

A STUDY OF CERTAIN PHYSICAL FACTORS INVOLVED IN CANNING OF GREAT LAKES CISCO, LEUCICHTHYS ARTEDI (LE SUEUR)

Thesis for the Degree of M. S.

MICHIGAN STATE COLLEGE

King Fong Wong

1948

This is to certify that the

thesis entitled

A Study of Certain Physical Factors Involved in Canning of Great Lakes Cisco, Leucichthys Artedi (Le Sueur)

presented by

King Fong Wong

has been accepted towards fulfillment of the requirements for

M. S. degree in Food Technology

(Major professor

Date August 23, 1948

A STUDY OF CERTAIN PHYSICAL FACTORS INVOLVED IN CANNING OF GREAT LAKES CISCO, LEUCICHTHYS ARTEDI (LE SUEUR)

A STUDY OF CERTAIN PHYSICAL FACTORS INVOLVED IN CANNING OF GREAT LAKES CISCO, LEUCICHTHYS ARTEDI (LE SUEUR)

bу

King Fong Wong

A THESIS

Submitted to the Graduate School of Michigan

State College of Agriculture and Applied

Science in partial fulfilment of the

requirements for the degree of

MASTER OF SCIENCE

Department of Food Technology
August, 1948

CHEADTRY DEPT.
T664
W872

•

Acknowledgement

I am greatly indebted to Dr. Peter I. Tack, Associate Professor of Zoology, Michigan State College, for extremely careful guidance and valuable aid during the entire study and in the preparation of the manuscript.

I extend thanks to Dr. Roy E. Marshall, Professor of Food
Technology, for helpful suggestions and final review of the work,
Mr. W.F. Robertson, and Dr. F.W.Fabian for supplying materials for
this manuscript.

To all others who have given aid and encouragement, the writer extends his thanks and appreciation.

TABLE OF CONTENTS

ı	INTRODUCTION	page l
11	MATERIALS AND METHODS	14
	Cleaning and dressing	14
	Brining	15
	Filling, exhausting, sealing and processing cans	15
	Installation of thermocouples	15
111	BRINING	18
	Results and discussion	20
ıv	FILL OF CANS	24
	Results and discussion	28
٧	HEAT PENETRATION	29
	Heat penetration factors "fh", "j" and "I"	30
	Results	32
	Calculation of the thermal process	45
	Discussion	46
VI	SUGGESTED COMMERCIAL PROCEDURE FOR CANNING	48
	Securing the raw materials	48
	Receiving and transportation	ñ8
	Grading	49
	Dressing and cleaning	49
	Scaling	49
	Beheading	49
	Eviscerating and cleaning	50
	Washing	50
	Brining	50
	Exhausting and sealing	50

	Processing	age 51
V11	SUMMARY	52
Vlll	LITERATURE CITED	54

•

A STUDY OF CERTAIN PHYSICAL FACTORS INVOLVED IN CANNING
OF GREAT LAKES CISCO, LEUCICHTHYS ARTEDI (LE SUEUR)

INTRODUCTION

The Great Lakes cisco, Leucichthys artedi (Le Sueur), renks first in poundage among the fishes caught commercially in the Michigan Waters of the Great Lakes. While this important fishery resource ranks first in weight, it is outranked in dollar value by both the Lake Trout and Lake Whitefish. This is due, in part, to the seasonal nature of the annual harvest resulting in an uneven supply to the market.

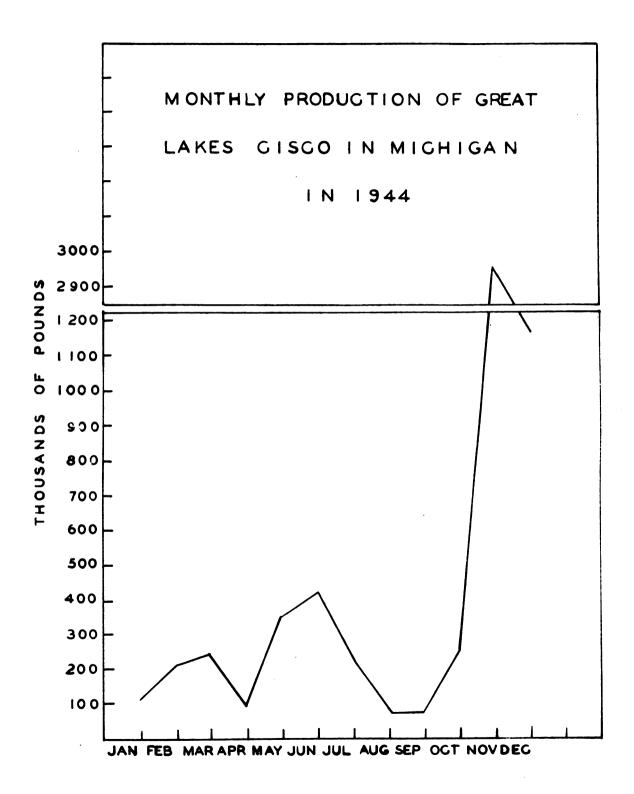
Table 1

Production of the State of Michigan Waters of the Great Lakes in 1944

Species	Total pounds	Value
Great Lakes cisco	6,157,565	\$ 335,770.37
Lake Trout	5,672,285	19,928,508.70
White and redhorse suckers	2,327,786	137,779.46
Lake Whitefish	1,974,709	726,398.77
Carp	1,782,235	73,421.55
Tellow Pike Perch	1,447,657	259,964.13
Cellow Perch	8 79 , 391	128 ,198 .59
Chubs	731,486	138,763.59
Catfish	363,8 52	71,010.10
Longnose suckers	224,025	11,018.86

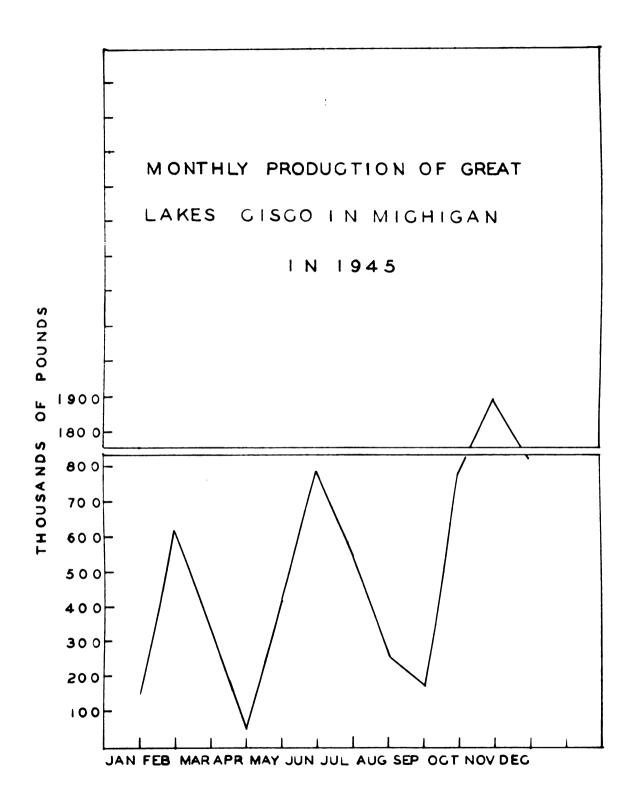
Table 2
Production of the State of Michigan Waters of the Great Lakes in 1945

Species	Total pounds	Value
Great Lakes cisco	6,910,394	\$ 634,190.84
Lake Trout	4,963,165	2,208,014.06
Carp	2,901,163	177,631.45
White and redhorse suckers	2 , 59 3, 729	214,798.36
Lake Whitefish	1,882,490	908,357,57
Chubs	1,356,635	318,499.23
Yellow Pike Perch	990,839	279,181.22
Yellow Perch	824,9 59	160,378.13
Catfish	432,126	113,944.59
Longnose suckers	430,871	23,825.74


Table 3

Catch of Great Lakes cisco by month in thousands of pounds in the State of Michigan Waters of the Great Lakes in 1944

			From th	From the Biennial Report of Michigan Department of Conservation	al Rep	ort of A	fichi gan	Departn	nent of	Conser	vation	
	Jan.	Feb.	Mar.	Apr11	May	June	July	Aug.	Sept.	Oct.	Now.	Dec.
Lake Michigen	75	62	太	17	21	174	139	75	12	75	02	\$7
Lake Superior	52	145	199	59	258	205	33	•	141	120	2,318	1,010
Lake Huron	160	ı	•	9	53	32	32	18	50	64	130	87
Saginaw Bay	•	ı	ı	н	11	15	18	10	ı	∄	1,78	57
Total	102	202	233	\$7	87 343	9Tħ	55 2	70	73	73 255	2,956	1,172

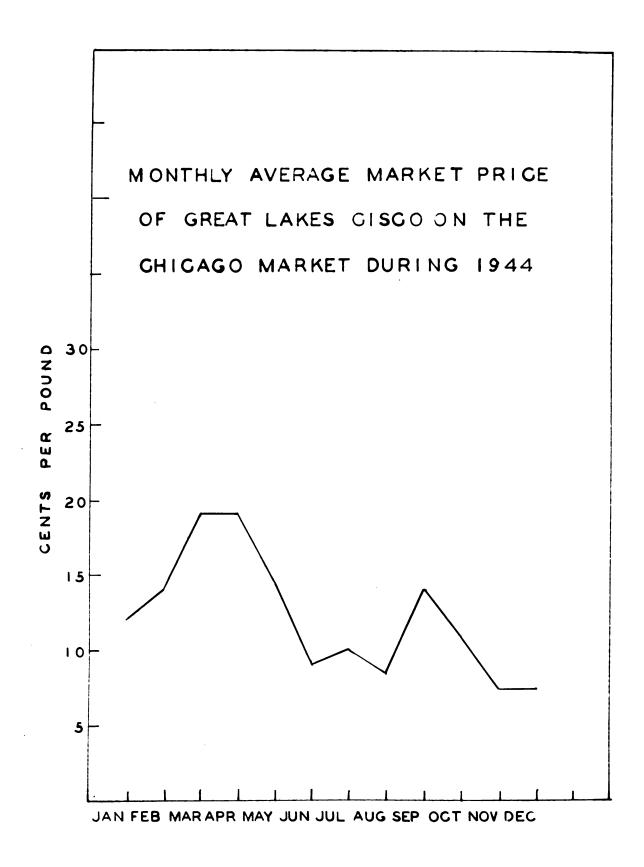

CHART 1

Monthly production of Great Lakes cisco in Michigan in 1944

CHART 2

Monthly production of Great Lakes cisco in Michigan in 1945

During the high production months of November and December, the fish congregate on the fishing grounds. The commercial fishermen harvest and market an enormous quantity of the cisco, which may result in glutting the market during these months. Conforming to the law of supply and demand, the market price is consequently greatly lowered. Late in December, the fish move into deep water and weather conditions prevent effective fishing, hence the supply becomes less abundant in the market, resulting in a price rise. This is illustrated quite well by prices on the Chicago Market as reported by the Fish and Wildlife Service, Market News Service.


Table 5
Chicago Wholesales Market Price in cents per pound in 1944 and 1945

From U.S. Fish and Wildlife Service, Market News Service, Monthly Review of Prices on the Chicago Wholesale Market.

	191	111	19	45
	Range	Average	Range	Average
anuary	9-15	12.0	7-20	13.5
february	12 -1 6	14.0	18-20	19.0
arch	15 - 23	19.0	15-22	18.5
loril	13-25	19.0	17-24	20.5
la y	10-19	14.5	22 - 26	24.0
une	5 - 13	9.0	22 - 26	24.0
ul y	7-13	10.0	15-28	21.5
igust	4-13	8. 5	14-25	19.5
eptember	8- 20	14.0	10-19	14.5
ctober	5-17	11.0	5 -1 9	12.0
ovember	5-10	7.5	5 - 9	7.0
ecember	5-10	7•5	7- 12	9.5

CHART 3

Monthly average market price of Great Lakes cisco on the Chicago Market during 1944

CHART 4

Monthly average market price of Great Lakes cisco on the Chicago Market during 1945

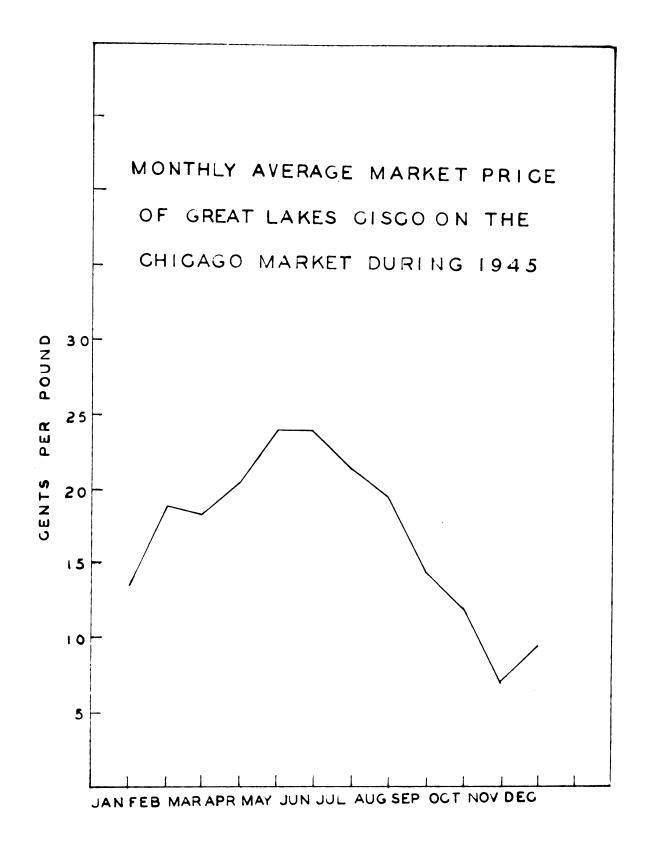


Table 5 shows that during November and December, the months of highest production, the commercial fishermen glut the market with an enormous quantity of the cisco, and the price may fall to the ridiculously low sum of 5 to 6 cents per pound. At such times, the producers may resort to selling large quantities to fur farmers for 2 to 3 cents per pound at the docks or they may freeze large quantities for sale either on the wholesale market or to the fur farmers later when prices have improved. Moderate quantities are also purchased at this time by processors who fillet and freeze them for the frozen food market.

In spite of the efforts to spread the marketing of these fish over longer periods of time, the prices still drop to levels that are not profitable to the commercial fishermen.

The Great Lakes cisco is a member of the Whitefish family, and in common with the Lake Whitefish, it has a tender, white, flaky flesh which when fresh and properly prepared, has a delicate flavor. The great abundance and low price of this species often results in poor handling practices which adversely affect the quality of the product as it appears on the market. This coupled with its inherent highly perishable nature may result in losses of all or parts of some shipments which are not sold at once.

It appears that the seasonal nature of the harvest of the Great

Lakes cisco results in unfortunate marketing arrangements which in turn

deprive the consumer of a uniform supply of high quality fish at a

reasonable price. With this in mind, the present study was undertaken

in an attempt to supply information necessary to process these fish for marketing in a more orderly and satisfactory way.

Canning offers a means of distributing the marketing of this species over the entire year, preserving them as a high quality product for use during the months of low production, making the final product more attractive and appealing to the consumers, and poor handling of the product may be completely avoided.

MATERIALS AND METHODS

The fish used in this study were purchased from the commercial fishermen of the Great Lakes with funds provieded for fisheries research by the Zoology Section of the Michigan Agricultural Experiment Station. They were shipped in the usual commercial manner by packing 35 pounds of round or whole fish in crushed ice in a wooden box. A total of about five hundred pounds of fish was used in this study. The size of the fish ranged from 9 to 12 inches. Cleaning and dressing.

The fish were cleaned and dressed on a work table provided with running tapwater which served to wash the fish before they were dressed and to carry away the scales, blood and entrails as they were removed from the fish. The fish were scaled thoroughly with an electric rotary fish scaler. Special attention was given to scale removal to insure a clean scale-free fish for canning purposes. In places where the electric scaler could not efficiently remove the scales, a knife was used to finish the process. The fins often raised the scaler head enough to allow some scales in this region to remain untouched thus necessitating close inspection and hand work. Following the scaling process, the head and entrails are removed with special attention to thoroughness. The kidney does not come away with the remainder of the entrails, but must be removed separately. It is necessary to insure complete removal of the kidney to prevent it imparting a disagreeable flavor to the canned product. After the fins are removed the fish is again thoroughly washed in running water and set aside to drain before being placed in the brine.

Brining

A salt solution testing 96° salinometer at 17° F was prepared by adding 311.3 grams of sodium chloride (fine salt) per liter of water. The salinometer reading of 96° was used instead of 100° because the former accomplished the same result and saved the extra time required to make a saturated brine in open containers. Stainless steel containers of 12 liters capacity were used for holding the brine solution and about 60 fishes were placed into each container. The cisco were separated and immersed in liberal quantities of brine to prevent contact between the fish, thus insuring complete, even penetration of the salt.

Filling, exhausting, sealing and processing cans.

After the fish were immersed for certain veriods of time in the brine, they were taken out of the brine and were cut to lengths of 3-3/4 inches and packed by hand into No. 1 standard cans (211 x 400) coated with C enamel. The cans containing the fish were placed in the steam chest where they were precooked or exhausted with live steam for 35 minutes. The cans were then sealed by a hand-operated can sealer. An experimental pressure retort was used for processing the cisco for 70 minutes at 240°F or 10 pounds pressure. Then they were cooled inside the retort by admitting cooling water under pressure to take away the heat.

Installation of thermocouples

In order to measure the rate of heat penetration into the canned cisco, thermocouples were made from gauge No.20 copper-constantan duplex glass insulated wire. The measuring junction was made by welding the copper and constantan wire together at one end. A hole measuring 1/4 inch in diameter was made in the middle of the side of the can wall.

A 3/8 inch pipe bushing was soldered over the hole. Then the thermocouples were inserted in such a way that the welded measuring junction lay exactly at the geometrical centre of the can. The thermocouple wire was then wound with asbestos valve stem packing and this was held in place and compacted by use of a pipe cap drilled to pass the thermocouple wire. The pipe cap was tightened enough to prevent leakage into or out of the can. The cans were then placed in the retort for processing. The thermocouple wires were passed through a packing gland in the retort so the free ends of the thermocouples were outside the retort. The sealing of the thermocouples described above was after the method suggested by M. Heerdt, Jr., F. Hoyos, and M. Cantillo, (1947), and modified by P.I. Tack.

The thermocouples were calibrated using the Leeds and Northrup Standard conversion tables in which the temperature readings in degrees fahrenheit were changed from millivolt readings. Distilled water ice was used for obtaining a temperature 32°F. A chemical thermometer was also used to register the temperature of the ice water in which the reference and measuring junctions were inserted. The millivolt readings on the potentiometer corresponded to the temperature reading of 32°F in the conversion table. This procedure was duplicated at 96°F, and the thermocouples were found to correspond with the tabulated values for the temperatures used.

Six thermocouples were connected in parallel, with their measuring junctions inside the retort and the reference junction in ice water.

The cans were subjected to the processing temperature, and the rate of heat penetration was measured by a Leeds and Northrup Potentiometer.

The amount of electromotive force set up by the difference of temperatures in the thermocouple circuit was measured in terms of millivolts which

could be converted to temperature readings by referring to the said conversion table.

BRINING

Brining is one of the most important steps in the processing of the cisco, because brining improves the general quality of the fish, as well as the flavor and aroma of the product. If the cisco are canned without brining, the products are likely to become insipid and unsatisfactory. Brining improves the texture, making the flesh firmer as a result of withdrawing of water from the product by the more concentrated brine. It improves the keeping quality of the fish, as the number of bacteria is greatly reduced. According to Tanner, 1944, brining has bactericidal effect on the canned products, and the growth of Clostridium Botulinum was retarded at 10 per cent concentration of salt.

During 1942, the National Canners Association, the American Can Company, and the U.S.Fish and Wild Life Service conducted a cooperative study on the canning of Maine Sea Herring (Clupea harengus). They summarize the results of brining of Sea Herring as follows:

- " 1. Brining both large and medium fish in a 100° brine for 90 minutes was found to give the most satisfactory results.
- 2. Brining from 90 minutes to 6 hours does not seem to give the fish an excessive salt flavor, but fish brined for longer periods were both fibrous and salty.
- 3. Fish brined for periods shorter than 90 minutes, or in 70° brines, had a fresh or flat flavor and seemed slightly softer in texture.

The materials used in brining have been described under Section 11, Materials and Methods. Concentration of the brine solution was 96° salinometer. The cisco were soaked in the brine for different lengths of time, so as to obtain different degrees of salt penetration. At the end of different intervals of time, separate lots of fish were taken out from the brine, while the rest was allowed to continue the brining treatment. The range of time of brining varied from 15 minutes to 4 hours.

Two experiments were carried out for brining the cisco. In the first experiment, the time of brining was 1/2 hour, 1 hour, 2 hours and 4 hours, while in the second experiment, the time of brining was 15 minutes, 20 minutes, 25 minutes, 30 minutes, 35 minutes, 40 minutes, 45 minutes, 50 minutes, 55 minutes and 60 minutes. In both experiments ten fish were used in each treatment in order to fill duplicate cans, one of which served as check.

The brined cisco were then filled into cans and labelled and were subjected to the same canning procedure described under Section 11, Materials and Methods.

To evaluate the results of the brining experiment, the cans were opened and the fish served to a panel of judges who scored each sample for saltiness, texture and aroma and other factors. The cans were identified by code in order to insure unbiased judgement.

The scores of the individual judges were tabulated and are given in Table 6

Table 6

Evaluations of preliminary brining test on Great Lakes cisco.

	1/2 Hour	1 Hour	2 Hours	4 Hours
Brine	Acceptable	Acceptable	Acceptable	Too salty
Firmness of flesh	Acceptable	Acceptable	Acceptable	Too firm
Flavor	Acceptable	Slightly salty	Salty	Much too salty
Aroma	Acceptable	Acceptable	Acceptable	Strong and mask the taste
Softness of bone	Soft	Soft	Soft	Soft

Those cisco brined from one to four hours were inferior in general quality to those brined for half an hour. The latter fish had a pleasing flavor and aroma. Hence for commercial pack, it seems that the right period of brining should approximate one half hour in duration. As regards the softness of bone and firmness of flesh, all seemed to be satisfactory except those brined for 4 hours which were too firm and fibrous. Another experiment was carried out to determine within a narrower range the acceptable brining time. The results of this experiment are found in Table 7.

Table 7

Evaluations of second brining test on Great Lakes cisco

	15 mins.	20 mins.	e i	25mins 30 mins 35 mins	H mins	40 mins.	45 mins.	45 mins. 50 mins.	55 mins.
Brine	+	+	+	+	+	+	+	+	+
Firmess of flesh	+	+	+	+	+	+	+	+	+
Flavor	Insipid	‡	‡	+	+	+	H	н	н
Aroma	Flat	+	‡	+	+	+	+	+	+
Softness of bone	Soft	Soft	Soft	Soft	Soft	Soft	Soft	Soft	Soft

+++ indicates excellent

++ " superior

" acceptable

" not acceptable

The results of the second brining experiment indicate that a period of immersion of 25 minutes in 96° brine yielded a canned product which was rated satisfactory by a panel of judges. Those brined for 15 minutes were insipid and flat. Those brined for 30 minutes were good but slightly more salty then those brined 25 minutes and the former were scored as satisfactory by the judges. The reason for adopting 25 minutes for the brining period instead of 30 minutes is to keep the saltiness low to accommodate those persons with low salt tolerance. It is simpler to add salt than to withdraw it, consequently the brining period is purposely kept low. It is possible that a larger panel of judges might include persons with a lower salt tolerance than was true of the limited group. Before going into commercial production, this should be further tested on a pilot plant run involving a large number of persons.

FILL OF CANS

The cisco after being brined for 25 minutes were taken from the brine, and cut into 3-3/4 inch lengths as described under Section lll. BRINING. They were then packed into the cans by hand.

Fill of cans is one of the important physical factors of the general quality of fish, because it affects the amount of headspace, cut out weight, and vacuum of the product. Cans which are slackfilled are liable to have large headspace and the product might be classified as sub-standard under the McNary - Mapes Act. On the other hand, overfill of cans tends to reduce the amount of vacuum and retard the rate of heat penetration and, consequently, the product might be understerilized. The fullness of the can is also very important from the economic view point, as we can determine the cost per can by calculating the weight of fish put in.

To insure well filled cans, and a neat appearing product, the tails and heads of the fish were alternated. About five fish were used to fill a can. It soon became easy to select fish of the correct size to fill the cans properly.

The packer must develop some skill in selecting and arranging the fish. The bodies taper toward the tail making it necessary to alternate the heads and tails so the fish will pack tightly into the cylindrical can. The thicker forward part of the fish also had the body cavity opened and it is necessary to pack the fish in such a way that the tail portion of one fish fits into the body cavity of the alternating one so as to prevent large unfilled spees in the can.

Cans considered as properly filled were found to very from 322-336 grams in net weight. Those cans having 328 grams or more were found to be well packed after processing, This is the equivalent of 11.5 ounces.

Since canned products are usually rated by food inspectors on the basis of cutout weight, these cans were drained after processing and the cutout weight was found to vary from 302 grams to 322 grams. Those with 311 grams or more cutout weight were considered as being satisfactory. For commercial purposes this should probably be set at 312grams or 11 ounces, since all weights are in terms of ounces in commercial work.

Table 7

The weight relations of canned Great Lakes cisco

Can number	η	ઢ	3	₽	5	9	7	160	6	10	11	12
Cen weight (grems)	53	52	54	53	54	55	53	53	54	53	54	53
* Fill weight (grams)	329	327	329	328	324	318	319	325	332	320	329.5	328
* Net weight (grams)	333.5	332	334	336	326	भेडर्ट	325	328	335.5	322	333	330
Cutout weight (grams)	310	310	322	315	306	305	302	309	319	303	316	315

* Fill weight = weight of fish packed in can while net weight includes fish plus liquid.

Table &

Summary of evaluations of canned Great Lakes cisco

						·						
Cen number	1	Ø	8	#	5	9	7	760	6	10	11	12
Appearance of container	Good	Good	Good	Good	Good	Good	Good	Good	Good	Good	Good	Good
Vacuum (inches)	7	п	11	10	12	13	6	10	160	13	11	760
Headspace (inches)	5/16	91/9	9/16	91/9	91/9	5/16	91/9	91/2	91/9	1/2	2/16	91/9
Fill- Good, average,	Good	Good	Good	Good	Good	Poor .	Average	Good	Good	Poor	Good	Good
Texture- Firm, slightly soft	五百	H	Fi rm	Firm	Fi ra	F. rm	Fi rm	Firm	Fi rm	Fi rm	Fi ra	Fi ru
Color- Clear, average,	Clear	Clear	Clear	Clear	Clear	Clear	Clear	Clear	Clear	Clear	Clear	(1981)
Cleaning- Good, average, Poor	Good	Good	Good	Good	Good	Good	Good	Good	Good	Good	Good	Good
Odour- Normal, Stale,	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal
Flavor- Good, Average,	Good	Good	Good	Good	Good	Cood	Good	Good	Good	Good	Good	Good
Salt- Insufficient, good, excessive	Good	Good	Good	Good	Good	Good	Good	Good	Good	Good	Good	Good
Lequid - Normal, slightly	Normal	Normal	Normal	Normal	Normel	Normal	Normal	Normal	Normel	Normal	Normal	Normal
Net weight- (grams)	333.5	332	374	336	326	324	325	328	335.5	322	333	330
Gutout weight (grems)	310	310	322	315	306	393	302	309	319	303	316	315

Results and discussion

Table 7 shows that the average weight of the cisco required to fill a No. 1 can is 325.7 grams or 11.48 ounces, and the number of fish to fill each can is 5.

After the fish were processed, they were scored for flavor, aroma, and texture by a panel of judges, and were found to be satisfactory in these respects. The fill was good on the whole, except one with a slight hole and one poorly filled on account of poor arrangement in alternating the heads and tails. Therefore, by experience, the size or the uniformity of the fish should be so chosen that they will make a compact pack when the tails and heads are alternated. The average vacuum as shown by the vacuum gauge was 10.2 inches; and the average headspace was 5/16 inch. (See table 8)

HEAT PENETRATION

Thermal processing is necessary in canning to destroy the most heat resistant organisms which may cause spoilage in canned foods. The time necessary to sterilize the canned Great Lakes cisco at a given temperature is governed in part by the rate at which lethal heat is transmitted to the slowest heating portion of the filled and sealed container, and the food at the geometrical center of the container is the slowest to attain any given temperature and is most difficult to sterilize.

Heat is transferred either by conduction or by convection, or by combination of both methods. Conduction is the transferrence of heat in a solid, while convection is the transferrence of heat in a liquid or gaseous medium.

Since the rate of heat transfer depends on the physical character of the food, and since it is different for different products and for different can sizes, the present study was undertaken to determine the rate of heat penetration in canned Great Lakes cisco.

The equipment used in obtaining the data of heat penetration had been described under Section 11, MATERIALS AND METHODS. Two runs were made. In the first run 6 thermocouples were used, while in the second run, only 5 thermocouples were used. The products were weighed carefully before processing to get their net weights and drained weights. The processing temperature used was 240°F at 10 pounds steam pressure. The data was taken at intervals of every two minutes at the beginning of processing until retort temperature was reached, then the data was taken every five minutes. The readings were recorded in millivolts which were

later converted into temperature readings in degrees Fahrenheit by means of the standard conversion table. When the temperature inside the cans rose no further and remained constant for ten minutes, the steam was turned off, and cooling began by turning in cold water. At the beginning of cooling, readings were taken every two minutes and then every five minutes. The rate of heat penetration in relation to time was plotted on the semi-logarithmic paper. All the eleven sets of data were plotted on the same paper with the result that a kind of frequency distribution was presented. The curve was carefully drawn so that it represents the mean value for each group of observations.

Heat penetration factors "fh", "j" and "I"

The factors "fh", "j", and "I were adopted by Ball (1923, 1928) to describe the semi-logarithmic heating curves:

"fh".- The factor "fh" represents the slope of the heating curve, being measured as minutes on the abscissa equivalent to a change of one logarithmic cycle on the ordinate.

"i".- The factor "j" is an arbitrary factor which, when taken together with fh, defines the constants of the semilogarithmic heating curve. The value "j" is obtained by dividing the difference between the retort temperature and pseudo-initial temperature by the difference between retort temperature and actual initial temperature. It might be illustrated as follows:-

$$J = \frac{R\Gamma - ps. IT}{PT - TT}$$

RT = Retort temperature

IT = Actual initial temperature

ps.IT = Pseudo initial temperature

= the temperature indicated

by the intersection point between the extension of the straight line portion of the curve and the vertical line which represents the beginning of the process in zero time.

"I".- The factor "I" represents the difference in degrees between the retort temperature and the initial temperature of the food.

(32)
Table 9
Heating and Cooling Curve Data (1)

Time(mins.) Mil	llivolts	Temperature F	Time(mins.)	Millivolts	Temperature° F
- 6	2.50	142	102	4.55	237
- 4	2.55	1)+14	104	4.83	235
- 2	2.64	148	106	4.71	230
0	2.69	150	108	4.46	2 20.5
5	2.88	158	110	4.45	220
10	3.05	165	112	4.20	210
15	3.38	178	115	3.94	200
20	3.69	190	120	3.63	188
25	4.04	204	125	3.30	175
30	4.20	210	130	2.93	160
35	4.40	218	135	2.79	154
40	4.47	223	140	2.57	145
45	4.63	22 7	145	2.33	135
50	4.73	2 31	150	2.17	128
55	4.79	233			
60	4.83	235			
65	4.86	236			
70	4.88	237			
75	4.895	237.5			
80	4.91	238			
85	4.925	238.5			
89	4.93	239			
95	4.93	239			
100	4.93	2 39			

Table 10
Heating and Cooling Curve Data (2)

Time(mins.)	Millivolts	Temperature° F	Time(mins.)	Millivolts '	<u> Temperature° F</u>
- 6	2.55	144	102	4.895	237 •5
- 4	2.59	146	104	4.86	236
- 2	2.64	148	106	4.76	232
0	2.69	150	108	4.57	225
5	2.93	160	110	4.50	22 2
10	3.05	165	112	4.27	213
15	3.43	180	115	4.06	205
20	3.69	190	120	3.81	195
25	4.04	204	125	3.48	182
30	4.20	210	130	3.18	170
35	4.40	218	135	3.00	163
40	4.52	223	140	2.81	155
45	4.62	227	145	2.57	145
50	4.745	231.5	150	2.45	140
55	4.595	233.5			
60	4.83	235			
65	4.86	236			
70	4.88	237			
75	4.895	2 37 •5			
80	4.91	2 38			
85	4.925	2 38.5			
89	4.93	239			
95	4.93	2 39			
100	4.93	239			

(34)

Table 11

Heating and Cooling Curve Data (3)

Time(mins.)	Millivolts	Temperature° F	<u>Time(mins.</u>)	Millivolts	Temperature° F
- 6	2.52	143	102	4.89	237.5
- 4	2.57	145	104	4.86	236
- 2	2.61	147	106	4.76	232
0	2.66	149	108	4.57	22 5
5	2.83	156	110	4.45	220
10	3.03	164	112	4.22	21 1
15	3.33	176	115	4.06	205
20	3.63	188	120	3.69	190
25	3.99	202	125	3.43	180
30	4.14	208	130	3.20	171
35	4.37	217	135	2.93	160
40	4.50	222	140	2 .7 9	154
45	4.675	226 . 5	145	2.59	146
50	4.725	230.5	150	2.40	138
5 5	4.775	232 .5			
60	4.825	234.5			
65	4.845	235.5			
70	4.88	237			
75	4.89	2 37 • 5			
క 0	4.91	238			
85	4.925	238.5			
8 9	4.93	239			
95	4.93	239			
100	4.93	239			

(35)

Table 12

Heating and Cooling Curve Data (4)

Time(mins.)	Millivolts	Temperature° F	Time(mins.)	Millivolts	Temperature° F
- 6	2.50	142	102	4.88	2 37
- 4	2.52	143	104	4.83	2 35
- 2	2•57	145	106	4.71	2 30
0	2.61	147	108්	4.55	224
5	2•79	154	110	4.47	221
10	2.98	162	112	4.30	214
15	3. 28	174	115	4.01	203
20	3 • 58	186	120	3.65	189
25	3.94	200	125	3 <i>•3</i> 5	177
30	ħ•50	210	130	3.08	166
35	4.37	217	135	2.85	157
40	4.55	224	140	2.64	148
45	4.615	226.5	145	2.45	140
50	4.71	230	150	2.33	135
5 5	4.725	231.5			
60	4.81	234			
65	4.845	235.5			
70	4.895	23 7 • 5			
75	4.91	238			
కం	4.925	2 38. 5			
85	4.93	239			
90	4.93	239			
95	4.93	239			
100	4.93	239			

				•	
Time(mins.)	Millivolts	Temperature F	Time(mins.)	Millivolts	Temperature F
- 6	2.64	148	102	4.925	238.5
- 4	2.66	149	104	4.88	237
- 2	2.71	151	106	4.83	235
0	2.79	1 54	108	4.65	228
5	2.93	160	110	4.52	22 3
10	3.18	170	112	4.40	218
15	3.43	180	115	4.11	207
20	3.74	192	120	3 . 86	197
25	4.06	205	125	3.53	184
30	4.27	213	130	3.30	175
35	4.45	220	135	3.08	166
40	4.57	225	140	2.85	157
45	4.68	229	145	2.66	149
50	4.76	232	150	2 .5 5	144
5 5	4.81	234			
60	4.86	236			
65	4.88	237			
70	4.895	237 •5			
75	4.91	238			
కం	4.925	2 38.5		,	
85	4.93	239			
90	4.93	239			
95	4.93	239			
100	4.93	239			

(37)

Table 14

Heating and Cooling Curve Data (6)

<u>Time(mins.</u>)	Millivolts	Temperature° F	Time(mins.)	Millivolts	Temperature F
- 6	2.50	142	102	4.86	236
- 4	2.55	144	104	4.76	232
- 2	2.64	148	106	4.62	22 7
0	2.69	150	108	4.32	215
5	2.85	157	110	4.20	210
10	3.08	166	112	3.99	20 2
15	3.365	177.5	115	3.69	190
20	3.69	190	120	3.30	175
25	4.01	203	125	3.00	163
30	4.25	212	130	2.69	150
35	4.47	221	135	2•50	142
40	4.57	22 5	140	2.24	131
45	4.65	2 28	145	2.07	124
50	4.73	231	150	1.93	118
55	4.775	232.5			
60	4.83	2 35			
65	4.86	236			
70	4.88	237			
75	4.91	238			
80	4.925	2 38.5			
85	4.925	238.5			
ඡ්	4.93	239			
90	4.93	239			
95	4.93	239			
100	4.93	239			

(38)

Table 15

Heating and Cooling Curve Data (7)

Time(mins.)	Millivolts 1	Cemperature° F	Time(mins.)	Millivolts	Temperature F
- 6	2.66	149	102	4.87	236.5
- 4	2.69	150	104	4.78	233
- 2	2.76	153	106	4.68	2 29
0	2;83	156	108	4.45	220
5	2.98	164	110	4.27	213
10	3.23	174	112	4.06	205
15	2.63	188	115	3.81	195
20	3.84	196	120	3.43	150
25	4.11	207	125	3.05	165
30	4.32	215	130	2.85	157
35	4.50	222	135	2.59	146
40	4.615	226.5	140	2.38	137
45	4.71	230	145	2.19	129
50	4.775	232.5	150	2.05	123
55	4.825	234.5			
60	4.86	236			
65	4.895	23 7 •5			
70	4.91	238			
75	4.925	2 38 •5			
కం	4.925	2 38 •5			
83	4.93	2 39			
85	4.93	2 39			
90	4.93	239			
95	4.93	2 39			
100	4.93	239			

(39)

Table 16

Heating and Cooling Curve Data (8)

Time(mins.) M	illivolts T	emperature° F		Millivolts	Temperature F
- 6	2.59	146	102	4.88	237
- 4	2.61	147	104	4.81	234
. - 2	2.67	149	106	4.67	229
0	2.74	152	108	4.47	221
5	2.96	161	110	4.30	214
10	3.18	170	112	4.06	205
15	3.40	179	115	3.81	195
20	3.72	191	120	3.45	181
25	4.04	204	125	3.10	167
30	4.27	213	130	2.90	159
35	4.45	220	135	2.64	148
40	4.57	225	140	2.43	139.5
45	4.67	229.5	145	2.26	132
50	4.76	232	150	2.09	125
55	4.81	234			
60	4.86	236			
65	4.88	2 37			
70	4.89	2 37 • 5			•
7 5	4.91	238			
కం	4.925	2 38 •5			
85	4.93	239			
90	4.93	239			
95	4.93	239			
100	4.93	239			

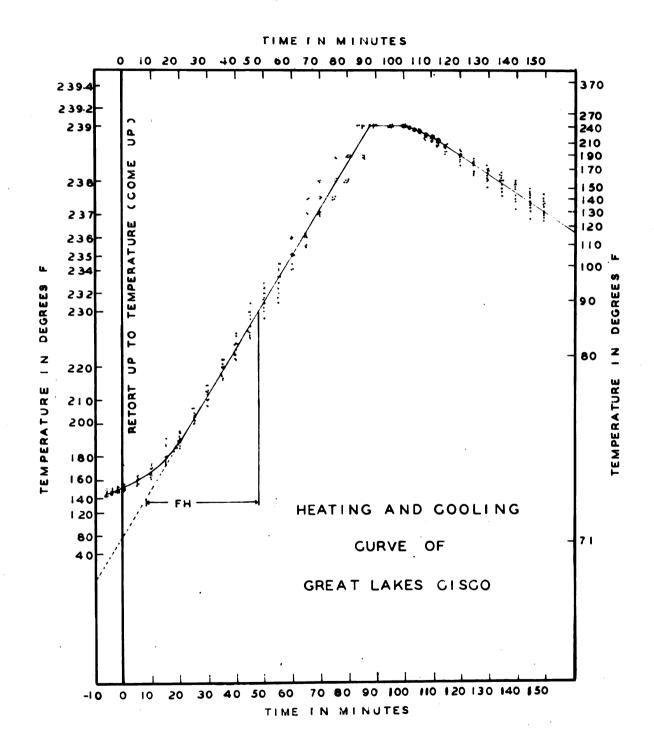
(40)
Table 17
Heating and Cooling Curve Data (9)

Time(mins.)	Millivolts To	emperature° F	Time(mins.) M	illivolts T	emperature F
- 6	2.50	142	102	4.895	237 •5
- 4	2.55	144	104	4.83	235
- 2	2.60	146.5	106	4.71	230
0	2.64	148	108	4.52	22 3
5	2.79	154	110	4.40	218
10	2.93	160	112	4.20	210
15	3.23	172	115	4.09	206
20	2.58	186	120	3.63	188
25	3. 94	200	125	3.30	175
3 0	4.14	208	130	3.∞	163
35	4.365	216.5	135	2.76	153
40	4.50	222	140	2.50	142
45	4.60	226	145	2.31	134
50	4.68	229	150	2.14	127
55	4.76	2 32			
60	4.81	234			
65	4.84	235.5			
70	4. 88	237			
75	4.895	237 •5			
. 80	4.91	238			
85	4.925	238.5			
90	4.93	239			
95	4.93	239			
100	4.93	239			

(41)
Table 18
Heating and Cooling Curve Data (10)

Time(mins.)	Millivolts Te	mperature°F	Time(mins.)	Millivolts Te	emperature F
- 6	2.69	150	102	4.84	235.5
- 4	2.71	151	104	4.83	235
- 2	2.77	153	106	4.71	230
. 0	2.81	15 5	108	4.57	2 25
5	3.02	164	110	4.45	220
10	3.25	173	112	4.32	215
15	3. 58	186	115	4.04	204
20	3.84	196	120	3.69	190
25	4.11	207	125	3.35	177
30	4.33	215	130	3.13	168
35	4.50	222	135	2.85	157
40	4.62	22 7	140	2.69	150
45	4.73	231	145	2.50	142
50	4.78	233	150	2.28	133
55	4.82	234.5			
60	4.86	236			
65	4.895	237•5			
70	4.91	238			
75	4.925	238.5			
80	4.925	238.5			
84	4.93	239			
90	4.93	239			
95	4.93 '	239			
100	.4.93	. 239			

(42)


Table 19

Heating and Cooling Curve Data (11)

Time(mins.) Mi	llivolts Te	mperature° F	Time(mins.) M	illi v olts T	'emperature° F
- 6	2.57	145	102	4.87	236.5
- 4	2.61	147	104	4.83	235
- 2	2.66	149	106	4.71	230
0	2.69	150	108	4.58	225.5
5	2.825	155.5	110	4.45	220
10	3.03	164	112	4.40	218
15	3.25	173	115	4.14	208
20	3.7 6	193	120	3.80	194.5
25	4.04	204	125	3.40	179
30	4.27	213	130	3.15	169
35	4.45	220	135	2.88	158
40	4.57	22 5	1 40	2 .7 6	153
45	4.71	230	145	2 . 55	144
50	4.74	231.5	150	2.33	135
55	4.795	233.5			
6c	4.83	235			
65	4.86	2 36			
70	¥ . 88	23 7	•		
75	4.91	238			
కం	4.92	2 38•5			
85	4.93	239			
90	4.93	239			
95	4.93	239			
100	4.93	239			

CHART 5

Heating and Cooling Curve of Great Lakes cisco

Weight data for heat penetration experiment of Great Lakes cisco

Can number	H	ત્ય	~	1 -	2	5	_	50	ת	10	#
Cen weight (grems)	68	96	68	91	88.5	91	68	98	68	91	\$8.5
Net weight (grams) 29	599	299	306	299	292.5	301	298	566	303	304	293
Drained weight (grams) 29	590	298	298	297.5	287.5	298.5	292	297	301.5	300	288

Summary of heat penetration data of Great Lakes cisco

Type of pack	Can Size Din	Cen Size Dimension	No. of test made	No. of test No.of Couples made used	Average W Net	Average Weight grams) Net Drained	Heating Curve fh j	0
Brine	No.1 standard	20 0x 411	11	9	299 . 4	295.3	1,68	3 50

Calculation of the thermal process

The calculation for the theoretical time of processing of canned cisco was based on the heating and cooling curve obtained above and the thermal death time curve of Clostridium botulinum established by Esty and Meyer (1922). From the curve of Esty and Meyer, the values F and Z which were necessary to determine the processing time were obtained. The value "F" is the number of minutes required to destroy the organism at 250°F, and it was found to be 2.78 minutes. The value "Z" signifies the slope of the curve expresses as degrees on the abscissa, equivalent to a change of one logarithmic cycle in time on the ordinate. The methods used for the calculation were after Ball (1928), and the result of the calculations is the number of minutes required to destroy the most heat resistant spores of Clostridium botulinum.

RT = 240°F

IT = 145°F

Ps.IT = 80°F

$$j = \frac{RT - Ps.IT}{RT - IT} = \frac{240 - 80}{240 - 145} = 1.68$$

I = RT - IT = 95

 $jI = 95 \times 1.68 = 159.60$

fh = 40

F = 2.78 (obtained from the curve of Esty and Meyer, 1922)

Z = 18° (obtained from the curve of Esty and Meyer, 1922)

F = 3.594 (obtained from F:Z tables, see Ball 1928)

U = FF = 3.594 \times 2.78 = 9.991

 $\frac{rh}{U} = \frac{40}{9.991} = 4.0$

But the come-up time is 6 minutes and Ball has shown this to have a value of .42 x 6 or 2.52 at retort temperature and this may be subtracted from the calculated heating time, i.e. 57.22 - 2.52 or 54.70 minutes.

Therefore the total heating or process time would be 54.70 + 6 or 60.70 minutes.

Discussion

The heating curve had a short thermal lag of six minutes at the beginning of the process, and then it was followed by a straight line curve on a semi-logarithmic paper. The slope of the curve and other related values were described in terms of fh and i values in Table 21.

In the calculation of the theoretical process time, the heat resistances of Clostridium botulinum in the canned food have been used from the curve established by Esty and Meyer, and the methods used were after Ball (1923,1928)

The process time calculated was the minimum time required to sterilize the canned cisco in question under the retort temperature of 240°F.

Since this was a preliminary experiment on process evaluation, the writer suggests that a safety factor of 10 per cent of the theoretically

Calculated value should be arbitrarily added.

SUGGESTED COMMERCIAL PROCEDURE FOR CANNING

Securing the raw materials

The cisco is captured by different types of commercial fishing gear. The most common types are the small mesh gill net, the pound net, and the trap net, according to the biennial report of the Michigan Department of Conservation.

Table 22

Catch of Great Lakes cisco by gear in thousands of pounds in 1945

From the B	lennial Repor	t of Michigan	Department	of Conserve	tion
	Small-mesh gill net	Large-mesh gill net	Pound net	Deep trap	Shallow trap net
Lake Michigan	94	1	2,316		14
Lake Superior	3,079	· •	11	-	-
Lake Huron	41	-	203	4	280
Saginaw Bay	కం	-	1	1	7 59
Total	3,294	1	2,531	5	1,053

Receiving and transportation

The commercial fishermen usually place the fish in wooden boxes aboard the fishing vessel for convenience in unloading and handling. These boxes of fish are unloaded and taken to the packing house as soon as the boats reach the dock. The fish are then packed in new boxes measuring approximately 30 inches long by 22-1/2 inches wide by six inches deep. These boxes are lined with waxed paper or building paper and partly filled with cracked ice before the fish are packed. After the desired weight of fish are packed in the box it is filled with ice and the cover nailed in place. They are then ready to be shipped. The packing could be simplified

unless they had to be shipped a long distance to the cannery. If
they were to be canned immediately, it would not be necessary to pack
them in new boxes or to line the boxes with paper. They could be
packed in ice as at present without covers on the boxes.

Grading

a part of the marketing process. The larger fish could be marketed fresh at a better price than the small ones thus leaving the smaller fish to be packed in cans. This would be more efficient than trying to can the larger fish which would make filling the cans more difficult and result in a higher loss in trimming the longer fish to the size of the can. The exact lengths of fish that might be put into the canning or fresh marketing grades remains to be established and would probably vary with the seasons and place since the different schools of cisco vary considerably from year to year and from day to day within the season.

Dressing and cleaning

Scaling. - After the fish are graded, those chosen for canning must be scaled. In scaling, thoroughness is essential so that no scales remain on the fish to be included in the cans, where they detract from the quality of the product. Scaling machines like the rotary scaler and the flexible shaft scaler can be used. Hand scaling is also practiced to a certain extent by some fish canneries. Inspection is necessary to ensure thoroughness of scaling.

Beheading. - Beheading of the cisco is done either by machine or by hand. In larger operations, cutting machines that remove the head and tail and leave the trunk part the correct length could be used

to advantage.

Eviscerating and cleaning. After the fish are scaled and beheaded, it is necessary to remove the viscera. This may be done by hand labor but machinery for this operation is available. If the volume of work is great enough, the machines would doubtlessly be more satisfactory. The fish should be inspected after this operation to insure complete removal of the intestinal tract and kidneys. The kidneys, especially, affect the flavor of the canned product adversely and they also turn a dark brown after processing and spoil the appearance of the pack. The fins should be completely removed at this time.

<u>Washing.- After cleaning and eviscerating is completed the remaining</u> piece of fish should be thoroughly washed in liberal quantities of running water and then placed in brine. It is well to avoid washing the fish in tanks since the accumulation of slime and waste makes a good medium for bacterial growth with consequent innoculation of fish with large quantities of spoilage organisms unless chlorination is practiced.

Brining

A salt solution testing 95-100° salinometer should be used and the cisco should be immersed in the brine for about 25 minutes to obtain satisfactory flavor. They should be immersed in liberal quantities of brine to insure complete, and even penetration of the salt.

Exhausting and sealing

Exhausting consists of heating the can and contents before sealing to remove air from the contents of the can and thereby reduce corrosion of the tin plate, since corrosion is favored by the presence of oxygen.

Another object is to create a vacuum to reduce gaseous spoilage.

The exhausting of the cisco is accomplished by immersing the filled cans in steam or in hot water in an exhaust box-at 212°F for 30 minutes

before sealing them.

Processing

Processing is the heating or sterilization of canned foods. The object of processing the cisco is to render the product stable against spoilage by microorganisms and to improve the texture, flavor, and appearance by cooking. Pressure retorts are commonly used. They are processed at 240°F at 10 pounds steam pressure. The range of time used by canners is from 30-90 minutes. The research laboratory of the National Canners Association reccommends the following for canning of brine packed Sea herring:

Cen size	Process time (minutes at 240°F)
No.1 Standard 211 x 400	70
No.1 Tall 301 x 411	75
No.300 300 x 407	7 5
No.2 307 x 409	ಶಂ

The required processing time calculated for the cisco is 60.7 minutes, or approximately 61 minutes. If a safety factor of 10 per cent is allowed, the processing time for these fish should be 67 minutes which approaches very closely the time recommended for the Sea herring.

SUMMARY

- 1. The Great Lakes cisco, Leucichthys artedi reaches a peak of production during the months of November and December in the Michigan waters of the Great Lakes. During this time, the market price drops to very low levels due to glutting of the market by an enormous quantity of the cisco. Consequently the product is poorly handled and often wasted. For these reasons canning is recommended.
- 2. The concentration of sodium chloride (fine table salt) used for brining was 96° salinometer. The range of time of brining used was from 15 minutes to 4 hours. The 25 minutes brining was found to be suitable for comercial brine pack.
- 3. Cans having 11.5 ounces fill-in weight were found to be well packed after processing, and for commercial purposes the cutout weight should probably be set at 11 ounces.
- The measurement of the rate of heat penetration was made by the use of copper-constantan thermocouples introduced into the centre of a can placed in the experimental retort after the fashion of M. Heerdt, et al (1947), and the rate of heat penetration was plotted on semilogarithmic paper. The value of the slope of the fh was 40, and the value j was 1.68, and the initial temperature was 145°F. This heat test was used as one of the two types of data for determining the calculated thermal process of the product. The writer also used the destruction time curve of Clostridium botulinum established by Esty and Meyer (1922). The method of calculation for the retort process was after Ball (1928,)
- 5. The theoretical process time was found to be 60.7 minutes to which the writer suggests adding a safety factor of 10 per cent, because the data was obtained under controlled conditions, and uncontrollable varying

factors might exist in commercial packing. Therefore, this calculated process merely serves as a guide for experimental packs.

LITERATURE CITED

Ball, C.O.

1923. Thermal process time for canned food. Bull. of the National Research Council. Vol.7, Part 1. No.37, 1923 pp 9-63

1928. Mathematical solution of problems on thermal processing of canned food. Univ. Calif. Publ. Pub. Health, Vol.2, No.1. 1928. pp 47-48, 193-218

Cruess, W.V.

1938 Commercial fruit and vegetable products. 2nd Edition 1938
(New York)

Esty, J.R., and Meyer, K.F.

The heat resistance of the spores of B.botulinus and allied anaerobes. Jour. Infect. Dis., 31:650-663

Heerdt, M. Jr.: Hoyos, F; and Cantillo, M.

New type thermocouple seal for tin containers.

Commercial Fisheries Review. Vol.9, No.5.1947. pp 10-11

Hinsdale, E.C.

Monthly wholesale receipts - Fishery products.

1944-5. United States Department of the Interior.

Fish and Wildlife Service. Division of Commercial Fisheries,

Market News Service.

Jarvis, N.D.

1943. Principles and methods in the canning of fishery products.

United States Department of the Interior. Fish and

Wildlife Service. Research Report No. 7.

Lang, O.W.

1935

Thermal processes for canned marine products. Univ.

Calif. Publ. Pub. Health Vol.2, No.1. 1935.

pp.85-165

Magoon, C.A. and Cuppepper, C.W.

1921

A study of the factors affecting temperature changes in the container during the canning of fruits and vegetables. U.S.D.A.Bull. No.956, 1921

Michigan Department of Conservation, Fish Division.

1945-6

Bien. Report No.13, 1945-6. pp 287-310

Stewart, J.A., and Clark, B.S.

1947

The canned food reference manual

American Can Company Research Division publication,

3rd Edition. 1947. pp 297-321,

Tack, P.I.

1944

Weight loss in dressing fish. Mich. Agr. Expt. Sta.

Quarterly Bull., Vol.27, No.2 November 1944

Tanner, F.W.

1944

The Microbiology of foods. 2nd Edition 1944

pp 17-19, 82-90, 945-1004 (Chempeign, Illinois)

•

T664 Vong

203184

