. Therefore, it becomes a major challenge for secure and reliable PHY

layer design in wireless networks. Motivated by this challenge, in this dissertation, we mainly

focus on the jamming issue in the wireless networks.
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1.1 Jamming Interference in Wireless Communications

Depending on the sources of the interference, the jamming can be classified into two cat-

egories with distinctive characteristics: when the interference is introduced by the sources

within the wireless system, it is called system inherent jamming; when the interference is

introduced by a malicious jammer, it is called hostile jamming.

1.1.0.1 System Inherent Jamming

In the single user environment, the wireless system includes the transmitter, the receiver

and the wireless channel as the transmission medium. To maximize the usage of precious

spectrum resource, wireless systems usually employ multiple access techniques to support

multiple users transmitting simultaneously within the same frequency range. In the mul-

tiuser environment, these active transmitting users are also part of the wireless system. Both

wireless channels and multiuser environment impose fundamental limitations on the perfor-

mance of wireless systems [10, 11, 12]. (i) Due to the physical factors such as multipath

propagation, wireless channel introduces inter-symbol interference (ISI) where the delayed

replicas of previous symbols interfere with the current transmitted symbol. (ii) When or-

thogonality among different users are broken either by wireless channel or by transmitter

and/or receiver, the multiuser interference (MUI) will be introduced by the signals from

other active transmitting users.

Since the sources of system inherent jamming are located within the system, their charac-

teristics can be either known to or controlled by the system. Therefore, the system inherent

jamming can be effectively mitigated by system design techniques and system management

protocols.

• The wireless channel can be well characterized by some physical parameters such as

coherence time and coherence bandwidth, which can be obtained from appropriate

channel models [13, 14]. With the knowledge of these channel characteristics, ISI can
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be suppressed using appropriate design techniques. For example, in frequency selective

fading channels, the ISI of PAM signals can be suppressed by adding a channel equalizer

at the receiver [15, 16, 17]; for OFDM signals, ISI can be eliminated by inserting guard

intervals between adjacent symbols [18, 19].

• Since signal characteristics of the users can be controlled by the system, MUI can

be canceled by employing system management protocols. For example, in OFDMA

systems, the MUI can be eliminated by scheduling the users to transmit on non-

overlapping orthogonal subcarriers [20]; in multiuser MIMO systems, MUI can be

mitigated by precoding techniques such that the signal transmits only towards the

direction of the intended user without causing interference to users at other directions

[21, 22].

Many of these techniques and protocols have been incorporated to the system design for

3G/4G wireless networks [23, 24].

1.1.0.2 Hostile Jamming

The malicious jammer with appropriate transmitter can intentionally interrupt the legiti-

mate user’s communication by saturating its receiver with noise or false information through

deliberate radiation of radio signals [25, 26]. The jammer differs from active users in two

ways: (i) The jamming can vary arbitrarily and is unpredictable. Its characteristics are diffi-

cult to obtain and are often not available to the system. (ii) The malicious jammer does not

obey the system management protocols, thus the conventional MUI mitigation techniques

no longer work under hostile jamming.

Due to these harmful characteristics, hostile jamming becomes an effective way to carry

out denial-of-service (DoS) attack and is often used in military fields. However, with the

advent of reconfigurable cognitive radios widely available, hostile jamming attack is much

3



easier to be launched and has become an urgent and serious threat to civilian communications

as well.

1.2 Problem Descriptions

In this dissertation, we focus on hostile jamming modeling, classification and spectrally

efficient anti-jamming system design and analysis.

1.2.1 Limitations of Existing Models

Traditionally, hostile jamming has been characterized in either frequency domain or time

domain:

• Tone-jamming [27], where the jamming power is concentrated around carrier frequen-

cies.

• Band-jamming [28, 29, 30, 31, 32], in which the jamming signal is modeled as a zero-

mean wide sense stationary Gaussian random process. In general, band-jamming is

further classified into full-band [28, 29], partial-band [30, 31, 32]. The power of full-

band jamming is uniformly distributed over the bandwidth of interest with PSD NJ .

Partial-band jamming is characterized by the additive Gaussian noise interference with

PSD
NJ
ρ

over a fraction ρ of the total bandwidth and negligible interference over the

remaining fraction (1− ρ) of the band.

• Partial-time jamming [33, 34, 35], where the jamming occurs at certain time periods

during the signal transmission. It is basically a two-state Markov process. When the

jammer is in state 0, it is off; when it is in state 1, the jammer emits the interfering

signal. State 1 occurs with probability of ρ, along with the variance of jamming signals

NJ
ρ

. (1 − ρ) is the probability of occurrence of state 0, for which the variance of

jamming signals is 0.

4



In reality, a smart jammer can be used for more effective jamming attacks. The smart

jammer is often equipped with receiver that captures the transmitted signal of the legitimate

user. With sufficient intelligence, the smart jammer can determine the transmission scheme

used by the legitimate user and adjust the jamming strategy accordingly to maximize the

adverse effect. The jamming generated by the smart jammer is called cognitive jamming,

also known as adaptive jamming or time-varying jamming. Apparently, cognitive jamming

cannot be accurately characterized by existing jamming models, and cognitive jamming

modeling and classification technique needs to be developed.

1.2.2 Limitations of Existing Jamming Resistant Systems

In general, wireless communication systems do not possess jamming resistant features except

the spread spectrum systems. Spread spectrum techniques have been considered for secure

communication since mid 1950 [36, 28, 29, 25, 37]. In this section, we provide a brief overview

of existing spread spectrum systems and their characteristics [28, 25, 38].

By definition, spread spectrum systems occupy a larger bandwidth than the minimum

necessary to transmit the information. In other words, the bandwidth of spread spectrum

signal W is much greater than the bit rate of information messages R, and the expansion

factor Gp =
W

R
is usually referred to as the processing gain. The spreading is accomplished

using a code which is independent of the data. The receiver is synchronized with the trans-

mitter and uses the identical code for despreading and subsequent data recovery. To prevent

interception or jamming by malicious user, the code should be shared only between the cor-

responding transmitter and receiver of legitimate user and kept secret from other undesirable

users.

1.2.2.1 Existing Spread Spectrum Systems

Two techniques are often employed for spread spectrum systems: Direct-Sequence Spread

Spectrum (DSSS) and Frequency Hopping Spread Spectrum (FHSS). The DSSS systems have
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been extensively studied in the literature [39, 40, 41, 42, 43] and successfully incorporated

into the 3G wireless communication standards. On the other hand, FHSS systems have

been widely adopted in military communication systems. Other spread spectrum systems

based on the hybrids of these two spreading techniques have also been proposed, but their

performances do not significantly differ from those of these two basic ones.

Direct Sequence Spread Spectrum System Direct sequence spread spectrum is a

technology that is more suitable for integration with bandwidth-efficient linear modulation

such as QAM or PSK. In DSSS, the key operation of spectrum spreading is achieved by

a PN sequence, also known as PN code ore PN chip. The PN sequence is usually binary,

consisting of 0’s and 1’s, which are polar signaling of +1 and −1. To minimize interference

and to facilitate chip synchronization, the PN sequence has certain desirable autocorrelation

and cross-correlation properties. By spreading the overall signal energy over a broader

bandwidth, DSSS systems provide nice security features against potential hostile jamming

and interception:

• It is difficult for the unauthorized receiver to recover the information signal without

the knowledge of PN code used at the transmitter.

• By applying sufficient processing gain, the power spectrum of the DSSS signal dis-

tributes over a broad bandwidth, resulting in a low flat power spectral density which

has the similar characteristic as that of noise. It is then difficult for malicious user to

separate spread spectrum signal from background noise. In this way, the spread spec-

trum signal can “hide” within the noise floor and prevent itself from being detected by

malicious user.

• DSSS is especially robust under narrowband jamming by reducing the jamming power

through the despreading process. Since the narrowband jamming interfere with only

a small portion of signal energy and does not block out the entire signal spectrum,

narrowband jamming is not effective against DSSS signals.
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Frequency Hopping Spread Spectrum System In Frequency Hopping Spread Spec-

trum (FHSS) system, each user can vary its carrier frequency according to the predetermined,

pseudorandom pattern, thereby effectively occupies a broader spectrum. By using PN se-

quence to control the frequency synthesizer, the transmitted signal hops to a new carrier

frequency at the beginning of each hopping period. At the receiver, the received signal is

shifted back to original signal band by using the identical PN sequence. Based on the du-

ration of the hopping period, FHSS systems can be further divided into two categories: fast

hopping (FFH) scheme and slow hopping (SFH) scheme. In an FFH system, the carrier hops

several times during one symbol period, while in an SFH system, each hop lasts at least one

symbol period. There are several unique features of FHSS system:

• Since FHSS can produce signals of much wider bandwidth compared to DSSS, it can

achieve much higher processing gain.

• As the carrier hops randomly over a wide range of frequencies, it is hard for the

adversary to track or jam the active transmission without knowledge of the its hopping

pattern.

• FHSS system is more robust to wideband jamming, since the signal power can be

concentrated on a narrower frequency band during each hopping period. The receiver

can filter out the jamming locates outside the current signal transmission band.

1.2.2.2 Limitations of Existing Spread Spectrum Systems

There are two major drawbacks in existing spread spectrum systems:

Inadequate Security In spread spectrum system, the PN sequence should only be shared

between the transmitter and receiver of the legitimate user and kept secret from the malicious

user. In practice, the PN sequence is usually generated by linear feedback shift register

(LFSR) and can be uniquely determined by the initial state of LFSR (i.e., seed). Therefore,
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it is more convenient for legitimate user to share the seed instead of sharing the PN sequence

directly. Again, the seed should be kept secret from the malicious user. The inherent security

of spread spectrum systems is based on the assumption that the malicious user without the

knowledge of the seed is unable to predict the PN sequence. However, the seed can be

consistently estimated based on the noisy observations of the generated PN sequence, which

can be easily extracted from received spread spectrum signal [44, 45]. To overcome this

drawback, a secure PN sequence generation algorithm needs to be designed.

Low Spectral Efficiency In multiuser environment, due to the system limitations, MUI

can become a severe problem for spread spectrum systems:

• In conventional DSSS system, the channel multipath and asynchronous transmission

activity can introduce nonzero cross-correlation among the users’ signals. This leads

to self-jamming to the DSSS system. Although some MUI suppression techniques such

as multiuser detection algorithms have been proposed to tackle this problem [46, 47],

their complexity may be too high to be affordable in many applications.

• In conventional FHSS system, each user hops independently based on its own PN

sequence. A collision occurs whenever there are more than one users transmitting over

the same frequency band. When there is a collision, it is reasonable to assume that

the probability of error is 0.5. Therefore, the overall information bit rate of spread

spectrum can be significantly limited, resulting in low spectral efficiency.

Existing spread spectrum systems work reasonably well for voice centric communications

which only requires relatively narrow bandwidth. However, their low spectral efficiency

provides insufficient information capacity for today’s high speed multimedia wireless services.

This turns out to be the most significant obstacle in developing anti-jamming features for

high speed wireless wireless communication systems, for which spectrum is one of the most
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precious resources. In this dissertation, we will develop spectrally efficient anti-jamming

systems as a potential solution to this problem.

1.3 Proposed Research Directions

This dissertation focuses on the study of hostile jamming modeling, classification, and spec-

trally efficient anti-jamming wireless network design by integrating advanced signal pro-

cessing techniques and cryptographic techniques into the PHY layer transceiver structure.

More specifically, the proposed research directions are briefly summarized in the following

subsections.

1.3.1 Cognitive Jamming Modeling and Classification

In literature, jamming signals are generally categorized into band jamming, tone jamming

and partial-time jamming. Existing work on jamming detection and jamming prevention was

generally targeted at a particular jamming model at a time. That is, the jamming pattern

is assumed to be known and invariant during the signal transmission period. In practice,

however, the jammer may very likely switch frequently from one pattern to another, with

each jamming pattern only lasting a very short period of time. In other words, the jammer

may launch smart, cognitive jamming, also known as adaptive jamming or time-varying

jamming. Note that no particular anti-jamming system is effective under all jamming attacks,

for optimum jamming mitigation, the transmitter has to be cognitive as well. Effective

cognitive anti-jamming system design depends on successful jamming detection, modeling

and classification.

In this part of dissertation, we focus on cognitive jamming modeling and classification

based on time-frequency analysis and the relative correlation between the signal and the

jamming interference: (i) We introduce the general concepts of time-varying jamming coher-

ence time and time-frequency jamming coherence bandwidth, and propose a new jamming
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classification scheme based on these parameters; (ii) We introduce the concept of disguised

jamming, where the jamming is highly correlated with the signal, and has a power level close

or equal to the signal power. It is complementary to the traditional strong jamming; (iii)

Based on time-frequency analysis and approximation theory, we develop algorithms to esti-

mate the time-varying jamming coherence time and the time-frequency jamming coherence

bandwidth for both stationary and locally stationary jamming.

1.3.2 Anti-jamming System Design Based on Message-Driven Frequency Hop-
ping

Mainly limited by multiple access interference, the spectral efficiency of existing jamming

resistant systems are very low due to inefficient use of the large bandwidth. Recently, a three-

dimensional modulation scheme, known as message-driven frequency hopping (MDFH) was

proposed in [48, 49]. The most significant property of MDFH is that: by embedding a large

portion of information into the hopping frequency selection process, additional information

transmission is achieved with no extra cost on either bandwidth or power [50]. In fact,

transmission through hopping frequency control essentially adds another dimension to the

signal space, thus increases the system spectral efficiency by multiple times. MDFH is

particularly robust under strong jamming. However, it experiences considerable performance

losses under disguised jamming from sources that mimic the true signal.

To improve the performance of MDFH under disguised jamming, in this part of disser-

tation, we propose an anti-jamming MDFH (AJ-MDFH) scheme. The main idea is to insert

some signal identification (ID) information during the transmission process. This ID infor-

mation is generated through a cryptographic algorithm using the shared secret between the

transmitter and the receiver. Therefore, it can be used by the receiver to locate the true

carrier frequency or the desired channel. At the same time, it is computationally infeasible to

be recovered by malicious users. Comparing with MDFH, AJ-MDFH can effectively reduce

the performance degradation caused by disguised jamming. At the same time, it is robust
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under strong jamming just as MDFH. The spectral efficiency of AJ-MDFH is very close

to that of MDFH, which is several times higher than conventional FH. We investigate the

ID constellation design and its impact on the performance of AJ-MDFH under both noise

jamming and disguised jamming. It is shown that when noise is present, the detection error

probability of AJ-MDFH under the worst case disguised jamming converges as the size of

the constellation increases. This result justifies the use of practical finite size constellations

in AJ-MDFH. It is observed that multi-carrier AJ-MDFH (MC-AJ-MDFH) can increase the

system efficiency and jamming resistance significantly through jamming randomization and

enriched frequency diversity.

1.3.3 Capacity Analysis of MDFH Based Systems under Disguised Jamming

In this part of dissertation, we analyze the capacity of MDFH and AJ-MDFH under disguised

jamming. Both MDFH and AJ-MDFH can be modeled as arbitrarily varying channels, which

is characterized as W : X × J → S, where X is the transmitted signal space, J is the

jamming space and S is the estimated information space. For any x ∈ X , J ∈ J and s ∈ S,

W (s|x,J) denotes the conditional probability that s is detected at the receiver, given that

x is the transmitted signal and J is the jamming. If J = X and W (s|x,J) = W (s|J,x) for

any x,J ∈ X , s ∈ S, the AVC is said to have a symmetric kernel [51]. More generally, if

the jammer can choose a stochastic method to generate J, such that W becomes symmetric,

then the AVC is said to be symmetrizable. The deterministic code capacity of the AVC for

the average probability of error is positive iff the AVC is nonsymmetrizable. [52, 53]

Based on the results in AVC capacity analysis, we show that under the worst case dis-

guised jamming, the AVC corresponding to MDFH has symmetric kernel, resulting in zero

deterministic code capacity. On the other hand, under the worst case disguised jamming - ID

jamming, as long as the ID sequence is unavailable to the jammer, the AVC corresponding to

AJ-MDFH is nonsymmetrizable, resulting in positive deterministic code capacity. Note that

the secure ID in AJ-MDFH is generated using AES, to symmetrize AJ-MDFH is equivalent
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to break AES, which is computationally infeasible in practical systems. We derive the ca-

pacity of AJ-MDFH under ID jamming, for which the mutual information is maximized for

all possible input probability distributions and minimized for all possible jamming distribu-

tions. We show that the capacity converges as the constellation size M goes to infinity and

extend the capacity analysis to multiuser AJ-MDFH system (MC-AJ-MDFH). It is observed

that: under reasonable SNR levels (≥ 10dB), the capacity of AJ-MDFH under ID jamming

is close to the jamming-free case, and it outperforms the conventional FH systems by big

margins. These results confirm the superior performance of the AJ-MDFH under disguised

jamming.

1.4 Overview of the Dissertation

In the dissertation, we aim to address the following problems:

• How to model the cognitive jamming phenomenons and classify jamming patterns

effectively?

• How to improve the anti-jamming feature of MDFH, while maintaining its high spectral

efficiency?

• How do the MDFH and AJ-MDFH perform under various jamming scenarios?

The dissertation is structured as follows.

Chapter 2 explores the cognitive jamming modeling and classification in wireless commu-

nications. First, we introduce the time-varying autocorrelation function and time-varying

power spectral density to characterize time-varying jamming phenomenons and to include

all the existing jamming models as special cases. Second, we introduce the concepts of time-

varying jamming coherence time and time-frequency jamming coherence bandwidth based

on the characteristics of these parameters. We also introduce two types of jamming classifi-

cation criterions: (i) Based on time-frequency analysis of jamming statistics, we can classify
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the jamming into fast jamming versus slow jamming and flat jamming versus frequency se-

lective jamming; (ii) Based on relative power and correlation between signal and jamming,

we can classify the jamming into strong jamming and disguised jamming. Finally, we de-

velop algorithms based on time-frequency analysis and approximation theory to estimate

the coherence time and coherence bandwidth for stationary jamming and locally stationary

jamming.

Chapter 3 presents spectrally efficient anti-jamming system design based on message-

driven frequency hopping (MDFH). First, we provide a brief review of MDFH, which im-

proves spectral efficiency considerably by embedding part of information into the process

of hopping frequency selection. Despite being robust under strong jamming, MDFH expe-

riences considerable performance losses under disguised jamming from sources that mimic

the true signal. Anti-jamming MDFH is developed to mitigate this security vulnerability by

inserting a secure ID sequence in the transmission process. Second, we investigate ID con-

stellation design and its impact on the performance of AJ-MDFH under both noise jamming

and disguised jamming. Third, we extend the single carrier AJ-MDFH to multi-carrier AJ-

MDFH (MC-AJ-MDFH), which can increase the system efficiency and jamming resistance

significantly through jamming randomization and enriched frequency diversity. Finally, we

analyze the performance of the proposed system.

Chapter 4 analyzes the capacity of MDFH and AJ-MDFH under disguised jamming using

the AVC model. First, we show that under the worst case disguised jamming, the AVC kernel

corresponding to MDFH is symmetric. That is, the deterministic code capacity of MDFH

under worst case disguised jamming is zero. Second, we prove that under the worst case

disguised jamming - ID jamming, as long as the ID sequence is unavailable to the jammer,

the AVC corresponding to AJ-MDFH is nonsymmetrizable. Note that the secure ID in AJ-

MDFH is generated using AES, to symmetrize AJ-MDFH is equivalent to break AES, which

is computationally infeasible in practical systems. This result implies that AJ-MDFH has
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positive capacity under ID jamming. Third, we derive the deterministic capacity of AJ-

MDFH under ID jamming. We show that the capacity converges as the constellation size M

goes to infinity. Finally, we extend the capacity analysis to the multiuser AJ-MDFH system

(MC-AJ-MDFH) and show that it outperforms the multiple access scheme for conventional

FH (FHMA).

Chapter 5 summarizes the contributions and conclusions of the dissertation. An outline

of future work is also provided.
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Chapter 2

COGNITIVE JAMMING MODELING AND CLASSIFICATION

In this chapter, we consider cognitive jamming modeling and classification based on time-

frequency analysis and the relative correlation between the signal and the jamming inter-

ference. We introduce the general concepts of time-varying jamming coherence time and

time-frequency jamming coherence bandwidth, and propose a new jamming classification

scheme based on these parameters. We also introduce the concept of disguised jamming,

for which the jamming is highly correlated with the signal, and has a power level close or

equal to the signal power. We point out that very often, disguised jamming can be much

more harmful than the traditional strong jamming. Algorithms based on time-frequency

analysis and approximation theory are developed to estimate the time-varying jamming co-

herence time and the time-frequency jamming coherence bandwidth for both stationary and

locally stationary jamming. Simulation examples are provided to demonstrate the proposed

approaches.

2.1 Introduction

One of the most commonly used techniques for limiting the effectiveness of an opponent’s

communications is referred to as jamming. Intentional jamming, also known as hostile jam-

ming, intends to disable the legitimate transmission by saturating the receiver with noise

or false information through deliberate radiation of radio signals, and thus significantly de-

creasing the signal-to-interference-plus-noise ratio (SINR). In literature, jamming signals are

generally categorized into three classes: (i) Band jamming, generally modeled as a zero-mean

wide sense stationary Gaussian random process with a flat power spectral density (PSD) over

the bandwidth of interest. Band jamming is further classified into full-band jamming [28] and

partial-band jamming [31]; (ii) Tone jamming, typically a sinusoid waveform whose power
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is concentrated on the carrier frequency. Tone jamming includes single-tone jamming and

multi-tone jamming [27]. (iii) Partial-time jamming, modeled as a two-state Markov process,

for which the jammer is on in state 1, and is off in state 0. State 1 occurs with probability

of ρ, and state 0 occurs with probability (1− ρ) [33].

Existing work on jamming detection and jamming prevention was generally targeted at

a particular jamming model at a time. That is, the jamming pattern is assumed to be

known and invariant during the signal transmission period, see [54, 55, 56], for example.

In practice, however, the jammer may very likely switch frequently from one pattern to

another, with each jamming pattern only lasting a very short period of time. In other

words, the jammer may launch smart, cognitive jamming, also known as adaptive jamming

or time-varying jamming. Note that no particular anti-jamming system is effective under all

jamming attacks. For optimum jamming mitigation, the transmitter has to be cognitive as

well. Cognitive jamming modeling and classification are critical for dynamic anti-jamming

system design.

This chapter focuses on cognitive jamming modeling and classification based on time-

frequency analysis. We introduce the concepts of time-varying jamming coherence time and

time-frequency jamming coherence bandwidth. By comparing the time-varying jamming

coherence time with the signal symbol period, we classify the jamming into fast jamming

and slow jamming; By comparing the time-frequency jamming coherence bandwidth with

the signal bandwidth, we classify the jamming into flat jamming and frequency selective

jamming. Note that at one time instant, the jamming coherence bandwidth may vary from

one frequency to another. Therefore, a multi-band signal may experience flat jamming and

frequency selective jamming simultaneously at different frequency bands. We also introduce

the concept of disguised jamming, where the jamming is highly correlated with the signal, and

has a power level close or equal to the signal power. It is complementary to the traditional

strong jamming. Algorithms based on time-frequency analysis and approximation theory

are provided to estimate the time-varying coherence time and time-frequency coherence
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bandwidth for stationary jamming and locally stationary jamming. Simulation results are

provided to demonstrate the proposed approaches.

2.2 Cognitive Jamming Modeling and Classification

Jamming interference can be divided into two classes: system inherent jamming and hostile

jamming. The system inherent jamming, such as the intersymbol interference caused by

multipath propagation, or multiuser interference due to simultaneous multiple access to the

same frequency bands, can generally be reduced or minimized using various interference

cancelation methods. In this section, we will focus on the characterization of random hostile

jamming through two perspectives: (i) The time-frequency analysis of the jamming statistics;

(ii) The correlation between the jamming and the signal.

2.2.1 Jamming Modeling using Time-Varying Power Spectral Density

We start with a single-input single-output AWGN channel. Let s(t) be the transmitted

signal, then the received signal can be written as:

r(t) = s(t) + n(t) + J(t), (2.1)

where n(t) is the white Gaussian noise, J(t) represents the hostile jamming signal. J(t) can

either be stationary or nonstationary. Let RJ (t, τ) = E{J(t+τ)J(t)} be the autocorrelation

function of J(t). The time-varying PSD is defined as

SJ (t, f) = F{RJ (t, τ)} =

∫ ∞
−∞

RJ (t, τ)e−j2πfτdτ. (2.2)

The time-varying jamming power is given by PJ (t) =

∫ ∞
−∞

SJ (t, f)df. We assume that PJ (t)

is finite and PJ (t) ≤ PJ,max, where PJ,max is the maximum jamming power. The reason that

we allow the jamming power to be time-varying, rather than always using the total available

jamming power, is because that strong jamming that uses the whole jamming power may
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not always be the worst jamming [57]. If J(t) is wide-sense stationary, then RJ (t, τ), SJ (t, f)

and PJ (t) all become time-invariant.

It turns out that all the existing jamming models can be characterized using the time-

varying power spectral density, SJ (t, f). In fact, let f0 and f1 be the start and ending

frequency of the available frequency band, respectively; [t0, t1] the time duration period of

the message signal, and PJ the constant jamming power.

• If SJ (t, f) =
PJ

f1 − f0
, NJ ,∀f ∈ [f0, f1],∀t ∈ [t0, t1], then J(t) with PSD SJ (t, f) is

reduced to the traditional full-band jamming. Partial-band jamming can be defined in

a similar manner.

• If SJ (t, f) = PJδ(f − fk),∀t ∈ [t0, t1], where fk ∈ [f0, f1] and δ is the Dirac delta

function, then we obtain the single-tone jamming. For multi-tone jamming,

SJ (t, f) =
K∑
k=1

PJ (t, k)δ(f − fk), s.t.
K∑
k=1

PJ (t, k) = PJ , (2.3)

where K is the number of jamming tones, and PJ (t, k) stands for the jamming power

allocated for the kth tone fk.

• If ∀f ∈ [f0, f1],

SJ (t, f) =


0, if t ∈ [t0, tm) or t ∈ (tn, t1],

PJ
f1 − f0

, if t ∈ [tm, tn],
(2.4)

where tm and tn (tm ≤ tn) are certain intermediate time instants within [t0, t1], then

we obtain the partial-time jamming.

Motivated by the observations above, we propose to model J(t) through 2D analysis of

RJ (t, τ) and its Fourier transform SJ (t, f).

2.2.2 Jamming Classification Based on Time-frequency Analysis

In this section, we introduce the concepts of time-varying jamming coherence time and time-

frequency jamming coherence bandwidth for J(t).
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• Time-varying jamming coherence time: For a given time instant t, let [0, Tc(t)] be the

period over which RJ (t, τ) is essentially non-zero and flat. This implies that J(t + τ)

and J(t) are highly correlated when τ ≤ Tc(t). We define Tc(t) as the time-varying

jamming coherence time of J(t). Tc(t) is used to characterize the time-varying nature

of J(t) in the time domain. In other words, Tc(t) is a statistical measure of the time

duration over which J(t) is essentially invariant.

• Time-frequency jamming coherence bandwidth: For a given time instant t and frequency

υ, let [υ−Bc(t, υ)

2
, υ+

Bc(t, υ)

2
] be the frequency range over which the magnitude of the

time-varying jamming PSD, |SJ (t, f)|, is essentially nonzero and can be considered to

be flat. That is, at time instant t, two frequency components around υ with separation

greater than Bc(t, υ) are affected differently by the jamming. We define Bc(t, υ) as the

time-frequency jamming coherence bandwidth at time t and frequency υ.

Let Ts and Bs be the symbol period and bandwidth of the information signal, respectively,

where Ts and Bs can be time-varying as well, such as in adaptive transmitters. We further

introduce the following jamming classification criterions:

• For any given time instant t, if Ts > Tc(t), then it means that the jamming changes

rapidly within the symbol duration of the signal, we say that the signal is experiencing

fast jamming at time t. Otherwise, we say that the signal is experiencing slow jamming.

• For any given time instant t, let fc(t) be the center frequency of the signal. If

Bc(t, fc(t)) > Bs, that is, the jamming coherence bandwidth at υ = fc(t) is larger

than the signal bandwidth, we say that the signal is experiencing flat jamming at time

t. Otherwise, we say that the signal is experiencing frequency selective jamming. For

multi-carrier signals, Bc(t, υ) needs to be evaluated at each carrier frequency. There-

fore, a multi-band signal may experience flat jamming and frequency selective jamming

simultaneously at different frequency bands.
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Remark 1 Comparing with the traditional time-varying channel modeling, it should be

pointed out that our jamming model is based on the time-frequency statistics of J(t), while

the channel model is based on the statistics of the time-varying channel impulse response

h(t, τ), which is the system response at t to an impulse applied at t− τ .

2.2.3 Strong Jamming and Disguised Jamming

Let Ps(t) and PJ (t) denote the time-varying signal power and jamming power, respectively. If

PJ (t) >> Ps(t), we say that the signal is experiencing strong jamming. Most communication

systems become paralyzed under strong jamming attacks. However, with recent advances

in anti-jamming system design [57], we can see that strong jamming may not be the worst

jamming. On the other hand, disguised jamming, where the jamming is highly correlated

with the signal and has a power level close or equal to the signal power, can be more harmful.

Consider the cross-correlation of the signal s(t) and jamming interference J(t) defined as

Rs,J (t1, t2) = E{s(t1)J(t2)}. For band jamming or tone jamming, we are more interested

in the case t1 = t2 = t. During the (k + 1)th symbol interval [kTs, (k + 1)Ts], we can

approximate the cross-correlation between s(t) and J(t) with the time average

ρk =
1

Ts
√
Ps,kPJ,k

∫ (k+1)Ts

kTs
s(t)J(t)dt, (2.5)

where Ps,k =
1

Ts

∫ (k+1)Ts

kTs
s2(t)dt and PJ,k =

1

Ts

∫ (k+1)Ts

kTs
J2(t)dt.

Note that 0 ≤ |ρk| ≤ 1. We say that J(t) is a disguised jamming over [kTs, (k + 1)Ts] if

1. s(t) and J(t) are highly correlated. More specifically, |ρk| > ρ0, where ρ0 is an

application-oriented, predefined threshold.

2. The jamming-to-signal ratio (JSR) is close to 0dB. More specifically, |PJ
Ps
− 1| < εP ,

where εP is an application-oriented, predefined jamming-to-signal ratio threshold.
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Disguised partial-time jamming is generally targeted at partial-time transmissions, for which

the signal is transmitted on certain time slots within a frame. To locate disguised jamming

in this scenario, (2.5) should be extended to the case t1 6= t2.

Intuitively, disguised jamming makes it difficult for the receiver to identify the true signal

from disguised interference. To combat with disguised jamming, the transmitter and the

receiver need to have some preshared secret information, which can be used as the secure

ID for the true signal so that it can be effectively extracted [57]. On the other hand,

study on disguised jamming can also be used in electronic interference of an opponent’s

communication.

2.3 Estimation of Time-Varying Jamming Coherence Time and
Time-Frequency Jamming Coherence Bandwidth

For jamming classification, we consider two scenarios: (i) J(t) is stationary; (ii) J(t) is

locally stationary [58, 59, 60], which means that for any t, there exists a time interval of size

l(t), [t − l(t)

2
, t +

l(t)

2
], such that J(t) can be approximated by a stationary process within

this interval. The size of the intervals, l(t) may change with time t. This assumption is

reasonable in the sense that a particular jamming pattern may last for a short time and then

the jammer switches to another pattern.

2.3.1 Stationary Jamming

When J(t) is stationary, the autocorrelation function RJ (t, τ) = E{J(t + τ)J(t)} and its

Fourier transform SJ (t, f) are both independent of t. We have RJ (τ) = E{J(t + τ)J(t)}

and SJ (f) = F{RJ (τ)} =

∫ ∞
−∞

RJ (τ)e−j2πfτdτ. In this case, Tc(t) and Bc(t, υ) become

time-invariant, and are denoted as Tc and Bc(υ), respectively.

By definition, [0, Tc] is the period over which RJ (τ) is flat and essentially nonzero. That

is,

|RJ (τ)| > α0RJ (0), (2.6)
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where α0 ∈ [0.5, 0.95] is a predefined constant for coherence time estimation.

For any given frequency υ, let [υ− Bc(υ)

2
, υ+

Bc(υ)

2
] be the frequency range over which

SJ (f) is essentially nonzero and can be considered to be flat. Consider the case that SJ (f)

has only one main lobe in the positive frequency range, centered at fc. (i) When fc = 0,

J(t) is a baseband stationary process. For υ = 0, Bc(0) can be estimated through

∫ Bc(0)
2

−Bc(0)
2

|SJ (f)|2df ≥ α1‖SJ‖22, (2.7)

where α1 ∈ [0.5, 0.95] is a predefined constant for coherence bandwidth estimation. For any

υ 6= 0, Bc(υ) can be estimated from Bc(0) as: Bc(υ) = Bc(0) − 2|υ|, if 0 < |υ| < Bc(0)

2
;

Bc(υ) = 0, if |υ| ≥ Bc(0)

2
. (ii) When fc > 0, J(t) is a passband stationary process. For

|υ| = fc, Bc(υ) can be estimated through

∫ fc+
Bc(υ)

2

fc−
Bc(υ)

2

|SJ (f)|2df ≥ α1

2
‖SJ‖22. (2.8)

For |υ| 6= fc, Bc(υ) can be estimated from Bc(fc) as: Bc(υ) = Bc(fc) − 2||υ| − fc|, if

0 < ||υ| − fc| <
Bc(fc)

2
; Bc(f) = 0, if ||υ| − fc| ≥

Bc(fc)

2
.

2.3.2 Locally Stationary Jamming

2.3.2.1 Definition

First, partition the active time axis into intervals [tp, tp+1] of size lp = tp+1 − tp, with

lim
p→∞

tp =∞ and lim
p→−∞

tp = −∞. We cover each interval [tp, tp+1] with a window function

gp(t). We construct the window function gp(t) such that it satisfies the following conditions:

(i) For ∀p ∈ Z, the support of gp(t) only intersects with the support of gp−1(t) and gp+1(t).

The supports of gp(t) and gp−1(t) intersects in [tp − ηp, tp + ηp]. (ii) gp(t) and gp−1(t) are

symmetric with respect to tp, i.e., gp(t) = gp−1(2tp − t) over [tp − ηp, tp + ηp]. (iii) For

∀t ∈ R,
∞∑

p=−∞
|gp(t)|2 = 1. The window functions are illustrated in Figure 2.1. It can be
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shown that under these three conditions, the local cosine family defined by{
φp,k(t) = gp(t)

√
2

lp
cos

[
π(k + 1/2)

lp
(t− tp)

]}
k∈N,p∈Z

(2.9)

formulates an orthonormal basis of L2(R) [61]. From (2.9), we can see that the support of

φp,k(t) is [tp − ηp, tp+1 + ηp+1], and its center frequency is ξp,k =
π(k + 1/2)

lp
.

1pt − ptp pt η− p pt η+
1pt +

1( )pg t− ( )pg t 1( )pg t+

Figure 2.1: An example of window functions.

For RJ (t, τ) = E{J(t+τ)J(t)}, let s = t+τ , then RJ (t, τ) can be rewritten as RJ (t, s) =

E{J(t)J(s)}. For ∀f ∈ L2(R), define the covariance operator by

Tf(t) =

∫ ∞
−∞

RJ (t, s)f(s)ds. (2.10)

Following [61], locally stationary jamming processes can be defined as follows.

Definition 1 A jamming J(t) is said to be locally stationary if there exists a local cosine

basis {φp,k(t)}k∈N,p∈Z such that for some constant µ < 1 and A > 0, we have that for all

p 6= q,

max(lp, lq)

min(lp, lq)
≤ A|p− q|µ, (2.11)

and for all n > 1, we can find a constant Qn such that for all (p, q, j, k) ∈ Z2 × N2,

∣∣〈Tφp,k, φq,j〉∣∣ ≤ Qn
(1 + |p− q|n)(1 + |max(lp, lq)(ξp,k − ξq,j)|n)

. (2.12)

Here {lp} specify the supports of {φp,k(t)} and indicate the intervals over which J(t) is

approximately stationary. Condition (2.12) implies that |〈Tφp,k, φq,j〉| decays rapidly as we
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increase |p − q| and |ξp,k − ξq,j |. This means that the operator T is “almost” diagonalized

by {φp,k(t)}. In other words, each φp,k(t) is “almost” an eigenvector of T .

In fact, define u = t+ τ/2, then

RJ (t, τ) = E{J(t+ τ)J(t)}

= E{J(u+
τ

2
)J(u− τ

2
)} , CJ (u, τ). (2.13)

Define WJ (u, f) =

∫ ∞
−∞

CJ (u, τ)e−j2πfτdτ. Note that for a locally stationary process, if

u ∈ [x− l(x)

2
, x+

l(x)

2
], then

CJ (u, τ) ≈ 0, if τ > d(x), (2.14)

where d(x) is the so-called decorrelation length, and generally d(x) <
l(x)

2
. By definition,

the time-varying jamming coherence time at t = x should satisfy Tc(x) ≤ d(x). For any

ξ ∈ R and ∀(u, f) ∈ [x − l(x)

2
, x +

l(x)

2
] × [

ξ

2π
− 1

2d(x)
,
ξ

2π
+

1

2d(x)
], WJ (u, f) can be

approximated by WJ (u, f) ≈ WJ (x, ξ). Let gx(t) be a smooth window function with support

[x − l(x)

2
, x +

l(x)

2
]. The local cosine function corresponds to the time-frequency rectangle

[x− l(x)

2
, x+

l(x)

2
]×[

ξ

2π
− 1

2d(x)
,
ξ

2π
+

1

2d(x)
] can be represented as φx,ξ(t) = gx(t) cos(ξt+θ).1

Following the argument in [61],

Tφx,ξ(t) ≈ WJ (x, ξ)φx,ξ(t). (2.15)

That is, φx,ξ(t) is almost an eigenvector of T .

2.3.2.2 Best Basis Search and Spectrum Estimation

Let {φn(t)}n∈N be an orthonormal basis of L2(R), which implies that for any f(t) ∈ L2(R),

f(t) can be decomposed as f(t) =
∑
n∈N
〈f, φn〉φn(t). It follows that Tf(t) =

∑
n∈N
〈f, φn〉Tφn(t).

1The local cosine function φp,k(t) defined in (2.9) can be represented as φxp,ξp,k
(t) =

gxp(t) cos(ξp,kt + θp,k) with xp =
1

2
(tp + tp+1), gxp(t) =

√
2

lp
gp(t), ξp,k =

π(k + 1/2)

lp
and

θp,k = −ξp,ktp.
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That is, the operator T is completely determined by Tφn(t). For any m ∈ N,

Tφm(t) =
∑
n∈N
〈Tφm, φn〉φn(t). (2.16)

Note that in practice, Tf(t) can only be approximated by a finite sum. A natural question

is: for a fixed number of items in the sum, which basis will result in the best approximation?

Let D = {Bγ}γ∈Γ be a dictionary of orthonormal basis Bγ = {φγn}n∈N of L2(R), indexed by

γ ∈ Γ where Γ denotes the collection of all the index sets in the dictionary. Define B
γ
K as

〈BγKφ
γ
m, φ

γ
n〉 =

 〈Tφ
γ
m, φ

γ
n〉, if |n−m| ≤ K,

0, Otherwise.
(2.17)

For a fixed K, the best basis is the one which minimizes the norm ‖T −BγK‖s, defined as

‖T −BγK‖s = sup
‖f‖2=1

‖(T −BγK)f‖2. (2.18)

Since local cosine functions are approximate eigenvectors of the corresponding covariance

operator T , we search the best basis in a dictionary of local cosine bases, with K = 0 in

(2.17) such that the operator T is diagonalized. Once the best basis {φγ0
n }Nn=1 is selected,

we have

RJ (t, s) = E{J(t)J(s)}

≈ E


N∑
m=1

〈J, φγ0
m 〉φ

γ0
m (t)

N∑
n=1

〈J, φγ0
n 〉φ

γ0
n (s)


=

N∑
m=1

N∑
n=1

E
{
〈J, φγ0

m 〉〈J, φ
γ0
n 〉
}
φ
γ0
m (t)φ

γ0
n (s), (2.19)

where E
{
〈J, φγ0

m 〉〈J, φ
γ0
n 〉
}

can be rewritten as

E
{
〈J, φγ0

m 〉〈J, φ
γ0
n 〉
}

= E

{∫ ∞
−∞

J(t)φ
γ0
m (t)dt ·

∫ ∞
−∞

J(s)φ
γ0
n (s)ds

}
=

∫ ∞
−∞

∫ ∞
−∞

E{J(t)J(s)}φγ0
m (t)φ

γ0
n (s)dtds

=

∫ ∞
−∞

∫ ∞
−∞

R(t, s)φ
γ0
n (s)ds · φγ0

m (t)dt

= 〈Tφγ0
n , φ

γ0
m 〉. (2.20)
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Following from (2.19) and (2.20), we have

RJ (t, s) =
N∑
m=1

N∑
n=1

〈Tφγ0
n , φ

γ0
m 〉φ

γ0
m (t)φ

γ0
n (s) ≈

N∑
n=1

〈Tφγ0
n , φ

γ0
n 〉φ

γ0
n (t)φ

γ0
n (s). (2.21)

Let dn = 〈Tφγ0
n , φ

γ0
n 〉 = E{ |〈J, φγ0

n 〉|2}, then the time-varying autocorrelation function can

be estimated as

RJ (t, τ) ≈
N∑
n=1

dnφ
γ0
n (t)φ

γ0
n (t+ τ). (2.22)

Let xn and ξn denote the center time and the center frequency corresponding to φ
γ0
n , respec-

tively. That is,

φ
γ0
n (t) = gxn(t) cos(ξnt+ θn). (2.23)

In the time domain, the smooth function gxn(t) is approximately nonzero and flat over the

time support [xn−
l(xn)

2
, xn+

l(xn)

2
]. Assuming J(t) has a finite duration, and can be covered

by P window functions {gp(t)}Pp=1 associated with the best basis functions {φγ0
n }Nn=1. Let

Np denote the set of indexes for the best basis functions corresponding to gp(t). Then,

gxn(t) =

√
2

lp
gp(t) for any n ∈ Np, and ∪Pp=1Np = {1, · · · , N}. We have

RJ (t, τ) ≈
P∑
p=1

2

lp
gp(t)gp(t+ τ)

∑
n∈Np

dn cos(ξnt+ θn) cos(ξnt+ ξnτ + θn). (2.24)

For a given time t ∈ (tp, tp+1), RJ (t, τ) is mainly determined by |Np| cosine terms in (2.24)

corresponding to a set of basis functions {φγ0
n (t)}n∈Np (See Figure 2.1). Note that dn can

be estimated from Q realizations of J(t) using the best basis as

d̂n =
1

Q

Q∑
q=1

|〈Jq, φγ0
n 〉|2. (2.25)

Therefore, RJ (t, τ) can be estimated by replacing dn with d̂n in (2.24). For any t, Tc(t) can

then be estimated from RJ (t, τ) using the method described in (2.6). Note that at the border

time instant t = tp (p = 2, · · · , P ), RJ (tp, τ) is determined by cosine terms associated with

both Np−1 and Np. For conservative estimation, we have Tc(tp) , min{Tc(tp − τε), Tc(tp +

τε)} where τε is a small time difference.
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Following from (2.22), the time-varying PSD can be obtained as

SJ (t, f) ≈
N∑
n=1

dne
j2πftφ

γ0
n (t)Φ

γ0
n (f), (2.26)

where Φ
γ0
n (f) =

∫ ∞
−∞

φ
γ0
n (τ)e−j2πfτdτ . In the frequency domain, Gxn(f+

ξn
2π

) and Gxn(f−

ξn
2π

) are approximately nonzero and flat over the frequency ranges [
ξn
2π
− 1

2l(xn)
,
ξn
2π

+
1

2l(xn)
]

and [− ξn
2π
− 1

2l(xn)
,− ξn

2π
+

1

2l(xn)
], respectively. Note that

Φ
γ0
n (f) =

1

2

[
Gxn(f − ξn

2π
)ejθn +Gxn(f +

ξn
2π

)e−jθn
]
, (2.27)

where Gxn(f) =

∫ ∞
−∞

gxn(τ)e−j2πfτdτ . It then follows from (2.24) - (2.27) that

SJ (t, f) ≈
P∑
p=1

1

lp
gp(t)e

j2πft
∑
n∈Np

dn cos(ξnt+ θn)

[
Gp(f −

ξn
2π

)ejθn +Gp(f +
ξn
2π

)e−jθn
]
.

(2.28)

For any t ∈ (tp, tp+1), |SJ (t, f)| is also mainly determined by |Np| terms in (2.28) correspond-

ing to {φγ0
n (t)}n∈Np . More specifically, over the two frequency range [

ξn
2π
− 1

2lp
,
ξn
2π

+
1

2lp
]

and [− ξn
2π
− 1

2lp
,− ξn

2π
+

1

2lp
], |SJ (t, f)| can be approximated by |dn

lp
cos(ξnt + θn)|. Hence,

Bc(t, υ) can be estimated from |SJ (t, f)| using the method described in (2.7)-(2.8). Similarly,

at each border time instant t = tp, Bc(tp, υ) , min{Bc(tp − τε, υ), Bc(tp + τε, υ)}.

2.3.3 Binary Tree Based Basis Search Algorithm

We now discuss a practical binary tree based algorithm for fast “best basis” search.

2.3.3.1 Dictionary Construction

To reduce the complexity of the best basis search, a dictionary with admissible binary tree

structure is preferred [62, 63]. The admissible binary tree is defined by any binary tree whose

nodes have either 0 or 2 branches. Each tree node corresponds to a time interval. Assume the
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jamming J(t) is observed over 0 ≤ t ≤M . The root of the tree corresponds to the whole time

interval [0,M ]. The left and right branch nodes correspond to the time interval [0,M/2] and

[M/2,M ], respectively. Each node is further split until the tree depth ND is reached. The

node (p, j) at depth j and position p corresponds to the time interval [pM2−j , (p+1)M2−j ].

The window function g
j
p(t) is used to cover the time interval corresponding to each node

(p, j). Given a smooth function β(t) which satisfies: β(t) = 0 if t < −η, β(t) = 1 if t > η,

and β2(t) + β2(−t) = 1. The window function can be constructed as

g
j
p(t) =


β(t− pM2−j), if t < pM2−j + η,

1, if pM2−j + η ≤ t ≤ (p+ 1)M2−j − η,

β((p+ 1)M2−j − t), if t > (p+ 1)M2−j − η,

(2.29)

where M2−j ≥ 2η. A full admissible binary tree with depth ND = 2 and corresponding

window functions are illustrated in Figure 2.2.

0
0 ( )g t

1
0 ( )g t 1

1 ( )g t

2
0 ( )g t 2

1 ( )g t 2
2 ( )g t 2

3 ( )g t

1j =

0j =

2j =

Figure 2.2: An example of full admissible binary tree with depth ND = 2 and
corresponding window functions.

Note that the window function g
j
p(t) is associated with the local cosine family through{

φ
j
p,k(t) = g

j
p(t)

√
2

M2−j
cos

[
π

(
k +

1

2

)
t−M2−jp
M2−j

]}
0≤k<M2−j

. (2.30)

For leaf nodes from the admissible binary tree indexed by γ, i.e., (p, j) ∈ γ, the local cosine

family Bγ = {φjp,k(t)}
(p,j)∈γ,0≤k<M2−j formulates an orthogonal basis [63]. The dictionary
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D = {Bγ}γ∈Γ is constructed with all admissible binary trees of depth no more than ND.

Given an orthogonal basis Bγ and Q realizations of J(t), following (2.25), the corresponding

diagonal coefficients d
j
p,k = 〈Tφjp,k(t), φ

j
p,k(t)〉 = E{ |〈J, φjp,k(t)〉|2} can be estimated as

d̂
j
p,k =

1

Q

Q∑
q=1

|〈Jq, φjp,k〉|
2.

2.3.3.2 Best Basis Search Using Dynamic Programming

Let C(p, j) =
M2−j−1∑
k=0

|d̂jp,k|
2. The Hilbert-Schmidt norm of the diagonal operatorB

γ
0 defined

in (2.17) can be estimated as ‖Bγ0 ‖
2
h =

∑
(j,p)∈γ

C(p, j). To obtain the best basis, we need to

search in the dictionary for best basis that maximizes ‖Bγ0 ‖
2
h. Let Bpj denote the set of basis

functions {φjp,k(t)}
0≤k<M2−j and Opj the set of best basis functions associated with node

(p, j). It can be shown that ‖Bγ0 ‖
2
h is maximized if we construct the Opj using the following

rule [63]:

Opj =

 O
2p
j+1 ∪ O

2p+1
j+1 , if C(p, j) < C(2p, j + 1) + C(2p+ 1, j + 1),

Bpj , otherwise.
(2.31)

By making best basis selection at each node recursively using bottom-up progression, the

overall best basis can be determined at the root node Bγ0 = O0
0. The computational

complexity of the best basis search is reduced to O(M [log2M ]2). The best basis search

algorithm is summarized in Table 2.1.

2.4 Simulation Results

In this section, we illustrate the estimation of the time-varying jamming coherence time and

the time-frequency jamming coherence bandwidth through simulation examples. M = 4096

samples are obtained from the random jamming process, which is assumed to be real-valued

zero-mean Gaussian. The time duration of the jamming is normalized to 1, and the frequency
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Table 2.1: The best basis search algorithm.

for j = (J − 1) : −1 : 0 and p = 0 : (2j − 1) do

Compute C(p, j) =
M2−j−1∑
k=0

|d̂jp,k|
2

if j == J − 1 then
Mark node (p, j) as leaf

else
if C(p, j) ≥ C(2p, j + 1) + C(2p+ 1, j + 1) then

Mark node (p, j) as leaf
else

Leave node (p, j) unmarked and C(p, j) = C(2p, j+1)+C(2p+
1, j + 1)

end if
end if

end for

is normalized by the sampling rate. The jamming-to-noise ratio (JNR) is defined as the ratio

of the jamming power to the noise power.

Example 1: Stationary jamming The jamming here has coherence time Tc = 7/4096,

and coherence bandwidth Bc(0) = 0.1056. The JNR is set to be 10dB. We use the Welch-

Bartlett method [64] to estimate the jamming PSD SJ (f), and choose α0 = 0.5, α1 = 0.95.

The true and estimated SJ (f) are illustrated in Figure 2.3. The estimated jamming coherence

time and bandwidth are T̂c = 6/4096 and B̂c(0) = 0.1060, respectively. We can see that the

estimation results are quite accurate.

Example 2: Locally stationary jamming In this example, the jamming consists

of 3 stationary intervals with equal length. The JNRs in the three intervals are set to

be (10, 15, 15)dB, and the normalized center frequencies of SJ (t, f) in the three intervals

are (0, 0.15, 0.3), respectively. The estimated best basis consists of local cosine functions

associated with 5 different window supports, corresponding to intervals l1 ∼ l5. The true and

estimated RJ (t, τ) and |SJ (t, f)| are illustrated in Figure 2.4 - Figure 2.7, respectively. It can

be observed that |ŜJ (t, f)| concentrates within the same time-frequency areas as |SJ (t, f)|.
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Figure 2.3: Example 1: The true and estimated jamming PSD SJ (f).

For example, for t = 0.4375 and υ = 0.15, Tc(0.4375) = 2/4096 and Bc(0.4375, 0.15) =

0.0801. With α0 = 0.5, α1 = 0.7, the estimated results are: T̂c(0.4375) = 1/4096 and

B̂c(0.4375, 0.15) = 0.0762.

2.5 Summary

This chapter provides a 2D framework for cognitive jamming modeling and classification. For

the first time in literature, all the existing jamming models are summarized and extended to

the time-varying case under one general scheme. We further introduce the concepts of time-

varying jamming coherence time and time-frequency jamming coherence bandwidth, and

classify jamming as fast versus slow jamming, and flat versus frequency selective jamming.

We also introduced the concept of disguised jamming, as it can be much more harmful

than the traditional strong jamming. Time-frequency analysis and approximation theory

31



Figure 2.4: Example 2: The true jamming autocorrelation function RJ (t, τ). For
interpretation of the references to color in this and all other figures, the reader is referred
to the electronic version of this dissertation.

based algorithms are developed to estimate these statistics for both stationary and locally

stationary jamming.
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Figure 2.5: Example 2: The estimated RJ (t, τ) using time-frequency analysis.
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Figure 2.6: Example 2: The magnitude of the true time-varying jamming PSD |SJ (t, f)|.
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Figure 2.7: Example 2: The magnitude of the estimated |SJ (t, f)| using time-frequency
analysis.
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Chapter 3

ANTI-JAMMING MESSAGE-DRIVEN FREQUENCY HOPPING SYSTEM

DESIGN

In this chapter, we consider robust and spectrally efficient anti-jamming system design in

wireless networks. We start with message-driven frequency hopping (MDFH), which is re-

cently proposed as a highly efficient spread spectrum technique. It is observed that while

MDFH is robust under strong jamming, it experiences considerable performance losses under

disguised jamming from sources that mimic the true signal. To overcome this limitation,

we propose an anti-jamming MDFH (AJ-MDFH) system. The main idea is to transmit

a secure ID sequence along with the information stream. The ID sequence is generated

through a cryptographic algorithm using the shared secret between the transmitter and the

receiver, it is then exploited by the receiver for effective signal extraction. It is shown that

AJ-MDFH can effectively reduce the performance degradation caused by disguised jamming,

and is also robust under strong jamming. In addition, we extend AJ-MDFH to multi-carrier

case, which can increase the system efficiency and jamming resistance significantly through

jamming randomization and frequency diversity, and can readily be used as a collision-free

multiple access system.

3.1 Introduction

As a widely used spread spectrum technique, frequency hopping (FH) was originally designed

for secure communication under hostile environments [65, 66, 67, 68, 69]. In conventional

FH, each user hops independently based on its own PN sequence, a collision occurs whenever

there are two or more users transmitting over the same frequency band. Mainly limited by

the collision effect, the spectral efficiency of conventional FH is very low [70, 50]. To improve

the spectral efficiency, FH systems that exploit high-dimensional modulation scheme have
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been studied in the literature [71, 72, 73, 74, 75]. However, the performance of these systems

are still limited by the collision effect, also known as self-jamming.

Recently, a three-dimensional modulation scheme, known as message-driven frequency

hopping (MDFH), was proposed in [49]. The basic idea of MDFH is that part of the message

acts as the PN sequence for carrier frequency selection at the transmitter. More specifically,

selection of carrier frequencies is directly controlled by the encrypted information stream

rather than by a pre-selected pseudo-random sequence as in conventional FH. The most

significant property of MDFH is that: by embedding a large portion of information into the

hopping selection process, additional information transmission is achieved with no extra cost

on either bandwidth or power. In fact, transmission through hopping frequency control adds

another dimension to the signal space, and the resulted coding gain can increase the system

spectral efficiency by multiple times [49].

In this chapter, we analyze the performance of MDFH under hostile jamming. It is

observed that: MDFH is particularly powerful under strong jamming scenarios, and outper-

forms the conventional FH by big margins. The underlying argument is that: for MDFH,

even if the signal is jammed, strong jamming can enhance the power of the jammed signal

and hence increases the probability of correct detection. When the system experiences dis-

guised jamming, that is, when the jamming is highly correlated with the signal, and has a

power level close or equal to the signal power, it is then difficult for the MDFH receiver to

distinguish jamming from the true signal, resulting in performance losses.

To improve the performance of MDFH under disguised jamming, in this chapter, first,

we propose an anti-jamming MDFH (AJ-MDFH) scheme. The main idea is to insert some

signal identification (ID) information during the transmission process. This secure ID infor-

mation is generated through the Advanced Encryption Standard (AES) [76] using the shared

secret between the transmitter and the receiver. The ID information can be exploited by the

receiver to locate the true carrier frequency. Moreover, protected by advanced encryption

techniques, it is computationally infeasible for malicious users to recover the ID sequence.
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In other words, in AJ-MDFH, secure ID signals are introduced to distinguish the true infor-

mation channel from the disguised channels invoked by jamming interference. Our analysis

indicates that: comparing with MDFH, AJ-MDFH can effectively reduce the performance

degradation caused by disguised jamming. At the same time, its spectral efficiency is very

close to that of MDFH, which is several times higher than that of conventional FH.

Second, we investigate ID constellation design and its impact on the performance of

AJ-MDFH under both noise jamming and disguised jamming. Noise jamming, where the

jamming is modeled as Gaussian noise, has been widely adopted in literature [77, 78, 79].

But disguised jamming can be much more harmful for most communication systems. For

AJ-MDFH, the worst case disguised jamming is ID jamming, for which the jammer tries to

mimic the ID signal, and sends symbols from the same constellation as that of the ID signal.

We show that under noise jamming, the detection error probability is mainly determined by

the signal to jamming and noise ratio. In this case, for a given power constraint, constant

modulus constellation delivers the best results in terms of detection error probability. Under

ID jamming, the situation is more complex. In the ideal case when the system is noise-

free, increasing the ID constellation size can increase the ID uncertainty, hence reduce the

probability of error. In this case, the ideal constellation size is M =∞. However, when noise

is present, we prove that the detection error probability converges as M goes to infinity. In

other words, there exists a threshold Mt, increasing the constellation size over Mt will result

in little improvement in error probability. This result justifies the use of practical, finite size

constellations in AJ-MDFH.

Finally, we extend the single carrier AJ-MDFH to multi-carrier AJ-MDFH (MC-AJ-

MDFH). It is observed that by exploiting secure group generation mechanism, MC-AJ-

MDFH can increase the system efficiency and jamming resistance significantly through jam-

ming randomization and enriched frequency diversity. Moreover, by assigning different car-

rier groups to different users, MC-AJ-MDFH can also be used as a collision-free multiple

access system. We analyze the proposed system through both theoretical derivation as well
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as numerical results. Our analysis indicates that: while AJ-MDFH is much more robust

than MDFH under various jamming attacks, its spectral efficiency is very close to that of

MDFH, which is several times higher than that of conventional FH.

This chapter is organized as follows. In Section 3.2, the anti-jamming performance of

MDFH is analyzed under both strong jamming and disguised jamming. In Section 3.3, the

proposed AJ-MDFH scheme is introduced, together with the carrier detection metrics. ID

constellation design is investigated in Section 3.4. The multi-carrier extension of AJ-MDFH

is introduced in Section 3.5. Spectral efficiency is analyzed in Section 3.6. Simulation

examples are provided in Section 3.7 and we conclude in Section 3.8.

3.2 A Brief Review of Message-Driven Frequency Hopping

In this section, we briefly review the message-driven frequency hopping (MDFH) system,

and evaluate its performance under different jamming scenarios.

,1Xn ,2nX ,n NhX Yn
Xn

Carrier Bit Vectors Ordinary 
Bit Vector

Figure 3.1: The nth block of the information.

3.2.1 System Description

The basic idea of MDFH is that a major part of the information is transmitted through

carrier frequency selection in the hopping process. In other words, the hopping pattern is

determined by the encrypted message information itself.

Let Nc be the total number of available channels, with {f1, f2, · · · , fNc} being the set of

all available carrier frequencies. The number of bits used to specify an individual channel
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Figure 3.2: Transmitter and receiver structure of MDFH, here ABS means taking the
absolute value.

here is Bc = blog2Ncc, where bxc denotes the largest integer less than or equal to x. If

Nc is a power of 2, then there exists a 1-1 map between the Bc-bit strings and the total

available channels; otherwise, when Nc is not a power of 2, we will allow some Bc-bit strings

to be mapped to more than one channel. Without loss of generality, here we assume that

Nc = 2Bc .

Let Ω be the selected constellation that contains M symbols, each symbol in the constel-

lation represents Bs = log2M bits. Let Ts and Th denote the symbol period and the hop

duration, respectively, then the number of hops per symbol period is given by Nh =
Ts
Th

. We

assume that Nh is an integer larger than or equal to one.

The transmitter and the receiver structure of MDFH is shown in Figure 3.2. We start

by dividing the encrypted information stream into blocks of length L , NhBc + Bs. Each

block is parsed into NhBc carrier bits and Bs ordinary bits. The carrier bits are used to

determine the hopping frequencies, and the ordinary bits are mapped to a symbol which

is transmitted through the selected channels successively. Denote the nth block by Xn, as
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illustrated in Figure 3.1. Note that in MDFH, the whole block Xn is transmitted within one

symbol period.

At the receiver, the transmitting frequency is captured using a filter bank as in the FSK

receiver rather than using the frequency synthesizer. Recall that {f1, f2, · · · , fNc} is the

set of all available carrier frequencies. To detect the active frequency band, a bank of Nc

bandpass filters (BPF), each centered at fi (i = 1, 2, · · · , Nc), is deployed at the receiver front

end, followed by a demodulator equipped with matched filter and sampler. At each hopping

period, the carrier frequency (hence the information embedded in frequency selection) can

be blindly detected at each hop. The ordinary bits can then be extracted from the selected

channels through the regular demodulation process.

In a jamming-free environment, carrier frequency detection can be performed by selecting

the channel with maximum received power. However, when jamming is present, the Jamming

detection algorithm can be incorporated at the receiver to improve the system performance.

One way to do this is to use a threshold based detector as follows [80]:

1. Classify each channel according to the power detection threshold η. Let Pi denote the

received signal power over the ith channel. If Pi < η, then there is only noise over

channel i, we say that the channel is inactive; otherwise, if Pi ≥ η, we say that the

channel is active.

2. Let Ia = {i|Pi > η, i = 1, 2, · · · , Nc} be the set of the index of all the active channels,

then the estimated hopping frequency index, denoted by k̂, is determined by

k̂ = arg min
i∈Ia
{Pi}. (3.1)

The carrier bits can be recovered based on k̂; the ordinary bits are extracted following

the regular demodulation process.
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3.2.2 Performance of MDFH under Hostile Jamming

First, we introduce the concept of disguised jamming. Disguised jamming denotes the case

where the jamming is highly correlated with the signal, and has a power level close or equal

to the signal power. More specifically, let s(t) and J(t) be the user’s signal and jamming

interference, respectively. Define

ρ =
1

T0
√
PsPJ

∫ t2

t1

s(t)J∗(t)dt (3.2)

as the normalized cross-correlation coefficient of s(t) and J(t) over the time period [t1, t2],

where T0 = t2 − t1,

Ps =
1

T0

∫ t2

t1

|s(t)|2dt

and

PJ =
1

T0

∫ t2

t1

|J(t)|2dt.

We say that J(t) is a disguised jamming to signal s(t) over [t1, t2] if

1. J(t) and s(t) are highly correlated. More specifically, |ρ| > ρ0, where ρ0 is an

application-oriented, predefined correlation threshold.

2. The jamming to signal ratio (JSR) is close to 0dB. More specifically, |PJ
Ps
− 1| < εP ,

where εP is an application-oriented, predefined jamming-signal ratio threshold.

In this dissertation, we consider disguised jamming over each hopping period, that is,

[t1, t2] = [mTh, (m+ 1)Th] for some integer m. In the worst case, the constellation Ω and the

pulse shaping filter of the information signal are known to the jammer, the jammer can then

disguise itself by transmitting symbols from Ω over a fake channel using the same power

level. That is, J(t) = eiθs(t) for some phase θ.

We compare the performance of MDFH with that of conventional FH in AWGN channels,

under both noise jamming and disguised jamming. The result (with no channel coding) is

shown in Figure 3.3. The jamming-to-signal ratio is defined as JSR =
PJ
Ps

, where PJ and
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Figure 3.3: Performance comparison under single band jamming, Eb/N0 = 10dB,
Nc = 64, Nh = 3. MDFH uses QPSK modulation and conventional FH uses 4-FSK
modulation. In this case, the spectral efficiency of MDFH is roughly 3.3 times that of
conventional FH.

Ps denote the jamming power and signal power per hop, respectively. As can be seen,

MDFH delivers excellent performance under strong jamming (i.e., JSR� 1) scenarios, and

outperforms conventional FH by big margins. Note that in this case, the spectral efficiency

of MDFH is 3.3 times that of conventional FH. The underlying argument is that: when the

jamming power is much stronger than the signal power, jamming can be easily distinguished

from the true signal when they are in different bands; even if jamming collides with the

signal, the true carrier frequency can still be detected as jamming can even enhance the

power of the jammed channel and hence increases the correct detection probability. For

conventional FH, on the other hand, once the jamming power reaches a certain level, the

system performance is mainly limited by the probability that the signal is jammed.
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However, we also notice that under disguised jamming, the system experiences consider-

able performance losses, since it is difficult for the MDFH receiver to distinguish jamming

from the true signal. The sensitivity of MDFH to disguised jamming is influenced by the

SNR. To enhance the jamming resistance of MDFH under disguised jamming, we introduce

the anti-jamming MDFH (AJ-MDFH) system.

3.3 Anti-jamming MDFH (AJ-MDFH) System

3.3.1 Transmitter Design

The main idea here is to insert some signal identification (ID) information during the trans-

mission process. This secure ID information is generated through a cryptographic algorithm

using the shared secret between the transmitter and the receiver, and can be used by the re-

ceiver to locate the true carrier frequency. Our design goal is to reinforce jamming resistance

without sacrificing too much on spectral efficiency.

Carrier Frequency 
Selection
Baseband Signal

Generation

Modulation
PN Sequence
Generation

Encrypted 
Information

Secure ID Generation 

Encryption

Channel 
Coding Interleaving

Symbol 
Mapper

Initial 
Vector, Key

Figure 3.4: AJ-MDFH transmitter structure.

The transmitter structure of AJ-MDFH is illustrated in Figure 3.4. Each user is assigned

a secure ID sequence. We propose to replace the ordinary bits in MDFH with the ID bits.

In order to prevent impersonate attack, each user’s ID sequence needs to be kept secret from

the malicious jammer. The ID sequence can be generated using two steps as in [81]:

1. Generate a pseudo-random binary sequence using a 42-bit linear feedback shift register
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(LFSR) specified by the characteristic polynomial

x42 + x35 + x33 + x31 + x27 + x26 + x25 + x22 + x21 + x19

+x18 + x17 + x16 + x10 + x7 + x6 + x5 + x3 + x2 + x+ 1.

2. Take the output of LFSR as the plaintext, group it into blocks of length KL bits

(KL = 128, 192 or 256), and feed it into the Advanced Encryption Standard (AES)

[76] encrypter of key size KL. The AES output is then used as our ID sequence.

Recall that Bc = log2Nc and Bs = log2M , where Nc is the number of channels, and M

is the constellation size. We divide the source information into blocks of size Bc and divide

the ID sequence into blocks of size Bs. Denote the nth source information block and ID bits

block as Xn and Yn, respectively. Let fXn be the carrier frequency corresponding to Xn

and sn the symbol corresponding to ID bit-vector Yn. The transmitted signal can then be

represented as

s(t) =
√

2Re

{ ∞∑
n=−∞

sng(t− nTh)e
j2πfXnt

}

=
√

2Re


∞∑

n=−∞

Nc∑
i=1

αi,nsng(t− nTh)ej2πfit

 , (3.3)

where Th is the duration of each hop, g(t) is the pulse shaping filter,

αi,n =

 1 if fXn = fi,

0 otherwise.

3.3.2 Receiver Design

The receiver structure for AJ-MDFH is shown in Figure 3.5. The receiver regenerates the

secure ID through the shared secret (including the initial vector, the LFSR information

and the key). For each hop, the received signal is first fed into the bandpass filter bank.

The output of the filter bank is first demodulated, and then used for carrier bits (i.e., the

information bits) detection.
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3.3.2.1 Demodulation

Let s(t), J(t) and n(t) denote the ID signal, the jamming interference and the noise, respec-

tively. For AWGN channels, the received signal can be represented as

r(t) = s(t) + J(t) + n(t). (3.4)

We assume that s(t), J(t) and n(t) are independent of each other.

For i = 1, 2, · · · , Nc, the output of the ith ideal bandpass filter fi(t) is ri(t) = fi(t) ∗ r(t).

For demodulation, ri(t) is first shifted back to the baseband, and then passed through a

matched filter. At the nth hopping period, for i = 1, · · · , Nc, the sampled matched filter

output corresponds to channel i can be expressed as

ri,n = αi,nsn + βi,nJi,n + ni,n, (3.5)

where sn, Ji,n and ni,n correspond to the ID symbol, the jamming interference and the

noise, respectively; αi,n, βi,n ∈ {0, 1} are binary indicators for the presence of ID signal and

jamming, respectively. Note that the true information is carried in αi,n.

3.3.2.2 Signal Detection and Extraction

Signal detection and extraction is performed for each hopping period. For notation simplic-

ity, without loss of generality, we omit the subscript n in (3.5). That is, for a particular
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hopping period, (3.5) is reduced to:

ri = αis+ βiJi + ni, for i = 1, · · · , Nc. (3.6)

Define r = (r1, . . . , rNc), α = (α1, . . . , αNc), β = (β1, . . . , βNc), J = (J1, . . . , JNc) and

n = (n1, . . . , nNc), then (3.6) can be rewritten in vector form as:

r = sα + β · J + n. (3.7)

For single-carrier AJ-MDFH, at each hopping period, one and only one item in α is

nonzero. That is, there are Nc possible information vectors: α1 = (1, 0, . . . , 0),α2 =

(0, 1, . . . , 0), · · · ,αNc = (0, 0, . . . , 1). If αk is selected, and the binary expression of k is

b0b1 · · · bBc−1, withBc = blog2Ncc, then the estimated information sequence is b0b1 · · · bBc−1.

At each hopping period, the information symbol α, or equivalently, the hopping frequency

index k, needs to be estimated based on the received signal and the ID information which

is shared between the transmitter and the receiver. When the input information vectors are

equiprobable, that is, P (αi) =
1

Nc
for i = 1, 2, . . . , Nc, the MAP (maximum a posteriori

probability) detector is reduced to the ML (maximum likelihood) detector. For the ML

detector, the hopping frequency index k̂ can be estimated as:

k̂ = arg max
1≤i≤Nc

Pr{r|αi}. (3.8)

Recall that the information signal, the ID signal, the jamming interference and the noise

are independent to each other. When n1, . . . , nNc , J1, . . . , JNc are all statistically indepen-

dent, r1, . . . , rNc are also independent. In this case, the joint ML detector in (3.8) can be

decomposed as:

k̂ = arg max
1≤i≤Nc

Nc∏
j=1

Pr{rj |αi}

= arg max
1≤i≤Nc

Nc∏
j=1,j 6=i

Pr{rj |αj = 0} · Pr{ri|αi = 1}

= arg max
1≤i≤Nc

Nc∏
j=1

Pr{rj |αj = 0} · Pr{ri|αi = 1}
Pr{ri|αi = 0}

. (3.9)
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Since

Nc∏
j=1

Pr{rj |αj = 0} is independent of i, (3.9) can be further reduced to the likelihood

ratio test

k̂ = arg max
1≤i≤Nc

Pr{ri|αi = 1}
Pr{ri|αi = 0}

, (3.10)

where Pr{ri|αi = 1} =
∑
βi

Pr{ri|αi = 1, βi}P (βi) and Pr{ri|αi = 0} =
∑
βi

Pr{ri|αi =

0, βi}P (βi), with βi ∈ {0, 1}. In the ideal case when βi is known for i = 1, · · · , Nc, the ML

detector above can be further simplified. If we assume that n1, · · · , nNc are i.i.d. circularly

symmetric Gaussian random variables of zero-mean and variance σ2
n, and J1, · · · , JNc are

i.i.d. circularly symmetric Gaussian random variables of zero-mean and variance σ2
Ji

, then

it follows from (3.6) and (3.10) that

k̂ = arg max
1≤i≤Nc

1
πσ2
i

exp{−‖ri−s‖
2

σ2
i
}

1
πσ2
i

exp{−‖ri‖
2

σ2
i
}

= arg max
1≤i≤Nc

‖ri‖2 − ‖ri − s‖2

σ2
i

, (3.11)

where σ2
i = βiσ

2
Ji

+ σ2
n.

Note that σ2
i is generally unknown. If we replace the overall interference power σ2

i with

the instantaneous power of the received signal ‖ri‖2, then it follows from (3.11) that:

k̂ = arg max
1≤i≤Nc

‖ri‖2 − ‖ri − s‖2

‖ri‖2

= arg min
1≤i≤Nc

‖ri − s‖2

‖ri‖2
. (3.12)

For more tractable theoretical analysis, we can replace ‖ri‖2 with average signal power

observed in channel i, Pi = E{‖ri‖2}. Define Zi ,
‖ri − s‖√

Pi
, then we have

k̂ = arg min
1≤i≤Nc

Zi. (3.13)
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3.4 ID Constellation Design and its Impact on System Perfor-
mance

For AJ-MDFH, ID signals are introduced to distinguish the true information channel from

disguised channels invoked by jamming interference. In this section, we investigate ID con-

stellation design and its impact on the performance of AJ-MDFH under various jamming

scenarios.

3.4.1 Design Criterion and Jamming Classification

The general design criterion of the ID constellation is to minimize the probability of error

under a given signal power. Under this criterion, the following questions need to be answered:

(1) How does the size of the constellation impact the system performance? (2) How does

the type or shape of the constellation influence the detection error? Which type should we

use for optimal performance? In this section, we will try to address these questions under

different jamming scenarios.

In literature, jamming has generally been modeled as Gaussian noise [77, 78, 79], referred

as noise jamming. Recall that disguised jamming denotes the jamming interference which

has similar power and spectral characteristics as that of the true signal. For AJ-MDFH,

when the ID constellation is known to, or can be guessed by the jammer, the jammer can

then disguise itself by sending symbols taken from the same constellation over a different or

fake channel. In this case, it could be difficult for the receiver to distinguish the true channel

from the disguised channel, leading to high detection error probability. We refer to this kind

of jamming as ID jamming or ID attack. That is, ID jamming is the worst case disguised

jamming for AJ-MDFH.
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3.4.2 Constellation Design under Noise Jamming

Without loss of generality, we consider the case where the ID symbol is transmitted through

channel 1, i.e.,

α = (α1, · · · , αNc) = (1, 0, · · · , 0). (3.14)

Recall that for i = 1, · · · , Nc, ri = αis+βiJi+ni. Let ñi = βiJi+ni, and denote its variance

as σ2
i = βiσ

2
Ji

+σ2
n. σ2

i may vary from channel to channel. Following the definition in (3.13),

we have Z1 =
‖ñ1‖√
‖s‖2 + σ2

1

, and Zi =
‖ñi − s‖

σi
for 2 ≤ i ≤ Nc. It can be seen that Z1 is a

Rayleigh random variable with probability density function (PDF)

pZ1
(z1) =

z1

σ2
e
−
z21

2σ2 , z1 > 0, (3.15)

where σ2 =
σ2

1

2(‖s‖2 + σ2
1)

. For 2 ≤ i ≤ Nc, Zi is a Rician random variable with PDF

pZi(zi) =
zi
σ2
e
−
z2i +ν2

2σ2 I0

(ziν
σ2

)
, zi > 0, (3.16)

where ν =
‖s‖
σi

, σ =
1√
2

and I0(x) is the modified Bessel function of the first kind with

order zero.

According to (3.13), the carrier can be correctly detected if and only if Z1 < Zi for all

2 ≤ i ≤ Nc. Assuming that the symbols in constellation Ω are equally probable, then the

carrier detection error probability is given by

Pe = 1−
∑
s∈Ω

Pr{Z1 < Z2, . . . , Z1 < ZNc|s}pS(s)

= 1− 1

|Ω|
∑
s∈Ω

∫ ∞
0

Nc∏
i=2

Pr{Zi > z1|s, Z1 = z1}pZ1
(z1)dz1.

Note that Z2, · · · , ZNc are i.i.d. Rician random variables, then it follows from (3.15) and

(3.16) that

Pe = 1− 1

|Ω|
∑
s∈Ω

∫ ∞
0

Nc∏
i=2

Q1

(√
2

σi
‖s‖,
√

2z1

)
2(‖s‖2 + σ2

1)

σ2
1

z1e
−
‖s‖2+σ2

1
σ2

1

z21
dz1, (3.17)
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where Q1 is the Marcum Q-function [82]. We have the following result:

Proposition 1 Assuming the true channel index is k. Under noise jamming, an upper

bound of the carrier detection error probability Pe can be obtained as:

PUe =
1

|Ω|
∑
s∈Ω

1−

1−
σ2
k

‖s‖2 + 2σ2
k

e
−
‖s‖2(‖s‖2+σ2

k)

σ2
m(‖s‖2+2σ2

k
)


Nc−1

 , (3.18)

where m = arg max{σ2
l } for 1 ≤ l ≤ Nc, l 6= k.

Proof : See Section 3.9.1. 2

Assuming the true channel index is k, let x =
‖s‖2

σ2
k

and a(x) = 1−(1− 1

x+ 2
e
−ζ x

2+x
x+2 )Nc−1.

The upper bound of the detection error probability, PUe can be written as PUe = a(x) with

ζ = σ2
k/σ

2
m. Note that when x � 1, a(x) ≈ (Nc − 1)

x+ 2
e
−ζ x

2+x
x+2 , ã(x). We now show that

when x � 1, ã(x) is a convex function. The first and second derivative of ã(x) can be

obtained as

ã′(x) = −(Nc − 1)
ζx2 + (4ζ + 1)x+ (2ζ + 2)

(x+ 2)3
e
−ζ x

2+x
x+2 (3.19)

ã′′(x) = (Nc − 1)
ζx2 + (4ζ + 2)x+ (4− 2ζ)

(x+ 2)4
e
−ζ x

2+x
x+2

+(Nc − 1)
ζ(x2 + 4x+ 2)[ζx2 + (4ζ + 1)x+ (2ζ + 2)]

(x+ 2)5
e
−ζ x

2+x
x+2 (3.20)

Note that the second term of ã′′(x) is always positive when x > 0. Note that the quadratic

equation ζx2 + (4ζ + 2)x + (4 − 2ζ) = 0 with discriminant ∆ = 6ζ2 + 1 > 0 has two

distinct real roots. Let x0 =
√

1/ζ2 + 6 − (1/ζ + 2) denote the larger real root. Define

c(y) ,
√
y2 + 6 − (y + 2) such that x0 = c(1/ζ). Note that c′(y) =

y√
y2 + 6

− 1 < 0

and c(0) =
√

6 − 2. Since 1/ζ > 0, x0 = c(1/ζ) < c(0). Hence for x >
√

6 − 2 > x0,

ζx2 + (4ζ + 2)x + (4 − 2ζ) > 0 and ã′′(x) is positive. Thus we proved that ã(x) is convex

when x >
√

6− 2.
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By Jensen’s inequality [83], we have

PUe ≈
1

|Ω|
∑
s∈Ω

ã

(
‖s‖2

σ2
k

)
≥ ã

 1

|Ω|σ2
k

∑
s∈Ω

‖s‖2
 = ã

(
Ps

σ2
k

)
. (3.21)

The equality is achieved if and only if ‖s‖2 = Ps for all s ∈ Ω. This implies that: under the

condition that the signal to jamming and noise ratio over channel k satisfies
‖s‖2

σ2
k

� 1, PUe

is approximately minimized when the constellation is constant modulus, that is, ‖s‖2 = Ps

for all s ∈ Ω.

An intuitive explanation for this result is that the signal power in constant modulus

constellations is always equal to the maximal signal power available. Furthermore, it can be

seen that PUe is independent of the constellation size |Ω|, but is only a function of Ps/σ
2
k.

Next, we will investigate how the constellation size affects the system performance under ID

jamming.

3.4.3 Constellation Design under ID Jamming

Theorem 1 For a given SNR and assuming PSK constellation is utilized, under ID jam-

ming, the carrier detection error probability Pe is a function of constellation size M and

lim
M→∞

Pe(M) = P̄e. (3.22)

In other words, for any given ε > 0, there always exists an Mt such that for all M > Mt,

|Pe(M)− P̄e| < ε.

The expression of P̄e and the proof of the theorem can be found in Section 3.9.2. This

theorem essentially says that: for a given SNR, due to the noise effect, increasing the constel-

lation size over a threshold Mt will result in little improvement in detection error probability.

This result justifies the use of finite constellation in AJ-MDFH.
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3.5 Multi-carrier AJ-MDFH

For more efficient spectrum usage and more robust jamming resistance, in this section, we

extend the concept of MDFH to multi-carrier AJ-MDFH (MC-AJ-MDFH). The transmitter

and the receiver structure of the MC-AJ-MDFH system are illustrated in Figure 3.6. The

idea is to split all the Nc channels into Ng non-overlapping groups, and each subcarrier hops

within the assigned group based on the AJ-MDFH scheme. To ensure hopping randomness

of all the subcarriers, the groups need to be reorganized or regenerated securely after a

pre-specified period, named group period. In the following, we will first describe the secure

group generation algorithm, and then discuss the design of MC-AJ-MDFH with and without

additional frequency diversity.

3.5.1 Secure Group Generation

In this section, we propose a secure group generation algorithm to ensure that: (i) Each

subcarrier hops over a new group of channels during each group period, so that it eventually

hops over all the available channels in a pseudo-random manner; (ii) Only the legitimate

receiver can recover the transmitted information correctly. Secure group generation is syn-

chronized at the transmitter and the receiver. At the receiver, the received signal is fed to a

bank of single-carrier AJ-MDFH receivers for signal extraction and recovery.

Recall that we assume there are a total of Nc available channels and there are Ng sub-

carriers in the system. For l = 0, · · · , Ng − 1, the number of channels assigned to subcarrier

i is denoted as N i
g. As different subcarriers transmit over non-overlapping set of channels

and we have

Ng∑
i=0

N i
g = Nc.

For secure group generation, first, generate a pseudo-random binary sequence using a

32-bit linear feedback shift register (LFSR) as in Section 3.3, which is initialized by a secret

sequence shared between the transmitter and the receiver. Encrypt the generated sequence

into a ciphertext using the AES algorithm and a secure key. Pick an integer L ∈ [
Nc
2
, Nc]
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Figure 3.6: Transmitter and receiver structure of MC-AJ-MDFH.

and let q = L log2Nc = LBc. Take q bits from the ciphertext and put them as a q-bit vector

e = [e1, e2, · · · , eq].

Second, partition the ciphertext sequence e into L groups, such that each group contains

Bc bits. For k = 1, 2, · · · , L, the partition of the ciphertext is as follows

pk = [e(k−1)∗Bc+1, e(k−1)∗Bc+2, · · · , e(k−1)∗Bc+Bc ], (3.23)

where pk corresponds to the kth Bc-bit vector.

For k = 1, 2, · · · , L, denote Pk as the decimal number corresponding to pk. And denote

P = [P1, P2, · · · , PL] as the permutation index vector. For k = 0, 1, 2, · · · , L, denote Ik =
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[Ik(0), Ik(1), · · · , Ik(Nc − 1)] as the index vector at the kth step. The secure permutation

scheme of the index vector is achieved through the following steps:

0. Initially, the index vector is I0 = [I0(0), I0(1), · · · , I0(Nc − 1)] and the permutation

index is P = [P1, P2, · · · , PL]. We start with I0 = [0, 1, · · · , Nc − 1].

1. For k = 1, switch I0(0) and I0(P1) in index vector I0 to obtain I1. In other words,

I1 = [I1(0), I1(1), · · · , I1(Nc− 1)], where I1(0) = I0(P1), I1(P1) = I0(0), and I1(m) =

I0(m) for m 6= 0, P1.

2. Repeat the previous step for k = 2, 3, · · · , L. In general, if we already have Ik−1 =

[Ik−1(0), Ik−1(1), · · · , Ik−1(Nc−1)], then we can obtain Ik = [Ik(0), Ik(1),· · · , Ik(Nc−

1)] through the permutation defined as Ik(k − 1) = Ik−1(Pk), Ik(Pk) = Ik−1(k − 1),

and Ik(m) = Ik−1(m) for m 6= k − 1, Pk.

3. After L steps, we obtain the channel center frequency vector as FL = [fIL(0), fIL(1), · · · ,

fIL(Nc−1)].

4. Vector FL is used to assign the channels to Ng groups. We assign channels {fIL(0)

, fIL(1), · · · , fIL(N0
g−1)
} to the first group; Assign {f

IL(N0
g )
, f
IL(N0

g+1)
, · · · , f

IL(N0
g+N1

g−1)
}

to the second group, and so on.

Because each frequency index appears in FL once and only once, the proposed algorithm

ensures that all the subcarriers are transmitting on non-overlapping sets of channels. In the

following, we illustrate the secure group generation algorithm though a simple example.

Example: Assume the total number of available channels is Nc = 8, to be equally

divided among Ng = 2 subcarriers; the permutation index vector P = [4, 7, 4, 0], and the

initial index vector I0 = [0, 1, 2, 3, 4, 5, 6, 7], as shown in Figure 3.7. Note that, the initial

index vector I0 can contain any random permutation of the sequence {0, 1, · · · , Nc−1}, and

L ∈ [
Nc
2
, Nc]. In this example, we choose L =

Nc
2

.
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Figure 3.7: Example of the Secure Permutation Algorithm for Nc = 8 channels and Ng = 2
subcarriers.

At Step 1, k = 1, and Pk = 4, thus we switch I0(Pk) and I0(k − 1) of the index vector

I0. After the switching, we obtain a new index vector I1 = [4, 1, 2, 3, 0, 5, 6, 7].

At Step 2, k = 2, and Pk = 7, thus we switch I1(Pk) and I1(k − 1) of the index vector

I1. We obtain the new index vector I2 = [4, 7, 2, 3, 0, 5, 6, 1]. Below are the remaining index

vectors for k = 3, 4:

I3 = [4, 7, 0, 3, 2, 5, 6, 1], I4 = [3, 7, 0, 4, 2, 5, 6, 1].

The channel frequency vector is F4 = [fI4(0), fI4(1), · · · , fI4(Nc−1)]. Channels {f3, f7, f0, f4}

are assigned to subcarrier 0 and channels {f2, f5, f6, f1} are assigned to subcarrier 1.

3.5.2 Multi-Carrier AJ-MDFH without Diversity

In this case, each subcarrier transmits independent bit stream. The spectral efficiency of

the AJ-MDFH system can be increased significantly. Let Bc = log2Nc and Bg = log2Ng,
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then the number of bits transmitted by the MC-AJ-MDFH within each hopping period is

BMC = (Bc − Bg)Ng = (Bc − log2Ng)Ng. BMC is maximized when Bg = Bc − 1 or

Bg = Bc − 2, which results in BMC = 2Bc−1. Note that the number of bits transmitted by

the AJ-MDFH within each hopping period is Bc, it can be seen that BMC > Bc as long as

Bc > 2. Take Nc = 256 for example, then the transmission efficiency of AJ-MDFH can be

increased by
BMC

Bc
=

2Bc−1

Bc
= 16 times.

We assume that jamming is random and equally distributed among all the groups. Then

the overall carrier detection error probability Pe of MC-AJ-MDFH is equal to that corre-

sponding to each subcarrier fk for k = 1, · · · , Ng. Let Pe,k denote the carrier detection error

probability corresponding to the kth subcarrier or the kth group, then we have Pe = Pe,k,

and

Pe,k = P0,k · P{incorrect carrier detection|signal not jammed}

+ P1,k · P{incorrect carrier detection|signal jammed}, (3.24)

where P0,k, P1,k denote the probability that the kth subcarrier is jamming-free or jammed,

respectively.

3.5.3 Multi-carrier AJ-MDFH with Diversity

Under the multi-band jamming, diversity needs to be introduced to the AJ-MDFH system

for robust jamming resistance especially. A natural solution to achieve frequency diversity

is to transmit the same or correlated information through multiple subcarriers. The number

of subcarriers needed to convey the same information differs in different jamming scenarios.

Ideally, the number of correlated signal subcarriers should not be less than the number of

jammed bands.

At the receiver, the received signals from different diversity branches are often combined

for joint signal detection. To achieve better performance, appropriate diversity combination

schemes need to be selected for different metrics used. In [84], the product combination
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scheme was used for the square-law metrics. In [85, 86], the equal gain combination scheme

was used for the normalized square-law metrics. If metric Zi (see eq. (3.13)) is used for

MC-AJ-MDFH, we propose to use the equal gain combination scheme, since Zi can also be

regarded as a normalized square-law metric.

Assume that the same information is transmitted through the hopping frequency index

of Nd subcarriers over Nd groups {Gn1 , Gn2 , . . . , GnNd
} simultaneously, each group has the

same number of channels, denoted as Ngc. Note that the secure group generation algorithm

ensures that the channel index in each group is random and does not necessarily come in

ascending or descending order. Let Z
nl
i denote the likelihood ratio of ith channel in group

Gnl , then the active hopping frequency index can be estimated as

k̂ = arg max
1≤i≤Ngc

Nd∑
l=1

Z
nl
i , (3.25)

The diversity order Nd can be dynamic in different jamming scenarios to achieve tradeoff

between performance and efficiency.

Overall, as demonstrated in Section 3.7, MC-AJ-MDFH can increase the system effi-

ciency and jamming resistance significantly through jamming randomization and frequency

diversity. Moreover, by assigning different carrier groups to different users, MC-AJ-MDFH

can also be used as a collision-free multiple access system.

3.6 Spectral Efficiency Analysis

The spectral efficiency ν is defined as the ratio of the information bit rate Rb to the transmis-

sion bandwidth Wt, i.e., ν =
Rb
Wt

. In this section, we will analyze and compare the spectral

efficiency of the existing and proposed frequency hopping schemes, including conventional

FH, MDFH and (MC-)AJ-MDFH.

We start with the single-user case. That is, no multiple access interference needs to be

considered. Recall that Ts and Th denotes the symbol period and the hopping duration,

respectively; Nh = Ts/Th is the number of hops per symbol period. For fair comparison,
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we assume that all systems have: (i) The same number of available channels Nc; (ii) The

same hopping period Th to ensure the hopping channels have the same bandwidth Wc =

2/Th; (iii) The same frequency spacing ∆f between two adjacent subcarriers, where ∆f ≥

1/Th is chosen to avoid inter-carrier interference. Note that under these assumptions, all

systems have the same total bandwidth Wt = (Nc− 1)∆f +Wc. For conventional FH using

MFSK modulation, log2M bits are transmitted during each symbol period. The bit rate

of conventional FH can be calculated as Rb =
log2M

Ts
=

log2M

ThNh
, and the corresponding

spectral efficiency can be obtained as ν =
Rb
Wt

=
log2M

ThNhWt
. The bit rate and spectral

efficiency of other frequency hopping schemes can be obtained similarly. The results are

listed in table 3.1. An illustration of the spectral efficiency comparison in the single-user

case can be found in Section 3.7.

Table 3.1: The bit rate and spectral efficiency comparison in the single-user case

conventional FH MDFH AJ-MDFH MC-AJ-MDFH

Rb (b/s)
log2M

ThNh

NhBc +Bs
NhTh

Bc
Th

(Bc − log2Ng)Ng
Th

ν (b/s/Hz)
log2M

ThNhWt

NhBc +Bs
ThNhWt

Bc
ThWt

(Bc − log2Ng)Ng
ThWt

Next, we consider the more general multiuser case. The multiple access scheme for

conventional FH, namely FHMA, was proposed in [66]. The multiple access extension of

MDFH, denoted as E-MDFH, has been analyzed in [49]. Due to the variability in multiple

access system design, a closed-form expression of the spectral efficiency is hard to obtain.

Here we compare the total information bits allowed to be transmitted by each system under

the same BER and bandwidth requirements, and illustrate the spectral efficiency comparison

through the following example.

Let Nu denote the number of users and we choose the number of channels be Nc = 64

(i.e.,Bc = 6). For MC-AJ-MDFH, we choose Ng = Nu = 4; For E-MDFH, we choose 8-PSK

to modulate Bs = 3 ordinary bits and Ng = Nu = 4, Nh = 3. For FHMA, we choose

64-FSK modulation, Nh = 3 and consider Nu = 2, · · · , 4, respectively. The required BER is
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10−4. Figure 3.8 and Figure 3.9 depict the performance of these multiuser systems. From

Figure 3.8, it can be seen that MC-AJ-MDFH and E-MDFH achieve the desired BER at

Eb
N0
≈ 6.5dB and

Eb
N0
≈ 6.4dB, respectively. From Firgure 3.9, it can be observed that: due

to severe collision effect among different users, FHMA can only accommodate up to 2 users

at
Eb
N0
≈ 6.5dB for the desired BER. In this particular example, the spectral efficiency of

both MC-AJ-MDFH and E-MDFH are approximately 4 times and 5 times that of FHMA.
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Figure 3.8: Performance of MC-AJ-MDFH and E-MDFH in multiuser case.

Based on our analysis above, as well as the performance analysis of AJ-MDFH under

various jamming attacks in Section 3.7, it will be shown that: while AJ-MDFH is much

more robust than MDFH under various jamming attacks, it can achieve a spectral efficiency

that is very close to MDFH, which is several times higher than that of conventional FH.

A comprehensive capacity analysis for MDFH and AJ-MDFH under disguised jamming is

provided in Chapter 4.
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Figure 3.9: Performance of FHMA in multiuser case.

3.7 Simulation Results

In this section, simulation examples are provided to illustrate the performances of the pro-

posed AJ-MDFH and MC-AJ-MDFH schemes under various jamming scenarios. For all

the systems considered in the following examples, we assume the total number of available

channels is Nc = 64, that is, Bc = 6.

Example 1: Impact of the ID constellation size In this example, we consider the

impact of the ID constellation size on the BER performance of AJ-MDFH under single-band

ID jamming. From Figure 3.10, it can be seen that in the ideal case where the system is

noise free, the BER performance of AJ-MDFH improves continuously as the constellation

size increases. However, when noise is present, the BER converges once the constellation size

reaches a certain threshold Mt. For example, for Eb/N0 = 15dB, we can choose Mt = 36.

This example demonstrates the theoretical result in Theorem 1. In the following examples,
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we choose Eb/N0 = 10dB and use 32-PSK to modulate ID signal for AJ-MDFH and MC-

AJ-MDFH.
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Figure 3.10: Example 1: The performance of AJ-MDFH with different constellation size,
under single-band ID jamming.

Example 2: Performance comparison under single band jamming In this exam-

ple, we consider both noise jamming and disguised jamming. SNR is taken as Eb/N0 = 10dB

and Jamming-to-Signal Ratio (JSR) is defined as the ratio of the jamming power to signal

powers during one hop period. For conventional FH, 4-FSK modulation scheme is used and

we assume that the adjacent frequency tones in 4-FSK correspond to the center frequencies

of the adjacent MDFH channels. For MDFH, QPSK is used to modulate ordinary bits and

the number of hops per symbol period is Nh = 3. From Figure 3.11, it can be observed that

AJ-MDFH can effectively reduce the performance degradation caused by disguised jamming,

while remaining robust under noise jamming. Note that JSR=0dB under disguised jamming

corresponds to the ID jamming for AJ-MDFH. It can also be seen that the performance of
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AJ-MDFH improves significantly when the jamming power differs from the signal power.

This implies that uncertainty in the signal power is another dimension in combating ID

jamming.
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Figure 3.11: Example 2: Performance comparison under single band jamming.

Example 3: Performance comparison under multi-band disguised jamming In

this example, Eb/N0 = 10dB. For multi-band disguised jamming, the jammed bands are

independently and randomly selected, and the jammer takes symbols randomly from the

same constellation as the ID signal. For MC-AJ-MDFH without diversity, the channels are

divided into 32 groups to maximize the spectral efficiency; for MC-AJ-MDFH with diversity,

each symbol is transmitted simultaneously over 4 subcarriers to achieve frequency diversity.

The equal gain combination scheme is adopted for the joint detection metric at the receiver.
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From Figure 3.12, it can be seen that MC-AJ-MDFH delivers much better performance than

AJ-MDFH under multi-band disguised jamming.
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Figure 3.12: Example 3: Performance comparison under 2-band disguised jamming.

3.8 Summary

In this chapter, we proposed a highly efficient anti-jamming scheme, AJ-MDFH, based on

the message-driven frequency hopping technique. It was shown that by inserting a secure

ID sequence in transmission, AJ-MDFH can effectively reduce the performance degradation

caused by disguised jamming, while being robust under strong jamming. The impact of ID

constellation design on system performance was investigated under both noise jamming and

ID jamming. It was proved that for a given power constraint, constant modulus constellation
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delivers the best results under noise jamming in terms of detection error probability; While

under ID jamming, when noise is present, the detection error probability converges as the

constellation size goes to infinity. Moreover, AJ-MDFH can be extended to MC-AJ-MDFH

by allowing simultaneous multi-carrier transmission. With jamming randomization and en-

riched frequency diversity, MC-AJ-MDFH can increase the system efficiency and jamming

resistance significantly, and can readily be used as a collision-free multiple access scheme.

3.9 Proofs of Chapter 3

3.9.1 Proof of Proposition 1

It follows from (3.17) that

Pe = 1− 1

|Ω|
∑
s∈Ω

∫ ∞
0

Nc∏
l=2

Q1

(√
2

σl
‖s‖,
√

2z1

)
pZ1

(z1)dz1

≤ 1− 1

|Ω|
∑
s∈Ω

∫ ∞
0

QNc−1
1

(√
2

σm
‖s‖,
√

2z1

)
pZ1

(z1)dz1 (3.26)

where m = arg max
2≤l≤Nc

{σ2
l }. The inequality follows from the fact that for fixed ‖s‖ and z1,

Q1

(√
2

σl
‖s‖,
√

2z1

)
is a monotonically decreasing function with respect to σl. The equality

can be achieved when σ2 = · · · = σNc .

Assume Nc ≥ 2. For Nc = 2, it is easy to show that Pe = PUe with σm = σ2. Note that

for fixed s and σm, Q1

(√
2

σm
‖s‖,
√

2z1

)
= Pr{Zm > z1|s, z1 = Z1} is a function of z1. And

for Nc > 2, f(x) = xNc−1 is convex when x > 0. By Jensen’s inequality, we obtain∫ ∞
0

QNc−1
1

(√
2

σm
‖s‖,
√

2z1

)
pZ1

(z1)dz1 ≥
[∫ ∞

0
Pr{Zm > z1|s, Z1 = z1}pZ1

(z1)dz1

]Nc−1

= [Pr{Z1 < Zm|s}]Nc−1 . (3.27)

According to [87], Pr{Z1 < Zm|s} can be calculated as

Pr{Z1 < Zm|s} = 1−
σ2

1

‖s‖2 + 2σ2
1

e
−
‖s‖2(‖s‖2+σ2

1)

σ2
m(‖s‖2+2σ2

1) . (3.28)
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Following (3.26)-(3.28),

Pe ≤
1

|Ω|
∑
s∈Ω

1−

1−
σ2

1

‖s‖2 + 2σ2
1

e
−
‖s‖2(‖s‖2+σ2

1)

σ2
m(‖s‖2+2σ2

1)


Nc−1

 = PUe for Nc > 2. (3.29)

Overall, Pe ≤ PUe for Nc ≥ 2. 2

3.9.2 Proof of Theorem 1

Note that the system is under ID attack. If the power of the M -ary PSK constellation is Ps,

then the signal and jamming symbol can be written as s =
√
Pse

j 2πms
M , Jj =

√
Pse

j
2πmJ
M

respectively, where M = |Ω| and 0 ≤ ms,mJ ≤ M − 1. Without loss of generality, we

assume that: (i) Both the ID and jamming take the symbols in Ω with equal probability

1/M ; (ii) The signal is transmitted in channel 1 (α1 = 1) and channel j is jammed (βj = 1).

We consider the following two scenarios:

(i) When j = 1, jamming collides with the ID signal. In this case, r1 = s+ J1 + n1 and

rl = nl for l = 2, . . . , Nc. We have Z1 =
‖J1 + n1‖√
‖s+ J1‖2 + σ2

n

and Zl =
‖nl − s‖
σn

, where σ2
n is

the noise variance. The detection error probability in this case can be calculated as

Pe1 = 1− 1

M2

∑
s∈Ω

∑
J1∈Ω

∫ ∞
0

[Pr{z1 < Z2|s, J1, z1}]Nc−1pZ1
(z1)dz1. (3.30)

Note that Z1 is a Rician random variable with PDF pZ1
(z1) =

z1

σ2
e
−
z21+ν2

2σ2 I0

(z1ν

σ2

)
, where

ν =

√
Ps√

‖s+ J1‖2 + σ2
n

, σ2 =
σ2
n

2(‖s+ J1‖2 + σ2
n)

and Zl’s are i.i.d. Rician random variables

with ν =

√
Ps
σn

, σ2 =
1

2
. Then (3.30) can be further written as

Pe1 = 1− 1

|Ω|2
∑
s∈Ω

∑
J1∈Ω

∫ ∞
0

QNc−1
1

(√
2Ps
σn

,
√

2z1

)
2z1
‖s+ J1‖2 + σ2

n

σ2
n

·e
−

(‖s+J1‖2+σ2
n)z21+Ps

σ2
n I0

(
2z1

σ2
n

√
Ps(‖s+ J1‖2 + σ2

n)

)
dz1. (3.31)
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For M-PSK constellation with power Ps, ‖s+ J1‖2 can be rewritten as

‖s+ J1‖2 = Ps

∥∥∥∥cos
2πms

M
+ cos

2πmJ

M
+ j(sin

2πms

M
+ sin

2πmJ

M
)

∥∥∥∥2

= 4Ps

∥∥∥∥cos
π(ms +mJ )

M
cos

π(ms −mJ )

M
+ j sin

π(ms +mJ )

M
cos

π(ms −mJ )

M

∥∥∥∥2

= 4Ps cos2 π(ms −mJ )

M

= 2Ps

[
1 + cos

2π(ms −mJ )

M

]
(3.32)

Define κ , (ms −mJ ) mod M , which is uniformly distributed over [0,M − 1], then ‖s +

J1‖2 = 2Ps(1 + cos
2πκ

M
) and

Pe1 = 1− 1

M

M−1∑
κ=0

∫ ∞
0

QNc−1
1

(√
2Ps
σn

,
√

2z1

)
2z1

[
2Ps
σ2
n

(
1 + cos

2πκ

M

)
+ 1

]

·e
−
[

2Ps
σ2
n

(
1+cos 2πκ

M

)
+1

]
z21−

Ps
σ2
n I0

(
2z1

σ2
n

√
2P 2

s

(
1 + cos

2πκ

M

)
+ Psσ2

n

)
dz1,(3.33)

(ii) When j = 2, . . . , Nc, jamming does not collide with ID signal. In this case, r1 = s+n1,

rj = Jj +nj and rl = nl. We have Z1 =
‖n1‖√
Ps + σ2

n

, Zj =
‖Jj − s+ nj‖√

Ps + σ2
n

and Zl =
‖nl − s‖
σn

for l = 2, . . . , Nc, l 6= j. The detection error probability in this case can be calculated as

Pe2 = 1− 1

|Ω|2
∑
s∈Ω

∑
Jj∈Ω

∫ ∞
0

Pr{Zj > z1|s, Jj , z1}[Pr{Zl > z1|s, z1}]Nc−2pZ1
(z1)dz1.

(3.34)

Note that Z1 is a Rayleigh random variable with PDF pZ1
(z1) =

z1

σ2
e
−
z21

2σ2 , where σ2 =

σ2
n

2(Ps + σ2
n)

, Zj is a Rician random variable with ν =
‖Jj − s‖√
Ps + σ2

n

, σ2 =
σ2
n

2(Ps + σ2
n)

and Zl’s

are i.i.d. Rician random variables with ν =

√
Ps
σn

, σ2 =
1

2
. Following similar derivation as
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in (3.32), we have ‖Jj − s‖2 = 2Ps(1− cos
2πκ

M
) and (3.34) can be further written as

Pe2 = 1− 1

|Ω|2
∑
s∈Ω

∑
J1∈Ω

∫ ∞
0

Q1

(√
2

σn
‖Jj − s‖,

√
2(Ps + σ2

n)

σn
z1

)

·QNc−2
1

(√
2Ps
σn

,
√

2z1

)
2(Ps + σ2

n)

σ2
n

z1e
−Ps+σ2

n
σ2
n

z21
dz1

= 1− 1

M

M−1∑
κ=0

∫ ∞
0

Q1

(
2

σn

√
Ps

(
1− cos

2πκ

M

)
,

1

σn

√
2(Ps + σ2

n)z1

)

·QNc−2
1

(√
2Ps
σn

,
√

2z1

)
2(Ps + σ2

n)

σ2
n

z1e
−Ps+σ2

n
σ2
n

z21
dz1. (3.35)

The overall detection error probability in noisy environment is given as

Pe = Pr{j = 1}Pe1 + Pr{2 ≤ j ≤ Nc}Pe2 =
1

Nc
Pe1 +

Nc − 1

Nc
Pe2. (3.36)

When
Ps
σ2
n

is fixed, it follows from (3.33) and (3.35) that Pe is a function of M given as

Pe =
1

M

M−1∑
κ=0

b

(
2πκ

M

)
, (3.37)

where

b(x) = 1− 1

Nc

∫ ∞
0

QNc−1
1

(√
2Ps
σn

,
√

2z1

)
2z1

[
2Ps
σ2
n

(1 + cos x) + 1

]

·e
−
[

2Ps
σ2
n

(1+cosx)+1

]
z21−

Ps
σ2
n I0

(
2z1

σ2
n

√
2P 2

s (1 + cos x) + Psσ2
n

)
dz1

−Nc − 1

Nc

∫ ∞
0

Q1

(
2

σn

√
Ps (1− cosx),

1

σn

√
2(Ps + σ2

n)z1

)

·QNc−2
1

(√
2Ps
σn

,
√

2z1

)
2(Ps + σ2

n)

σ2
n

z1e
−Ps+σ2

n
σ2
n

z21
dz1. (3.38)

As M approaches infinity, Pe converges. In fact, we have,

P̄e = lim
M→∞

Pe = lim
M→∞

M−1∑
κ=0

b
(

2πκ
M

)
· 2π
M

M · 2π
M

=
1

2π
lim

M→∞

M−1∑
κ=0

b

(
2πκ

M

)
· 2π

M

=
1

2π

∫ 2π

0
b(x)dx. (3.39)
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Note that b(x) is the detection error probability with 0 ≤ b(x) ≤ 1. We have

0 ≤ P̄e =
1

2π

∫ 2π

0
b(x)dx ≤ 1. (3.40)

That is: ∀ε > 0, there always exists an integer Mt such that ∀M > Mt, |Pe − P̄e| < ε. 2
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Chapter 4

CAPACITY ANALYSIS OF MDFH BASED SYSTEMS UNDER DISGUISED

JAMMING

In Chapter 3, we point out that under disguised jamming, where the jammer mimics the

signal of the legal user, MDFH experiences considerable performance losses like other wireless

systems. To overcome this, we propose an anti-jamming MDFH scheme, which enhances the

jamming resistance of MDFH by enabling shared randomness between the transmitter and

receiver using an AES generated ID sequence transmitted along the information stream. In

this chapter, we analyze the capacity of MDFH and AJ-MDFH under disguised jamming.

We show that under the worst case disguised jamming, as long as the secure ID sequence

is unavailable to the jammer (which is ensured by AES), the AVC corresponding to AJ-

MDFH is nonsymmetrizable. This implies that the deterministic capacity of AJ-MDFH

with respect to the average probability of error is positive. On the other hand, due to lack

of shared randomness, the AVC corresponding to MDFH is symmetric, resulting in zero

deterministic capacity. We further calculate the capacity of AJ-MDFH under the worst case

disguised jamming, and show that it converges as the ID constellation size goes to infinity.

4.1 Introduction

The basic idea of MDFH is that part of the information message acts as the PN sequence

for carrier frequency selection at the transmitter. Transmission through hopping frequency

control adds another dimension to the signal space, and the resulted coding gain can in-

crease the system spectral efficiency significantly. In Chapter 3, we pointed out that MDFH

is sensitive to disguised jamming, where the jammer mimics the signal of the legal user.

Performance losses occur since it is difficult for the MDFH receiver to distinguish the dis-

guised jamming from the signal. To overcome this limitation, we proposed the anti-jamming
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MDFH (AJ-MDFH) scheme. The idea is to insert some secure signal identification (ID)

information during the transmission process. The ID information can be regenerated at the

receiver based on the pre-shared secret, and then be used for signal detection and extraction.

We further explored ID constellation design and its impact on the performance of AJ-

MDFH. It was observed that constant modulus constellation would result in minimum prob-

ability of error under noise jamming, as the signal power is always equal to the maximal

signal power available. Under the worst case disguised jamming, in which the jamming tries

to mimic the ID symbols of the legal user (referred to as ID jamming [88]), we showed that

under the ideal case when the system is noise-free, increasing the ID constellation size can

increase the ID uncertainty, and hence reduce the probability of error. In this case, the ideal

constellation size is M = ∞. However, when noise is present, we proved that the detection

error probability under ID jamming converges as M goes to infinity. This result justifies the

use of practical, finite size constellations in AJ-MDFH.

In this chapter, we analyze the capacity of MDFH and AJ-MDFH under disguised jam-

ming. Both MDFH and AJ-MDFH are modeled as arbitrarily varying channels (AVCs)

[89, 90, 91, 53, 92, 93], which is characterized as

W : X × J → S, (4.1)

where X is the transmitted signal space, J is the jamming space and S is the estimated

information space. For any x ∈ X , J ∈ J and s ∈ S, W (s|x,J) denotes the conditional

probability that s is detected at the receiver, given that x is the transmitted signal and J is

the jamming. If J = X and W (s|x,J) = W (s|J,x) for any x,J ∈ X , s ∈ S, the AVC is said

to have a symmetric kernel [51]. Define Ŵ : X × X → S by

Ŵ (s|x,J) ,
∑
y∈Y

π(y|J)W (s|x,y), (4.2)

where π : X → Y is a probability matrix, and Y ⊆ J . If there exists a π such that

Ŵ (s|x,J) = Ŵ (s|J,x), ∀x,J ∈ X , ∀s ∈ S, (4.3)
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then W is said to be symmetrizable. The deterministic code1 capacity of the AVC for the

average probability of error is positive iff the AVC is nonsymmetrizable [52, 51, 53, 92].

The main contributions of this chapter can be summarized as follows:

• Under the worst case disguised jamming, the AVC corresponding to MDFH has sym-

metric kernel. That is, the deterministic code capacity of MDFH under the worst case

disguised jamming is zero.

• For AJ-MDFH, under the worst case disguised jamming - ID jamming, we prove that:

as long as the ID sequence is unavailable to the jammer, the AVC corresponding to

AJ-MDFH is nonsymmetrizable. Note that the secure ID in AJ-MDFH is generated

using AES [76, 94], to symmetrize AJ-MDFH is equivalent to break AES, which is

computationally infeasible in practical systems. That is, the AVC corresponding to

AJ-MDFH is computationally infeasible to be symmetrized. This result ensures that

AJ-MDFH has positive capacity under ID jamming.

• We derive the capacity of AJ-MDFH under ID jamming, for which the mutual infor-

mation is maximized for all possible input probability distributions and minimized for

all possible jamming distributions. We show that the capacity converges as the con-

stellation size M goes to infinity. It is observed that: (i) Under reasonable SNR levels

(≥ 10dB), the capacity of AJ-MDFH under ID jamming is close to the jamming-free

case, and it outperforms the conventional FH system by big margins; (ii) For AJ-

MDFH, since the information bits are transmitted through hopping frequency control,

it is very robust to additive noise.

This chapter is organized as follows. A brief system description for MDFH and AJ-

MDFH is provided in Section 4.2. The capacity of MDFH under disguised jamming is

analyzed in Section 4.3. In Section 4.4, the capacity of AJ-MDFH is analyzed and derived

1A deterministic (n, k) code means that each k-bit data word is mapped to a unique n-bit
codeword.
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under ID jamming. In Section 4.5, we extend the capacity analysis to the multiuser AJ-

MDFH system (MC-AJ-MDFH). The numerical examples are provided in Section 4.8 and

we conclude in Section 4.9.

4.2 System Description

4.2.1 MDFH

The basic idea of MDFH is that part of the message acts as the PN sequence for carrier

frequency selection at the transmitter. More specifically, selection of carrier frequencies

is directly determined by the encrypted information stream rather than by a pre-selected

pseudo-random sequence as in the conventional FH.

Let Nc be the total number of available channels, with {f1, f2, · · · , fNc} being the set of

all available carrier frequencies. The number of bits required to specify an individual channel

is Bc = blog2Ncc, where bxc denotes the largest integer less than or equal to x. Without loss

of generality, we assume that Nc = 2Bc . Let Ω be the selected constellation of size M , and

denote Bs = log2M bits. Let Ts and Th denote the symbol period and the hop duration,

respectively, then the number of hops per symbol period is given by Nh =
Ts
Th

.

The transmitter structure of MDFH is shown in Figure4.1. The encrypted information

stream is divided into blocks of length L , NhBc + Bs. Each block is parsed into NhBc

carrier bits and Bs ordinary bits. The carrier bits determine the hopping frequencies, and the

ordinary bits are mapped to a symbol in Ω and transmitted through the channels identified

by the carrier bits. The structure of the nth block, Xn = [Xn,1, Xn,2, · · · , Xn,Nh , Yn], is

shown in Figure 4.1a.

Let fXn,l
be the carrier frequency corresponding to Xn,l, l ∈ {1, · · · , Nh}, sn the symbol

corresponding to ordinary bit vector Yn, and g(t) the pulse shaping filter. For the mth

hopping period [mTh, (m+1)Th] with m = nNh+l, the transmitted signal can be represented
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Figure 4.1: MDFH transmitter structure.

as

s(t) =
√

2Re


Nc∑
i=1

αi,msng(t−mTh)ej2πfit

 , (4.4)

where αi,m = 1 if fXn,l
= fi, and αi,m = 0 otherwise.

Let s(t), J(t) and n(t) denote the signal, the jamming interference and the noise, respec-

tively. For AWGN channels, the received signal can be represented as

r(t) = s(t) + J(t) + n(t). (4.5)

We assume that s(t), J(t) and n(t) are independent of each other. Feeding r(t) into a bank

of Nc bandpass filters, each centered at fi (i = 1, 2, · · · , Nc), the output of the ith ideal

bandpass filter fi(t) is ri(t) = fi(t) ∗ r(t). For demodulation, ri(t) is first shifted back to

the baseband, and then passed through a matched filter. At the mth hopping period, for

i = 1, · · · , Nc, the sampled matched filter output corresponds to channel i can be expressed

as

ri,m = αi,msn + βi,mJi,m + ni,m, (4.6)
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where sn, Ji,m and ni,m correspond to the signal symbol, the jamming interference and

the noise, respectively; αi,m, βi,m ∈ {0, 1} are binary indicators for the presence of signal

and jamming over channel i at the mth hopping period, respectively. Note that the user’s

information is carried in both αi,m and sn. For notation simplicity, without loss of generality,

we omit the subscript m and n in (4.6). That is, for a particular hopping period, (4.6) is

reduced to:

ri = αis+ βiJi + ni, i = 1, · · · , Nc. (4.7)

The carrier bits and the ordinary bits can then be estimated from ri [88].

4.2.2 AJ-MDFH

AJ-MDFH was proposed to improve the capacity of MDFH under disguised jamming by

adding shared randomness between the transmitter and receiver. This is achieved by re-

placing the ordinary bits in MDFH with a secure identification (ID) information during the

transmission process.

The system structure of AJ-MDFH is illustrated in Figure 4.2. Each user is assigned a

secure ID sequence. For each hopping period, AJ-MDFH can also be characterized as

ri = αis+ βiJi + ni, i = 1, · · · , Nc, (4.8)

except that s is now the ID symbol instead of the signal symbol. To prevent impersonate

ID attack, the ID symbol is refreshed at each hopping period. For AJ-MDFH, the user’s

information is only carried in αi. Recall that for AJ-MDFH, the ML receiver reduces to a

normalized minimum distance receiver. Define Pi = E{‖ri‖2}, and

Zi =
‖ri − s‖√

Pi
. (4.9)

Let Ic = {1, · · · , Nc}. Assuming αi = δ(k−i) for some k ∈ Ic, at the receiver, k is estimated

as

k̂ = arg min
i∈Ic

Zi. (4.10)
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Figure 4.2: Transmitter and receiver structure of AJ-MDFH.

For more efficient spectrum usage, the system can be extended to multi-carrier AJ-MDFH

(MC-AJ-MDFH). The idea is to split all the Nc channels into Ng non-overlapping subgroups,

and each carrier hops within the assigned subgroup based on the AJ-MDFH scheme [88].

4.3 Capacity of MDFH under Disguised Jamming

In this section, we will show that in MDFH, due to the fact that there is no shared secret

between the transmitter and receiver, when the constellation Ω and the pulse shaping filter

g(t) are known to the jammer, the capacity of MDFH under worst case disguised jamming

is actually zero.

Following (4.7), let r = (r1, . . . , rNc), α = (α1, . . . , αNc), β = (β1, . . . , βNc), J′ =

(J1, · · · , JNc) and n = (n1, . . . , nNc), the MDFH system under hostile jamming can be
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modeled as:

r = αs+ β · J′ + n. (4.11)

Note that the information is contained in both α and s. Define x = αs, J = β · J′, then we

have

r = x + J + n. (4.12)

Let A = {α = (α1, . . . , αNc)|αi is 0 or 1, and

Nc∑
i=1

αi = 1}. Define X = {αs|α ∈ A, s ∈

Ω} be the set of all possible information signal x, and J = {J = (β1J1, · · · , βNcJNc)|Ji ∈

ΩJ , βi = 0, 1, i = 1, · · · , Nc} where ΩJ is the set of all possible jamming symbols. Let x̂

be the estimated version of x at the receiver, and W0(x̂|x,J) the conditional probability

that x̂ is estimated at the receiver given that the signal is x, and the jamming is J. The

jammed MDFH system can be modeled as an arbitrarily varying channel (AVC) which is

characterized by the probability matrix

W0 : X × J → X , (4.13)

with

W0(x̂|x,J) ≥ 0, x̂,x ∈ X ,J ∈ J , (4.14)∑
x̂∈X

W0(x̂|x,J) = 1, ∀x ∈ X ,∀J ∈ J . (4.15)

W0 is called the kernel of the AVC.

Under the worst case single band disguised jamming,

J = {βb|β ∈ A, b ∈ Ω} = X . (4.16)

That is, the jamming and the information signal are fully symmetric. Note that in MDFH,

no shared randomness is exploited for signal detection at the receiver, the recovery of x is

fully based on r. Hence, we further have

W0(x̂|x,J) = W0(x̂|J,x). (4.17)
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This implies that the kernel of the AVC corresponding to MDFH, W0, is symmetric.

In [92], it has been proved that the deterministic capacity (i.e., the largest rate achieved

with deterministic codes) of an AVC with symmetric kernel is zero. Therefore, we have the

result below.

Proposition 2 The deterministic capacity of MDFH under the worst case single band dis-

guised jamming is zero.

4.4 Capacity of AJ-MDFH under Disguised Jamming

In this section, first, we will show that due to the shared randomness introduced by the secure

ID sequence, the resulted kernel of the AVC corresponding to AJ-MDFH is nonsymmetrizable

even under the worst case disguised jamming - ID jamming. We will further calculate the

capacity of AJ-MDFH under ID jamming.

4.4.1 AVC Symmetricity Analysis

Recall that for AJ-MDFH,

r = αs+ J + n. (4.18)

Under the worse case single band disguised jamming, J ∈ X , and can be represented as

J = βb for some β ∈ A and b ∈ Ω. Note that the information is only transmitted through

α, the AVC corresponding to AJ-MDFH can be characterized using the probability matrix

W : X × X → A, (4.19)

with

W (α̂|x,J) ≥ 0, x = αs ∈ X ,J = βb ∈ X , α̂,α,β ∈ A,∑
α̂∈A

W (α̂|x,J) = 1, ∀ (x,J) ∈ X 2. (4.20)
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Here α̂ is the estimated version of α. In this section, we will first prove that: under reasonable

SNR levels, the kernel W defined in (4.19)-(4.20) is nonsymmetric. Then prove a stronger

result: W is actually nonsymmetrizable.

Recall that W is symmetric if and only if

W (α̂|x,J) = W (α̂|J,x), ∀x,J ∈ X , ∀α̂ ∈ A. (4.21)

To prove that W is nonsymmetric, we need to show that there always exist some x,J and

α̂, such that the equality above does not hold. Following the discussion on ID constellation

design in Chapter 3, we assume that Ω is a PSK constellation with power Ps, and define a

mapping v : Ic → A as

v(k) = α if αi = δ(k − i),∀i ∈ Ic. (4.22)

Lemma 1 Suppose X, Y are independent continuous random variables. If Z1, · · · , ZN are

i.i.d. continuous random variables, which are also independent of X, Y , then

Pr{X < Y and X < Zi,∀1 ≤ i ≤ N} ≥ Pr{X < Y } −NPr{X ≥ Zi0}, (4.23)

for any fixed 1 ≤ i0 ≤ N .

Proof : Let A = {X < Y } and B = {X < Zi,∀1 ≤ i ≤ N} =
⋂

1≤i≤N
{X < Zi}. The

corresponding complement, B̄, can be written as

B̄ =
⋃

1≤i≤N
{X ≥ Zi}. (4.24)

Note that Pr{A} = Pr{A
⋂
B}+ Pr{A

⋂
B̄},

Pr{X < Y and X < Zi,∀1 ≤ i ≤ N} = Pr{A
⋂
B}

= Pr{A} − Pr{A
⋂
B̄}

≥ Pr{A} − Pr{B̄}

≥ Pr{A} −
N∑
i=1

Pr{X ≥ Zi}

= Pr{X < Y } −NPr{X ≥ Zi0}, (4.25)
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for any fixed 1 ≤ i0 ≤ N . 2

Proposition 3 Assuming Ω is a PSK constellation with power Ps. Let x = αs, J = βb,

where α,β ∈ A, α 6= β, and s, b ∈ Ω, then

W (α|x,J) ≥ 1− 1

2
e
−‖b−s‖

2

2σ2
n − ε, (4.26)

where ε =
Nc − 2

γ + 2
exp{−γ(γ + 1)

γ + 2
} with γ =

Ps
σ2
n

denoting the SNR.

Proof : Let α = v(k) and β = v(j). When β 6= α, we have j 6= k and

W (α|x,J) = W (α|αs,βb)

= Pr{Zk < Zj and Zk < Zi,∀i ∈ Ic, i 6= j, k|x,J}. (4.27)

It then follows from Lemma 1 that

W (α|x,J) ≥ Pr{Zk < Zj |x,J} − (Nc − 2)Pr{Zk ≥ Zi0 |x,J}, (4.28)

for any fixed i0 ∈ Ic, i0 6= k, j. For any i ∈ Ic, it follows from (4.8) and (4.9) that signal ri

and the corresponding metric Zi can be written as

ri =


s+ nk, i = k,

b+ nj , i = j,

ni, i 6= j, k,

Zi =



‖nk‖√
Ps + σ2

n

, i = k,

‖b− s+ nj‖√
Ps + σ2

n

, i = j,

‖ni − s‖
σn

, i 6= j, k.

(4.29)

Then, Pr{Zk < Zj |x,J} = Pr{‖nk‖ < ‖b − s + nj‖|x,J}. For any s, b ∈ Ω, both nk and

b−s+nj are circularly symmetric complex Gaussian random variables with nk ∼ CN (0, σ2
n)

and b− s+ nj ∼ CN (b− s, σ2
n). Then Pr{Zk < Zj |x,J} can be calculated as [87, page 49]

Pr{Zk < Zj |x,J} = 1− 1

2
e
−‖b−s‖

2

2σ2
n . (4.30)

Similarly, for any fixed i0 ∈ Ic, i0 6= k, j, we have
nk√

Ps + σ2
n

∼ CN (0,
σ2
n

Ps + σ2
n

),
ni0 − s
σn

∼

CN (− s

σn
, 1) and

Pr{Zk ≥ Zi0|x,J} = Pr{ ‖nk‖√
Ps + σ2

n

≥
‖ni0 − s‖

σn
} =

1

γ + 2
e
−γ(γ+1)

γ+2 , (4.31)
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where γ =
Ps
σ2
n

. It then follows from (4.28) that

W (α|x,J) ≥ 1− 1

2
e
−‖b−s‖

2

2σ2
n − ε. 2 (4.32)

Note that ε is determined by the SNR γ as well as the number of channels Nc. When

SNR ≥ 10dB and Nc = 512, for example, ε ≤ 0.004.

Theorem 2 Assuming Ω is a PSK constellation with power Ps. Let x = αs, J = βb, where

α,β ∈ A, α 6= β, and s, b ∈ Ω, s 6= b. Let γ =
Ps
σ2
n

and ε =
Nc − 2

γ + 2
exp{−γ(γ + 1)

γ + 2
}, then

W (α|x,J)−W (α|J,x) ≥ 1− e
−‖b−s‖

2

2σ2
n − 2ε. (4.33)

Proof : Following Proposition 3, we have

W (β|J,x) ≥ 1− 1

2
e
−‖b−s‖

2

2σ2
n − ε. (4.34)

An upper bound for W (α|J,x) can be derived as

W (α|J,x) = 1−W (β|J,x)−
∑
α̂ 6=α,β

W (α̂|J,x)

≤ 1−W (β|J,x)

≤ 1

2
e
−‖b−s‖

2

2σ2
n + ε. (4.35)

It then follows form (4.26) and (4.35) that

W (α|x,J)−W (α|J,x) ≥ 1− e
−‖b−s‖

2

2σ2
n − 2ε. 2 (4.36)

Proposition 4 Assuming Ω is a PSK constellation with power Ps. Let x = αs, J = βb,

where α,β ∈ A, α 6= β, and s, b ∈ Ω, s 6= b, then

W (α|x,J) > W (α|J,x), (4.37)

whenever
‖b− s‖2

σ2
n

> 2 ln
1

1− 2ε
.
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This result follows directly from Theorem 2. It implies that as long as s and b are

“distinguishable” under the additive noise, the channel symmetricity between the jammer

and the legal user is broken, and this increases the probability of correct decision.

Define Ŵ : X × X → A by

Ŵ (α̂|x,J) ,
∑
y∈Y

π(y|J)W (α̂|x,y), (4.38)

where π : X → Y is a probability matrix, and Y ⊆ X . If there exists a π such that

Ŵ (α̂|x,J) = Ŵ (α̂|J,x), ∀x,J ∈ X , ∀α̂ ∈ A, (4.39)

then W is said to be symmetrizable. Next, we will show that under ID jamming, as long as

the ID sequence is unavailable to the jammer, the AVC corresponding to AJ-MDFH is not

only nonsymmetric, but also nonsymmetrizable.

Theorem 3 Assuming Ω is a M-PSK constellation with power Ps. Let γ =
Ps
σ2
n

, ε =

Nc − 2

γ + 2
exp{−γ(γ + 1)

γ + 2
} and dmin = min

s1,s2∈Ω,s1 6=s2
‖s1−s2‖. Let f(x) =

1

x+ 2
exp{−x(x+ 1)

x+ 2
}.

For Nc > 2 and M > 2, under the condition2 that

γ > f−1(
1

2Nc
) and

d2
min

σ2
n

> max(
2
√

lnNc√
2γ −

√
lnNc

, 2 ln
1

1− 2ε
) (4.40)

the kernel W for the AVC corresponding to AJ-MDFH is nonsymmetrizable.

We are going to show that for any probability matrix π, there exist some α̂0 ∈ A, and

x0,J0 ∈ X , such that

Ŵ (α̂0|x0,J0) 6= Ŵ (α̂0|J0,x0). (4.41)

To prove this result, we need the following two Lemmas:

Lemma 2 For any given π : X → X , there exists a pair x0 = αs and J0 = βb, α,β ∈ A,

s, b ∈ Ω, such that β 6= α, b 6= s and π(−x0|J0) + π(βs|J0) < 1.

2When M is fixed, the two conditions in (4.40) can be reduced to one condition on SNR.
As an example, for M = 32 and Nc = 64, the kernel W is nonsymmetrizable when γ > 8.3dB.
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Proof: Suppose for all x = α̃s̃ and J = β̃b̃ with β̃ 6= α̃, b̃ 6= s̃, the equality π(−x|J) +

π(β̃s̃|J) = 1 holds. For Nc > 2 and M > 2, consider x0 = αs, J0 = βb with β 6=

α, b 6= s and any x1 = λc, λ ∈ A, c ∈ Ω with λ 6= α,β and c 6= b, s. On one hand,

π(−x0|J0) + π(βs|J0) = 1, which implies that J0 can only be mapped to −x0 and βs. On

the other hand, we also have π(−x1|J0) + π(βc|J0) = 1, which implies that J0 can only be

mapped to −x1 and βc. Since −x1 6= −x0 and βc 6= βs, this is a contradiction. Hence, we

can always find a pair x0 and J0 such that π(−x0|J0) + π(βs|J0) < 1. 2

Lemma 3 X can be partitioned into six subsets with respect to x0 as X = ∪6
i=1Xi, where

X1 , {α(−s)}, X2 , {αs0|s0 ∈ Ω, s0 6= −s}, X3 , {βs}, X4 , {βs0|s0 ∈ Ω, s0 6= s}

X5 , {α0s|α0 6= α,β}, X6 , {α0s0|α0 6= α,β, s0 6= s}. (4.42)

Under the condition that γ > f−1(
1

2Nc
) and

d2
min

σ2
n

> max(
2
√

lnNc√
2γ −

√
lnNc

, 2 ln
1

1− 2ε
),

W (α|x0,y) = W (β|x0,y), ∀y ∈ Xi, i = 1, 3. (4.43)

W (α|x0,y)−W (β|x0,y) > 0, ∀y ∈ Xi, i = 2, 4, 5, 6. (4.44)

Proof : See Section 4.10.1. 2

For any x ∈ X ,y ∈ Y , we assume 0 ≤ π(y|x) ≤ 1. Here the value 1 corresponds to the

case that Y is a single item subset; the value 0 excludes certain points in X , and results in

the case that Y is a proper subset of X . Without loss of generality, we can assume that

Y = X and prove that (4.39) is not true for any probability matrix π : X → X .

Proof of Theorem 3: Following Lemma 2, we pick x0, J0 such that β 6= α, b 6= s

and π(−x0|J0) + π(βs|J0) < 1. We will prove that Ŵ (α|x0,J0) = Ŵ (α|J0,x0) and

Ŵ (β|x0,J0) = Ŵ (β|J0,x0) cannot hold simultaneously, by showing that

Ŵ (α|x0,J0)− Ŵ (β|x0,J0) > Ŵ (α|J0,x0)− Ŵ (β|J0,x0). (4.45)

By Lemma 3, X = ∪6
i=1Xi. For any α̂0 ∈ A, we have

Ŵ (α̂0|x0,J0) =
6∑
i=1

∑
y∈Xi

π(y|J0)W (α̂0|x0,y). (4.46)
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It then follows from (4.43) - (4.44) that

Ŵ (α|x0,J0)− Ŵ (β|x0,J0) =
6∑

i=2,
i 6=3

∑
y∈Xi

[W (α|x0,y)−W (β|x0,y)]π(y|J0) ≥ 0, (4.47)

with the equality holds if and only if
6∑

i=2,
i 6=3

∑
y∈Xi

π(y|J0) = 0, i.e., π(−x0|J0) + π(βs|J0) = 1.

Recall that we pick x0, J0 such that β 6= α, b 6= s and π(−x0|J0)+π(βs|J0) < 1. Therefore,

Ŵ (α|x0,J0)− Ŵ (β|x0,J0) > 0. (4.48)

Similarly, X can be partitioned into six subsets with respect to J0 = βb, defined as

J1 , {β(−b)}, J2 , {βb0|b0 ∈ Ω, b0 6= −b}, J3 , {αb}, J4 , {αb0|b0 ∈ Ω, b0 6= b}

J5 , {β0b|β0 6= α,β}, J6 , {β0b0|β0 6= α,β, b0 6= b}, (4.49)

and

Ŵ (α̂0|J0,x0) =
6∑
i=1

∑
y∈Ji

π(y|x0)W (α̂0|J0,y). (4.50)

Then we have

Ŵ (α|J0,x0)− Ŵ (β|J0,x0) =
6∑

i=2,
i6=3

∑
y∈Ji

[W (α|J0,y)−W (β|J0,y)]π(y|x0). (4.51)

Moreover, under the same condition as in previous case,

Ŵ (α|J0,x0)− Ŵ (β|J0,x0) ≤ 0. (4.52)

From (4.48) and (4.52), we can see that (4.45) holds, which implies that Ŵ (α|x0,J0) =

Ŵ (α|J0,x0) and Ŵ (β|x0,J0) = Ŵ (β|J0,x0) cannot hold simultaneously. 2

Note that the secure ID in AJ-MDFH is generated using AES, to symmetrize AJ-MDFH is

thus equivalent to break AES, which is computationally infeasible in practical systems. That

is, the AVC corresponding to AJ-MDFH is computationally infeasible to be symmetrized.

This result ensures that when the ID sequence is unknown to the jammer, the deterministic

capacity of AJ-MDFH is positive, and equal to the random code capacity [51, 92].
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4.4.2 Capacity Calculation

Note that in AJ-MDFH, the message information is only transmitted through the carrier

bits. Consider x = αs where s ∈ Ω and α = (α1, · · · , αNc) ∈ A. Let iS and iJ be the signal

channel index and jamming channel index, respectively, and îS the detected signal channel

index at the receiver. For capacity analysis, define

W1(k̂|k, j) , Pr{̂iS = k̂|iS = k, iJ = j}. (4.53)

Let x = αs, J = βb with α = v(k), β = v(j). Let α̂ = v(k̂), and assuming s and b are

uniformly distributed over Ω, then the relationship between W1 and W can be characterized

as

W1(k̂|k, j) =
1

|Ω|2
∑
s∈Ω

∑
b∈Ω

W (α̂|x = αs,J = βb). (4.54)

The detailed representation of W1 is provided in Section 4.10.2, where we prove that W1 has

the following properties:

(P1): W1(k|k, k) and W1(i|k, k) are fixed values for any i, k ∈ Ic, i 6= k.

(P2): W1(k|k, j), W1(j|k, j) and W1(i|k, j) are fixed values for any i, j, k ∈ Ic, j 6= k, i 6= j, k.

Denote the set of all probability distributions on Ic as P(Ic). Let P and ζ denote the

probability distribution associated with iS and iJ , respectively. P, ζ ∈ P(Ic). Let Wζ denote

the averaged probability matrix for a given ζ

Wζ(k̂|k) = Wζ (̂iS = k̂|iS = k)

=
∑
j∈Ic

W1(k̂|k, j)ζ(iJ = j). (4.55)

Let I(P,Wζ) denote the mutual information [92] between the input and the output for the

AJ-MDFH channel, defined as

I(P,Wζ) ,
∑
k̂∈Ic

∑
k∈Ic

P (iS = k)Wζ(k̂|k) log
Wζ(k̂|k)

(PW )ζ(k̂)
, (4.56)
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where (PW )ζ(k̂) =
∑
k′∈Ic

Wζ(k̂|k′)P (k′). Following Theorem 3, the AVC corresponding to

AJ-MDFH is nonsymmetrizable. Its channel capacity for the average error probability is

positive and can be calculated as [52, 53]

C = max
P∈P(Ic)

min
ζ∈P(Ic)

I(P,Wζ) = min
ζ∈P(Ic)

max
P∈P(Ic)

I(P,Wζ). (4.57)

It can be observed from (4.57) that the legal user tries to choose P to maximize the mutual

information, while the jammer tries to minimize it by choosing an appropriate ζ [95, 96]. Let

(P, ζ) ∈ P(Ic)×P(Ic) be a pair of mixed strategy chosen by the user and the jammer. The

capacity can be achieved when a pair of saddle point strategy (P ∗, ζ∗) are chosen, which can

be characterized by the following two inequalities for all (P, ζ) ∈ P(Ic)× P(Ic) [97, 98]:

I(P,Wζ∗) ≤ I(P ∗,Wζ∗) ≤ I(P ∗,Wζ). (4.58)

Following the same arguments in [99], we have the following Lemma:

Lemma 4 In an AJ-MDFH channel, the saddle point strategy pair can be reached when

both P and ζ are uniform distributions over Ic. That is,

P ∗(k) =


1

Nc
, k ∈ Ic,

0, otherwise,

ζ∗(j) =


1

Nc
, j ∈ Ic,

0, otherwise.

(4.59)

Proof: We need to show that both inequalities in (4.58) are satisfied if (P ∗, ζ∗) is given

in (4.59). First, assuming ζ = ζ∗, it can be shown that Wζ∗ is a symmetric matrix given in

(4.80). It is shown in [100] that I(P,Wζ∗) is maximized when P = P ∗. Hence

I(P,Wζ∗) ≤ I(P ∗,Wζ∗). (4.60)

Next, assuming P = P ∗, we will show that I(P ∗,Wζ) is minimized when ζ = ζ∗. For

notation simplicity, we will consider the case Nc = 2, as the proof can be extended to Nc > 2.

For Nc = 2, Ic = {1, 2},

Wζ(k̂|k) =
∑
j∈Ic

W1(k̂|k, j)ζ(iJ = j),∀k̂, k ∈ Ic. (4.61)
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Define

Wζ =

 Wζ(1|1) Wζ(2|1)

Wζ(1|2) Wζ(2|2)

 . (4.62)

For any ζ ∈ P(Ic), let q1 = ζ(iJ = 1), q2 = ζ(iJ = 2) = 1− q1,

Wζ =

 W1(1|1, 1)q1 +W1(1|1, 2)q2 W1(2|1, 1)q1 +W1(2|1, 2)q2

W1(1|2, 1)q1 +W1(1|2, 2)q2 W1(2|2, 1)q1 +W1(2|2, 2)q2

 . (4.63)

Let p1 = W1(1|1, 1) and p2 = W1(1|1, 2). Note that W1(k|k, k) is a fixed value for any k ∈ Ic

and W1(k|k, j) is also a fixed value for j, k ∈ Ic, j 6= k. We have

W1(2|2, 2) = W1(1|1, 1) = p1,

W1(2|2, 1) = W1(1|1, 2) = p2, (4.64)

and

W1(1|2, 2) = W1(2|1, 1) = 1− p1,

W1(1|2, 1) = W1(2|1, 2) = 1− p2. (4.65)

It follows from (4.63)-(4.65) that

Wζ =

 p1q1 + p2q2 (1− p1)q1 + (1− p2)q2

(1− p2)q1 + (1− p1)q2 p2q1 + p1q2

 . (4.66)

Consider ζ ′ ∈ P(Ic) with ζ ′(iJ = 1) = q2 = 1 − q1 and ζ ′(iJ = 2) = q1, the corresponding

probability matrix

Wζ′ =

 p2q1 + p1q2 (1− p2)q1 + (1− p1)q2

(1− p1)q1 + (1− p2)q2 p1q1 + p2q2

 . (4.67)

For the uniform distribution ζ∗, i.e., ζ∗(iJ = 1) = ζ∗(iJ = 2) =
1

2
,

Wζ∗ =

 p1 + p2

2
1− p1 + p2

2

1− p1 + p2

2

p1 + p2

2

 . (4.68)
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It can be observed that Wζ∗(k̂|k) =
1

2
Wζ(k̂|k) +

1

2
Wζ′(k̂|k) for all k̂, k ∈ Ic. That is,

Wζ∗ =
1

2
Wζ +

1

2
Wζ′ . Since I(P ∗,Wζ) is a convex function of Wζ(k̂|k) [100, Theorem 2.7.4],

according to Jensen’s inequality,

I(P ∗,Wζ∗) = I(P ∗,
1

2
Wζ +

1

2
Wζ′) ≤

1

2
[I(P ∗,Wζ) + I(P ∗,Wζ′)]. (4.69)

Recall that

I(P,Wζ) ,
∑
k̂∈Ic

∑
k∈Ic

P (iS = k)Wζ(k̂|k) log
Wζ(k̂|k)

(PW )ζ(k̂)
, (4.70)

where (PW )ζ(k̂) =
∑
k′∈Ic

Wζ(k̂|k′)P (k′). Note that

Wζ(1|1) = Wζ′(2|2), Wζ(1|2) = Wζ′(2|1)

Wζ(2|1) = Wζ′(1|2), Wζ(2|2) = Wζ′(1|1). (4.71)

When the input is equiprobable, i.e., P ∗(1) = P ∗(2) =
1

2
, it can be observed that

(PW )ζ(1) =
1

2
(Wζ(1|1) +Wζ(1|2))

=
1

2
(Wζ′(2|2) +Wζ′(2|1)) = (PW )ζ′(2), (4.72)

and similarly (PW )ζ(2) = (PW )ζ′(1). It then follows from (4.70) and (4.72) that

I(P ∗,Wζ) =
∑
k′∈Ic

∑
k∈Ic

1

2
Wζ(k̂|k) log

Wζ(k̂|k)

(PW )ζ(k̂)

=
∑
k′∈Ic

∑
k∈Ic

1

2
Wζ′(k̂|k) log

Wζ′(k̂|k)

(PW )ζ′(k̂)

= I(P ∗,Wζ′). (4.73)

Then

I(P ∗,Wζ∗) ≤ I(P ∗,Wζ). (4.74)

Combining (4.60) and (4.74), we proved that I(P ∗,Wζ∗) is a pair of saddle point strategy.

2
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In AJ-MDFH, when the jammer chooses the strategy ζ∗ as in (4.59), the averaged prob-

ability matrix can be calculated as

Wζ∗(k̂|k) =

Nc∑
j=1

W1(k̂|k, j)ζ∗(j). (4.75)

(i) When k̂ = k, (4.75) can be expanded as

Wζ∗(k̂|k) = W1(k|k, k)ζ∗(k) +
∑

j∈Ic,j 6=k
W1(k|k, j)ζ∗(j). (4.76)

Following property (P1) and (P2) of W1, we have

Wζ∗(k̂|k) =
1

Nc
W1(k0|k0, k0) +

Nc − 1

Nc
W1(k0|k0, j0), (4.77)

for any fixed j0, k0 ∈ Ic, j0 6= k0.

(ii) When k̂ 6= k, (4.75) can be expanded as

Wζ∗(k̂|k) = W1(k̂|k, k)ζ∗(k) +W1(k̂|k, k̂)ζ∗(k̂) +
∑

j∈Ic,j 6=k̂,k

W1(k̂|k, j)ζ∗(j). (4.78)

Following property (P1) and (P2) of W1, we have

Wζ∗(k̂|k) =
1

Nc
W1(k̂0|k0, k0) +

1

Nc
W1(k̂0|k0, k̂0) +

Nc − 2

Nc
W1(k̂0|k0, j0), (4.79)

for any fixed k̂0, k0, j0 ∈ Ic, k̂0 6= k0, j0 6= k̂0, k0. Define w1 , Wζ∗(k|k) and w2 ,

Wζ∗(k̂|k), k̂ 6= k, then Wζ∗ can be obtained as

Wζ∗ =



Wζ∗(1|1) Wζ∗(2|1) · · · Wζ∗(Nc|1)

Wζ∗(1|2) Wζ∗(2|2) · · · Wζ∗(Nc|2)

...
...

. . .
...

Wζ∗(1|Nc) Wζ∗(2|Nc) · · · Wζ∗(Nc|Nc)


=



w1 w2 · · · w2

w2 w1 · · · w2

...
...

. . .
...

w2 w2 · · · w1


Nc×Nc

.

(4.80)

Due to the structure of the matrixWζ∗ , it then follows that for any k̂, k′ ∈ Ic,
∑
k′∈Ic

Wζ∗(k̂|k
′) =∑

k̂∈Ic

Wζ∗(k̂|k
′) = 1, and

(P ∗W )ζ∗(k̂) =
∑
k′∈Ic

Wζ∗(k̂|k
′)P ∗(k′) =

1

Nc
. (4.81)
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It then follows from (4.56) and (4.57) that

C = I(P ∗,Wζ∗)

=
∑
k̂∈Ic

∑
k∈Ic

1

Nc
Wζ∗(k̂|k) log

Wζ∗(k̂|k)

1
Nc

=
∑
k̂∈Ic

∑
k∈Ic

1

Nc
Wζ∗(k̂|k) logNc +

∑
k̂∈Ic

∑
k∈Ic

1

Nc
Wζ∗(k̂|k) logWζ∗(k̂|k)

= logNc +

Nc∑
k̂=1

Wζ∗(k̂|1) logWζ∗(k̂|1)

= logNc + w1 logw1 + (Nc − 1)w2 logw2. (4.82)

Following the discussions above and similar argument as in the proof of Proposition 1 in

Chapter 3, we have:

Theorem 4 Assuming Ω is an M-PSK constellation with power Ps. Let γ =
Ps
σ2
n

. The

deterministic capacity of AJ-MDFH under ID jamming is a function of M,Nc and γ of the

form C = C (M,Nc, γ) . As M approaches infinity, C converges to

C̄ = logNc + w̄1 log w̄1 + (Nc − 1)w̄2 log w̄2, (4.83)

where w̄1 = lim
M→∞

w1 and w̄2 = lim
M→∞

w2.

Proof : It can be observed from Section 4.10.2 that when Ω is an M-PSK constellation

with power Ps, for any j, k, k̂ ∈ Ic, W1(k̂|k, j) can be written as a function of the form

W1(k̂|k, j) =
1

M

M−1∑
κ=0

f
j,k,k̂

(
2πκ

M
,Nc, γ). (4.84)

It then follows from (4.76) that

w1 =
1

M

M−1∑
κ=0

[
fw1(

2πκ

M
,Nc, γ)

]
, (4.85)

where

fw1(
2πκ

M
,Nc, γ) =

1

Nc
fk0,k0,k0

(
2πκ

M
,Nc, γ) +

Nc − 1

Nc
fj0,k0,k0

(
2πκ

M
,Nc, γ), (4.86)
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for any fixed j0, k0 ∈ Ic, j0 6= k0. Similarly, from (4.78), we have

w2 =
1

M

M−1∑
κ=0

[
fw2(

2πκ

M
,Nc, γ)

]
, (4.87)

where

fw2(
2πκ

M
,Nc, γ) =

1

Nc
f
k0,k0,k̂0

(
2πκ

M
,Nc, γ) +

1

Nc
f
k̂0,k0,k̂0

(
2πκ

M
,Nc, γ)

+
Nc − 2

Nc
f
j0,k0,k̂0

(
2πκ

M
,Nc, γ), (4.88)

for any fixed k̂0, k0, j0 ∈ Ic, k̂0 6= k0, j0 6= k̂0, k0. Since both w1 and w2 are functions of

M,Nc and γ, it then follows from (4.82) that the channel capacity C is a function of M,Nc

and γ of the form C = C(M,Nc, γ).

As M approaches infinity, w1 converges to w̄1 as

w̄1 = lim
M→∞

w1 = lim
M→∞

M−1∑
κ=0

fw1(2πκ
M , Nc, γ) · 2π

M

M · 2π
M

=
1

2π
lim

M→∞

M−1∑
κ=0

fw1(
2πκ

M
,Nc, γ) · 2π

M

=
1

2π

∫ 2π

0
fw1(x,Nc, γ)dx. (4.89)

Similarly, we have

w̄2 = lim
M→∞

w2 =
1

2π

∫ 2π

0
fw2(x,Nc, γ)dx. (4.90)

Note that w1, w2 ∈ (0, 1) and x log x is continuous within this range. As M approaches

infinity, C converges to C̄ as

C̄ = lim
M→∞

C = logNc + lim
M→∞

w1 logw1 + (Nc − 1) lim
M→∞

w2 logw2

= logNc + w̄1 log w̄1 + (Nc − 1)w̄2 log w̄2. 2 (4.91)

4.5 Capacity of Multiuser AJ-MDFH under Disguised Jamming

In this section, we will analyze the deterministic capacity of MC-AJ-MDFH system under

the single band worst case disguised jamming - ID jamming.
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Recall that in MC-AJ-MDFH, Nc channels are divided into Ng non-overlapping groups,

and each subcarrier hops within the assigned group based on AJ-MDFH scheme. For each

hopping period, let sm and αm be the symbol and the indicator vector for mth subcarrier,

respectively. Let xm = αmsm denote the signal over mth subcarrier, and α̂m the estimated

version of αm. Let Gm denote the indexes of the subcarrier group for mth subcarrier and

Ḡm = Ic\Gm the complement of Gm in Ic. The set of indicator vector used bymth subcarrier,

denoted by Am, can be obtained by Am = {v(i)|∀i ∈ Gm}. Define Xm = {αmsm|αm ∈

Am, sm ∈ Ω} be the set of all possible xm. Note that the ID jamming is denoted by

J = βb ∈ X . The AVC corresponding to the mth subcarrier can be characterized by the

probability matrix

W̃m : Xm ×X → Am (4.92)

with

W̃m(α̂m|xm,J) ≥ 0,
∑

α̂m∈Am

W̃m(α̂m|xm,J) = 1, (4.93)

where xm = αmsm ∈ Xm,J = βb ∈ X , α̂m,αm ∈ Am,β ∈ A.

Note that in MC-AJ-MDFH, both secure group information and ID sequence are pro-

tected by AES. Without the knowledge of the shared secret, the jammer is unable to deter-

mine the subcarrier group Gm, which implies that Xm 6= X thus kernel W̃m is nonsymmetric.

Following the similar arguments as in Section 4.4, it can be further shown that kernel W̃m is

also nonsymmetrizable and the AVC corresponding to mth subcarrier has positive capacity

under ID jamming.

Let iS,m and îS,m be the signal channel index and its estimated version at the receiver,

respectively. Recall that iJ denote the jamming channel index. The probability matrix for

carrier bits information of mth subcarrier can be defined as

W1,m(k̂m|km, j) = Pr{̂iS,m = k̂m|iS,m = km, iJ = j}. (4.94)

Let αm = v(km), km ∈ Gm, sm ∈ Ω and J = βb with β = v(j), j ∈ Ic and b ∈ Ω. Assuming
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sm and b are uniformly distributed over Ω, W1,m can be obtained from W̃m by

W1,m(k̂m|km, j) =
1

|Ω|2
∑
sm∈Ω

∑
b∈Ω

W̃m[v(k̂m)|v(km)sm, v(j)b], (4.95)

where W̃m[v(k̂m)|v(km)sm, v(j)b] can be calculated as

W̃m[v(k̂m)|v(km)sm, v(j)b] = Pr{Z
k̂m

< Zi,∀i ∈ Gm, i 6= k̂m|xm = αmsm,J = βb}.

(4.96)

Assuming Ω is an M-PSK constellation with power Ps.

(i) When j ∈ Gm, W1,m can be calculated following the similar derivations in Section

4.10.2, except that the detection is performed on subcarrier group Gm instead of on Ic.

(ii) When j ∈ Ḡm, the group is jamming-free. Zi can be obtained as

Zi =


‖nkm‖√
Ps + σ2

n

, i = km,

‖ni − sm‖
σn

, i ∈ Gm, i 6= km.

(4.97)

Zkm is a a Rayleigh random variable with PDF pZkm
(zkm) =

zkm
σ2

e
−
z2km
2σ2 , where σ =

σn√
2(Ps + σ2

n)
. For any sm ∈ Ω, when i 6= km, Zi’s are i.i.d. Rician random variables with

PDF pZi(zi) =
zi
σ2
e
−
z2i +ν2

2σ2 I0

(ziν
σ2

)
, where ν =

√
Ps
σn

and σ =
1√
2

. It can be observed

that the jamming does not affect the signal detection performance in this case. For any

xm = v(km)sm,J = v(j)b with j ∈ Ḡm, we have

W1,m (km|km, j)

=
1

|Ω|2
∑
sm∈Ω

∑
b∈Ω

Pr{Zkm < Zi, ∀i ∈ Gm, i 6= km|xm,J}

=
1

|Ω|2
∑
sm∈Ω

∑
b∈Ω

∫ ∞
0

∏
i∈Gm,i 6=km

Pr{Zi > zkm |xm,J, zkm}pZkm (zkm)dzkm

=

∫ ∞
0

[
Q1

(√
2Ps
σn

,
√

2zkm

)]|Gm|−1 2zkm(Ps + σ2
n)

σ2
n

e
−

(Ps+σ2
n)z2km
σ2
n dzkm , (4.98)
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and for any i, km ∈ Gm, i 6= km,

W1,m(i|km, j) =
1

|Gm| − 1
[1−W1,m(km|km, j)]. (4.99)

Let Wζ,m denote the averaged probability matrix of mth user under ID jamming with

distribution ζ on Ic given as

Wζ,m(k̂m|km) =
∑
j∈Ic

W1,m(k̂m|km, j)ζ(iJ = j). (4.100)

Due to the pseudorandom property of the secure group generation algorithm, iJ is uniformly

distributed over Nc channels after the secure groups are recovered at the receiver, which is

the same as the saddle point strategy given in (4.59). Following the similar derivations for

AJ-MDFH in (4.75)-(4.78), we have the following results:

(i) When k̂m = km ∈ Gm,

Wζ∗,m(k̂m|km) = W1,m(km|km, km)ζ∗(km) +
∑

j∈Gm,j 6=km
W1,m(km|km, j)ζ∗(j)

+
∑
j∈Ḡm

W1(km|km, j)ζ∗(j)

=
1

Nc
W1,m(k0,m|k0,m, k0,m) +

|Gm| − 1

Nc
W1,m(k0,m|k0,m, j0)

+
Nc − |Gm|

Nc
W1,m(k0,m|k0,m, u0,m),

for any fixed j0, k0,m ∈ Gm, j0 6= k0,m and any fixed u0,m ∈ Ḡm.

(ii) When k̂m, km ∈ Gm, k̂m 6= km,

Wζ∗,m(k̂m|km) = W1,m(k̂m|km, km)ζ∗(km) +W1,m(k̂m|km, k̂m)ζ∗(k̂m)

+
∑
j∈Gm

j 6=k̂m,km

W1,m(k̂m|km, j)ζ∗(j) +
∑
j∈Ḡm

W1,m(km|km, j)ζ∗(j)

=
1

Nc
W1,m(k̂0,m|k0,m, k0,m) +

1

Nc
W1,m(k̂0,m|k0,m, k̂0,m)

+
|Gm| − 2

Nc
W1,m(k̂0,m|k0,m, j0) +

Nc − |Gm|
Nc

W1,m(k̂0,m|k0,m, u0,m),

for any fixed k̂0,m, k0,m, j0 ∈ Gm, k̂0,m 6= k0,m, j0 6= k̂0,m, k0,m and any fixed u0,m ∈ Ḡm.

94



Define w1,m , Wζ∗,m(km|km) and w2,m , Wζ∗,m(k̂m|km), k̂m 6= km. Wζ∗,m can be

written into a symmetric matrix of size |Gm| × |Gm| similar as in (4.80). The deterministic

capacity for mth subcarrier group under ID jamming, Cm, can be obtained following (4.82)

that

Cm = log |Gm|+ w1,m logw1,m + (|Gm| − 1)w2,m logw2,m, (4.101)

which is achieved when iS,m is uniformly distributed over Gm. Hence, the capacity of MC-

AJ-MDFH can be obtained as

CMC =

Ng∑
m=1

Cm. (4.102)

4.6 Capacity of MDFH under Noise Jamming

Let x = αs ∈ X and J ∈ J denote the transmitted signal and the jamming, respectively,

and x̂ = α̂ŝ ∈ X the estimated version of x = αs at the receiver. Let σ2
J denote the jamming

power and C the set of all complex numbers. Under the single band noise jamming, we have

J = βb where β ∈ A and b ∈ C is a circularly symmetric complex Gaussian random variable,

i.e., b ∼ CN (0, σ2
J ). The corresponding noise jamming space is

J = {βb|β ∈ A, b ∈ C}. (4.103)

Therefore, MDFH under noise jamming can be modeled as an AVC characterized by the

probability matrix

W0 : X × J → X , (4.104)

with

W0(x̂|x,J) ≥ 0, x̂,x ∈ X ,J ∈ J , (4.105)∑
x̂∈X

W0(x̂|x,J) = 1, x ∈ X ,J ∈ J . (4.106)

For the kernel to be symmetric, it is required that J = X . Since J ⊃ X for noise

jamming, the kernel corresponding to MDFH under noise jamming, W0, is nonsymmetric.
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Recall that to symmetrize W0, we need to find a probability matrix π(y|J), where J ∈ X

and y ∈ Y ,Y ⊆ J . This implies that to symmetrize X also requires J ∈ X . However, under

the noise jamming, the jammer simply transmits random Gaussian noise and J ∈ J . This

implies that the jammer has no intention to disguise itself as the true signal. Hence, the

MDFH channel under noise jamming is nonsymmetrizable and has a positive capacity.

Recall that in MDFH, the information bits are divided into carrier bits and ordinary bits.

At the receiver, the carrier bits are first detected by identifying the carrier channel, then

the ordinary bits are extracted from the estimated carrier using conventional demodulation

scheme. Following the MDFH receiver design, we have

W0(x̂ = α̂ŝ|x,J) = W0,c(α̂|x,J)W0,o(ŝ|α̂,x,J). (4.107)

Here, W0,c : X × J → A is the AVC kernel corresponding to the carrier bits transmission

channel, and W0,o : A× X × J → Ω is the AVC kernel corresponding to the ordinary bits

transmission channel. Note that W0,o depends on the output of W0,c. We now derive the

capacity of the carrier bits transmission channel and that of the ordinary bits transmission

channel, respectively.

4.6.1 Capacity Derivation for Carrier Information Transmission Channel

Let iS and iJ be the signal channel index and jamming channel index, respectively, and îS

the detected signal channel index at the receiver. For capacity analysis, define

W1,c(k̂|k, j) = Pr{̂iS = k̂|iS = k, iJ = j}. (4.108)

Note that the signal symbol s is selected from Ω by the encrypted information, which is

assumed to be random, and the jamming noise b ∼ CN (0, σ2
J ) is independent of s. Let

x = αs, J = βb with α = v(k), β = v(j), and α̂ = v(k̂). Then, the relationship between

W1,c and W0,c can be characterized as

W1,c(k̂|k, j) =
1

|Ω|
∑
s∈Ω

∫
C
W0,c[v(k̂)|v(k)s, v(j)b]pB(b)db, (4.109)
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where pB(b) =
1

πσ2
J

exp{−‖b‖
2

σ2
J

} is the PDF for Gaussian noise b.

Assuming Ω is a PSK constellation with power Ps. Let Yi = ‖ri‖ denote the square root

of the received signal power in ith channel. When the threshold based (with threshold η)

carrier detector is used, channel k̂ is detected if Y
k̂

is the smallest above the threshold η, and

W1,c(k̂|k, j) can be obtained as follows:

(i) When j = k, Yi can be obtained as

Yi =

 ‖s+ b+ nk‖, i = k,

‖ni‖, i 6= k,
(4.110)

Since b ∼ CN (0, σ2
J ), we have rk ∼ CN (s, σ2

J + σ2
n), ri ∼ CN (0, σ2

n) and

W1,c (k|k, k)

=
1

|Ω|
∑
s∈Ω

∫
C
Pr{Yk > η and Yi < η,∀i ∈ Ic, i 6= k|x,J}pB(b)db

= Q1

(√
2Ps

σ2
J + σ2

n
,

√
2

σ2
J + σ2

n
η

)
(1− e

− η
2

σ2
n )Nc−1. (4.111)

For i 6= k, W1,c(i|k, k) can be obtained following (4.165) in Section 4.10.2.

(ii) When j 6= k, Yi can be calculated as

Yi =


‖s+ nk‖, i = k,

‖b+ nj‖, i = j,

‖ni‖, i 6= j, k.

(4.112)
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Note that rk ∼ CN (s, σ2
n), rj ∼ CN (0, σ2

J + σ2
n) and ri ∼ CN (0, σ2

n). We then have

W1,c (k|k, j)

=
1

|Ω|
∑
s∈Ω

∫
C

[
Pr{Yk > η and Yj < η and Yi < η,∀i ∈ Ic, i 6= k|x,J}

+ Pr{Yk > η and Yk < Yj and Yi < η,∀i ∈ Ic, i 6= k|x,J}
]
pB(b)db

=

Q1

(√
2Ps
σn

,

√
2

σn
η

)
(1− e

− η2

σ2
J+σ2

n ) +

∫ ∞
η

e
−

y2
k

σ2
J+σ2

n pYk
(yk)dyk


·(1− e

− η
2

σ2
n )Nc−2, (4.113)

where pYk
(yk) =

yk
σ2
e
−
y2
k+ν2

2σ2 I0

(ykν
σ2

)
with ν =

√
Ps and σ =

σn√
2

, and

W1,c (j|k, j)

=
1

|Ω|
∑
s∈Ω

∫
C

[
Pr{Yk < η and Yj > η and Yi < η,∀i ∈ Ic, i 6= k|x,J}

+ Pr{Yj > η and Yj < Yk and Yi < η,∀i ∈ Ic, i 6= k|x,J}
]
pB(b)db

=


[

1−Q1

(√
2Ps
σn

,

√
2

σn
η

)]
e
− η2

σ2
J+σ2

n +

∫ ∞
η

Q1

(√
2Ps
σn

,

√
2

σn
yj

)
pYj (yj)dyj


·(1− e

− η
2

σ2
n )Nc−2, (4.114)

where pYj (yj) =
yj

σ2
e
−
y2
j

2σ2 with σ =
σJ√

2
. For i 6= k, j, W1,c(i|k, j) can be obtained following

(4.169) in Section 4.10.2. The capacity of the carrier information transmission channel,

denoted as Cc, can be obtained similarly following the capacity result in (4.82).

4.6.2 Capacity Derivation for Ordinary Information Transmission Channel

Let S be the signal symbol selected by the ordinary bits, B the Gaussian noise, and Ŝ the

estimated version of S. For capacity analysis, define

W1,o(ŝ|s, b) = Pr{Ŝ = ŝ|S = s, B = b}. (4.115)
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Note that iS is selected by the encrypted carrier bits information, which is assumed to be

uniformly distributed over Ic, and iJ is also assumed to be uniformly distributed over Ic.

Then, the relationship between W1,o and W0,o can be characterized as

W1,o(ŝ|s, b) =
1

N2
c

∑
k̂∈Ic

∑
k∈Ic

∑
j∈Ic

W0,o[ŝ|v(k̂), v(k)s, v(j)b]W1,c(k̂|k, j). (4.116)

For noise jamming, b ∼ CN (0, σ2
J ), and the averaged probability matrix for W1,o can be

obtained as

Wo,pB
(ŝ|s) =

∫
C
W1,o(ŝ|s, b)pB(b)db

=
1

N2
c

∑
k̂∈Ic

∑
k∈Ic

∑
j∈Ic

W̄0,o[ŝ|v(k̂), v(k)s, v(j)]W1,c(k̂|k, j), (4.117)

where

W̄0,o[ŝ|v(k̂), v(k)s, v(j)] =

∫
C
W0,o[ŝ|v(k̂), v(k)s, v(j)b]pB(b)db. (4.118)

When the minimum distance detector ŝ = arg min
ŝ∈Ω
‖r
k̂
− ŝ‖ is used for symbol s detection,

W̄0,o[ŝ|v(k̂), v(k)s, v(j)] can be calculated as follows:

(i) When k̂ = j = k, r
k̂

= rk = s+ b+ nk. Let Dŝ denote the decision region for symbol

ŝ. Since b ∼ CN (0, σ2
J ) and nk ∼ CN (0, σ2

n), we have rk ∼ CN (s, σ2
J + σ2

n) and

W̄0,o[ŝ|v(k), v(k)s, v(k)] =

∫
Dŝ

prk(rk)drk, (4.119)

where prk(rk) =
1

π(σ2
J + σ2

n)
exp{−‖rk − s‖

2

σ2
J + σ2

n
} is the PDF of rk.

(ii) When j 6= k and k̂ = k, r
k̂

= rk = s+ nk. We then have rk ∼ CN (s, σ2
n) and

W̄0,o[ŝ|v(k), v(k)s, v(j)] =

∫
Dŝ

prk(rk)drk, (4.120)

where prk(rk) =
1

πσ2
n

exp{−‖rk − s‖
2

σ2
n

}.

(iii) When j 6= k and k̂ = j, r
k̂

= rj = b + nk. That is, the detected channel contains

only noise. In this case, the detected symbol is randomly distributed over Ω

W̄0,o[ŝ|v(j), v(k)s, v(j)] =
1

|Ω|
. (4.121)
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Similarly for j = k, k̂ 6= k and j 6= k, k̂ 6= j, k, we have r
k̂

= n
k̂

and

W̄0,o[ŝ|v(k̂), v(k)s, v(k)] = W̄0,o[ŝ|v(k̂), v(k)s, v(j)] =
1

|Ω|
. (4.122)

After obtaining W̄0,o and W1,c from carrier information transmission channel, Wo,pB
(ŝ|s)

can be calculated as (4.117). Let Q denote the probability distribution associated with S.

Then the capacity of the ordinary information transmission channel can be obtained as

Co = max
Q

I(Q,Wo,pB
). (4.123)

It can be shown that Wo,pB
is a symmetric matrix. Hence, the capacity is achieved when

Q = Q∗ which is the uniform distribution over Ω. Overall, the channel capacity for MDFH

under noise jamming can be calculated as

CMD = Cc + Co. (4.124)

Note that I(Q∗,Wo,pB
) is a convex function of Wo,pB

, according to Jensen’s inequality,

the capacity can be upper bounded by

Co = I(Q∗,Wo,pB
) ≤ 1

N2
c

∑
k̂∈Ic

∑
k∈Ic

∑
j∈Ic

W1,c(k̂|k, j)I(Q∗, W̄0,o[ŝ|v(k̂), v(k)s, v(j)]),

(4.125)

where I(Q∗, W̄0,o[ŝ|v(k̂), v(k)s, v(j)]) is the capacity of the detected carrier channel k̂ when

signal and jamming are in kth and jth channel respectively. The capacity of the ordinary

information transmission channel is upper bounded by the averaged capacity over all carrier

detection scenarios.

4.7 Capacity of AJ-MDFH under Noise Jamming

Under the worst case single band noise jamming, J = βb, b ∼ CN (0, σ2
J ) where σ2

J = Ps,

and

J = {βb|β ∈ A, b ∈ C}, (4.126)
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where C denotes the set of all complex numbers. The AVC corresponding to the AJ-MDFH

can be characterized by the probability matrix

W : X × J → A (4.127)

with

W (α̂|x,J) ≥ 0,
∑
α̂∈A

W (α̂|x,J) = 1, (4.128)

where x = αs ∈ X ,J = βb ∈ J , α̂,α,β ∈ A. Following the similar argument in Section

4.6, it can be seen that the AVC corresponding to AJ-MDFH under noise jamming is also

nonsymmetrizable and has a positive capacity. Recall that for capacity derivation, we define

the information transmission channel in AJ-MDFH as

W1(k̂|k, j) , Pr{̂iS = k̂|iS = k, iJ = j}, (4.129)

which corresponds to the carrier information transmission channel in MDFH case. As the

ID symbol s is randomly selected from Ω, the relationship between W1 and W can be

characterized as

W1(k̂|k, j) =
1

|Ω|
∑
s∈Ω

∫
C
W [v(k̂)|v(k)s, v(j)b]pB(b)db. (4.130)

Note that b ∼ CN (0, Ps) in this case. Assuming Ω is the PSK constellation with power

Ps. Following from similar calculation scheme of W1 under disguised jamming in Section

4.10.2, we have

W1 (k|k, k)

=
1

|Ω|
∑
s∈Ω

∫
C
Pr{Zk < Zi,∀i ∈ Ic, i 6= k|x = αs,J = βb}pB(b)db

=
1

|Ω|
∑
s∈Ω

∫ ∞
0

∏
1≤i≤Nc,i6=k

Pr{Zi > zk|x,J, zk}pZk(zk)dzk. (4.131)

For any s ∈ Ω, Zk is a Rayleigh random variable with PDF pZk
(zk) =

zk
σ2
e
−
z2k

2σ2 for 0 ≤

zk < ∞, where σ =

√
Ps + σ2

n

2(2Ps + σ2
n)

; for i 6= k, Zi’s are i.i.d. Rician random variables with

101



PDF pZi(zi) =
zi
σ2
e
−
z2i +ν2

2σ2 I0

(ziν
σ2

)
for 0 ≤ zi < ∞, where ν =

√
Ps
σn

and σ =
1√
2

. Then

(4.131) can be simplified as

W1(k|k, k) =

∫ ∞
0

QNc−1
1

(√
2Ps
σn

,
√

2zk

)
pZk

(zk)dzk. (4.132)

For i 6= k, W1(i|k, k) can be obtained following (4.165) in Section 4.10.2.

When j 6= k, Zk is Rayleigh distributed with PDF pZk
(zk) =

zk
σ2
e
−
z2k

2σ2 where σ =

σn√
2(Ps + σ2

n)
; Zj is Rician distributed with PDF pZj (zj) =

zj

σ2
e
−
z2j+ν2

2σ2 I0

(zjν
σ2

)
where

ν =

√
Ps

Ps + σ2
n

and σ =
1√
2

. Hence, we can obtain

W1 (k|k, j)

=
1

|Ω|
∑
s∈Ω

∫ ∞
0

Pr{Zj > zk|x,J, zk} [Pr{Zi > zk|x,J, zk}]Nc−2 p(zk)dzk

=

∫ ∞
0

Q1

(√
2Ps

Ps + σ2
n
,
√

2zk

)
QNc−2

1

(√
2Ps
σn

,
√

2zk

)
pZk

(zk)dzk, (4.133)

and

W1 (j|k, j)

=
1

|Ω|
∑
s∈Ω

∫ ∞
0

Pr{Zk > zj |x,J, zj}
[
Pr{Zi > zj |x,J, zj}

]Nc−2
pZj (zj)dzj

=

∫ ∞
0

e
−

(Ps+σ2
n)z2j

σ2
n QNc−2

1

(√
2Ps
σn

,
√

2zk

)
pZk

(zj)dzj . (4.134)

For i 6= k, j, W1(i|k, j) can be obtained following (4.169) in Section 4.10.2. The capacity of

AJ-MDFH, denoted as CAJ ,can be calculated following (4.82).

4.8 Numerical Results

In this section, simulation examples are provided to illustrate the capacity of the proposed

AJ-MDFH and MC-AJ-MDFH schemes under the worst case disguised jamming. For all the
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systems considered, we assume the total number of available channels is Nc = 64, that is,

Bc = 6.

Example 1: Impact of the ID constellation size on capacity In this example,

we consider the impact of the ID constellation size on the capacity of AJ-MDFH under

the single band worst case disguised jamming (ID jamming). In Figure 4.3, it can be seen

that the capacity under the ID jamming converges as the constellation size increases. Under

reasonable SNR levels (for example, we require γ > 8.3dB when the constellation size M = 32

to ensure the AVC corresponding to AJ-MDFH is nonsymmetrizable), the capacity limit C̄

is close to the corresponding jamming-free case indicated by the dashed line.
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Figure 4.3: AJ-MDFH capacity with different PSK constellation size, under the worst case
single band disguised jamming (ID jamming). Nc = 64.

Example 2: Capacity of the multiuser systems under ID jamming In this

example, we choose MC-AJ-MDFH and FHMA as the multiuser systems for AJ-MDFH
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and conventional FH, respectively, and consider the capacity of the two systems under the

single band worst case disguised jamming [66, 101]. The SNR is taken as Eb/N0 = 10dB and

Th = 1s. For FHMA, we choose Nh = 3; for MC-AJ-MDFH, we choose 32-PSK constellation.

From Figure 3.10, it can be observed that due to the collision-free design and the use of ID

sequence, under disguised jamming, MC-AJ-MDFH can effectively support much more users

than FHMA, which is mainly limited by the collision effect among users.
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Figure 4.4: Capacity of MC-AJ-MDFH and FHMA under the worst case single band
disguised jamming. Nc = 64, SNR = 10dB. Here, per channel use means the total
bandwidth of all used channels over one hopping period.

Example 3: Capacity of AJ-MDFH and MDFH under worst case single band

noise jamming Recall that in Section 3.2.2, it can be observed that the worst case noise

jamming occurs when the noise and the signal has the same power, i.e., σ2
J = Ps. For
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MDFH, we choose the uniform ring constellation (i.e., M -PSK when M →∞) [102]. for the

upper bound analysis; for AJ-MDFH, we choose 32-PSK constellation for ID constellation.

Figure 4.5 illustrates the capacity of AJ-MDFH and MDFH in this case. The capacity

of AJ-MDFH under the worst case single band disguised jamming - ID jamming is also

provided as comparison. It can be observed that AJ-MDFH outperforms the carrier/ordinary

bits transmission channel of MDFH significantly under noise jamming. Recall that due

to a symmetric kernel, MDFH has zero capacity under the worst case disguised jamming.

However, it has positive capacity under noise jamming. It can also be observed that AJ-

MDFH has a lager capacity under noise jamming comparing with that under ID jamming.

Therefore, noise jamming is not as effective as disguised jamming in terms of using the given

jamming power.

4.9 Summary

In this chapter, we analyzed that capacity of MDFH and AJ-MDFH under the worst case

disguised jamming. We proved that: (i) For MDFH, the corresponding AVC is symmetric,

which implies that the deterministic capacity of MDFH is zero; (ii) For AJ-MDFH, due to

shared randomness between the transmitter and receiver provided by the secure ID sequence,

the corresponding AVC is nonsymmetrizable, which implies that the deterministic capacity

of AJ-MDFH is positive, and equal to the random code capacity. We calculated the capacity

of AJ-MDFH and showed that it converges as the ID constellation size goes to infinity. This

echoes our result in previous chapter, where we showed that the probability of error of AJ-

MDFH converges as the ID constellation size goes to infinity. It can be observed that shared

secure randomness between the transmitter and receiver plays a critical role in anti-jamming

system design.
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symbol period is Nh = 3.

4.10 Proofs of Chapter 4

4.10.1 Proof of Lemma 3

Proof of Lemma 3: Note that X can be partitioned into six subsets with respect to x0 = αs.

Define B1 , {αs̃|s̃ ∈ Ω}, B2 , {βs̃|s̃ ∈ Ω} and B3 , {α0s̃|s̃ ∈ Ω,α0 6= α,β}. We have

X = ∪3
i=1Bi. It then follows from the definition of subset Xi in (4.42) that B1 = X1 ∪ X2,

B2 = X3 ∪ X4, B3 = X5 ∪ X6, and X = ∪6
i=1Xi.

(i) We consider the cases where y ∈ Xi, i = 1, 3. When y ∈ X1 (y = −x0), the

jamming cancels the true signal and the received signal only contains noise, resulting in
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W (α̂0|x0,−x0) =
1

Nc
, ∀α̂0 ∈ A. When y ∈ X3 (y = βs), the jamming has the same ID

symbol as the true signal and the receiver cannot distinguish between the two, resulting in

W (α|x0,βs) = W (β|x0,βs). Hence, W (α|x0,y) = W (β|x0,y) holds in both cases.

(ii) When y ∈ X2, we have y = αs0 where s0 ∈ Ω, s0 6= −s. Assuming α = v(k), the

received signal in the ith channel ri and corresponding Zi defined in (4.9) can be calculated

as

ri =

 s+ s0 + nk, i = k,

ni, i 6= k,
Zi =


‖s0 + nk‖√
‖s+ s0‖2 + σ2

n

, i = k,

‖ni − s‖
σn

, i 6= k.

(4.135)

Then we have

W (α|x0,y) = Pr{Zk < Zi,∀i ∈ Ic, i 6= k|x0,y}

≥ 1−
∑
i6=k

Pr{Zk ≥ Zi|x0,y}

= 1− (Nc − 1)Pr{Zk ≥ Zi0 |x0,y}, (4.136)

for any fixed i0 6= k. Since s0 6= −s, we have
ni0 − s
σn

∼ CN (− s

σn
, 1) and

s0 + nk√
‖s+ s0‖2 + σ2

n

∼

CN (
s0√

‖s+ s0‖2 + σ2
n

,
σ2
n√

‖s+ s0‖2 + σ2
n

). Define S1 =
1

2
‖ − s

σn
‖2 =

γ

2
, N1 =

1

2
and

S2 =
1

2
‖ s0√
‖s+ s0‖2 + σ2

n

‖2 =
Ps

‖s+ s0‖2 + σ2
n

, N2 =
σ2
n

2(‖s+ s0‖2 + σ2
n)

. It then follows

from the results in [87] that

Pr{Zk ≥ Zi0 |x0,y} = Q1(
√
C,
√
D)− N1

N1 +N2
e−

C+D
2 I0(

√
CD) < Q1(

√
C,
√
D), (4.137)

where C =
2S2

N1 +N2
=

2Ps
‖s+ s0‖2 + 2σ2

n
and D =

2S1

N1 +N2
=

2Ps(‖s+ s0‖2 + σ2
n)

σ2
n(‖s+ s0‖2 + 2σ2

n)
. Since

D > C, Pr{Zk ≥ Zi0 |x0,y} ≤ e−
(D−C)2

2 [103]. It then follows from (4.136) and ‖s+ s0‖ ≥

dmin that

W (α|x0,y) > 1− (Nc − 1) exp[−2(
γd2

min

d2
min + 2σ2

n
)2], (4.138)

and

W (β|x0,y) =
1

Nc − 1
[1−W (α|x0,y)] < exp[−2(

γd2
min

d2
min + 2σ2

n
)2]. (4.139)

107



Hence, we have

W (α|x0,y)−W (β|x0,y) > 1−Nc exp[−2(
γd2

min

d2
min + 2σ2

n
)2]. (4.140)

Under the condition

γ >

√
1

2
lnNc and

d2
min

σ2
n

>
2
√

lnNc√
2γ −

√
lnNc

, (4.141)

W (α|x0,y)−W (β|x0,y) > 0.

(iii) When y ∈ X4, we have y = βs0 where s0 ∈ Ω, s0 6= s. Note that W (α|y,x0) =

W (β|x0,y). Since ‖s0 − s‖ ≥ dmin, it follows from Proposition 2 that

W (α|x0,y)−W (β|x0,y) ≥ 1− e
−
d2
min
2σ2
n − 2ε. (4.142)

Under the condition

ε <
1

2
and

d2
min

σ2
n

> 2 ln
1

1− 2ε
, (4.143)

W (α|x0,y)−W (β|x0,y) > 0.

(iv) When y ∈ X5, we have y = α0s where α0 ∈ A,α0 6= α,β. It follows from Lemma

2 that W (α|x0,y) ≥ 1

2
− ε. Note that W (α|x0,y) = W (α0|x0,y), we have

W (β|x0,y) =
1

Nc − 2
[1− 2W (α|x0,y)] ≤ 2ε

Nc − 2
. (4.144)

Hence, we have

W (α|x0,y)−W (β|x0,y) ≥ 1

2
− Ncε

Nc − 2
. (4.145)

Under the condition

ε <
Nc − 2

2Nc
, (4.146)

W (α|x0,y)−W (β|x0,y) > 0.

(v) When y ∈ X6, we have y = α0s0 where α0 ∈ A,α0 6= α,β and s0 ∈ Ω, s0 6= s. It

follows from Lemma 2 that

W (α|x0,y) ≥ 1− 1

2
e
−‖s0−s‖

2

2σ2
n − ε. (4.147)
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Assuming α = v(k) and α0 = v(k0), it follows from Lemma 1 that

W (α0|x0,y) ≥ Pr{Zk0
< Zk|x0,y} − (Nc − 2)Pr{Zk0

≥ Zi0 |x0,y}

=
1

2
e
−‖s0−s‖

2

2σ2
n − ε. (4.148)

Then we have

W (β|x0,y) =
1

Nc − 2
[1−W (α|x0,y)−W (α0|x0,y)] ≤ 2ε

Nc − 2
. (4.149)

Hence, we have

W (α|x0,y)−W (β|x0,y) ≥ 1− 1

2
e
−
d2
min
2σ2
n − Ncε

Nc − 2
. (4.150)

Under the condition

ε <
Nc − 2

Nc
and

d2
min

σ2
n

> −2 ln 2(1− Ncε

Nc − 2
), (4.151)

W (α|x0,y)−W (β|x0,y) > 0.

Next, we will show that the conditions in (4.141), (4.143), (4.146) and (4.151) can be

reduced into the two conditions

γ > f−1(
1

2Nc
) and

d2
min

σ2
n

> max(
2
√

lnNc√
2γ −

√
lnNc

, 2 ln
1

1− 2ε
), (4.152)

as presented in Lemma 3.

Step 1: Recall that f(x) =
1

x+ 2
exp{−x(x+ 1)

x+ 2
}, then

f ′(x) = −x
2 + 5x+ 4

(x+ 2)3
e
−x(x+1)

x+2 . (4.153)

Note that the SNR γ > 0, hence f ′(γ) < 0, which implies that f(γ) is a monotonically

decreasing function. Therefore, when γ > f−1(
1

2Nc
), we have f(γ) <

1

2Nc
, which implies

that

ε =
Nc − 2

γ + 2
exp{−γ(γ + 1)

γ + 2
} = (Nc − 2)f(γ) <

Nc − 2

2Nc
. (4.154)
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Step 2: We now show that ε <
Nc − 2

2Nc
implies the following four conditions: ε <

1

2
,

ε <
Nc − 2

Nc
, γ >

√
1

2
lnNc and

d2
min

σ2
n

> −2 ln 2(1 − Ncε

Nc − 2
). First, when ε <

Nc − 2

2Nc
, it

is obvious that ε <
1

2
and ε <

Nc − 2

Nc
. Next, we will show that when ε <

Nc − 2

2Nc
, we also

have γ >

√
1

2
lnNc. Consider Nc > 2 (i.e., Nc ≥ 3). Note that f(γ) is a monotonically

decreasing function. Hence, γ ≥ f−1(
1

6
) ≈ 1.02, which implies that γ > 1. Define h(γ) ,

e2γ2−γ − γ + 2

2
, then

h′(γ) = (4γ − 1)e2γ2−γ − 1

2
, (4.155)

h′′(γ) = [(4γ − 1)2 + 4]e2γ2−γ . (4.156)

Since h′′(γ) > 0, then h′(γ) is a monotonically increasing function. When γ > 1, h′(γ) >

h′(1) = 3 · e − 1

2
> 0, which implies that h(γ) is also a monotonically increasing function.

Hence, h(γ) > h(1) = e− 3

2
> 0, which implies that

1

γ + 2
e−γ >

1

2
e−2γ2

. Then we have

1

2Nc
>

1

γ + 2
e
−γ(γ+1)

γ+2 >
1

γ + 2
e−γ >

1

2
e−2γ2

, (4.157)

which implies that γ >

√
1

2
lnNc. Therefore, we proved that when Nc > 2, ε <

Nc − 2

2Nc

implies γ >

√
1

2
lnNc. Finally, when ε <

Nc − 2

2Nc
, we have −2 ln 2(1− Ncε

Nc − 2
) < 0. Hence,

d2
min

σ2
n

> −2 ln 2(1− Ncε

Nc − 2
) holds automatically.

Hence, when γ > f−1(
1

2Nc
) and

d2
min

σ2
n

> max(
2
√

lnNc√
2γ −

√
lnNc

, 2 ln
1

1− 2ε
), all the condi-

tions in (4.141), (4.143), (4.146) and (4.151) are satisfied and W (α|x0,y)−W (β|x0,y) > 0

for any y ∈ Xi, i = 2, 4, 5, 6.

For M-PSK constellation with power Ps, we have s =
√
Pse

j 2πms
M and b =

√
Pse

j
2πmJ
M

where ms,mJ ∈ [0,M − 1]. It is shown in Section 4.10.2 that ‖b − s‖2 = 2Ps[1 −

cos
2π(ms −mJ )

M
] and

d2
min

σ2
n

= 2γ(1−cos
2π

M
). For large M , cos

2π

M
≈ 1− 1

2
(
2π

M
)2 = 1− 2π2

M2

and
d2

min

σ2
n
≈ 4π2

M2
γ. Using this approximation, the condition

d2
min

σ2
n

>
2
√

lnNc√
2γ −

√
lnNc

can be
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rewritten as

γ2 −
√

1

2
lnNcγ −

M2

4π2

√
2 lnNc > 0, (4.158)

which holds when

γ >
1

2

√
1

2
lnNc +

1

2

√
1

2
lnNc +

M2

π2

√
2 lnNc. (4.159)

Similarly, the condition
d2

min

σ2
n

> 2 ln
1

1− 2ε
can be rewritten as

e
−2π2

M2 γ +
2(Nc − 2)

γ + 2
exp{−γ(γ + 1)

γ + 2
} < 1. (4.160)

Define f1(x) , e
−2π2

M2 x +
2(Nc − 2)

x+ 2
exp{−x(x+ 1)

x+ 2
}, then the condition in (4.160) holds

when γ > f−1
1 (1). Therefore, for a given PSK constellation of size M , the condition γ >

f−1(
1

2Nc
) and

d2
min

σ2
n

> max(
2
√

lnNc√
2γ −

√
lnNc

, 2 ln
1

1− 2ε
) can be reduced to one condition on

SNR as

γ > max[f−1(
1

2Nc
),

1

2

√
1

2
lnNc +

1

2

√
1

2
lnNc +

M2

π2

√
2 lnNc, f

−1
1 (1)]. 2 (4.161)

4.10.2 Calculation of the Probability Matrix W1

Let x = αs, J = βb with α = v(k),β = v(j), and k, j ∈ Ic, s, b ∈ Ω. Assume Ω is an

M-PSK constellation with power Ps.

(i) When j = k, the received signal in the ith channel ri and corresponding Zi defined

in (4.9) can be calculated as

ri =

 s+ b+ nk, i = k,

ni, i 6= k,
Zi =


‖b+ nk‖√
‖s+ b‖2 + σ2

n

, i = k,

‖ni − s‖
σn

, i 6= k.

(4.162)

Note that n1, . . . , nNc are i.i.d. circularly symmetric Gaussian random variables of zero

mean and variance σ2
n. For any s, b ∈ Ω, Zk is a Rician random variable with PDF

pZk
(zk) =

zk
σ2
e
−
z2k+ν2

2σ2 I0

(zkν
σ2

)
for 0 ≤ zk < ∞, where ν =

√
Ps√

‖s+ b‖2 + σ2
n

and σ =
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σn√
2(‖s+ b‖2 + σ2

n)
; for i 6= k, Zi’s are i.i.d. Rician random variables with PDF pZi(zi) =

zi
σ2
e
−
z2i +ν2

2σ2 I0

(ziν
σ2

)
for 0 ≤ zi <∞, where ν =

√
Ps
σn

and σ =
1√
2

. We have

W1 (k|k, k)

=
1

|Ω|2
∑
s∈Ω

∑
b∈Ω

Pr{Zk < Zi,∀i ∈ Ic, i 6= k|x = αs,J = βb}

=
1

|Ω|2
∑
s∈Ω

∑
b∈Ω

∫ ∞
0

∏
1≤i≤Nc,i 6=k

Pr{Zi > zk|x,J, zk}pZk(zk)dzk

=
1

|Ω|2
∑
s∈Ω

∑
b∈Ω

∫ ∞
0

[
Q1

(√
2Ps
σn

,
√

2zk

)]Nc−1
2(‖s+ b‖2 + σ2

n)zk
σ2
n

·e
−

(‖s+b‖2+σ2
n)z2k+Ps

σ2
n I0

(
2zk
σ2
n

√
Ps(‖s+ b‖2 + σ2

n)

)
dzk, (4.163)

where Q1 is the Marcum-Q function and I0 is the modified Bessel function of the first kind

with order zero. For M-PSK constellation with power Ps, we have s =
√
Pse

j 2πms
M and

b =
√
Pse

j
2πmJ
M where ms,mJ ∈ [0,M − 1], then (4.163) can be simplified as

W1(k|k, k) =
1

M

M−1∑
κ=0

∫ ∞
0

[
Q1

(√
2Ps
σn

,
√

2zk

)]Nc−1

·
2[2Ps(1 + cos 2πκ

M ) + σ2
n]zk

σ2
n

e
−

[2Ps(1+cos 2πκ
M )+σ2

n]z2k+Ps

σ2
n

·I0

(
2zk
σ2
n

√
Ps[2Ps(1 + cos

2πκ

M
) + σ2

n]

)
dzk, (4.164)

where κ , (ms −mJ ) mod M is uniformly distributed over [0,M − 1]. Since Zi’s are i.i.d.

∀i ∈ Ic, i 6= k, then

W1(i|k, k) =
1

Nc − 1
[1−W1(k|k, k)], ∀i ∈ Ic, i 6= k. (4.165)

We have (P1): W1(k|k, k) and W1(i|k, k) are fixed values for any i, k ∈ Ic, i 6= k.
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(ii) When j 6= k, the received signal ri and corresponding Zi can be calculated as

ri =


s+ nk, i = k,

b+ nj , i = j,

ni, i 6= j, k,

Zi =



‖nk‖√
Ps + σ2

n

, i = k,

‖b− s+ nj‖√
Ps + σ2

n

, i = j,

‖ni − s‖
σn

, i 6= j, k.

(4.166)

For any s, b ∈ Ω, Zk is a Rayleigh random variable with PDF pZk
(zk) =

zk
σ2
e
−
z2k

2σ2 , where σ =

σn√
2(Ps + σ2

n)
; Zj is a Rician random variable with PDF pZj (zj) =

zj

σ2
e
−
z2j+ν2

2σ2 I0

(zjν
σ2

)
,

where ν =
‖b− s‖√
Ps + σ2

n

and σ =
σn√

2(Ps + σ2
n)

; for i 6= j, k, Zi’s are i.i.d. Rician random

variables with PDF pZi(zi) =
zi
σ2
e
−
z2i +ν2

2σ2 I0

(ziν
σ2

)
, where ν =

√
Ps
σn

and σ =
1√
2

. Then,

W1(k|k, j) can be calculated as

W1 (k|k, j)

=
1

|Ω|2
∑
s∈Ω

∑
b∈Ω

Pr{Zk < Zj and Zk < Zi, ∀i ∈ Ic, i 6= k, j|x,J}

=
1

|Ω|2
∑
s∈Ω

∑
b∈Ω

∫ ∞
0

Pr{Zj > zk|x,J, zk} [Pr{Zi > zk|x,J, zk}]Nc−2 pZk
(zk)dzk

=
1

|Ω|2
∑
s∈Ω

∑
b∈Ω

∫ ∞
0

Q1

(√
2

σn
‖b− s‖, zk

√
2(Ps + σ2

n)

σn

)

·QNc−2
1

(√
2Ps
σn

,
√

2zk

)
2zk(Ps + σ2

n)

σ2
n

e
−

(Ps+σ2
n)z2k

σ2
n dzk,

=
1

M

M−1∑
κ=0

∫ ∞
0

Q1

(
2

σn

√
Ps

(
1− cos

2πκ

M

)
,
zk
√

2(Ps + σ2
n)

σn

)

·QNc−2
1

(√
2Ps
σn

,
√

2zk

)
2zk(Ps + σ2

n)

σ2
n

e
−

(Ps+σ2
n)z2k

σ2
n dzk, (4.167)
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and

W1 (j|k, j)

=
1

|Ω|2
∑
s∈Ω

∑
b∈Ω

Pr{Zj < Zk and Zj < Zi,∀i ∈ Ic, i 6= j, k|x,J}

=
1

|Ω|2
∑
s∈Ω

∑
b∈Ω

∫ ∞
0

Pr{Zk > zj |x,J, zj}
[
Pr{Zi > zj |x,J, zj}

]Nc−2
pZj (zj)dzj

=
1

|Ω|2
∑
s∈Ω

∑
b∈Ω

∫ ∞
0

e
−

(Ps+σ2
n)z2j

σ2
n QNc−2

1

(√
2Ps
σn

,
√

2zj

)
2zj(Ps + σ2

n)

σ2
n

·e
−(
Ps+σ2

n
σ2
n

z2j+
‖b−s‖2

σ2
n

)
I0

(
2zj

σ2
n
‖b− s‖

√
Ps + σ2

n

)
dzj

=
1

M

M−1∑
κ=0

∫ ∞
0

e
−

(Ps+σ2
n)z2j

σ2
n QNc−2

1

(√
2Ps
σn

,
√

2zj

)
2zj(Ps + σ2

n)

σ2
n

·e
−[
Ps+σ2

n
σ2
n

z2j+2Ps
σ2
n

(1−cos 2πκ
M )]

I0

(
2zj

σ2
n

√
2Ps(1− cos

2πκ

M
)(Ps + σ2

n)

)
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Since Zi’s are i.i.d. for any i ∈ Ic, i 6= j, k, then

W1(i|k, j) =
1

Nc − 2
[1−W1(k|k, j)−W1(j|k, j)], i ∈ Ic, i 6= j, k. (4.169)

We have (P2): W1(k|k, j), W1(j|k, j) and W1(i|k, j) are fixed values for any i, j, k ∈ Ic, j 6=

k, i 6= j, k.
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Chapter 5

CONCLUSIONS AND FUTURE WORKS

5.1 Conclusions

This dissertation considered secure and effective communication in wireless networks under

hostile jamming attacks. First, we established a framework for the modeling and classifi-

cation of cognitive jamming. Second, we proposed to enhance the spectral efficiency and

security of spread spectrum system by by integrating advanced signal processing techniques

and cryptographic techniques into the transceiver design. Finally, we analyzed the capacity

of the proposed systems under an effective jamming scenario. More specifically, based on

theoretical analysis and simulation results, we had the following conclusions:

On cognitive jamming modeling and classification:

• An innovative two-dimensional time-varying jamming model was proposed to charac-

terize jamming signals in both time and frequency domain. It includes all the existing

jamming models as special cases, and can be used to characterize and track time-variant

jamming attacks.

• By examining the time-varying autocorrelation function and power spectral density, we

introduced the concepts of time-varying jamming coherence time and time-frequency

jamming coherence bandwidth. By comparing the jamming coherence time with the

signal symbol period, we classified the jamming into fast jamming and slow jamming;

By comparing the jamming coherence bandwidth with the signal bandwidth, we clas-

sified the jamming into flat jamming and frequency selective jamming.

• Based on relative power and correlation between the signal and the jamming, we in-

troduced the concept of disguised jamming, which is complementary to the traditional

strong jamming. It was observed that strong jamming may not always be the worst
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case. Disguised jamming, which is highly correlated with the signal and had a similar

power level, can be more harmful to the system, as it is more difficult to be detected

and eliminated.

• Based on time-frequency analysis and approximation theory, we proposed algorithms

for time-varying coherence time and time-frequency coherence bandwidth estimation

for both stationary jamming and locally stationary jamming. It enables dynamic jam-

ming pattern detection and is of great significance for adaptive transmission design.

On spectrally efficient anti-jamming system design:

• By embedding part of information into the process of hopping frequency selection,

additional information transmission is achieved by MDFH with no extra cost on either

bandwidth or power, which increases the system spectral efficiency by multiple times.

• MDFH has distinctive performance under strong jamming and disguised jamming:

Under strong jamming, even if the signal is jammed, the power of the jammed signal is

enhanced and hence increased the probability of correct detection. As a result, MDFH

is particularly robust under strong jamming scenarios. When the system experiences

disguised jamming, it is difficult for the MDFH receiver to distinguish jamming from

the true signal, resulting in performance losses.

• To overcome the drawback of MDFH, we proposed the anti-jamming MDFH system, in

which a secure ID sequence is transmitted along with the information stream. The ID

sequence is generated through a cryptographic algorithm using the shared secret be-

tween the transmitter and the receiver, it is then exploited by the receiver for effective

signal extraction. It was shown that AJ-MDFH can effectively reduce the performance

degradation caused by disguised jamming, while remaining robust under strong jam-

ming. AJ-MDFH also retained the high spectral efficiency of MDFH.
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• We investigated ID constellation design and its impact on the performance of AJ-

MDFH under both noise jamming and ID jamming. For ID jamming, it was shown that

under the ideal case when the system is noise-free, increasing the ID constellation size

can increase the ID uncertainty, and hence reduces the probability of error. When noise

is present, we proved that the detection error probability converges as the constellation

size goes to infinity. In other words, there exists a threshold, increasing the constellation

size over the threshold would result in little improvement in error probability. This

result justifies the use of practical, finite size constellations in AJ-MDFH.

• Single carrier AJ-MDFH was extended to multi-carrier AJ-MDFH (MC-AJ-MDFH).

By exploiting secure group generation algorithm, MC-AJ-MDFH can increase the sys-

tem efficiency and jamming resistance significantly through jamming randomization

and enriched frequency diversity. Moreover, by assigning different carrier groups to

different users, MC-AJ-MDFH can also be used as a collision-free multiple access sys-

tem.

• By incorporating the cryptographic techniques and secure permutation scheme, we

proposed a secure ID generation algorithm and a secure group generation algorithm to

maximize the security of the proposed AJ-MDFH and MC-AJ-MDFH systems.

On capacity analysis of MDFH based systems under disguised jamming

• Using the AVC model, we showed that the AVC corresponding to MDFH is symmetric,

which implies that the deterministic capacity of MDFH is zero.

• For AJ-MDFH, due to the shared randomness between the transmitter and receiver

provided by the secure ID sequence, we proved that the corresponding AVC is non-

symmetrizable, which implies that the deterministic capacity of AJ-MDFH is positive.

• We calculated the capacity of AJ-MDFH under ID jamming and showed that it con-

verges as the ID constellation size goes to infinity. This echoed our result in AJ-MDFH
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system design, where we showed that the probability of error of AJ-MDFH converges

as the ID constellation size goes to infinity.

• We extended the capacity analysis to the multiuser AJ-MDFH system (MC-AJ-MDFH)

and showed that it outperforms the multiple access scheme for conventional FH (FHMA).

• We observed that shared secure randomness between the transmitter and receiver plays

a critical role in anti-jamming system design.

5.2 Future Work

We plan to extend our research in the following two directions.

5.2.0.1 Disguised Jamming Analysis under Different Wireless Systems

In this dissertation, it can be observed that disguised jamming can degrade the performance

of MDFH significantly by mimicking the signal of legal user. To prevent the disguised

jamming attack to other popular wireless systems such as OFDM and MIMO, it is essential

to extend the disguised jamming research to these systems as well. The future research in

disguised jamming can be extended to

• Identify and quantitatively characterize disguised jamming for different wireless sys-

tems.

• Analyze the performance of these systems under disguised jamming.

• Propose effective methods to combat disguised jamming for these systems.

5.2.0.2 Adaptive Transceiver Design under Cognitive Jamming

Based on the proposed cognitive jamming modeling and classification scheme, we will con-

sider adaptive transceiver design under cognitive jamming. For this purpose, we will conduct
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comprehensive performance analysis on DSSS system, collision-free FH system, MDFH sys-

tem, OFDMA based collision-free FH system. Each system will be tested and analyzed under

various jamming attacks. The transmitter can then be adjusted accordingly to achieve opti-

mal jamming mitigation under cognitive jamming. Adaptive transceiver design will include

• Parameter adjustment or reconfiguration of a particular selected anti-jamming system.

• Cognitive switching among different types of anti-jamming systems.
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Appendix A

LIST OF ABBREVIATIONS AND ACRONYMS

3G Third Generation

AES Advanced Encryption Standard

AJ-MDFH Anti-Jamming Message-Driven Frequency Hopping

AWGN Additive White Gaussian Noise

AVC Arbitrarily Varying Channel

BER Bit Error Rate

BPF BandPass Filter

BPSK Binary Phase-Shift Keying

CDMA Code Division Multiple Access

DPSK Differential Phase-Shift Keying

DS-CDMA Direct-Sequence Code Division Multiple Access

DSSS Direct-Sequence Spread Spectrum

E-MDFH Enhanced Message-Driven Frequency Hopping

FFH Fast Frequency Hopping

FH Frequency Hopping

FHMA Frequency Hopping Multiple Access

FHSS Frequency Hopping Spread Spectrum

FSK Frequency-Shift Keying

IFFT Inverse Fast Fourier Transform

ISI Inter-Symbol Interference

JSR Jamming-to-Signal Ratio

LFSR Linear Feedback Shift Register

MAC Medium Access Control
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MAI Multiple-Access Interference

MAP Maximum A Posteriori

MC-AJ-MDFH Multi-Carrier Anti-Jamming Message-Driven Frequency Hopping

MDFH Message-Driven Frequency Hopping

MFSK Multiple Frequency-Shift Keying

ML Maximum Likelihood

MMSE Minimum Mean Square Error

MUI Multiuser Interference

PAM Pulse Amplitude Modulation

PHY Physical

PN Pseudo-Random

PSD Power Spectral Density

PSK Phase-Shift Keying

OFDM Orthogonal Frequency Division Multiplexing

OFDMA Orthogonal Frequency Division Multiple Access

QAM Quadrature Amplitude Modulation

QPSK Quadrature Phase-Shift Keying

SFH Slow Frequency Hopping

SINR Single-to-Interference-Noise Ratio

SNR Signal-to-Noise Ratio

STFT Short-Time Fourier Transform

WSS Wide Sense Stationary
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