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ABSTRACT

NETWORK REACHABILITY: QUANTIFICATION, VERIFICATION,
TROUBLESHOOTING, AND OPTIMIZATION

By

Amir Reza Khakpour

Quantifying, verifying, troubleshooting, and optimizing the network reachability is essen-

tial for network management and network security monitoring as well as various aspects of

network auditing, maintenance, and design. Although attempts to model network reachabil-

ity have been made, feasible solutions for computing, maintaining and optimally designing

network reachability have remained unknown. Network reachability control is very critical

because, on one hand, reachability errors can cause network security breaches or service

outages, leading to millions of dollars of revenue loss for an enterprise network. On the other

hand, network operators suffer from lack of tools that thoroughly examine network access

control configurations and audit them to avoid such errors. Besides, finding reachability

errors is by no means easy. The access control rules, by which network reachability is re-

stricted, are often very complex and manually troubleshooting them is extremely difficult.

Hence, having a tool that finds the reachability errors and fix them automatically can be

very useful. Furthermore, flawed network reachability design and deployment can degrade

the network performance significantly. Thus, it is crucial to have a tool that designs the

network configurations such that they have the least performance impact on the enterprise

network.

In this dissertation, we first present a network reachability model that considers connec-

tionless and connection-oriented transport protocols, stateless and stateful routers/firewalls,

static and dynamic NAT, PAT, IP tunneling, etc. We then propose a suite of algorithms for



quantifying reachability based on network configurations (mainly access control lists (ACLs))

as well as solutions for querying network reachability. We further extend our algorithms and

data structures for detecting reachability errors, pinpointing faulty access control lists, and

fixing them automatically and efficiently. Finally, we propose algorithms to place rules on

network devices optimally so that they satisfy the networks central access policies. To this

end, we define correctness and performance criteria for rule placement and in turn propose

cost-based algorithms with adjustable parameters (for the network operators) to place rules

such that the correctness and performance criteria are satisfied.

We implemented the algorithms in our network reachability tool called Quarnet and

conducted experiments on a university network. Experimental results show that the of-

fline computation of reachability matrices takes a few hours and the online processing of a

reachability query takes 75 milliseconds on average. We also examine our reachability error

detection and correction algorithms on a few real-life networks to examine their performance

and ensure that Quarnet is efficient enough to be practically useful. The results indicate that

we can find reachability errors in order of minutes and fix them in order of seconds depending

on the size of network and number of ACLs. Finally, we added the rule placement suite of

algorithms to Quarnet, which can design a network ACL in based on the network central

policies in order of tens of minutes for an enterprise network. We compare it with Purdue

ACL placement, the state-of-the-art access policy design technique, and explain its pros and

cons.
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Chapter 1

Introduction

1.1 Motivation

Although computer networks are created to provide reachability between end hosts, various

sophisticated mechanisms, such as router Access Control Lists (ACLs) and firewalls, have

been deployed to limit such reachability for security or privacy purposes.As a critical in-

frastructure of national importance, the Internet faces unprecedented challenges for reliable

reachability. Correctly implementing the exact reachability that is needed for a large inter-

connected network is crucial. While more reachability than necessary may open doors to

unwanted and even malicious traffic causing sometimes irreparable damages, less reachability

than necessary may disrupt normal businesses causing huge revenue losses.

Unfortunately, in reality, network reachability management is often a mess for most net-

works due to its high complexity and the lack of advanced reachability debugging tools. First,

network configurations have become far more complex than even a skilled operator can cor-

rectly manage. The complexity of modern networks has been rapidly increasing due to the

explosive growth of Internet connectivity expanding from end-hosts to pervasive devices and
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network supported applications of various scales. Second, due to the lack of advanced reach-

ability debugging tools, the current common practice for reachability management is still

“trial and error”, which of course results in a plethora of reachability errors. Configuration

errors have been observed to be the largest cause of failure for Internet services [OGP03].

A recent Yankee Group report has shown that more than 62% of network downtime is due

to human configuration errors and more than 80% of IT budgets are allocated towards

maintaining just the status quo [Ker04]. Network operators face tremendous pressure to fix

problems quickly because operational networks often support critical business applications

and important communications; thus, the loss caused by network outrages becomes increas-

ingly acute. For example, the estimated revenue losses per hour of downtime for the industry

of media, banking, and brokerage are 1.2, 2.6, and 4.5 million dollars, respectively [Ker04].

Quantitative studies have shown that most firewalls are misconfigured [Woo04]. The reality

could be worse than these published staggering numbers as the errors of more reachability

than needed are often undetected, while less reachability than needed is a common source

of complaints to operators. Therefore, a scientific approach, instead of “trial and error”,

is needed to manage network reachability, which will continue to grow more complex as

networking technologies evolve.

As organizations continually transform their network infrastructure to maintain their

competitive edge by deploying new servers, installing new software and services, expanding

connectivity, etc, operators constantly need to manually modify their network configurations.

Ideally, such manual modifications should exactly implement the desired changes; however,

practically, they often come with undesirable, yet unnoticed, side effects on reachability.

Therefore, an automated tool that monitors the all-to-all reachability of a large intercon-

nected network in real-time is crucial to its successful management. Moreover, querying and
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verifying reachability is a routine, yet error-prone, task for operators. Hence, an automated

reachability query and verification tool as well as an automated reachability troubleshooting

tool that includes error detection and correction can be very critical for a network operator

to find errors proactively and fix them accordingly.

As network reachability deployment can have a significant impact on the performance

of the network, optimal design of the ACLs and their deployment is very essential for the

network operators, yet since it is too difficult to do so, it is often ignored. An ideal reacha-

bility deployment requires early discarding of unwanted traffic in the path to minimize the

wasted resources, and using the network devices capabilities efficiently to have the minimum

end-to-end delay between hosts in source and destination subnetworks. Early discarding of

unwanted packets reduces the number of unnecessary packet forwardings and probable net-

work congestions. Moreover, network devices have limited resources and capabilities; thus,

they should be used wisely. For instance, NetScreen-100 only allows 733 rules [LTM08],

which is an important fact that must be considered when the ACLs are designed. Another

example includes software firewalls (e.g. IPTables), which often scans through the ACL (or

the firewall policy) to find the first match for a given packet. For such firewalls, smaller

number of rules can lead to lower average packet processing time. Hence, it is highly advised

to keep the ACL size small so that the average packet processing time is minimized.

To enforce the right amount of network reachability, no more and no less, for a large

interconnected enterprise network to achieve access control, security, and privacy, in this

dissertation, we investigate four aspects of network reachability: quantification, querying,

troubleshooting, and optimization, and present a reachability management tool, which we

call Quarnet. Quantifying the reachability between any two subnets means to compute the

set of packets that can traverse from one subnet to another based on network configura-
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tions. Querying reachability means to ask questions like “who can access what?”. Network

reachability troubleshooting enables the network operator to find errors and fix them auto-

matically, which potentially avoid network outages and security breaches. Finally, reacha-

bility optimization helps the operator to design the network ACLs automatically, correctly,

and optimally in terms of performance. Such functionalities are useful in many aspects of

network management:

(1) Network Security Monitoring and Auditing : Verifying that the deployed ACLs satisfy

certain security specifications is an integral part of network security monitoring and audit-

ing. The current practice is to send probing packets. However, this approach has drawbacks.

First, it is infeasible to generate all possible probing packets. Second, as routing tables

change over time, the auditing result is valid only for a specific time. Combining the cur-

rent active probing approach with quantitative network reachability analysis, we can have

comprehensive security auditing for large enterprise networks.

(2) Network Troubleshooting : An important task for network operators is to troubleshoot

reachability problems when two hosts fail to communicate or there is unauthorized traffic

passing through a series of ACLs. For large complex networks, troubleshooting reachability

problems is extremely difficult. To check the reachability of a path, the current practice is to

check the reachability for every hop (i.e., routers or firwalls) in the path by actively sending

probing packets. This approach is disruptive, time consuming, and sometimes infeasible when

isolating some hops is impossible. In contrast, when the reachability of every path has been

pre-computed, troubleshooting reachability problems and identifying faulty ACLs is easy.

Quarnet can help to detect reachability errors, pinpoint faulty ACLs and automatically fix

them.

(3) Network Security Design, and Maintenance: Designing ACLs based on certain se-
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curity policies is a critical part of network design. If ACLs are designed manually, which

is often the case, it is important to first verify reachability before deployment. This helps

to avoid security breaches and service outbreaks caused by misconfigured ACLs. Second,

the access policy must be deployed on network devices such as routers and firewalls. As

mentioned, the correct deployment of access policy is not easy because of the complexity of

access policy rules. Furthermore, the access policies can have an impact on the network per-

formance. Thus, they should be deployed very carefully and of course correctly. In addition,

networks change over time with the evolving of topology and connected servers/hosts. Often

network changes require corresponding changes on ACL rules. Due to the interconnected

nature of networks, a modification on one ACL may have unnoticed side effects on network

reachability such as causing two servers to fail to communicate or opening security holes

by enabling unauthorized accesses. Thus, network reachability analysis helps to detect and

resolve potential problems before committing any change to ACLs.

As an alternative approach, it will be important to design ACLs and deploy them on the

network routers and firewalls automatically based on the network access policy. Such ACL

design must fully address the correctness and performance concerns.

1.2 Problem Statement

1.2.1 Reachability Quantification

Given a network topology and all the ACLs deployed on the network routers and firewalls,

what is the set of packets that can traverse the network from one subnet to another subnet?
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1.2.2 Reachability Verification

Given a network topology and all the ACLs deployed on the network routers, how to verify

certain properties to ensure that the access control configuration are correct and sound?

1.2.3 Reachability Troubleshooting

The problem of reachability troubleshooting can be stated as two subproblems: (1) Given

an error and all the ACLs on the current path between a source and destination subnet, how

to pinpoint faulty rule(s) and ACL(s) and how to fix it? (2) Given a network topology and

all the ACLs deployed on the network routers, how to proactively find reachability errors,

pinpoint faulty rule(s) and ACL(s) and fix them?

1.2.4 Reachability Optimization

Given a network topology, its central access policy, and its performance criteria, what is

the ACL for each individual classifier such that the ACLs all together enforce the correct

network reachability that satisfies the not only the network central access policy, but also

the network performance criteria?

1.3 Technical Challenges

Quantifying and verifying network reachability are hard. First, from the reachability per-

spective, the interaction among the rules in one ACL is already complex due to the multi-

dimensionality of ACL rules, but the interaction of multiple ACLs in interconnected networks

is even more complex. Second, routing and network topology have complex impact on reach-
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ability. There is typically more than one path between a source and a destination, and a

packet may only be able to traverse from the source to the destination via some, but not

all, available paths. Third, middleboxes often have complex impact on reachability. For

example, packet transforming middleboxes (such as NAT and PAT) and IP tunneling com-

plicate reachability calculation because they modify packets headers when they are traveling

in a network. Fourth, transport layer protocols also complicate reachability calculation be-

cause, for connection-oriented protocols, the reachability of both data path and signalling

path should be taken into account. It is even more challenging while there are some stateful

middleboxes in the path. Last but not least, the problem space is huge as the ACL rules are

typically specified over the standard 5-tuple with 104 bits in total.

In addition, for network troubleshooting we need to deal with a new set of challenges.

First, once the faulty ACLs that cause a reachability error are detected, we may have a choice

to fix one of the ACLs and resolve the error; however, finding the “best” ACL to fix is not

straight-forward. Second, proactively finding reachability errors, pinpointing faulty rules and

ACLs and fixing them is complicated. Third, since different paths between a pair of subnets

mingle together, their reachabilities are tightly dependent. Thus, to fix a reachability error

we may have a choice to find the best set of faulty ACLs to fix and resolve an error; however,

finding the best set of faulty ACL is a non-trivial problem.

For network reachability optimization, placing complex rules on paths that are not dis-

joint is not a trivial task. As rules often overlap, misplacement of a rule can result in wrong

reachability, which in turn causes network service inaccessibility or a security breach. More-

over, addressing multiple performance criteria at the same time to place rules optimally is

a challenging task. While we want to place rules close to the source subnetwork, a classifier

may have limited capacity for packet processing and accommodating rules. Since a network
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often includes hardware and software classifiers with different capabilities, the optimal rule

placement is even more difficult. In practice, hardware classifiers allow a limited number

of rules, yet their packet processing time is constant, whereas in software classifiers more

number of rules leads to greater packet processing delay.

1.4 Our Approach and Solution

In this dissertation, we present Quarnet, a tool that comprises a suite of concrete algo-

rithms for quantifying, querying, troubleshooting, and optimizing network reachability. For

reachability quantification, Quarnet takes a network topology and the ACLs deployed on

middleboxes as its input, and outputs reachability matrices that represent the lower-bound

reachability (i.e., the minimal set of packets that can traverse from a source to a destina-

tion at any time), instantaneous reachability (i.e., the set of packets that can traverse from a

source to a destination at a particular time), and upper-bound reachability (i.e., the maximal

set of packets that can traverse from a source to a destination at some time) for every pair of

source and destination subnets. For reachability querying, Quarnet allows network operators

to ask questions about the reachability of the subnets in their network, e.g., “which hosts

in subnet A can access the mail server in subnet B?”. We proposed a language for formally

specifying reachability queries. To efficiently process queries, we use decision diagrams as

the data structure for representing reachability matrices. For reachability troubleshooting,

Quarnet enables network operators to pinpoint faulty ACLs and fix them automatically.

Fixing errors can be done reactively upon the request of network operator, or proactively

by comparing reachability lower-bounds and upper-bounds. For reachability optimization,

Quarnet takes the network topology and network central access policy (either directly from
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the network operator or compute it using the deployed ACLs) and outputs the optimal ACL

for all classifiers in the network.

Quarnet can be deployed on a server as shown in Figure 1.1. Initially, this server first

collects the configuration file from each middlebox (via SNMP for example) and the network

topology from the operator and then computes reachability matrices offline. Afterwards,

network operators can perform reachability queries through a GUI interface, where each

query is then formulated by an SQL-like query language and processed by the Quarnet

query module. Fine-grained access control to reachability matrices can be enforced so that

different operators can perform different reachability queries. Each time the network oper-

ator changes the configuration of a middlebox or the topology of the network, the Quarnet

server needs to be notified, and the reachability matrices need to be updated accordingly. If

some reachability errors are reported either network users or network security appliances, an

operator can use Quarnet to pinpoint the faulty ACLs and fix them automatically. Quarnet

can report reachability inconsistencies caused by configuration errors on multiple paths from

two subnets automatically and fix them accordingly.

Quarnet can be also used in network reachability design. If the network operator provides

the Quarnet with the network central access policy, it can find the correct ACL design that

also addresses the network performance criteria. If the ACLs of a network have been already

deployed on the classifiers, the Quarnet server can collect them all, calculate the central

access policy, come up with correct and optimal ACL design, and accordingly push the new

ACLs to the network classifiers.
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Figure 1.1: Quarnet architecture (For interpretation of the references to color in this and all
other figures, the reader is referred to the electronic version of this dissertation)

1.5 Key Contributions

Our key contributions in this dissertation are as follows.

1. We propose a comprehensive reachability modeling and formulation that encompasses

dynamic NAT, PAT, IP tunneling, connection orientation of transport protocols, and

statefulness of middleboxes.

2. We propose efficient algorithms for computing network reachability using Firewall De-

cision Diagrams (FDDs).

3. We propose a probabilistic network reachability calculation technique to calculate

reachability in a more effective and realistic way.
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4. We propose a language as well as solutions for querying network reachability.

5. We formulate two types of network reachability errors.

6. We extend FDD data structure to support “rule and ACL tracking feature”, which

facilitates pinpointing faulty rules and ACLs.

7. We propose a suite of algorithms to detect reachability errors, pinpoint faulty rules

and ACLs, and fix them automatically considering network performance metrics.

8. We introduce a suite of algorithms to compute the optimal access policy deployment,

which satisfies the network cental access policy and complies with the network perfor-

mance criteria.

9. We implemented Quarnet in C++ and experimented on real-life enterprise networks

to evaluate the performance of proposed algorithms in terms of execution time and

memory usage.

1.6 Organization

The rest of the dissertation proceeds as follows. We first present our network reachabil-

ity model in chapter 2 and algorithms for computing reachability for networks without

NAT/PAT in chapter 3. We present algorithms for computing reachability for networks

with NAT/PAT in chapter 4. Querying network reachability is presented in chapter 5. We

define reachability errors and inconsistencies and propose algorithms to detect them in chap-

ter 6. We then explain how these errors can be fixed automatically and efficiently in chapter

7. Network reachability optimization algorithms are explained in chapter 8. We dedicate
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chapter 9 to discussion. We show and explain the experimental results in chapter 10. We

review related work later in the dissertation in chapter 11 for ease of understanding. Finally,

we summarize the work and explore future work in chapter 12.

The academic papers for this dissertation are in submission state; however, the major

part of this dissertation has been published in [KL10].
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Chapter 2

Reachability Modeling and

Formulation

In this chapter, we first introduce a network model, based on which we formulate three net-

work reachability metrics: lower-bound reachability, instantaneous reachability, and upper-

bound reachability. We also differentiate network reachability formulations based on trans-

port protocol types and the presence of network address translation.

2.1 Network Modeling

In this dissertation, we model a network as a non-simple directed bipartite graph G = (V, E ,F),

where V is a set of vertices, E is a set of arcs over V, and F is a set of ACLs. Each vertex

in V represents a subnet or a middlebox. We use the term “subnet” to represent a set of

adjacent subnetworks (i.e., local area networks (LANs) or VLANs, where either they have

the same reachability (i.e., there is no ACL deployed between any two subnetworks in the

set) or the reachability among the subnetworks is not a concern. For example, given an
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enterprise network, we represent the outside Internet as a subnet. The term “middlebox”

refers to any networking device that can forward packets from one subnet to another, such as

a network router, a firewall, a traffic shaper, or a L3 switch. Let N be the set of subnets in V

and R be the set of middleboxes in V. Each arc in E represents a unidirectional physical link

between a subset in N and a middlebox in R. Each ACL in F filters the packets traveling

on an arc in E .

We model network links as unidirectional arcs because every ACL is associated with a

unidirectional physical link and each bidirectional link can be modeled as two unidirectional

arcs. Note that some physical links, such as satellite links, are physically unidirectional. We

model a network as a bipartite graph because between two adjacent subnets there is at least

one middlebox and between any two middleboxes there exists at least one subnet. We model

a network as a non-simple graph because between a subnet and a middlebox there may exist

multiple physical links for backup.

Given a network with m middleboxes, where the maximum number of unidirectional

interfaces on a middlebox is denoted u, we represent the network by an m × u matrix I

called the Network Incident Matrix. Here I[i, j] = N if and only if subnet N connects to

middlebox i on its interface j, and I[i, j] = 0 if and only if no subnet connects to middlebox

i on its interface j. For simplicity, incoming interfaces are represented by even numbers

and outgoing interfaces are represented by odd numbers. Similarly, we represent the ACLs

deployed on the network by an m × u matrix A called the ACL Matrix. We use A[i, j] to

denote the ACL deployed on the j-th interface of middlebox i.

Figure 2.1(a) shows a network with three middleboxes and four subnetworks. Two VLANs

(S1 and S2) are connected to an L3 switch (SW). One subnetwork (S3) and a DMZ (S4) are

connected to firewall (FW). SW and FW are connected to the Internet through a gateway
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router (GW). Figure 2.1(b) shows graph representing the topology. Note that we assume

there is an ACL on each interface of the middleboxes. The graph consists of 11 vertices

representing the 8 subnets S1, . . ., S8 and the 3 middleboxes SW, FW, and GW. Note

that S1, . . ., S4 denote the four subnetworks LAN1, LAN2, LAN3, and DMZ, S5 denotes

the outside Internet, and S6, . . ., S8 denote the subnetworks that connects two adjacent

middleboxes. The network incident matrix for this network with m = 3 and u = 8 is as

follows:

I =















S1 S1 S2 S2 S6 S6 S7 S7

S3 S3 S4 S4 S7 S7 S8 S8

S5 S5 S6 S6 S8 S8 0 0















SiSi

S1

(LAN1)

GW

S1

FW

SW

S2

S3

S4

S6

S8

S5S7

GW

FW

SW

subnet

middlebox

S2

(LAN2)

S3

(LAN3)

S4

(DMZ)

S5

(Internet)

(a) (b)

Figure 2.1: Example network topology

Between any two directly connected middleboxes, our model assumes there is a subnet-

work because the middlebox interfaces may have a distinct IP address and an ACL guarding

that interface. The reachability of such a subnetwork is important because of several reasons.

First, there are often some management services on a middlebox (such as SNMP, Telnet, and
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SSH) that are accessible through each interface. Such services are intended to be used only

by network operators. Therefore, there are often some rules in the ACL deployed on each

interface to restrict the access to this subnetwork. Second, if a middlebox is compromised,

the source of the subsequent attacks is the IP address of an interface of the middle box;

thus, the reachability from that subnetwork to other subnetworks is critical. Indeed, if the

interfaces are not assigned IP addresses, the subnet is modeled with an empty address set;

henceforth, reachability to and from the subnetwork is empty.

An ACL consists of a list of rules, where each rule has a predicate over some packet header

fields and a decision (i.e., action) to be taken for the packets that match the predicate. The

decision of a rule is typically accept (i.e., permit) or discard (i.e., deny). As a packet may

match two rules in an ACL and the two rules may have different decisions, the decision for a

packet is the decision of the first (i.e., highest priority) rule that the packet matches. Table

2.1 shows an example ACL.

Rule Src IP Dst IP Src Port Dst Port Proto. Action
r1 35.9.1.0/24 192.168.0.1 * 80 TCP accept
r2 35.9.1.0/24 192.168.0.10 * 8080 TCP discard
r3 35.9.1.0/24 192.168.0.0/24 * * * accept
r4 * * * * * discard

Table 2.1: An example ACL

2.2 Reachability Formulation

Network reachability depends on not only some static factors, i.e., topology and ACL con-

figurations, but also some dynamic factors, i.e., routing states, where each is defined as a

snapshot of all the routing tables of the middleboxes in the network, and the one-to-one
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mapping tables of dynamic NATs and PATs. We formulate three types of network reach-

ability: lower-bound reachability, instantaneous reachability, and upper-bound reachability

for a given network topology and the ACL configurations. We define the lower-bound reach-

ability from subnet Ni to Nj as the set of packets that can go from Ni to Nj at any time.

We define the instantaneous reachability from subnet Ni to Nj as the set of packets that can

go from Ni to Nj at a particular time. We define the upper-bound reachability from subnet

Ni to Nj as the maximal set of packets that can go from Ni to Nj at some time.

Below we formulate instantaneous, upper-bound, and lower-bound reachability. In our

notations, we use “I”, “U”, and “L” to denote instantaneous, upper-bound, and lower-

bound reachability, respectively; we further use “CL” and “CO” to denote connectionless

and connection-oriented protocols.

In formulating network reachability, we differentiate connectionless transport protocols

(e.g., UDP, ICMP) and connection-oriented transport protocols (e.g., TCP). In connec-

tionless transport protocols, only the destination needs to be reachable from the source.

However, in connection-oriented transport protocols, both the source and destination need

to be reachable from each other to ensure the transmission of acknowledgment messages

between them. For connection-oriented transport protocols, we further differentiate the fol-

lowing three cases based on the statefulness of the routers on the path from a source to a

destination: (1) all routers are stateless, (2) all routers are stateful, and (3) some routers are

stateless and some are stateful. For stateful routers, because they monitor connection states,

they allow signaling packets associated with an existing connection to pass through and drop

signaling packets that are not associated with any connection. For stateless routers, they

match all signaling packets against their ACLs. Therefore, in calculating the reachability of

stateless routers, we need to consider the impact of their ACLs on signaling packets.
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2.2.1 Instantaneous Reachability

Given a network routing state s, which is a snapshot of all the routing tables of the middle-

boxes in the network, let Pi,j(s) denote the path from Ni to Nj at state s, and M denote

the number of hops/middleboxes on path Pi,j(s). For the k-th middlebox, we use C2k−1

to denote the ACL on the incoming middlebox interface and C2k to denote the ACL on the

outgoing middlebox interface.

For connectionless protocols (mainly the UDP protocol), the instantaneous reachability

from Ni to Nj is the intersection of the set of UDP packets accepted by every ACL on the

path from Ni to Nj . Thus, we calculated instantaneous reachability as follows:

RICL(i, j, s) =
2M
⋂

k=1

AUDP (Ck) (2.1)

where AUDP (Ck) is the set of UDP packets accepted by Ck.

For connection-oriented protocols (mainly the TCP protocol), the instantaneous reacha-

bility fromNi toNj also depends on the reachability of the acknowledgment (ACK) messages

from Nj to Ni. To incorporate the signaling path reachability of data path Pi,j(s), we dis-

tinguish the statefulness of the intermediate middleboxes according to the following three

cases: all middleboxes in Pi,j(s) are stateful, all middleboxes in Pi,j(s) are stateless, and

Pi,j(s) contains both stateful middleboxes and stateless middleboxes.

All middleboxes in Pi,j(s) are stateful: In any stateful middlebox on path Pi,j(s),

the state of every TCP session is stored in a state table to ensure that the corresponding

signaling messages can traverse back from Nj to Ni. Such messages are not checked against

any ACL of the middleboxes on path Pj,i(s). When a signaling message does not match any

entry in the state table of a stateful middlebox, the message is dropped and the connection
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will fail. Here we assume that the network is designed such that we have path-coupled

signaling on stateful firewalls and NAT, which means that the forward data path and the

backward signaling path contain the same set of middleboxes. The path-coupled property

holds for most existing networks [STA05,KSK+05]. Thus, when all middleboxes in Pi,j(s)

are stateful, the instantaneous reachability from Ni to Nj is the intersection of the set of

TCP packets accepted by every ACL on the path from Ni to Nj . Therefore, we calculated

instantaneous reachability for this case as follows, where ATCP (Ck) represents the set of

TCP packets accepted by ACL Ck.

RICO(i, j, s) =

2M
⋂

k=1

ATCP (Ck) (2.2)

All middleboxes in Pi,j(s) are stateless: If all the intermediate middleboxes are

stateless, we not only need to consider the data path from Ni to Nj , but also the signaling

path from Nj to Ni. Let Ã represent the set of accepted packets where in each packet the

values of source and destination IP address fields are swapped, and the values of source and

destination port number fields are also swapped. Field swapping is needed because in one

TCP session each data packet and its corresponding signaling packet have their IP addresses

and port numbers in the opposite order. Note that when all middleboxes in Pi,j(s) are

stateless, we do not need path-coupled assumption. Thus, the instantaneous reachability

for the connection-oriented and reliable protocols is the intersection of the set of accepted

TCP packets in the data path and the set of accepted TCP packets in the signaling path.

Therefore, we calculated instantaneous reachability for this case as follows, where the ACLs

on path Pj,i consists of C
′
1, C
′
2, . . . , C

′
2M ′

.
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RICO(i, j, s) =
2M
⋂

k=1

ATCP (Ck)
2M ′
⋂

k=1

ÃTCP (C′k) (2.3)

(Here
⋂2M
k=1ATCP (Ck)

⋂2M ′
k=1 ATCP (C′k) denotes ATCP (C1) ∩ · · · ∩ ATCP (C2M ) ∩

ATCP (C′1)1 ∩ · · · ∩ATCP (C′
2M ′

).)

Pi,j(s) contains both stateful middleboxes and stateless middleboxes: For state-

ful middleboxes, we again need assumption of path-coupled signaling. For stateless middle-

boxes, we do not need this assumption. Thus, the instantaneous reachability on Pi,j(s) is

the intersection of the set of accepted packets of stateful middleboxes calculated by formula

(2.2) and the set of accepted packets of stateless routers calculated by formula (2.3).

2.2.2 The Reachability Bounds

The Reachability Lower-bound from Ni to Nj , R
L(i, j), denotes the set of packets that can

traverse from Ni to Nj in all routing states. The Reachability Upper-bound from Ni to

Nj , R
U (i, j), denotes the maximal set of packets that can traverse from Ni to Nj in some

routing states. Let S denote the set of all routing states of a network. The reachability

lower-bound and upper-bound from Ni to Nj are calculated below:

Based on above definitions, the reachability upper-bound from Ni to Nj is the union of

the instantaneous reachability of all paths from Ni to Nj and the corresponding lower-bound

is the intersection of the instantaneous reachability of all paths from Ni to Nj . Thus, for

connectionless protocols, the reachability bounds are calculated as follows:

RUCL(i, j) =
⋃

s∈S

RICL(i, j, s) (2.4)
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RLCL(i, j) =
⋂

s∈S

RICL(i, j, s) (2.5)

Similar to the reachability bounds for connectionless protocols, the reachability bounds

of the connection-oriented protocols using formulas (2.2) and (2.3) are calculated below:

RUCO(i, j) =
⋃

s∈S

RICO(i, j, s) (2.6)

RLCO(i, j) =
⋂

s∈S

RICO(i, j, s) (2.7)

Computing reachability lower-bound and upper-bound is very useful. For example, lower-

bound reachability can be used to ensure that the available services on a subnet are reachable

regardless of routing states, and upper-bound reachability can be used to ensure that the

access to some services is restricted. Furthermore, the reachability upper-bound and lower-

bound are useful in verifying the correctness of ACLs. Ideally, the reachability upper-bound

and lower-bound from Ni to Nj should be the same (i.e., ∆R(i, j) = RU (i, j) − RL(i, j)

should be ∅). Otherwise, the ACLs have inconsistent decisions for the packets in ∆R(i, j):

sometimes they are allowed to traverse from Ni to Nj , and sometimes they are not. For

a packet ~ ∈ ∆R(i, j), if ~ should be constantly allowed to traverse from Ni to Nj , then

blocking ~ at some routing states may disrupt legitimate services; if ~ should be constantly

disallowed to traverse from Ni to Nj , then accepting ~ at some states may cause security

breaches.
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2.3 Reachability Formulation with NAT

Thus far, network reachability calculations are based on the assumption that packet header

fields are not changed in the traversal from a source subnet to a destination subnet. Actu-

ally, there may be some packet transformers, such as Network Address Translation (NAT)

and Port Address Translation (PAT), on the intermediate middleboxes that modify packet

headers. A NAT transformer on a middlebox may change the source address field of a packet

from x to x′ and keep a record of this transformation in a table, which is used to change

the destination field of the corresponding signaling packet from x′ to x. A PAT transformer

works similarly for port fields. Here, the path-coupled signaling assumption is necessary for

paths that contain packet transforming filters. Next, we present reachability formulations

for static and dynamic NAT.

2.3.1 Static NAT

Typically, a middlebox (such as a Cisco router [cis05] and IPtables [And06]) applies NAT to

a packet after it passes the ACL on the incoming interface and before it is sent to the ACL

on the outgoing interface. Let middlebox γ be the one on path Pi,j(s) that uses a packet

transformation (for source address or port number fields) function TS : Ni 7→ Ni
′, where

Ni
′ is the virtual subnet to which Ni is mapped. We use T−1

S
to denote the reverse function.

The instantaneous reachability for connectionless protocols is calculated using formula (2.1)

as follows:

RICL(i, j, s, TS) =

2γ−1
⋂

k=1

AUDP (Ck)
⋂

T−1S (

2M
⋂

k=2γ

AUDP (Ck)) (2.8)
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Note that applying function T−1
S

to
⋂2M
k=2γ AUDP (Ck) means changing the source fields

of every packet in
⋂2M
k=2γ AUDP (Ck) from Ni

′ to Ni.

The reachability bounds for connectionless protocols are calculated using formulas (2.4)

and (2.5) as follows:

RUCL(i, j, TS) =
⋃

s∈S

RICL(i, j, s, TS) (2.9)

RLCL(i, j, TS) =
⋂

s∈S

RICL(i, j, s, TS) (2.10)

For connection-oriented protocols, the middlebox γ in the data path is the middlebox γ′ in

the signaling path (based on the path-coupled assumption). The instantaneous reachability

formulation for data paths R→CO(i, j, s, TS) is as follows:

R→CO(i, j, s, TS) =

2γ−1
⋂

k=1

ATCP (Ck)
⋂

T−1
S

(
2M
⋂

k=2γ

ATCP (Ck)) (2.11)

Similarly, the instantaneous reachability formulation for signaling path R←CO(j, i, s, TD)

is as follows:

R←CO(j, i, s, TD) = T−1
D

(

2γ′−1
⋂

k=1

ATCP (C′k))
2M ′
⋂

k=2γ′
ATCP (C′k) (2.12)

where TD transforms the destination addresses of signaling packets from Ni to N
′
i .

Using formulas (2.11), (2.12), and (2.3), we formulate instantaneous reachability for

connection-oriented protocols as:

23



RICO(i, j, s, TS, TD) = R→CO(i, j, s, TS) ∩ R̃
←
CO(j, i, s, TD) (2.13)

Note that formula (2.13) can be easily generalized to handle the paths that have multiple

packet transformers.

The reachability bounds for connection-oriented protocols are formulated based on equa-

tions (2.6) and (2.7) as follows:

RUCO(i, j, TS, TD) =
⋃

s∈S

RICO(i, j, s, TS, TD) =
⋃

s∈S

R→CO(i, j, s, TS)
⋂ ⋃

s∈S

R̃←CO(j, i, s, TD)

(2.14)

RLCO(i, j, TS, TD) =
⋂

s∈S

RICO(i, j, s, TS, TD) =
⋂

s∈S

R→CO(i, j, s, TS)
⋂

s∈S

R̃←CO(j, i, s, TD)

(2.15)

2.3.2 Dynamic NAT

Unlike in static NAT, an address x in Ni is dynamically mapped to an address x′ in N ′i only

when x initiates a connection. Thus, the TS function in dynamic NAT is not well defined.

When a path contains a dynamic NAT transformer, computing the instantaneous reachability

of the path is infeasible. Furthermore, the reachability bounds need to be formulated over

both routing states and dynamic network address transformation. Therefore, the reachability

upper-bound from Ni to Nj in a network with dynamic NAT is defined as the set of packets

that can traverse from Ni to Nj under a viable routing state and a NAT transformation.

24



The reachability lower-bound from Ni to Nj in a network with dynamic NAT is defined as

the set of packets that can traverse from Ni to Nj under all routing states and all feasible

NAT transformations.

Given the routing state s and the transformation function TS , the instantaneous reach-

ability for connectionless protocols is similar to static NAT and is calculated using formula

(2.8). The reachability bounds for connectionless protocols however must include all possible

NAT transformations. Thus, using formulas (2.4), (2.5), and (2.8), the reachability bounds

for connectionless protocols are calculated as follows:

RUCL(i, j) =
⋃

s∈S

⋃

TS∈T

RICL(i, j, s, TS) (2.16)

RLCL(i, j) =
⋂

s∈S

⋂

TS∈T

RICL(i, j, s, TS) (2.17)

where T denotes all possible transformations on source fields.

For connection-oriented protocols, the instantaneous reachability is calculated similar

to static NAT using formula (2.13) for a given s, TS and TD. The reachability bounds

for connection-oriented protocols are calculated based on formulas (2.6), (2.7), (2.15), and

(2.15) as follows:

RUCO(i, j) =
⋃

s∈S

⋃

TS,TD∈T

RICO(i, j, s, TS, TD) (2.18)

RLCO(i, j) =
⋂

s∈S

⋂

TS,TD∈T

RICO(i, j, s, TS, TD) (2.19)
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2.4 Reachability Formulation with IP Tunneling

IP tunneling is achieved by encapsulating one IP packet inside another. It is commonly

used in enterprise networks. For example, IPv6 packets can be carried in IPv4 tunnels in a

network. In practice, IP tunnels are mostly used to send encrypted traffic from a private net-

work to another over public networks. Popular tunneling protocols include Generic Routing

Encapsulation (GRE) [FLHDM00], a stateless IP tunneling protocol with transport protocol

number 47, and Layer 2 Transport Protocol (L2TP), which operates on UDP protocol on

port 1701 [TVR+99].

Next, we formulate network reachability on paths with IP tunnels. Suppose we have an

IP tunnel between middleboxes γ and γ′ on path Pi,j(s). As packets from Ni to Nj are

encapsulated in IP packets with fixed source and destination addresses in the path from γ to

γ′, if the tunnel from γ to γ′ can be established, then all packets from Ni to Nj can traverse

from γ to γ′ inside the tunnel; otherwise, no packets from Ni to Nj can traverse from γ to

γ′ inside the tunnel. We denote the tunnel reachability from γ to γ′ by δ(~), where ~ is the

packet header for this IP tunnel. Thus, δ(~) is the complete set of packet Σ if the tunnel

can be established and δ(~) is empty if the tunnel cannot be established.

δI (~, s) =



















Σ if ~ ∈
⋂2γ′−1
k=2γ

A(Ck)

∅ otherwise

(2.20)

Using instantaneous tunnel reachability, the instantaneous reachability for connectionless

protocols is calculated using formula (2.1) as follows:
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RICL(i, j, s, ~) =





2γ−1
⋂

k=1

AUDP (Ck)



 ∩ δI (~, s) ∩







2M
⋂

k=2γ′
AUDP (Ck)






(2.21)

Similar to formulas (2.9) and (2.10), the reachability bounds for connectionless protocols

are calculated as follows:

RUCL(i, j, ~) =
⋃

s∈S

RICL(i, j, s, ~) (2.22)

RLCL(i, j, ~) =
⋂

s∈S

RICL(i, j, s, ~) (2.23)

For connection-oriented protocols, suppose the tunnel identified by ~1 is between middle-

boxes γ1 and γ′1 in the data path and the signaling path tunnel identified by ~2 is between

middleboxes γ2 and γ1 and γ′2. Note that in IP tunneling the data paths and signaling paths

can be decoupled. The instantaneous reachability formulation for data paths R→CO(i, j, s, ~1)

and signaling paths R←CO(j, i, s, ~2) are as follows:

R→CO(i, j, s, ~1) =





2γ1−1
⋂

k=1

ATCP (Ck)



 ∩ δI (~1, s) ∩









2M
⋂

k=2γ′1

ATCP (Ck)









R←CO(j, i, s, ~2) =





2γ2−1
⋂

k=1

ATCP (Ck)



 ∩ δI (~2, s) ∩









2M
⋂

k=2γ′2

ATCP (Ck)









Using above formulas and formula(2.3), we formulate instantaneous reachability for
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connection-oriented protocols as:

RICO(i, j, s, ~1, ~2) = R→CO(i, j, s, ~1) ∩ R̃
←
CO(j, i, s, ~2) (2.24)

Note that formula (2.24) can be easily generalized to handle the paths that have multiple

IP packet tunnels.

Similar to formulas (2.14) and (2.15), the reachability bounds for connection-oriented

protocols are formulated as follows:

RUCO(i, j, ~1, ~2) =
⋃

s∈S

RICO(i, j, s, ~1, ~2) =
⋃

s∈S

R→CO(i, j, s, ~1)
⋂ ⋃

s∈S

R̃←CO(j, i, s, ~2)

(2.25)

RLCO(i, j, ~1, ~2) =
⋂

s∈S

RICO(i, j, s, ~1, ~2) =
⋂

s∈S

R→CO(i, j, s, ~1)
⋂

s∈S

R̃←CO(j, i, s, ~2)

(2.26)

2.5 Probabilistic Reachability Computation

In a large-scale network, there could be exponential number of loopless paths between each

pair of subnets. However, because of network routing, only a small subset of these paths

is actually chosen to forward packets from a source to a destination. Thus, considering all

the possible paths to calculate the reachability bounds is unnecessary and can be avoided.

As routing protocols mostly choose the shortest path to the destination (i.e. the path with

minimum sum of link’s weights), we define effective paths, the subset of paths that are more

probable to be chosen between a source and a destination. Note that if an enterprise net-
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work uses policy based routing or any other types of routing mechanisms to find the best

path between a source and a destination, the effective paths can be computed accordingly.

Next, we compute the effective reachability bounds using effective paths rather than theo-

retical reachability bounds where all the possible paths are considered. Figure 2.2 shows

the theoretical reachability bounds and effective reachability bounds for a two fields (F1

and F2) packet header. It is clear that the effective upper-bound reachability is a subset of

theoretical upper-bound reachability and the effective lower-bound reachability is a superset

of theoretical lower-bound reachability.

2 1

Theoretical 

Lower-bound

Effective 

Lower-bound

Ideal Reachability

(Network Policy)

Effective 

Upper-bound

Theoretical 

Upper-bound

Theoretical Reachability Inconsistency 

Effective Reachability Inconsistency 

F1

F
2

Figure 2.2: Reachability bounds and reachability inconsistencies

To calculate the set of effective paths, we first compute the probability for each path

to be chosen by routing daemon as the shortest path (given a weight for each link and the

probability that the link is up and working). We then remove the paths that are unlikely

be chosen using parameter ǫi,j , which is the network reachability uptime between Ni and

Nj . Network reachability uptime is the percentage of time that the calculated reachability

29



is applicable. Note that ǫi,j is bounded by network uptime for between Ni and Nj , denoted

Υi,j (ǫi,j ≤ Υi,j), which indicates the percentage of time that subnets Ni and Nj are

connected. For instance, Υi,j = 99.999% and ǫi,j = 99.99% indicate that Ni and Nj are

connected in 99.999% of the time and the calculated reachability between them is applicable

in 99.99% of the time.

Given Pi,j , let La be the set of links, denoted by ℓb, that construct path pa ∈ Pi,j . Let

wa be the weight for path pa. Thus, wa =
∑

ℓb∈La
wℓb

where wℓb
is the link weight for ℓb.

Let P̄i,j be the sequence of all the paths between two given subnets sorted ascendingly by

their weights as follows:

P̄i,j = {〈p1, . . . , pa, . . . , pb, . . . , p|Pi,j |
〉|a < b, wa ≤ wb}

Let πa denotes the probability that path pa be used by the network to forward packets

from the source subnet to the destination subnet. The effective paths, denoted by P̄ ei,j , are

the subsequence of the paths whose sum of probabilities to be used is less than ǫi,j . We

formally define P̄ ei,j = 〈p1, p2, . . . , pk〉 where

max
k

k
∑

a=1

πa ≤ ǫi,j

Note that the πas are independent and
∑
|Pi,j |

a=1 πa = Υi,j .

As routing protocols choose the shortest path whose links are all up and available, path

pa ∈ P̄i,j will be chosen if p1, . . . , pa−1 are down and path pa is up. Path pa is up, if and

only if all the links in La are up and available. Knowing that, to calculate πa, we use the

reliability theory [Ros07] such that we calculate the probability that p1, . . . , pa−1 are down
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and pa is up. To formulize πa, let x = (x1, . . . , xh) be the state vector for all the h links in

the network where xb is an indicator variable and defined as follows:

xb =











1, if link ℓb is up

0, if link ℓb is down

We define the structure function ϕa(x) as follows

ϕa(x) =











1, if path pa is up

0, if path pa is down

Using the definition, the structure function is given by

ϕa(x) =
∧

ℓb∈pa

xb (2.27)

We then define a new function ψa(x) that indicates if pa is chosen by the routing daemon.

Therefore, it is clear that ψa(x) = 1 if last a − 1 paths are down and path pa is up. Thus,

ψa(x) is calculated as follows:

ψa(x) :=

a−1
∧

k=1

¬ϕk(x) ∧







∧

ℓb∈pa

xb






, (a > 1) (2.28)

Note that ϕ0(x) = 0 and ψ1(x) = ϕ1(x).

Using formula (2.28), πa = Prob{ψa(x) = 1}. Thus, to calculate πa, we need to find

assignments that make ψa(x) = 1. Toward this end, we calculate minterms of ψa(x) to

declare it in disjunctive normal form (DNF). Let πℓb
be the probability that link ℓb is up

and working. Prob{ψa(x) = 1} is the sum of the product of the πℓb
associated with element
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xb ∈ x.

Network monitoring devices can measure πℓb
using link uptime based on router logs and

network events. In our calculation, for sake of simplicity, we assume that the links uptime

are independent from each other. However, in practice, when some network device fails

more than one link may be down. Hence, we either need to calculate an upper bound for

Prob{ψa(x) = 1} or calculate Prob{ψa(x) = 1} using the probability of πa retrieved directly

from empirical measurement by monitoring devices.

N1 N2

N3 N4

N1 N2

(a) An example network

(b) Paths structure from N1 to N2

p1

p2

p3

1
 

2
 3

 
4

 

5
 

1
 

2
 

3
 

2
 

5
 

4
 

Figure 2.3: Example network

Figure 2.3(a) shows an example network with four routers and four subnets. Figure

2.3(b) illustrates the structure model of paths between N1 and N2. Considering each link

has a weight equal to 1, The paths are going to be sorted as P̄1,2 = 〈p1, p2, p3〉 where

L1 = {ℓ1}, L2 = {ℓ2, ℓ3} and L3 = {ℓ2, ℓ4, ℓ5}.

ψ1(x) := 1 ∧ (x1)

ψ2(x) := (¬(x1)) ∧ (x2 ∧ x3)

ψ3(x) := (¬(x1)) ∧ (¬(x2 ∧ x3)) ∧ (x2 ∧ x4 ∧ x5)
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Given πℓ1
, · · · , πℓ5

as 0.95, 0.9, 0.99, 0.8, and 0.98, respectively, the minterms for ψa and

subsequently, πa are as follows:

ψ1(x) : minterms= 1---- ⇒ π1 = πℓ1
= 0.95

ψ2(x) : minterms= 011-- ⇒ π2 = (1− πℓ1
)πℓ2

πℓ3
= 0.04455

ψ3(x) : minterms= 01011 ⇒ π3 = (1− πℓ1
)πℓ2

(1− πℓ3
)πℓ4

πℓ5
= 3.528× 10−3

where - denotes “don’t care”.

In this example, we can calculate Υ1,2 ≃ 99.49%. And, supposing ǫ1,2 = 99.46%, the

effective paths are P̄ e1,2 = 〈p1, p2〉.

Note that in practice if there are paths with same weights, the routing daemon usually

picks one of the paths randomly. In such a case, we have multiple path sequences and the

effective paths are the union of effective paths for each path sequence. For instance, if the

weights for p1 and p2 are the same, there are two possible path sequences, P11,2 = 〈p1, p2, p3〉

and P21,2 = 〈p1, p3, p2〉 and accordingly, Pe11,2 = 〈p1, p2〉 and Pe21,2 = 〈p1, p3, p2〉, thus,

Pe1,2 = Pe11,2 ∪ P
e2
1,2 = 〈p1, p2, p3〉.

For the connection-oriented protocols, we have to consider both data paths and signaling

paths. Let
−→
P̄ i,j and

←−
P̄ i,j be the sorted paths sequence for data path and signaling paths.

Accordingly, the structure function for path pα ∈
−→
P̄ i,j and pβ ∈

←−
P̄ i,j , denoted by ψα,β(x),

is calculated as follows:

ψα,β(x) = ψα(x) ∧ ψβ(x)

Accordingly, we calculate πα,β = Prob{ψα,β(x) = 1} same as connectionless protocol. Note

that as the link set Lα in data path pα may not be disjoint with the link set Lβ in signaling

path pβ , there may not be any assignment for ψα,β(x) = 1. In other words, some of the

combination of data paths and signaling paths are not possible in practice. An example
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of which can be the case if data path is p1 and the signaling path is p2, then ψ1,2(x) =

(x1)∧ ((¬(x1)) ∧ (x2 ∧ x3)) has no minterms, which means π1,2 = Prob{ψ1,2(x) = 1} = 0.

By calculating the sequence of effective paths (Pei,j) using network reachability uptime

(ǫi,j) and link weights for paths between Ni and Nj , we can trim the instantaneous reacha-

bility matrix from the routing states whose paths are not in Pei,j . This is to avoid unnecessary

reachability computations for the paths that are unlikely to be used in the network. As the

number of effective paths could be significantly less than the total number of paths between

each pair of subnets, we can save considerable amount of time and memory for reachability

computation. This computation saving is not only for instantaneous reachability matrices,

but also for reachability bounds matrices. Note that by using probabilistic reachability ma-

trices the reachability troubleshooting process is more efficient and practical as fewer paths

should be checked and fixed.

Given the sequence of effective paths (Pei,j), the effective reachability bounds (R̂UCL(i, j))

between Ni and Nj using formulas (2.4), (2.5), (2.6), and (2.7) are as follows:

R̂UCL(i, j) =
⋃

s∈Se
RICL(i, j, s) , R̂LCL(i, j) =

⋂

s∈Se
RICL(i, j, s) (2.29)

R̂UCO(i, j) =
⋃

s∈Se
RICO(i, j, s) , R̂LCO(i, j) =

⋂

s∈Se
RICO(i, j, s) (2.30)

where Se is the set of routing states that associate with effective paths.
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Chapter 3

Algorithms for Computing

Reachability Matrices

In this section, we present algorithms for computing reachability for networks with no packet

transformation filters.

3.1 Reachability Matrices

We represent network reachability as the six matrices shown below. We use n to denote

the number of subnets, and z to denote the maximum number of paths between any pair of

subnets.

1. AICL[1..n, 1..n, 1..z] where each element AICL[i, j, k] is the set of packets representing

the instantaneous reachability from Ni to Nj on the k-th path for connectionless

protocols.

2. AICO[1..n, 1..n, 1..z, 1..z] where each element AICO[i, j, k, k′] is the set of packets rep-

resenting the instantaneous reachability from Ni to Nj on the k-th data path and the
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k′-th signaling path for connection-oriented protocols.

3. ALCL[1..n, 1..n] where each element ALCL[i, j] is the set of packets representing the

lower-bound reachability from Ni to Nj for connectionless protocols.

4. ALCO[1..n, 1..n] where each element ALCO[i, j] is the set of packets representing the

lower-bound reachability from Ni to Nj for connection-oriented protocols.

5. AUCL[1..n, 1..n] where each element AUCL[i, j] is the set of packets representing the

upper-bound reachability from Ni to Nj for connectionless protocols.

6. AUCO[1..n, 1..n] where each element AUCO[i, j] is the set of packets representing the

upper-bound reachability from Ni to Nj for connection-oriented protocols.

3.2 Basic Data Structures and Algorithms

For any ACL l, we define the accept set of l, denoted accept(l), to be the set of packets

that can be accepted by l. In this section, we first consider the following core problem in

computing network reachability matrices: given two ACLs l1 and l2, how can we compute

accept(l1 ) ∩ accept(l2 ) and accept(l1 ) ∪ accept(l2 )? Our algorithm for this computation

consists of three steps: FDD construction, FDD shaping, and FDD logical operations.

3.2.1 Step I - FDD Construction

In this step, we convert each ACL to an equivalent Firewall Decision Diagram (FDD). FDD

was introduced by Gouda and Liu in [GL07] as a data structure for representing access

control lists. In nutshell, an FDD is a decision tree where nodes are rule fields (or packet
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fields) and edges are labeled by a set of intervals. The leaves of the tree are the actions that

have to be taken for the matched packet. As a formal definition, a firewall decision diagram

with a decision set DS and over fields F1, · · · , Fd is an acyclic and directed graph that has

the following five properties: A firewall decision diagram with a decision set DS and over

fields F1, · · · , Fd is an acyclic and directed graph that has the following five properties: (1)

There is exactly one node that has no incoming edges. This node is called the root. The

nodes that have no outgoing edges are called terminal nodes. (2) Each node v has a label,

denoted F (v), such that F (v) ∈ {F1, · · · , Fd} if v is a nonterminal node and F (v) ∈ DS

if v is a terminal node. (3) Each edge e:u → v is labeled with a nonempty set of integers,

denoted I(e), where I(e) is a subset of the domain of u’s label (i.e., I(e) ⊆ D(F (u))). (4) A

directed path from the root to a terminal node is called a decision path. No two nodes on

a decision path have the same label. (5) The set of all outgoing edges of a node v, denoted

E(v), satisfies the following two conditions: (i) Consistency : I(e) ∩ I(e′) = ∅ for any two

distinct edges e and e′ in E(v). (ii) Completeness :
⋃

e∈E(v) I(e) = D(F (v)).

decisions are {1, 0} where 1 represents accept and 0 represents discard. We call such

FDDs “Binary FDDs”. In converting an ACL to an equivalent binary FDD, we replace

all flavors of accept, such as accept and accept with logging, by 1, and replace all flavors of

discard, such as discard, reject, and discard/reject with logging, by 0. We further define a

full-length ordered FDD as an FDD where in each decision path, all fields appear exactly

once and in the same order. For ease of presentation, in the rest of this dissertation, we

use the term “FDD” to mean “binary full-length ordered FDD” if not otherwise specified.

Figure 3.1(b) shows the two FDDs constructed from the two ACLs in 3.1(a).

An FDD construction algorithm, which converts a sequence of range rules to an equivalent

full-length ordered FDD, is described in [LG08]. For computing reachability matrices, we
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F1 [1,   30] F2 [1,  20]   a

F1 [1,   30] F2 [1, 100]  d
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Figure 3.1: (a) Two ACLs (b) Two FDDs before shaping (c) Two FDDs after shaping (d)
FDD logical AND/OR

choose the protocol type field as the label of the root node.

We call the decision paths whose terminal nodes are labeled 1 accept paths. Similarly, we

call the decision paths whose terminal nodes are labeled 0 discard paths. Given an ACL l,

after we convert it to an equivalent FDD f , the accept paths of f represent the set accept(l).
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3.2.2 STEP II - FDD Shaping

In the previous step, we convert the two given ACLs l1 and l2 to two FDDs f1 and f2

such that l1 is equivalent to f1 and l2 is equivalent to f2. In this step, we further convert

the two FDDs f1 and f2 to another two FDDs f1
′ and f2

′ such that the following three

conditions hold: (1) f1 is equivalent to f1
′, (2) f2 is equivalent to f2

′, and (3) f1
′ and f2

′

are semi-isomorphic. Two FDDs are semi-isomorphic if and only if they are exactly the same

except the labels of their terminal nodes [LG08]. The algorithm for equivalently converting

two FDDs to two semi-isomorphic FDDs is described in [LG08]. Fig. 3.1(c) shows the two

semi-isomorphic FDDs converted from the two FDDs in Fig. 3.1(b).

3.2.3 STEP III - FDD Logical AND/OR Operations

In previous steps, we equivalently convert two given ACLs l1 and l2 to two semi-isomorphic

FDDs f1
′ and f2

′. In this step, we compute accept(l1 ) ∩ accept(l2 ) and accept(l1 ) ∪

accept(l2 ) using f1
′ and f2

′.

For any two semi-isomorphic FDDs f1
′ and f2

′, we define f1
′ ∧f2

′ as a new FDD f such

that f is semi-isomorphic to f1
′ (and f2

′) and a terminal node in f is labeled 1 if and only if

the two corresponding nodes in f1
′ and f2

′ are both labeled 1 (otherwise is labeled 0). This

implies that the accept paths of f1
′ ∧ f2

′ are the intersection of the set of accept paths in

f1
′ and that in f2

′. Therefore, we can calculate accept(l1 ) ∩ accept(l2 ) by calculating the

accept paths in f1
′ ∧ f2

′.

Similarly, for any two semi-isomorphic FDDs f1
′ and f2

′, we define f1
′ ∨ f2

′ as a new

FDD f such that f is semi-isomorphic to f1
′ (and f2

′) and a terminal node in f is labeled

0 if and only if the two corresponding nodes in f1
′ and f2

′ are both labeled 0 (otherwise
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is labeled 1). This implies that the accept paths of f1
′ ∨ f2

′ are the union of the set of

accept paths in f1
′ and that in f2

′. Therefore, we can calculate accept(l1 ) ∪ accept(l2 ) by

calculating the accept paths in f1
′ ∨ f2

′.

Note that after each FDD AND/OR operation, it is important to perform FDD reduction

in order to bring down the FDD size expansion caused by the shaping procedure. An FDD is

reduced if and only if it satisfies the following two conditions: (1) no two nodes are isomorphic;

(2) no two nodes have more than one edge between them. Two nodes v and v′ in an FDD

are isomorphic if and only if v and v′ satisfy one of the following two conditions: (1) both v

and v′ are terminal nodes with identical labels; (2) both v and v′ are nonterminal nodes and

there is a one-to-one correspondence between the outgoing edges of v and the outgoing edges

of v′ such that every pair of corresponding edges has identical labels and both edges point

to the same node. An efficient FDD reduction algorithm that processes the nodes level by

level from the terminal nodes to the root node using signatures to speed up comparisons is

in [LMTar]. We use an efficient FDD reduction algorithm that processes the nodes level by

level from the terminal nodes to the root node using signatures to speed up comparisons. In

our experiments, we have found that applying FDD reduction is critical in reducing memory

usage for computing network reachability.

3.3 Computing Path and FDD Matrices

We next discuss the computing of two matrices, called path matrix and FDD matrix, which

will be used in computing reachability matrices. The path matrix P is an n × n matrix

where each element P [i, j] is the set of one-way paths from Ni to Nj . For each path, letting

l1, · · · , lh be the ACLs along the path, we compute the FDD that represents accept(l1 ) ∩
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· · ·∩accept(lh). The resulting FDDs are stored in the FDD matrix F , which is also an n×n

matrix.

First, we initialize matrices P and F as follows. For any 1 ≤ i, j ≤ n, if there is path

from Ni to Nj via a middlebox, then P [i, j] consists of this path (which is composed of

two links: the link from Ni to the middlebox and the link from the middlebox to Nj) and

F [i, j] consists of the FDD that represent the intersection of the accept sets of the two ACLs

associated with the two links; otherwise, P [i, j] and F [i, j] are both empty.

Second, we complete matrices P and F based on formulas (3.1) and (3.2) using dynamic

programming. We use P [i, k] ◦ P [k, j] to denote the set of paths where each path is a

concatenation of a path in P [i, k] and a path in P [k, j]. Similarly, we use F [i, k] ∧ F [k, j]

to denote the set of FDDs where each FDD is the logical AND of an FDD in F [i, k] and

an FDD in F [k, j]. Note that we remove all paths with cycles because cycles are typically

prevented by routing protocols.

P [i, j] =
⋃

k∈N

P [i, k] ◦ P [k, j] (3.1)

F [i, j] =
⋃

k∈N

F [i, k] ∧ F [k, j] (3.2)

Third, for each FDD in F [i, j], we reduce the domain of the source IP address field to the

set of IP addresses used in subnet Ni and the domain of the destination IP address field to

the set of IP addresses used in Nj . We use src(Ni) to denote the set of packets whose source

IP address is in Ni and dst(Nj) to denote the set of packets whose destination IP address is

in Nj . We use fdd(src(Ni)) to denote the FDD that represents src(Ni) and fdd(src(Nj))

to denote the FDD that represents dst(Nj). Therefore, in this step, we replace each FDD f
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in F [i, j] by fdd(src(Ni)) ∧ f ∧ fdd(dst(Nj).

3.4 Computing Reachability Matrices

We are now ready to compute the 6 reachability matrices.

3.4.1 Reachability for Connectionless Protocols

For any 1 ≤ k ≤ |F [i, j]|, we use F [i, j]k to denote the k-th FDD in F [i, j] and P [i, j]k to

denote the k-th path in P [i, j]. We use SubCL(F [i, j]k) to denote the UDP subtree of FDD

F [i, j]k. Recall that in computing reachability we choose protocol type to be the label of

the root node. Therefore, the instantaneous reachability of the path P [i, j]k is:

AICL[i, j, k] = SubCL(F [i, j]k) (3.3)

Accordingly, based on formulas (2.4) and (2.5), the reachability upper-bound and lower-

bound from Ni to Nj are calculated as follows:

AUCL[i, j] = SubCL(

|F [i,j]|
∨

k=1

F [i, j]k) (3.4)

ALCL[i, j] = SubCL(

|F [i,j]|
∧

k=1

F [i, j]k) (3.5)

3.4.2 Reachability for Connection-oriented Protocols

We first consider the case that all middleboxes on paths from Ni to Nj are stateful. We

use SubCO (F [i, j]k) to denote the TCP/ICMP subtree. The instantaneous, upper-bound,
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and lower-bound reachability matrices are calculated using formulas (2.2), (2.6) and (2.7),

as follows:

AICO[i, j, k] = SubCO (F [i, j]k) (3.6)

AUCO[i, j] = SubCO (

|F [i,j]|
∨

k=1

F [i, j]k) (3.7)

ALCO[i, j] = SubCO (

|F [i,j]|
∧

k=1

F [i, j]k) (3.8)

Second, we consider the case that all middleboxes on paths from Ni to Nj are state-

less. As discussed in chapter 2.2.1, for the instantaneous reachability, we need to look at

the reachability of each data path P [i, j]k and the corresponding signaling path P [j, i]
k′ .

The swapping operator is implemented by function SwapSD. For an FDD f , the function

SwapSD(f) basically swaps the labels of source fields and destination fields. The instan-

taneous, upper-bound, and lower-bound reachability matrices are calculated using formulas

(2.3), (2.6), and (2.7), as follows:

AICO[i, j, k, k′] = SubCO (F [i, j]k ∧ SwapSD(F [j, i]
k′)) (3.9)

AUCO[i, j] =

|F [i,j]|
∨

k=1

|F [j,i]|
∨

k′=1

AICO[i, j, k, k′] (3.10)

ALCO[i, j] =

|F [i,j]|
∧

k=1

|F [j,i]|
∧

k′=1

AICO[i, j, k, k′] (3.11)

For the case that the paths fromNi toNj contain both stateful and stateless middleboxes,
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we use the formulas (3.6), (3.7), and (3.8) to handle the stateful middleboxes and formulas

(3.9), (3.10), and (3.11) to handle stateless middleboxes.

To compute the reachability for paths with IP tunneling based on formulas (2.21) and

(2.24), we need to use an FDD to represent δI (~, s) according to formula (2.20). Thus, we

create two FDDs namely “all-accept” FDD and “all-discard” FDD to represent Σ and ∅,

respectively. The “all-accept” and “all-discard” FDDs contains 5 nodes (for 5-tuple packet)

and 5 edges that are all labeled by node’s complete domain (D(F (v))). The decision for

‘all-accept” FDD is 1 and for “all-discard” FDD is 0.

3.4.3 Probabilistic Reachability Computation

Given the sequence of effective paths (Pei,j), we first compute probabilistic reachability ma-

trices ÂICL and ÂICO similar to AICL and AICO using formulas (3.3) and (3.9) but only for

effective paths. We then compute the effective reachability bounds based on formulas (2.29)

and (2.30) as follows:

ÂUCL[i, j] =
∨

p∈Pei,j

ÂICL[i, j, p] , ÂLCL[i, j] =
∧

p∈Pei,j

ÂICL[i, j, p] (3.12)

ÂUCO[i, j] =
∨

p∈Pei,j

ÂICO[i, j, p] , ÂLCO[i, j] =
∧

p∈Pei,j

ÂICO[i, j, p] (3.13)
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Chapter 4

Handling Packet Transformers

In this section, we present algorithms for computing reachability for networks that have

packet transformation filters. There are two types of packet transformers, Network Address

Translation (NAT) and Port Address Translation (PAT). We use the terms private subnet

and private addresses to refer to respectively, the source subnet and its address pool, which

is behind NAT middlebox. Similarly, we use the terms public subnet and public addresses

to refer the virtual subnet and its address pool after NAT transformer, respectively. There

are two types of NAT transformation: Static NAT and Dynamic NAT. A static NAT uses

a static one-to-one mapping from private addresses to public addresses. This mapping table

is configured by network administrators. A dynamic NAT maps private addresses to public

addresses on-the-fly randomly. In Port Address Translation (PAT), all private addresses are

mapped to a single public IP address but with different source port numbers, where each

port number is designated for a connection initiated from the private subnet. Port address

assignment is random.

In presenting our solution for handling packet transformers, we assume that all paths from

one subnet to another need to go through the same packet transformer. This assumption
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is purely for the ease of presentation, and it imposes no limitation on our solutions for

general cases. First, for paths that contain no packet transformers, we can easily compute

reachability by combining the algorithms in this section and those in Section 3. Second,

our algorithms below can be easily extended to paths that contain more than one packet

transformers by dividing each path into multiple chunks where each chunk contains only one

packet transformer.

4.1 Reachability for Connectionless Protocols

We discuss reachability computation based on packet transformer types: static NAT, dy-

namic NAT, and PAT.

4.1.1 Static NAT

To handle static NAT, we only need to change the algorithm for computing an FDD matrix

as follows. Given the k-th path from Ni to Nj , which contains a static NAT that maps

addresses in Ni to N
′
i , we call the path from Ni to the NAT middlebox a private subpath

and the path from the NAT middlebox to Nj a public subpath. Let fr and fu be the FDDs

that represent the set of packets that can be accepted by the ACLs on the private subpath and

those on the public subpath respectively. We still use TS to denote the packet transformation

function of the static NAT. Therefore, src(Ni) ∧ fr ∧ dst(Nj) represents the packets that

can traverse on the private subpath with source addresses in Ni, and src(N ′i)∧ fu∧dst(Nj)

represents the packets that can traverse on the public subpath with source addresses in N ′i .

Based on formula (2.8), the set of packets that can traverse from Ni to Nj passing the NAT

can be calculated as follows:
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F [i, j]k = (src(Ni) ∧ fr ∧ dst(Nj)) ∧ T
−1
S

(src(N ′i) ∧ fu ∧ dst(Nj)) (4.1)

After this, reachability matrices can be computed using formulas (3.3), (3.4), and (3.5).

Note that the operation T−1
S

(src(N ′i) ∧fu ∧ dst(Nj)) basically replaces every source IP

address x′ in the domain of N ′i to x in the domain of Ni for FDD src(N ′i) ∧ fu ∧ dst(Nj).

4.1.2 Dynamic NAT

Consider all the paths from Ni to Nj , which all pass through a dynamic NAT. Let FDDs

frk and fuk represent all the accepted packets by the k-th private and public subpaths

respectively, and let a and b be the total number of private and public subpaths respectively.

The upper-bound reachability of the private subpaths and public subpaths are calculated as

follows:

frU =
a
∨

k=1

(src(Ni) ∧ frk ∧ dst(Nj))

fuU =
b
∨

k=1

(src(N ′i) ∧ fuk ∧ dst(Nj))

Similarly, lower-bound reachability of the private subpaths and public subpaths are cal-

culated as follows:

frL =
a
∧

k=1

(src(Ni) ∧ frk ∧ dst(Nj))
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fuL =
b
∧

k=1

(src(N ′i) ∧ fuk ∧ dst(Nj))

Next, we compute the reachability bounds from Ni to Nj using frU , frU , frL, fuL.

First, we need to reorder the fields of FDDs fuU and fuL such that the label of the root is

the source IP address. Because a dynamic NAT may map an address in Ni to any address in

N ′i , to compute the reachability upper-bound from Ni to Nj , we need to disregard the source

IP address filed in fuU by applying the logical OR operation on all the subtrees of the root.

Thus, the upper-bound reachability for paths that contains a dynamic NAT transformer is

calculated using formula (2.16) as follows:

AUCL[i, j] = SubCL(fr
U ∧

∨

(all subtrees of the root of fuU )) (4.2)

Similarly, to compute the reachability lower-bound from Ni to Nj , we need to disregard

the source IP address filed in fuL by applying the logical AND operation on all the subtrees

of the root. Thus, the lower-bound reachability for paths that contains a dynamic NAT

transformer is calculated using formula (2.17) below:

ALCL[i, j] = SubCL(fr
L ∧

∧

(all subtrees of the root of fuL)) (4.3)

Note that reordering the packet fields of an FDD f can be done in two steps. First, we

generate an equivalent ACL l from f using the algorithms in [GL07]. Second, we construct

an equivalent FDD f ′ from l using the new packet field order.

For simplicity, we assume that a dynamic NAT transformer only changes the source IP

address of a packet and does not change the source port field. However, even if it is the case,
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we can easily adapt our solution by excluding both fields from the FDDs fuU and fuL.

4.1.3 PAT

In port address translation, the public addresses (N
i′) consists of a single IP address. Similar

to dynamic NAT, PAT dynamically assign port numbers to new connections. Therefore, for

paths with PAT, the instantaneous reachability cannot be computed because the transforma-

tion function is not well-defined. However, we can define and compute reachability bounds

for PAT similar to those for dynamic NAT. Formulas (4.2) and (4.3) are still valid except

that we reorder the packet fields of the FDDs fuU and fuL such that the source port field

is the label of the roots.

4.2 Reachability for Connection-oriented Protocols

As we stated previously, for simplicity, we present solutions to the case that all middleboxes

on a path are stateful and the case that all middleboxes on a path are stateless. When all

middleboxes on the path from Ni to Nj are stateful, for static NAT, we can use the FDD

matrix calculated by formula (4.1) and use formulas (3.6), (3.7) and (3.8) to calculate the

reachability matrices; for dynamic NAT, we can use formulas (4.2) and (4.3) to calculate the

reachability matrices except that the SubCL function should be replaced by SubCO . Next,

we present solutions for the case that all middleboxes on a path are stateless based on the

three types of packet transformers.
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4.2.1 Static NAT

Considering the communication between Ni and Nj where all paths between them pass

through a static NAT t, let
−→
fr,
−→
fu,
←−
fu,
←−
fr be the FDDs that represent the packets that can

traverse on the paths from Ni to t, t to Nj , Nj to t, and t to Ni, respectively. According

to formula (4.1), the packets that can traverse on the data path is represented by
−−−−→
F [i, j]k =

(src(Ni) ∧
−→
fr ∧ dst(Nj)) ∧ T

−1
S (src(N ′i) ∧

−→
fu ∧ dst(Nj)). Similarly, the packets that can

traverse on the signaling path are represented by
←−−−−
F [j, i]k = (src(Nj) ∧

←−
fr ∧ dst(Ni)) ∧

T−1
D

(src(Nj) ∧
←−
fu ∧ dst(N ′i)). Therefore, according to formula (3.9), we can compute the

instantaneous reachability between Ni and Nj as formula (4.4). The reachability bounds

are calculated according to formulas (3.10) and (3.11).

AICO[i, j, k, k′] = SubCO (
−−−−→
F [i, j]k ∧ SwapSD(

←−−−−−
F [j, i]k′)) (4.4)

4.2.2 Dynamic NAT

As discussed above, we use the new definitions for computing reachability bounds for net-

works with dynamic NAT. Let a and b be the total number of private and public paths

respectively. For the reachability upper-bound of the data path from Ni to Nj , we first

compute the reachability upper-bound for the private and public paths as follows:

−−→
frU =

a
∨

k=1

(src(Ni) ∧
−−→
frk ∧ dst(Nj))

−−→
fuU =

b
∨

k=1

(src(N ′i) ∧
−−→
fuk ∧ dst(Nj))
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←−−
frU =

a
∨

k=1

(src(Nj) ∧
←−−
frk ∧ dst(Ni))

←−−
fuU =

b
∨

k=1

(src(Nj) ∧
←−−
fuk ∧ dst(N ′i))

Second, we reorder the packet fields for the FDDs
−−→
fuU and

←−−
fuU such that the root of

−−→
fuU is labeled as the source IP address and the root of

←−−
fuU is labeled as the destination

IP address. Third, we compute the reachability upper-bound as:

AUCO[i, j] = SubCO (
−−→
frU ∧

∨

(all subtrees of the root of
−−→
fuU )

∧SwapSD (
←−−
frU ∧

∨

(all subtrees of the root of
←−−
fuU ))) (4.5)

For reachability lower bound, we first compute
−−→
frL,

−−→
fuL,

←−−
frL, and

←−−
fuL as above by

replacing all logical OR with Logical AND. Then, we compute the lower-bound as follows:

ALCO[i, j] = SubCO (
−−→
frL ∧

∧

(all subtrees of the root of
−−→
fuL)

∧SwapSD (
←−−
frL ∧

∧

(all subtreesof the root of
←−−
fuL))) (4.6)

4.2.3 PAT

We define and compute reachability bounds for PAT similar to those for dynamic NAT.

Formulas (4.5) and (4.6) are still valid except that we reorder the packet fields of the FDDs

−−→
fuU and

−−→
fuL such that the root is labeled the source port field and reorder the packet fields

in
←−−
fuU and

←−−
fuL such that the root is labeled the destination port field.
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Chapter 5

Online Reachability Queries

After reachability matrices are calculated, we can use them as the engine for efficiently

processing network reachability queries. In this section, we discuss languages for specifying

reachability queries, ways of using such queries for network and security management, and

algorithms for processing these queries. Based on the nature of queries, Quarnet supports

three types of queries: upper-bound, lower-bound, and instantaneous. Upper-bound/lower-

bound reachability queries are useful in verifying whether the ACLs on middleboxes satisfy

certain security policies. Instantaneous reachability queries are useful for real-time security

monitoring as the network operator identifies which paths are used at the time of querying.

Such queries are also useful to verify whether the changes on the ACLs on some middleboxes

have undesired impact on reachability. Based on the answer of queries, Quarnet supports

two types of queries: closed and open. A closed query demands an answer of yes/no. For

instance, considering the network in Figure 2.1, can all hosts in S1 communicate with Mail

Server in S4 on TCP port 25 via any path? An open query demands an answer in terms

of a set. For example, which hosts in S1 can access the Mail Server in S4 on TCP port 25

via any path from S1 to S4? As another example, what set of paths may let all hosts in S1
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access the Mail Server in S4 on TCP port 25?

5.1 Reachability Query Language

SRQL Syntax: We define an SQL-like language called Structured Reachability Query Lan-

guage (SRQL) for specifying reachability queries. SRQL has the following format:

reachability type T

connection type O

select F

where (F1 ∈ S1) ∧ · · · ∧ (Fd ∈ Sd) ∧ (P ∈ SP )

The reachability type T denotes the type of reachability, namely instantaneous (I),

upper-bound (U), or lower-bound (L). The connection type O denotes the connection ori-

entation of transport protocols, namely connection-oriented (CO) or connectionless (CL).

When the reachability type T is upper-bound or lower-bound, the select clause F is a

subset of packet fields {F1, F2, · · · , Fd}; when T is instantaneous, F is a subset of fields

{F1, F2, · · · , Fd,P} where P denotes the attribute of “path”. In the where clause, the pred-

icate (F1 ∈ S1)∧· · ·∧(Fd ∈ Sd) specifies the set of packets that this query is concerned with

and (P ∈ SP ) specifies the set of paths that this query concerns. For example, SRQL query

for the question “Through what paths the mail server in S4 on TCP port 25 is accessible

from S1?” is the following:

type I

protocol CO

select P

where (S ∈ S1) ∧ (D ∈ MailServer) ∧ (DP ∈ 25) ∧ (PT ∈ TCP )
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Note that we do not expect network operators to specify queries using SRQL directly.

Instead, we expect a full-fledged implementation of Quarnet to provide a GUI interface for

inputting queries and specifying paths. The SRQL will be used to formally represent a query

under the hood.

SRQL Semantics: The result of an upper-bound reachability query, where F = {F1, · · · ,Fh}

and Fi ∈ {F1, F2, · · · , Fd} for every 1 ≤ i ≤ h, is defined as follows:

{(~F1
, · · · , ~Fh

)|(~1 ∈ S1) ∧ · · · ∧ (~d ∈ Sd) and packet (~1, · · · , ~d) can traverse from

its source to its destination at some time}

The result of a lower-bound query is defined similarly except that “at some time” is

replaced by “at any time”.

The result of an instantaneous reachability query, where F = {F1, · · · ,Fh,P} and

Fi ∈ {F1, F2, · · · , Fd} for every 1 ≤ i ≤ h, is defined as follows:

{(~F1
, · · · ,~Fh

, π)|(~1 ∈ S1) ∧ · · · ∧ (~d ∈ Sd) and packet (~1, · · · , ~d) can traverse from

its source to its destination through path π where π ∈ SP .}

SRQL Example 1: We next give some query examples, where we use the shorthand S

for source IP, D for destination IP, SP for source port, DP for destination port, and PT for

protocol type. The question “Can all hosts in S1 communicate with the mail server in S4 on

TCP port 25?” can be formulated as the following query:

type L

protocol CO

select S

where (S ∈ S1) ∧ (D ∈ MailServer) ∧ (DP ∈ 25) ∧ (PT ∈ TCP )
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If the query result is all the IP addresses in S1, then the answer is “yes”; otherwise the

answer is “no”.

SRQL Example 2: SRQL query for the question “Through what paths the mail server

in S4 on TCP port 25 is accessible from S1?” is the following:

type I

protocol CO

select P

where (S ∈ S1) ∧ (D ∈ MailServer) ∧ (DP ∈ 25) ∧ (PT ∈ TCP )

SRQL Example 3: The answer to some questions may be the union or intersection of

multiple SRQL query results. For example, the answer for the question “Which hosts in S1

can access the Mail Server in S4 on both UDP and TCP port 25 via any path from S1 to

S4?” is the intersection of the results of the following two SRQL queries:

type L

protocol CO

select S

where (S ∈ S1) ∧ (D ∈ MailServer) ∧ (DP ∈ 25) ∧ (PT ∈ TCP )

type L

protocol CL

select S

where (S ∈ S1) ∧ (D ∈ MailServer) ∧ (DP ∈ 25) ∧ (PT ∈ UDP )

5.2 Reachability Query Engine Construction

Our reachability query engine consists of six FDDs representing the six reachability matri-

ces. We compute the six FDDs as follows. For each of the four upper-bound/lower-bound
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reachability matrices, we apply the logical OR operation to all matrix elements, where each

element is an FDD representing the reachability between two specific subnets. The resul-

tant FDD over d fields represents the upper-bound/lower-bound reachability between any

two subnets. For each of the two instantaneous reachability matrices, we compute the two

corresponding FDDs as follows. First, we reduce the two instantaneous reachability matrices

to 2-dimensional matrices by combining the FDDs for the various paths from a source to

a destination into one FDD. To achieve this, we first add a new node labeled with a new

attribute “path” to each FDD as the root whose outgoing edge is labeled with path IDs, and

then apply the logical OR operation to all FDDs regarding the reachability from one subnet

to another. It is trivial to label every path with a unique ID. Second, for each of the two

resultant 2-dimensional matrices, we apply the logical OR operation to all elements and get

an FDD over d+1 fields. The six FDDs will be used to process SRQL queries.

5.3 Online Reachability Query Processing

Reachability queries can be quickly processed by traversing one of the six FDDs computed

above. The algorithm is essentially the same as the one described in [LG09] for querying one

firewall policy.
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Chapter 6

Reachability Diagnosis

In this section, we first formally define the reachability errors. We then show how we find

the faulty ACLs and rules that cause instantaneous reachability errors and reachability

inconsistencies.

6.1 Reachability Errors

There are two types of reachability errors. (1) There may be some services, hosts, or sub-

nets that are supposed to be reachable from a set of hosts, but they are not (aka ser-

vice/host/subnet inaccessibility). Such reachability errors are usually reported by network

end-users. (2) There may be some services, hosts, or subnets that are not supposed to

be reachable from specific hosts/subnets, but they are (aka security breach). Such reacha-

bility errors are usually detected by monitoring and surveillance devices such as Intrusion

Detection Systems (IDSs).

Reachability errors in this dissertation are formulated in two categories: instantaneous

reachability errors and network reachability inconsistencies.
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Instantaneous reachability errors are usually given by customers or network surveillance

devices. Such errors correspond to dynamic factors in network reachability such as the path

that connects source and destination subnets at the time the errors occurred.

Reachability inconsistencies, on the other hand, are called to reachability difference of

the paths that connect two subnets together. In other words, reachability inconsistencies

between two subnets is the difference between subnets reachability upper-bound and lower-

bound. Hence, effective reachability inconsistencies are the reachability differences between

effective reachability bounds. Having the reachability inconsistencies, a network operator not

only can proactively detect reachability errors and fix them accordingly but also can come

up with the ideal reachability that corresponds to the network central access policy. Using

such ideal reachability for two given subnets, we can divide the reachability inconsistencies

into two categories (shown in Figure 2.2 by region 1 and 2). The first category, which is the

difference of ideal and lower-bound reachability, shows a set of type 1 reachability errors.

This set of packets must be accepted in all of the effective paths from a source subnet to a

destination subnet. The second category, which is the difference of upper-bound and ideal

reachability, shows the set of type 2 reachability errors. This set of packets must be discarded

in all of the effective paths from a source subnet to a destination subnet.

6.2 Instantaneous Reachability Diagnosis

To detect instantaneous reachability errors, we need to compute the instantaneous reacha-

bility matrix using FDDs with complementary ACL and rule tracking feature (ARTF). An

FDD with ARTF represents reachability with additional information such as ACL and rule

indices. The ARTF extends the FDD properties such that the label for a terminal node
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(under each decision path) also contains the ACL index, the rule number, and rule’s corre-

sponding decision that has the highest priority in the ACL and matches the packets in the
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Figure 6.1: FDD shaping and logical AND operation example
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Figure 6.2: Reachability modeling and detecting instantaneous reachability error

decision path.

Figure 6.1 demonstrates the steps of an FDD with ARTF construction. Figure 6.1(a)

shows two example ACLs (ACL1 and ACL2) of two packet header fields F1 and F2. Figure

6.1(b) shows how these ACLs are converted to their corresponding FDDs with ARTF. Figure

6.1(c) illustrates the FDDs after shaping operation.
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In order to enable reachability troubleshooting, we first need to compute a path’s instan-

taneous reachability using formulas (3.3) and (3.9) with FDD with ARTF. We then detect

reachability errors as follows.

Let E be the set of packets whose reachability is wrong (i.e. reachability errors). Let

Φ(x, f) denote the set of decision paths φi in FDD f with decision x ∈ DS . Note that deci-

sions “discard” (i.e. drop) and “reject” are signified by 0 and decision “accept” (i.e. permit)

is signified by 1. Let E1(i, j, p) denote type 1 reachability errors (i.e. service inaccessibilities)

between Ni and Nj using path p. To detect these errors, we need to first identify all the

decision paths with decision 0 that intersects with the reachability error set. The set of

faulty decision paths, denoted by ΦE1
(i, j, p), is computed as follows:

ΦE1
(i, j, p) = {∀φi ∈ Φ(0, Â

I [i, j, p])|φi ∩ E1 6= ∅}

Then, all the ACLs with decision 0 under selected decision paths are faulty.

Let E2(i, j, p) denote type 2 reachability errors (i.e. security breaches) between Ni and

Nj using path p. To detect such errors, we need to first identify all the decision paths with

decision 1 that intersects with the reachability error set. The set of faulty decision paths,

denoted by E2(i, j, p), is computed as follows:

ΦE2
(i, j, p) = {∀φi ∈ Φ(1, Â

I [i, j, p]))|φi ∩ E2 6= ∅}

Then, at least one of the ACLs with decision 1 under selected decision paths (ΦE2
(i, j, p))

is faulty.

Figure 6.2 shows the instantaneous error diagnosis in the example network shown in
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Figure 2.3(a). We first model the example network in Figure 6.2(a). Figure 6.2(b) shows

8 ACLs (ACL1 , . . . ,ACL8 ), which are associated to the links in the paths between N1

and N2. Having Pe1,2 = 〈p1, p2〉, we compute the FDDs that represent the instantaneous

reachability for p1 and p2 in Figure 6.2(c) and 6.2(d), respectively. For type 1 reachability

errors, suppose packets in error set E1 = {(25, 95)} sent from N1 cannot be received by N2

using path p1. Considering ÂI [1, 2, p1] in Figure 6.2(c), decision path φ6 intersects with

the error set and its decision is 0. Thus, ΦE2
= {φ6}. Among all the ACLs under φ6, the

reachability error is caused by rule 3 in ACL1, because its decision is 0. Similarly for type

2 reachability errors, suppose packets in error set E1 = {(25, 55)} sent form N1 to N2 are

considered ineligible packets but they can be received by the destination through path p2.

Considering ÂI [1, 2, p2] in Figure 6.2(d), decision path φ4 intersects with the error set and

its decision is 1. Thus, ΦE1
= {φ4}. At least one ACL under φ4 with decision 1 is faulty.

6.3 Reachability Inconsistencies Diagnosis

To proactively find reachability errors, we need to first detect reachability inconsistencies and

then compare them with the network central policy to pinpoint faulty ACLs and fix them

accordingly. To identify reachability inconsistencies, we compute the effective reachability

bounds matrices using the reachability uptime associated with each pair of subnets based

on formula (3.12) and (3.13). Next, we calculate the effective reachability bounds difference

for packets sent from Ni and received by Nj , denoted by ∆R̂, as follows:

∆R̂(i, j) = R̂U (i, j)− R̂L(i, j)
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Let ∆Â[i, j] represent the FDD for ∆R̂(i, j). We can compute effective reachability bounds

difference as follows:

∆Â[i, j] = ÂU [i, j] ∧ ¬ÂL[i, j]

where ¬f is FDD f where decisions 1 are changed to 0 and vice versa. The decision paths

with decision 1 in ∆Â show the set of packets that has inconsistent decisions on different

paths. Hence, the set of decision paths that causes reachability inconsistencies are ΦE (i, j) =

Φ(1, ∆Â[i, j]).

Figure 6.3(a) and 6.3(b) show the effective reachability upper-bound and lower-bound

FDDs with ARTF, respectively. The effective reachability inconsistencies are shown in Figure

6.3(c). As it is shown, the reachability inconsistences are in decision paths (φ2 = F1 ∈

[1, 20] ∧ F2 ∈ [31, 60]) and (φ5 = F1 ∈ [21, 100] ∧ F2 ∈ [61, 90]). However, based on the

network access policies these decision paths can be considered as type 1 or type 2 reachability

inconsistencies.

To identify type 1 and type 2 reachability errors, let F(i, j) be the FDD that represents

the network central access policy for packets sent by Ni and received by Nj . As in practice

the central access policy may not be available in all the enterprise networks, F(i, j) can be

provided by the network operator by going through all the reachability inconsistencies and

identifying the correct decision for each inconsistency. Accordingly, based on Figure 2.2,

the set of decision paths that identifies type 1 and type 2 reachability errors is computed

as ΦE1
(i, j) = Φ(1,F(i, j)∧¬ÂL[i, j]) and ΦE2

(i, j) = Φ(1, ÂU [i, j]∧¬F(i, j)), respectively.

The network operator can calculate the ∆R̂ when he makes modifications in the ACLs to

find inconsistencies and identify reachability errors in the network.

Figure 6.3(c) shows an example for identifying type 1 and type 2 reachability errors.
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Figure 6.3: Detecting reachability inconsistencies
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Suppose the network central access policy accepts packets in φ2 and discards packets in φ5

between Ni and Nj . Thus, the faulty decision paths are ΦE1
(i, j) = {φ2} and ΦE2

(i, j) =

{φ5}. As highlighted in Figure 6.3, all the ACLs under ΦE1
(i, j) with decision 0, and at

least one ACL under ΦE2
(i, j) with decision 1 are faulty and must be fixed.
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Chapter 7

Reachability Troubleshooting

The basic idea to troubleshoot reachability errors automatically is to add one rule on the top

of faulty ACLs for each reachability error. This rule, called fixing rule, includes the predicate

of the reachability error associated with the correct decision. As ACLs are processed based

on the first-match semantic, the fixing rule overlaps with the faulty rule, yet because the

fixing rule is prior to the faulty rule in the ACL, it fixes the reachability error. Note that the

fixing rule predicate should be chosen carefully to avoid introducing other reachability errors.

In the following, we explain troubleshooting algorithms for type 1 and type 2 reachability

errors in detail.

7.1 Type 1 reachability errors

To troubleshoot type 1 reachability errors, for each error we need to find a fixing rule and

add it to all the faulty ACLs that cause the error. As each reachability error is identified

under a decision path, the decision path can be stated as a fixing rule with decision 1 (i.e.

accept). The rule must be added to all the ACLs under that decision path with decision 0.
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This solution is common for instantaneous reachability errors and reachability inconsistency

errors. For instance, the second decision path in the FDD in Figure 6.2(d) indicates a

type 1 reachability error. A fixing rule is then the second decision path (F1 ∈ [1, 20]∧ F2 ∈

[31, 60]→ 1) that must be added to faulty ACL6 . The corrected ACL with its corresponding

FDD with ARTF is shown in Figure 7.1. As the fixing rule is added to the beginning of

the ACL, the rest of the FDD remains intact. This indicates that the fixing rule does not

have any impact on the rest of the reachability. Note that the new FDD is the same as

the old FDD, except that the decision for the faulty decision path is changed to 1. Also,

to avoid recalculating the FDD with ARTF and keeping the tracking records consistent, we

first remove the faulty ACL record under the faulty decision path and add a new record with

faulty ACL index, rule index and decision equals to 1. Next, we increment the rule index

of the faulty ACL tracking records of all other decision paths in the FDD. This algorithm

is repeated for all the type 1 reachability errors individually until all of them are resolved.

Note that after the error troubleshooting we can use ACL compression techniques [LTM08]to

reduce the number of the rules

7.2 Type 2 reachability errors

To troubleshoot type 2 reachability errors, for each error we need to find a fixing rule and

add it to at least one of the faulty ACLs that causes the error. As each reachability error

is identified by a decision path, the decision path that includes the reachability error can be

stated as a fixing rule with decision 0 (i.e. discard).

Troubleshooting type 2 reachability errors are different for instantaneous reachability

errors and reachability inconsistency errors. For instantaneous reachability errors, the rule
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must be added to at least one of the faulty ACLs under that decision path because if one of

the ACLs along the path discards the packet, it will not reach the destination. For instance,

the fifth decision path in the FDD in Figure 6.2(d) and 7.1(a) indicate a type 2 reachability

error and faulty ACLs. A fixing rule is then the fifth decision path (F1 ∈ [21, 100] ∧ F2 ∈

[61, 90]→ 0) and it must be added to at least one of the faulty ACLs ACL1 ,ACL4 ..ACL8 .

However, for reachability inconsistency errors, as paths mingle, we can have a set of fixing

rules to fix an error. In the following we explain the troubleshooting algorithms separately

for instantaneous reachability errors and reachability inconsistency errors.

7.2.1 Instantaneous reachability errors

To troubleshoot the instantaneous reachability errors, on one hand, we want to add the

rule to the first faulty ACL in a given path to minimize the number of unwanted packet

forwardings, which saves bandwidth for links along the rest of the path. On the other hand,

we also want to add the rule to the ACLs that have fewer rules, as greater number of the

rules degrades the router or firewall performance and throughput especially if they exceeds

some thresholds [rul]. To address this tradeoff, we introduce a performance cost function C

for fixing each faulty ACL, and we add the fixing rule to the ACL with the lowest fixing cost.

Let C(p, k) be the fixing cost of ACLk in path p, d(k, p) be the number of hops to reach

ACLk in path p, |p| be the length of the path, |ACLk | be the number of rules for ACLk , and

R be the maximum number of rules an ACL can have. We use two weight coefficients wd

and wr for number of unwanted packet forwardings and number of the rules, respectively.

We then define C(k, p) as the normalized weighted average of the number of unwanted packet

forwardings and the number of rules as follows:
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C(k, p) = wd
d(k, p)

|p|
+ wr

|ACLk |

R
(7.1)

For example, as shown in Figure 7.1, to fix the fifth decision path, we calculate the fixing

cost for all the faulty ACLs. Suppose we can have only 10 rules on each ACL (R = 10),

and we have same weight for the number of unwanted packet forwardings and number of the

rules (wd = wr = 0.5). The fixing costs for ACL1 ,ACL4 ..ACL8 are in turn 0.15, 0.383,

0.05, 0.266, 0.216, 0.383. Hence, ACL5 with the lowest fixing cost is chosen to be fixed and

accommodate the fixing rule.
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Figure 7.1: Troubleshooting reachability errors
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7.2.2 Reachability inconsistency error

For each reachability error, we need to place fixing rules in the faulty ACLs of faulty paths

that allow illegitimate traffic to reach the destination. The steps to efficiently resolve each

reachability error are as follows. (1) We find all the faulty paths between a pair of subnets.

(2) As faulty paths mingle, we find all of the possible minimal faulty ACL sets that can fix

all faulty paths (i.e. we find a minimum edge cut for all faulty paths). (3) We calculate the

total fixing cost for each set of faulty ACLs. (4) We choose the set with the minimum total

fixing cost to fix and resolve the error.

The detailed algorithm for each step is as follows. For step (1), we find all the paths

between a pair of subnets whose ACLs accept the illegitimate traffic identified by the reacha-

bility error. To this end, we single out the paths whose ACLs are all found under the decision

paths associated with the error.

For step (2), let PFi,j be the set of faulty paths between Ni and Nj . For a given set of

unwanted packets that cause the reachability error, let y = (y1, . . . , yK) be the state vector

for all the K ACLs in the network where yk is an indicator variable and defined as follows:

yk =











1, if ACLk accpets the set of unwanted packets

0, if ACLk discards the set of unwanted packets

We define the structure function λa(y) that indicates if path pa is faulty or not.

λa(y) =











1, if path pa accepts the set of unwanted packets

0, if path pa discards the set of unwanted packets

Using the definition, the structure function is given by
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λa(y) =
∧

ACLk∈pa

yk (7.2)

Next, we define a new function γ(y), which indicates the set of minimal faulty ACLs that

cannot reach the destination. Hence, γ(y) can be formulated as follows:

γ(y) := ¬











∨

pa∈PFi,j

λa(y)











(7.3)

The set of minterms for γ(y) = 1 is the set of all of the possible minimal faulty ACL sets

that must be fixed to resolve the reachability error.

For step (3), as paths mingle and their ACLs can be jointly used in a set of faulty paths,

on one hand, we intend to place the fixing rule close to the source subnet, especially on the

paths that are more likely to be chosen by routing daemon. On the other hand, we want

to avoid adding rules to the faulty ACLs that have large number of rules. To address this

tradeoff, the fixing cost for adding the fixing rule depends on the number of the rules that

the ACL has, the distance of the ACL to the source subnet in the set of faulty paths, and

the probability of faulty paths to be chosen. Thus, similar to formula (7.1) the fixing cost of

ACLk in a set of faulty paths between Ni and Nj , denoted by PFi,j , is calculated as follows:

C(k, PFi,j) = wd

∑

pa∈PFi,j

πa
d(k, pa)

|pa|
+ wr

|ACLk |

R
(7.4)

Note that if ACLk is not in the path p, then d(k, p) = 0. Let Ag be the g-th minimal faulty
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ACL set. Using formula (7.4), the cost for all the faulty ACLs in Ag is calculated as follows:

C(Ag, P
F
i,j) =

∑

ACLk∈Ag

C(k, PFi,j) (7.5)

We calculate this cost for all possible values of Ag between Ni and Nj . We then add the

fixing rule to the set of faulty ACLs that has the lowest fixing cost. Following the example

for reachability inconsistencies in Figure 6.3(c), to troubleshoot the type 2 reachability error

on fifth decision path (φ5), we first identify the faulty paths. As second rule in ACL2

discards the unwanted packets in φ5, the only faulty path is p2 (i.e. PF1,2 = {p2}). Thus,

the problem is reduced to instantaneous reachability error where adding rule to ACL5 has

the lowest fixing cost.
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Chapter 8

Reachability Optimization

One of the very basic challenges that network operators often face when they design a large-

scale enterprise network is how to design ACLs and rules and place them on the network

classifiers so that they satisfy network access control requirements. This task is usually done

manually and it is very tiring, complex, and error-prone. Moreover, manual ACL design is

often not optimized and can deteriorate the network performance. In this chapter, we present

our approach of optimal ACL design and rule placement on packet classifiers in respect to

network reachability correctness and network performance criteria. Given a network central

access policy, which indicates the reachability between each pair of subnets in the network,

the ACL design can be automated such that it satisfies the central policy and it satisfies

the network and its classifiers’ performance criteria. Therefore, we define two main ACL

design criteria: (1) correctness criterion, in which we ensure that the ACL design enforces

the central access policy correctly and (2) performance criterion, in which we ensure that

the ACL design is optimal for different network and routers performance criteria.

In the following, we first explain the design criteria in more details. We then shed light

on our approach namely, rule placement and the techniques that we use to satisfy the design
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criteria. We compare our approach with prior art and we explain pros and cons.

8.1 Problem Formal Definition

8.1.1 Input and Output

The main two input elements are a network topology and the network central access policy.

Based on our network reachability model, the network topology is identified using the network

incident matrix (A) described in chapter 2. The network central access policy identified as a

reachability matrix called central policy reachability denoted R, where each element R(i, j)

describes the set of reachable packets from Ni to Nj . A network central access policy is

often extracted from the enterprise security and access protocols and policies. However in

practice, the network central access policy may not be available at the time of the design

as it can be built up upon requests and emerging new services. In such cases, the input

is the ACLs deployed on the network classifiers from which we can compute the network

reachability bounds and use them as the network central access policy. Of coarse, if there are

reachability inconsistencies as the result of differences between network reachability lower-

bound and upper-bound, they should be resolved to have a solid network central access

policy.

There are also some complementary parameters that can be identified by the operator for

better adaptation of the output results to actual limitations in the network. For instance,

some middleboxes may not have packet classifiers to be used for ACLs. On the other hand,

some middleboxes such as firewalls can accept a large number of rules, which are preferred by

operators to accommodate most of the network access policies. Other network parameters
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such as network link-up probability, stateful routers, etc, can also be useful for better and

more efficient ACL design.

The output is a set of ACLs for all classifiers across the network. Note that based on

some of the design parameters or the position of the classifier in the network, some classifiers

may have no rules.

8.1.2 Optimization Criteria

8.1.2.1 Correctness

Given M routers in a path when the network is in routing state s ∈ S, the correctness

criterion is formally stated as follows:

{∀s ∈ S : RI (i, j, s) = R(i, j)} (8.1)

which indicates that the reachability of each path between a given pair of subnets are the

same as the central reachability for that pair of subnets. In case of effective reachability

optimization, the routing state S in formula (8.1) is changed to Se.

8.1.2.2 Performance

In terms of network performance, unwanted packets need to be discarded as early as possible

in the path to the destination. Moreover, we need to minimize the packet processing time

for each classifier in the path. To minimize the packet processing time we need to follow

different strategies for hardware and software middleboxes. The hardware middleboxes (es-

pecially the recent ones) such as hardware firewalls and routers usually use Ternary Content

Access Memory (TCAMs), which has constant classification delay, whereas software based
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middleboxes such as Linux routers with IPTables [And06] traverse the ACL to find the first

match for the packet. Thus, the average classification delay is different based on the size

of the ACL. Furthermore, the hardware middleboxes has limited capacity to accept rules,

whereas the software middleboxes usually do not have strict capacity limits. Note that be-

cause the TCAMs are power intensive, it is advised to either use all of their capacity, or turn

them off by assigning no rules to them.

Considering such limitations, the performance criteria is stated in three properties. Given

a network with h links, where each link k has an ACLk , we can formally define these

properties as follows:

(1) Minimizing the total number rules (min
∑h
k=1 |ACLk |)

(2) Minimizing the average number of forwardings for unwanted packets

(3.1) For software middleboxes: Minimizing the maximum number of the rules per ACL

(minmax |ACLk |)

(3.2) For hardware middleboxes: Minimizing the number of the middleboxes that have

at least one rule (maxk{|ACLk | == 0})

8.2 Our Approach

8.2.1 Rule Placement vs. ACL Placement

There are two main approaches to solve this problem: (1) ACL placement and (2) rule

placement.

ACL placement is introduced by Sung et al. in [SRXM08]. The basic idea in this approach

is deploy the central access policy for a given pair of subnets on all the paths that connects
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these two subnets together. They have reduced the bin packing problem to this problem

with ACL placement approach and show that using this approach the problem is NP-hard.

They later explain heuristics based on “first fit decreasing” strategy to distributed ACLs

across all middleboxes in the network.

The advantages of ACL placement are the fact that it is relatively fast and straight-

forward. All the rules in the central policy for a given source A and destination B are defined

to be restricted to subnet A and B, so that the access policies of different pairs of subnets

never overlap. As the access policies are terminated by a rule that discards all packets with

source addresses in A and destination addresses in B (i.e. discard default policy), they can

be placed only on one middlebox in a path which in turn helps to have minimum number of

rules in the ACLs. However, this approach has a few disadvantages. First, because the ACL

obtained by the central access policy may have redundant rules, the outcome of stacking

a few ACLs together in a new ACL may not result in an ACL with minimum number of

the rules. Second, the proposed heuristics are satisfying one performance criteria at a time

and use others as tie breakers. Thus, finding a heuristics to address all of the performance

criteria seems not to be trivial.

In this dissertation, we proposed to solve this problem following rule placement approach

rather than ACL placement approach. In rule placement approach, the access policies are

first converted to a set of non-overlapping discard rules. These rules are then placed on the

network middleboxes optimally using a cost function that creates a weighted balance between

all performance criteria. Using this approach all rules that belong to the central access policy

for a given source and destination can be individually distributed on all middleboxes along

the paths that connect the source and the destination.
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8.2.2 Rule Placement Algorithm

To explain the rule placement algorithm, we first explain each step of the algorithm. We

then complete our explanation with running the algorithm on an example network with a

central policy.

In this algorithm, we first convert the central access policy to non-overlapping discard

rules. Second, we place rules on the classifiers using a cost function. Third, we use the

topological information to aggregate and simplify the places rules. Forth, we exactly tune

our rule placement by moving rules from a classifier to other classifiers. Finally, we use

compression techniques to finalize the rule placement.

8.2.2.1 Central Policy Conversion to Non-overlapping Discard Rules

As the first step, we ensure that the access policy for a given pair of subnets is only limited

to that pair of subnets and does not have any overlap with subnets. To this end, we make

sure that the source address range (Ni) and destination address range (Nj) in all rules

of access policy (Ri,j) is limited to its associated source and destination subnet address

ranges. We also needs to make sure that each access policy for a given pair of subnets is

complete. This means that the access policies should cover the entire address space that

belongs to the source and destination. Otherwise, the incompleteness of access policies can

potentially causes reachability inconsistencies and errors. Second, we put all these access

policies together to create the central access policy that includes all possible packets in the

network. Third, we add a default policy rule with accept decision to the end of the central

policy rule list to be able to construct an FDD for that. Forth, we construct an FDD for

the cental access policy. Using the FDD, we can convert the central access policy to a set of
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non-overlapping discard rules. In addition, converting cental access policy to an FDD helps

to remove all types of rule shadowing and conflicts, which in turn helps the network operator

to review the central access policy for possible errors and mistakes.

8.2.2.2 Cost-based Rule Placement

In order to meet the correctness and performance criteria, we need to place rules associated

with a source and a destination on at least one classifier on all the paths between them in an

efficient way. One classifier is enough because they are discarding rules and we only place a

rule on one classifier in a path to minimize the number of total rules on the classifiers. As we

assign a cost for adding a rule to each classifier, we want to find the set of classifiers that has

the least cost to accommodate a rule. This problem is similar to find the minimum edge cut

of the network graph, where the weights for the edges are the cost for adding non-overlapping

discard rules.

There are many algorithms to find the minimum edge cuts of a graph. But in terms of

implementation, we found it easier to use Quarnet libraries to compute the minimum edge

cut as follows. As the first step, we group the non-overlapping rules for each pair of source

and destination subnet. Second, for each pair of source and destination subnets, we calculate

all possible edge cuts, as each classifier is assigned to an edge in our network model. The edge

cuts are calculated similar to formula (7.3); however, this time we consider all the effective

paths rather than faulty paths. The modified version of the formula (7.3) is as follows:

γ(y) := ¬









∨

pa∈Pei,j

λa(y)









(8.2)

The set of minterms for γ(y) = 1 is the set of all of the possible edge cuts. Note that the
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edge cuts that includes the classifiers that are exempted from accommodating rules by the

network operator are ignored. Third, we calculate a cost based on the performance criteria

for each edge cut. The theory and the basic idea behind designing a cost function here is

similar to ones mentioned for formula (7.4) and Formula (7.5). However, we modify these

formulas to incorporate both software and hardware middleboxes. Let qi be an indicator of

the type of the middlebox. Hence, if Ck is hardware then qk = 0, and if Ck is software then

qk = 1. Thus, similar to formula (7.4) and formula (7.5) the rule placement cost of ACLk

in a set of effective paths between Ni and Nj , denoted by Pei,j , is calculated as follows:

C(k, Pei,j) = wd

∑

pa∈Pei,j

πa
d(k, pa)

|pa|
+ wr

(

qk
|Ck |

R
+ (1− qk) ·Ωk

)

(8.3)

where Ωk is the hardware cost function indicator for classifier Ck and it is defined as follows:

Ωk =



























ω, if Ck has no rules

0, if the number of rules in Ck does not exceed the classifier capacity

1, if the number of rules in Ck exceeds the classifier capacity

This function returns the cost of 0, if the classifier has at least one rule. It return 1, if

the classifier cannot accept any more rules. It returns ω (∈ [0, 1]), if the classifier has no

rules. Note that ω should be chosen relatively based on wd and wr by the network operator

considering the middlebox specifications and desired performance criteria.

Let Ag be the g-th edge cut. Using formula (8.3), the cost for all the classifiers in Ag is

calculated as follows:
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C(Ag, P
e
i,j) =

∑

Ck∈Ag

C(k, Pei,j) (8.4)

Once the placement cost for all edge cuts in Ag is calculated, we place rules on the classifiers

in the edge cut with minimum cost. As the rules are non-overlapping, the order of the rule

in the ACL is not important, thus, it can be inserted anywhere in the ACL. Finally, the

rulesets on the classifiers are terminated by accept-default-policy rule.

Note that the cost calculation procedure iterates for each non-overlapping discard rule

on paths between all subnets that intersects with the rule’s source address and destination

address range. However, if the network operator collects information regarding the percent-

age of traffic that matches against each rule, we can sort non-overlapping rules descending

such that the rules with high traffic percentage be placed earlier than rules with low traffic

percentage. This is because of the fact that, for the very first rules, the cost of rule placement

is mainly determined by their distance to the source. Thus, it is advised to have rules with

high traffic percentage to be placed earlier than others.

8.2.2.3 Topological Rule Aggregation

The goal in topological rule aggregation (TRA) is to use topological information for general-

izing and aggregating non-overlapping rules. The topological information includes the range

of the addresses for subnets whose traffic is routed through network classifier. Using this

information the source and destination fields of a rule can be generalized to the domain size,

which can be later helpful for rule aggregation. In rule aggregation, if there are similar rules

with different source address fields on a classifier, but their source address ranges includes

all range of addresses for subnets that sends traffic to the classifier, all these rules can be
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aggregated with source field labeled as the domain range. Similarly, if there are similar rules

with different destination address fields on a classifier, but their destination address ranges

includes all range of addresses for subnets that receives traffic from the classifier, all these

rules can be aggregated with destination field labeled as the domain range. For instance, if

classifier C1 only forwards traffic from networks N1 and N2, if there are two similar rules

where one rule’s source address range includes N1 and the other rule’s source address range

includes N2, they can be aggregated with source address all or *.

In topological rule aggregation, given all effective paths, for each classifier, we create (1)

a list of all subnets that can send traffic trough the classifier denoted by LS and (2) a list

of all subnets that can receive traffic for the classifier denoted by LD. Second, we create

an FDD for each classifier using the inserted non-overlapping discard rules. Third, for each

FDD, we go through the labels of the all outgoing edges of the source address nodes and

relabel them with the domain range if they includes LS . Forth, similarly for each FDD, we

go through the labels of the all outgoing edges of the destination address nodes and relabel

them with the domain range if they includes LD. Finally, we extract the discard rules again

from each FDD and terminate them with the accept-default-policy rule.

Note that the topological rule aggregation can be done after the central policy FDD

creation, where LD and LS contains all the subnets in the network.

8.2.2.4 Rule Expulsion

Rule expulsion is a complementary feature than enables operators to move rules along the

paths. Rule expulsion, in practice, can be manually done by the operator or automatically

done by another algorithm to meet some custom performance criteria that each network may

have based on its design, or some specific services they have. For example, if the number
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of rules on a classifier is higher than the classifier’s capacity, the rules can be push around

to other classifiers along all the path that the home classifier is a part of. We believe this

functionality is necessary in practice as there are always custom preferences that must be

taken into account.

The rule expulsion needs to be done correctly while the correctness criterion holds. Hence,

if a rule in one classifier in edge cut A1 is decided to be expelled to another classifier in edge

cut A2, all the copies of the rule on the classifiers in A1 are expelled to the classifiers in A2.

Note that the rules that are relabeled in TRA algorithm, may not be expelled as they are

associated with classifier position in the network.

8.2.2.5 Finalization

To minimize the number of rules on each ACL, we use firewall compression techniques on

the ACLs on the middleboxes. For this section, we use the techniques that are introduced

in [MLT07,LTM08,LTM11]. If the final ACL sizes exceed the classifier limitations on number

of rules or does not meet the operator custom performance criteria, we can rearrange the

rule placement using rule expulsion to reach the desired rule placement in the network.

8.2.3 Rule Placement Example

To explain the rule placement algorithm more clearly, we run it on an example network with

an example central access policy shown in Figure 8.1(a) and Figure 8.2, respectively. The

example network has three routers that connects three subnets together. This network is

modeled in Figure 8.1(b) with 6 subnets, three routers, and 18 links. As each links can have

one classifier, we have 18 classifier to place rules to satisfy the central access policy.

Figure 8.2 shows the central access policy between three subnets of N1, N2, and N3. In
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S5
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(a) Example network topology (b) Example network reachability model

R1 R2

R3

Figure 8.1: Example network topology and its network model

this example, we consider two dimensional rules, where the first dimension is considered as

the source address field and the second dimension is considered as the destination address

field. We also suppose that N1, N2, and N3 has address ranges of [1, 20], [21, 40], and [41,

60], respectively. Looking at the access policies we can ensure that they only include packets

that belong to their corresponding source and destination subnets. Also, the last rules for

each central policy is the default policy rules that ensure the access policy is complete and

cover all the address space.

F1 F2

[1, 20]   [21, 30]  d

[1, 5]     [35, 35]  a

[1, 15]   [25, 30]  a

[1, 20]   [21, 40]  d

F1 F2

[21, 30] [41, 50]  a

[21, 40] [41, 60]  d

F1 F2

[1, 20]   [51, 60]  a

[1, 20]   [41, 55]  d

[1, 20]   [41, 60]  a

F1 F2

[31, 40]  [1, 20]    d

[21, 30]  [11, 15]  d

[21, 40]  [1, 20]    a

F1 F2

[41, 60]  [1, 20]   d

F1 F2

[41, 60]  [21, 40] a

N1   N2 N1 N3 N2 N1 N2   N3 N3 N1

N3 N2

Figure 8.2: Example central access policy between N1, N2, and N3

We then put all those access policies together to build the central access policy ruleset

shown in Figure 8.3(a). The last rule in the ruleset is the accept-default-policy rule to ensure

the access list is complete. The central policy FDD is shown in figure 8.3(b). After running
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the TRA algorithm on the FDD, the outgoing edge of node F2 with labels of [1, 20] and [41,

60] is relabeled to [1, 100].

F1 [1, 20]  F2 [21, 30]   0 F1 [1, 5]    F2 [35, 35]   1 F1 [1, 15]  F2 [25, 30]  1

F1 [1, 20]  F2 [21, 40]   0 F1 [1, 20]  F2 [51, 60]   1 F1 [1, 20]  F2 [41, 55]  0

F1 [1, 20]  F2 [41, 60]   1 F1 [31, 40] F2 [1, 20]   0 F1 [21, 30] F2 [11, 15]  0

F1 [21, 40] F2 [1, 20]   1 F1 [21, 30] F2 [41, 50]   1 F1 [21, 40] F2 [41,60]  0

F1 [41, 60] F2 [1, 20]   1 F1 [41, 60] F2 [21, 40]  0 F1 [1, 100] F2 [1, 100]  1

F1

[1,5]

[21,30]

1 1

F2

0 1

[1,20]

rest

F2

0 1

[1,20]
rest

F2

0 1

[11,15]
rest

F2

0 1

[21,50]

rest

F2

0 1

[21,34]

[6,20]
[31,40] [41,60]

[36,50]
rest

[51,60]

F2

[61,100]

1

[1,100][41,60]

(a) Central policy rules

(b) FDD for central policy rules

[1,100]

Figure 8.3: Example central access policy and its corresponding FDD

The central access policy FDD is converted to a set of non-overlapping rules in Figure

8.4(a). The next step is to calculate the effective paths to deploy these rule on their classifiers.

The effective paths presented in sets of sequences of classifiers are shown in Figure 8.4(b). As

mentioned, a rule is assigned to a set of paths if its source and destination range intersects

with paths source address range and destination address range. For each rule and each set

of path, we calculate all the edge cuts and compute the cost for each edge cut. We finally

use the edge cut with minimum cost to place rule on its classifiers.

Figure 8.5 shows the rule placement for all classifiers in the network. For this example,

we supposed that wr = wd = 0.5 and all middleboxes are software. Using the placed rules,

we can recalculate the FDD to run topological rule aggregation algorithm. Although, in
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r1: F1 [1, 5]    F2 [21, 34]   0

r2: F1 [1, 5]    F2 [36, 50]   0

r3: F1 [6, 20]  F2 [21, 50]   0

r4: F1 [21, 30] F2 [11, 15]   0

r5: F1 [21, 30] F2 [51, 60]   0

r6: F1 [31, 40] F2 [1, 100]   0

r7: F1 [41, 60] F2 [1, 20]     0

P
e
1,2={<C1,C4,C7,C12>,<C1,C6,C15,C14,C9,C12>}

P
e
1,3={<C1,C6,C15,C18>}

P
e
2,1={<C11,C8,C3,C2>,<C11,C10,C13,C16,C5,C2>}

P
e
2,3={<C11,C10,C13,C18>}

P
e
3,1={<C17,C16,C5,C2>}

P
e
3,2={<C17,C14,C9,C12>}

(a) Non-overlapping discard rules (b) Effective paths assignment

Figure 8.4: Non-overlapping discard rule assignment to the effective paths

this step of the algorithm we cannot aggregate any rules using TRA, we can simply rules

so that they can be more effective in rule compression. For example, for C4, which is only

connected to N1, the first rule’s source field ([6, 20]) can be relabeled to domain size ([1,

100]). Similarly, for C17, the the first rule’s source field of [41, 100] can be relabeled to [1,

100]. In this example we did not have any rule expulsion, but it is feasible for r1 to be

expelled from C1 to C4 and C6, or C7 and C15.

8.2.4 Handling Connection-oriented Protocols

The most simple and the most straight-forward way to place rules for connection-oriented

protocols is to treat them as connectionless protocols and only consider data path and leave

no rule for signalling path. This simplifies the rule placement and under this technique both

stateful and stateless middleboxes can be considered as stateful where we only cares about

the data path. However, if one intents to place rules on signaling path, all pairs of data path

and signaling path must be considered independent paths. Also, the rules for the source

and destination fields of the rules placed on the classifiers in the signalling paths must be

swapped.
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r7: F1 [41, 60] F2 [1, 20]  0

F1 [1, 100] F2 [1, 100]   1

F1 [1, 100] F2 [1, 20]  0

F1 [1, 100] F2 [1,100]   1

C17

F1

F2 F2

0 1

rest

rest

1

[1,100]

[41,60]

[1,20]

r1: F1 [1, 5] F2 [21, 34]   0

r2: F1 [1, 5] F2 [36, 50]   0

F1 [1, 100] F2 [1, 100]   1

r3: F1 [6, 20]  F2 [21, 50]  0

F1 [1, 100] F2 [1, 100]   1

r4: F1 [21, 30] F2 [11, 15]   0

r5: F1 [21, 30] F2 [51, 60]   0

F1 [1, 100] F2 [1, 100]   1

F1

F2 F2

0 1

rest

[5,100]

1

[1,100]

[1,5]

[21,34]

[36,50]

F1

F2
F2

0 1

rest

rest

1

[1,100]

[6,20]

[21,50]

F1

F2 F2

0 1

rest

rest

1

[1,100]

[21,30]

[11,15]
[51,60]

F1 [1, 5]    F2 [21, 34]   0

F1 [1, 5]    F2 [36, 50]   0

F1 [1, 100] F2 [1,100]   1

F1 [6, 20]  F2 [1, 100]  0

F1 [1, 100] F2 [1, 100]   1
F1 [21, 30] F2 [11, 15]   0

F1 [21, 30] F2 [51, 60]   0

F1 [1, 100] F2 [1,100]   1

C1 C4,C6 C11

F1 [6, 20]  F2 [21, 50]  0

F1 [1, 100] F2 [1, 100]   1

F1

F2 F2

0 1

rest

[1,100]

[31,40]

[1, 100]

F1 [31, 40]  F2 [1, 100]  0
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Figure 8.5: Final optimized access policy placement results (before compression) using rule
placement

8.2.5 Rule Placement with IP Transformation

If there is an IP transformation middlebox such as NAT/PAT and IP tunneling is in the

network, the rule placement needs to adjust the rules based on the position of the classifier

to such transformation middleboxes. In case of static NAT, the source fields of the rules

after the middlebox in the path from a source to destination should be transformed based

on the NAT transformation function. If the middleboxes are configured for dynamic NAT,

the source fields’ intervals for the rules after the middlebox in a path must be divided to the
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block of transforming IPs and be replaced by the transformed IP block. Note that the source

field intervals must be dividable to blocks of transforming IP addresses, otherwise, it is a

misconfiguration that should be notified to the network operator. In case of IP tunneling, it

is highly recommended not to place rules on the classifiers in the tunnel. If access is required

to be restricted, the rules is better be placed outside of the tunnel, preferably before tunnel,

or after the tunnel. Otherwise, it is better to disable the tunnel for that pair of subnets.

8.2.6 Interval-based vs Prefix-based Classifiers

The interval-based classifiers contains the IP addresses in form of intervals, while the prefix-

based classifiers contains the IP addresses in form of IP prefixes. Usually software mid-

dleboxes can accept both interval-based and prefix-based IP ranges, whereas the hardware

classifiers works based on prefix-based classifiers.

Rule placement is designed for interval-based classifiers rather than prefix-based classi-

fiers. The reason is the non-overlapping discard rules are interval-based. For a prefix-based

middlebox, we need to convert an interval to a set of prefixes. Yet, a non-overlapping

discard rule can be converted to a set of rules which theoretically can be very large [Li-

uar]. Hence, for such middleboxes, we either need to use the ACL placement algorithms

for access policy design, or use the compression techniques introduced for hardware middle-

boxes [MLT07,LMZ08].
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Chapter 9

Discussion

9.1 Handling Interface Rules

Some middleboxes (such as Cisco PIX firewalls [PIX09] and Sidewinder Firewalls [Sid09])

allow network operators to specify rules to accept or discard all packets coming in from one

interface and forwarded to another interface. For example, the security-level command in

Cisco PIX firewalls implement such rules. Such rules, unlike ACL rules specified over packet

header fields, can be easily handled by Quarnet. If ACL rules have higher priority over

interface rules, which is the case for PIX firewalls, then the interface rules can be modeled as

the default rule in the two ACLs. For example, an interface rule discarding all packets from

incoming interface int1 to outgoing interface int2 essentially specifies that the default rules

in the ACLs guarding int1 and int2 are all discard. If interface rules have higher priority

over ACL rules, such interface rules can be easily handled by Quarnet in the FDD matrix

initialization phase described in chapter 3.3. Recall that in this phase, we first calculate the

FDDs for one-hop paths. For a one-hop path connected by one middlebox and two links,

one connected to an incoming interface of the middlebox and one connected to an outgoing
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interface of the middlebox, if there is an accept interface rule for the two interfaces, we

simply model the FDD as one accepting all packets; if there is a discard interface rule for

the two interfaces, we simply model the FDD to discard all packets.

9.2 Complexity Analysis

9.2.1 Quantification

For a given network, let n be the number of subnets, τ be the length of the longest path, p

be the number of the paths in the network, g be the maximum of number of rules in an ACL,

and d be the number of fields in each rule. Note that d is typically a constant, which is 4 or

5 for IP networks. The complexity of constructing the equivalent FDD from an ACL with g

d-dimensional rules is O(gd) [LG08]. The complexity of shaping the two FDDs constructed

from two ACLs is O((2g)d) = O(gd). Therefore, the complexity of computing reachability

matrices is O(τ · p · gd). As the length of the paths cannot exceeds a constant (i.e. 30), the

complexity turns into O(p · gd).

In theory, the total number of paths p is exponential in terms of the number of subnets

and middleboxes in the network. However, in practice, p is much smaller than its theoreti-

cal upper-bound because networks are typically designed following the hierarchical network

design model [cis]. Using this model, a network is designed in three layers, namely a core

layer, a distribution layer, and an access layer. Security policies are mostly applied on the

distribution layer, and the core layer is mainly used to facilitate routing between subnets.

For networks designed by this model, the number of paths between two subnets is typically

small (often one), and the length of a path is typically short including a few middleboxes.
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9.2.2 Querying

The complexity for querying is O(1), as we only need to find the FDD (it also could be given

based on the query) and traverse the target FDD to return the result for the query.

9.2.3 Diagnosis and Troubleshooting

Having the FDDs, the complexity for diagnosis for |C| number of classifiers that has max-

imum rule number of g is O(|C|g) per instantaneous reachability problem. The algorithm

to resolve type 1 errors has the complexity of O(|C|) per error. However, for the network

model graph G = (V, E ,F) presented in chapter 2, the algorithm to resolve type 2 errors

is O(|V||E|log(
|V|2

|E|
)), if we compute the minimum edge cut using Hao and Orlin algo-

rithm [hao]. It seems that is the best algorithm with the lowest complexity for computing

the minimum edge cut. Yet, our implementation is based on the BDD and reliability theory,

in which we calculate all edge cuts once, and for each non-overlapping rule, we recalculate

the total cost for the each edge cut and we choose the edge cut with minimum cost. In

theory, the complexity of this technique is exponential in terms of number of edges; however

in practice, it can be even faster than computing minimum edge cut individually.

9.2.4 Optimization

Let υ be the number of rules in the network central access policy. The complexity for

constructing the central access policy FDD is O(υd). Let the total number of non-overlapping

discard rules be ῡ. For the network model graph G = (V, E ,F) presented in chapter 2,

similar to the troubleshooting, the complexity of cost-based rule placement for each rule is

O(|V||E|log(
|V|2

|E|
)). Hence, the total complexity for basic rule placement (excluding TRA
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and compression) is O(υd + ῡ|V||E|log(
|V|2

|E|
)).

9.3 Incremental Changes

As a network evolves over time, we need to update reachability matrices accordingly. There

are three types of network changes that will affect reachability matrices: topology changes,

configuration changes, and ACL changes. We explain how each of these incremental changes

is handled in different parts of Quarnet.

9.3.1 Quantification, Verification, and Troubleshooting

9.3.1.1 Network Topology Changes

Any modification to the physical structure of a network, such as adding/removing a link,

leads to network topology change. When such changes happen, we need to recompute

the path matrix. For any new path in the new path matrix, we need to recompute the

corresponding element in the FDD matrix F . The reachability matrices need to be updated

accordingly.

9.3.1.2 Subnet Configuration Changes

Network configuration changes refer to the changes in the subnet addresses or subnet masks.

For such changes, the third step in computing the FDD matrix needs to be performed for

the paths whose beginning or ending subnets are changed.
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9.3.1.3 Middlebox ACL Changes

ACL changes refer to the changes on ACL rules. When an ACL on a link changes, for all

the paths that contains the link, we need to recompute the

9.3.2 Optimization

9.3.2.1 Network Topology Changes

The optimization algorithm is based on all the effective paths between a pair of subnets.

If the network topology change adds new paths to the current paths, the rule placement

for the new set of paths should be done accordingly. In this case, the new set of paths are

considered as effective paths and the algorithm must be re-executed on new set of paths. If

the network topology change removes some paths, no new computation is required. If the

network topology changes such that some paths are removed and some new paths created,

we need to remove the rules added based on central access policy of all pairs of subnets

whose set of paths are changed. We then need to consider the new paths and recompute

the rules for each classifier in the path. Indeed, major topology changes that change all the

paths will lead to recalculation of rule placement for all classifiers.

If the network change adds or removes subnets, accordingly the central policy should be

changed. In this case for each new central policy we need to re-execute the algorithm. If

some central policy is removed, we can remove its associated rules from the all the classifiers.

9.3.2.2 Central Access Policy Changes

If central access policies are changed, we need to recalculate the central (or partial) FDD

and regenerate all the non-overlapping discard rules. If some non-overlapping discard rules
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are removed, then those rules should be eliminated from the classifiers across the network.

If some new rules are generated, then they should be independently placed on the classifiers.

Note that Quarnet keeps all edge cuts and non-overlapping discard rules (before com-

pression) so that it can easily handle incremental changes.

9.4 Integrating Network Routing for Real-Time Reach-

ability

To effectively monitor real-time network reachability, the network routing can be integrated

with the instantaneous reachability matrix. If the Quarnet server collects routing states from

the middleboxes once they change, it can identify the real-time reachability between all pairs

of subnets. Moreover, by corresponding time to the network reachability the network oper-

ator can better understand the dynamics of temporal network outages or security breaches.

He can also generate real-time queries to troubleshoot ongoing reachability problems.

9.5 Practical Issues of Quarnet

In practice, the computed network reachability due to undocumented and neglected middle-

boxes (e.g., personal hardware or software firewalls, a filtering bridge), links (e.g., temporal

test links), or services (e.g. Port Knocking [por]). Moreover, a misbehaving device can cause

problems, which are untraceable using Quarnet. Hence, to minimize such difference and have

accurate network reachability database, it is advised that network operators document and

add all filtering devices to the Quarnet server and make sure that it is fed with all possible

information that concerns network reachability.
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Chapter 10

Experimental Results

10.1 Implementation and Evaluation Testbeds

We implemented Quarnet in C++ and evaluated it on two testbeds: (1) a university campus

network, (2) real-life based networks with large variety of configurations.

The university campus consists of 48 subnets interconnected in a hierarchical topology.

We model the core campus network as one subnet as most ACLs are deployed on edge

routers/firewalls. We disregard the ACLs deployed on the core routers in the network be-

cause we have no access to them. Furthermore, their potential impact on the reachability

calculation is expected to be small because the ACLs on core routers are typically very small

and they mostly specify a few rules allowing only administrators to access the middleboxes

for management purposes [cis]. One subnet may contain multiple Virtual Local Area Net-

works (VLANs) and there are no ACLs among VLANs. For example, a VLAN could be

the network that consists of all the printers in the subnet of a department. Note that we

model the outside Internet as one subnet. This network does not have NATs/PATs or IP

tunnels. Further, all ACLs that we obtained are in use on stateful firewalls. In this network
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model, there are 49 subnets that are connected by 192 links through 2401 paths. Also, the

total number of VLANs is 399 that are protected by 98 ACLs, where each ACL contains

573 rules in average (total number of rules: 56189). Among the 98 ACLs, 14 of them are

original and the rest are generated based on the statistical features of the original ones and

the subnet addresses because we do not have access to all the ACLs in deployment. We used

university campus topology to evaluate Quarnet in terms of execution time and memory

usage for reachability computation and querying.

However, since the university campus topology has one paths between each two subnets,

we used another another real-life topologies to be able to properly evaluate probabilistic

reachability and reachability troubleshooting. Hence, we create four network topologies by

adding and removing some links and subnets to a real network topology with 8 routers and

original 32 links. These networks has different number of paths ranges from 122 to 4010.

For the ACLs on the interfaces of the routers, we provide a pool of real-life rules and we put

20±5 rules on routers interfaces. More details of the network topologies are shown in Table

10.1.

bb No. of paths No. of subnets No. of routers No. of links
Test Case 1 122 9 8 32
Test Case 2 1036 8 8 39
Test Case 3 2019 10 8 39
Test Case 4 4010 8 8 43

Table 10.1: Created networks statistics
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10.2 Reachability Computation

We compute reachability for a university campus network on a desktop computer with a Dual

Core AMD64 CPU 2.4GHz and 16GB of RAM. This is a public machine running processes

from other users as well. Our experimental results are shown in Table 10.2. Note that the

total amount of memory used by Quarnet is 4.7GB, not the sum of the memory used in each

step because some memory is released after each intermediate step.

# of FDDs Time (mins) RAM (MB)

FDD construction 192 2.1 1276

One-hop path calculation 96 0.3 106

FDD matrix calculation 2352 11 1505

Reachability calculation for CL protocols 2352 661 2400

Reachability calculation for CO protocols 2352 1 800

Total execution 7344 675 4700

Table 10.2: Results on computing reachability matrices

We gained two insights from our experiments. First, the running time of our algorithm

goes up as the number of VLANs increases. This is because more number of VLANs means

more intervals on the outgoing edges of nodes labeled with source or destination fields, which

further means more edge splitting and subtree copying in performing FDD shaping. Second,

the time for computing reachability matrices for connection-oriented protocols goes down

dramatically as the number of stateful firewalls increases. This is because based on formulas

(3.6), (3.8), and (3.7), we can use the FDDs calculated in the connectionless matrices and

simply change the subtree functions from SubCL to SubCO.
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10.3 Experimental Results Validation

To validate the reachability matrices computed by Quarnet, we designed an ACL simulator

that makes the decision for each packet by sequentially comparing the packet with every

rule in an ACL. We generated a large number of packets for every path including all corner

case packets based on the bounding values in the ACLs. We compared the decisions made

by the ACL simulator and those made by the reachability matrices computed by Quarnet.

The results are all positive.

10.4 Performance of Core Operations

The core operations in reachability computation are FDD logical AND and OR operations,

the performance of which is the same as they all come down to FDD shaping. We are

interested in evaluating their performance because it helps us to estimate the running time

and memory usage of reachability matrix calculation. To evaluate the performance of the

core operations, we created synthetic rules generated based on the statistical features of the

real rules that we have obtained, such as the probability of unique IP addresses and port

numbers, the decision bias of the rules, and the probability of fields being any. We focused

on measuring the time and memory for calculating the reachability of paths with different

lengths.

Figure 10.1 (a) and (b) show the running time and memory usage of the core operations

over different path lengths for a network with 100 subnets. The average number of rules per

ACL ranges from 100 to 400 with 10% STD based on normal distribution. Note that based

on the dynamic programming in Section 3.3, the FDD for each path is calculated using a
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single logical operation. For instance, the FDD for a path of length 8 is calculated by an

AND operation of either two FDDs where each is for a path of length 4 or two FDDs, one

for a path of length 6 and one for a path of length 2. For any path length, we calculate the

average cost of all possible permutations by which the FDD of the path may be calculated.

The interesting observation on Figure 10.1 is that in general the running time and memory

usage decrease as the path length increases. This makes sense because the rules in different

ACLs from one network often share common fields. The source and destination IP address

fields of many rules in the ACLs from one network are drawn from the IP prefixes of the

subnets in the network. Similarly, many of the port number and protocol fields are drawn

from the set of services provided by the network. When we shape two FDDs each corresponds

to a long path, because each of the two FDDs has gone through many edge splitting, the

amount of new edge splitting tends to be small, which leads to reduced cost.

Knowing the performance of Quarnet core operations allows us to estimate the time and

memory that it used to compute the reachability matrices for a given network. Let C(x)
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Figure 10.1: Performance of Quarnet core operations
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be the cost function for calculating the FDD for a path with length x as shown in figure

10.1. Let L(P [i, j]k) be the length of the path P [i, j]k. We use C
I
CL, C

I
CO, CBCL, and

C
B
CO to denote the estimated cost (i.e., running time or memory usage) for computing the

matrices of instantaneous reachability for connectionless protocols, instantaneous reachabil-

ity for connection-oriented protocols, reachability bounds for connectionless protocols, and

reachability bounds for connection-oriented protocols, respectively. They can be calculated

as follows:

C
I
CL =

N
∑

i=1

N
∑

j=1

|P [i,j]|
∑

k=1

C(L(P [i, j]k))

C
I
CO =

N
∑

i=1

N
∑

j=1

|P [i,j]|
∑

k=1

|P [j,i]|
∑

k′=1

C(L(P [i, j]k) + L(P [j, i]k′)))

C
B
CL =

N
∑

i=1

N
∑

j=1

|P [i,j]|
∑

k=2

C(
k
∑

k′=1

L(P [i, j]k′))

C
B
CO =

N
∑

i=1

N
∑

j=1

|P [i,j]|
∑

k=1

|P [j,i]|
∑

l=1

C(
k
∑

k′=1

L(P [i, j]k′) +
l

∑

l′=1

L(P [j, i]l′))

10.5 Quarnet Scalability Analysis

In this section, we evaluate the scalability of Quarnet by increasing the number of paths and

rules on synthetic network topologies and synthetic ACL rules generated. We trained our

rule generation model using real network topologies and configurations to generate close-to-
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reality networks. We use a large-scale enterprise network with 8 middleboxes (i.e. routers

with ACLs on their interfaces), which divide the network into 10 subnets. We change the

network connectivity by adding and removing edges to change the number of paths from 100

to 5,000. We perform scalability tests twice for each network topology, where in each test

we use 20 ACLs on random router interfaces with 40±10 and 200±50 rules. The results for

reachability computation execution time and memory are shown in Figure 10.5(a) and (b),

respectively.

The results confirms the observations we had in previous sections. First, in most cases

the execution time and memory usage increases linearly when the number of rules and paths

increases. But at some point, the number of paths and rules does not have much impact

because the FDDs for different paths are very similar, which in turn means that less number

of edge splitting and subtree copying is required. Second, the execution time and memory

can vary for different Quernet operations. While the computation of CL matrices takes more

time, the computation of CO matrices takes more memory.

Note that by comparing the results for synthetic networks and real-life network, we

can observe a very large difference between computation time of real-life networks (i.e.

approximately 11 hours) and the computation time of synthetic networks (i.e. approximately

30 minutes). As mentioned, the reason is because the number of VLANs (i.e. prefixes) is

considerably larger (399 vs. 10) the diversity of rules is much higher, which leads to larger

FDDs with more edge splitting and subtree copying in FDD shaping.

We also examined NAT/PAT on synthetic networks. The results shows a negligible

difference with reachability computation with no NAT/PAT. The reason is for instantaneous

reachability, the only overhead in computation is relabeling edges and for bounds, because

FDD’s subtrees are very similar the overhead of FDD subtree shaping is trivial.
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Figure 10.2: Performance of Quarnet for synthetic networks

10.6 Performance of Online Querying

As our reachability query engine uses FDDs as its core data structures, we evaluated the

performance of online query processing by performing randomly generated queries over large

FDDs with millions of nodes. Our experimental results in Table 10.3 show that our online

reachability query engine is very efficient. For example, over an FDD with 2 million nodes,

which is similar to the size of the FDDs uses in the online query engine built for the university
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campus network that we experimented, the average processing time for a query is 0.075

seconds, although some queries (less than 1%) take 2-3 seconds. The existence of some

outliers is because some randomly generated queries may cause the engine to search through

a large portion of the FDD.

FDD Size (# nodes) Average Query Processing Time Outliers
0.5 million 0.032s 1% of queries: 0.5s ∼ 1s
1 million 0.049s 0.8% of queries: 0.8s ∼ 1.5s
2 million 0.075s 1% of queries: 2s ∼ 3s

Table 10.3: Performance of online query processing

10.7 Probabilistic Reachability Computation

Using the second testbed, we focused the measurement on the algorithm execution time and

memory usage for probabilistic reachability computation, instantaneous reachability error

diagnosis and troubleshooting and reachability inconsistencies diagnosis and troubleshooting.

We conducted experiments on a UNIX machine with Intel(R) Xeon(R) Quad-cores CPU

running at 2.66GHz and 16GB of RAM. We concluded that the proposed algorithms are

sufficiently efficient to be used in practice for online reachability troubleshooting.

Figure 10.3(a) and (b) show the number of effective paths and the percentage of effec-

tive paths out of all the paths, respectively, for 5 different reachability uptime values of

ǫ = 0.9, 0.99, 0.999, 0.9999 and 0.99999. The results indicate that in large-scale and highly

connected networks (e.g. test case 3 and 4) where there are too many paths, up to 52.42% of

the paths can be ignored as their reachability is not a concern in 0.99999 of the time. This

impact, however, is less for small scale and weakly-connected networks. Another observa-

tion is that large scale networks are more sensitive to ǫ rather than small networks, which
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indeed suggests that probabilistic reachability computation can be very effective for large

scale networks.
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Figure 10.3: Number of effective paths for different reachability uptimes

Figure 10.4(a) and (b) show the time and memory for calculating effective instantaneous

reachability, respectively. The results indicate that in most cases as ǫ increases, the proba-

bilistic reachability calculation time increases exponentially. The reason is larger values of

ǫ leads to larger number of effective paths, which are mostly longer (i.e. have more ACLs);

thus, their reachability calculation takes even more time and memory. For example, for a

large scale network (i.e. test case 4), the calculation time varies from 5 seconds to 31 hours,

and calculation memory varies from 88MB to 11.38GB for different values of ǫ. Thus, finding

an appropriate ǫ can drastically change the reachability calculation time and memory.

Figure 10.5(a) and 10.5(b) show the calculation time and memory for calculating ef-

fective reachability bounds, respectively. The results indicate that although calculating of

reachability bounds is not as resource-intensive as calculating instantaneous reachability, the
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Figure 10.4: Effective instantaneous reachability calculation time and memory

execution time and memory usage both increase as reachability uptime increases. The reason

is that the reachability bound calculation is mostly dependent on the number of the paths

and not the length of the paths. Thus, when reachability uptime value increases, its impact

on required time and memory is less significant. For instance, for a large scale network (i.e.

test case 4), the calculation time can vary from 3 seconds to 56.6 minutes, and calculation

memory can vary from 60MB to 697MB for different values of ǫ.

In summary, The results indicate that for large scale networks, we can save significant

amount of time and memory, if we calculate probabilistic reachability and disregard the

paths that are unlikely to be used in a network.
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Figure 10.5: The effective reachability bounds calculation time and memory

10.8 Instantaneous Reachability Error Troubleshoot-

ing

To measure the instantaneous reachability error troubleshooting time and memory usage,

we first setup a linear network, which consists of 5 routers (i.e. 10 ACLs) lined up in a row,

and we consider the paths from a subnet connected to router 1 to a subnet connected to

router 5. Second, we consider four test cases where in each test the average number of rules

on the ACLs are in turn 10± 2, 100± 20, 1000± 200, and 10000± 2000. Note that the rules

are chosen from a pool of real rules. Finally, we measure the instantaneous reachability error

detection and troubleshooting time and memory for different number of errors varying from

10 to 5000 errors. To create reachability errors, we generate a random set of packet header

predicates to represent the set of errors. For each error predicate, if the decision for the error

is 0 based on the instantaneous reachability, it is considered as type 1 error and we fix the

ACLs to change the error reachability to 1. Similarly, if the decision for the error is 1 based
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on the instantaneous reachability, it is considered as type 2 error and we fix the ACLs to

change the error reachability to 0.

Figure 10.6 shows the time for instantaneous reachability error diagnosis and trou-

bleshooting. The results indicate that the error diagnosis time has a nearly constant trend

for different number of the errors. The reason is our error query algorithm queries all the

reachability errors at the same time. Thus, the query time may change based on the size

of instantaneous reachability FDD rather than the number of errors. However, the trou-

bleshooting time increases linearly as number of errors increases. From the results we can

deduce that test case 3 has the largest instantaneous reachability FDD and its average de-

tection time is 791ms for different number of errors. Test case 4, however, has the largest

troubleshooting time that varies from 106ms to 75s for different number of errors.
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Figure 10.6: Instantaneous reachability faulty ACL detection and troubleshooting time

Figure 10.7 shows the memory for instantaneous reachability error diagnosis and trou-

bleshooting. Similar to the error diagnosis time, the memory remains almost constant when

the number of errors increases. Test case 3, which has largest instantaneous reachability FDD

among all the test cases, consumes the most amount of memory up to 32MB. This figure

also shows that the reachability error troubleshooting consumes trivial amount of memory,
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which was expected as the troubleshooting algorithm is not memory-intensive.
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Figure 10.7: Instantaneous reachability faulty ACL detection and troubleshooting memory

Both figures suggest that if we calculate instantaneous reachability off-line, we can per-

form error diagnosis and troubleshooting online in a timely and memory efficient fashion.

10.9 Reachability Inconsistencies Troubleshooting

To measure the reachability inconsistencies detection and troubleshooting time and memory,

we first use a network with 805 paths where only 596 of them are effective. The number of

paths between randomly selected pairs of subnets are sorted and shown in Figure 10.8(a).

We then generate four test cases where in each test case the routers have in turn up to 10,

50, 100, and 500 real-life rules. The rules on the routers on parallel paths are chosen to be

somehow relative to avoid unpractical situations where there is a big difference between the

reachabilities of parallel paths. To create our central policies, we randomly choose the correct

decisions for the calculated reachability inconsistencies and accordingly we identify type 1

and type 2 reachability errors. The numbers of rules to fix type 1 and type 2 reachability

errors for each selected pair of subnets are shown in Figure 10.8(b) and (c), respectively.
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Figure 10.8: Reachability inconsistencies detection and troubleshooting time
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The results show that the number of fixing rules is more dependent on the ACL rules and

their interactions rather than the number of paths.
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Figure 10.9: Reachability inconsistency detection time

Figure 10.9 shows that reachability inconsistencies can be detected in less than a few

seconds. It also shows that the detection time is only dependent on the number of rules and

the number of paths, and not dependent on the number of errors.

Figures 10.10 and 10.11 show the troubleshooting time for type 1 and type 2 errors. The

results indicate that when the number of errors increases, the troubleshooting time increases

as well. By comparing these two figures, we can observe that fixing type 1 errors takes

less time than fixing type 2 errors. The reason is that type 2 errors troubleshooting has

a time overhead due to fixing cost computations. The results show that the type 1 error

troubleshooting takes less than a second whereas type 2 error troubleshooting takes tens of

minutes when the number of errors exceeds 350.
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Figure 10.10: Reachability inconsistency type 1 troubleshooting time
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Figure 10.11: Reachability inconsistency type 2 troubleshooting time

10.10 Reachability Optimization

To evaluate the performance of the rule placement algorithms, we implemented them as a

part of Quarnet tool. The input for the algorithm can be either the network central access

policy, or the central policy calculated by the rules that have been already placed on the
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classifiers and will be redesigned based on the algorithm output. We also implemented the

ACL placement algorithm based on Sung et al.’s work in [SRXM08] to compare the results

for rule placement and ACL placement. Comparing rule placement and ACL placement is

difficult because, as mentioned before, the ACL placement can only satisfies one strategy

at a time; hence, comparing it to rule placement that creates a tradeoff between different

requirements may not seem fair. Nonetheless, to have a reference point to evaluate the

performance of the rule placement, we compare ACL placement with one strategy and rule

placement with three configurations.

For this experiments, we consider three network topologies shown in Figure 10.12. Figure

10.12(a) shows the test case 1 network topology, which is a small network with 4 subnets

connected in a ring-like topology. Such topologies are often used for networks with high

availability and reliability. Figure 10.12(b) shows the test case 2 network topology. This is a

mid-size network where two networks are connected through a core router together. In this

network, there are 6 main subnets whose access to each other is limited based on the central

access policy. Figure 10.12(c) shows a network with hierarchical architecture where the core

layer (hilighted with orange background) interconnects the access routers (highlighted with

yellow background) and their 12 subnets.

The experiment is conducted where the central policy is created synthetically using a

model, which is trained by a set of real-life access policies collected from a university campus

network. The central access policies between each pair of subnets is designed to be around

100 rules. The decision bias of the rules is 95% for discard decision, but the default access

policy is accept. We will later explain how the decision bias can be important in the

final results. The ACL placement algorithm is designed based on “Minimum Rules (MIN)”

strategy, in which the minimum number of rules are placed on the classifier. Unfortunately,
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Figure 10.12: Three network topology for three test cases

ACL placement does not support multiple strategy as the time. Hence, we chose MIN,

the first strategy they have introduced in [SRXM08]. The experimental results is shown in

figure 10.13. In this figure we show the distribution of rules by sketching the ACL size for

each classifier in figures 10.13(a), (b), and (c) for test case 1, 2, and 3, respectively. For

each test case we compare the rule placement with three different configuration set up for

weights together along with the Purdue ACL replacement with MIN strategy. The three

configurations for rule placement first put more weights on load balancing rather than early

packet discard by having wd = 0.25 and wr = 0.75. Second, we have same weights for load

balancing and early packet discard (wd = 0.75 and wr = 0.25) Third, on the contrary to

the first configuration, we put weights on early packet discard rather than load balancing by

having wd = 0.75 and wr = 0.25.

The results for Test case 1 shown in figure 10.13(a) indicates that out of 14 classifiers for
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Figure 10.13: The rule distribution on the three test cases

access policy placement, 13 classifiers are used for rule placement using our rule placement

algorithm, whereas only 7 classifiers is used for ACL placement algorithm. However, the
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maximum and the minimum number of rules in rule placement (with all three configuration)

is 100 and 12 rules, respectively, while for the ACL placement it is 304 and 102 rules.

The results for Test case 2 shown in figure 10.13(b) indicates that out of 40 classifiers

for access policy placement, 30/29/29 classifiers are used for rule placement using our rule

placement algorithm (for three different configurations), whereas only 16 classifiers is used

for ACL placement algorithm. The maximum and the minimum number of rules in rule

placement is 480/584/584 and 102/51/4 rules, for three different configurations respectively,

while for ACL placement it is 1011 and 102 rules.

Finally, the results for Test case 3 shown in figure 10.13(c) indicates that out of 60

classifiers for access policy placement, 48/36/24 classifiers are used for rule placement using

our rule placement algorithm (for three different configurations), whereas only 18 classifiers is

used for ACL placement algorithm. The maximum and the minimum number of rules in rule

placement is 711/848/1,103 and 11/8/11 rules, for three different configurations respectively,

while for ACL placement it is 1,213 and 102 rules.

Looking at the results we can draw following conclusions. (1) Using rule placement, we

can have a closer minimum and maximum values, which indicates that we use our resources

more evenly and efficiently if we use rule placement. Table 10.4 shows the standard deviation

of the number of the rules on the classifiers for the test cases of ACL placement and rule

placement with three different configuration. The standard deviation results supports our

initial observation and indicates that using rule placement the classifiers can share the load of

access policy enforcement among the classifier more evenly. Moreover, comparing the results

for different configurations of the rule placement, the more weight we have for wr the rules,

the less standard deviation and the closer the minimum and the maximum number of rules

per classifier. This is expected as wr is used to leverage load balancing for rule placement.

115



Test Case 1 Test Case 2 Test Case 3
ACL Placement (Purdue Algorithm) 133.925 287.996 325.024
Rule Placement (wd = 0.25,wr = 0.75) 33.994 166.174 188.916
Rule Placement (wd = 0.50,wr = 0.50) 33.994 217.921 265.307
Rule Placement (wd = 0.75,wr = 0.25) 33.994 230.178 344.032

Table 10.4: Standard Deviation of the number of the rules

(2) On average, rule placement uses more classifiers to place rules than ACL placement.

Table 10.5 shows the number of classifiers, which were used for access policy enforcement

using rule and ACL placement algorithms. The results clearly show that using ACL place-

ment, less number of classifier are used for enforcing access policy. It also indicates that the

larger the value for wr, the more number of classifier are used. This corresponds with the

intent of using wr for load balancing between classifiers.

Test Case 1 Test Case 2 Test Case 3
ACL Placement (Purdue Algorithm) 57.143% 40% 30%
Rule Placement (wd = 0.25,wr = 0.75) 92.857% 75% 80%
Rule Placement (wd = 0.50,wr = 0.50) 92.857% 72.5% 60%
Rule Placement (wd = 0.75,wr = 0.25) 92.857% 72.5% 40%

Table 10.5: Percentage of the classifiers used (i.e. their ACLs have more then 1 rule)

(3) Rule placement induces less number of forwardings for unwanted traffic. Table 10.6

shows the average number of forwardings for unwanted traffic. The results for the rule

placement (with all configuration) is better than ACL placement. Moreover, the larger the

value for wd is, the less average number of forwardings for unwanted traffic. Again, this is

expected because we use wd to leverage early unwanted packet discarding.

(4) Rule placement often creates more number of rules than ACL placement. Table

10.7 shows the sum of the number of rules for ACL placement and rule placement. Except

test case 1, other test cases shows that rule placement creates more number of rules. The
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Test Case 1 Test Case 2 Test Case 3
ACL Placement (Purdue Algorithm) 1 3.48551 2.45625
Rule Placement (wd = 0.25,wr = 0.75) 0.568584 2.87783 1.10333
Rule Placement (wd = 0.50,wr = 0.50) 0.568584 2.5528 0.74691
Rule Placement (wd = 0.75,wr = 0.25) 0.568584 2.51476 0.529298

Table 10.6: Average number of unwanted packet forwardings

reason is twofold. First, the ACL heuristic is with MIN strategy; thus, it is designed to have

least possible number of rules. Second, the number of non-overlapping rules that represent a

network access policies can be more than overlapping rules that represent same access policy.

Even after compression, because a set of non-overlapping rules can be hardly compressed,

the total number of rules is often larger for rule placement.

Test Case 1 Test Case 2 Test Case 3
ACL Placement (Purdue Algorithm) 1,832 7,514 9,150
Rule Placement (wd = 0.25,wr = 0.75) 802 9,778 12,693
Rule Placement (wd = 0.50,wr = 0.50) 802 10,478 12,799
Rule Placement (wd = 0.75,wr = 0.25) 802 10,504 13,290

Table 10.7: Sum of the total number of rules

10.11 Rule Placement Practical Pros and Cons

Evaluation results show that the rule placement can be effectively used in practice and can

create a tradeoff between all design requirements and it seems to be able to distribute rule

across classifiers optimally. However, rule placement for some central access policy may not

result better than ACL placement. This is because that in rule placement the cental policies

are represented in non-overlapping discard rules. Hence, in theory, depending on the access

policy, the number of non-overlapping discard rules can be very large. The large number of

discard rules not only causes a long algorithm execution time (comparing to ACL placement),
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but also increases total number of rules that must be placed on the classifiers and makes

the ultimate results worse than ACL placement results. In practice, however, we believe

rule placement can be used because network operators typically defined the set of access

restrictions and the rest of the traffic will be accepted. In such cases the rule placement can

be very helpful, as the set of restrictions limited to reasonable number of non-overlapping

discard rules and can be efficiently placed on the classifiers.

Finally, we compare the execution time for ACL placement and rule placement in table

10.8. The results indicate that the ACL placement takes significantly less time for execution

as it was expected. The rule placement execution time linearly increases as the number of

non-overlapping discard rules increases. However, this operation is going to be done once

and it is in the order of seconds and minutes, which certainly satisfies network operator

requirements in practice.

Test Case 1 Test Case 2 Test Case 3
ACL Placement (Purdue Algorithm) 0.035s 0.638s 1.173s
Rule Placement 2.472s 43.339s 63.427s

Table 10.8: Execution time
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Chapter 11

Related Work and State-of-the-Art

11.1 Active Probing

Active probing tools, which actively test network reachability by sending probing packets

and analyzing the response packets, are commonly used by network operators. Such tools

include ping and traceroute, which use ICMP [Pos81] echo request/reply or ICMP time-

exceed packets, to test whether a host on a target network is reachable. The use of such

tools is limited because they cannot verify the reachability of UDP or TCP packets. There

are tools such as NMAP [Fay] and NESSUS [nes] that can test the reachability of UDP or

TCP packets; however, such tools have significant limitations. First, they cannot perform

comprehensive testing due to the amount of packets that have to be generated. Second, the

test results of such tools are valid only for the routing state at the time that the testing is

performed and may not hold afterwards due to the change of routing states over time. Third,

such tools only show the open ports on which a server daemon is listening and does not reveal

the open ports with no server listening on them at the time of testing. In comparison, our

Quarnet is non-intrusive and comprehensive. But of course, active probing tools have some
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benefits that Quarnet does not offer. For example, they may identify reachability faults, such

as errors in routing software, which are not caused by ACL misconfigurations. Nevertheless,

our tool is complementary to such tools.

11.2 Network Reachability Analysis

Little work has been done on network reachability analysis. Xie et al. presented a model of

network reachability in their seminal work [XZM+05]; however, they give no algorithms for

computing reachability (and of course no experimental results). Xie et al.’s network reacha-

bility model does not address IP tunneling, dynamic NAT and PAT, and does not take into

account whether transport layer protocols are connectionless or connection-oriented. Fur-

thermore, Xie et al.’s model is limited to describing the networks where each subnet connects

to only one router because they model a network as a graph of routers. We significantly go

beyond Xie et al.’s work along three dimensions: (1) reachability modeling and formulation,

(2) algorithms for computing reachability, (3) solutions for reachability queries. Our model

differs from Xie et al.’s work in the following aspects. First, we model a network as a graph

over both routers and subnets, while, as mentioned, Xie et al. model a network as a graph

over only routers. Thus, Xie et al.’s model is limited to describing the networks where each

subnet connects to only one router, while our model does not have this limitation. Further-

more, we calculate reachability between two subnets and they calculate reachability between

two middleboxes. Second, we distinguish network reachability formulations based on both

the properties of transport layer protocols (namely connectionless and connection-oriented

protocols) and the statefulness of routers/firewalls on every path, while Xie et al. did not.

Third, our model addresses IP tunneling and three types of packet transformations: static
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NAT, dynamic NAT, and PAT, while Xie et al.’s model addresses only static NAT. Xie et

al. gave no implementable algorithms for computing reachability and no solutions for reach-

ability queries. Recently, in a poster paper [ZNW08], Zhang et al. proposed monitoring and

verifying reachability in real-time by computing instantaneous reachability. However, they

provided no algorithm for computing the reachability from a source to a destination along

a given path and no experimental results. Furthermore, they have the other limitations of

Xie et al.’s work mentioned above.

Some effort has been made to use Binary Decision Diagrams (BDDs) for reachability

analysis [ASMEAE09, SLL+09]; however, such work can only answer host-to-host queries

and cannot answer subnet-to-subnet queries as we do in this dissertation. We choose FDDs

instead of BDDs, as the basic data structure in this dissertation for several reasons. First, it

is extremely difficult, if not infeasible, to swap the values of packet fields or rearrange packet

fields in a BDD calculated over multiple ACLs. These operations are critical for computing

reachability for connection-oriented protocols and networks with NAT/PAT. Note that our

methods for performing these operations on FDDs, which requires generating rules from

FDDs and reconstructing FDDs, cannot be applied to BDDs because generating rules from

a BDD could easily lead to millions of rules as reported in [LG08]. Second, a reachability

query engine built with BDDs can only process closed queries that demand a yes/no answer.

In contrast, our reachability query engine built with FDDs can process both closed queries

and open queries. Third, the reachability calculated by BDDs is not human readable. In

contrast, every element in our reachability matrix is an FDD, which can be visualized for

examination for humans to examine.
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11.3 Complementary Work on Network Reachability

In [MWZ00], Mayer et al. proposed Fang, a firewall analysis engine. Fang supports limited

queries (over 3-tuples) and each query is compared with every rule in every ACL along every

path from a source to a destination, which is very inefficient.

There is some work, which is orthogonal to ours, on detecting reachability problems

caused by routing faults (e.g., the faults identified in [Pax97]), instead of ACL miscon-

figuration (e.g., [MWA02, SG04, ABKM01, DTDD07,MBGR06]). In [ILP06], Ingols et al.

proposed algorithms for creating attack graphs for a network; however, their focus is not on

reachability computation. Our proposed work is complementary to [ILP06].

11.4 Reachability Troubleshooting

To the best of our knowledge, there is no prior work on network reachability error trou-

bleshooting. Yet, the closest thread of related work is on firewalls and network ACLs error

detection and removal. Such errors include rule redundancy and shadowing, among rules in

a single firewall policy or among ACLs of an interconnected network. As a very first work in

the firewall error detection thread of research, Hari et al. discussed overlapping filters (i.e.

rules) in a firewall policy and its possible conflicts that can cause security holes in the fire-

wall policy. Considering classifiers with n rules, they also provide trie-based algorithms with

time complexity of O(n2) for general classifiers to detect and remove such conflicts [HSP00].

Eppstein and Muthukrishnan proposed rectangle geometry based algorithms to improve rule

conflict detection and removal in time complexity of O(n3/2) [EM01]. As the proposed algo-

rithms were not fast enough for 5-tuple packet classifiers, Baboescu and Varghese proposed a
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faster trie-based algorithm for conflict detection and removal [BV02]. A couple of years later,

Gouda and Liu proposed FDD and related algorithms to design a firewall such that it satisfies

certain properties that includes no rule conflicts, no rule redundancy and shadowing [GL04].

More recent work though focuses on rule conflicts on ACLs in a network. Al-Shaer et al. use

state diagrams for inter-firewall anomaly detection and removal. They can also detect and

remove rule redundancies and shadowing among different firewalls in a network [ASHBH05].

Similarly, Alfaro et al. proposed a network model and based on that they presented some

algorithms to detect and remove rule conflicts in a network [GACC06]. Fireman [YCM+06]

is another similar tool that uses symbolic model checking to find firewalls misconfigurations

and inconsistencies.

11.5 Reachability Optimization

The most related work on network ACL design is introduced by Sung et al. in [SRXM08],

in which they followed a “top-down” approach for systematic design of enterprise networks.

Their work includs a suite of algorithms for access policy placement on network classifiers so

that the reachability is limited to the network central access policy, while it satisfies network

performance criteria. The basic idea in this work is to interpret the reachability between two

given subnets as an ACL and then place this ACL on all the paths that connect these two

subnets together. They recognized the performance criteria as “strategies” in ACL design,

and they proved that for each strategy, the ACL placement problem is NP-hard. Accordingly,

they proposed greedy heuristics based on “first fit deceasing” technique. The heuristic for all

strategies are the same, however for each strategy, they changed the order of ACL placement

so that the final results complies with the strategy. Although their heuristics are straight-
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forward, they have not shown how multiple (or all) strategies can be taken into account

simultaneously. As mentioned in section 8.2.1, Quarnet follows a different approach (i.e.

rule placement) to solve this problem. Using this approach, we can consider all the network

performance criteria at the same time and create a balance between them by introducing a

weight for each criterion.

Sun et al. in [SR11] focused on network redesign and accordingly they considered its

associated costs. In their work, the authors aimed to resolve network dependencies problems

that can occur when a network is redesigned. They presented a model for VLAN redesign

costs such as access policies reconfiguration induced by changes in VLAN design. They later

presented algorithms for two basic functions move() and merge(), using which the VLAN

redesign is feasible. Although Quarnet can apply algorithms for incremental changes, this

work can be used in parallel with Quarnet to handle the configuration inconsistencies caused

by VLAN configuration changes.

Another genre of related work focused on the networks with centralized control using

OpenFlow [MAB+08] and flow switches. In such networks, the routing and switching is

centralized by OpenFlow controllers. The OpenFlow controllers control all the switches

and routers (so-called flow switches) in the network to forward packets from a source to

a destination. Access policy enforcement in OpenFlow networks is easy as the classifiers

can be installed on the controllers and decide whether a packet can be forwarded from

a source to a destination. The problem with such frameworks is the scalability. Such

controllers cannot scale well when the number of flows in the network is large. Yu et al.

presented DIFANE [YRFW10], in which they addressed this issue. Their approach was to

move the central access policy enforcement from the control plane to data plane using widely

distributed authority switches. In this framework, rules are distributed among authority
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switches, so that they are enforced on the traffic. When a packet is received by a flow

switch, it checks if it has any rule that match the packet, if it does not have any rule, it

forwards the rule to the authority switches. The authority switches find a match for the

packet and send the cached rule to the flow switch. Accordingly, the rest of the packets can

be classified based on the cached rule in the data plane. Their experiments indicated lower

delay, higher throughput, and better scalability comparing to directing packets through a

separate controller.

Another close work for OpenFlow networks is the Ethane controller introduced by Casado

et al. in [CFP+09]. In this controller, flow-level rules are installed reactively for the first

packet of each TCP and UDP flow. While the OpenFlow networks received a great deal

of attention in last few years, OpenFlow networks are still in the research phase and has

not been widely deployed in practice. They are only partially deployed on a few university

campus networks. Hence, it will take a long time for such networks to be regularly used in

practice.
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Chapter 12

Conclusions

12.1 Summary and Contributions

In this dissertation, we first model and formulate network reachability considering the dif-

ferences in connectionless and connection-oriented transport protocols, stateless and stateful

middleboxes, as well as the presence and absence of various packet transformers. We also

define the concept of probabilistic reachability calculation, in which we only calculate reach-

ability for the paths that are likely to be chosen by the routing daemon to dramatically save

time and memory for reachability calculation. Second, we present algorithms for computing

network reachability matrices using Firewall Decision Diagrams (FDDs). Third, we give

solutions for expressing and processing reachability queries in a SQL-like language called

SRQL. Forth, for network reachability troubleshooting, we formulate two types of network

reachability errors. Type 1 errors disrupt legitimate access to network resources and type

2 errors facilitate unauthorized access to network resources. Given a reachability error, we

propose a suite of algorithms for detecting faulty ACLs and fixing them in an efficient way.

We also use network reachability inconsistencies to find reachability errors proactively and
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fix them before they cause any network reachability problem. Fifth, we propose a suite of

algorithms for optimized ACL placement in the network so that it satisfies the network cen-

tral access policy and complies with the network performance criteria. The network central

access policy can be calculated from the current network configurations and the network

ACLs can be redesigned error free and optimized (based on network performance criteria)

and be pushed out to all the classifiers on the middleboxes.

We implemented our algorithms and conducted experiments on a campus network and

other real-life network topology. Results show that our offline reachability computation is

practical and online query processing is very efficient. Moreover, our experimental results on

reachability troubleshooting show that our algorithms can detect and fix faulty ACLs in the

order of milliseconds. Yet, the time for error detection and troubleshooting increases if the

network ACL average number of rules in the increases. Similarly, the experimental results

indicate that network reachability inconsistencies can be detected in the order of minutes,

but it may increase if the number of network paths increases. We also implemented our

rule placement algorithm and compared it with ACL placement algorithm [SRXM08]. We

show that on some generic network test cases with synthesized central access policies, our

algorithm yields better and more even rule placement on the classifiers.

12.2 Future Work

12.2.1 Parallel Reachability Computation

Different elements of reachability matrix computation can be parallelized to improve the

matrix computation time. Several pieces of work has been proposed to parallelize dynamic
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programming [TSG,SSdlB+10]. As in dynamic programming, a problem is recursively di-

vided into subproblems, and optimal solutions are assembled from optimal subsolutions, we

can fork the solver for each subsolution so that each subsolution can be computed in paral-

lel. Yet, on each step of recursion, we need to cache the subsolutions, and lock on them to

protect the individual solutions from recomputing.

Recently, Graphics Processing Units (GPUs) received significant attention for paralleliz-

ing algorithms and make them faster. As a future work, the reachability computation al-

gorithm can be redesigned such that the FDD operations are computed in parallel for each

element of the reachability matrix.

12.2.2 Rule Cache and Forward

One way to further minimize the number of forwardings, we can adapt the rule placement

to the actual traffic dynamically by keep tracking the number of packet match for each rule

and cache the rule close to the packet source. Caching can be proffered over rule expulsion

because of its simplicity, although the total number of rules may not be optimal any more

and it is probable that we can have similar rules along a path. One possible application

of such rule caching is when the enterprise network is connected to the Internet, and one

of its subnets are under attack. In such situations, the rule that matches the traffic can

be placed on the network gateway firewall to protect the subnet from the attack traffic on

the gateway. This avoids the attack’s collateral damages to the rest of the subnets in the

network. To have such rule caching mechanism, the pattern of the unwanted packet must

be studied so that we can evaluate the effectiveness of this technique and use this study

to design a smart cache replacement policy. Assuming the unwanted packets has a certain
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pattern (excluding the time that the network is under Denial of Service (DoS) attacks), rule

caching can trigger rule expulsion predicably so that we keep the optimality of the number

of rules and the minimum unwanted packet forwardings. Note that the caching rule is not

necessarily a non-overlapping discard rule that is generated by the FDD. This rule can be

generated based on unwanted traffic pattern and exported along the path so that it is placed

on a classifier closer to the source.

12.2.3 Optimization with Compression

The current cost-based rule placement algorithm is independent from the ACL compression.

This makes the ACL compression techniques less effective. However, if we adapt the rule

placement and edge cut selection to the ACL compression such that we can have a better

compression rates, we have one more step further to minimize the number of rules per ACL.

Moreover, for prefix-based classifiers, we can further change the algorithm so that the final

set of rules has the minimum number of prefix rules. Indeed, such techniques can be different

for software and hardware classifiers.
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APPENDIX A: Summary of Important Notations

N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . set of subnets

n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . number of subnets

N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . set of subnets

n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . number of subnets

R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . set of middleboxes

m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .number of middleboxes

u . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .max number of unidirectional interfaces on a middlebox

I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . network incident matrix

A[i, j] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ACL of j-th interface of middlebox i

p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . number of the paths in a network

s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . routing state

S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . set of routing states

Se . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . set of effective routing states

Pi,j(s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .path from Ni to Nj at routing state s

M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . number of hops on a path

Ck . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . k-th classifier in a path from Ni to Nj

A(Ck) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . packets accepted by ACL Ck

z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .max number of paths between any two subnets

R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . reachability set

−→
R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . reachability set for data path

←−
R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . reachability set for signaling path

l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ACL
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ℓ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . link

Fi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i-th field in FDD

F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . FDD matrix

f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Firewall Decision Diagram (FDD)

P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . path matrix

A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . network computed reachability FDD matrix

Â . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . network computed probabilistic reachability FDD matrix

fr . . . FDD for the set of packets that can be accepted by the ACLs on the private subpath

fu . . . FDD for the set of packets that can be accepted by the ACLs on the public subpath

TS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . transformation function on source fields

TD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . transformation function on destination fields

g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .max number of rules in an ACL

Ni . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . subnet i

d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . number of fields in each rule

R̂ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .effective reachability

Pei,j . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . set of effective paths from Ni to Nj

P̄ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . sorted sequence of path

h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .number of links in the network

Υ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . network uptime

M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . number of hops on a path

ǫ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . reachability uptime

Ni . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . subnet i

Pi,j . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . paths from Ni to Nj

Fi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i-th field in FDD
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Ck . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . k-th classifier in a path

A(Ck) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . packets accepted by classifier Ck

fk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . FDD representing A(Ck)

pa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .a-th path

La . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . set of link in a-th path

wa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . total weight for a-th path

ℓb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . b-th link

πa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the probability for a-th path

φi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i-th decision path in an FDD

F(i, j) . . . . . . . . . . . . . . . . . . . . . FDD for the network central access policy between Ni and Nj

E1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . type 1 errors

E2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . type 2 errors

ΦE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . set of decision paths that match error E

C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . fixing and rule placement cost function
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