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ABSTRACT 

 
CODING OVER RESOURCE-CONSTRAINED WIRELESS NETWORKS 

 

By 

 

Rami Halloush 

In practice, wireless networks operate under multiple, mostly severe, constraints 

(bandwidth, energy resources, etc). Consequently, efficient techniques have to be 

employed in communicating data with sufficiently high data rates (depending on the 

application) while complying with the imposed constraints.  

Distributed Video Coding (DVC) and Network Coding (NC) are amongst the most 

dominant techniques employed in constrained data networks. In this dissertation, we 

address these two techniques with the objective of realizing practical and efficient data 

networking solutions that fit in resource constrained wireless networks. In one part of the 

dissertation we address DVC over Visual Sensor Networks (VSNs) from a practical point 

of view, i.e., unlike a large body of research work related to this topic where the focus is 

on theoretical analysis and simulation, we study the practical aspects that arise when 

deploying DVC over real visual sensors. To that end, we develop a Resource-constrained 

DVC (RDVC) codec, deploy it over some of the widely used visual sensors, and conduct 

precise energy measurements that are used throughout our study. 

One RDVC-related challenge that we address in this dissertation is source rate 

estimation, i.e., trying to efficiently identify the source rate to be used in encoding a 

frame. This question is crucial since sending more bits than necessary will lead to 

inefficiency in compression while sending fewer bits will lead to failure in decoding. We 



propose a practical solution that completely eliminates the need for the costly feedback 

messages. 

Another challenge we address is the global choice between a DVC encoding option 

that involves intensive computations and leads to less transmission versus another choice 

with minimal computations that implies higher transmission-energy overhead. We carry 

out an operational energy-distortion analysis for a variety of options available to RDVC 

on visual sensors. 

Polar codes are the first codes proven to achieve capacity while having low encoding 

and decoding complexity. This motivates us to employ polar codes in our DVC platform. 

We compare the performance of polar codes with the more established and more 

investigated Low Density Parity Check Accumulate (LDPCA) codes in the context of 

DVC. Our results show that polar codes offer a clear advantage when coding smaller size 

image blocks. Consequently, polar codes could represent a viable solution for distributed 

sensor networks that capture low-resolution video signals.    

In the final part of the dissertation, we survey state-of-the-art NC solutions designed 

to achieve high throughput transmission in multicasting over wireless mesh networks 

while maintaining 100% packet delivery ratio. We propose HopCaster; a scheme that 

employs the cache-and-forward transport strategy. We show that HopCaster achieves 

significant performance gains compared to schemes that employ the end-to-end transport 

strategy.  
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Dissertation Outline 

In Chapter 1 we provide a brief background about Distributed Source Coding (DSC) 

and Network Coding (NC). We briefly overview the theoretical bounds of DSC, and we 

explain the syndrome-based DSC scheme that we employ in our study. For NC we 

provide an example that demonstrates how NC can be used to achieve reliability while 

maintaining high throughput. 

In Chapter 2 we describe the design and implementation of a Resource-constrained 

distributed video coding (RDVC) codec that we deployed over the popular 

Micaz/Cyclops and Imote2/IMB400 visual platforms. Further, we report a summary of 

accurate measurements regarding the distribution of energy consumption over the 

different DVC operations. We carry out an operational energy-distortion analysis for a 

variety of options available to RDVC on visual sensors. This aspect addresses the global 

choice between intensive computations that lead to less transmission versus minimal 

computations that implies higher transmission-energy overhead. 

In Chapter 3 we present our approach towards a rate-adaptive RDVC solution that 

eliminates the need for feedback messages from the base-station to the visual sensors; 

this solution is crucial for any realistic mapping of DVC over visual sensors. 

In Chapter 4 we employ and evaluate the performance of polar codes in DVC. 

Further, we compare the performance of polar codes with the more established and more 

investigated Low Density Parity Check Accumulate (LDPCA) codes in the context of 

DVC. 
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In Chapter 5 we propose HopCaster, a novel protocol that incorporates intra-flow NC 

with hop-by-hop transport to achieve high-throughput reliable multicast over wireless 

mesh networks. We show that by adopting the hop-by-hop transport strategy, HopCaster 

avoids many problems incurred by the traditional end-to-end transport strategy.  

In Chapter 6 we provide a conclusion and outline directions for future work. 
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Chapter 1 

1. Introduction 

Since Distributed Video Coding (DVC) is based on the theory of Distributed Source 

Coding (DSC), we dedicate this chapter to providing a brief overview of DSC. Further, 

we provide a brief demonstration of using Network Coding (NC) to achieve reliability 

while maintaining high throughput over wireless networks. 

1.1. Distributed Source Coding 

Distributed Source Coding (DSC) is a problem in information theory. It deals with 

compressing two correlated sources independently; i.e., each source has no access to the 

other source (this explains the name distributed). Slepian and Wolf [1] provided the 

theoretical bounds for the DSC problem in 1973. Let X and Y be two correlated 

independent and identically distributed (i.i.d) sources, then X and Y can be compressed at 

rates RX and RY respectively with the following constraints: 
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Where .)|(.H  and (.,.)H  are the conditional and joint entropies respectively. Note 

that the aggregate rate can achieve the joint entropy, which is also achieved using 

dependent encoding where sources have access to each other (a practical example of joint 

encoding is compression using motion estimation and compensation). This means that by 

having independent encoding, DSC provides a compression scheme that has low 

computational complexity at the encoder side while theoretically achieving the same 

performance as the more complex joint encoding.  Figure  1.1 illustrates the independent 

encoding of DSC versus the dependent joint encoding scenario. 

The equations above define a set of achievable rates. These rates belong to the rate 

region shown in Figure  1.2. There are two cases for DSC; symmetric and asymmetric. In 

the symmetric case, sources are compressed using the same rate. This case is represented 

by the line emanating from the green circle in the figure. In the asymmetric case on the 

other hand, different rates are used to compress the sources. An important special case of 

the asymmetric case on which we focus in this dissertation is compression with decoder 

side information.  In the latter case, one of the sources, say Y is compressed at rate 

bounded by the entropy )(YH  and the other source is compressed at rate bounded by

)|( YXH . This case is represented by the two red circles in the figure (two corners of the 

rate region). 
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(a) 

 

(b) 

Figure  1.1: (a) Dependent encoding of two sources where each source has access to the 

other. (b) DSC's independent encoding where each source is completely isolated from the 

other. This reduces the encoding complexity (For interpretation of the references to 

color in this and all other figures, the reader is referred to the electronic version of 

this dissertation). 

 

 
Figure  1.2: Rate region defined by the DSC constraints. 

 

Syndrome-based distributed source coding [2] is a DSC paradigm that involves 

channel codes. Channel codes are involved in DSC since the disparity between the two 

sources to be compressed, X and Y, can be viewed as noise. In other words, X can be 

viewed as a noisy version of Y. Consequently, if Y is already communicated to the 

decoder, then the encoder can communicate X by transmitting a number of parity bits 
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sufficient to correct the noise in Y. Compression is achieved by transmitting the parity 

bits. In the next section we provide an example that explains the idea of syndrome-based 

DSC. 

1.1.1. Syndrome-based Distributed Source Coding 

Consider the following example where, at the encoder, we have two bitstreams to 

compress: 

Y : 1 0 1 1 0 1 0 X : 1 0 0 1 0 1 0 

Note that the two bitstreams differ only in the third bit. Hence Y can be viewed as 

noisy version of X. If Y is already communicated to the decoder, then all what the encoder 

needs to do to communicate X is to correct the noise in Y. To do so, the encoder uses a 

channel code that maps X into a number of parity bits (or syndrome bits) that is sufficient 

to correct this noise in Y to get X back. Compression is achieved by sending parity bits 

rather than bits of X. For simplicity, we will consider the binary (7,4) Hamming code that 

is characterized by the following parity check matrix H and the corresponding Tanner 

graph [3]: 

















=

0111001

1011010

1101100

H  

 

To encode X, its bits are placed on the variable nodes of the graph (circle shaped 

nodes). At each check node (square shaped nodes), the XOR of the bits at the variable 

y1 y2 y3 y4 y5 y6 y7

s2 s3s1
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nodes connected to that check node is computed. This results in the syndrome bit 

sequence s = 011 that is transmitted to the decoder (note that this is equivalent to 

multiplying X by H; TT XHs ×= ). At the decoder, bits of Y are placed on the variable 

nodes of the Graph, and the received syndrome bits are fed into check nodes. At each 

check node, the XOR of the bits at the variable nodes connected to that check node is 

computed and compared to the syndrome bit fed to that check node. Bits of Y are flipped 

iteratively until the computed bits at check nodes match the syndrome bits (this iterative 

process is achieved through the Belief Propagation (BP) algorithm [3]). In our example, 

at the decoder, the computed bits at check nodes would be 000. BP will flip the third bit 

of Y and stop, because at that point bits at check nodes would be 011 which match the 

received syndrome bits, and X would be restored. 

1.2. Network Coding 

Network Coding (NC) [4] is a packet forwarding technique that aims to improve the 

performance of the traditional store and forward scheme where forwarding nodes merely 

propagate the packets they receive with no processing. In NC the role of the forwarding 

nodes is extended to include combining received/buffered packets before transmission. 

The end receiver node deduces the packets that were originally transmitted. NC aims to 

achieve the maximum folw [4]; which is the maximum data rate for a transmission 

between two nodes. According to the Max Flow Min Cut theorem by Fulkerson [5], for a 

multicast topology, the maximum flow equals the minimum cut. In [6] it is proved that 

linear coding is sufficient to achieve the upper bound. In linear network coding, 

forwarding nodes generate coded packets that consist of linear combinations of 
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previously received packets. The coefficients are chosen from a finite field and they are 

included in the coded packet prior sending in order to be used in decoding. 

 

Figure  1.3: NC scenario to achieve reliability with high throughput. 

 

In this dissertation we focus on using NC to achieve reliability in multicast protocols 

over wireless networks. The advantage of NC in this context is made clear by examining 

the example illustrated in Figure  1.3. The figure shows a simple multicast scenario where 

node 1 is a source node, node 3 is a destination node, and node 2 is an intermediate 

forwarding node. In this example, node 1 needs to send two packets, P1 and P2, to node 

3. When broadcasting the two packets, node 2 manages to receive both of them, whereas 

node 3 overhears packet P1. If node 2 is aware that packet P1 is available at node 3, then 

it will forward packet P2 only, and this will be the optimal behavior. Otherwise, it will 

send out both P1 and P2, which will incur one redundant transmission (P1). Using NC 

eliminates the need to keep track of packets at node 3. Node 2 simply sends a linear 

combination of P1 and P2, e.g., P=P1+P2. Upon receiving P, node 3 will be able to 

construct P2 by simply subtracting P1 from P. In this example, reliability is achieved; as 

1
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100 % packet delivery ration (PDR) is satisfied, in the meanwhile redundant 

transmissions are eliminated resulting in high throughput. 

1.3. Dissertation Contribution 

The following is a summary of the contributions of this dissertation: 

• We describe the design and implementation of a resource-constrained distributed 

video coding (RDVC) codec that we deployed over real visual sensor platforms, 

namely, the popular Micaz/Cyclops and Imote2/IMB400 visual platforms. Further, 

we report a summary of accurate measurements regarding the distribution of energy 

consumption over the end-to-end chain of RDVC within an actual sensor, including 

frame-capture, Discrete Cosine Transform (DCT), syndrome computation, and bit-

stream transmission. The codec and energy measurements are used to highlight 

practical aspects related to DVC when deployed over real visual sensors. 

• We present a practical approach towards a rate-adaptive RDVC that enables the 

source node to efficiently identify the source rate required to compress a frame at a 

certain point of time. The presented solution completely eliminates the need for 

feedback messages from the base-station to visual sensors; this solution is crucial for 

any realistic mapping of DVC over visual sensors. 

• We carry out an operational energy-distortion analysis for a variety of options 

available to RDVC on visual sensors; this aspect addresses the global choice between 

intensive computations that lead to less transmission versus minimal computations 

that implies higher transmission-energy overhead. 
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• The recently discovered Polar codes [7] have many interesting features, e.g., they are 

the first codes proven to achieve capacity. Further, they have low encoding and 

decoding complexity. As polar codes are relatively recent, there has been little work 

to assess the potential of polar codes for practical applications. We employ polar 

codes in Distributed Video Coding (DVC). We compare the performance of polar 

codes with the more established and more investigated Low Density Parity Check 

Accumulate (LDPCA) codes in the context of DVC. 

• We propose HopCaster; a Network Coding (NC) scheme for wireless networks. NC 

schemes that employ the conventional end-to-end transport strategy suffer 

degradation in their performance. The reason is that by employing the end-to-end 

transport strategy, forwarding nodes are unable to accurately determine the number of 

coded packets that they need to forward, and a large number of redundant packets 

will be injected into the network. HopCaster employs a novel hop-by-hop reliable 

multicast transport scheme that exploits in-network caching. The need for estimating 

the number of coded packets at forwarding node is completely eliminated, which 

results in performance gains. In addition, HopCaster is integrated with a cross-layer 

rate adaptation scheme that optimizes the multicast throughput performance based on 

varying receiver topology at different transmission stages. 
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Chapter 2 

2. Distributed Video Coding Over Real Visual 

Sensors 

Despite the vast body of work covering the theoretical, analytical, and simulation-

based aspects of Distributed Video Coding (DVC), there has been little work focusing on 

the practical aspects of DVC over actual sensors. In this chapter, we provide a rather 

comprehensive description of key aspects of a Resource-constrained DVC (RDVC) 

framework that stems from our experience in mapping DVC solutions on actual visual 

sensors. In particular, (1) we describe the design and implementation of a RDVC codec 

that we deployed over the popular Micaz/Cyclops and Imote2/IMB400 visual platforms. 

(2) We report a summary of accurate measurements regarding the distribution of energy 

consumption over the end-to-end chain of RDVC within an actual sensor, including 

frame-capture, DCT and syndrome computation, and bit-stream transmission. (3) We 

carry out an operational energy-distortion analysis for a variety of options available to 

RDVC on visual sensors; this aspect addresses the global choice between intensive 
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computations that lead to less transmission versus minimal computations that implies 

higher transmission-energy overhead.  

2.1. Introduction 

Motivated by advances in low power image sensing technologies, and wireless sensor 

networking, a new paradigm of ubiquitous monitoring has emerged: Visual Sensor 

Networks (VSN). Typically, a VSN consists of resource constrained nodes (motes) and a 

more powerful node referred to as a base station. Motes periodically sense their 

surrounding and propagate their sensed visual content to the base station. Motes are 

usually battery operated; hence to achieve an acceptable mote lifetime the overall power 

consumption needs to be minimized. There are two main sources of power consumption 

in a mote: (a) computational processing and (b) data transmission. To reduce the 

transmission power consumption, visual sensor data has to be compressed without 

requiring significant computations and/or exchange of data among sensors. Therefore, for 

VSNs, a new compression paradigm, which employs low complexity independent 

encoding at the encoder side and delegates intensive computations to the decoder side 

(the powerful base station), has emerged. This paradigm is called Distributed Video 

Coding (DVC) [2] [8] and is based on the theory of Distributed Source Coding (DSC) 

pioneered by Slepian and Wolf [1] and Wyner and Ziv [9]. 

The importance of DVC as a compression paradigm that fits well in VSNs attracted 

researchers and led to significant advances (e.g., [2] [8]). A variety of extensions to early 

DVC approaches have also been proposed (e.g., [10] [11] [12]). Many research efforts 

addressing DVC employ theoretical and analytical formulations, while others use 
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simulations to derive results and conclusions. Interestingly, there has been little work 

highlighting the practical aspects of DVC over real visual sensor platforms and devices 

(e.g., [13] [14]). This fact motivated us to conduct a study towards a Practical DVC 

(RDVC) platform deployed over actual visual sensors [15] [16]. As part of our study, we 

implemented a flexible syndrome-based [2] DVC codec and deploy it over different real 

visual sensor platforms, namely, the Micaz/Cyclops [17] [18] and the Imote2/IMB400 

[18] platforms. This chapter is intended to share our experience in designing, 

implementing and deploying practical DVC over real visual sensor platforms. We use our 

implementation to outline key practical aspects that arise when a RDVC platform is 

targeted. One practical aspect that we present in this chapter is an operational energy-

distortion analysis for a variety of options available to RDVC when it is deployed over an 

actual visual sensor; this aspect addresses the global choice between intensive 

computations that lead to less transmission versus minimal computations that implies 

higher transmission-energy overhead. Another important practical feature desired 

(arguably required) in any viable RDVC solution is the ability of the DVC encoder to 

identify the source rate of a Wyner-Ziv (WZ) frame without the need for receiving 

feedback messages from the decoder. A practical solution for this feature is described in 

the next chapter of this dissertation. It is apparent that studying the aforementioned 

practical aspects necessitates having an accurate power consumption measure for radio 

transmission and the different computational operations involved in DVC. Consequently, 

we present the approaches that we followed in measuring power, and later on how we 

employ our measurements in studying the different practical aspects of DVC. The 

remainder of this chapter is organized as follows. In Section 2.2, we describe the visual 
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sensor platforms that we use in our study. In Section 2.3 we describe our syndrome-based 

RDVC codec implementation. In Section 2.4 we outline the approaches we followed in 

evaluating power consumption of the codec when deployed over a visual sensor. In 

Section 2.5 we highlight the importance of having an operational power-distortion 

description for the different options available for a DVC codec in order to make a global 

choice amongst such options. In Section 2.6 we conclude the chapter and introduce next 

chapter. 

2.2. Visual Sensor Platform 

Many visual sensor platforms can be found in the market/literature. They basically 

differ in many aspects such as power consumption, image quality, physical dimensions, 

etc. We can categorize visual sensor platforms into two categories: 

1. Sensor platforms that were originally designed for sensing scalar physical phenomena 

(such as temperature, humidity, etc.). In general, scalar applications have lower 

computational demands than visual applications; hence, scalar motes are limited in 

their resources. For instance, Micaz it is equipped with the 8-bit ATmega128L [19] 

microcontroller with clock speed set to 8MHz. It has 128K Bytes program flash 

memory, and 512K Bytes flash memory to store measurements. For radio 

communication, It uses the low power CC2420 RF transceiver [20], 2.4 GHz IEEE 

802.15.4/Zigbee compliant [21]. To bridge the gap between the demanding visual 

application and the resource constrained mote, the image sensor is endowed with its 

own computational unit, and the underlying mote is merely responsible for data 

communication. For instance, Cyclops is equipped with an ATmega128L 
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microcontroller operating at 7.3728 MHz, and a complex programmable logic device 

(CPLD). For imaging, it is equipped with a CMOS Agilent ADCM-1700 CIF 

resolution imager in addition to 64 KB external SRAM memory to store captured 

images. Other visual senor platforms that belong to this category are the CMUcam3 

[22], eCAM [23], and WiCa [24]. 

2. The second category includes sensor platforms that were designed to support 

multimedia applications. Motes in this category have extended capabilities in terms of 

computational units and memory size. Imote2 [18] is one example of such motes. 

Imote2 is equipped with the PXA271 XScale microprocessor [25] whose frequency 

can be scaled from 13 MHz up to 416 MHz. PXA271 includes a wireless MMX 

(WMMX) coprocessor to accelerate computations. Moreover, PXA271 includes 256 

KB SRAM, 32 MB SDRAM, and 32 MB flash memory. Further, Imote2 interfaces 

with the IMB400 multimedia board [18] to form a visual sensor node. IMB400 is 

equipped with the OV7670 imager that can capture 640×480 resolution images. 

IMB400 only captures frames, and all processing is done on the underlying Imote2 

node. Another mote that belongs to this category is Stargate [18]. For a 

comprehensive survey on sensor platforms, we refer the reader to [26]. 

In this chapter, we describe our experience in implementing and deploying RDVC 

over two different visual sensor platforms; Micaz/Cyclops, and the more recent 

Imote2/IMB400. Both Micaz and Imote2 are programmed using nesC [27], and they both 

run TinyOS [28] that is becoming a de-facto standard operating system (OS) for 

embedded sensor networks.  
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(a) 
 

(b) 

Figure  2.1: sensor platforms employed in our study: (a) Imote2/IMB400 and (b) 

Micaz/Cyclops. 

 

Figure  2.1 shows both the Imote2/IMB400 and the Micaz/Cyclops platforms that are 

used in our study. 

2.3. Syndrome-Based DVC Codec over Real Visual 

Sensors 

There has been a vast body of work related to DVC in the literature. PRISM [12] 

(Power-efficient, Robust, hIgh-compression, Syndrome-based Multimedia coding) is one 

of the earliest schemes. To encode a frame, it is first divided into bocks (16×16 or 8×8) 

over which Discrete Cosine Transform (DCT) is applied. Correlation noise between the 

block to be encoded and the co-located one in the previous frame is computed (the square 

error difference between DCT coefficients in the two blocks). The amount of correlation 

noise is used to classify the block being encoded into three categories: (1) Skip mode, 

when the amount of correlation noise is negligibly small. In this mode the block is not 

encoded at all. (2) Intra mode, when there is a significant amount of correlation noise. In 

this mode the block is intracoded. (3) DSC mode, when the correlation noise is relatively 

small and can be corrected through channel coding. In this case, the codeword space is 
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divided into cosets, each of which is labeled by a coset leader (syndrome). Compression is 

achieved by transmitting the syndrome, whose size depends on the correlation channel 

condition. In [12], a trellis channel code is used. To aid the decoder to perform motion 

estimation, the encoder generates a cyclic redundancy check (CRC) of the encoded block. 

The decoder uses different blocks residing in the frame memory as candidate side 

information for decoding. Each decoding attempt is followed by a CRC computation, and 

the decoding attempt whose CRC matches the received CRC is the one to be adopted. 

Girod et al [29] [30] [31] [32] have contributed in developing a series of DVC 

schemes. In al [29], even and odd numbered frames are separated into two different 

groups. Pixel domain WZ encoding is applied on even numbered frames, whereas odd 

numbered frames are intracoded. Pixels are first quantized using a uniform scalar 

quantizer. Quantized pixels are then fed into a rate compatible punctured turbo (RCPT) 

code. Resulting parity bits are stored in a buffer. A feedback channel is maintained 

between the encoder and the decoder. The encoder sends parity bits in an incremental way 

in response to requests received from the decoder until the successful decoding is 

acknowledged. Many techniques are used to generate SI frames. The simplest is to find 

the average of the predecessor and successor of the WZ frame. More sophisticated 

techniques involve motion estimation. After the decoder decodes the WZ frame, it uses a 

minimum mean square error estimator (MMSE) to restore pixel values. In [30] the scheme 

is developed into a more general framework where SI frames are generated by 

interpolating or extrapolating frames residing in the decoder’s frame memory (already 

decoded WZ frames or previous key frames). In [31] the framework is further extended to 

work in the transform domain where DCT is used. In [32], channel coding (turbo codes) is 
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applied on bitplanes of quantized DCT coefficients. Further, motion estimation (ME) at 

the decoder side is used to generate SI. To achieve that, the encoder generates helper 

motion estimation information. In particular, a hash codeword is generated at the encoder 

side and sent to the decoder. The hash codeword is simply a coarsely quantized and 

subsampled version of the block to be encoded. Similar to PRISM, the distance between 

the hash of the current block and the co-located one in the previous frame is calculated. If 

the distance exceeds a certain threshold, the hash codeword is sent. The decoder uses the 

hash to conduct a motion search that results in the best SI block. 
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Figure  2.2: Block Diagram of an abstract WZ encoder. 

 

From the description of the aforementioned schemes, we can identify the components 

of a WZ encoder. Figure  2.2 shows a block diagram of an abstract WZ encoder. To cope 

with the stringent nature of motes, the different modules shown in the figure have to be 

implemented in a way that ensures low complexity. We address this requirement by 

making the following observations: 

1. In general, bitwise logical operations (such as AND, OR, and SHIFT) are considered 

to be inexpensive in terms of power consumption [33] compared to other operations 

(multiplication for instance). This reflects on the channel code module shown in Figure 

 2.2, as we design our codec to operate on the bit level (bitplanes of images). Here, a 

syndrome-based [2] Low-Density Parity-Check Code (LDPC) DVC [3] arises as an 

attractive solution (see Appendix A: Syndrome-Based DVC), where the core operation 

is a bitwise XOR between a bitplane and rows of a parity check matrix (as opposed to 

other DVC schemes that uses more complex operations such as modular arithmetic 

[34] [12]). Furthermore, our RDVC codec avoids the expensive floating point 

operations, and this reflects on the DCT module by employing the DCT described in 
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[35] where computations involve only integers, and expensive multiplications are 

replaced with shift operations. 

2. The scarcity of memory is another reason that justifies employing a syndrome-based 

LDPC code in the channel code module, as the sparsity of the LDPC parity check 

matrix allows for compact representation and storage. 

3. Different compression schemes in DVC have different underlying energy demands 

and, in return, provide different video quality scores. For example, the DCT 

component can be skipped, and compression is applied directly on raw pixels. 

Moreover, both DCT coefficients and pixels could be represented via Gray codes or 

regular binary codes. Our study shows that various combinations of these coding 

options provide better performance over different ranges of the energy-quality space 

[15]. For example, under certain conditions, the combination of raw-pixel and Gray 

coding can outperform other coding options (including DCT-based) as we show later 

in this chapter (Section 2.5). 

4. For the rate control module, employing a feedback channel between the encoder and 

decoder may not be desirable in setups where DVC is deployed over real visual sensor 

networks, due to power considerations. In the next chapter, we present a practical 

solution to this problem over real visual sensors. Our solution results in using source 

rates close to the ideal rates while completely avoiding incremental transmissions and 

feedback messages. 

The following is a brief description of our RDVC codec. We consider a setting where a 

frame captured by the encoder is classified into two categories: 
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a) Key (side information) frame: Captured at time instance n. We refer to a key frame 

by Y. 

b) WZ frame: A frame that follows a key frame, i.e., it is captured at time instance 

n+1. We refer to a WZ frame by X. Therefore, our codec encodes captured frames 

in pairs. In each pair, the frame that was captured earlier is a key frame, and the 

following frame is a WZ frame. 

2.3.1. Key Frame Intracoding 

 Key frames encoding can be achieved in many low-complexity ways following 

traditional still image codecs used in popular standards such the ones used in different 

JPEG and MPEG specifications. In summary, intracoding a Key frame Y starts with 

applying DCT to the frame. The resulting DCT coefficients are then quantized. The 

quantization process turns many DCT coefficients (the ones with small values) into zeros. 

Run Length Encoding (RLE) is then used to encode quantized coefficients. Finally, 

Huffman encoding is used to encode the output of RLE. 

2.3.2. Wyner-Ziv Coding 

Let Xi and Yi denote the i
th

 bitplanes of WZ frame X and key frame Y respectively, 

where i ranges from 1 (least significant bitplane) to 8 (most significant bitplane). The 

following is a description of the encoding process: Key frame Y is intra-coded and 

communicated to the decoder. WZ frame X is DCT transformed (this can be skipped when 

DVC is applied on raw pixels). A uniform quantizer of M = 2
b 

intervals is used to quantize 
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DCT coefficients (or pixels). Quantized values are then represented via Gray codes (or 

regular binary codes). The resulting frame is decomposed into b bitplanes. Next step is to 

use Low-Density Parity-Check Accumulate (LDPCA) [36] codes to encode the bitplanes 

(see APPENDIX A: LDPCA Codes). For all values of i, we scan the h×l size bitplanes Xi 

and Yi into one dimensional vectors xi and yi with size n×1, where n = h×l. xi is then 

multiplied by the n×n parity-check matrix H: 

ii xHS ×=        2.1 

The n×1 vector Si is referred to as the syndrome vector. Bits in Si are then accumulated 

to generate a new n×1 vector that is denoted here as Ai [36]. A subset of bits is chosen 

from Ai to be sent to the decoder, where the number of transmitted bits depends on the 

disparity between Xi and Yi. The larger the disparity the more bits the encoder needs to 

send (higher source rate
1
) and the smaller compression ratio is achieved. Identifying the 

appropriate source rate at the encoder is a crucial practical aspect that we will discuss in 

detail in the next chapter. For now, let’s assume that the encoder transmits a sufficient 

number of bits it  to the decoder. At the decoder side, bit accumulation is inversed to 

restore it syndrome bits. Further, a Tanner [3] graph that has it  check nodes and n 

variable nodes is constructed for decoding xi. Bits of yi (representing the i
th

 bitplane of Y) 

are fed into the n variable nodes, whereas the it  syndrome bits are fed into the check 

nodes, and belief propagation [3] algorithm runs on the graph to restore xi. When this 

                                                 
1

 Here, the source rate is the number of parity bits needed for coding a WZ frame 

divided by the total number of bits in the WZ frame. 
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process is applied to all bitplanes, i.e., for all i from 1 to b, the decoded b bitplanes are 

combined together in one frame. The final step is performing inverse Gray coding and 

inverse DCT (if they are used) to approximate the encoded WZ frame.  

 

 

Figure  2.3: Pictorial demonstration of the DVC codec. 

 

Figure  2.3 provides a pictorial illustration of the whole process. The role of hi in the 

figure will become clear in the next chapter. 

2.4. Energy Measurement Setup 

Because motes are battery operated, their energy resource is quite limited. A practical 

DVC solution aims to utilize energy in an efficient manner in order to achieve an 

acceptable mote life time. This utilization takes the form of compression (and hence less 
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transmission) that has low computational complexity. Consequently, measuring power 

consumption of transmission and computation is crucial for studying practical DVC 

solutions. Our key objective here has been to evaluate the energy consumption of 

transmission as well as the different DVC computational operations in isolation of each 

other. Therefore, we have experimented with the following approaches: 

1. A shunt resistor is placed in series between the visual sensor mote (Imote2/IMB400 

node) and the power supply. Voltage across the shunt resistor is captured using an 

infiniium oscilloscope [37]. To capture small voltage levels, we use an 

instrumentation amplifier [38]. We account for the offset introduced by the amplifier 

in later energy calculations. To measure the energy consumption of a particular 

operation (transmission or computation), we need to mark the beginning and end of 

that operation. Therefore, we make utility of the general purpose pins available at the 

Imote2's microprocessor; we program our codec so that it asserts one pin (turns the 

signal at that pin on) at the beginning of the operation of interest, and deactivates that 

pin when the operation is over. By monitoring this indicator signal on one channel of 

the oscilloscope and the drawn current signal on another channel, we are able to 

accurately quantify the energy consumption of any operation. Power is computed as 

follows: 

∑
=

=
T

i

i
PE

1       

  2.2 

Figure  2.4 shows the current drawn by the Imote2/IMB400 node during compressing 

and transmitting a pair of a key and a following WZ frames. It also shows the time 

support of the different operations in the codec (attained via the indicator signal). 

Note that the current starts from its lowest level during  capturing a frame, and then it 
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goes up during DCT and intracoding. Radio is turned off during those operations, and 

it is turned back on only upon transmission. Therefore, when intracoding is over, 

radio turns on, and transmission begins. When transmission ends, radio goes back off. 

For a WZ frame, the current starts from the lowest level during capturing the frame, 

then it rises during DCT and WZ encoding (denoted by DVC in the figure), and 

finally radio is turned on to transmit the syndrome bit stream. Table  2.1 summarizes 

the per frame energy cost for the different computational operations, in addition to the 

packet transmission cost. Note that transmission could take on a long period of time if 

data is not sufficiently compressed, and as energy is a function of time duration, DVC 

aims to reduce the volume of transmitted data, and hence reducing the time duration 

of transmission in order to achieve energy savings. 

 

Figure  2.4: Current drawn during different operations (For interpretation of the 

references to color in this and all other figures, the reader is referred to the 

electronic version of this dissertation). 
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Operation Energy Time Period  

DCT 8.52 (mJ/frame) 15 (ms/frame) 

DVC 5.53 (mJ/frame) 10 (ms/frame) 

Capture 16.87 (mJ/frame) 44.25 (ms/frame) 

Intracoding 3.27 (mJ/frame) 5 (ms/frame) 

   

TX 3.4 (mJ/packet) 7.8125 (ms/ packet) 

Table  2.1: Energy cost and time support of different operations. 
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2. As power consumption affects the mote's battery voltage level, a natural way to 

quantify power consumption would be through monitoring the battery's voltage 

level during the course of compression and transmission. Consequently, in [15] 

our approach is based on voltage discharge curves [39]. We modify the codec 

(deployed over the Micaz/Cyclops node) so that it executes only the operation of 

interest (DCT for instance) repeatedly. Meanwhile, the voltage level of the battery 

is sampled and recorded. This process continues until the voltage level reaches a 

certain threshold, where the encoder stops and the average cost per frame of the 

operation is computed. Figure  2.5 shows the voltage level decay over time for 

frame capturing, DCT, and DVC (syndrome generation). Table  2.2 summarizes 

the frame processing cost (of the different encoding operations) in addition to the 

packet transmission cost. By achieving sufficient compression, DVC aims to 

reduce the number of transmitted packets, and hence reducing energy 

consumption. 

 

Figure  2.5: Battery voltage decay over time during different operations. 
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Operation Voltage Decrease 

Camera 8.87 (µV/frame) 

DCT 8.81 (µV/frame) 

DVC 21.27 (µV/frame) 

  

TX 0.509 (µV/packet) 

Table  2.2: Cost of transmission and computation operations. 

2.5. Transmission-Computation Tradeoff 

There are many options available for a RDVC codec when it is deployed over an 

actual visual sensor. Those options have different underlying energy requirements 

(computation and transmission energy), and they result in different video quality 

(distortion) scores. While a computational intensive scheme is costly in terms of 

computational power consumption, it achieves significant compression and hence 

transmission power saving. On the other hand, a less complex encoding scheme is less 

costly in terms of computational power consumption and more costly in terms of 

transmission power. Interestingly, as we show in [15], although the more complex 

scheme achieves more compression, and hence more transmission power saving, it may 

not be more efficient in terms of the overall power consumption (computation and 

transmission) beyond a particular achieved level of video quality. We show this by 

conducting an operational energy-distortion analysis involving two DVC codecs: (1) a 

DVC codec that incorporates DCT (extra computational power is spent on performing 

DCT), (2) and a DVC codec that runs directly on raw pixels (less power consuming than 

the DCT case, but less compression is achieved and hence more transmission power 

consumption). We compare between the two codecs when both are deployed over the 
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Micaz/Cyclops platform using measurements reported in Section 2.4. Both codecs are 

used to encode a video sequence that consists of 100 frames captured by the Cyclops 

camera. Frames have 64 64 resolution. Figure  2.6 compares between the two codecs. 

Each point in the figure corresponds to the number of bytes that resulted from encoding 

the 50 Wyner-Ziv frames using both the DCT and pixel encoding schemes along with 

different quantization levels with and without Gray codes. Note from the figure that when 

Gray coding is not used, DCT results in more data compression compared to the pixel 

scheme. This is also valid when Gray coding is used. 

 

Figure  2.6: Compression performance of different encoding schemes. 

 

As we are more interested in comparing between the two schemes in terms of the 

overall cost (compression and computation) at different video quality levels, we use the 

measurements presented in section 4 (for Micaz/Cyclops) to map points in Figure  2.6 to 

those in Figure  2.7. The overall cost at each point has three components: (1) The cost of 

capturing and applying DVC (computing syndromes) to the 50 Wyner-Ziv frames; this 
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component is common between DCT and pixel based schemes. (2) The cost of 

transmitting the encoded frames; this is different across the two schemes and it depends 

on the compression performance of each. (3) The cost of applying DCT; this is applicable 

only in the DCT case. 

 

Figure  2.7: Power-distortion performance of different encoding schemes. 

 

Figure  2.7 shows that for the case of no Gray coding, and for lower video quality 

values (below 34 dB), DCT demonstrates lower overall power consumption. In this case 

DCT achieves significant saving in transmission power such that the overall power 

(transmission, and computation) is still less than that in the pixel case. On the other hand, 

for PSNR values greater than 34 dB, the pixel based scheme demonstrates lower overall 

power consumption. In this case the transmission power saving of DCT is not significant 

enough to keep the overall power consumption less than that of the pixel case. The same 

justification applies for the case of Gray coding. Figure  2.7 provides an operational 

energy-distortion analysis for both encoding schemes. For any RDVC codec, it is 

extremely important to have this type of analysis when there is a set of options available 
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for the codec, and those options have different computational requirements, and they 

result in different quality scores. Having a power-distortion view of the different options 

assists in making a global optimal choice that accounts for tolerable video quality and 

power budget. 

2.6. Discussion 

In this chapter we described a RDVC codec that we deployed over the popular 

Micaz/Cyclops and Imote2/IMB400 visual platforms. Further, we used different ways to 

evaluate the power consumption of the codec over both platforms. We used the codec 

along with the power measurements to highlight some practical aspects of DVC over 

actual platforms and devices. In particular, we showed that when there is a variety of 

options available to RDVC, some are computationally intensive and lead to less 

transmission and others are less intensive and result in higher transmission-energy 

overhead.  In this case having a power-distortion profile of the different options assists in 

making a global decision amongst them. In the next chapter, we use the RDVC codec and 

energy measurements described in this chapter to address another practical aspect; the 

problem of identifying the appropriate source rate at the encoder side without the need to 

exchange feedback messages with the decoder. 
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Chapter 3 

3. Distributed Video Coding Based on Source Rate 

Estimation 

In Distributed Video Coding (DVC) the encoder compresses frames at source rates 

that depend on the statistical dependency between the Wyner-Ziv (WZ) and side 

information frames. An important issue that we address in this chapter is providing the 

encoder with a mechanism to identify the source rate to be used in encoding a WZ frame 

(Here, the source rate is the number of parity bits needed/used for coding a WZ frame 

divided by the total number of bits in the WZ frame). One possible solution is to follow a 

feedback approach; the encoder starts by sending a small amount of data (low source 

rate). In case the decoder fails to recover the compressed frame, it provides the encoder 

with a feedback requesting more bits. This solution results in using source rates that are 

ideal in the sense that they are the minimal rates that lead to successful decoding. 

Nevertheless, this solution might not be practical for visual sensor networks as it may 

exhaust limited bandwidth and energy resources. In this chapter re present a mechanism 

to estimate ideal source rates without the need to exchanging feedback messages. The 
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proposed mechanism uses conditional entropy (entropy of a WZ source conditioned on a 

side information source) to estimate ideal source rates. Further, we show that by 

estimating the source rates (using optimal estimators) we can achieve a video quality and 

compression performance that is close to that achieved when feedback messages are 

exchanged. Moreover, we show that by avoiding incremental transmission and feedback 

messages, the proposed estimation-based approach can demonstrate lower energy 

consumption for a range of video quality compared with the feedback approach when 

both are deployed over a real visual sensor platform, namely, the imote2/IMB400.  

3.1. Introduction 

One important question is: How can the encoder know the number of parity bits that 

have to be sent to the decoder? Or, what is the source rate that it has to use in encoding a 

WZ frame? One possible solution is to use feedback messages between the decoder (base 

station) and the encoder (sensor node). Under the feedback approach, when coding a WZ 

frame, the encoder transmits the compressed data in an incremental fashion; it starts with 

a low source rate (small number of parity bits). If the decoder fails to restore the WZ 

frame using this number of bits, it (the decoder) sends the encoder a feedback message 

requesting more bits. Thus, the encoder incrementally increases the source rate until the 

decoder acknowledges successful decoding. This approach is considered to be ideal in 

the sense that it will eventually lead to successful decoding for all encoded WZ frames 

while requiring the minimal number of parity bits. Nevertheless this approach may not be 

desirable (or even feasible) in setups where DVC is deployed over real visual sensor 

networks, because limited communication bandwidth and power considerations may not 
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afford feedback messages and incremental transmission overhead. In this chapter, we 

present a practical solution for this problem over visual sensor networks. Our solution 

results in using source rates that are close to the ideal rates of the feedback approach 

while completely avoiding incremental transmissions and feedback messages. The 

approach we are proposing is to use the conditional entropy )|( YXH  [40] to estimate 

ideal source rates. Conditional entropy gives information about the disparity between X, 

the WZ frame, and Y, the side information frame. As the source rate depends on this 

disparity, we expect the source rate to be statistically dependent on the conditional 

entropy, and hence, the encoder can use the conditional entropy to estimate the necessary 

source rate. In this chapter, we examine this dependency. Further, we build a DVC codec 

that employs two estimators: a Maximum a Posteriori (MAP) estimator, and a Minimum 

Mean Squared Error (MMSE) estimator. We use estimated source rates to encode 

different video sequences, and we show that the performance of the proposed estimation-

based approach (in terms of compression and video quality) is close to that achieved 

when feedback messages are exchanged. Moreover, we show that due to the overhead 

incurred by employing the feedback approach in a real visual sensor application, the 

estimation-based approach could result in lower energy consumption for a range of video 

quality levels. To demonstrate that, we use the imote2/IMB400 [18] visual sensor 

platform. This chapter is organized as follows. In Section 3.2 we investigate the 

dependency  between the conditional entropy and the source rate. In Section 3.3 we use 

the conditional entropy to estimate source rates using two types of estimators: MAP and 

MMSE, and we show the performance of both estimators. In Section 3.4 we highlight the 

overhead of the feedback approach in a real visual sensor application, and we compare it 
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with the proposed estimation-based approach. In Section 3.5 we outline conclusions of 

this study. 

3.2. Conditional Entropy-Source Rate Dependency 

The conditional entropy )|( iii YXHh =  evaluates the disparity between the bitplane 

being encoded (Xi) and the bitplane of the same significance in the key frame (Yi). hi 

provides the lower bound source rate for encoding Xi. In practice, the minimum source 

rate for encoding Xi that leads to error free decoding, denoted by ri and referred to as the 

ideal source rate, will be greater than the hi bound due to many reasons, such as the 

performance of the underlying channel code. The encoder can identify the value of ri by 

following the feedback approach which is considered to be ideal in the sense that it will 

eventually lead to successful decoding for all encoded WZ frames while requiring the 

minimal number of parity bits. The estimation-based approach we are proposing aims to 

avoid feedback messages and incremental transmissions that could exhaust limited 

resources in visual sensor networks. At the same time, it aims to use source rates that are 

as close as possible to the ideal rates attained when feedback messages are exchanged. 

Our solution relies on estimating the ideal rate ri given the value of the conditional 

entropy hi. Efficient estimation is achievable if there is a high statistical dependency 

between the two variables (ri and hi). To examine the degree of this dependency, we 

conduct the following experiment: 
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Feedback scenario simulation experiment: We use our DVC codec described in 

Section 2.3 to encode a video sequence. For each pair of key and its following WZ 

frames, we find the conditional entropy for the i
th

 bitplanes )|( iii YXHh = . Then 

starting from the lowest source rate we encode Xi and attempt to decode it at that rate. If 

the decoding fails, we move to the next higher source rate. We keep on increasing the 

source rate until Xi gets successfully decoded. At that point we record the source rate that 

led to successful decoding against the conditional entropy that we already have, i.e., we 

record the pair ),( ii rh . Note that this simulates what happens in the feedback scenario. 

We repeat this experiment for all the bitplanes across all frames in the video sequence. 

When the encoder finishes encoding the whole video sequence, we will have an ),( ii rh  

pair related to each WZ frame. 

Figure  3.1 shows the values of hi and ri related with the first 50 WZ frames of the 

Foreman video sequence (QCIF resolution). Both values are evaluated for i = 7 (the 

seventh bitplane). Note the resemblance in shape between the two curves. This suggests 

that the two values are correlated.  
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Figure  3.1: : Conditional entropy and source rate values over the first 50 WZ frames in 

the Foreman video sequence, seventh bit-plane. 

 

To have a more concrete measure of statistical dependency, we treat hi and ri for the 

i
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 bitplane as two random variables, and we compute the correlation coefficient [41]: 
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Table  3.1 lists the correlation coefficient for different bitplanes in different video 

sequences (QCIF resolution Hall Monitor and Foreman). Note that the correlation 

coefficient is generally close to 1, which reflects the high correlation between the two 

values. 
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Bit-plane Foreman Hall Monitor 

1 0.9871 0.9392 

2 0.9948 0.9186 

3 0.9885 0.8957 

4 0.9635 0.8109 

5 0.9118 0.925 

6 0.9403 0.8284 

7 0.97 0.952 

8 0.9952 0.8246 

Table  3.1: Correlation coefficients of different bit-planes in the QCIF resolution Foreman 

and Hall Monitor video sequences. 

3.3. Source Rate Estimation and Performance 

In this section we utilize the statistical dependency between the conditional entropy 

)|( iii YXHh = and the ideal source rate ri and build estimators that map hi to an estimate

ir . We build two types of estimators: 

(1) Maximum a Posteriori (MAP) estimator: 

)|(maxarg)( ii

ir
ii hrphFr ==      3.2 

where p(.|.) is the conditional probability mass function. 

(2) Minimum Mean Squared Error (MMSE) estimator: 

]|[)( iiii hrEhFr ==       3.3 

Where .]|[.E denotes the conditional expectation. Probability mass functions needed 

for both estimators are built offline (a training stage before the encoder starts encoding) 

from a large ensemble of ),( ii rh  pairs generated by encoding a number of different video 

sequences. A source rate codebook is prepared and provided to the encoder. Each entry in 

the codebook has a conditional entropy value hi and the corresponding estimated source 
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rate ir . The codebook has entries for all values of i. To evaluate the performance of both 

estimators, we use our encoder to encode different video sequences. For a pair of a key 

frame and its following WZ frame in a video sequence, the conditional entropy 

)|( iii YXHh = of the i
th

 bitplane is computed. The resulting hi value is used to lookup 

the codebook. When a matching hi value is found in the codebook, the corresponding ir  

value is extracted and employed in encoding/decoding the bitplane. This is done for all 

values of i, i.e., for all the bitplanes that pertain to the WZ frame. When the bitplanes of 

this WZ frame are fully encoded, the number of bytes that resulted from compressing this 

frame is computed. On the other hand, when all the bitplanes that pertain to the WZ 

frame are fully decoded, they are merged into one frame, and the quality of that frame is 

evaluated using the Peak Signal to Noise Ratio (PSNR) measure. Finally, the total 

number of bytes that resulted from encoding all WZ frames in the video sequence as well 

as the average PSNR of those frames are computed and plotted. 
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Figure  3.2: Performance using different methods to identify source rates  - QCIF  Forman 

video sequence. 

 

Figure  3.3: Performance using different methods to identify source rates - QCIF 

Salesman video sequence. 

 

Figure  3.2 and Figure  3.3 plot the average PSNR vs. the total number of bytes for two 

different video sequences (QCIF resolution Foreman and Salesman). For each video 
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sequence we plot three curves; one for the feedback scenario where the minimal source 

rate ir  is reached in an incremental fashion, and the other two curves are related to the 

MAP and MMSE estimators. Each point in the figure corresponds to different 

quantization level, hence different number of bitplanes per frame. Note that for the 

Foreman sequence the MAP curve is close to the feedback scenario curve. For the 

Salesman sequence, both MAP and MMSE curves are close to the feedback scenario 

curve. This means that estimating source rates can achieve performance (in terms of 

compression and video quality) close to that of the feedback scenario. Further, we 

observe that, generally, for the two sequences, the MAP estimator outperforms its MMSE 

counterpart. 

3.4. Overall Energy Consumption Performance 

In this section we compare the performance (in terms of the overall energy 

consumption) of the feedback and estimation-based approaches when they are employed 

in a real visual sensor application. We implement and deploy the estimation-based DVC 

codec described in Section 2.3 on a real visual sensor platform that consists of the imote2 

mote attached to the IMB400 multimedia board [18]. This platform is managed by the 

TinyOS operating system [28]. Further, we measured the energy consumption of radio, 

and the different computational modules in the imote2/IMB400 codec (DCT transform, 

parity-check matrix multiplication, etc.). In this section, we use our codec and the 

measured energy values (Section 2.4) to provide a comparison between the feedback and 

estimation-based approaches. We can group the differences between the two approaches 

into two categories: 
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1. Computation: Both approaches have exactly the same computational modules 

(DCT transform, parity-check matrix multiplication, etc.) with one exception; the 

estimation-based approach has one extra processing stage which is the conditional 

entropy computation. It is clear that the main part of this operation is computing the 

Hamming distance, which involves a set of XOR and addition operations. There are two 

features that make computing the Hamming distance on the imote2/IMB400 affordable: 

(1) XOR and addition operations are considered to be cheap in terms of energy 

consumption [33] compared to other types of operations (multiplication for instance). (2) 

Moreover, the cost of the Hamming distance computation is reduced by using the iwmmx 

[42] technology supported by imote2. This technology uses the SIMD (Single Instruction 

Multiple Data) processing paradigm that accelerates multimedia processing. Using 

SIMD, our codec performs 64 XOR operations in parallel. This shortens the execution 

time and hence energy consumption (energy is a function of execution time and power 

level). Those two features motivate using the conditional entropy as a basis to estimate 

source rates. 

2. Transmission: There are three main differences between the two approaches in 

terms of transmission: 

a) Ideal feedback approach results in more compression (Figure  3.2 and Figure  3.3) 

and hence fewer bits to transmit. 

b) Ideal feedback approach suffers the cost of exchanging feedback messages. 

c) In many occasions, the incremental transmission nature of the feedback approach 

results in transmitting more overhead data (packet headers) compared with the 

estimation-based approach. As the feedback approach transmits compressed data (parity 
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bits) in increments, this results in constraining the packet payload size to a certain value 

that is equal to the increment size. This may lead to transmitting compressed data of a 

certain frame through a large number of packets, and since each packet comprises a 

control header, this results in transmitting a large number of control data. On the other 

hand, the packet payload size in the estimation-based approach does not adhere to such 

constraint. Therefore, bigger payload sizes could be used, and hence compressed data 

could be communicated via smaller number of packets which means smaller number of 

control data. To further clarify this point, we use the following incremental transmission 

model: let the increment size i∆ be the amount of compressed data (parity bits) belonging 

to the th
i bitplane that the encoder transmits in each transmission before waiting for a 

feedback. Consequently, in each transmission, the total amount of compressed data that 

the encoder transmits is ∑
=

∆=∆
q

i
i

1

, where q is the number of bitplanes that have not been 

completely communicated to the decoder yet. When the decoder acknowledges 

successful decoding for bitplane i, no more parity bits are needed (by the decoder) for 

that bitplane, hence the amount of transmitted data in the next transmission will decrease 

by i∆ , and q will decrease by 1. Regarding feedback messages, the payload size is 1 

byte. The i
th

 bit in this byte corresponds to the i
th

 bitplane, and the decoder sets this bit to 

one to acknowledge successful decoding for the corresponding bitplane, or to zero to 

request an increment of size i∆  to be sent in the next transmission. Note that the 

maximum packet payload size in each transmission is ∆ . In practice, control data 

overhead and feedback messages could severely degrade performance of the feedback 

approach. The following is an example that highlights this point. 
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Example: imote2 uses the CC2420 radio transceiver [21]. In TinyOS, each CC2420 

packet has a header of 11 bytes. Moreover, our imote2/IMB400 codec employs an 

LDPCA code that supports 512 different rates to encode the 64×64 bitplanes. The 

minimum source rate is 1/512 and the maximum rate is 512/512 with an increment of 

1/512. Note that the increment size 84096)512/1( =×=∆i bits (the same for all i), hence 

8=∆  bytes. This means that, as long as the decoder has not acknowledged successful 

decoding for any bitplane, the encoder can send a packet with a maximum payload size of 

8 bytes in each transmission. 

 

Figure  3.4: Incremental transmission example of three bitplanes. 

 

Figure  3.4 shows a transmission status after bitplanes 4, 5, 6, 7, and 8 were 

acknowledged decoded. Currently we have 3=q  (3 bitplanes are not acknowledged yet). 

As the figure shows, at this point, bitplanes 1, 2, and 3 require 197, 124, and 32 more 

increments respectively to get decoded (the encoder does not know that, it keeps on 

sending increments until it gets back an acknowledgement). The payload in the next 32 
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packets will hold 3 bytes; each byte corresponds to one of the remaining bitplanes. After 

the encoder receives an acknowledgment that bitplane 3 is successfully decoded, 

bitplanes 1 and 2 will need to send 165 and 92 more increments respectively. 

Consequently, the next 92 packets will hold a payload of 2 bytes corresponding to 

bitplanes 1 and 2. After the encoder receives a feedback message indicating that bitplane 

2 was successfully decoded, the next 73 packets will hold only one byte corresponding to 

bitplane 1. This procedure results in transmitting 197 packets with payload sizes that 

range from 1 to 3 bytes, in addition to 197 feedback messages. Note that, although the 

size of the compressed data in this example is 353 bytes, a total of 2167 control bytes 

(197 headers) were transmitted. This is an extremely large number compared with the 

compressed data size. 

In the example above, if the source rates were known prior transmission, i.e., the 

encoder already knows that 197, 124, and 32 bytes would be sufficient to decode 

bitplanes 1, 2, and 3 respectively, then the 353 bytes of compressed data could be 

communicated to the decoder in a smaller number of packets as there will be no 

constraint on the payload size. For example, if we choose a payload size of 40 bytes, then 

we need only 9 packets to deliver the compressed data, and hence only 99 control bytes 

are transmitted. Since knowing the ideal rates prior transmission is not realistic, the 

proposed estimation-based approach provides the encoder with a mechanism to estimate 

those rates prior transmission, and hence this will eliminate the cost of overhead data. 

Despite this fact, the estimation-based approach suffers extra computation cost 

(conditional entropy computation), and it achieves less compression than the feedback 

approach (larger volume of compressed data). Therefore, we need to compare between 
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the two approaches in terms of the overall energy consumption (computation and 

transmission). To do that, we use our estimation-based imote2/IMB400 codec to encode 

the Foreman and the Salesman video sequences. We choose the packet payload size to be 

40 bytes (remember that the header size in TinyOS is 11 bytes), and a MAP estimator to 

estimate rates. Further, we simulate the feedback approach to compress the same video 

sequences in the same manner described in Section 3.3 (but now the video sequences are 

down sampled to a 64×64 resolution to be consistent with the imote2/IMB400 decoder). 

The LDPCA code used here is the same as in the previous example (increments of 

1/512). For energy measurement, we use the following values [16]: (1) cost of 

transmitting/receiving 1 byte is 66.67 Jµ , and (2) cost of conditional entropy 

computation is 2.7681 mJ per frame (8 bitplanes). 

Figure  3.5 and Figure  3.6 demonstrate the performance of each approach in terms of 

energy consumption and video quality at different quantization levels. In this figure, 

energy consumption of the computation modules that are common between the two 

scenarios (such as DCT, parity-check matrix multiplication, etc.) is not considered. Note 

that there are two curves related to the feedback approach; one curve (feedback1 in the 

figure) corresponds to a scenario where a feedback message is sent back to the encoder 

after each transmission. The other curve (feedback2 in the figure) assumes that the 

decoder sends a feedback only to acknowledge successful decoding of any bitplane. 

Hence, after each transmission, the encoder waits for a period of time for an 

acknowledgement. If no acknowledgement is received, then the encoder assumes that the 

decoder failed to decode all bitplanes, and it transmits a new increment. Note that 

although this feedback scheme results in less frequent feedbacks, the estimation-based 
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approach demonstrates lower energy consumption for a wide range of video quality 

levels. 

 

Figure  3.5: Performance over a real visual platform - Forman video sequence. 

 
Figure  3.6: Performance over a real visual platform - Salesman video sequence. 
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3.5. Discussion 

In this chapter we showed that the statistical dependency between the conditional 

entropy (entropy of a WZ source conditioned on a side information source) and the ideal 

source rate of encoding a WZ frame (the minimal rate that leads to successful decoding) 

can be utilized to estimate source rates, and hence avoid exchanging feedback  messages 

with the decoder. We showed that the estimation-based approach results in a performance 

that is close to that of the feedback approach in terms of compression and video quality. 

Further, we showed that the estimation based approach can demonstrate lower energy 

consumption for a range of video quality levels compared with the feedback approach 

when they are deployed over a real visual sensor platform (imote2/IMB400). 
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Chapter 4 

4. Polar Codes for Low Resolution Distributed 

Video Coding 

Polar codes are the first codes proven to achieve capacity while having low encoding 

and decoding complexity. As the development of polar codes is relatively recent, there 

has been little work to assess the potential of polar codes for practical applications. In this 

chapter, we employ and evaluate the performance of polar codes in Distributed Video 

Coding (DVC). Further, we compare the performance of polar codes with the more 

established and more investigated Low Density Parity Check Accumulate (LDPCA) 

codes in the context of DVC. Our study shows: (a) Polar and LDPCA codes exhibit 

almost similar performance for DVC coding of large image blocks. (b) Polar codes offer 

a clear advantage when coding smaller size image blocks. Consequently, polar codes 

could represent a viable solution for distributed sensor networks that capture a low-

resolution video signal at each visual sensor node. 
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4.1. Introduction 

Similar to previous chapters, the DVC that we investigate in this chapter is based on 

asymmetric Distributed Source Coding (DSC), which is a special case of the broader 

DSC problem [1].  Let X and Y be two sources that are statistically dependent. Y, referred 

to as a side information (or key) source, is intra-coded and communicated to the decoder 

at rate )(YHRY ≥ . By utilizing the statistical dependency between the two sources at the 

decoder side, it is shown in [1] that X, referred to  as a Wyner-Ziv (WZ) frame, can be 

compressed with no loss, and with having no access to Y at rate )|( YXHRX ≥ . 

Interestingly, the aggregate rate YX RR +  can achieve the joint entropy ),( YXH . Hence, 

DVC can achieve the same rate as the computationally demanding joint encoding 

(requires access to both X and Y) by performing low complexity independent encoding 

(no access to Y). Due to the low complexity encoding, DVC is considered to be suitable 

for visual sensor networking applications [43] where visual sensors are limited in their 

resources (computational power, storage, etc.). 

Channel codes are heavily employed in DVC. The reason is that the disparity between 

the two sources, X and Y, can be viewed as noise. In other words, X can be viewed as a 

noisy version of Y. Consequently, if Y is already communicated to the decoder, then the 

encoder can communicate X by transmitting a number of parity bits sufficient to correct 

the noise in Y. Compression is achieved by transmitting the parity bits. The level of 

compression of DVC depends primarily on the underlying channel code. Therefore, it is 

common to employ capacity-approaching codes. Examples of DVC schemes that employ 

such codes can be found in [44] where Turbo codes are used, and in [10] where LDPC 
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codes are used. Although these codes and others are known to be capacity-approaching, 

there are no formal proofs on their optimality. Polar codes, recently introduced by Arikan 

[7], are the first channel codes proven to achieve capacity for many types of channels. 

Meanwhile, they are described to be practical in terms of their encoding/decoding 

complexity. Due to their interesting features, polar codes can be utilized in achieving 

optimal performance in many problems in the field of information theory. For example, 

in [45], polar codes were constructed to achieve optimal performance in lossy and 

lossless source compression, in addition to the Wyner-Ziv, and Gelfand-Pinsker coding 

problems. 

Both polar and LDPC codes have some attributes that qualify them to be employed in 

DVC over resource-limited visual sensor networks (which is one of the main applications 

of DVC). For example, (1) the parity check matrix of LDPC codes and the generator 

matrix of polar codes are sparse, which allows for compact storage. (2) Both codes have 

low encoding complexity (O(N) for LDPC codes and O(N log N) for polar codes where N 

is the code block length). (3) Both codes can operate in a rate-adaptive mode where the 

encoder transmits compressed data (parity bits) in increments until the decoder signals 

successful decoding. This is important in situations where the encoder lacks knowledge 

about the disparity (correlation channel) between the WZ and the key sources. 

It is well known that polar and LDPC codes are powerful under asymptotic 

conditions, i.e., as N (code block length) goes to infinity. However, in real visual sensor 

applications, codes are usually applied on short blocks since many visual sensors are 

endowed with low resolution imagers. For example, Cyclops [17] captures 128×128 pixel 

images and both WiSN [46] and MeshEye [47] support capturing of images with 30×30 



52 

 

pixel resolution. In this chapter we demonstrate the practical utility of polar codes in the 

context of low resolution (and hence short block length) rate-adaptive DVC. More 

specifically, we demonstrate the performance advantages of polar codes over the more 

investigated LDPCA codes [36] (rate adaptive LDPC codes that are designed for DSC) in 

the context of low resolution DVC. To that end, we implement a DVC codec that 

employs both codes. We apply the codec on a set of video sequences with different (low) 

resolutions. To our knowledge, this is the first work that incorporates polar codes in a real 

DVC application (as opposed to LDPCA codes). This chapter is organized as follows. In 

Section 4.2, we provide a brief description of polar codes and the DSC scheme that we 

employ in our DVC codec. In Section 4.3, we describe our rate-adaptive DVC codec then 

we present our experimental results. In Section 4.4, we outline main conclusions. 

4.2. Rate-adaptive Polar Codes for DSC 

In this section, we describe in detail a rate-adaptive DSC scheme that incorporates 

polar codes. In the next section we will use this scheme to implement DVC over low 

resolution images. For a detailed description of LDPCA codes refer to APPENDIX A, 

and for a detailed description of our LDPCA DSC scheme refer to Chapter 3. 

4.2.1. Polar Codes 

Let 1
0

−N
X  denote the random vector ],...[ 10 −NXX . If F is a subset of }1,...,0{ −N , 

then F
c
 is the complement of F. F

N
X )( 1

0
−  denotes elements of 1

0
−N

X  indexed by 
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members of F. Ber(p) denotes a Bernoulli random variable with parameter p, and )(2 ph  

is the corresponding binary entropy. Let W be a Binary-input Discrete Memoryless 

Chanel (B-DMC) with transition probability )|( uyW . In this chapter, we are interested 

in the case where }1,0{  is the alphabet for both the input and the output of W. Let N
W be 

a compound channel that consists of n
N 2=  independent copies of W. The transition 

probability of N
W is: 

)|()|(
1

0

1
0

1
0 ii

N

i

NNN
uyWuyW ∏

−

=

−− =
     4.1

 

Polar coding places a pre-processing stage before transmitting 1
0

−N
u  over N

W : 

nNN
Gux

⊗−− =
2

1
0

1
0

      4.2 

where 2G  is the polarization matrix defined as: 


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
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⊗  is the n
th

 Kronecker product operator . This pre-processing operation results into a 

new compound channel NW  that consists of N  dependent channels. The transition 

probability of the i
th

 channel is: 
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where 

)|()|( 2
1

0
1

0
1

0
1

0
nNNNNN

N GuyWuyW
⊗−−−− =      4.4 

The Successive Cancelation (SC) algorithm is used for decoding polar codes where 

Equation 4.3 is applied iteratively. At the i
th

 iteration, 1
0
−i

u  that was estimated over the 
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earlier i-1 iterations is used to estimate iu . As shown in [7], asymptotically (as N goes to 

infinity), a group of the dependent channels,
)(i

NW , become completely reliable, i.e., the 

input of the channel can be estimated with small probability of error. The fraction of 

reliable channels converges to the capacity of W. On the other hand, the remaining 

channels become completely unreliable. This phenomenon is known as channel 

polarization. 

Polar coding: Let A  and c
A  be the set of indices that correspond to the reliable and 

unreliable channels respectively. We will refer to A  as the information set, and c
A  as 

the frozen set. To map a data vector d  into a codeword 1
0

−N
x ,  we set 1

0
−N

u  as follows: 

du A
N =− )( 1
0 , and fu c

A

N =− )( 1
0 , where f is a vector of bits that is fixed across all the 

codewords. Next, 1
0

−N
u  is multiplied by n

G
⊗
2  which results in the codeword 1

0
−N

x . f  

and c
A  are considered to be parameters of the code that are known to both the encoder 

and decoder. 

4.2.2. DSC with Polar Codes 

The basic idea of employing polar codes in DVC is described in [48]. It is based on 

the fact that X (WZ frame) can be regarded as a noisy version of Y (key frame). i.e., 

ZYX += , where Z is a Ber(p) noise sequence (we consider the correlation channel as a 

Binary Symmetric Channel with parameter p; BSC(p)). Y is assumed to be available at 
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the decoder side. Our goal is to communicate X at a rate close to the theoretical bound. In 

other words, we aim to encode Z. At the encoder side, X is multiplied by 
n

G
⊗
2 : 

nNNnN
GZYGX

⊗−−⊗− += 2
1

0
1

02
1

0 )(
               

 

        
nNnN

GZGY
⊗−⊗− += 2

1
02

1
0       4.5 

Note that nN
GY

⊗−
2

1
0  in Equation 4.5 is already available at the decoder. Therefore, 

the encoder needs to communicate nN
GZ

⊗−
2

1
0

 to enable the decoder reconstructing 

nN
GX

⊗−
2

1
0  according to (4.5). Let nNN

GZU
⊗−− =
2

1
0

1
0

. Note that 1
0

−N
U is the polarized 

noise sequence. The Entropy rate of 1
0

−N
U is: 

∑
−

=

−− ==
1

0

1
02

1
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N

i

i
i

N
UUHpnhUH
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In the context of source coding, polarizing a bit sequence results into two groups of 

bits: (1) a group of reliable bits indexed by the information set where the conditional 

entropy in (6) is close to 0. This means that given 1
0
−i

U , iU  can be estimated reliably. (2) 

A group of unreliable bits that are indexed by the frozen set where the conditional 

entropy is close to 1. Let A  and c
A  denote the information and frozen sets respectively. 

It is clear from (6) that the fraction of frozen bits, c
A

N
U )( 1

0
−

, is )(2 ph . Therefore, if the 

encoder transmits the frozen bits c
A

N
U )( 1

0
−

, the decoder will be able to estimate 

A
N

U )( 1
0

− , and the source rate would be close to the theoretical bound )(2 ph . 

Transmitting c
A

nN
GZ )( 2

1
0

⊗−
to the decoder requires separating between Z  and Y  at 

the encoder side, which, in practice, is not possible. Therefore, the encoder transmits 
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c
A

nNnN
c

A

nN
GZGYGX )()(

2
1

02
1

02
1

0
⊗−⊗−⊗− += . As the decoder knows c

A  and already 

has nN
GY

⊗−
2

1
0 , it  simply extracts c

A

nN
GZ )( 2

1
0

⊗−
 as follows: 

c
A

nN
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A

nN
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A
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1
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1
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1
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Once the decoder obtains c
A

nN
GZ )( 2

1
0

⊗−
, it uses it to estimate A

nN
GZ )(

2
1

0
⊗−  using 

Equation 4.3 after setting the output of the channel to a vector of zeros: 

 )|,0()|( 1
0

1
0

)(1
0
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i

iNi
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N uuyWuuW
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Next, the decoder combines the information and frozen bits in one vector nN
GZ

⊗−
2

1
0 . 

Finally, polarization is inversed: 

nnNN
GGZZ

⊗⊗−− = 22
1

0
1

0 )(      4.9 

And this sequence is used to get X  back: 

1
0

1
0

1
0

−−− += NNN
ZYX      4.10 

Frozen and information set construction: as mentioned earlier, we consider the 

correlation channel as being a BSC(p). For a certain value of p, A  and c
A  are 

constructed in an offline training stage as follows: a sequence Z  of length N  is 

generated according to a Ber(p) random variable. Z  is then polarized; 

nNN
GZU

⊗−− = 2
1

0
1

0 . The SC algorithm uses (8) to generate an estimate 
_

iU of the 

polarized bits for 1...0 −= Ni . This is repeated for a large number of times in order to 

construct a joint probability density function (pdf) of iU  and 
_

iU . This pdf is used to 
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compute the mutual information );(
_

ii UUI . Values of i  where the mutual information is 

close to 1 is assigned to A , whereas values of i with mutual information close to 0 is 

assigned to c
A . 

Rate adaptation: In some situations where the encoder is unaware of the correlation 

channel parameter p, it is useful to transmit frozen bits in increments, starting from a 

small number of bits until the decoder signals successful decoding. The worst case would 

be transmitting the whole polarized WZ bit sequence; nN
GX

⊗−
2

1
0 . In this case, all bits 

would be treated as frozen bits. Therefore, to achieve rate adaptation, we treat the N bits 

of nN
GX

⊗−
2

1
0  as frozen bits. Meanwhile, we rank those frozen bits to indicate which 

ones would be transmitted first. To achieve that, we conduct the training process 

described earlier a certain number of times starting with a small value of p, and we 

gradually increase p until it reaches its maximum value (0.5). Note that each training run 

results in different A and c
A . As p gets larger, some indices that were in A in the 

previous training run will move to c
A  in the current training run (as the capacity of the 

channel decreases). Indices that move in earlier training runs (runs with smaller p) are 

considered less reliable, and they are transmitted in earlier increments. This way we are 

able to rank the N bits in terms of their transmission precedence. 

4.3. Experimental Results 

4.3.1. DVC Codec 
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The following is a brief description of the DVC codec that we use in our experiments. 

Frames are processed in pairs. In each pair, the first frame is a Key frame, and the second 

frame is a WZ frame. A key frame Y  is intra-coded and communicated to the decoder. A 

WZ frame X  is transformed using a 4×4 Discrete Cosine Transform (DCT). A uniform 

quantizer of b
M 2=  intervals is used to quantize the DCT coefficients. Quantized 

coefficients are then represented via Gray codes (as opposed to regular binary 

representation). Coefficients of the same frequency are grouped together to form 

frequency bands. Each band is processed separately as follows: First, it is decomposed 

into b bitplanes. Next, Polar codes are used to encode each bitplane as described in 

Section 4.2. The encoder transmits bits incrementally starting with bits that are ranked as 

least reliable. The corresponding bitplane in Y  is used to extract and decode the 

polarized noise sequence. We log the minimum source rate that results in error free 

decoding. To compare with LDPCA, we repeat the same experiments using our DVC 

codec modified to use LDPCA codes. 

4.3.2. Results 

Figure  4.1 demonstrates the performance of the polar and LDPCA codes when 

applied to the Akiyo video sequence with different resolutions. Each point in the figure 

corresponds to a compression ratio and the corresponding Peak Signal to Noise Ratio 

(PSNR). Different points correspond to different DCT quantization levels.  The 

compression ratio is defined as the total number of bytes after compression divided by the 

total number of bytes before compression. We use two different LDPCA codes whose 

performances were reported in [36]. The first one is regular with degree distribution 
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given by λ3=1, where λr is the proportion of variable nodes with degree r.The second is 

irregular with degree distribution (λ2=0.316, λ3=0.415, λ7=0.128 λ8=0.069, λ19=0.02, 

λ21=0.052). Figure  4.1 (a) shows the performance for the 128×128 resolution case (block 

length equals 1024 as each of the 16 DCT coefficient bands is encoded separately). The 

figure shows that generally the three codes are achieving almost the same compression 

performance. Irregular LDPCA slightly outperforms the regular LDPCA and polar codes. 

Figure 1 (b) shows the performance for the 64×64 case (block length is 256). 

Interestingly, at this block length, polar code achieves more compression compared to 

LDPCA codes. As the resolution goes down to 32×32 (Figure 1 (c) where block 

length=64), not only polar codes outperform both LDPCA codes, but also the distance 

between the performance curves become longer. This suggests that as the block length 

goes down, polar codes demonstrate more compression compared to LDPCA codes. To 

support this claim, we repeat our experiment using more video sequences. We use the 

Hall-monitor, Salesman, Foreman, and Carphone video sequences. The results for the 

aforementioned video sequences are shown in are shown in Figure  4.2, Figure  4.3, Figure 

 4.4, and Figure  4.5. By looking at the figures we can notice a trend; for the 128×128 case, 

polar and LDPCA codes behave closely. As the resolution goes down, the performance 

gap becomes larger where polar codes achieve more compression. This trend can be seen 

clearly in Figure  4.6 that averages the results over the different video sequences.   
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Figure  4.1: Performance of DVC using polar, regular and irregular LDPCA codes applied 

on (a) 128×128 Akiyo, (b) 64×64 Akiyo, and (c) 32×32 Akyio. 
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Figure  4.2: Performance of DVC using polar, regular and irregular LDPCA codes applied 

on (a) 128×128 Hall-monitor, (b) 64×64 Hall-monitor, and (c) 32×32 Hall-monitor. 
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Figure  4.3: Performance of DVC using polar, regular and irregular LDPCA codes applied 

on (a) 128×128 Salesman, (b) 64×64 Salesman, and (c) 32×32 Salesman. 
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Figure  4.4: Performance of DVC using polar, regular and irregular LDPCA codes applied 

on (a) 128×128 Foreman, (b) 64×64 Foreman, and (c) 32×32 Foreman. 
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Figure  4.5: Performance of DVC using polar, regular and irregular LDPCA codes applied 

on (a) 128×128 Carphone, (b) 64×64 Carphone, and (c) 32×32 Carphone. 
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Figure  4.6: Performance averaged over the five video sequences with (a) 128×128, (b) 

64×64 and (c) 32×32 resolutions.  
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4.4. Discussion 

In this chapter we build a rate-adaptive DVC codec that incorporates polar and 

LDPCA codes. We apply our codec on a set of video sequences with different (low) 

resolutions. We show that Polar and LDPCA codes exhibit almost similar compression 

performance for DVC coding with large blocks. We also show that polar codes offer a 

clear advantage when coding smaller size image blocks. 
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Chapter 5 

5. HopCaster: A Network Coding-Based Hop-by-

Hop Reliable Multicast Protocol 

Intra-flow Network Coding (NC) is an emerging technique that has potential in 

significantly improving the performance of multicasting over Wireless Mesh Networks 

(WMNs). It achieves that by allowing intermediate forwarding nodes (FNs) to utilize 

overhearing and coding to reduce the total number of transmissions required for end-to-

end data delivery. The existing intra-flow NC-based multicast protocols are all based on 

the conventional end-to-end transport principle. A major downside for such principal is 

that intermediate FNs are not able to accurately determine the minimum number of coded 

packets they should transmit in order to ensure successful data delivery to the 

destinations, and hence redundant packets can be injected into the network, leading to 

significant performance degradation. Furthermore, existing protocols do not accomplish 

fairness between multicast receivers with good network connectivity and those with bad 

connectivity (heterogeneous receivers). 
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We argue that a receiver-driven hop-by-hop transport approach demonstrates a higher 

performance compared to the end-to-end scheme when incorporated in intra-flow NC-

based multicasting. The hop-by-hop transport approach allows exploiting not only 

computation power (in performing network coding) but also in-network storage (in doing 

hop-by-hop caching) at the intermediate FNs to achieve performance gain. In this chapter 

we propose HopCaster, a novel protocol that incorporates intra-flow NC with hop-by-hop 

transport to achieve high-throughput reliable multicasting and to solve receiver 

heterogeneity issues. It completely eliminates the need for estimating the number of 

coded packets to be transmitted by a FN. It also simplifies multicast management and 

congestion control. Moreover, HopCaster employs a cross-layer rate adaptation 

mechanism that optimizes the multicast data rate in hop-by-hop transport by exploiting 

the receiver population changes over time. We compare the hop-by-hop and end-to-end 

transport approaches. Our evaluations show that, compared to Pacifier, a state-of-the-art 

end-to-end intra-flow NC-based multicasting protocol, HopCaster achieves up to 29% 

throughput improvement. 

5.1. Introduction 

Reliable multicast applications such as, file sharing, data casting, software upgrade, 

etc. are becoming increasingly common. These applications not only have a strict 

reliability requirement of 100% packet delivery ratio (since any loss causes quality 

degradation) but also require high throughput (as fast download is always desirable from 

a user standpoint). Achieving (1) reliability and (2) high-throughput in multicasting 

applications over multi-hop wireless mesh networks (WMNs) faces many challenges. 
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One is imposed by the lossy and time-varying nature of wireless transmission 

environments, which necessitates employing adaptive mechanisms to ensure reliability 

and high throughput. Another main challenge, which is unique to multicasting, is the 

bandwidth heterogeneity amongst multicast receivers. The receivers with poor 

connectivity and low-throughput paths to the source may greatly degrade the 

performance of receivers with good connectivity conditions. 

Traditional multicasting protocols that were devised to achieve reliability and high-

throughput are client-server based where intermediate routers or forwarding nodes (FNs) 

simply duplicate and forward packets. Many of these protocols employ end-to-end 

forward error correction (FEC), automatic repeat request (ARQ) or hybrid FEC-ARQ 

techniques to achieve reliability in wireless networks [49] [50] [51] [52] [53]. In many 

cases the performance is limited by the multicast destination receivers with the worst path 

to the source. 

Network coding (NC) is emerging as an innovative technique to improve reliability 

and throughput in WMNs. NC takes advantage of the broadcast nature of the wireless 

medium by allowing intermediate FNs to encode received and overheard data packets 

(instead of simply duplicate and forward packets) [4] [6] [54] [55] [56] [57] [58] [59]. 

NC can be classified as (1) inter-flow NC and (2) intra-flow NC. With inter-flow NC, an 

intermediate FN can encode/forward data packets belonging to different flows. A receiver 

decodes the packets to obtain the flow of data targeted to it using its knowledge of 

another flow. However in order to obtain inter-flow coding opportunities, the encoded 

flows need to pass through a common FN with certain network topologies, for example, 

“Alice-Bob structure” or X-structure” [55] [56] [59]. Furthermore, inter-flow NC requires 
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that the sending FN knows what data packets have been buffered or overheard by each of 

the intended receivers in order to determine how to encode the packets across the flows. 

This thereby leads to increased control overhead. 

More recently, intra-flow NC based on random linear block codes [6] [54] has 

attracted research attention due to its simplicity and efficiency. In intra-flow NC, a FN 

generates and forwards random linear combinations of received (and overheard) packets 

belonging to a flow over a certain Galois field. The random mixing at each FN ensures 

that if a group of FNs heard the same packet transmission, the coded packets that they 

generate and forward are, with high probability, linearly independent. This reduces 

duplicate packet transmissions over the shared wireless medium making opportunistic 

overhearing and forwarding more effective in WMNs [57]. A node can receive, in 

addition to coded packets transmitted by its direct parent node, coded packets of the same 

flow transmitted by other neighbors, achieving significant performance gains. Compared 

to inter-flow NC, intra-flow NC has the advantages of low signaling overhead and ease of 

implementation with no topological requirements.. 

The use of intra-flow NC introduces new challenges in designing a practical 

multicasting protocol. (1) First, when a FN receives a coded packet, it has to generate 

(and then forward) a new coded packet by performing random mixing on the previously 

received and cached packets and the most recently received one. To combat the lossy 

nature of wireless channels, for one received packet, the coding and forwarding has to be 

repeated multiple time (each time with different random mixing coefficients) in order to 

ensure that at least one of the coded packets makes its way closer to the destination (the 

others could be lost due to lossy channels). The first challenge is to decide how many 
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coded packets a FN should generate and send in response to receiving one coded packet. 

(2) Second, how should the bandwidth heterogeneity of channels from the source to 

different destinations be handled? (3) Third, at each hop, we have an upstream node that 

is sending data, and a number of downstream nodes receiving the data. The population of 

the downstream nodes changes over time in the sense that downstream nodes with good 

connectivity to its upstream sender or with more overhearing opportunities will complete 

receiving data (a data file for example) faster than their poorly connected counterparts. 

Thus, the downstream node population decreases in this case (since some nodes are not 

interested in the data anymore). One challenge is to enable an upstream sender to adapt 

its transmission data rate taking into consideration the current downstream node 

population. 

Practical design that employs intra-flow NC for reliable multicasting in WMNs has 

received relatively little attention. The state-of-the-art of practical intra-flow NC-based 

multicast protocols such as MORE [57] and Pacifier [58] all employ the conventional 

end-to-end transport approach in which the source keeps on sending coded packets of a 

data batch. Intermediate FNs encode overheard packets and then forward the coded 

packets toward the multicast destination receivers. The destinations send end-to-end 

acknowledgements (ACKs) after they collect enough coded packets to decode the 

original data batch (this is similar to the TCP end-to-end ACK strategy in unicast). There 

is no cooperation among intermediate FNs. The number of coded packets that a FN 

transmits upon receiving a packet from its upstream node, so called transmission credit 

(TC), is determined using heuristics based on measurements of the expected packet loss 

rates to the destinations. This approach suffers from several fundamental problems. 
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1. FNs may transmit coded packets much more than necessary, significantly wasting 

network resources and degrading the performance since it is extremely difficult to 

obtain an accurate estimation for the value of TC for each FN in a dynamic wireless 

environment. 

2. While an end-to-end ACK is being propagated from a multicast receiver back to the 

source, the source will keep on transmitting coded packets that belong to an already 

delivered data batch (it stops upon receiving the ACK). These redundant packets will 

trigger sending yet more coded packets by the FNs, leading to bandwidth waste and 

more interference. This becomes even worse if the end-to-end ACK gets delayed in 

the cases of congestion, or lost in the situations of bad link qualities. 

3. The end-to-end approach used in the existing designs cannot completely solve the 

unfairness issue related to heterogeneous receivers. 

4. The existing end-to-end multicast protocols do not adapt the data rate at each hop to 

account for varying receiver population and channel conditions. Selecting of a robust 

low data rate to broadcast coded packets to downstream receivers does not necessarily 

lead to higher multicast throughput. 

In this chapter, we argue that a receiver-driven hop-by-hop transport approach works 

better with intra-flow NC. Multiple receivers interested in a content file send requests 

towards the content source and a multicast tree is built. The content file is divided into 

batches and originally distributed from the source. An intermediate router or FN on the 

tree overhears coded packets sent by any neighbor (parent, grandparent, sibling, and even 

child nodes) and cache them in a buffer. Once collecting enough packets to decode a data 

batch, the FN becomes a new source for the cached batch. It informs its parent of 
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successful reception of the batch and requests the next batch. The acknowledgement and 

request messages are also used by FNs for flow control. A parent node would stop 

transmitting from a data batch after receiving acknowledges from all of its immediate 

children. This approach allows exploiting not only computing power (network coding) 

but also in-network storage (caching) at intermediate FNs, moving data as close as 

possible to the content requesters, i.e. the destinations. 

Based on the above basic idea, we propose HopCaster, an intra-flow NC-based hop-

by-hop reliable multicast protocol to achieve high-throughput over WMNs and solve the 

network heterogeneity issue of multicast receivers. In contrast to the existing end-to-end 

intra-flow NC-based multicast protocols, HopCaster completely eliminates the needs for 

estimating the transmission credit at FNs as well. It also simplifies multicast management 

and congestion control. Moreover, HopCaster employs a novel cross-layer rate adaptation 

mechanism to optimize the PHY data rate selection considering the receiver population 

changes at different stages of multicasting. We compare the hop-by-hop and end-to-end 

transport approaches. Our evaluations for static and dynamic scenarios show that, 

compared to Pacifier, a state-of-the-art intra-flow NC-based multicast protocol, 

HopCaster achieves up to 29% throughput improvement. 

The remainder of this chapter is organized as follows. Related work is reviewed in 

Section 2. In Section 3, we present the HopCaster design, we also discuss the intuition 

underlying our design approach and the synergy between hop-by-hop transport and intra-

flow NC. In Section 4, we present simulation results to compare between HopCaster with 

Pacifier, a state-of-the-art intra-flow NC-based multicast protocol that adopts an end-to-

end transport scheme. The chapter is concluded in Section 5. 
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5.2. Related Work 

The majority of work addressing reliability in multicast protocols over wireless 

networks is based on the traditional FEC, ARQ or hybrid ARQ-FEC techniques [49] [50] 

[51] [52] [53] where intermediate nodes or routers simply duplicate and forward packets. 

There are only a few practical designs and performance studies for intra-flow NC-based 

multicast protocols. MORE [57] is the first intra-flow NC-based protocol for reliable 

unicast and multicast over WMNs. In MORE, any node that overhears a transmission and 

that is closer to the destination than the sender may participate in forwarding the packet 

to the destination. This transmission participation scheme results in forming a forwarding 

belt instead of path to increase network robustness. A FN encodes packets with random 

network coding before forwarding them. However in MORE, multiple FNs forward the 

coded packets without any coordination. Belt forwarding can be inefficient, especially in 

multicasting, as multiple overlapped belts are formed, and the number of nodes 

participating in packet forwarding becomes more than necessary. Further, MORE lacks 

source rate control which can cause congestion. 

Pacifier [58] is a state-of-the-art reliable multicast protocol for WMNs. It improves 

upon MORE by using a multicast tree instead of forwarding belts. Only nodes on the 

multicast tree perform random network coding on incoming packets. They also forward 

the coded packets along the tree. Pacifier also proposes a mechanism to limit the 

transmission rate of the source to prevent congestion using backpressure. It has been 

shown that Pacifier is able to achieve performance improvements over MORE. 
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In the designs of both MORE and Pacifier, the source computes a transmission credit 

(TC) for each FN through periodical packet loss rate measurements for the links in the 

network. The TC values are carried in the coded packets. When a FN receives a packet 

from its parent node, it uses the TC field to determine whether and how many coded 

packets to transmit to its children nodes. The successful data delivery is verified through 

end-to-end acknowledgements. The source continues broadcasting coded packets until it 

receives end-to-end ACKs from all destination receivers. Reacting to end-to-end ACKs in 

addition to using TCs computed at the source cause many problems, such as inaccurate 

estimation of TCs and inability to handle heterogeneous receivers. 

Peer-to-peer (P2P) overlay networks have been widely studied [60] [61]. We consider 

P2P networks related to our work from an application perspective (it also aims to achieve 

reliable and high throughput data delivery). Further, in P2P networks, participants make a 

portion of their resources, such as processing power and storage available to other 

network participants (this is similar to FNs in our protocol where they share their caching 

and processing capabilities). However, in P2P systems, peers at the edge of networks 

form an application layer overlay with little knowledge about the underlying physical 

network topology. Therefore, it is difficult, if not impossible, to achieve efficient network 

routing. It is also difficult to take advantage of the characteristics of the underlying 

physical network (e.g., to take advantage of overhearing if the underlying physical 

network is a wireless network). Furthermore, most of P2P applications, such as 

BitTorrent, employ TCP for reliable transport between peers. TCP has well-known 

problems in wireless networks. 
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Research on the future Internet architecture has started recently [62] [63]. A cache-

and-forward scheme has been proposed to provide unified network transport services for 

the future Internet [64]. However, their work mainly focuses on architectural designs and 

unicasting, with no NC in the picture. Therefore, our proposed protocol fits well in the 

cache-and-forward future architecture (due to its hop-by-hop nature) to achieve reliable 

and high throughput multicast applications over WMNs. 

To the best of our knowledge, HopCaster is the first practical protocol that integrates 

NC and receiver-driven hop-to-hop transport with the optimization of link layer 

transmission and network layer routing for efficient reliable multicasting. 

5.3. HopCaster Design 

The design of HopCaster addresses the weaknesses suffered by the intra-flow NC-

based multicasting protocols that are based on the end-to-end transport principle, such as 

Pacifier and MORE. In this section, we describe the design of HopCaster, and we 

compare it with that of the conventional end-to-end approach. 

5.3.1. Hop-by-Hop Reliable Multicast with Network Coding 

HopCaster uses a tree-based hop-by-hop opportunistic multicasting with intra-flow 

NC. Building the tree is initiated by requests sent from the content receivers (also called 

destinations) to the content source, connected by a set of intermediate wireless routers 

(also called forwarding nodes (FNs)). We’ll describe in detail the procedure of 

establishing and maintaining the hop-by-hop transport tree later in this section. As shown 
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in Figure  5.1, the solid lines represent the parent-child links on the multicast tree, and the 

dashed lines indicate that a node can overhear packets from other neighbors, such as 

grandparents, siblings, and child nodes. We see that there can be many overhearing 

opportunities for a node on the multicast tree. 

 

Figure  5.1: Overhearing along a multicast tree in a WMN. 

 

A large content file can be divided into multiple batches at the source before 

distribution to reduce packet header overhead and decoding delay at the receiver. A batch 

is further divided and encapsulated into k packets. Random linear block codes [54] are 

applied on the packets belonging to a batch to generate coded packets. A coded packet 

here is a random linear combination of the k packets with coefficients chosen from a 

Galois field of size 2
8
. The source broadcasts the coded packets when the MAC allows 

transmission. Each transmitted packet is also augmented with its batch ID and the vector 

of the random coefficients used to generate the packet. 

When a FN on the multicast tree receives or overhears a coded packet from any of its 

neighbors, it checks whether the overheard packet is innovative, i.e., whether it is linearly 

independent from the packets obtained in previous transmissions (Gaussian elimination is 
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used for the independence check). An intermediate FN on the multicast tree caches all the 

innovative packets of the batch, and also performs the random linear combinations of 

them and sends the re-encoded packets. 

Different from Pacifier and MORE, data transport in HopCaster operates in a 

receiver-driven hop-by-hop manner; after a FN successfully receives or overhears (from 

all possible neighbors) a number of innovative coded packets sufficient to decode a data 

batch (i.e., receives k linearly independent packets with the same batch ID), it performs 

the following operations: 

• It sends an ACK to its parent. It indicates in the ACK message if it wants to request 

for next batch. A FN uses the ACK-request message for controlling the data flow 

(more discussion about flow and congestion control is in Section 3.3). 

• The FN becomes a new source for the batch responsible for delivering this batch to its 

children. Note that if a batch has been requested by its children, a FN can start 

broadcasting random linear combinations of packets belonging to the batch without 

waiting to reach the full rank (i.e., k innovative packets) so as to keep the pipeline 

going and reduce delay. Random network coding removes transmission of duplicate 

copies of a packet over the wireless medium, and the probability that a node receive 

non-innovative packets from its neighbors exponentially decreases with the code 

length [6]. 

The parent starts sending the next batch as soon as it receives the first 

acknowledgement for the current batch and a request for the next batch from one of its 

children. The parent node sends the batches in a round robin fashion; i.e., after the last 

batch is acknowledged by a child, it goes back to send from the batches that haven’t been 



79 

 

acknowledged by all its children yet. This continues until all batches are acknowledged 

by all children.  With this scheduling scheme, the children with good link quality can 

finish receiving the whole file faster without waiting for its poorly connected 

counterparts. Children with poor connection would be served in later rounds. 

A FN keeps the received batches of data in its cache (buffer memory or storage) as 

long as it is still in the multicast group and has the capacity available in its buffer. FNs 

use the Least Recently Used (LRU) policy for its buffer replacement. The cached copies 

may be used during network topology changes, or by receivers newly joining the 

multicast group as described below. 

The source and FNs on the multicast tree maintain a soft-state batch request and ACK 

table (BRAT). This table keeps track of batches with pending requests (IDs of batches 

that were requested but not served yet). It also keeps track of the acknowledgement state 

of batches (for each batch ID, the IDs of child nodes that acknowledged the batch). Every 

parent node knows the list of its children through multicast tree construction. 

HopCaster uses a subscribe/join scheme to build the multicast tree and to populate 

and refresh the (BRAT). The tree roots at the source and consists of all the shortest paths 

from the source to the destination receivers. It is assumed that a unicast routing protocol 

such as OLSR [65] or HWMP [66] is used to construct unicast paths in the network 

employing the expected transmission count (ETX) metric [67]. Our HopCaster protocol 

can be essentially implemented as a shim layer on top of layer 3. A destination receiver 

interested in the content file sends a request message to its parent on the path toward the 

source. The request message contains a batch ACK field (BAF), which is a bitmap 

indicating which batches have been successfully received by the sending node. The 
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request message is propagated and processed hop-by-hop along the path toward the 

source. If the parent node has cached the batches needed by the sender of the request 

message (the corresponding bits in the BAF bitmap has not been set yet), the needed 

batches get served from this parent node to save bandwidth and reduce delay. The parent 

node updates the BAF field in the request message by setting the bit corresponding to the 

batch that it would serve. It then sends the request message to its parent. If at some point 

all the BAF bits get set, then the request message is not forward upstream anymore. 

Otherwise, the request message propagates until it gets to the root of the tree. 

In HopCaster, BRAT entries regarding received request messages are maintained as a 

soft state that is discarded after a timeout. A destination receiver is responsible for 

sending its request periodically toward the source in order to refresh the state in the 

BRAT and to indicate that its request is still valid. For bandwidth efficiency, request 

messages can be combined with batch ACK messages if possible. 

When changes in network topology are detected or when links break, the path 

between the destination and the source is reconstructed by the underlying unicast routing 

protocol. To speed up the recovery process, the affected nodes are informed of the events 

of link breaks and routing changes. If a node changes its parent node towards the source, 

the node sends a request message to its new parent node on the reconstructed path toward 

the source. The request message contains the BAF field to indicate its progress in content 

delivery, i.e., which batches it has successfully received. If a node loses a child node due 

to routing changes, it removes the state for that child. Note that in HopCaster, a new 

receiver can be efficiently served by the closest node that has the requested content 

locally cached. 
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5.3.2. Multicast Rate Adaptation 

The hop-by-hop nature of HopCaster, in which a FN keeps track of its children and 

serves as a new source for locally cached content, motivates a cross-layer rate adaptation 

algorithm to assist HopCaster in determining optimal transmission rate at the PHY layer. 

Existing radios such as IEEE 802.11 [68] support multi-rate capability at physical layer 

by using different modulation and channel coding (MCS) modes. However there is no 

link-layer feedback for multicast packets in 802.11.  While most rate adaptation 

mechanisms try to maximize the PHY rate for unicast, a low basic rate is simply selected 

for multicast, which is certainly not optimized. 

Along the multicast tree, the source node or a FN have multiple children. The 

children with good channel conditions and more overhearing opportunities will finish 

receiving a data batch earlier. Therefore, for each parent node, the population of children 

nodes will change while sending from a batch. In HopCaster, a FN on the multicast tree 

periodically reports its link conditions to its parent. The reporting messages can be 

combined with the batch request and ACK messages if possible to reduce the overhead. 

The parent then knows which children still need the coded packets for a particular batch 

(based on the BRAT) as well as their channel conditions. It selects a PHY rate for a 

packet transmission to maximize the throughput at its intended children. 

Given a radio technology and PHY mode, the packet loss probability can be estimated 

from channel SNR γ. Just as an example, DPSK, QPSK and CCK modulations with 

different channel coding schemes are used in IEEE 802.11b PHY modes  m = 1, 2,  3 and 

4 to get transmission rates of 1 Mbps, 2 Mbps, 5.5 Mbps, and 11 Mbps, respectively.  The 

packet loss probability can be calculated by [69]: 
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where ),24(1 γeP is the error probability of the physical layer convergence procedure 

(PLCP) sublayer header that is 24 bytes long and is always transmitted with PHY mode 

1. ),( γLP
m

e  is the error probability for the L-byte data payload and MAC header 

transmitted with PHY mode m that can be expressed as 

Lm
b

m
e PLP

8))(1(1),( γγ −−=
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where )(γm
bP  is the bit error rate (BER) that corresponds to SNR γ  under PHY 

mode m. 

From Equation 5.1, it is clear that the packet error probability depends on the PHY 

mode, the packet size, and the channel SNR γ . Note that this is true for other radios such 

as 802.11a/g/n even they use more complex PHY modulation, channel coding, and 

antenna techniques in different PHY modes. In general, a relationship database between 

the packet loss rate and the used PHY mode under different packet sizes and channel 

SNR values can be built through modeling or offline measurements. 

Different multicast receiving nodes have different channel SNR values. Given the 

received channel SNR tγ  for a receiving node t, the ),,( mLP t
t
e γ  can be derived for each 

PHY mode m based on the relationship database. Suppose a multicast transmitter N 

currently has T receiving child nodes, the objective is to find the best PHY mode for the 

multicast transmitter to achieve the overall maximum throughput among all its intended 

receiving nodes. The objective function can be formulated as 

∑
=

−
T

t
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t
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where r(m) is the data rate for the PHY mode m used by the multicast transmitter. 

Each child node on the multicast tree measures its channel SNR for the packets 

received from its parent node and periodically feeds the channel SNR measurements back 

to its parent node. The parent node can then estimate the objective function and select the 

best PHY rate. 

Once the parent node receives an ACK for a batch from one of its children, the PHY 

rate adaptation mechanism is informed of this event, and it readjusts its multicast PHY 

rate to obtain the maximum total throughput based on the link quality of the children that 

have not completed reception of this batch. 

5.3.3. Comparison: Hop-by-Hop vs. End-to-End 

As discussed before, the hop-by-hop transport avoids the need to estimate the value of 

TC that a FN uses to determine how many coded packets it should send. Furthermore, we 

argue that the hop-by-hop transport approach in HopCaster offers several other 

advantages over the end-to-end transport used in Pacifier and MORE. 

• The hop-by-hop transport handles the heterogeneous receivers better. Consider a 

situation where a bottleneck link is close to a destination node. If the end-to-end 

transport protocol is used, the source will keep transmitting the packets until an end-

to-end ACK from the worst receiver is received. Alternatively, hop-by-hop transport 

avoids this deficiency because the FN at the upstream of the bottleneck link will 

cache the data and inform its parent node to stop sending unnecessary packets. The 

data is pushed towards the destinations as close as possible and network bandwidth is 

utilized more efficiently. The performance of multicast is not limited by the path of 
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the worst connected receiver. A lossy and low-capacity wireless link only affects the 

receivers behind it on the multicast tree. 

• The hop-by-hop transport greatly simplifies flow and congestion control. With the 

end-to-end approach, there are points in the network between the source and 

destination where congestion may occur from traffic aggregation. Certain congestion 

control mechanism that dynamically adjusts the source transmission rate to keep the 

aggregate traffic volume below the network congestion level is required in order to 

maintain flow balance, otherwise packet loss would occur. In HopCaster, by contrast, 

all communications are local and flow balance is maintained at each hop through 

request (pull) and ACK messages. A child node sends a request to its parent only if it 

is ready to accept a new batch. There is no need for additional techniques to control 

congestion in the middle of a path. This is not the same as backpressure-based hop-

by-hop flow control [70], where backpressure between adjacent nodes is used for a 

node to adjust its packet forwarding rate of a continuous flow. Note that a FN in 

HopCaster does not have FIFO queues but a LRU memory that decouples the hop-by-

hop control loops, compensates bandwidth fluctuations, and reduces the impact of 

multicast receiver heterogeneity. In case all the data batches in the buffer are in 

current use due to very small storage size, a node can simply delay sending its request 

to the parent node until the buffer space is available. 

• The advantages of hop-by-hop transport are even more pronounced when the network 

becomes congested or nodes are mobile. Even for a single destination, the end-to-end 

connection over a path of n hops would break or deteriorate as soon as any link in the 

path failed or degraded, triggering route repair or route re-discovery mechanisms. The 
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probability of disconnection or degradation on the n hop path would be roughly n 

times that of a single hop. The situation is worsened in multicast since more receivers 

and FNs are involved. Thus, a hop-by-hop transfer is far more reliable and allows 

delivery from intermediate nodes after route repair. 

• Propagation time of a 1-hop ACK is shorter than that of a multi-hop end-to-end ACK. 

Therefore the number of redundant packets injected into the network while a 1-hop 

ACK is on its way back to a parent node is much smaller than that when an end-to-

end ACK is sent to the source node from the destination. Moreover, the 1-hop ACK is 

much less possible to be delayed or lost due to congestion and transmission errors 

than the end-to-end ACK, In HopCaster, transmission of coded packets at a FN is not 

triggered by receiving a packet from its parent, rather than the requests from the 

children. Thus even if the 1-hop ACKs get lost or delayed, a packet originated from a 

parent node will not trigger more transmissions from the child nodes (as the case in 

MORE and Pacifier). 

• The hop-by-hop feedback control allows local optimization along the multicast tree. 

One such optimization proposed by HopCaster is to enable each parent node to adapt 

its radio transmission rate to maximize multicast throughput by exploiting the 

children’s population changes and wireless channel variations. 

5.4. Performance Evaluation 

To evaluate the performance of HopCaster, we use Network Simulator 2 (NS-2) [71], 

a widely used simulator in networking research community, to simulate both HopCaster 

and Pacifier and compare their performance under various settings. We choose Pacifier, 
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not MORE, for performance comparison with HopCaster because it is reported in [58] 

that Pacifier achieves better performance than MORE. 

We performed our evaluation under many different network topologies and parameter 

settings. We report results with the following settings. We have a total of 50 nodes. We 

generate 10 scenarios, each corresponding to a topology by placing 50 nodes randomly in 

a 1000×1000 square meter area. There is one content source node and 9 destination 

receivers requesting for the content file. The source and destinations are chosen randomly 

in each scenario. Note that a node could be selected as a destination and a FN at the same 

time. Further, we simulate a realistic wireless channel with a shadowing propagation 

model [72] and we assume the maximum radio transmission range of 276 meters. In our 

simulations we implemented the radio multi-rate capability. as described later in this 

section. 

In the simulations, the size of the file to be transmitted from the source to the 

multicast destinations is 2.14 MB. The source divides the file into 48 batches, each of 

which is divided into 32 packets with 1460 bytes payload in a packet. To collect the 

packet loss probability values required by Pacifier to compute the TCs, following Pacifier 

implementation [58], we allow the 50 nodes involved in the simulation to periodically 

exchange hello messages. By keeping track of the lost hello messages, the loss 

probability values of all the links in the network are calculated. Next we provide our 

simulation results for the scenarios with static and dynamic multicast trees, and explain 

the gains attained by HopCaster. 

5.4.1. Static Multicast Experiments 
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In those experiments, the multicast tree is established at the beginning of the 

experiment, and no new receivers are joining the tree to request the content file during the 

course of data transmission. The dynamic case will be investigated in the next section. 

Figure  5.2 shows the average throughput of Pacifier and HopCaster in the 10 different 

scenarios, in addition to the overall average throughput over all the scenarios. Here the 

throughput of a destination receiver under one scenario is calculated by dividing the file 

size by the time that the destination receives the whole file. Then averaging the 

throughput values over all destination receivers in a scenario, we obtain the average 

throughput for that scenario. The transmission data rate in those experiments is set to 

2Mbps. 

As shown in Figure  5.2, HopCaster achieves a higher throughput compared to 

Pacifier in all scenarios. The gain ranges from 6% (scenario 3) to 29% (scenario 9), and 

the average is 12%. The higher throughput of HopCaster results from injecting fewer 

intra-flow NC-coded packets into the network, reducing the number of required 

transmissions. This can be further clarified by Figure  5.3. The figure shows the number 

of transmissions by HopCaster and Pacifier in all the scenarios. Each bar in the graph is 

divided into two parts: the bottom part corresponds to the number of coded data packet 

transmissions and the top part corresponds to the number of ACK packet transmissions. 

Note that in HopCaster, the ACKs are hop-by-hop, and in Pacifier the ACKs are end-to-

end. HopCaster results in sending fewer data packets and more ACK packets than 

Pacifier. The hop-by-hop ACK in HopCaster significantly reduces the number of 

redundant data packets injected into the network. Thus, HopCaster has less total number 

of packet transmissions (data and ACK) in all scenarios except scenario 4 (both protocols 



88 

 

have almost the same number of transmissions). In addition, the channel time of sending 

a data packet is much larger than that of an ACK packet because the ACK packet is much 

smaller. Figure  5.4 shows the redundancy in both protocols. Redundancy is computed as 

the total number of bytes in all transmitted packets (data and ACK) divided by the file 

size in bytes. Note that HopCaster results in much less redundancy over all scenarios. 

 

Figure  5.2: Average throughput of HopCaster and Pacifier under 10 different scenarios. 

 

 
Figure  5.3: The number of transmissions (ACK and data packets) of HopCaster and 

Pacifier under 10 different scenarios. 
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Figure  5.4: The number of redundant bytes that are injected into the network by 

HopCaster and Pacifier in 10 different scenarios. 
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scenario, the new receiver and the time of the request will be chosen randomly (the same 

randomly chosen values will be used for both HopCaster and Pacifier in an experiment). 

Figure  5.5 shows that the new receiver’s throughput under HopCaster is much greater 

than that with Pacifier. The reason is that in HopCaster, the new receiver can be 

immediately served from the closest upstream node in the multicast tree, where in 

Pacifier, only the source can serve a new node since the source needs to compute the TCs 

for the FNs to send the coded packets to the newcomer. This demonstrates a desirable 

feature of the hop-by-hop transport approach, where over time, the content will move 

deeper in the multicast tree and closer to the destinations. A new receiver will be served 

by the closest node that has cached the requested content. 

 

Figure  5.5: Average throughput of the new receiver that dynamically joins the multicast 

group with HopCaster and Pacifier in 10 different scenarios. 
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packets to their parent node every 10 seconds. Whenever a parent node is about to 

transmit a packet, it evaluates the optimal data rate according to Equation 5.3 for m=1, 2, 

3, 4 that correspond to data rates of 1 Mbps, 2 Mbps, 5.5 Mbps, and 11 Mbps, 

respectively. Equation 5.3 is evaluated only for children nodes that have not 

acknowledged the current batch. For comparison, Figure  5.6 illustrates the average 

throughput values for the 10 scenarios using the adaptive data rates as well as 2 fixed data 

rates: 2Mbps and 11Mbps.  

 

Figure  5.6: Average throughput of HopCaster and Pacifier under 10 different scenarios 

using 2Mbps, 11Mbps, and adaptive data rates. 
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wireless links to its targeted children. Therefore it is able to dynamically select a data 

transmission rate to maximize the overall throughput across all its targeted children. 

5.5. Discussion 

To design a practical protocol that delivers the benefits of intra-flow NC in improving 

multicast performance over WMNs, many challenges need to be addressed, such as how 

many coded packets a FN should send and how to handle the heterogeneity of multicast 

receivers. In this chapter, we have designed HopCaster, a novel reliable multicast 

protocol that incorporates intra-flow NC with receiver-driven, hop-by-hop transport. 

Compared to the existing intra-flow NC-based multicast protocols that all follows the 

conventional end-to-end transport principle, HopCaster design eliminates the need for 

estimating the number of coded packets each FN should transmit, and simplifies 

multicast management and congestion control. We also proposed a cross-layer rate 

adaptation mechanism that enables HopCaster to optimize PHY rate selection in hop-by-

hop multicast by exploiting the changing receiver population and wireless channel 

variations. Our simulations show that compared to Pacifier, a state-of-the-art intra-flow 

NC-based multicast protocol, HopCaster greatly reduces the number of required 

transmissions over wireless medium to deliver multicast data and achieves up to 29% 

throughput improvement. Furthermore, we showed that the advantages of HopCaster are 

more prominent in the situations that new nodes dynamically request for the contents. 
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Chapter 6 

6. Conclusion and Future Work 

In this chapter we provide a conclusion and outline directions for future work. 

6.1. Conclusion 

In this dissertation we studied the practical aspects that arise when deploying DVC 

over real visual sensors. Further, we proposed and evaluated HopCaster; a scheme that 

employs the cache-and-forward transport strategy to achieve high throughput 

transmission in multicasting over wireless mesh networks while maintaining 100% 

packet delivery ratio. 

In Chapter 1 we provided a brief background about Distributed Source Coding (DSC) 

and Network Coding (NC).  

In Chapter 2 we studied DVC when deployed over real visual sensor. We described 

the design and implementation of a DVC codec that we deployed over the popular 

Micaz/Cyclops and Imote2/IMB400 visual platforms. Further, we reported a summary of 

accurate measurements regarding the distribution of energy consumption over the 



94 

 

different DVC operations. Moreover, we carried out an operational energy-distortion 

analysis for a variety of options available to RDVC on visual sensors. 

In Chapter 3 we presented our approach towards a rate-adaptive DVC solution that 

eliminates the need for feedback messages from the base-station to the visual sensors; 

this solution makes utility of the correlation between the source rate and the conditional 

entropy of the WZ and key frames. 

In Chapter 4 we employed and evaluated the performance of polar codes in DVC. 

Further, we compared the performance of polar codes with the more established and more 

investigated Low Density Parity Check Accumulate (LDPCA) codes in the context of 

DVC. We showed that polar codes offer a clear advantage when coding smaller size 

image blocks. Consequently, polar codes could represent a viable solution for distributed 

sensor networks that capture a low-resolution video signal at each visual sensor node. 

In Chapter 5 we proposed HopCaster, a novel protocol that incorporates intra-flow 

NC with hop-by-hop transport to achieve high-throughput reliable multicast over wireless 

mesh networks. We showed that by adopting the hop-by-hop transport strategy, 

HopCaster avoids many problems incurred by the traditional end-to-end transport 

strategy.  

6.2. Future Work 

The intended future work falls into the following directions: 

• An essential component of traditional video compression standards, such as 

H.264, is motion estimation (ME) that requires intensive computations that are 

mainly related to block-wise motion search. For DVC to compete with standard 
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video compression schemes, there is a need to take advantage of ME at the 

decoder side. As we saw in Section 2.3 (Figure  2.2), there has been attempts to 

utilize ME in the context of DVC, mainly by allowing the encoder to provide the 

decoder with information that assist it in performing ME. This information can 

take the form of hash or cyclic redundancy check (CRC) data. Part of our future 

plan is look deeper into this aspect, and to find ways that assist the decoder to 

perform ME using minimal amount of overhead data. 

• Part of our future plan is to bring NC and DVC together to realize a practical and 

efficient data networking platform that fits in resource constrained networks. 

This is accomplished by integrating NC and DVC so that the two schemes work 

collaboratively. This is important in situations where the collected data 

demonstrates a degree of correlation (DVC proves to be efficient in compressing 

data before transmission), and in the meanwhile the collected data is propagated 

through a wireless network where overhearing is possible (NC is efficient in 

eliminating unnecessary transmissions and hence maintain high throughput). 

• In this dissertation the focus have been on DVC over one camera, i.e., the case 

where DVC aims to compress temporally consecutive frames that are captured by 

one camera. In fact, DVC can utilize the correlation amongst frames captured by 

many cameras, since when the cameras are located in spatial vicinity, the 

captured frames are expected to demonstrate mutual redundancy across the 

different cameras. Part of our future plan is to explore this aspect and to devise 

algorithms that can efficiently quantify the amount of disparity between frames 
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captured across multiple cameras and utilize the correlation to achieve maximum 

compression. 

• We showed in chapter 4 that polar codes offer a clear advantage when coding 

smaller size image blocks. Our results were in terms of compression 

performance. Although this result encourages the use of polar codes, it needs 

more evidence. As we saw in Chapter 3, a more conclusive measure would be in 

terms of the overall power consumption that takes into account savings in 

transmission energy in addition to computational energy. As we mentioned 

earlier, although polar codes have low encoding complexity, they are more 

computational intensive compared with LDPC codes (and O(N log N) for polar 

codes vs. O(N) for LDPC codes). Part of our future plan is to investigate the 

advantage of using polar codes in terms of the overall power consumption 

(computation plus transmission). 

• Results in Chapter 4 show that polar codes offer a clear advantage when coding 

smaller size image blocks compared to LDPCA codes. The results in Chapter 4 

were attained when using the successive cancellation (SC) algorithm to decode 

polar codes. It is reported in the literature that the belief propagation (BP) 

algorithm can be used to decode polar codes, and it achieves higher performance 

compared to SC. Part of our future plan is to incorporate BP in our DVC codec 

and compare it with LDPCA. 
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7. APPENDIX A: LDPCA Codes 

 

(a) (b) 

(c) 
 

(d) 

Figure A. 7.1: LDPCA code with different rates. 

 

Figure A. 7.1 demonstrates the idea of LDPCA codes. We have an 8×8 parity check 

matrix that is represented by the Tanner graph [3] in Figure A. 7.1 (a). When this graph is 

used to compress a WZ bitstream of 8 bits, a syndrome of 8 bits will be generated. Note 

that no compression is achieved in this case. LDPCA [36] suggests achieving different 

levels of compression by accumulating (summation modulo 2; equivalent to binary XOR) 

the syndrome bits: 

11 sa =  iii saa += −1 , where i = 2 to n 

The accumulation process is shown in Figure A. 7.1 (b). Compression is achieved by 

transmitting only a subset of the accumulated syndrome bits. For example, if we transmit 

s1+s2+s3+s4 s5+s6+s7+s8 s1+s2 s3+s4 s5+s6 s7+s8 

a1 a2 a3 a4 a5 a6 a7 a8 
s1 s2 s3 s4 s5 s6 s7 s8 
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a2, a4, a6, a8, then a compression ratio of 1/2 is achieved. At the decoder, four syndrome 

bits are generated as follows: 

221 ass =+  6465 aass +=+  

4243 aass +=+  8687 aass +=+  

The four syndrome bits are used for decoding over a new Tanner graph. This graph 

(Figure A. 7.1 (c)) results from merging each pair of consecutive check nodes in the 

original Tanner graph. To achieve a compression ratio of 1/4, only a4 and a8 are 

transmitted. A new Tanner graph (Figure A. 7.1 (d)) is constructed by merging each set of 

consecutive 4 check nodes in the original graph. Further, two syndrome bits are 

generated:  

44321 assss =+++  848765 aassss +=+++  
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