THE HEAT OF ADSORPTION 0 F HYDRATED SILICA CEL FHESE POR WHE DKGRN OR M. S.
M. M. Nasif

1931

Chementy

THE HEAT OP ADSORPTION
01
HYDRATED SILICA GEL

4 Thosis

```
Submitted to the Faculty
    OP
MICHIGAN STATE COLIEGE
```

In Partial Fulfillment of the Requirements for the Degree
of

Master of Science
Department of Chemistry

$$
\begin{aligned}
& \square 4.6 \\
& N: 6.4
\end{aligned}
$$

HISTORICAL

A considerable amount of research has been done in recent jeare on the properties of ailica gel, eapecially on its property of adsorption. This property and related phenomena hae been investigated extensively during recent jeare in this laboratory. AE a continuation of this work, the heat of adsorption of hyarated silica gel has been carried out with the purpose of determining the heat of adsorption of the gel when it has varying amounts of water on it. Also the heat of adsorption of the gel was determined in acid and alkaline solutions and determinations were made to determine if the gel adsorbed any acid or alkaly.

Patrick and Grimml did some work on the heat of wotting of eilica gel. They obtained ralues for this property of the gel, ueing the following liquide: water, ethyl alcohol, aniline, bensene and carbon tetraohloride. They did not oracuate their gel and they also used gel Which had been finely divided. Since the gel they used was not eracuated it would not be expected that their resulte were the maximum. They conceived of ailica gel as to have been a mase of silica nuclei, each nuolei being aurrounded

with a thin film of water. Haring such a conception of silica gel they accounted for the heat of adsorption or wetting on the basis of surface energy changes that took place at the surface of each nuclei.

Much research has been done on the heat of adsorption of soils. Bouroucoge eays that in the case of soile the maximum is reached when the 8011 has been heated to $107^{\circ} \mathrm{C}$. for 24 hours. He also states that the amonat of water necessary to produce the heat is coma paratively mall. In an other article he says that the temperature rise of water by udden compression amounts to $0.018^{\circ} \mathrm{C}$. per 10 atmospheres, and that the force of compression rises to such large values as 156 atmospheres.

The heats of adsorption of some eleven organic Iiquide on charcoal were determined by Lamb and Coolidges. They determined the heats of adsorption by the expreseion $h=m x^{m}$, where h represents the heat of adsorption per Q.c. of rapor, x the number of c.c. of rapor adsorbed, and and n characteristic constants of the rapor adsorbed.

APPARATUS AND MATERIAL

Calorimeter:- A great deal of time was spent in constructing a colorimeter that would be suitable for this work. Several different types were tried but the adiabatic type was the one finally used. The difference In temperature of the outer and inner container was nerer allowed to be greater than 0.05° and very often it was less, and the time during which this difference existed was very short. The time at which the two containers are at maximu difference in temperature is when the bulb containing the gel is brozen and the temperature of the Iiquid in the inner container goes up suddenly. Howerer, by means of a large resiatance used as a heating element, the temperature of the outside Fessel is brought ap quickly so that there is no more then 0.05° difference between the two at any.time. 111 parts inside of the calorimeter were made of glass with the exception of the leads for the inside heating element. These were made of copper of such size as to produce no heat when the current was flowing thru them. These leads were also lacquered to prevent corrosion by the liquids. The heating element in the inside vessel was piece of platinum about 5 oms. long soldered onto the copper 1eade.

ware jar about 16 inches tall and 10 inches in diameter. Inside of this jar was an inverted bell-jar. The space between these two ressels was filled with saw-dust and the top of the saw-dust filling was covered with a coating of parafin to prevent an air current. This ressel was covered with a round piece of one inch board which fitted over the top very tightly. Thru this oover was a two inch hole in the center to allow the atirrer and the thermometer of the inside container to project out of it. There was also a hole for the stirrer thermometer, and leads for the heating element. Inside of this container was an ereouated Dewar flask about 12 inches tall and $15 / 8$ inches inside diameter. This was supported in the center of the inverted bell-jar and weighed down by means of a heavj lead weight. The space between the Dewar flask and the bell-jar is filled with diatilled water.

Preparation of Gel:- The gel used wan a product of The silica Gel Corporation and was of good quality. 111 amples of gel were first freed of any particles that wore brown or discolored in any way and also particles that were of a white color. Only the clear transparent particles being used.

Approximately 2.5 g. amples of the gel ware
used in all cases. The gel was treated under different
conditions with different experiments, the results being that the different samples under different conditions of treatment giving different values for the heat of adsorption. The smples of gel were placed in glass bulbs which were blown so that the walls became very thin, jet were trong enough to withstand being evacuated. These bulbe were then sealed off from the air with the gel in them.

One experiment was performed with several samples of gel just as the gel was feceived, that is, without being treated in any way, using water.

Other experiments were done using several samples of gel that had been (1) heated for 24 hours at 120.C., (2) for 4 hours at 250° and eracuated at the same time, and (3), erseuated for 1 hour without heating and combinations of heat and racunm, the purpose being to get eamples of gel with rarying water content.

The above experiments were repeated ueing 0.2 I $\mathrm{H}_{2} \mathrm{SO}_{4}$ solutions in place of water.

The water used was distilled laboratory water which had been redistilied, and the alfuric acid solution was made of this water and C.P. $\mathrm{H}_{2} \mathrm{SO}_{4}$.

The thermometere used were Burean of Standards thermonetere. The one in the outside reseel being graduated to 0.1°, and the one used on the inside of the Dowar flask being graduated to 0.01°.

Method of Prodedure:- The liquid whose heat of adsorption was to be determined was put into the Dowar flask. Then the bulb containing the gel was put into the flask and the glass rod with a loop on the end of it was placed over the bulb to hold it down and keep it from getting in the way of the stirrer. Then the atopper with the thermometer, stirrer and thermo-element sealed in it was put into the flask. The flask was then put into the outside bath. The temperature was brought to the temperature of the liquid in the flask either by cooling or heating, as the case may be, during which operation the stirrers in both vessels being in motion. The temperature of the liquid in the flask was then noted and recorded. Then the bulb was broken and the temperature was noted every five seconds by means of a stop-watch until a constant temperature was attained. The time required for this rise in temperature was noted. Then enough heat was introduced into the system to produce the same rise In temperature in the same length of time. This was accomplished by allowing a current from a 4 volt lead -torage cell to pass thru a rheostat, a tandard resistance and the thermo-element. The current was 80 adjuated that it would produce the same rise in temperature in the same length of time that the gel did. In this way all losses were corrected. The current was measured

WIRING DIAGRAMS

INSIDE VESSEL

by noting the poteatial drop acrose the standard resistance of 0.1 ohm by means of a type K polentiometer. Then the potential drop across the thermo-element was measured in the same way by throwing the switch in the other direction. Knowing the ourrent and the potential drop, the resistance can be caloulated.

Method of Calculating the heat of adsorption:Joule's law statea that

$$
H(\text { oalories })=\frac{i^{2} r t}{4.18} \text { or } H=\frac{E I t}{4.18}
$$

Knowing the current, potential drop and the time, the amount of heat introduced into the syatem can be calculated. How this gives the number of calories produoed by the current and which caused the liquid in the calorimeter to rise the same number of degrees in the same length of time as the gel did. It is necessary to use a current of auch value that it will produce the same rise in temperature in the same length of time as the gel, so that losses due to conduction and radiation will be accounted for.

This heat is due to all the gel added. Now to obtain the heat due to one gram of gel or the heat of adeorption of the gel, it will be necessary to divide the total amount of heat by the number of grams of gel ased.
-

$$
\frac{B}{g}=\frac{E I t}{4.18 g}
$$

Where g is the number of grams of gel added. The results obtained are tabulated as
follows
-
TADLE I

TABIE II

cel commatm 4.2,0 mamer mermilig wimi water								
$\begin{aligned} & \text { Ut. of gel } \\ & \text { nsed } \\ & \hline \end{aligned}$	Intial Te:s.	$\begin{aligned} & \text { Final } \\ & \text { Terip. } \end{aligned}$	$\begin{gathered} \text { Rise in } \\ \text { Rern. } \\ \hline \end{gathered}$	Cuprent	yoltase	$\begin{aligned} & \text { Tine } \\ & \text { Sec. } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Total } \\ & \text { hegt } \end{aligned}$	Feat per
2.4997	22.460	22.893	. 433	4.510	. 2650	190	54.5	21.81
2.5007	22.600	23.032	. 432	4.511	. 2661	190	$5 \leq .5$	21.80
2.5021	22.305	22.745	. 440	$\leq .495$. 2652	200	50.85	(22.76)
2.5002	23.085	23.510	. 425	4.500	. 2355	130	54.4	21.70
2.5013	22.655	23.090	. 4.35	4.712	. 2780	180	55.98	22.53
2.5008	22.497	22.931	. 434	4.710	.2790	180	55. 94	22.37
						Avoracue		22.02
				SILE III				
		EL COMTA	IS 3.70	U.	IWC	Tis		
2.4441	25.080	24.575	. 490	4.971	. 2985	10.5	55.80	22.87
2.4521	22.830	22.850	. 490	5.101	. 2121	150	55.2	29.50
						hyerase		23.63

「．．

T:GLE VII

RaIL VIII

2.3320	22.522	22.825	. 313	4.519	. 2038	150	42.70	18.29
2.2872	22.465	22.77 .5	. 810	4.578	. 2652	140	42.03	1.20
						Aver		12.24

TABLE IX

TADLE X

23.40
23.01
23.60
50.10
51.10
\therefore varage

TABLE XII

Comparison of Heat of wetting with \% Water	
Gel Water	WH
Percent water	Cal.
Ione	29.75
1%	23.60
3%	18.93
8.5%	18.24
12%	11.31
12.5%	11.02
15.5%	7.90

$$
\begin{aligned}
& \text { TAEIG XIII }
\end{aligned}
$$

TABLE XV

DISCUSSION

It is a well established fact that water adsorbed on the surface of solid, such as silica gel, has undergone thermodynamic change in state and is held On the surface by an enormons force. Some of the early investigators to advance this theory are Junghe. Rose ${ }^{5}$, and Parks ${ }^{6}$. This has been more recently confirmed by Patrick and Grimm ${ }^{1}$ and Lamb and Coolidge ${ }^{3}$ by their data on the heat of adsorption of water.

It is quite apparent that the heat of adsorption is due to a change of concentration of the molecules of the liquid at the $u r f a c e$ or in the pores of the gel. This has been recently confirmed by Ewing and spurway ${ }^{7}$ in their determination of the density of water adsorbed on silicagel. They found that the density of water increased whan adsorbed on silica gel up to the value 1.6869 g. of water. They noticed that heat was liberated when the gel was allowed to absorb water, but they did not make any measurements on it. They found a close correlation between the density values for lo6867g. and 0.6357 g. of adsorbed water which, they said, indicated one phase of water on the gel. The mean density Talnas for the two larger quantities of adsorbed water are less than the density of liquid water at the operating
-
temperature. indicating the presence of three phases of water: compressed water, liquid water, and water vapor. This water rapor, they said, exerts only a low Fapor pressure; hence, all three forms of water are held on the gel under pressure.

Then by calculations based upon the volume of the adsorbed water in the runs where the silica gel contained 1.6867 g. or 0.6357 g. of water, and a correlation of Bridgeman's compressibility data, it was shown that in these cases the pressure on the adsorbed water was of the magnitude of 750 atmospheres.

Thus, when the molecules of water are compressed at the surface or in the pores of the gel, there ia a deorease in the kinetic energy of the molecules. In order to have a decrease in the kinetic energy, heat is liberated which is an increase in the potential energy of the molecules. This is the opposite of such phenomena as latent heat of vaporisation, in which case the molecules are driven farther apart due to the addition of heat to the system and the heat being transformed into kinetic energy of the molecules. The forces acting in this phenomena are the etray fields around the moleoules of the wotting substance and the molecules of the substance being wetted. The greater these stray fields, the less the tendency to exhibit this phenomena.

The results given in Tables I to IV inclusive, were obtained with agel that had maximum water content of 6. 2%. The resalts indicate that there is general incraase in the heat of adsorption as the water content of the gel is decreased. The results given in Tables V to XI inclusive. show somewhat the same thing. There is a deoided increase in the heat of wetting between the gel containing 15.5% water and the gel containing 8.5\% water. But there is a large difference in the heat of wetting of the gel with 8.5% and that with 3\% as the water content decreases below 3%, the heat of wetting again increases rapidy until the maximum ralue is reached. It is interesting to note that the largest rise in temperature took place very shortly after the gel was exposed to the ilquid and that this initial rise in temperature was larger and took pleoe more quiokiy with the gel that had the maller emounta of mater on it. We obtained more nearly wetting of the gel by the ilquid. as indicated by the resulta given in Tables IV and IX. because when the gel is heated and esacuated, the water is in the caseous tate, and a maller quantity can be held, and is probably hold, on the aurface of the gel. Fow, when the gel is again cooled, the water becomes liquid and occupies a moh smaller volume than when in the gaseous state. This condensation of the caseous water leares a
-
large portion of the aurface of the gel with nothing adsorbed on it. This free surface thon absorbs the liquid with great rapidity and liberates a large amount of energy. The larger this free surface the greater the amount of enexey liberated.
socording to Patrick and Grimm ${ }^{1}$, in order to get a heat of wetting of 19.22 Cal . par gram of gel it is necessary that the gel exhibit a surface of $6.9 \times$ $10^{7} \mathrm{~cm} .2$. Which is an enormonsly large surface. It is evident that the surface energy is therefore sufficient to explain the ebserved heat offects.

Lamb and Coolidge ${ }^{3}$ in their determinations on the heat of adeorption of vapors on oharcoal have caloulated thet the amount of carbon disulfide adsorbed on a gram of charcoal is 0.4 co at atmospheric preseure and about 0.85 ec under a pressure of 37,000 atmospheres. The earbon diaulfide was afficient to fill all the capillaries which had a voluan of 0.12 co. Lseming the capillary area to be 100 equare metore and that the thickness of a moleoular layer is $1 \times 10^{-8} \mathrm{emo}$, then the ebove mount of carben disulfide if apread orer the whole surface would have given a lajer 40 molecules deep. Lamb and Coolidge ${ }^{3}$ regard the heat effect as due to two factors, the heat of Ilquefication of the gae and the heat offect due to further compression of the
-
liquid by the adhesive forces of the adsorbent. The latter or net heat of adsorption, is equal to the heat of metting at the sataration pressure of the liquid.

Harkins and Ewing ${ }^{8}$ have oltained direct experimental eridence of the compression of a layer of liquid adsorbed on a solid in the case of actirated charcoal and organic liquide. The attractive forces between the charcoal and the rarious liquids are shown to be constant and of the order of 30 to 40 thousand atmospheres, in agreement with the findings of Lamb and Coolidge ${ }^{3}$. It is pointed out that experiments on the internal preseure of the liquids have not succesed in demonstrating pressures higher than 72 atmospheres.

Harkina and Fming derive the heat of adsorption of a liquid by a solid from surface energy considerations as follows: If we consider that the solid is immersed in the liquid againat air, the net result is that the surface of the colid is replaced by a solid - liquid interface. The heat of adsorption, -Qm, is then equal to the total mount of energy given off in the procese when carried out isothermally. Ea, or

$$
-\mathbb{Q}=\mathrm{Ea}=\mathrm{Ea}-\mathrm{Ei}
$$

Where Es and El are reapectively the total
-
:
-
cangies of the solid surface and of the interface. The heat of adsorption of a liquid on a solid has always been found to be positive, indicating that the total urface of the solid is greater than that of the interface.

Table XII is a summary of the results given in Fables ∇ to $I X$ inclusive.

In Tables XIII, XIV, and XV are given the resulte obtained by wetting the gel having the indicated water contents with approximately $0.2 \bar{l}$ aulfuric acid. These results agree very well with those obtained for water and gel haring on it the same amount of water. This indicates that the presence of sulfuric acid doea not effect the heat of wetting of the gel. The acid was analysed before and after it was exposed to the gel, and it was found that the concentration increased from 0.19330 before exposure to 0.1986 after exposure. This indicates that water and not sulfuric acid was adcorbed by the gel.

Bartell and Miller ${ }^{9}$ in their mork on the adsorption by sugar charcoal of aoid and basic dyes sas that inorganic acide are but comparatively elightly adsorbed by charcoal because the inorganic onion replaces more feebly the $\mathrm{OH}_{\mathrm{s}}^{-}$ion. Inorganio bases are alsorbed sarcely at all, owing to the fact that metals less noble than H do not replace H^{+}from Carbon.

Silica gel does not seem to have an affinity for acid radicals moch the same as carboh.

L a attempt was made to obtain the heat of Wetting of silica gel with sodiun hydroxide solution but no constant temperature could be obtained which indicated that the alkaly reacted with the gel.

SUMOARY

1. Some heats of wetting of silica gel with water were obtained with the gel containing varying amounts of water on it.
2. The heat of wetting increased more rapidly as the amount of water on the gel beoame amaller, that 10, there was a very large increase in the heat of wetting betwoen the gel that had 1% water on it and the gel that had very little or no water on it.
3. The heat of wetting of a $0.2 \mathbb{L}$ solution of sulfurio acid was obtained and found to be the same as for water along.
4. Ho value for the heat of wetting of sodium hydroxide was obtained because it was thought that the alcaly reacted with the gel.

REPERENCES

1. Patrick and Grimm

Jour. Am. Chem. Soc. 43. 2144 (1921)
2. Bonyoncos

Technical Bulletin No. 42,
Soil Science. Vol. 17. No. 2. Feb. 1924,
So11 Soience. Vol. 19, Ho. 2, 1925,
3. Lamb and Coolidg

Jour. Am. Chem. Soc. 42, 1146 (1920)
4. Jungh,

Dn. Phys. Chom. 125, 292 (1865)
5. Rose,

10n. Phyn. 73, 1 (1849)
6. Parka,

Fhil. Mas. 4, 220 (1902): B, 517 (1903)
8. Harkins and Ewing

Jour. Am. Chem. Soo. 43, 1795 (1921)
9. Bartell and Miller

Jour. Phys. Chom. 28, 998 - 1000 (1924)

