

SYNTHESIS AND ATTEMPTED BECKMANN
REARRANGEMENT OF SOME
2-ALKYLTETRALONE OXIMES

Thesis for the Degree of M. S.

MICHIGAN STATE COLLEGE

Martin Robert Leven

1951

This is to certify that the

thesis entitled

SYNTHESIS AND ATTEMPTED BECKMANN REARRANGEMENT OF SOME 2-ALKYLTETRALONE OXIMES presented by

MARTIN ROBERT LEVEN

has been accepted towards fulfillment of the requirements for

M.S. degree in CHEMISTRY

Harold Hart
Major professor

Date MAY 19, 1951

SYNTHESIS AND ATTEMPTED BECKMANN REARRANGEMENT OF SOME 2-ALKYLTETRALONE OXILIES

By

Martin Robert Leven

A THESIS

Submitted to the School of Graduate Studies of Michigan State College of Agriculture and Applied Science in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Department of Chemistry

CHEMISTRY DEPT. T5459 LG57

official transport for the state of the stat

••

Lavel obed a biologic

C1 . : 1 .

icominate the estimate some but the looms, and of individual commission of itself which also be the commission of the co

20.2 7 3 27 27 22 1

grani and to the entry of

6/29/51 Sift

ACENOWLEDGMENT

The author wishes to express his sincere appreciation to Dr. Harold Hart for his constant encouragement and advice during the course of this research.

TO TANKEL OF THE

el acceptado balles do capedos his como la forma al esta de la como la forma de la como la forma de la como la

TABLE OF CONTENTS

	Page
INTRODUCTION	1
HISTORICAL	3
EXPERIMENTAL	7
DISCUSSION OF RESULTS	23
SUMMARY	29
BIBLIOGRAPHY	30

√ (j) ≥		
1		
Ç		
\ `	•••••••••••••••••••••••••••••••••••••••	
2.)	•••••	en de la companya de
્દ્ર	••••••••••	
.). <u>`</u>		

INTRODUCTION

In order to determine the configuration of 2-alkyl- 2-alkyl- 4-tetralone oximes, the synthesis of 2-methyl, 2-ethyl and 2-isopropyl- 4-tetralone oximes and a study of their Beckmann rearrangement was undertaken. The Beckmann rearrangement of 2-alkyl- 4-tetralone oximes may lead to two possible structural isomers, orthomino- 7-phenyl- 4-alkylbutyrolactam or ortho(3-amino-propyl)-benzoic acid lactam.

Ungnade and McLaren (2) were able to rearrange a series of alkylcyclohexanone oximes in sulfuric acid and found that the 2-alkyl compounds gave single products on rearrangement. Isolation and identification of these lactams indicated that the oximes were in all cases anti to the alkyl group.

Schroeter's results on the Beckmann rearrangement of ct-tetralone oximes were anomalous to those of
the cyclohexanone series (2). He reported the end
product of the rearrangement of ct-tetralone oxime to be
ct-naphthylamine. However, Schroeter employed acetic
anhydride, acetic acid and gaseous hydrogen chloride to
bring about the rearrangement.

The second content of an extension speciment of the content of the

is running of older even (5) remident to a but

If we can be considered as a considered of the c

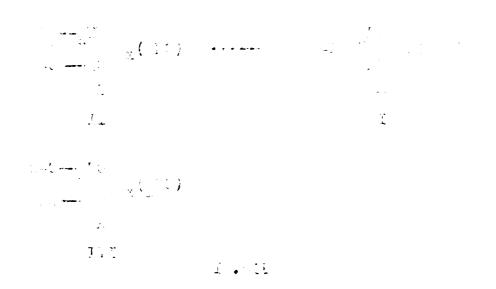
-regularism and the back of the server of

The condition which is a continuous of the second and the second a

Sulfuric acid and phosphorus pentachloride were not cited in the literature as rearranging mediums for the 2-alkyl-&-tetralone oximes. It is one of the purposes of this investigation to report the results obtained with these reagents.

HISTORICAL

Beckmann rearrangements of 2-alkylcyclanone oximes have been studied extensively in the cyclohexanone (1) and cyclopentanone (3) series. The rearrangement may possibly lead to the formation of two structural isomers (Fig. 1).


$$(CH_2)$$
 CH_2
 CH_2

Hildebrand and Bogert (3) studied the rearrangement of 2-methyl, 2-ethyl and 2-n-propyleyelopentanone oximes and 2-methyleyelohexanone oxime in a sulfuric acid medium. In all cases, the rearranged product was found to be represented by III in Fig. 1.

Ungnade and McLaren (1) were able to rearrange a series of mono-, di- and trialkylcyclohexanone oximes.

The cyclohexanone oximes with one & -alkyl group gave

the first section of

-brought be and is border (C) that of the increasing ${\cal M}$

er retropate pass, ny-m-2 bas ingles-is algores-is a secondary and secon

 single products on sulfuric acid rearrangement which had the 2-keto-7-alkylhexamethyleneimine structure (Fig. 2).

when other alkyl groups were substituted on the --alkylcyclohexanone oxime, the Beckmann rearrangement followed the same course as indicated in Fig. 2.

Unsymmetrical alkylcyclohexanone oximes that did not contain an --substituent were found to give a mixture of the two possible isomers upon rearrangement. Rearrangements were successfully carried out on 2-methyl-, 4-methyl-, 2,4,6-trimethyl-, 2,3,5-trimethyl-, 2,4-dimethyl-, 2,5-dimethyl-, 3,5-dimethyl- and 2-t-butyl-4-methylcyclohexanone oximes. Only one rearranged product was isolated in all of these instances. With the unsymmetrically substituted eyclohexanone oximes without the --substituent, both of the possible isomers were isolated and identified.

The oximes of
-tetralone should behave in a
manner similar to those of the cyclohexanone and cyclopentanone series. The work of Schroeter, however, showed
that
-tetralone oximes gave unusual products when subjected to the Beckmann rearrangement (2).

. The first of the second of

and the state of t

- consider the control of the second of the control of the contro

The state of the state of the Leading Control of the state of the stat

**Item December 1 ** And Strip with the confidence of the

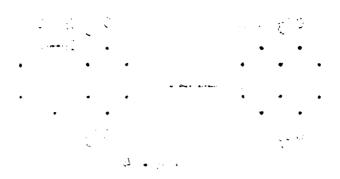
Schroeter was able to treat & -tetralone oxime or the acetyl ester of & -tetralone oxime with a Beckmann reagent which consisted of acetic anhydride and acetic acid saturated with gaseous hydrogen chloride. The end product was found to be &-naphthylamine. Schroeter was also able to get an "&-naphthylamine rearrangement" with substituted &-tetralone oximes such as 5- or 7-nitro-, 6- or 7-chloro- and 6-methoxy-&-tetralone oxime. The proposed and rather unbelievable mechanism for the rearrangement has the title of "the gap molecular theory" or "the univalent nitrogen hypothesis." (Fig. 3)

Fig. 3

The colonaphthylamine rearrangement was carried out in an open container. Schroeter also carried out a rearrangement of 5,8-dimethyl-colonaphthyleco

The contract of the contract o

The last open and the control of the standard of the last of the control of the c

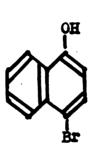

of (2,5-dimethyl-6-amino- V-phenyl)-n-butyric acid was isolated (Fig. 4).

Since the end product was what might be expected in a normal Beckmann rearrangement, the configuration of the oxime was established. The normal Beckmann rearrangement was also given with &-tetralone oxime p-toluene-sulfonate.

Smith (4), using the schmidt reaction on & tetralone, was able to isolate homodihydroearbostyryl
(ortho-amino-V-phenyl-n-butyrolactam) in 85% yield. The
solvent for the Schmidt reaction was trichloroacetic
acid. When the oxime of & -tetralone was warmed to 60°
in trichloroacetic acid, the trichloroacetate of & tetralone oxime was the only product isolated.

smith also attempted the rearrangement of the potassium <a href="color: order of the order of th

name of the control o



wadon, and difficulty and administration of section

13 కి.మీ. కి.మీ. కి.మీ. కి.మీ. ఇవు అండాడు. ఈ అయి. మీ. కి.మీ. 13ము. కి.మీ. ఉంది. ఈర్మ్ కాట్లు కు.మీ. కి.మీ. కి.మీ. మీ. మీ. మీ. కి.మీ. విమా ఉంది. ఈ కి.మీ. ఈర్మ్మీ. మీ. కి.మీ. కి.మీ. కి.మీ. ప్రామంతించింది. మీ. కి.మీ. మీ. మీ. మీ. కి.మీ. కి.మీ

EXPERIMENTAL

4-Bromonaphthol (6)

In a 250-ml. flask there was placed 26 g. (0.102 mole) of finely divided iodine in 60 ml. of glacial acetic acid. After the addition of 5 ml. of bromine to the solution, the flask was placed on a steam bath and warmed to 50°. When the solution was removed from the steam bath and cooled, 14 g. (0.096 mole) of <- naphthol in 45 ml. of glacial acetic acid was added. The contents of the flask were mixed by shaking and then allowed to stand at room temperature for one hour. The solution was then added to 16 g. of sodium bisulfate in 700 ml. of water. The resulting crude precipitate of 4-bromo-o(naphthol was filtered. washed with water and air dried. For each gram of compound, 45 ml. of 33% ethanol was used for recrystallization. From this process, 20 g. (93% yield) of colorless needles melting at 127-129° (uncorrected) was obtained.

of the world to be sure of the formation of the Access to . The since their activity which is the return off. The restance of the first and delicated the state of the soil of a ានលេខ នាង មាន គ្រាស់ នេះ មាន មាន មានប្រាស់ស្រី ស្រុក ស នាស្រី ស្រុក នៅ នៅដែលស្រែក សេត្សី and modernous agracifules to come . The or increase L de mo- 13 (al + 10) . 1 , 10 , 10 € mo 15 de 15 de 15 de to any color of the color of a selection of the color of the color of the សារា និសាសន៍ នេះ ១ ១៨ នាគីថា ១៩នាំ នេះនេះ សូម គឺ១៩៤នា ភាពភាគ ១៩ភាព ខេត្ត ។ ១៦ and the result of the second o though that to 15 g. of somits lightened in 7 0:12. ver · A dam with the received with the death of the early in the early in con in the second of the secon og at to the editor attractional distinct operate that the (), greatly out of interest acertes the interest in the interest of the interest in the intere · Marianda era (Marteranos)

Attempted Preparation of 2-t-Butyl-4-bromo- C-naphthol

Using the alkylating vessel described by Stillson et al. (7), 20 g. (0.089 mole) of 4-bromo- naphthol was dissolved in 300 ml. of p-xylene and 5 ml. of concentrated sulfuric acid and alkylated at 65-70° with 12 g. (0.21 mole) of isobutylene. After fifteen minutes of alkylation, the solution turned black. The entire alkylation took one and one-half hours. The black solution was then neutralized with sodium bicarbonate. washed with water and dried over anhydrous sodium sulfate. A precipitate was formed in the organic layer during the process of neutralization. The precipitate and solvent were transferred to a Vigreaux column and the solvent was removed in vacuo. The residue consisted of a black gummy resinous material which could not be recrystallized to give a sharp melting point. Four to five grams of this material was obtained.

and send consider the convey the language exert of their 20 . 1. 3 14 1 3 3/1/4- 1 20 . To soil hit how to all the desired raplant, wid to 1600 julia than blos cimplifud both cover of ψ and ψ The following of the second of the following the file of the file -wind on the state of the section of Body and got a live of the control of the south of the way of a way and the The safety of the area give here is into its table it. ារស្រាស់ ស្រែស្រាស់ គ្រឿស្រីស្រែស្រាស់ ស្រាស់ ស្រែស្រែស នៅស្រែសារ៉ា នៅ មានប្រទេស មានិសាសារ៉ា នៅក្រុម មេសារ៉ា ន The state of the training for a property of the training of the training of the state of E THE POLYCE OF THE BEST MILLION VARIOUS IN IN OUR FURLISHED TO A THE OF TO ME TO BE A TO RECEIVE OF SEPTEMBER SOLD OF ALL DOLL OF which was subjected will be a subject to the bound of the tosilve the second of the second states, gold so the second · Le Cindro C. W. D.

(3.78 moles) was placed in a one-liter round-bottomed flask equipped with a fritted glass bubbler, thermometer and a series of reflux condensers. The type of reflux condensers used was a Liebig condenser surmounted by a Freidrick and a Graham condenser. Since rubber stoppers contaminate the subsequent reactions, only ground glass equipment was used. A rapid stream of air was drawn through the tetralin by applying suction from an aspirator pump attached to the uppermost condenser. The air current was continued for fifty to fifty-five hours. The contents of the flask was maintained at 78° by means of a Glas-col heater.

at the end of this period, the warm partially oxidized tetralin was poured into 500 ml. of 2 N sodium hydroxide which had been placed in a two-liter flask. During the addition of the partially oxidized tetralin, vigorous mechanical stirring was maintained while the temperature was kept below 70° by adding ice when necessary. This temperature was maintained for at least ten minutes. The mixture was then cooled to room temperature

spiles of Adiograms 20 to Lawrence evic

Solution - The addition of the edge of the imaging of the edge of

The state of the s

and nearly neutralized with 6 N sulfuric acid (about 160 ml.). The upper tetralin and d-tetralone layer, which was now colored dark orange, was separated and washed with 100 ml. of .5 N sulfuric acid and then with 100 ml. of 1% ferrous sulfate. If an emulsion formed during the ferrous sulfate addition, the solution was acidified, followed by the addition of 25 to 60 g. of sodium chloride. The lower layer was removed and the upper tetralin-Xtetralone layer was dried over 25 g. of anhydrous sodium sulfate. It was then fractionally distilled through a 30-cm. column packed with #8 glass helices. The unchanged tetralin distilled at 65-72° at 2 mm. (70-85°/4 mm., 59-69°/1 mm.). The temperature then rose and the fraction distilling at $105-107^{\circ}$ at 2 mm. (115-118°/5 mm.), (113.5-116°/4 mm.), (123-124°/9 mm.) was practically pure C-tetralone. If rubber-stoppered equipment was used, a fraction distilling at 96-98°/3 mm. was obtained. This material was not analyzed.

It was noted that if the recovered tetralin was used in a future exidation, the yield of -tetralone
increased to as much as 80%. If the tetralin was exidized
for the first time, the yield of -tetralone varied from
75-85 g. (46-55% of the theoretical amount based on the
tetralin not recovered).

- - the state of the s
- - the property of the state of the Carlot of t
- In the setting of the s

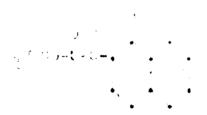
 - ent of the time of the form the same of the many of the following
 - na partir de la companya de la comp
 - 6±min 2 cm (more than 2 m) € √ (more than 100 fidely) as ± the constant of the fidely of t
 - Proportion and the state of the
 - e timos e cultural de la compaña de la compa

Methyl-&-tetralone-2-glyoxylate (9)

The equipment used in the procedure was a 500-ml. two-necked flask fitted with an addition tube, an inlet for nitrogen gas, a reflux condenser and a separatory funnel. Commercial sodium methoxide (17.28 g., 0.32 mole) and 37.76 g. (0.32 mole) of methyl oxalate was placed in the flask with 160 ml. of anhydrous benzene and refluxed for fifteen minutes. An atmosphere of dry nitrogen was maintained from this point until the end of the glyoxylation. At the end of the fifteen minutes, not all of the solid material had dissolved. After allowing the mixture to cool to room temperature, a solution of 23.36 g. (0.16 mole) of C-tetralone in 80 ml. of dry benzene was added. The flask was swirled until a definite yellow color formed throughout the mixture. flask was then immersed in a water bath which was maintained between 15-20° for four hours. During this fourhour period the contents of the flask were shaken from time to time.

At the end of the four-hour period 200 ml. of water was added, and the sodium salt of the glyoxylate was extracted into the water layer. The benzene was then

A property of the second of the second


A C V & L CONTRACTOR LANGUAGE CO. ann galait sa ta ta ta mar an airtir a a ta ta an airtir a a ta an an ta ta ta an airtir a ta an airtir a ta a Hert with a few means in a root of the least of the contract o to the second of the seco with a read of the sale of any of the total st. are asset come spin to an incit said need and reflection to a ty to its present of for the secondary the ordinate of postulia, to see Ballum out figur John Still moth not hitches sur productin than property greather out to be a section of the bringing by and subject the state to elect our color of the ent to lie to animals as a second record of the back countries as you to . The will orall start of the transfer of the -lieb F can left to all test in the series of the content of ani - . Midah dia di kabupatèn isitu i telah mellet salin ing from Edward Colores and the color of the first transfer of the color of the col -included the include the state of the second of the secon . 5. 18 OF SULE

 extracted with 200 ml. of 20% sodium hydroxide and then again with 200 ml. of water. Ice was added, and the alkaline solution was then neutralized with cold 1:1 hydrochloric acid. The resulting yellow precipitate was kept cold for three hours to facilitate the complete precipitation. The yellow crystals were then filtered and washed with water and while they were still wet, recrystallized from aqueous methanol. Thirty-five grams (82% yield based on the 4-tetralone) of yellow plates melting at 54-56° were isolated.

Ethyl- ethyl-d-tetralone-2-glyoxylate

To a 500-ml. two-necked flask equipped with a mercury sealed stirrer and a reflux condenser surmounted by a separatory funnel, 12 g. of sodium and 250 ml. of absolute ethanol was added. When the mixture was cooled to room temperature, a solution of 35 g. (0.23 mole) of C(-tetralone in 71 g. (0.36 mole) of cold ethyl oxalate
was poured into the flask. The resultant mixture was stirred for one hour while the flask was immersed in an ice bath. The ice bath was removed, and the stirring was continued for an additional hour without application

wid in . The experiment of the control of the contr

The configuration of the property of the configuration of the configurat

of heat. While the solution was kept cold, 150 ml. of cold water was added followed by dilute sulfuric acid until neutral to litmus. The yellow crystals were filtered and recrystallized from methanol. Forty-four grams (67%) of yellow crystals (plates) melting at 46-47° were isolated.

Methyl-q-tetralone-2-carboxylate (9)

tetralone-2-glyoxylate was placed in an eight-inch Pyrex test tube and heated on an oil bath to 150°. Powdered glass (12 g.) was added, and the temperature was raised to 180-190° and kept there for thirty minutes. At the end of this time carbon monoxide ceased to be evolved. After the contents of the test tube had cooled to room temperature, the carboxylate was extracted from the glass with acetone. The acetone extracts were then warmed and treated with carbon black and filtered. The acetone was evaporated, and the viscous material remaining was cooled and scratched with low boiling petroleum ether until crystals formed. These crystals were recrystallized from 50 ml. of 60-70° petroleum ether and 5 ml. of acetone.

And the second s

The action of the control of the con

Colorless plates melting at 83-84° were obtained. The yield was 15 g. (74%).

The Alkylation of Methyl- <-tetralone-2-carboxylate (9,10)

Methyl iodide, ethyl iodide, isopropyl iodide, isopropyl bromide and isopropyl chloride were used in the alkylation of the carboxylate. The following general procedure applied to all of the alkylations:

To 5 g. (0.22 mole) of sodium and 95 ml. of anhydrous methyl alcohol was added a solution of 18 g. (0.09 mole) of methyl 1-keto-1,2,3,4-tetrahydronaphthalene-2-carboxylate in 50 ml. of anhydrous methyl alcohol and 50 ml. of dry benzene. The mixture, at this point, became distinctly red in color.

To the red solution was added the appropriate alkyl halide.

methyl iodide (38 g., 0.27 mole) ethyl iodide (42 g., 0.27 mole)

isopropyl iodide (45 g.,026 moles)

After the addition of the alkyl iodides, the red solution was refluxed for three hours. In the case of the methyl and ethyl iodides, the solutions gradually changed color until they were practically yellow, but in the instance

The Charles are the confined and the con

The second of th

Temperature with a file in play to a situal display to a serior of graph to a serior of the serior and the seri

17 \$ 10 (C. (Pener) of wedder 18 (Pener) 19

current needs of account was a construction of the period color of the period of

្ទស់ មើលក្រុមស្រួស ១០៩០១០១០១០១០១០ **១០៤៤១៤** ១០៩០១៤ ១<mark>៤២</mark> • ១២៥៥៨៨ ដែលកិត

nois dua pot est, lost di ingilio e si un modello con nome.

Totom vide to messo o de sur legislo e considenta o vultare new

and o totom videnta e considenta e considenta e considenta de considenta

of isopropyl iodide, the solution remained red. At this point the procedure varies depending upon the alkyl halide employed.

The methyl alkylated compound was treated as follows:

After cooling, acetic acid was added until the solution was neutral. The solvents were then removed in vacuo and the residue taken up in benzene and water. The water layer was extracted twice with benzene, and the combined benzene solutions were washed with sodium bicarbonate and then dried with anhydrous potassium carbonate. The benzene was removed under reduced pressure. The product that remained was recrystallized from 60-70° petroleum ether acetone. Eleven grams (55%) of presumably methyl 2-methyl-X-tetralone-2-carboxylate was obtained in rectangular prisms melting at 54-56°.

The ethyl and isopropyl alkylated compounds were treated as follows:

Acetic acid was added to the yellow solution until it became neutral. The solvents were then removed in vacuo until about 150 ml. of material remained. The residue was taken up in benzene and water, and the water was extracted twice with more benzene. The benzene extracts were combined, washed with sodium bicarbonate and dried over anhydrous potassium carbonate. The benzene was then removed in vacuo, and the red oil that remained was vacuum distilled through a five-centimeter Vigreaux column.

ានស្នែក សំខាន់ សំខាន់ សាស្ត្រីសាស្ត្រីសាស្ត្រីសាស្ត្រីសាស្ត្រីសាស្ត្រី ស្ត្រី ស្ត្រី ស្ត្រី ស្ត្រី ស្ត្រី ស្ត្ សេស្តិតថា និក្សាសិស សេស្ត្រី សាស្ត្រីសាស្ត្រីសាស្ត្រីសាស្ត្រីសាស្ត្រីសាស្ត្រី ស្ត្រីសាស្ត្រីសាស្ត្រីសាស្ត្រីស សេស្តិត សេត្តិសាស្ត្រីសាស្ត្រីសាស្ត្រីសាស្ត្រីសាស្ត្រីសាស្ត្រីសាស្ត្រីសាស្ត្រីសាស្ត្រីសាស្ត្រីសាស្ត្រីសាស្ត្រី

рам рам в боле по положения в под под в функция в формация. See figure of the see f

Like a state at the content of the colors, will be expected as the content of the colors of the colo

The state of the second second

Assist a solicity of the bold of the bold of the policity of the solicity of t

Thirteen grams (62% yield) of presumably methyl 2-ethyl- 2-ethyl- -tetralone-2-carboxylate distilled at 135-138*/4
mm. When the oil was scratched with petroleum ether
(60-70°), it crystallized in colorless prisms melting at
55-57°.

Eight grams (35%) of presumably methyl 2-iso-propyl- \propto -tetralone-2-carboxylate was distilled at 155-160°/5 mm. After repeated scratching of the oil with petroleum ether (30-40°), a tan crystalline material was obtained which melted at 62-63°.

The alkylated carboxylates obtained above were hydrolyzed and decarboxylated as follows:

Eleven grams (0.05 mole) of methyl 2-methyltetralone-2-carboxylate, ll g. (0.05 mole) of methyl
2-ethyl-tetralone-2-carboxylate and 8 g. (0.032 mole)
of methyl 2-isopropyl-(-tetralone-2-carboxylate were
hydrolyzed by refluxing with 80 ml. of 20% sodium hydroxide
and 20 ml. of ethanol for three hours. The reaction
mixture underwent a color transition from orange to red.
Acidification of the warm solution with 1:1 sulfuric acid
caused a vigorous evolution of carbon dioxide. To insure
complete decarboxylation, the acidified solution was
warmed on a steam bath for one hour. The ketones were
then extracted with benzene, and the benzene extracts were
washed twice with water, once with sodium bicarbonate and
again with water. The benzene extracts were dried over

If the contraction of the con

- *i-x %; i . This is any the (#i) as any weight

do so the interpretable of the interpretab

anhydrous potassium carbonate. Vacuum distillation yielded 8 g. of colorless 2-methyl-\(\pi\)-tetralone, b.p.

145-150°/25 mm.; 9 g. of colorless 2-ethyl-\(\pi\)-tetralone,
b.p. 123-125°/5 mm. (the isolation of these compounds
was practically quantitative); 6 g. (96%) of colorless
2-isopropyl-\(\pi\)-tetralone, b.p. 155-160°/5 mm.

When the alkylated <-tetralones were allowed to stand at room temperature for three to four days, they became slightly yellow in color.

Oximation of the Substituted <- Tetralones (11)

To 2 g. of the substituted <-tetralones in a 50-ml. flask was added 2.5 g. of hydroxylamine hydrochloride and 20 g. of redistilled pyridine. The flasks were fitted with condensers and placed on a steam bath for ten hours. The solution was then poured on 35 g. of ice and stirred. After standing at room temperature for two hours, the heavy oil was extracted with ethyl ether. The ether extracts were then combined, and the ether, as well as most of the pyridine, was removed by concentrating the solution on a steam bath. The remaining viscous oil was cooled and scratched until solidification occurred. The green mass was recrystallized from aqueous methanol and

production of a place of the control of the control

తెరుగ్రామం ఉంది. మంద్రం కొండి కోటా తెల్లు కొంటి ప్రాట్లు కొంటే కొంటే కొంటే కొంటే కొంటే కొంటే కొంటే కొంటే కొంటే కొంటేకో ఎంద్రం కొంటే కొంటే కొంటి కొంటే కోటేకి కోటే కొంటే ఎక్కువ్సారు కూర్ కొంటే కొంటే కొట్టే కొట్టి కొట

(27) De de 19 - Paristo de est to color (2)

To 2 go of the access of the state of the constituent of the constitue

colorless plates were obtained. The yield was 2 g.

2-methyl- <-tetralone	oxime	melted	at	96-98•	(uncorrected)

Analysis for C 75.40% H 7.48% N 8.00%

Calcd. for C 75.68% H 7.63% N 8.03%

2-ethyl- 2-ethyl- 2-ethyl-">2-ethyl- 2-ethyl-

Analysis for C 76.15% H 7.99% N 7.40%

Calcd. for C 76.47% H 7.98% N 7.45%

2-isopropyl -tetralone oxime melted at 84-86° (uncorrected)*

Analysis for C 76.80% H 8.43% N 6.89%

Calcd. for C 75.05% H 7.43% N 7.97%

*The discrepancy in the analysis is discussed below.

Mixed melting point data:

2-methyl-c-tetralone oxime

d -tetralone oxime melted 82-87° (uncorrected)

2-ethyl-C(-tetralone oxime

cd -tetralone oxime melted 79-85° (uncorrected)

2-isopropyl-0(-tetralone oxime

C-tetralone oxime melted 76-81° (uncorrected)

Beckmann Rearrangements (2,3,12,13)

I

Four grams of c -tetralone oxime was added to
15 ml. of 85% sulfuric acid. The warm solution was heated

and the second of the second o

After the execution to the first the contract the things to

CAND I SEE THE SECTION OF THE SECTIO

<u> 14 martina malika da 1920 martina na amazar dikarak na maka</u>

 $(1, \chi_1, \alpha_1, \dots, \alpha_n) \in \mathbb{R}^n$ $(1, \chi_1, \alpha_1, \dots, \chi_n) \in \mathbb{R}^n$ $(1, \chi_1, \alpha_1, \dots, \chi_n) \in \mathbb{R}^n$

. Of a Decision in the adequation of the company of the con-

oranio aldo e vidante sello

enlxo ench tilto- t-ft, com-a

್ರ-೧೯೬೮ ಕನ್ನಡ ಗಡಿಸಿದ ರಾಜಕಾಗಿ ಕಾರ್ಯಕ್ಷಣೆಗಳು

one the control of the order was ex-

(Spanson coup) Pin-Ci vintar element element continued-

leniko kutabolika-, milija, ti-k

(ఆధిలాండుకుంటు) (2.14) న్రామం కార్యాలు అయ్యారు ఉంది. మాముకు చూఉ

--

a kabumatan kacamatan kacamatan dari dari kacamatan kacamatan kacamatan kacamatan kacamatan kacamatan kacamata Kabumatan kacamatan kacamatan kacamatan kacamatan kacamatan kacamatan kacamatan kacamatan kacamatan kacamatan

is a real contractions of the contraction of the contraction of

II

Alpha-tetralone oxime (3 g.) was added to 10 ml. of hot (100-110°) 85% sulfuric acid. This temperature was maintained for fifteen minutes, and then the solution was allowed to cool. Upon cooling, by addition of ice, a precipitate formed. After neutralizing with cold dilute sodium hydroxide and filtering, the solution was extracted with ethyl ether, and the ether extracts were concentrated. A minute quantity of a black tarry material was recovered. The precipitate (above) gave a melting point of 100-101°. When it was mixed with coloring point.

Alterent be designed to the control of the bull of the control of the design of the bull of the control of t

[...]

.in the district of a result of the contract o

emberno di incominato di comunicatorio de comunicatorio di composito de comunicatorio de co

In a 500-ml. round-bottomed flask fitted with an efficient condenser was placed 3 g. of wttps://wttps:

IV

2-Methyl-C-tetralone oxime (l g.) was added to 5 ml. of hot (130°) 85% sulfuric acid. No temperature rise was noted during the addition. The temperature was maintained at 130° for ten minutes. Upon dilution with ice water, pink crystals formed. The crystals were filtered, and the filtrate was neutralized with cold 2 N sodium hydroxide and then extracted with benzene. The benzene extracts were concentrated, and only a minute quantity of black tarry material remained. The pink crystals were recrystallized from aqueous methanol and melted at 96-98° (the melting point of 2-methyl-C-tetralone oxime).

The confidence of the confiden

VI

A-resistance (A.g. A) resistance of (A.g.) was an electric of (A.g.) was an electric of (A.g.) and the constant of the constant of the constant of the constant of the (A.g.) and the constant of the

Schroeter's technique was attempted in the "Beckmann rearrangement" using gaseous hydrogen chloride. glacial acetic acid and acetic anhydride. Alpha-tetralone oxime (5 g.) was treated with 40 ml. of glacial acetic acid and 4 g. of acetic anhydride. While the above solution was heated on a steam bath for three hours, a stream of hydrogen chloride gas was bubbled through it. During the course of this treatment, the solvents evaporated and left a brown crystalline mass on the bottom of the open beaker. Dilute hydrochloric acid (1:1) was used for recrystallization and 4-5 g. of colorless needles were obtained. The needles were placed in 200 ml. of hot water and dissolved. As soon as the solution cooled to 40-50°, sodium bicarbonate was added until the evolution of carbon dioxide was no longer apparent. The neutralized solution was warmed on a steam bath for thirty minutes. After cooling, ethyl ether was added, and the oil that formed following the bicarbonate treatment was extracted. Upon removal of the ethyl ether, a brown viscous liquid remained. A sample of the liquid gave a positive coupling reaction with β -naphthol. It also reacted with acetic anhydride and glacial acetic acid to give colorless plates melting at 155-157°. The acetate of &-naphthylamine was reported as melting at 159° (14).

But I have all the surface of the contract الله والمراجع المراجع mark restriction of the contract of the contra Adam two teachers and the contract of the cont the profession of the contract ing material programmer in the control of the contr in a learning with a first two pines is the incidence of a The property of the contract of the contract of the contract of the contract of were that because a (i.i.) while of it is a subject to the -do which despite the Analysis to . I take the distance if it is in in the control of the control in the form of the control of the control of ration to the actionists one literal review of a community of the a itplication in the case of a state of a record on the continuity aption cover to garded with with a cover a contract the cononers to that the old the follows now walts ights , which e was a complete that we will be the start of -at little in the rain air at a provide first at 15 como em gradiques and tray a ear, the lived as at a second as place with body one of the J.D. . The December as ideal as ideals as ង ៥០1.2 ខុមម្មាធិសុខ១ ខេត្ត ១៨ សំខែ២ ១៩២១១ ស្រុកសង្គម មាន ស**ារា**វិទ្ធិបាន a (AL) Port of this and of the transfer

Preparation of Semicarbazones (3)

The semicarbazones of the substituted tetralones were prepared by refluxing one gram of the ketone with one gram of semicarbazide hydrochloride in 5 ml. of pyridine and 10 ml. of absolute ethanol. The refluxing required from twelve to fifteen hours. At the end of this time, the solutions containing the semicarbazones were poured on 50 g. of ice and the semicarbazones crystallized out as colorless needles. 2-Methyl-X-tetralone semicarbazone melted at 203-205°. 2-Ethyl-X-tetralone semicarbazone melted at 200-201°.

Mixed melting point data:

2-methyl- -tetralone semicarbazone

-tetralone semicarbazone

melted 164-173 (uncorrected)

2-ethyl- d-tetralone semicarbazone

ctetralone semicarbazone

melted 167-177° (uncorrected)

The first of the decidence of the second terms of the second terms

CONTRACTOR TO BELLEVIEW TO BEET !

on and in the last than e-complete the terms of the term

(fososico my ryyf-Acf histor

ాకు.మం. లు మంతో పుండి ఉమ్మిక్ గా చెనితేంది. ఈ కృత్తుం కంక్

- beforenters . . enotorated -

(Carabathau) Martin

Melting Point of Derivatives	Semi- carbazone (Lit.)	193-195(16) 199-201 [*] (15)		194-196 (10) 207° (21)
	Specific Density Density Semi Gravity 29° 4° (Lit.) Oxime carbazone	1.065 1.060(15) 96-98 203-205		96-97° 200-201° 194-196°(10) 207°(21)
	Oxin	6- 96		26-9 6
	Density 4° (Lit.)	1.060 (15)		•
	Density 29°	1.065		1.043
	Specific Gravity	1.072		1.047
	B.P. •C (Lit.)	132. 15 mm.(15)	79-80 2 2 mm. (16)	112-113• 1 mm. (16)
	т. С.	2-Wethyl-& 145-150 132 132 - tetralone 75 mm. 15 mm.(15)		116-117 mm.
	Compound	2-Methyl-c		2-Ethyl- \(\) 116-117tetralone \(\) mm.

AND THE TOTAL CONTRACTOR SAME AND THE PROPERTY OF THE PARTY OF THE PAR • The state of the second state of the second state of the second s ! ! 830.1 6. - 3 • H (0.0) • (0.0) (A) - 30 A - 10

-£23.-

DISCUSSION OF RESULTS

A. Preparation of 2-Alkyl-d-tetralones and Their Oximes

The two principal methods for the preparation of 2-alkyl-C-tetralones are cyclization of Y-phenyl-C-alkylbutyric acids and the direct alkylation of C-tetralone-2-glyoxylate. Krollpfeiffer (15) and Alexander (16) employed the method of cyclization for 2-methyl-C-tetralone as indicated in Fig. 5. The over-all yield of 47% was reported by Alexander.

The second method, developed by Bachmann (9),

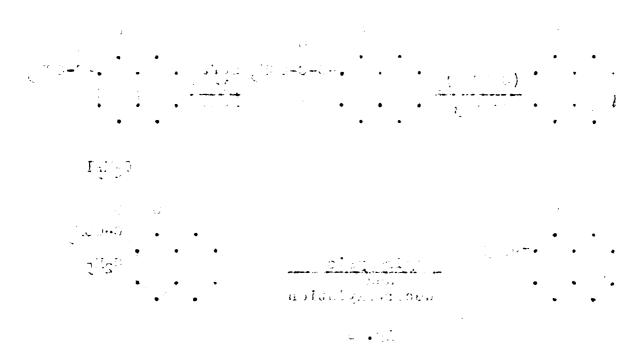
Kloetzel (10) and co-workers, involved the preparation of

2-methyl-2-carbomethoxy-X-tetralone followed by the

Substitution of the property of the contract o

(1) for a factor () section () number of both section

on a substitution of all of a factor () for the off


education of a factor () a factor () equal to the content of the co

hydrolysis of the keto ester and subsequent decarboxylation (Fig. 6). The over-all yield of 75% was reported by Kloetzel and Close.

that the first step in the above reaction is a very critical one. The yield of the glyoxylate is dependent upon the amount of starting material used. In all cases, where the amount of —tetralone exceeded 5.84 g., the yield of the glyoxylate was lowered. Since this occurred, Cole suggested that in preparing a large quantity of the glyoxylate, a series of small runs, using —tetralone and dimethyl oxalate, should be employed.

In the experimental portion describing the synthesis of methyl-C-tetralone-2-glyoxylate, the amount of C-tetralone used was four times the quantity suggested

- Igas races described a factor of deposite is not be set of the factor of the factor

creationing for the color of the indian term

the color of a color of the salve of a color of the color of a color of the color o

-ty = 10 (k) become a siteony Linker two/comeans to

then in all particularly and particular decorated as a been confined to a feet of bear one for the confined to

by Bachmann. Bachmann's yield was 91%, whereas the maximum yield in this work was 82%. It is possible that the extent of obtaining an intimate mixture with large amounts of starting material could be facilitated by continuous stirring throughout the glyoxylation, thus improving the yield.

The ethyl c -tetralone-2-glyoxylate was prepared by using a combination of the procedures described by Bachmann (9) and Snyder (17). In an attempt to eliminate carbon monoxide by heating the compound with ground glass, only decomposition took place. The methyl ester was, therefore, employed in the remaining experiments.

The alkylation of methyl-of-tetralone-2-carboxylate was accompanied by color changes. At the beginning of the alkylation, using methyl and ethyl iodide, the color of the reaction mixture was red and later changed to yellow toward the end of the refluxing period. In the instance where isopropyl iodide, isopropyl bromide, or isopropyl chloride was used, this color change was not evident. This was probably an indication of a small amount of alkylation or no alkylation at all. The carbon-hydrogen-nitrogen values for the oxime of the isopropyl alkylated of tetralone suggests that the oxime may have been a mixture of the isopropyl substituted and unsubstituted of tetralone. Nevertheless, repeated recrystallizations and subsequent analysis showed no change in the melting point or percentage composition.

er a a estata (p. 10 am a leig eta a de la companda de la compaña de la

្សាស់ស្ត្រស់ ស្រុក ស្រុក ស្រុក ស្រុក្សាស្ត្រី ការិកាធិស្សាស់ស្ត្រីស្ត្រី ស្ត្រសិក្សាសុន្តិ

the current of entire to the precise of the entire to the problem of the current of the current

entropy label was acceptation of colors of action. At the conjunction of the silection, which respond to the color included included the color of the silection of the color o

ទាស់ស្រាស់ ១៣ ខេត្ត សំពុល សំពីសម្ព័ស្រស់ សំពុខសុខ សំពុខសុខ សំពុខសុខ សំពុខស្មីរដ្ឋានស្បាញ់។ •ស. ដែលសំពុស សំពុស សំពុស្ស សំពុស្ស សំពុស្ស សំពុស្ស សំពុស្ស សំពីសំពុស សំពុស្ស សំពុស្ស សំពុស្ស សំពុស្ស សំពុស្ស ស The oximation technique presented in this report follows the procedure described by Siggia (18) and Sengupta (11). Normal methods of preparing oximes were not applicable to 2-alkyl cyclic ketones, since steric hindrance prevents oximation. Specifically, Sengupta found that the best conditions for converting 2,2-dimethyl-cx-tetralone into the oxime was by treating the ketone with hydroxylamine hydrochloride and pyridine at 100° from ten to twelve hours. This procedure was followed and the yields were practically quantitative.

B. Attempted Beckmann Rearrangements of the Oximes

The Beckmann rearrangements attempted in this report followed the methods described by Marvel (12), Hildebrand (3) and Blatt (13). It was noticed that when sulfuric acid was used, a definite temperature rise was effected upon the addition of the oxime. It has been reported that this rise in temperature is not due to a rearrangement but to a salt-like complex that is formed between the oxime and the rearranging agent (Step 1 in Fig. 7) (19).

The steps in Fig. 7 illustrate the mechanism of the rearrangement as reported by Chapman and Kuhara and verified by Pearson (19).

In Step 2 of the reaction we find the formation of an ester that is potentially capable of ionizing (this

angse still at 190 cm seg to been not being

out of the solution of the control of the control of the solution of the control of the solution of the control of the control

The control of the co

The spinosper of the standard of the spinosper of the standard of the standard

Fig. 7

can be seen in Step 3). Step 3 is the rate determining step. The ease of the ionization of the ester partially determines the rate and ease of rearrangement. The polarity of the solvents also determines the rate of rearrangement (20). The migrating group which attaches itself to the nitrogen atom is anti to the hydroxyl group in the original oxime (Step 3).

Jones (20), in reviewing the work of Chapman and Kuhara, indicated that Step 3 (Fig. 7) determines whether a rearrangement will or will not occur. Specifically, if the ionization cannot occur, in the case of the C-tetralone oxime-0-sulfonate, then the Beckmann rearrangement cannot take place. There are a number of factors which may influence ionization of this ester,

glaside a transcription of the aridemia like a flar sea expression which is a complete that the course of the court of the continuous -ore in education and conference and also also and to add the and gaps, is a solution of the solution of 1 and 2 and 3. (1 act) which into the said

mangale to that was to be a control of the same and the first of the first of the same and the s

Complete the Committee of the contract of the -thing, and consider this was this could never be a second of will to use and all production obstant all and all address -on next my made this point which is a first of the cost-The today a profile of the second of the sec paralle of the control of the contro

including the effect of groups which exert a dipole moment.

The group OX is the ester part of the oxime, and according to Chapmann and Kuhara, a rearrangement will occur when OX exerts a sufficient attraction for electrons to cause the electrons at the R-C bond to be displaced and thereby set up a state of stress within the molecule. If, however, group R has associated with it a dipole in the opposite direction of OX, electron displacement cannot occur, and the rearrangement will either by retarded or stopped completely.

To warrant the lack of a rearrangement in the content of the factors discussed could conceivably prevent a rearrangement. The reason for lack of rearrangement in this series is not yet understood.

elogib a duent militar por a traval i presentitation.

The gradient of the control of the control of the control of the state of the control of the con

descent for least of the last of the control of the black in the black of the black

SUMMARY

1. 2-Methyl-x-tetralone and 2-ethyl-x-tetralone were prepared from x-tetralone in 40% over-all yield.

The steps included glyoxylation of <-tetralone (82%); decarbonylation (74%); alkylation (methyl 55%, ethyl 62%); hydrolysis and decarboxylation.

- 3. Alkylation using isopropyl halides was not complete under the conditions employed and 2-isopropyl
 -tetralone oxime was not isolated in pure form.
- 4. The oximes of tetralone, 2-methyl-tetralone and 2-ethyl-tetralone did not undergo the Beckmann rearrangement under a variety of conditions.

 The oximes were in all cases recovered.
- 5. The conversion of

 5. The conversion of
 4-tetralone oxime to

 4. The conversion of
 5. The conversion of
 5. The conversion of
 6. The conversion of <a
 - 6. The following new compounds were prepared:

 2-methyl-&-tetralone oxime

 2-ethyl-&-tetralone oxime.

#1,120 # 10 to the famous # 10 to the first section of the following the first section of the first section is the first section of the first section in the first section of the first section is the first section of the first section of the first section is the first section of t

CAROL SECTOR - No. 18 1000 Carolin association of the Carolina

(a) (); (a) second control of a final hours
 (b) (); (b) (a) (a) (a) (a) (a) (a) (a) (a) (a)

under unit is a leader of the second of the

Jean Port (1964), the proposition of the first of the second of the seco

4. Les est de la companya del companya del companya de la companya

of write and the stands of the same of some of the stands of the stands

BI BLI OGRAPHY

- H. F. Ungnade and A. D. McLaren, J. Org. Chem., <u>10</u>, 29 (1945).
- G. Schroeter, A. Gluschke, S. Gotzky, J. Huang, G. Irmisch, E. Laves, O. Schrader, G. Stier, Ber., 63, 1308 (1930).
- 3. J. G. Hildebrand and M. T. Bogert, J. Am. Chem. Soc., 58, 650 (1936).
- 4. P. A. S. Smith, ibid., 70, 320 (1948).
- 5. P. A. S. Smith, ibid., 70, 323 (1948).
- 6. W. Militzer, ibid., 60, 256 (1938).
- 7. G. H. Stillson, D. W. Sawyer and C. K. Hunt, ibid., 67, 303 (1945).
- 8. R. B. Thompson, Org. Syntheses, Coll. Vol. 20, 94 (1940).
- 9. W. E. Bachmann and D. G. Thomas, J. Am. Chem. Soc., 63, 598 (1941).
- 10. M. C. Kloetzel and W. Close, J. Org. Chem., 11, 395 (1946).
- 11. G. Sengupta, J. Prakt. Chem., 151, 82 (1938).
- 12. C. S. Marvel and W. Eck, Org. Syntheses, Vol. 17, 60 (1937).
- 13. A. H. Blatt and J. F. Stone, Jr., J. Am. Chem. Soc., 53, 4134 (1931).
- 14. N. D. Cheronis and J. B. Entriken, "Semimicro Qualitative Organic Analysis," T. Y. Crowell Co., New York, 1947, p. 406.
- 15. F. Krollpfeiffer and W. Schafer, Ber., 56, 631 (1923).
- 16. E. R. Alexander and A. Mudrak, J. Am. Chem. Soc., 72, 3194 (1950).

- 1. 38 200 bods, i. 12 bods ms, i. 70.8 ms, i. 12 bods ms, i. 2 bods ms, i
- , . (i. C. 12) Cobyank and . (i. C. (a,b)) a . (ii. (a,b)) a . (iii. (a,b)) (a,b)
 - to so as so a loty ibility 12, 34 (1744).
 - 5. 7. 2. 2. 4. 4.153, 1514., 20, 30, (847).
 - . 7. ideltaan, 1816., g., 250 (1898...
- 7. 1. 2. Mys. paral, 699. april wester, school 20, 10 (1940).
 - H. Burdana and D. G. Barter, C. 1. Appl. 2004. (20)
 - De Te de Likebank ent de offest, de waye bud es <u>ille</u> past
 - lie . 1. 19 prophy is firstly successful . 199201.
 - les to the destruction of tong trye type to the West 17, 68. (1997).

 - -. tiffing caliding, which is a self-science of the circumstance of the composition of th
 - 15. . . Prollyteleter all . solation, see, 30, 450 (15.5).

- 17. H. R. Snyder, L. H. Brooks and S. H. Shapiro, Org. Syntheses, Coll. Vol. II, 391 (1943).
- 18. S. Siggia, "Quantitative Organic Analysis via Functional Groups," John Wiley and Sons, New York, 1949, p. 16.
- 19. D. E. Pearson and F. Ball, J. Org. Chem., <u>14</u>, 118 (1949).
- 20. B. Jones, Chem. Reviews, 35, 335 (1944).
- 21. G. Levy, Ann. Chim. (11), 9, 69 (1938).

- 19. The standard of the standa
- -omplied to a large of the control o

CHEMISTRY LIBRARY T545.9 L657 Leven

255848

