STUDIES ON THE WHOLESOMENESS OF A COMPLEX SODIUM ALUMINUM ACID PHOSPHATE, A NEW BAKING COMPOUND Thesis for the Degree of M. S. MICHIGAN STATE COLLEGE Herbert E. Kasoff 1948 This is to certify that the thesis entitled Studies on the Wholesomeness of a Complex Sodium-Aluminum Acid Phosphate, a New Baking Acid presented by Herbert E. Kasoff has been accepted towards fulfillment of the requirements for Master of Science degree in Chemistry Major professor Date 7 - 30 - 48 | ;
(| |--------| | | | | | ļ | | | | . \ | | į | | 1 | | | | | | [| | Ž | | l . | | | | 1 | | Ì | | • (| | į | | 1 | | l | | ļ | | | | r
i | | 1 | | ļ | | ·
• | | ĺ | | į | | l l | | | | | | , | | ļ | | | | | | 1 | | - | | | | [| | 1 | | 1 | | • | # STUDIES ON THE WHOLESOMENESS OF A COMPLEX SOCIUM ALUMINUM ACID PHOSPHATE, A NEW BANING COMPOUND By HERBERT E. KASOFF # . A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF MICHIGAN STATE COLLEGE OF AGRICULTURE AND APPLIED SCIENCE IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE DEPARTMENT OF CHEMISTRY 1948 T543 # ACKNOWLEDGEMENT The writer wishes to acknowledge his deep appreciation and gratitude to Dr. C. A. Hoppert for his suggestions and guidance in the planning and development of this project. # TABLE OF CONTENTS Pages 1-3 Introduction Page 4 Experimental Part I A Study of the Wholesomeness of the Sodium Aluminum Acid Phosphate by Addition to a Stock Ration Pages 4-5 Data Page 5 Discussion Page 6 Experimental Part II A Study of the Wholesomeness of Biscuits Prepared with the Baking Compound Pages 6-7 Data Page 7 Discussion Page 8 Experimental Part III A Study of the Availability of the Phosphorus in the New Baking Compound Pages 9-10 Data Pages 10-11 Discussion Page 12 Summary Pages 13-14 Bibliography Pages 15-23 Detailed Data • #### INTRODUCTION In general, three types of compounds are used for the purpose of liberating carbon dioxide from baking soda for lightening or "leavening" baked products. These compounds include: acids (e.g.tartaric acid), acid salts (e.g.calcium acid phosphate and potassium acid tartrate) and non-acid salts which act as very weak acids (e.g.sodium aluminum sulphate). Typical reactions of these compounds with baking soda are: $$H_2C_2H_4O_6 + 2NaHCO_3 - Na_2C_4H_4O_6 + 2CO_2 + 2H_2O_6$$ Tartaric Acid $$\mathtt{KHC_4H_4O_6+NaHCO_3} \xrightarrow{\quad \quad } \mathtt{KNaC_4H_4O_6} + \mathtt{CO_2+H_2O}$$ Potassium Acid Tartrate "Cream of Tartar" $$3CaH_4(PO_4)_2+8NaHCO_3-ACa_3(PO_4)_2+4Na_2HPO_4+8CO_2$$ Calcium Acid Phosphate Sodium Aluminum Sulphate "Alum" Besides the acid salts of orthophosphoric acid, those of pyrophosphoric acid have been used extensively in commercial baking. | | <u></u> . | | | |--|-----------|--|--| | | | | | | | | | | | | | | | | | *** | | | | | | | | | | | | | The latter were at one time brought under the careful scrutiny of the Food and Drug Administration because of the supposed harmful effects of pyrophosphates when injected into small experimental animals (1). However, the lack of evidence of harmful effects from their use by the consuming public over a period of twenty years and negative evidence of harmfulness in a laboratory study (2) have resulted in the general acceptance of pyrophosphates as baking compounds. Moreover, it has been shown (3) that pyrophosphates are utilized practically as well as orthophosphates for meeting the phosphorus requirements of rats. It is therefore evident that certain compounds may not only serve a useful purpose in baking, but may also contribute to the nutritional supply of some essential mineral element. Evidence of the nutritive value of mono-calcium phosphate extensively used in self-rising flours, particularly in southern states was further indicated in a comparative study of the nutritional value of various types of bread and biscuits (4). The use of alum baking powders and aluminum kitchen ware has also been subject to criticism and attack at various times. Much of this effort to discourage the use of aluminum products has been of commercial origin and must therefore be discredited. The fact is that not very much is known about the biological role of aluminum and about the limits of tolerance for this element. It has been shown that aluminum could be detected in the blood of dogs fed an aluminum free diet supplemented with an alum baking powder (5). There was however no evidence of a cumulative effect in the blood. A study of the aluminum balance of pre-school children led to the conclusion that aluminum is not essential at this stage of life (6). On the other hand, it may be significant that aluminum is present in many tissues of the body such as brain, heart, liver, kidney and spleen (7). Evidently the requirement is very slight because it has been shown that one microgram per day of aluminum will satisfy the need of the rat (8). More specifically, it has been demonstrated that the addition of a minute amount of aluminum will accelerate the oxygen uptake in a succinic dehydrogenase-cytrochrome system (9). That fairly large amounts of aluminum are well tolerated by rats is shown by the fact that rats fed diets containing one per cent of sodium aluminate or of one per cent aluminum acetate remained in good health throughout the period of the experiment (10). It was the purpose of this study to determine the wholesomeness of a new baking compound developed by the Victor Chemical Company of Chicago, Illinois. The compound was a complex sodium aluminum acid phosphate to which the formula $NaAl_3H_{14}(PO_4)_8.3H_2O$ was assigned. This compound will be referred to as "Al.P." throughout the paper. #### EXPERIMENTAL PART !! In order to determine the wholesomeness of the baking compound, it was planned to use a generation type of feeding test involving reproduction and rearing of two litters by each female. Accordingly, several groups of young rats were assembled in such a way as to provide the greatest possible similarity as to sex, weight and litter origin. The animals, which were weighed weekly, were segregated as to sex until they had attained sexual maturity at which time they were assembled into comparable breeding groups composed of three females and one male. At least two litters were obtained from each female. When pregnancy was apparent, each female was segregated and allowed to remain with the young for twenty-one days. In order to achieve greater uniformity in the growth of the young, all large litters were reduced to seven. Smaller litters were raised but the results were not included in the general averages except in the case of litters of six animals. The young were weighed at twenty-one days and again at twenty-five days being continued on the ration used in raising the parents. A comparison was made between groups receiving the stock ration used in this laboratory and the same ration supplemented with one per cent of the baking compound. The stock ration had the following composition: | Yellow Corn Meal | 35% | |---------------------|-----| | Ground Whole Wheat | 25% | | Powdered Whole Milk | 20% | | Linseed Oil Meal | 10% | | Alfalfa Loaf Meal | 6% | | Brewer's Yeast | 3% | | Table Salt | 1% | The results of this experiment are summarized in tables I and II. More extensive data are given at the end of the thesis. (PP 15,16,17,18) Table I | Ration | Sex | Number of Animals | Initial Weight (Grams) | Average
Weight at
5 Weeks | Average
Weight at
10 Weeks | ll Animals
Final
Weight | |---|---------|--------------------|------------------------------|----------------------------------|----------------------------------|----------------------------------| | Stock
Stock + 1% "Al.P."
Stock + 1% "Al.P." | Q 0 Q 0 | 12
4
12
4 | 67.5
85.7
66.3
83.7 | 165.4
196.3
161.8
210.3 | 211.9
283.0
212.1
290.8 | 298.5
476.5
298.0
478.5 | Table II #### Litter Wts.: | | | Average
Weight | Average
Weight | |--------------------|-------------------|-----------------------|-----------------------| | Ration | Number of Animals | at 21 days
(Grams) | at 25 days
(Grams) | | Stock | 62 | 37.6 | 46.9 | | Stock + 1% "Al.P." | 6 2 | 38.1 | 46.9 | #### Discussion: It is apparent from the data in tables I and II that there were no significant differences in the growth of the original animals nor in their offspring. The animals in both groups appeared to be identical in every respect. It may therefore be concluded that the addition of one per cent of the new baking compound to the stock ration was without noticeable effect on growth, reproduction and rearing of the young. #### EXPERIMENTAL PART IIII Inasmuch as the baking compound under investigation would normally be ingested in a prepared food, the second part of the study involved the use of biscuits prepared with the baking compound. The following recipe was used to prepare the biscuits: | Flour | 400 | gm. | |---------------|-----|----------------| | NaHCO3 (C.P.) | 5 | gm. | | "Al. P." | 5 | gm. | | Table salt | 8 | gm. | | Crisco | 8 | tablespoonsful | | Milk | 11 | fl. oz. | The biscuits were baked in an electric over at 450° for 30-35 minutes. They were then air-dried, ground and incorporated in a diet which consisted of the following: | Ground dry biscuit | 55% | |----------------------------|-----| | Whole milk powder | 25% | | Alfalfa loaf meal | 10% | | Casein (edible commercial) | 5% | | Brewer's yeast | 4% | | Table salt | 1% | The diet was compared with the stock ration using two groups of rats selected and managed as previously described. The results are summarized in tables III and IV with more extensive data given at the end of the thesis. (PP 19, 20, 21, 22) Table III | Ration | Sex | Number of Animals | Initial Weight (Grams) | Weight at
5 Weeks
(Grams) | Weight at
10 Weeks
(Grams) | Final
Weight | |---------|-----------------|-------------------|------------------------|---------------------------------|----------------------------------|-----------------| | Stock | Q | 6 | 64.2 | 152.8 | 195.2 | 229.0 | | Stock | O ^{ZP} | '2 | 75.5 | 244.4 | 327.0 | 431.5 | | Biscuit | Q | 6 | 68.7 | 164.8 | 193.7 | 236.8 | | Biscuit | O | .2 | 77.5 | 245.0 | 327.0 | 452.5 | Table IV | Number of Animals | | Average
Weight at
21 days
(Grams) | Average
Weight at
25 days
(Grams) | |-------------------|----|--|--| | Stock | 36 | 35.3 | 46.7 | | Biscuit | 39 | 36.2 | 48.0 | # Discussion: The results in tables III and IV indicate that a diet containing fifty-five per cent of dried biscuits baked with the "Al.P." sustained as good growth and permitted as good reproduction and rearing of young as did the stock ration. This is further evidence of the wholesomeness of the new baking compound. #### EXPERIMENTAL PART HILL To determine the availability of the phosphorus in the "Al.P.", varying quantities of the baking compound were added to a rachitogenic diet, both in the form of the acid salt and after neutralization with sodium bicarbonate. This procedure was used because of the findings of Zucker et al. (11) and Lynch (3) who showed that when enough available phosphorus was added to a rachitogenic diet, normal growth and bone development resulted. This use of a rachitogenic diet in the production of experimental rickets is based on the fact that when the phosphorus of the diet is limited in amount and restricted to cereal sources in which much of the phosphorus is in the form of phytin, the inclusion in the diet of a large amount, three per cent, of calcium carbonate will so decrease the utilization of the phosphorus that the calcification of the skeleton is practically inhibited. The development of rickets is therefore due to a very low concentration of inorganic phosphorus in the blood (13). This is attributed according to Steenboch, to the precipitation of the phytin by calcium before hydrolysis of the former can occur: thus the phosphorus is unavailable for absorption (14). The addition of available phosphorus to the diet tends to elevate the inorganic phosphorus content of the blood and thus restores the calcifying process. Young animals weighing between forty and fifty grams were fed the rachitogenic diet containing various levels of the free baking compound and the neutralized baking compound. The neutralized form of the baking compound was prepared by mixing the "Al.P." with sodium bicarbonate in the ratio used in baking (1:1) adding water and then evaporating to dryness on a steam bath. The rachitogenic diet used had the following composition: | Yellow | corn meal | 63% | |-------------------|-------------|-----| | Gluten | | 20% | | Ground | whole wheat | 10% | | Yeast | | 3% | | CaCO ₃ | | 3% | | Table s | salt | 1% | In view of the fact that 1 gram of "Al.P." was equivalent to 1.34 grams of the neutralized "Al.P.", the baking compound was added to the rachitogenic diet in the quantities of 1, 2, 3 and 4 per cent by weight; the neutralized compound was added in quantities of 1.34, 2.68 and 4.02% by weight. The animals were weighed once a week and sacrificed at the end of the fourth week at which time blood samples were taken and one femur dissected from each animal. The blood was analyzed for inorganic phosphorus using the Youngburg method and the Fischer photoelectric colorimeter using the 425 mu filter. The method was modified to the extent of using a blank and allowing the blank, standard and unknown to stand for five minutes instead of one minute. The per cent transmission was converted to optical density using the table on page 472 in "Practical Physiological Chemistry" by Hawk, Oser and Summerson. The milligrams per cent of phosphorus was calculated by the formula: Concentration of Unknown Density of Unknown Conce Density of Standard of Standard Standard The dissected femora, cleared of adhering tissue, were extracted with 95% ethanol and ashed. The summarized results are given in table V and more detailed data are given at the end of the thesis. (PP 23) | • | • | | | | |---|---|---|---|--| | | | | • | - | - | · | | | | | | | | | | | Table V | Ration | Number
of
<u>Animals</u> | % Bone
Ash | Blood
Inorganic
Phosphorus
(mgm %) | Average
Final
Weight
(Grams) | Average 4-week gain in Weight (Grams) | |---------------------|--------------------------------|----------------|---|---------------------------------------|---------------------------------------| | Stock | 12 | 41.47 | 5.25 | 103.83 | 62.67 | | Basal Rachitogenic | 12 | 15 . 12 | 2.31 | 78.00 | ,26.83 | | Basal + 1% "Al.P." | 12 | 17.69 | 3.53 | 89.00 | 42.67 | | Basal + 2% "Al.P." | 12 | 29.86 | 4.10 | 97.33 | 52.67 | | Basal + 3% "Al.P." | 12 | 41.84 | 5.47 | 100.83 | 57.66 | | Basal + 4% "Al.P." | 12 | 40.33 | 4.62 | 91.67 | 51.33 | | Basal + 1.34% | 12 | 20.38 | 3.59 | 81.50 | 37.83 | | neutralized "Al.P." | | | | | | | Basal + 2.68% | 12 | 42.96 | 5.25 | 101.66 | 59.00 | | neutralized "Al.P." | | | | | | | Basal + 4.02% | 12 | 42.06 | 4.53 | 100.66 | 52.33 | | neutralized "Al.P." | | | | | | #### Discussion: It is evident from the results shown in table V that with an increase in the amount of "Al.P.", either as the acid salt or the neutralized form, added to the basal diet there is an increase in blood phosphorus, bone ash and weight gained over the four-week period. increase reaches a maximum with the 3% level for the acid salt and the 2.68% level for the neutralized form. This indicates that the phosphorus in the neutralized form is more effectively utilized than that of the acid salt. Further evidence of this difference in availability is indicated by the fact that adverse effects are attained at levels of 4% of the acid salt and 4.02% of the neutralized form, inasmuch as the 4.02% of the latter supplies the same amount of phosphorus as 3% of the acid salt. It is known that the addition of acid to a rachitogenic diet affects the degree of rickets developed in rats so that the differences observed between the two forms may perhaps be due to this The fact that both forms are readily assimilated indicates that this baking compound may be considered as a potential source of phosphorus in human diets. #### SUMMARY: - 1. The addition of one per cent of the sodium aluminum acid phosphate to a normal diet has no ill effects whatsoever in rats as judged by growth, reproduction and rearing of young. - 2. A diet containing fifty-five per cent of biscuits prepared with this baking compound supported normal growth, reproduction and rearing of young in rats. - 3. The new baking compound may therefore be regarded as wholesome. - 4. The addition of the sodium aluminum acid phosphate or its neutralized form to a rachitogenic diet indicated that the phosphorus supplied by either form was readily available. - 5. The new baking compound, sodium aluminum acid phosphate, is therefore a potential source of phosphorus for nutritional purposes. - Crawford, A. C., A Poisonous Principle in Certain Cotton-Seed Meals, J. Pharmacol and Exp. Therap., <u>1</u>, 519-48 (1910). - 2. Hoppert, C. A., A Study of the Possible Toxic Effects of Certain Compounds That Are Or May Be Used As Baking Acids, Technical Report for Victor Chemical Company, (1922). - 3. Lynch, W. H., Thesis for M. S. Degree, Michigan State College, (1942). - 4. Hoppert, C. A., The Nutritive Value of Various Types of Bread and Biscuits, Technical Bulletin for National Soft Wheat Millers' Association, Nashville, Tenn. (1928). - 5. Steel, M., Absorption of Aluminum from Aluminized Food, Am. J. Physiol, 28, 94-102 (1911). - 6. Scoular, F. I., A Quantitative Study by Means of Spectrographic Analysis of Aluminum in Nutrition, J. Nutrition, 17, 393-403, (1939). - 7. Myers, V. C. and Mull, J. W., Aluminum Content of Human Autopsy Material, J. Biol. Chem., 78, 615 (1928). - 8. Hove, E., Elvehrem, C. A. and Hart, E. B., Aluminum in the Nutrition of the Rat. Am. J. Physiol. 123. 640-43 (1938). - 9. Horecker, B. L., Stortz, E. and Hogness, T. R., The Promoting Effect of Aluminum, Cromium and Rare Earths in the Succinic Dehydrogenase-Cytochrome System, J. Biol. Chem., <u>128</u>, 251-66 (1939). - 10. Hoppert, C. A., Unpublished Data, (1930). - 11. Zucker, T. F., Hall, L. and Young, M., Growth and Calcification on a Diet Deficient in Phosphate But Otherwise Adequate, J. Nutrition, 22, 139-151 (1941). - 12. Koch, E. M., and Cahan, M. H., The Inorganic Blood Phosphate of Rats on Rachitic and on Non-rachitic Diets, Proc. Soc. Exptl. Biol. Med., 24, 153-4 (1926). 13. Lowe, J. T. and Steenbock, H., The Hydrolysis of Phytin in the Intestine, Biochdm, J., 30, 1991-5 (1936). # STOCK RATION Weight in Grams | Date | <u>01</u> | <u>92</u> | <u> </u> | <u> </u> | <u> </u> | <u>96</u> | <u>ð1</u> | <u> </u> | |---|--------------------------|--|---------------------------|--------------------------|--------------------------|----------------------------------|---------------------------------|----------------------------------| | 2/5/47
2/12
2/19
2/26 | 57
76
100
110 | 80
100
126
146 | 65
80
104
126 | 73
94
122
146 | 60
82
112
136 | 77
102
135
156 | 50
64
96
128 | 65
86
130
166 | | 3/5
3/12 | 124
138 | 166
186 | 146
166 | 160
176 | 156
176 | 166
178 | 160
190 | 200
232 | | 4/9
4/16
4/23
4/30 | 168
174
174
190 | 212
217
221
235 | 183
195
210
227 | 196
220
235
245 | 216
225
235
240 | 210
220
240
250 | 244
295
313
330 | 276
32 7
350
365 | | 5/ 7
5/1 4
5/21
5/28 | 200
203
210
220 | 225
228
235
243 | 263
240 | 245
260
280 | 250
255
260
270 | 260
278
333 | 345
358
380
380 | 380
390
410
410 | | 6/18
6/25 | 250 | 272 | 230 | | | 240 | 430
430 | 445
440 | | 7/2
7/9
7/16
7/23
7/30 | 250
260
280 | 275
260
2 7 0
290
305 | 250
265
270
310 | :270
:290 | 300
295
300 | 255
260
285
330
Died | 350
370
380
390
400 | 450
430
460
450
470 | | 8/6
8/13
8/20
8/27 | 256
260 | ·260
·262 | | 334
284
302 | 315
330 | | 430
463
458
464 | 475
480
463
468 | | 9/10 | | 316 | 284 | | | | 470 | 478 | | 10/1
10/8
10/22 | 304 | 332 | 295
30 7
318 | 356 | 346
352
364 | | 525
514 | 535
530 | Matings: 1. 01, 02, 05, 61 2. 02, 04, 06, 62 STOCK + 1% "AL.P." | Date | <u> 97</u> | <u> </u> | Q 9 | <u>010</u> | <u>011</u> | <u> 912</u> | <u> </u> | <u> 34</u> | |--|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|----------------------------------|---------------------------------|---------------------------------| | 2/5/ 47
2/12
2/19
2/26 | 60
72
90
102 | 85
113
143
164 | 60
70
96
110 | 60
84
114
138 | 57
82
108
136 | 84
114
138
156 | 55
76
116
150 | 61
84
118
158 | | 3/5
3/12 | 120
138 | 182 | 125
140 | 156
172 | 154
170 | 174
188 | 185
218 | 193
228 | | 4/9
4/16
4/23
4/30 | 164
175
182
200 | 235
213
245
264 | 205
215
235
260 | 184
225
245
280 | 208
235
220
224 | 210
196
215
245 | 312
327
350
360 | 288
300
320
335 | | 5/7
5/14
5/21
5/28 | 220 | 300
301
310 | 23 7
280 | -220 | 240
258
305
315 | 24 7
255
285
330 | 375
385
419
410 | 340
350
380
380 | | 6/18
6/25 | 240 | 270 | 290 | 260 | 330 | | 420
430 | 430
420 | | 7/2
7/9
7/16
7/23
7/30 | ·250
·255 | 303 | 260
295
330 | 270
290 | -298
310 | 280 | 430
440
460
470
470 | 425
440
450
455
460 | | 8/6
8/13
8/20
8/27 | 262
313 | 325 | 290
28 6 | 280
290
296 | 317
362 | 288 | 475
470
475
460 | 462
457
455
454 | | 9/10 | | | | 348 | | | 478 | 468 | | 10/1
10/8
10/22 | 310
322
348 | 318
352
388 | 330
342 | 305 | 336
345 | 342
354 | 510
51 4
510 | 505
520 | Matings: 1. 07, 08, 011, 53 2. 09, 010, 012, 64 # STOCK RATION | Date | <u>913</u> | <u>014</u> | <u>915</u> | <u>016</u> | <u>017</u> | <u>018</u> | <u> </u> | <u> 76</u> | |------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|---------------------------------|---------------------------------| | 3/13/47 | 60 | 7 0 | 66 | 66 | 72 | 64 | 68 | 64 | | 4/2
4/16
4/23
4/30 | 119
135
145
147 | 134
163
180
188 | 142
169
195
205 | 142
169
190
200 | 132
150
162
170 | 143
179
195
209 | 152
190
190
200 | 130
173
195
210 | | 5/7
5/14
5/21
5/28 | 158
165
180
178 | 195
203
222
220 | 217
225
228
240 | 215
220
225
238 | 182
185
200
200 | 220
230
240
240 | 214
233
245
260 | 230
245
265
265 | | 6/18
6/25 | 193
190 | 255
258 | 270
275 | 260
265 | 220 | 265
262 | 3 05
3 12 | 315
320 | | 7/2
7/9
7/16
7/23
7/30 | 185
190
245 | 250
260
275
300 | 270
265
275 | 275
270
280 | 230
245 | 270
268 | 300
290
300
310
320 | 310
315
325
360
365 | | 8/6
8/13
8/20
8/27 | 310
310
320 | 262
268 | 283
280
300 | ·300
·330 | 253
265 | ,285
,294 | 330
350
360
360 | 372
360
365
371 | | 9/10 | | .300 | 288 | 312 | | | 380 | 38 7 | | 10/1
10/8
10/29 | 230
248
287 | | 30 7
286 | 314
325 | 288
290
322 | 313
358 | 392
402
425 | 402
413
425 | | 11/5 | 300 | 357 | 295 | 338 | 320 | 335 | 430 | 432 | Matings: 1. 014, 013, 015, δ6 2. 018, 017, 016, δ5 STOCK 4 1% MAL.P." | Date | <u>019</u> | 9 20 | <u> </u> | <u> 922</u> | <u> </u> | 9 24 | <u>87</u> | <u> </u> | |--|--------------------------|---------------------------------|--------------------------|---------------------------------|----------------------------|--------------------------|---------------------------------|---------------------------------| | 3/13/47 | 66 | 70 | 7 0 | 54 | 70 | 60 | 70 | 65 | | 4/2
4/16
4/23
4/30 | 105
135
150
158 | 125
150
170
179 | 136
167
172
176 | 126
155
170
175 | 106
160
153
163 | 126
167
186
194 | 146
210
230
250 | 126
185
205
219 | | 5/7
5/14
5/21
5/28 | 172
177
190
180 | 192
203
215
210 | 200
212
235
240 | 195
202
214
220 | 174
188
202
203 | 200
216
230
228 | 270
278
292
290 | ,230
,240
,250
,252 | | 6/18
6/25 | 210
200 | 240
230 | 268
270 | 242
245 | 232
23 4 | 260
260 | 285
310 | 270 | | 7/2
7/9
7/16
7/23
7 /30 | 210
212 | 240
250
265
270
300 | 260
265
280
320 | 250
253
315
320
343 | 245
252 | 272
275
305
315 | 340
350
360
370
370 | 295
297
310
320
340 | | 8/6
8/13
8/20
8/27 | 235
240 | 320
278 | 280 | 278
280 | 2 7 2
277
316 | 252
259
274 | 375
370
380
360 | 352
350
360
360 | | 9/10 | | | 332 | | | | 378 | 380 | | 10/1
10/8
10/29 | 242
320 | 282
310 | 306
33 7 | 265
300 | 302
320 | 298
311
344 | 411
416
435 | 415
432
433 | | 11/5 | 329 | 315 | 344 | 298 | 330 | 352 | 443 | 441 | Matings: 1. 019, 020, 021, 07 2. 023, 024, 022, 68 # STOCK RATION | Date | <u> 025</u> | 9 26 | <u> </u> | <u>გე</u> | |------------------------------------|-------------------------------|--------------------------------|--------------------------------|-------------------------------|--------------------------------|--------------------------------|---------------------------------|---------------------------------| | 7/26/47 | 52 | 68 | 69 | 53 | 72 | 71 | 7 3 | 78 | | 8/2
8/9
8/16
8/23
8/30 | 71
88
110
118
135 | 91
109
130
143
160 | 92
106
133
142
156 | 70
80
110
124
147 | 95
116
135
148
153 | 84
106
132
150
166 | 113
142
188
214
250 | 113
140
181
206
238 | | 9/6
9/13
9/27 | 146
155
168 | 160
168
183 | 166
1 7 3
188 | 153
164
186 | 160
174
193 | 16 7
183
105 | 273
292
323 | 260
288
316 | | 10/4
10/11
10/18
10/25 | 176
195
214 | 188
206
220 | 198
210
234 | 201
214
226
225 | 202
212
240
248 | 216
235
236
248 | 336
356
358
364 | 318
322
342
345 | | 11/1
11/8
11/22
11/29 | 20 4
220 | 181
198 | | 226
242 | 220 | 277
265 | 387
403
411
418 | 358
370
388
400 | | 12/6
12/13
12/20 | 255
218
213 | 222
240 | 262
255
292 | 213
230 | | 273
273
308 | 427
411
412 | 410
390
395 | | 1/10/48
1/1 7
1/31 | 230 | 215
243 | 210
254 | 221
252 | 214
240
280 | -235
-260 | 432
430
410 | 360
370
408 | | 2/21 | 238 | 22 7 | 232 | 248 | 214 | ·215 | 447 | 416 | Matings: 1. 025, 026, 027, 69 2. 028, 029, 030, 610 # BISCUIT RATION | Date | <u> 931</u> | <u>932</u> | <u> </u> | <u> </u> | <u> </u> | <u> </u> | <u>811</u> | 312 | |------------------------------------|--------------------------------|---------------------------------|--------------------------------|---------------------------------|--------------------------------|---------------------------------|---------------------------------|---------------------------------| | 7/26/47 | 65 | 52 | 70 | 80 | 68 | 77 | 76 | 79 | | 8/2
8/9
8/16
8/23
8/30 | 90
103
127
145
165 | 82
103
1:23
134
145 | 98
115
151
160
180 | 107
118
140
146
160 | 95
110
137
147
168 | 104
126
149
158
171 | 116
150
190
215
240 | 117
147
184
222
250 | | 9/6
9/13
9/27 | 170
175
185 | 153
163
174 | 187
200
211 | 165
1 7 2
180 | 170
185
200 | 180
186
204 | 256
285
318 | 268
287
320 | | 10/4
10/11
10/18
10/25 | 178
186
203
213 | 184
194
208
214 | 220
228
242 | 184
192
212
241 | 186
218
242 | 210
226
265 | 330
346
365
360 | 324
324
350
350 | | 11/1
11/8
11/22 | 210 | 242 | | 210 | | 230 | 3 77
384
396 | 35 7
380
391 | | 12/6
12/13
12/20 | 217
217
222 | 225
230
244 | 272 | 262
285 | | | 414
397
403 | 422
400
402 | | 1/10/48
1/17
1/31 | 248
260 | 250 | 260
2 7 3 | 252 | [,] 260 | 253
260 | 400
410
440 | 390
415
435 | | 2/17
2/21 | 210 | 214 | 285 | 225 | 273 | 214 | 450
454 | 445
451 | Matings: 1. 031, 032, 033, 511 2. 034, 035, 036, 512 # WEIGHT OF LITTERS | Animal | Ration | No. in orig. | No. in
Litter
Weighed | Wt. of
Litter
at 21 days | Wt. of
Litter
at 25 days | |-------------|------------------|--------------|-----------------------------|--------------------------------|--------------------------------| | ٥l | Stock | 9 | 7 | | 267 | | | | 9 | 7 | 255 | 324 | | ç 2 | Stock | 11 | 7 | 225 | 273 | | | _ | 9 | 7 | 335 | 402 | | Q 3 | Stock | 10 | 5 | 212 | 260 | | Q4 | Stock | 9 | 7 | 254 | 324 | | | | 6 | 4 | 205 | 248 | | Ç 5 | Stock | 9 | 7 | 207 | 256 | | | | 8 | 6 | 213 | 268 | | 91 3 | Stock | 9 | 7 | 168 | 223 | | | | 7 | 7 | 170 | 214 | | Q14 | Stock | 8 | 7 | 235 | 299 | | | | 8 | 6 | 165 | 189 | | Q15 | Stock | 8 | 7 | 219 | 2 74 | | | ~. · | 11 | 7 | 171 | 208 | | 916 | Stock | 11 | 7 | 217 | 253 | | | | 7 | 7 | 223 | 290 | | Q17 | Stock | 9 | 7 | 231 | 283 | | | | 9 | 7 | 320 | 396 | | 918 | Stock | 11 | 3 | 152 | 208 | | | | 12 | 7 | 19 3 | 241 | | ç 7 | Stock+1% "Al.P." | 8 | 7 | | 350 | | | _ | 10 | 7 | 198 | 246 | | ♀ 8 | Stock+1% "Al.P." | 3 | 3 | | '210 | | | | 9 | 7 | 249 | 310 | | ç 9 | Stock+1% "Al.P." | 9 | 7 | 236 | 318 | | Q1 0 | Stock+1% "Al.P." | 8 | 7 | 274 | 361 | | | _ | 8 | 7 | 290 | 353 | | Qll | Stock+1% "Al.P." | 7 | 7 | 238 | 306 | | Q12 | Stock+1% "Al.P." | 9 | 7 | 315 | 371 | | | | 6 | 6 | 212 | 271 | | Q 19 | Stock+1% "Al.P." | 9 | 7 | 168 | 217 | | | <u>.</u> | 9 | 7 | 169 | 225 | | 9 20 | Stock+1% "Al.P." | 7 | 7 | 274 | · 3 46 | | | | 8 | 6 | 225 | 286 | | Animal | Ration | No. in orig. | No. in
Litter
Weighed | Wt. of
Litter
in 21 days | Wt. of
Litter
in 25 days | |--------------|-------------------|--------------|-----------------------------|--------------------------------|--------------------------------| | 9 21 | Stock+1% "Al.P." | 8 | 7 | 236 | 318 | | • | - /- · · · | 8 | 5 | 197 | 244 | | Q 22 | Stock+1% "A1.P." | 6 | 6 | 232 | 324 | | | | 7 | 5 | 231 | 264 | | 923 | Stock+1% "Al.P." | 12 | 7 | 231 | ,283 | | | | 9 | 7 | 173 | 236 | | ç24 | Stock+1% "Al.P." | 8 | 7 | 251 | 327 | | | | 7 | 7 | 237 | 315 | | 9 25 | Stock | 8 | 7 | 204 | 243 | | \$ 20 | 50001 | 8 | 5 | 196 | 252 | | 9 26 | Stock | 8 | 6 | 167 | 216 | | • | | 11 | 6 | 155 | 208 | | 9 27 | Stock | 5 | -3 | 121 | 145 | | | | 8 | -3 | 107 | 1 3 7 | | 9 29 | Stock | 7 | 6 | 170 | 215 | | | | 9 | 6 | 187 | 227 | | ç 30 | Stock | 8 | 6 | 209 | 250 | | | | 6 | 6 | [,] 250 | 301 | | 9 31 | Biscuit | 8 | 5 | 176 | -248 | | •0- | | 8 | 7 | 192 | 271 | | 93 2 | Biscuit | 8 | 6 | 174 | 236 | | | | 8 | 7 | 251 | 291 | | ç 33 | Biscuit | 6 | 6 | 271 | 356 | | | | 9 | 6 | 285 | 347 | | Q 34 | Biscuit | 7 | 7 | 260 | 330 | | | | 8 | 6 | 241 | 276 | | Q3 5 | Biscuit | 6 | 3 | | 247 | | ç 36 | Biscuit | 7 | 6 | 203 | 238 | | | | 8 | 7 | 312 | 364 | снемятку **DEPT.** T543 K19 Ka Kasoff 204077