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Section 1. Introduction

Commodity prices are highly volatile, particularly compared to prices of

manufactured consumer goods (Newbery and Stiglitz 1981). This high volatility is a

result of both seasonal changes and daily supply and demand shocks. When important

information about supply and demand conditions arrives, significant price changes may

occur. These price movements generate price uncertainty, which can pose major

problems to policy makers and industry participants, particularly in countries where

export earnings and GDP depend heavily on sales of primary commodities.

In order to reduce the likelihood of unfavorable outcomes, agricultural producers

use various strategies to manage price risks. One strategy is to use forward pricing

instruments such as forward contracts, futures and options to hedge the risk in selling or

buying the physical commodity. Futures and options markets provide important hedging

instruments for many of the major commodities in the United States including com,

soybean, wheat, hogs, cattle, etc. These contracts offer speculative instruments to

investors and additional pricing strategies to agricultural producers and agribusinesses.

A good estimate of the distribution of commodity prices is important for several

reasons. First, efficient pricing of derivatives assets such as commodity options and the

effective use of these derivatives requires a good estimate of the underlying commodity

price distributions. Second, policy makers need to be able to observe market reactions to

their policies or to exogenous shocks. Third, knowledge of the perceived commodity

price distribution could also be of value to the private sector. In managing risk in physical

, commodity trading, investors could make decisions based on the market perception of

commodity price risk. Corporations could make hedging decisions based on the



uncertainty perceived by the market. Therefore, a lot of effort has been put into

forecasting the distribution of commodity prices. However, forecasting commodity price

distributions is extremely difficult due to two important features displayed by most

commodity prices. First, they often displayinon-stationarity. Second, there are periods

when price jumps abruptly to very high levels (or falls to very low levels) relative to their

long run average. These two features of commodity price series make forecasting the

distribution of commodity price extremely difficult.

Traditional price forecasting approaches use historical data. One approach is to

develop market structure models of commodity prices according to economic theory and

supply demand conditions. Much of this research relies on a standard set of economic

methods. Forecasts can be generated from either a single equation or from the

unrestricted or restricted reduced-form models. Streeter and Tomek (1992) found that the

variance of futures price changes depends on a variety of factors, including time-to-

maturity, seasonality, economic conditions and market structure. Structural models have

.the potential to provide useful information in explaining commodity price behavior.

However, one difficulty in generating forecasts from structural models is the timing of

when information is known. Variables whose value will not be known at the time that

actual forecasts are made cannot be incorporated into the model. If there is such a

variable in the model, then its value must be forecasted independently and, hence, treated

asiexogenous in the model.

Traditional approaches also include time series models. These models have been

successfully applied to capture the time-varying volatility of commodity prices, such as

GARCH (Myers and Hanson, 1993), time-independent mixture-of-normals distribution



(Kim and Kon, 1994) and exponentially weighted moving average (EWMA) models

(Venkateswanan and Neenakshi, 1993). However, all these methods only involve

historical price data and don’t include all available market information. In commodity

price time series even when stochastic volatility is explicitly modeled, as in a GARCH

framework, parameters are often updated quite slowly even when major regime changes

have occurred.

A well-known procedure that is different from the traditional historical data

approach incorporates available market information into forecasts of commodity price

distributions. This method derives the distribution imbedded in the price of options

written on commodity futures prices traded on an exchange. An option is a contract

which permits, but does not require, the holder to buy (sell) the underlying asset at a

predetermined strike price on a given expiration date.1 Because the option price itself is

observable, and'because the option price is a function of the future price distribution,

then, given a theoretical model, the market prices of options can be used to derive the

market’s expectation of the future price distribution. This method is referred as a

“market-based” forecast because it is based entirely on the expectation of participants in

the option market. Black-Scholes (1973) option pricing formula has been widely used to

back out the distribution estimate implied by the model, given market determined option

premia. In commodity markets, Black’s extension of the Black-Scholes model to price

options written on futures contracts has been widely used to derive distributions of the

underlying commodity prices.

 

l A call option gives the holder the right to buy the underlying asset by a certain date for a certain price. A

put option gives the holder the right to sell the underlying asset by a certain date for a certain price.



Compared with using historical data, Black’s formula has several advantages.

First, this method incorporates market information. The implied distribution reflects the

expectation of market participants about the future price distribution using all information

available on' the day the option is traded. Second, this approach has the advantages of

simplicity and tractability. In Black’s model, all information required to implement the

option pricing formulas is directly observable except for the volatility of the underlying

asset price.

Even though Black’s model has been widely accepted, this approach is

inconsistent in the following sense. In order to compute the current implied volatility

from the Black model, the volatility is assumed deterministic over time. But resulting

implied estimates, together with the historical time series data, suggest that volatilities are

in fact time varying and stochastic. Thus the purpose of this research is to develop and

apply an alternative method that will impose fewer restrictions than Black’s model.

The option pricing model derived in this research assumes that futures price

changes follow a mixture of lognormal distributions (MLN). This method imposes a

flexible distributional assumption which is capable of capturing the fat-tailed, peaked,

and skewed characteristics of the underlying asset price distribution. This general class of

densities is shown by Ritchey (1986) to be descriptive of the majority of common stock

returns. Furthermore, the density is mathematically tractable as well as economically

plausible. In the context of risk neutral valuationz, this model provides an exact solution.

 

2 Note that the probability derived from option prices will be the risk-neutral probabilities, because

contingent claims are priced accordingly to the risk-neutral distribution rather than the actual distribution.

These two distributions will be equal if commodity price risk is not priced. For the remainder of this paper,

the term probability, CDF, PDF, and the expected value will refer to these measures under the risk-neutral

distribution.



This paper develops a method to estimate the distribution of futures price

movements from traded European options using a flexible mixture of lognormals

distributional assumption. More specifically, the objectives are: 1) develop an alternative

method for pricing commodity options when excess skewness and fat-tailed distributions

in the underlying futures price can be modeled as a mixture of two lognormal processes.

2) apply this method to elicit implied distributions from corn, soybean, and wheat futures

option prices and test how well this forecasting model predicts distribution. 3) evaluate

the performance and forecasting ability of this alternative method.

The rest of this paper is organized as follows: Section 2 is literature review.

Section 3 describes a mixture of lognormals method for estimating an asset’s PDF from

European option prices. Section 4 discusses the application of the method to the corn,

soybean, and wheat futures market, and compares the estimated distribution with those

derived from Black’s model. Section 5 concludes.



Section 2: Literature Review

In their path-breaking paper, Black and Scholes succeeded in solving a

differential equation to obtain exact formulas for pricing of European call and put

options. Based on this option pricing formula for non—dividend paying stock, Black

derived the option pricing formula for a commodity futures option3. In recent years, the

Black-Scholes option valuation formula has achieved wide acceptance by both

theoreticians and market practitioners. The distribution underlying the formula is that the

asset price follows geometric Brownian motion with constant volatility. Of the five

variables", which are necessary to specify the model and determine the equilibrium

market premium, all are directly observable except volatility (the standard derivation of

return from the underlying assets), which can be estimated using historical data or other

approaches. 1

Therefore, simultaneous observation of option prices and the price of the

underlying asset can be used to estimate volatility that is expected over the remaining life

of the option. A large amount of empirical research has been done to use market

determined option premia to back out the distribution estimate implied by the option

pricing model. Option prices have been used to describe the distribution of stock returns

(Ait-Sahalia and Lo 1996, Jackwerth and Rubinstein 1996), commodity prices (Turvey

 

3 Futures price F of commodity can be related to its spot prices by an expression of the form F=Sea’T‘”,

where T is maturity date, I is current date and. In the case of financial asset, or is the risk-free rate of interest

less the yield on the asset. In the case of commodity, or is the risk-free rate of interest plus the storage costs

per dollar per unit time less the convenience yield. It is shown in Black (1976) that a futures price can be

treated in the same way as a security paying a continuous dividend yield at risk free interest rate r. Thus,

the expected growth rate in a futures price in a risk-neutral world would be zero. The expected gain to the

holder of a futures contract in a risk-neutral world must be zero.

4 The five variables in Black-Scholes model are strike price, current future price, time to maturity, risk-free

interest rate and volatility of the underlying asset.



1990, Hauser and Neff 1985), oil prices (Melick and Thomas 1997), exchange rate

(Campa, Chang, and Reinder 1997; Malz 1996), and interest rates (Abken 1995,

McCauley and Mclick 1996). These studies find that the variances implied from market

option premium and the Black-Scholes model (or extensions of the Black-Scholes model

in different markets) are often better predictors of variances of underlying assets than

those obtained from historical data.

Other studies on the information content of implied volatilities from different

underlying assets, including commodity prices, yield disappointing results. Canina and

Figlewski (1992) find that “implied volatility has virtually no correlation with future

volatility, and it does not incorporate the information contained in recent observed

volatility.” Day and Lewis (1992) find the coefficient of the implied volatility is barely

significant in a volatility forecast equation. In addition, some studies reported that market

prices of options appear to deviate systematically from theoretical prices. These

aberrations are documented in empirical studies by Black (1975), MacBeth and Merville

. (1980), Rubinstein (1985), and Whaley (1982). A main explanation for these observed

discrepancies is that the distribution of the underlying asset’s return is not lognormal, as

assumed by Black-Scholes model. In the case of commodity futures, the available

evidence doesn’t support identical normal distributions for the distribution of commodity

futures price changes. I

Some researchers have tried to overcome this inconsistency by specifying a

pricing model that deals rigorously with the stochastic nature of volatility as in Hull and

White (1987) or Wiggins (1987). StOchastic volatility models require the investor to

forecast the entire joint probability distribution for asset returns including changes in



volatility and'also the market price of volatility risk. These requirements make these

models significantly more difficult to implement than Black—Scholes and other constant-

volatility models. Therefore, some researchers have specified deterministic volatility

functions that allow volatility to vary deterrninistically with the asset price or time. For

example, Rubinstein (1994) and Jackwerth and Rubinstein (1996) used implied

binominal trees to estimate the underlying binomial probability model assumed to be

driving the asset price. However, many of these methods involve complex numerical

simulation and optimization routines which are somewhat costly because they are

difficult to implement and can take a long time to converge. Some researchers have

essentially ignored the evolution of daily volatilities over time and began with an

assumption about the future distribution of the underlying asset to directly recover the

parameters of that distribution (e.g. Fackler and King 1990). Among these future

distributional assumptions, mixtures of lognormal distributions have been applied to

different markets.

The mixture of lognormals distribution density is simply tractable. This method

has a natural economic interpretation — that of multiple alternative regimes. It has been

shown to be appropriate for stock (Ritchey, 1990), crude oil futures (Melick and Tomas

1997), and foreign currency (Leahy and Thomas 1996). In Mclick and Thomas (1997),

for example, three different lognormal distributions for the price of oil correspond to

various outcomes of the 1991 Gulf War. In Mclick and Thomas’s work, they suggested

“this methodology should be useful to researchers who wish to impose a minimum of

structure and are i) examining other markets during unsettled times, or ii) investigating

asset price distribution that are not adequately described by the lognormal distribt’rtion



(e. g. a distribution leptokurtosis).” Although this method has been used to derive implied

volatility for many markets, the performance of this model has not yet been tested for

estimating distributions from commodity futures options. Commodity price series tend to

' exhibit stochastic volatility and non-stationarity features. Furthermore, commodity prices

tend to have significantly “peaked” and “fat-tailed” distributions relative to the Gaussian

density. The mixture of lognormals distribution could give a flexible shape to the

distribution of commodity prices at maturity. The mixture assumption could also

accommodate large price changes and be capable of capturing other observed features of

commodity prices.



Section 3: Option Pricing and Implied Probability Distributions

In this section, an option pricing formula for commodity futures option is

developed to compute the implied mixture of lognormal distribution for the underlying

commodity futures prices. First, Black’s option pricing model for commodity futures is

presented based on the standard lognormal distribution assumption for the underlying

futures prices. Second, a risk-neutral option pricing formula for European options will be

developed for the case when the underlying futures price can be described by a mixture

of two lognormal distributions (MLN). This functional form of the terminal distribution

can easily accommodate a wide variety of shapes for the terminal futures price

distributions, giving it the advantage of flexibility, parsimony, and generality. Finally, the

methods to derive implied distributions of commodity prices from both Black’s model

and mixture of lognormals method will be discussed.

3.1 Black’s Commodity Option Pricing Model

Black’s extension of the Black-Scholes formula can be used to value European

options5 on commodity futures contracts (Black 1976). The assumption behind Black’s

 

5 A “European option’ is one that can be exercised only on the maturity date and not earlier. An “American

option” is one that can be exercised at any time up to the date the option expires. The price that is paid for

the asset when the option is exercised is called the “exercise price” or “strike price.” The last day on which

the option may be exercised is called the “expiration date” or “maturity date.” Most options on

commodities are American options, meaning that they can be exercised at any date on or before maturity or

at any time within a specific period (e.g. one month) before maturity. Thus, an option’s value will depend

on the entire stochastic process for future prices, not just the distribution of future prices at the option’s

expiration. In this paper, a model is developed to value European options, which involve a less costly and

simple solution technique. Some studies have found that the early exercise feature of American options on

futures contracts are generally small and there is little loss in pricing efficiency by ignoring the early

exercise feature (Sgastri and Tandon 1980, Ramaswamy and Sunderesan 1985). Such results suggest that

European pricing models can serve as a useful approximation.

10



model is that the underlying commodity price follows a Geometric Brownian process. It

can be expressed as

d?F=Cdt+0dZ (3.1)

Here F is the futures price; C is the instantaneous expected relative change in the

futures price; 0' is the instantaneous standard deviation; t is time and Z is a Wiener

process. Both 4’ and 0’ are assumed to be constant. Here dZ =£Jdt, where 8 is a

standard .variate. Thus the implicit assumption is that percentage price changes dF/F, over

the interval dt are independently drawn from a stationary normal distribution.

Black’s futures option pricing model is based on an arbitrage relationship between

the risk-free rate of return and the return on a portfolio containing the option. A hedge

portfolio is adjusted continuously such that the resultant portfolio is riskless and has a

return that replicates a risk-free bond. The number of options hedged against the

underlying commodity depends on the strike price, the current price of the underlying

commodity, the time to expiration, the interest rate on a risk-free bond, and the variance

of proportional price changes of the underlying commodity price. When these factors are

known, the proper hedging portfolio is known. Black succeeded in solving the partial

differential equation to obtain exact formulas for the prices of European call and put

options. In the case of futures the solution to the partial differential equation doesn’t

include the expected return. Thus, the differential equation for option pricing does not

involve parameters that are affected by risk preferences. Therefore, Black’s equilibrium

option premium is invariant to risk preference and to expected change in the underlying

commodity price.

11



A simpler approach to obtain the same solution is risk neutral valuation (Cox and

Ross 1976). Cox and Ross developed a general theory of option pricing which relies on

the minimal assumption that no arbitrage opportunities exist. They show that this

condition is equivalent to the existence of an artificial probability distribution such that

the asset price equals the stream of expected returns discounted at the risk-free rate. The

idea of an artificial distribution is widely applied in the finance literature. It is called the

risk neutral valuation measUre. In a world where investors are risk neutral, the expected

return on all securities is the risk-free rate of interest, r.

Hull (1993) says, “When we move from a risk-neutral world to a risk-averse

world, two things happen. The expected growth rate in the underlying asset changes and

the discount rate that must be used for any payoffs from the derivative security changes.

It happens that these two effects always offset each other exactly.”

In a risk neutral world, two important restrictions hold. The first restriction is that

the option would be priced according to its risk neutral expected value at maturity,

discounted back to the current period at the risk-free rate of interest. For commodity.

options on futures contracts, this implies,

P = (“T-”Emerita, — K,O)]
call

P = e"(T")E[max(K — F, ,0)] (3.2)
put

where E(-) denotes expected value in a risk-neutral world; Pam is the price of call

options; Pp“, is the price of put options; K is the strike price; Fr is price of future contract

at maturity; T is expiration date; and r is the risk free interest rate.

The second restriction is that futures prices are unbiased. Current futures price is

the expected value of the futures price at maturity. When using the risk-neutral approach

12



for Black’s futures option model, the geometric mean, ln(F,+A,/F,), where F, is the

future price at time t, is zero. This zero geometric mean of the log-price return comes

from Black’s assumption of a zero holding cost for a futures contract. It is shown in

Black (1976) that a futures price can be treated in the same ”way as a security paying a

continuous dividend yield at rate r. Thus, the expected growth rate in a futures price in a

risk neutral world is zero. If the two restrictions mentioned above did not hold, there

would be unexploited profit opportunities.

Using the lognormal distribution and risk neutral valuation, Black’s formula for

European call and put options written on futures are:

P :e-r(T-!)[F'N(dl)-K'N(d2)](all

P :-e—r(T_')[F-N(-dl)"K'N(—d2)]put

where

2

[lnF-an+g—(T—t)]

d = 2
‘ oJ(T—z)

d, =d, —-o.,/(T—z) . (3.3)

where N(-) is cumulative normal density function.

 

The only parameter in the pricing formula that can not be observed is 6. When the

market option price and the four parameters, K, F, r, T are known, the only unknown

parameter 0' can be backed of the forrnula. The volatility implied by an option price

observed in the market is called “implied volatility” and completely describes the

lognormal distribution at maturity that is implied by the option premium. Very often,

several implied volatilities are obtained simultaneously from different options on the

13



same stock and a composite implied volatility for the price is then calculated by taking a

suitable weighted average of the individual implied volatilities.

Black’s work provides the foundation for the theory of futures option valuation.

The model for valuing futures options leads to a closed form solution which implies only

nonnegative prices. In actual applications, however, the model has certain well-known

deficiencies as discussed in section 2.

3.2 A Mixture of Lognormal Approach

In order to overcome the deficiencies in the Black model for valuing commodity

futures options, an alternative method is proposed here. In choosing a functional form for

the terminal distribution, one should try to balance flexibility, parsimony, and ease of '

interpretation. Here the futures price at the option’s expiration is specified to be drawn

from a mixture of two lognormal distributions. The benefits of this technique arise from

its flexibility, generality, and directness. This functional form for the terminal distribution

can easily accommodate a wide variety of shapes. This approach leads to a probability

density function (PDF) clearly distinct from the lognormal benchmark, and typically

characterized by skewness and leptokurtosis.

With European style options, the value of the call (put) option is simply the risk

neutral expected payoff discounted back to the present using an appropriate interest rate.

At expiration the call and put option values must be max(FT — K,0) and max(K — FT ,0)

respectively. Assuming risk neutral valuation, the option price for calls and puts can be

expressed as

14



P
(all

z (“T") f (F, — K) - g(F,)dF,

K

put
P = em") I (K — F, ) - g(F, )dF, (3.4)

0 .

where g(Fr) is the risk-neutral probability density function for the commodity futures at

time T, which is assumed to be a mixture of two lognormal distributions here.

In the mixture of two lognormals method, the change of log futures price at the

option’s expiration is specified to be drawn from a mixture of two normal distributions.

That is,

rnF, —1nF, ~ AN[p,,o,2]+(1—/1)N[u,,o,2] (3.5)

Where N (u,- ,0',-2 ) is a normal distribution with mean it,- and standard deviation 0",; and x1

and (1 —/1) are the weights on each normal distribution respectively, where O S A S 1.

Thus, the probability density function of log future prices, G(ln FT) , is given by:

1 (1" FT "#1) l (1" F'r‘llz)

G(1nF,)=A———-e 2"! +(1—A)———e 202 (3.6)

427w, 427w,

Because ln F, follows a mixture of normal distributions, and Fr follows a mixture of

lognormal distributions. Thus, the density function of FT is,

(In Fr —#1) 1 (In FT—F‘Z)

e 20' +(1-A)———e “’2 ]
4% o,

g<FT>=iu
FT 5°01

(3.7)

=481(FT)+(1-4)82(FT)

where g ,. (F, ) is the single lognormal distribution

_(ln FT —/“r )2

,

20,
 

1

,(F )= e

g T JZfl-a,-F,

15



Here g(FT) represents the PDF of mixture of two lognormal distributions, and

g,(F,) represents the PDF of a single lognormal. There are five unknown parameters A,

in, 01, 11.2, 0'2 in this equation.

The option pricing formula is derived as follows where the futures prices follows

a mixture of two lognormal distributions. First, consider the call option pricing formula

for European options. Substituting (3.7) into (3.4) yields

Pm” = (“T-”(A 1 (F, - 10g, (F, )dF, + (1 —/t) I (F, — K)g,(F, )dF,] (3.8)

K K

Thus Pm” = 1PM, + (1 - A)Pm,,2 (3.9)

Where Pa, = MT") I (F, — 10g, (F, )dF, (3.10)

K

The call option pricing formula for European option with mixture of two lognormal

distributions is then (using the standard Black model)”,

 

__,. _, (F‘|+a—')

[11:11:16 (T ’[e 22.N(d11)_K'N(d12)]
(3.11)

+ (1 —Mex”[e(p2+T-) -N(d21 ) — K - Mar22 )1

2

Where d,1 = an+#’ +0’ , 61,,2M i=l,2

a, 0',

By using the same approach for put,

-r —r (””07”)

Pp... =46 ‘T ’[e 'N(_d11)-K'N(—d12)]
(3.12)

1

—(1—,t)e"<T"’[e”"+ 2 ’ -N(—d2, )— K . N(—d,,)]

 

6 The derivation of option pricing formula 3.11 and 3.12 refer to appendix 1.
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Under the risk neutral assumption, current futures price is an unbiased predictor of the

futures price at maturity. That is the expected value of futures price at maturity equals the

current futures price:

E(F,) = F, (3.13)

Where E(F,) is the risk neutral expectation of F, conditional on information available

at t. In the case of mixture of two lognormal distributions,

2

0'1

E(F,) = 2 1““? + (1—3) - eW—é— (3.14)

This constraint can be used to substitute out one of the five unknown parameters

in the option pricing formula.

3.3 Using Market Traded Option Prices to Generate Implied Distribution

Forecasts

The mixture of lognormal formula is an appealing choice, most importantly

because it is sufficiently flexible to allow a wide range of stochastic price behavior. Thus,

the implied distribution derived from a mixture of lognormals model should be more

realistic than that derived from Black’s model. i

In order to derive the implied distribution, one typically defines a loss function

expressed as the sum of squared deviations of the estimated option prices and the actual

option prices. In the case of Black’s model, there is only one unknown parameter in the

option pricing formulas, e. Let F, (K,T, r, F , 0) denote the estimated price at time t using

Black’s option pricing model for a call or put that has an exercise price K and maturity at

T. Then if the option pricing model is correct, 13,(K,T, r, F,0') is expected to .be close to

the observed market option price P.
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Therefore, (I can be estimated by solving

min 2 Q,[P, — 13,,(K,,T, r, F;a)]2

mianJPp —13p,(K,,T,r,F,0')]2 (3.15)

Where pc is the price for call and PP is the price for put. i is the number of call and put

options at time t. Equation (3.15) is weighted sum of squared deviations between realized

market options and those estimated via Black option pricing formula. Q, is weight of each

option. The summation i is over call and put Options with identical maturities but

different strike prices.

In the mixture of two lognormals method, let F,(K,,T,r,F,/I,u,,,u,,0',,0'2)

denote the price of the, option (call ‘or put) at time t with strike price of K,- and maturity

date of T by using the mixture of lognormal option pricing model conditional on

parameters (Luv/1251,02). This suggests that the mixture of lognormal parameters

implied by options can be estimated by solving:

minEQrP. —é,(K,,T,r,F,/1,u..u..o,.0211:

minEQJP, — 13,,(K-,T,r.F,/1,u,,u2,0..02)? (3.16)

which is weighted sum of squared deviations between realized market option prices and

those estimated via the mixture of normal option pricing model.

In this paper, options with the same maturity date and different strike prices from

the same day will be employed to derive the implied mixture of lognormal parameters. In

literature, there are different methods to derive the weights Q. One approach in Black’s

model is to put all the weights on a single contract for which the price of the options is
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more Sensitive to changes in the volatility of the underlying commodity. Usually, this is

the at-the-money option, but occasionally it is the near-the-money option7. The reasons to

use at-the-money options are as follows: First, at—the-money option price is sensitive to

volatility, it should therefore return the most accurate measure of volatility. Second, at-

the-money options have high volume, which indicate they contain more information

about underlying asset’s volatility than thinly traded options that are well out of money.

However, this method ignores information about volatility that is available in the

contracts that are not at-the-money. In order to account for all the information in the

option market, a method is chosen in this research that will contain the information of all

options. This method recognizes that the true distribution is the same for all the options

on a given future contract with the same maturity date, but different strike price, and

chooses the single estimate of distribution which is closest to satisfying the option pricing

equation for all exercise price. “Closeness” is measured by the mean square deviation

between the observed and the theoretical prices, aggregated over all contracts with a

given maturity and weighted by Q..

The weight is used to influence the relative contribution of each option in the

determination of the implied mixture of lognormal model. The weight Q, may be

assumed to be equal. But a more reasonable assumption is to let each option be weighted

by some measure of its liquidity such as volume. This weighting mechanism seems

reasonable because options that are far from the money have prices that are not as

sensitive to volatility, and should therefore get less weight in the forecast than the more

sensitive near-the-money options. However, in this research, due to the lack of

 

7 This is a loosely defined term that means the strike price and spot price are not too far.
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information of the trading volume of option with different strike price, we will give equal

weight to each option.
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Section 4: Application to Corn, Soybean and Wheat~ Futures Prices

4.1 Data Sources

In this section, the mixture of lognormals method is applied to corn, soybean, and

wheat futures options traded on the Chicago Board of Trade. Soybean futures contracts

are available for January, March, May, July, August, September, and November

expiration dates; corn futures contracts are available for March, May, July, September,

and December expiration dates; and wheat futures contracts are available for March,

May, July, September, and December expiration dates. Options are written on the futures

prices for each commodity with an expiration date on the last Friday preceding the first

notice days of the corresponding futures contract by at least five business days. Each of

these. grains has a “storage contract” which expires around the end of usual planting

period or the beginning of the usual harvest period, and a “harvest contract” which

expires around the end of usual harvesting period. The storage contracts for corn,

soybean, and wheat futures are the July contract, July contract, and March contract,

respectively; and the harvest contracts for corn, soybean and wheat are December

contract, November contract, and July contract, respectively. In this section, the implied

distributions for each contract are presented at three points in time. For the harvest

contracts, implied distributions are presented for a single day around the most active

planting date, a single day near the maturity date of the contract, and a single day in the

middle of these two daysg. For the storage contracts, implied distributions are generated

for a single day right after the maturity of the harvest contract, a single day near the

 

8 Notice day is the seventh business day preceding the last business day of the delivery month.

9 The reason for this data selection method is that the pattern of changes of distribution can be observed as

we get closer to the maturity date and market uncertainty decreases.
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maturity date of the contract, and one day in the middle of these two days. That is, data

selection starts at the earliest date and moves closer to the maturity date. Data for market

option premiums on futures and the corresponding futures prices were taken from the

Wall Street Journal for each contract on the dates specified in Table 4.1.

Table 4.1: Data source

 

Soybean November 2000 contract — harvest contract

 

 

 

 

 

Date: 05/24/00 08/16/00 10/ 1 1/00

Time to maturity: 149 65 9

Soybean July2000 contract — storage contract

Date: 10/13/99 03/15/00 06/14/00

Time to maturity: 248 97 6

Corn December 2000 contract - harvest contract .

Date: 05/10/00 08/16/00 1 1/15/00

Time to maturity: 194 96 5

Corn July 2000 contract — storage contract

Date: 1 1/17/00 03/15/00 06/14/00

Time to maturity: 216 97 6

Wheat July 2000 contract — harvest contract

Date: 10/13/99 02/16/00 06/14/00

Time to maturity: 251 125 6

Wheat March2000 contract — storage contract

Date: 06/14/00 1 1/29/00 02/14/01

Time to maturity: 251 83 6
 

For each day, closing option premiums for 6 separate strike prices were quoted in

the Wall Street Journal for both call and put options. This provides a total of 12 closing

option premiums (6 calls and 6 puts)”. In addition, the corresponding closing futures

price was collected. There are a total of 6 contracts, each priced at 3 different dates for a

total of 18 implied distributions estimated.

The only other data needed to estimate the implied distributions is the risk-free

interest rate, which is estimated using data collected from the Wall Street Journal on the

 

'0 In some days, quotations of call or put for certain strike price are not available.
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yields to maturity on Treasury bills with the same maturity date as the options used in the

estimation.

For each day, the implied distributions at the option maturity date were estimated

for the MLN model and the Black model. A total of 18 implied distribution were derived

for each model varying by commodity, storage versus harvest contract, and time to

maturity.

4.2 Estimating the Implied Distribution

Traded option premia on selected days are employed to generate implied

distributions for MLN and Black methods. The optimization of the objective function

(3.16) was performed with a trust-region reflective Newton algorithm using MATLAB

function fmincon to find the minimum of a constrained nonlinear multivariable objective

function.11

 

H The MATLAB code can be run under any system that has installed MATLAB with the version equal or

higher than 5.3.1 R1 1.1. Bounds for the parameters were set so that, lnF,-10*r<u,< lnF,+10*r,

0.001 <a,~<0.8. According to Black’s model, u=lnF,-oz /2, thus a reasonable searching bound for u in MLN

should center around lnF. Here Mr is chosen because this range is big enough in all our calculation cases.

After trying other larger bounds, such as 15r or 20r, the optimization results are the same. This means the

chosen bound has already included the minimum points. Similar arguments go to O'i. I have tried other

larger upper bounds for 0,, and the optimization results remain the same. The chosen bounds here are a

good tradeoff between calculation cost and accuracy. The chosen bound for this program ensures accurate

optimization results and also make it possible to finish the calculation within several minutes using a PC.

Because this is a constrained nonlinear optimization problem, in some cases, the fitting parameters are local

optimization points. The results are sensitive to the initial searching points selected. Therefore the

parameter searching ranges were divided into multiple smaller lattices and the center of each individual

lattice was chosen as the initial points. After this kind of global search, the global minimum was chosen

from the minimal local minimum. For the chosen searching bounds, each dimension was divided into three

segments, the optimization results would converge and further separation will give the same results.
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Table 4.2: Estimated parameters for all contracts/days by MLN methods12

 

 

A - 111 112 01 02

Soybean November 2000 contract — harvest contract

05/24/00 0.08585 2.16043 1.64139 0.16473 0.13922

08/16/00 0.00689 1.85784 1.54968 0.59303 0.07689

10/11/00 0.40717 1.58125 1.55150 0.05289 0.02212

Soybean July 2000 contract — storage contract

10/13/99 0.07779 2.03517 1.61374 0.16767 0.15402

03/15/00 0.42548 1.74122 0.61329 0.17482 0.08058

06/14/00 0.15659 1.60771 1.63390 0.00148 0.04529

Corn December 2000 contract — harvest contract

05/10/00 0.17366 1.31442 0.85136 0.04287 0.15358

08/16/00 0.04498 0.62658 0.64106 0.36855 0.08662

11/15/00 0.00298 0.44647 0.73009 0.12726 0.01484

Com July 2000 contract — storage contract

11/] 7/99 0.43659 0.85537 0.69627 0.20277 0.10594

03/15/00 0.44671 0.96236 0.81482 0.19403 0.07584

06/14/00 0.01928 0.47976 , 0.70982 0.54835 0.04340

Wheat July 2000 contract — harvest contract

10/13/99 ‘ 0.07973 1.03267 1.03866 0.65019 0.15930

02/16/00 0.07436 1.0881 1 1.02844 0.66529 0.11043

06/14/00 0.00419 1.18298 0.95861 0.05150 0.03578

Wheat March 2000 contract — storage contract

06/14/00 0.17352 1.33423 1.02885 0.27324 0.14286

11/29/00 0.41174 1.03822 0.95037 0.11549 0.07028

02/14/01 0.00552 0.89180 0.98443 0.04961 0.00376

 

Table 4.2 presents the implied mixture of lognormal estimated parameters (2,111,112, 01,02)

for each contract on each set of data.

In the following three sections, the graphs of distributions and option pricing errors of

each commodity will be presented. The comparison of graphs of different commodities

and different days to maturity will be given. The contract selected is harvest contract for

 

'2 A, [1,, [12, 0'). 0'; are the five parameters in the mixture of lognormal density function defined in equation

(3.7)
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each commodity. The corresponding graphs of storage contract of these commodities are

attached in appendix.

25



Section 5: Soybean Estimation Results

Figure 5.1 and Figure 5.2 depict probability density functions and cumulative

density functions taken from both Black and MLN models using data of May 24, 2000,

August 16, 2000, and October 11, 2000 respectively. The top panel uses estimates from

1 the November contract of soybean (harvest contract) on May 24, 2000 (149 days to

maturity). The middle panel uses estimates of the same contract on August 16, 2000 (65

days to maturity). The bottom panel uses estimates of the same contract on October 11,

2000 (9 days to maturity). Figure 5.3 plots the difference between estimated option prices

and actual prices for calls and puts of these three days.

In Figure 5.1 for the data that are far from maturity date, the PDFs are flat and fat,

which indicate a bigger variance compared with those from the data that are near the

maturity. The PDFs from data that are near the maturity are tall and thin. This is the same

for PDFs from both Black and MLN methods. Compared with single lognormal

distribution, PDFs of MLN model are always high-peaked and fat-tailed compared with

PDFs of Black model. I

As shown in Figure 5.2, on the right side, the CDF from MLN model crosses

Black CDF at certain point. For Example, in Figure 5.2.0 the CDF from MLN model

cross the Black CDF at $5, about 4.60% above the current future price ($4.78). To the

right of this point, the derived CDF of MLN method lies below that from Black model,

indicating greater probability attributed to realization above this level.

Figure 5.3 depicts call and put option pricing errors. It is clear from the graph that

Black model tend to underprice in-the-money call and out-of-the—money put options, and

overprice the out-of—the-money call and in-the-money put options, which is consistent
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with the findings from literature. In Figure 5.3, the option pricing errors from MLN

method are in the order of $1*10'3, while the errors from Black model is in the order of

$1*10'2. This indicates the MLN method gives better fitting results than Black model.
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Figure 5.1: Estimated PDFs -- November (harvest) contract of soybean

a. November Option Maturity as of May 24, 2000
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Figure 5.2: Estimated CDFs — November (harvest) contract of soybean

a. November Option Maturity as of May 24, 2000
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Figure 5.3: Option pricing errors -- November (harvest) contract of soybean

a. Call Pricing Errors of May 24, 2000
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(I. Put Pricing Errors of August 16, 2000
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Section 6: Corn Estimation Results

Figure 6.1 and Figure 6.2 depict probability density functions and cumulative

density functions taken from both Black and MLN models by. using data of May 10,

2000, August 16, 2000, and November 11, 2000 respectively. The top panel uses

estimates from the November contract of corn (harvest contract) on May 10, 2000 (194

days to maturity). The middle panel uses estimates of the same contract on August 16,

2000 (96 days to maturity). The bottom panel uses estimates of the same contract on

November 15, 2000 (5 days to maturity). Figure 6.3 plots the difference between

estimated option prices and actual prices for calls and puts of these three days.

In these graphs, MLN captures key deviations from Black such as a fatter right-

hand-side tail, and a mode shifted slightly to the left. A lot of empirical test of commodity

price show that variance of commodity price distribution is not constant and commodity

price distributions are characterized by high-peak and fat-tail. Thus, the derived

distribution from MLN is consistent with the literature.

Figure 6.3 depicts call and put option pricing errors. The MLN method tends to

give much smaller option pricing errors when the date is far from maturity. When the

date is near maturity, there is no significant difference between the option pricing errors

from the two methods. When the date is far from maturity, there is more uncertainty in

the market. The MLN has a more flexible shape to accommodate the market participants’

expectations.
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Figure 6.1: Estimated PDFs -- December (harvest) contract of com

a. December Option Maturity as of May 10, 2000
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Figure 6.2: Estimated CDFs - December (harvest) contract of com

a. December Option Maturity as of May 10, 2000
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Figure 6.3: Option pricing errors -- December (harvest) contract of corn

a. Call Pricing Errors of May 10, 2000
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(I. Put Pricing Errors of August 16, 2000
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f. Put pricing Errors of November 15, 2000
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The PDF in Figure 6.1.a turns out as a bi-modal distribution, while Black is

unimodal all the time due to the single lognormal assumption. As the data near the

maturity date, there is little qualitative difference in the two estimates, while during

periods far away from maturity; the estimate from single lognormal method cannot easily

accommodate the significant probability mass on the right tail. The bimodal shape could

be the result of uncertainty about supply and demand.

To investigate further, Figure 6.5 and Figure 6.6 show three consecutive week’s

PDFs and CDFs of corn December (2000) contract in the month of May. A trend can be

observed when time goes on. The right tail becomes smaller and smaller. The pattern of

the graphs could reflect a change in the market situation. When the date is far away from

maturity, there is a lot of uncertainty in the market. There might be different expectations

of outcomes in the market. The mixture lognormal distribution can accommodate

different expectation of market participants. It can also easily accommodatea single

lognormal distribution if that would best fit the data. We expect as news hit the market,

the relative weighting of the two lognormals might change, as well as the parameters of

each of the two lognormals.

A hypothesis for the following patterns is that there was some news about weather

situation, demand or supply conditions. For example, there was an expectation of drought

in the beginning of May 2000; thus, there was an expectation of high corn price at

maturity if the drought was realized. As May progressed, there was rain and expectation

of high corn price became small.
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I Figure 6.4 Estimated PDFs — December (harvest) contract of corn — 2000

a. December Option Maturity as of May 3, 2000
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Figure 6.5 Estimated CDFs — December (harvest) contract of corn — 2000

a. December Option Maturity as of May 3, 2000
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Figures 6.7- 6.8 and Figures 6.9- 6.10 show three consecutive week’s PDFs and

CDFs of December contract of corn in the year of 1998 and year 1999 respectively.

Figure 6.7 and 6.8 depict probability density functions and cumulative density function

taken from both Black and MLN models by using data of May 6, 1998, May 13, 1998

and May 20, 1998 respectively. Figure 6.9 and 6.10 depict probability density functions

and cumulative density function taken from both Black and MLN models by using data

of May 5, 1999, May 12, 1999 and May 19, 1999 respectively.

The PDF in Figure 6.7.a turns out as a bi-modal distribution, while this bi-modal

pattern doesn’t apply to the other graphs in the year of 1998 and year 1999. The results

suggest that the market perceptions of the harvest futures price distribution are quite

different during the three weeks in the year 1998 and 1999. Again, this may be due to the

news about weather or supply and demand situations during that period. More analysis is

needed to test these hypothesis.
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Figure 6.6 Estimated PDFs - December (harvest) contract of corn -- 1998

a. December Option Maturity as of May 6, 1998
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Figure 6.7 Estimated CDFs - December (harvest) contract of corn -- 1998

a. December Option Maturity as of May 6, 1998
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Figure 6.8: Estimated PDFs — December (harvest) contract of corn -- 1999

a. December Option Maturity as of May 5, 1999
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Figure 6.9: Estimated CDFs - December (harvest) contract of corn -- 1999

a. December Option Maturity as of May 5, 1999
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Section 7: Further Comparisons of Enlarged graphs of Black and MLN Models

From Figure 6.1, it is not easy to tell the difference of tails intuitively, especially

for those distributions that are near maturity. Figure 7.11 is an enlarged PDF for the

December contract of corn on August 16, 2000. It gives intuitive sense of the difference

of tails between MLN and Black methods. The numerical integration13 results in Table

6.4 give a better explanation about the difference of Black and MLN methods.

The reason that MLN’s PDF has a larger standard error can be illustrated in

Figure 7.11 From the figures, it is obvious that around 1.4 and 2.6, the two PDFs have the

same density value. Numerical integration can be done region by region to examine their

individual contribution.

From Table 7.4, the major reason why MLN has a larger standard error is that it

has a longer and thicker tail (from 2.6 to 38). This can also be shown by the kurtosis

values. MLN has a much larger kurtosis (0.56127) than that of the Black’s (0.262851).

This means MLN has a much larger tail and this affects the standard error in a larger

degree than what is seen intuitively from'the graph of PDF.

 

13 In order to calculate (l) and (2) numerically, the approximate equations for expected value and Variance

are respectively: 7t «- Exi -g(x,.)-Ax,. ; Var z 20‘.- - if -g(x,.)~Ax,.

where x is the futures price and g(x) is the PDF of the futures price derived from both MLN and Black

model. Ax: is the small step used to divide the integration region, and X, is the value of x at grid point i.

Numerical integration have been done from 0.0001 to 37.5787 with the step size of 0.00037578. Here

numerical integration range is not from 0 to positive infinity, because outside of the calculation region, the

PDF’s value is almost zero and that contribution to the integration can be neglected. For MLN’s PDF, the

calculated expected value is 1.91, and the standard error is 0.22972. For Black’s PDF, the calculated

expected value is 1.91, and the standard error is 0.19696. This is almost the same as those from the

analytical results presented in Table 4.3.
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Figure 7.1: Enlarged PDF of Black and MLN models - December contract of corn

a. December Option maturity as of August 16, 2000
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Table 7.1: Contribution to variance by different range of futures price

— by Black and MLN models

Integration Integration Integration Integration Total Standard

from .0001 from 1.4 from 1.91 from 2.6 to Variance Error

to 1.4 to 1.91 to 2.6 38

MLN 0.0059713 0.013848 0.015066 0.017886 0.0527713 0.22972

Black 0.00045408 0.017353 0.020308 0.00067893 0.03879401 0.19696

MLN- 0.00551722 -0.003505 0005242 0.01720707 0.01397729 0.03276

Black       
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Section 8: Wheat Estimation Results

Figure 8.1 and Figure 8.2 depict probability density functions and cumulative

density functions taken from both Black and MLN models by using data of October 13,

1999, February 16, 2000, and June 14, 2000 respectively. The top panel uses estimates

from the November contract of soybean (harvest contract) on October 13, 1999 (251 days

to maturity). The middle panel uses estimates of the same contract on February 16, 2000

(125 days to maturity). The bottom panel uses estimates of the same contract on June 14,

2000 (6 days to maturity). Figure 8.3 plots the difference between estimated option prices

and actual prices for calls and puts of these three days.

The derived distributions of wheat futures prices have the same characteristics as

those of soybean and corn. PDFs for wheat are characterized by high peak and fat-tail.

The option pricing errors from MLN methods are much smaller than that from Black

model. The differences of these two models are obvious for those days that are far from

maturity.
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Figure 8.1: Estimated PDFs -- July (harvest) contract of wheat

a. July Option Maturity as of October 13, 1999
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Figure 8.2: Estimated CDFs — July (harvest) contract of wheat

a. July Option Maturity as of October 13, 2000
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Figure 8.3: Option pricing errors — July (harvest) contract of wheat

a. Call Pricing Errors of October 13, 2000
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(1. Put Pricing Errors of February 16, 2000
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Section 9: Conclusion

9.1 Comparison of the two models

Compared with the single lognormal distribution, the mixture of two lognormal

distributions clearly reflects some additional information embedded in option data. The

empirical results show that MLN model has a stronger ability to account for the market

information of soybean, corn and wheat futures prices.

Table 9.3 reports the mean, standard deviation, skewness, and kurtosis of corn,

soybean, wheat prices and mean square deviation from objective function. The mean of

the risk-neutral distribution always equals the current futures price. From the estimated

results above, the standard errors, skewness and kurtosis from MLN methods are always

greater than that from Black model.

Skewness reflects simply a distribution’s asymmetry. Positive skewness indicates

that the right tail is “fatter” (high probability) and usually extends out further than the left

tail; large positive realizations are more likely than large negative realizations. Kurtosis is

a measure of the thickness of the tails of the distribution. Table 9.3 further suggests the

skewness from commodity price distribution is often systematically one-sided. And the

bigger kurtosis of distribution of MLN is an indication of fatter tail than the Black’s.

Mean square deviation is the rrrinimum value of the objective function defined in

Section 3. For those days that are far from maturity, the differences between these two

methods are large.
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Table 9.1: Moments of the implied distribution and mean square deviation of

objective function for all contracts/days"

 

 

Expected Standard Skewness Kurtosis Mean Square

Value Error Deviation

Soybean November contract—harvest contract

05/24/00

Black 5.520 1.099 0.666 1.520 8.067e-004

MLN 5.520 1.294 2.754 2.250 2.696e-006

08/16/00

Black 4.744 0.404 0.103 0.537 3.659e-005

MLN 4.744 0.599 9.781 3.032 7.164e-006

10/1 1/00

Black 4.780 0.188 0.022 0.248 2.071e-005

MLN 4.780 0.197 0.187 0.294 1.735e-005

Soybean July contract —storage contract

10/13/99

Black 5.290 1.006 0.581 1.386 1.742e-004

MLN 5.290 1.105 1.720 1.807 1.686e-006

03/15/00

Black 5.3575 0.781 0.344 1.056 5.304e-004

MLN 5.3575 0.823 1.110 1.277 2.916e-006

06/14/00 '

Black 5.1075 0.213 0.027 0.281 1.413e-005

MLN 5.1075 0.219 0.086 0.297 1.292e-006

Corn December contract—harvest contract

05/10/00

Black 2.606 0.635 0.474 0.899 1.284e-004

MLN 2.606 0.615 0.498 0.764 2.697e-006

08/16/00

Black 1.910 0.197 0.061 0.263 7.909e-006

MLN 1.910 0.230 0.610 0.561 2.230e-006

11/15/00

Black 2.074 0.031 1.39e-003 0.041 1.028e-006

MLN 2.074 0.043 -0.296 0.138 1.025e-006

 

 

'4 The third moment of the distribution, or its skewness is defined mathematically as E[(Fr103I, where u is

the mean of the distribution and Fr is the futures price at maturity. The fourth moment of the distribution,

or its kurtosis is defined as E[(F7104].
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Corn July contract -storage contract

11/17/99

Black

MLN

03/15/00

Black

MLN

06/14/00

Black

MLN

2.185

2.185

2.445

2.445

2.0325

2.0325

0.396

0.409

0.391

0.422

0.113

0.179

Wheat July contract—harvest contract

10/13/00

Black

MLN

02/16/00

Black

MLN

06/14/00

Black

MLN

Wheat March contract —storage contract

06/14/00

Black

MLN

1 1/29/00

Black

MLN

02/14/01

Black

MLN

2.91

2.91

2.88

2.88

2.6125

2.6125

3.020

3.020

2.696

2.696

2.675

2.675

0.628

0.852

0.478

0.844

0.098

0.103

0.640

0.723

0.272

0.282

2.40e-003

0.022

0.218

0.545

0.193

0.633

0.019

1.302

0.413

5.687

0.241

7.864

0.011

0.135

0.413

1.622

0.083

0.255

6.36e-006

-0.258

0.543

0.633

0.538

0.666

0.150

0.732

0.875

2.797

0.652

3.104

0.129

0.191

0.890

1.326

0.363

0.408

3.13e-003

0.082

7.891e-005

8.579e-007

1 .719e-004

1 . 1596-006

3.984e-005

2.338e-005

5.420e-005

8.456e-007

7.7456-005

1 .063e-006

9.718e-007

4. 1916-007

2.51 le-004

6.924e-007

2.605e-005

2. 139e-006

4.4706-005

4.466e-005
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9.2 Conclusion

This paper develops a method for using options prices to estimate the market’s

probability distribution for the underlying asset’s price. The mixture of two lognormal

method developed in this paper overcomes the deficiencies in standard Black option

pricing model for commodity futures option. Black’s model assumes proportional

changes in the underlying futures price follow identical lognormal distribution. Yet

empirical evidence suggests that variance of commodity futures price are not constant

and the tails of empirical price distributions appear to be much fatter than the lognormal

benchmark, indicating excess kurtosis in commodity price changes.

Since deriving price distributions has a strong motivation from both theoretical

and practical perspective, it is very important to derive a option pricing formula with a

more realistic distribution assumption which can be used to back out the implied

distribution of commodity prices.

The mixture of lognormals method is quite general, allowing the standard

lognormal distribution to be replaced by any distribution from within a wide class. As the

focus is only on the asset’s distribution, minimum structure is placed on the stochastic

process governing movements in the asset price over time. This lack of structure is

appealing since we generally have little prioriinformation about the stochastic process

that market participants have assumes.

In the application to the soybean, corn and wheat futures market, MLN model is

able to capture more information embedded in option data. Empirical results show that

MLN model accounts for the true properties of commodity price distribution, which
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characterized by peaked, fat-tailed, and frequently positively skewed patten relative to a

Gusssian density.

The mean square deviation generated from MLN is always smaller than those

from Black’s model, which indicates smaller option pricing errors by MLN method.

Black model frequently overprices in—the-money call and out-of—the-money put options,

and underprice out-of-the-money call and in-the-money puts options. MLN formula

overcomes this deficiency by reducing the levels of errors in option pricing. The in—

. sample option pricing errors from MLN are usually at a level of $1’l‘10'3 or even smaller,

which has a better performance than that from Black model.

Extension of this research could go in a number of directions. First, statistical

comparison of Black’s model and mixture of lognormal distribution could be conducted

to test whether the results from MLN is statistically significant. Second, out of sample

forecast of option prices could be conducted by using the estimated parameters to check

whether the results form MLN are stable.
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Appendix I: Derivation of formulas for MLN method

1.1 Derivation of the density function for lognormal distribution

Theorem: G(ln FT )d(ln FT) = g(FT )dFT (1.1.1)

Here G(-) is the probability density function of In F, ; g(-) is the probability density

function of FT.

Thus, a relationship equation can be derived,

G(ln FT )d(ln FT) = g(F, )dFT

=> Fl—Gfln FT)dFT = g(FT)dFT (1.12)

T

:9 7:1—G(ln FT) = g(FT)

T

This relationship equation is applied in the case of normal and lognormal

distributions. Assume In FT follows normal distribution; and F, follows lognormal

distribution. (2.1.1) can be expanded as

G(ln FT)d 1n FT = N(u,0)d In F, = N(u,a)?l-dFT

T

 

1 1 _(ln F,~—p)2

: __ . e 2‘72 dFT (1.1.3)

. FT 27w '

= g(FT )dFT_

Thus, (F)=—- 2“: (1.1.4)

g T F, 27w

 

This is the density function for single lognormal distribution. Thus, the density

function for mixture of two lognormal distributions is

58



1 1 , 1 ,

(F )= —(/1——6 “°‘ (1 -l)————e ””2 )

g T' FT JZn-a, JZn-o,

(1.1.5)

= 181(FT)+(1_A)32(FT)

1.2 Derivation of call option pricing formula for mixture of two lognormal

distributions

The option prices for call is

P... = e"""’ I (F. — K>g(F.>dP.

,. K .. (1.2.1)

= (“T-"[2 j (FT — K)g,(FT )dFT + (1 — A) I (F, — K)g,(F, )dFT]

K K

Thus Pm” = 3PM”l + (1 — )1)Pm,,2 (1.2.2)

pm,“ = e-“T‘” j (F, — K)g,(F, )dFT (1.2.3)
K ,

The following steps derive the formula for Pm,“

Pmu = e‘rU—I) J(FT _ K)8(FT )dFT

K (1.2.4)

= e"”"’[ j F.g<P.>dP. — K j g(P.)dF.I
K K

_(lnF-,—;1)2

., 2
e -0

where g(FT)=J2710 F

. . T

 

It contains two integrations. The calculation will be done one by one.
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{FTg(FT)dFT

(111 FT—p)2

e 20’ dFT (1.2.5) 

+ 1

IF Fug?

Let x = lnFT, then exdx = dFT

Thus, (1.2.5) is equal to

 

 

+oo (_x-_14'_)

20

e6 dx

1,, K (Ix/1275

(n+0 )-u +oo I _(Jr—(u+cr2))2

_ 203 20' -

— e e dx (1.2.6)

1,, K m/Zn

 

_ 2

Let y = x (”+0 ), then (1.2.6) is equal to

0'

 

(#32:) +0” 1 -§

= e I e - dy

an-(p+02)

0'

E

-ln K+(p+a‘2)

 

 

_ (11+?) 1 ‘%

—e I We dy (1.2.7)

:eIw—Z—i ~cdfi1(_an+”+0)

Next go to calculate the second integration.
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KTg<F.>dF.

+oo 1 l _(lnF,:211)

— e 2" dF

KF, m/zn T (1.2.8)

 

1 (In__F-_,14):

=KI————e 3" dlnFT

27:

First use x = lnFT, then (1.2.8) is equal to

 

 
e

M (hf—2,; . (1.2.9)

 

 

 

e 2 dy (1.2.10)

Therefore, the expected call option price under single lognormal distribution

could be written as

0.2

fipwgwyx —InK+u+a

cdfn(Pmu = e
 

)-K°chfi(inK—“f-n (1.2.11)
0'

Thus, the option pricing formula for mixture of two lognormal distributions is
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—r -r (”1+ 1 )

[:01le (T )[e " 'Cdfi1(dri)_K'Cdfi1(d21)]
(1.2.12).’

A.

+(1—A)e*"T-"Ie‘”” 2 ’ -cdfi2<d..>—K-cdfiz<d..>1

 

2

Where d“ = IHK‘H‘. +0’ , d2, =—an—+f—l—‘ i=1,2

0'. o.
I l

1.3 Derivation of put option pricing formula for mixture of two lognormal

distributions

put = APP“,| +(1- 1)!)me (1.31)

K ,

where PM = e-“T-P j (K — F, )g,(F, )dF, (1.3.2)

0

The following steps derive PM

put

K

P = e"‘T"’j (K — F, )g(F,)dF,

0 (1.3.3)
K +oo

= e"‘T"’[Kj g(F,)dF, — I F, g(F, )dF,]

0 K

_(1n F, ~14)2

2c;2
 where g(F,)=J§;10 F e

. . T

So it contains two integrations. The calculation Will be done one by one.
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KIg(FT)dFTl

_(In FT :2”)

202 dFT
 

(1.3.4)

 

During the integration, first let x = In F, , then let y = x _ I" to get the derivation.

The second integration could be calculated as:

K

j F.g(F.)dP.

:
1

 

N
H

q
.

§
“
a

5
'

O
‘
—
-
.
>
c

O
‘
—
-
.
>
:

H

E i’ t

 

2
Q

.
_
.
N :
1

 

i q S
,

«*
1

(11+az’2—u2 111K 1 _(x-(#+02))

: e 202 I 8 202 dx

27w

nix—(11ml)

(In?) 1 -%h

1 -—er dy
_. 27:

a2 2

<u+—> In K — — a

= e 2 -cdfi2( ”

=6

 ) (1.3.5)
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- . . .
—- + 2

During the rntegrauon, we frrst let x = In F, , then let y = x (l1 G )

0'

 to get the

derivation.

Therefore, the expected put option price under single lognormal distribution could

be written as

an_#)—em+gzi)-cdfn(an—#-02
 P = e"‘T"’[K - cdfiz(

pur
)] (1.3.6)

Thus, the option pricing formula for mixture of two lognormal distributions is

2

0'1

P... = flew—”12"” 2 ’ ~cdfi2(-d,, ) — K -cdfi1(—d,,)]

 

(1.3.7)

- <1— 4)e"‘T"’ rem”? -cdfi2(—d..) — K - cdfizr—d. >1

2

Where (1,, = “”1 +0, , d,=M i=1,2
0', 0',

1.4 Derivation of the relationship between [11, u; and Fr

Expected future price Fr can be calculated as

E(F,) = jF,g(F,)dF,)

= F (11 (F )+(l-l) .(F ))dF
I T g! T g- T T (1.4.1)

= AjF,g,(F,)dF, + (1—A)jF,g,(F,)dF,

0 0

=AE,(F,)+(1—A)E,(F,)

where E,(F,) is the expected value of future price with a single lognormal

distributions in the risk neutral world. (In order to make it easy, I will not use the

subscript in the derivation).
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E103): IFT81(FT)dFT

 

 

 

+... 1_(lnF,--;p)l

= I FT.f?“ OJ— 6 20- dFT

0

T 1 _(lnFr ”)2

= e ”2 dF

0 0127: T (1.4.2)

T l_-‘(‘#____)_2

= ee 3" dx

.. 0J2?

(n+0 )-y .. l _(x-(rt+,03))2

: e 20' I e 20' dx
 

During this integration, let x = In F, .

Thus, 133(F,) = n - e’“? + (1 —7r) - X“? (1.4.3)

1.5 Derivation of formulas for Expected Value, Variance, Skewness, and Kurtosis of

mixture of two lognormal distributions

The single lognormal distribution can be expressed as

 

 

g(F.) = 1 60—221 (151)

Jib-F, . H

Thus

.E(F ")=+j°°F "-g(F )dF =+I°F "- 1 612123413” (1.5.2)
T o T T T 0 T 5.0+} .T

Let lnF, =X,then F, =ex,and dX =d—IfT—.

T
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E(F,")=jF," -g(F,)dF, = IF,"

0

x_#)3

=1???—Ue dX=—:J:‘/2_7:.O_e

 

 

 

 

 

 

+1» 1 ()(-(;I+no'))2 —2n/.40‘ 2~rrzcr4

= [2? Ce 20' dX

6'7“" 1 e_(X-(:l+2na))’

fij .. dX

4.4/er-ecr

 

Thus the following relationship exist.

E(F,)=e” 2 (n=1)

E(F~T2):621H-20’2 (11:2)

902

E(F.3)=e3” 2 (n=3)

E(FT4) : edfl+86Z (n: 4)

l _<1n F. ~11 )2

 

- e 2": dF

JZn-mF, T

_(X_~_#_)2+

’0 .de

(1.5.4)

(1.5.5)

(1.5.6)

(1.5.7)

The above formula are for single lognormal distribution. In mixture of two

lognormal distributions, E(F,") is a linear combination of E,(F,") and E,(F,") with

the weight of A. and 1-2» respectively. That is,

El (F,") = AE1(F,") + (1-l1)E2(F,") (1.5.8)

The definitions of expected value, variance, skewness and kurtosis are as follows:

El (F,) is expected value.

For variance:
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Var(F, ) = E[(F, - E(F,))2] = FIF,2 - 2 - F, -E(F, ) + E(F, )2]

= Exp(F,2)—2-E(F,)-E(F,)+E(F,)2 (1.5.9)

= E(F.2)— E11512

For skewness:

E[(F, — E(F,))3] = E[F,3 —3F,2E(F, ) + 3F,E(F,)2 — E(F, )3]

= E(F,3)-3E(F,2)E(F,) + 2(E(F,))3 (1.5.10)

For kurtosis:

EI(F, - E(Fr D4]

= EIF,‘ + 4F,"'(E(F,))2 + (HE D4

— 4F,3 (E(F, )) + 2F,2(E(F, ))2 - 4F. (E(F. ))3]

= E(F,‘) + 6E(F,2)(E(F, ))2 — 4E(F,3)(E(FT )) - 3(E(F. ))‘

(1.5.11)
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Appendix II: PDFs, CDFs and option pricing errors of storage contracts of

soybean, corn and wheat

2.1 Estimated PDFs - July (storage) contract of soybean

a. July Option Maturity as of October 13, 1999
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futures price ($)
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c. July Option Maturity as of June 14, 2000
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2.2 Estimated CDFs - July (storage) contract of soybean

a. July Option Maturity as of October 13, 1999
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b. July Option Maturity as of March 15, 2000
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c. July Option Maturity as of June 14, 2000
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2.3 Option pricing errors - July (storage) contract of soybean

a. Call Pricing Errors of October 13, 1999
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b. Put Pricing Errors of October 13, 1999
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c. Call pricing Errors of March 15, 2000
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(:1. Put Pricing Errors of March 15, 2000
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e. Call Pricing Errors of June 14, 2000
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2.4 Estimated .PDFs - July (storage) contract of corn

3. July Option Maturity as of November 17, 1999

1.2 — - - - Black
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b. July Option Maturity as of March 15, 2000

1.6 _ — Mixture oflognormals

1-4 T - - - Black

1.2 —

1.0 —

0.8 -

0.8 -

0.4 —

0.2 -‘

0.0  
 

 
futures price (5)

c. July Option Maturity as of June 14, 2000
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2.5 Estimated CDFs — July (storage) contract of com

a. July Option Maturity as of November 17, 1999
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2.6 Option Pricing errors - July (storage) contract of com

a. Call pricing errors of November 17, 1999
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c. Call pricing errors of March 15, 2000
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(1. Put pricing errors of March 15, 2000
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e. Call pricing errors of June 14, 2000
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f. Put pricing errors of June 14, 2000
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2.7 Estimated PDFs - March (storage) contract of wheat

a. March Option Maturity as of June 14, 2000
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2.8 Estimated CDFs - March (storage) contract of wheat

a. March option maturity as of June 14, 2000
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2.9 Option pricing errors - March (storage) contract of wheat

a. Call pricing errors of June 14, 2000
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0. Call Pricing Error of November 29, 2000

10—

- 0- Black

-a- Mixture of lognormals

 

 

 P
r
e
d
i
c
t
e
d

c
a
l
l
p
r
e
m
i
u
m

r
e
a
l
v
a
l
u
e

(
5
)

O

\

4

I

I

I

[
b

I I I I I

2.4 2.5 2.8 2.7 2.8 2.9

striking price (ii)

 

'5 There is only one set of data for put options on June 14, 2000.
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(1. Put Pricing Errors of November 29, 2000
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e. Call Pricing Errors of February 14, 2000

 

 

 
 

1.3;. 10 —

3. - 0- Black

2 -ie:- Mixture of lognormals

To 5 -

2

S
E o _.a-::':‘—'_'____'%\

2 \ a a

Q. \

(=0 \

Q

B '5 —
(1)

§
'0

3 -10x10-3 -—
I I T I I I

2.5 2.8 2.7 2.8 2.9 3.0

striking price ($)

f. Put Pricing Errors of February 14, 2000
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