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ABSTRACT

A METHOD FOR THE VALIDATION OF COMPUTATIONAL MODELS
USING DIGITAL IMAGE CORRELATION AND IMAGE
DECOMPOSITION

By

Christopher M. Sebastian

Recently, there has been a drive to create more efficient designs of vehicles. This has led
to the use of new materials and more rigorous optimization of components. As the design
envelope is pushed and new materials are explored, it is more important than ever to ensure
that designs are based on a model that has been validated. Currently, a typical validation
consists of a simple point-to-point comparison. This method assumes that the model has
identified the areas of high stress correctly, but leaves the rest of the model un-validated.

This thesis proposes a method to validate computational models using image decomposi-
tion and digital image correlation. Digital Image Correlation (DIC) is capable of producing
full-field strain maps with on the order of 10° to 100 data points. The challenge then becomes
comparing the massive amounts of experimental and simulation data. Image decomposition
provides a way to reduce those data sets to less than 100 moments while preserving the
original information. These compressed data sets can be compared more easily than the
original data. As a part of the validation process, the DIC system was calibrated according
to a recently published draft ISO standard.

Finally, two studies are presented which use image decomposition to compare simula-
tion and experimental results. The first involves an aluminum plate with a hole loaded in
tension. The second is a composite protective panel which is bolted at one end and loaded

compressively.
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Chapter 1

Introduction

Computational methods of stress and strain analysis, such as finite element analysis, have
been a very important tool in the engineering design process, especially as computing power
has decreased in cost. Initially, this led to a shift in the engineering design community from
experimentation to computational analysis. Experimentation can be slow and costly, and
often the desired geometry has to be greatly simplified in order to perform tests. Compu-
tational methods allow complex geometries to be tested (and many different iterations) for
a relatively low cost. This has led to creation of products from largely un-validated compu-
tational models. The problem with designs using this method are that any problems with
the computational model will not be discovered until the prototype phase, or worse, during

production.

Companies have since realized money is more wisely spent earlier in the design phase,
where discovering a problem earlier on can save several times the cost of discovering a problem
in the prototype or manufacturing phase [1]. This has led to the development of such tools

as Design For Six Sigma (DFSS) which provide a disciplined approach to the design process

1
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Figure 1.1: The desire by companies to move from a reactive design process to a predictive
process has resulted in more emphasis being placed on modeling and simulation [1].

with the ultimate goal of no defects in the manufactured product. This is a very ambitious
goal, and DFSS has varying levels of success depending on the type and scope of product, but
the underlying concepts are sound. Figure 1.1 illustrates the desire in industry to shift from
a test-heavy design approach to one that makes extensive use of modeling and simulation.
Rather than going through an iterative design-and-test process, companies would prefer to
perform only enough tests to validate their computational models. The iterative process
can then be carried out through less expansive simulations. As a result, more emphasis has
once again been placed on experimental methods and their role in the validation process of
computational models.

Making a comparison between the experimental data and computational results presents
several challenges. For a simple 1-D or 2-D problem, a quick graphical comparison can usually
be made by simply plotting the two sets of results and gaging how well they match. If a more

extensive analysis is desired, the data points must align with each other, or interpolation



must be performed. The comparison becomes even more difficult in 3-D, as one must ensure
that the coordinate systems are properly aligned, that both data sets are scaled and oriented
the same.

This work proposes the use of image decomposition to perform the comparison between
experimental and computational data sets. Image decomposition be can used to address
the alignment and scaling issues, as well as providing data compression. Often a data set
with 10° or 100 data points can be represented by less than 100 moments resulting from an
image decomposition. If these moments can be shown to capture with sufficient accuracy
the information from the original data set, then a simpler comparison is possible using 100

moments as opposed to 10° or more data points.

1.1 Background

Current validation practices, especially in industry, usually consist of point to point com-
parisons of areas of high stress identified by a computational model. This assumes that the
model has correctly identified the high stress areas, and leaves the rest of the model un-
validated. To make matters worse, the design is often optimized by removing material from
the un-validated areas of predicted low stress. For lightweight structures that are pushing
the design boundaries, this could potentially cause problems if the model was not correct.
Optical techniques such as digital image correlation (DIC) [3], electronic speckle pattern
interferometry (ESPI) [4], and digital photoelasticity [5] have the ability to produce full-field
stress and strain data that could be used for more comprehensive validations of computa-
tional models. While these techniques are well-established in the experimental mechanics

field, the wider stress analysis community and industry, in particular, seem to be reluctant to



adopt these methods. One possible explanation for the lack of interest by the stress analysis
community is the almost complete lack of standards or accepted methodologies for processes
such as the calibration of the optical instruments. This thesis addresses that problem by
performing a calibration of the optical strain measurement device used for the experimental
data collection.

Calibration of the strain measurement system is an essential step in acquiring data for
the validation of computational models. The recently published guide from the Standardised
Project for Optical Techniques of Strain measurement (SPOTS) seeks to fill the current lack
of standards by providing a universally appropriate calibration procedure for static and
pseudo-static experiments [6]. The product of performing this calibration procedure is a
minimum level of uncertainty for the measurement system which is important to provide

confidence in the experimental results used in the validation process.

1.2 Motivation

The primary motivating factor for this thesis is the concept of design validated by experiment,
which involves a structured methodology to use experimentation to ensure the quality of
components designed using computational simulations. As was previously discussed, this
concept has become especially important as more emphasis has been placed on the use of
computers for simulation. The flowchart in Figure 1.2 shows the dual paths of simulation
and experimentation ultimately coming together with a quantitative comparison between
the two. This flowchart is from the ASME Guide for the Verification and Validation of
Computational Solid Mechanics [2], which states that a comparison should be made, but

doesn’t provide a procedure to do so.
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Typically, image decomposition has been used in biometrics (for face, iris, and fingerprint
recognition), and image analysis and retrieval. The properties that make image decompo-
sition well-suited to those tasks have also given it potential for use in the experimental
mechanics field. Work by Wang demonstrated the use of image decomposition for mode
shape recognition [7], and Patki used it for damage assessment in composite samples [8].
There are many different types of shape descriptors available, but this thesis concentrates
on the Zernike [9], Tchebichef [10], and Fourier descriptors [11]. Image decomposition makes
the data sets much more manageable, as it is possible to reduce a data set by several orders
of magnitude. The Zernike descriptor is invariant under translation, rotation, and scaling,

which eliminates the need to exactly align the two data sets to be compared.

1.3 Thesis Overview

This thesis is organized as follows. A literature review is presented which describes the
current state of validation practices used for computational models. The calibration of
a digital image correlation system is presented. The various types of shape descriptors
are investigated to identify which ones to pursue for image decomposition in experimental
mechanics. An overview of the current uses of image decomposition and reconstruction is
given. The objectives of this thesis are described, in relation to the current state of art and
the knowledge gaps that this thesis will fill.

The Experimental Methods section begins with a brief overview of digital image corre-
lation, which was the primary method used to acquire experimental data. The practical
knowledge necessary to perform the calibration of a DIC system is described, and the re-

sults of performing such a calibration are presented. The experimental setups, methods, and



procedures used to acquire experimental data are detailed.

The image decomposition methodologies used for the analysis in this thesis are described
in detail. The basic underlying math of each descriptor is described. An example decom-
position is provided for each descriptor to illustrate the various strengths and weaknesses
of the different methods. The hybrid decomposition technique resulting from applying both
the Fourier transform and a moment descriptor is discussed.

The results of two studies using image decomposition to compare full-field experimental
data obtained from digital image correlation and finite element analysis are presented. The
first study uses the data obtained from loading a thin, aluminum plate with a hole in tension.
The second study compares the strain distributions generated from applying a structural load
to an inhomogeneous composite panel.

Finally, conclusions and future work are discussed.



Chapter 2

Literature Review

2.1 Validation of Computational models using Exper-
imentation

Over the past 15 years, there have been several different guides, standards, and editorials
published which addressed the need for verification and validation of computational models.
In 1998, the American Institute for Aeronautics and Astronautics (AIAA) published a guide
for the computational fluid dynamics community [12]. The Department of Defense has
published several iterations of instructions regarding Modeling and Simulation Verification,
Validation, and Accreditation activities, the latest of which was issued in 2009 [13]. In
2005, the Clinical Biomechanics journal issued an editorial statement which defined minimal
requirements for a numerical study for a paper to be considered for publication.

The most recent document published concerning the solid mechanics community is the
2006 ASME Guide for Verification and Validation in Computational Solid Mechanics (ASME

V&V) [2], which incorporates material from a paper published a few years earlier by Oberkampf
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et al. [14]. An overview and summary of the guide was published by Schwer [15], who was the
chair of the Performance and Test Codes (PTC) 60 committee that produced the guide. In
the overview, Schwer states that one of the most common misconceptions about the ASME
V&V guide was that it would provide a definitive verification and validation procedure for
computational solid mechanics. Rather, it is a “foundational document” which provides
a framework and defines terminology to create a standardized language. The flowchart in
Figure 1.2 outlines the procedure that should be followed to compare simulation outcomes
and experimental outcomes. The relevant terms defined in the ASME guide are included
throughout this section, and are given in bold type. The following are some basic terms

necessary for the discussion in this section.

experimental data: raw or processed observations (measurements) obtained from perform-

mg an experiment.

experimental outcomes: features of interest extracted from experimental data that will be

used, along with estimates of the uncertainty, for validation comparisons.

simulation: the computer calculations performed with the computational model.

simulation outcomes: features of interest extracted from simulation results that will be

used, along with estimates of the uncertainty, for validation comparisons.

simulation results: output generated by the computational model.

The guide is broken up into four main sections: Introduction, Model development, Veri-
fication, and Validation. The primary concern of this thesis is the validation section, which

deals with the comparison of the computational model and experimental results. Often, the



terms verification and validation are used interchangeably, but there is a distinction between

them:

verification: the process of determining that a computational model accurately represents

the underlying mathematical model and its solution.

validation: the process of determining the degree to which a model is an accurate represen-

tation of the real world from the perspective of the intended uses of the model.

The main goal of the verification process is to ensure that mathematical model and
algorithms used by the software are correct and that they produce accurate results, while
the validation process ensures that physics of the model are correct by comparing the results
to experimental data. There are also several different types of models, each representing
a different concept or component. The flowchart in Figure 2.1 shows the progression from
the conceptual model to the final computational model. This thesis focuses on the results

produced from the computational model.

model: the conceptual, mathematical, and numerical representations of the physical phe-
nomena needed to represent specific real-world conditions and scenarios. Thus, the
model includes the geometrical representation, governing equations, boundary and ini-
tial conditions, loadings, constitutive models and related material parameters, spatial

and temporal approrimations, and numerical solution algorithms.

Both the ASME guide [2] and Oberkampf et al. [14] discuss the use of metrics to make a
quantitative comparison between the simulation outcomes and the experimental outcomes.
The two sources differ slightly in the wording of the definition of “metric,” but it is essentially

a measure. The metric should quantify both errors and uncertainties, and “actively resolve

10



g
Conceptual

model

'

s N\
Mathematical
model

'

Numerical
model

'

Code ]

Physical l Discretization
parameters l parameters

[ Computational ]

Ve

—

model

Figure 2.1: Flowchart showing the model hierarchy from concept to computational [2].

assessment of confidence for relevant system response measures for the intended application
of the code” [14]. In essence, the ideal metric would provide a number indicating the level of
confidence in the agreement between the simulation outcomes and experimental outcomes,
taking into account the error and respective uncertainties.

An examination of the literature published in the last ten years reveals that a common
type of comparison is to plot the experimental data along with the computation data gener-
ated from the model together on the same plot [16, 17]. A metric is not used when performing
this type of comparison. Instead, the extent of the agreement is qualitatively judged by how
well the two lines match up with one another. To perform a simple quantitative assessment
the relative error between the two sets of data can be calculated according to equation 2.1

18].

computation — measured

RelativeError = (2.1)

measured

11



The relative error metric can be effectively applied to point comparisons or lines of data,
but is not very effective for more complex comparisons. For example, it is not a good choice
to compare tensors, or data with time or spatial components. Also, as the measured value
approaches zero, the quantity becomes undefined. This can be a problem for comparing

things like waveforms, in which the signal can cross zero.

Even with the availability of full-field methods of collecting strain data, the comparison
is still often reduced to checking a few points rather than using the full data set. There are
studies available which describe the collection of data using full-field methods, but do not

explicitly describe the validation procedure, e.g. [19].

2.1.1 Calibration

There is not much literature on the calibration of full field optical methods of stress and
strain measurement, and most of it was produced recently. There are two ASTM standards
from 1997-98 stemming from the glass industry that discuss a method of calibration for
surface stress measuring devices used in glass production [20, 21]. The procedure consists of
using either a cantilever beam or a beam subject to four-point bending and loaded in such a
fashion as to produce a known stress on the surface of the beam. In 2002, ASTM published
a guide for evaluating optical strain measurement systems, but its primary purpose was to
help users of optical measurement systems understand some of the accuracy issues related
to them [22]. This standard did help to establish a framework and terminology relevant to

the performance of calibrations of optical systems.

In 2002, a European consortium was formed involving a group of University and National

labs, device designers and manufacturers, and end-users. This consortium eventually led to

12



the Standardisation Project for Optical Techniques of Strain measurement (SPOTS) which
published a two part online guide in 2007, Calibration and Evaluation of Optical Strain Mea-
surement Systems [6]. The first part of the guide describes the development of a reference
material and the procedure to perform a calibration of an optical system of strain mea-
surement. The second part describes the development of a standardized test material for
the evaluation of optical systems of strain measurement. In 2008, a calibration of a speckle
interferometry system was published that followed the SPOTS guidelines [23]. An updated
version of the guide was published in booklet form in 2010. The process has been started to

implement the guide as an ISO standard.

2.2 Shape Descriptors

Shape descriptors are a part of a larger body of algorithms used for shape analysis. Gener-
ally speaking, there are space-domain techniques and scalar transform techniques. A review
paper by Pavlidis [24] helped to classify the many types of shape analysis algorithms. Tech-
niques which produce another image are space-domain techniques. Those that produce a
number or numbers (scalar or vector), are scalar transform techniques. Shape descriptors
can also be information preserving or information non-preserving. Descriptors which are
considered information preserving allow accurate reconstruction of the image from the shape
descriptors. This thesis will primarily concerned with moment descriptors, and combining

moment descriptors with the use of the Fourier transform.
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2.2.1 Moment Descriptors

The use of moment descriptors is considered an information preserving scalar transform
technique. There are two main types of moment descriptors: continuous and discrete. The
commonly used continuous moments are Legendre and Zernike, both of which have the
advantage of being invariant under translation, rotation, and scale [25]. This means that
transformations which do not impose a strain on the object will produce the same values
for the moments. This is a very important property, which means that two data sets do not
have to be perfectly aligned or of the same scale to make a comparison using moment de-
scriptors. There are several types of discrete moment descriptors, but the two most common
are Tchebichef and Krawtchouk. Moment descriptors are also orthogonal, which minimizes
redundancy. The Zernike moments are only valid over a unit circle domain. In order to
use the continuous Zernike moments with a discrete image, the Zernike polynomial must be
approximated. Hwang provides an accurate form of the Zernike moments for discrete images
26].

Zernike moments are commonly used in biometrics for things such as face recognition
[27, 28] and handprint recognition [29]. They have also found their way into the medical

field for tumor and polyp detection [30, 31].

2.2.2 TImage Reconstruction

In image decomposition, there is a desire to ensure that the moments that have been produced
as a part of the process accurately describe the original image. For the discrete Tchebichef
moments, an image can be completely described by a finite set of moments related to the

size of the image [32]. The continuous moments use integrals that must be approximated by
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summations that result from numerical errors. This affects the invariance and orthogonality
properties, which in turn makes it impossible to achieve perfect reconstruction of a discrete
image [10].

Usually it is not necessary to use all of the moments, or “full-spectrum” to adequately
describe an image. This is due to the fact that the lower-order moments tend to capture the
shape of the object, while the higher order moments tend to provide detail. Typical examples
of reconstruction of continuous moments usually use a binary image of a letter or a character,
and perform the reconstruction with different orders of moments [9, 33]. In comparison,
there are studies available for the discrete moments which evaluate the reconstruction using
grayscale images [34]. A metric such as the mean-square error or the signal-to-noise ratio is
used to compare the reconstructed image to the original image.

While the discrete moment methods would appear to be the better choice for analyzing
images, they do have some disadvantages. Discrete moments do not have the discretization
error that the approximated continuous moment functions exhibit, but they do show nu-
merical instability for larger images. Bayraktar et al. showed that for a 256 x 256 image,
the reconstruction error decreases as the order increases up to a point, then it jumps up

suddenly [35]. This typically only affects larger images using high orders of moments.

2.3 Objectives

While there is an awareness by the stress analysis community that computational models
need to be validated by experiment, the current practice of using strain gauges to make a
point-by-point comparison is not sufficient. This section has presented some of the work

that is being done to change this, but currently there is a very limited amount of literature
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describing the use of full-field experimental data to validate simulations [36]. However,
there has been some recent success using image decomposition for vibration mode-shape
recognition [7, 37, 38] and damage characterization [8]. The objectives of this thesis are

therefore:

1. To perform a calibration of the experimental measurement system to quantify the level

of uncertainty in future measurements.

2. To develop an image decomposition methodology using moment descriptors.

3. To use the methodology developed to compare experimental and simulation outcomes.
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Chapter 3

Calibration

This chapter describes the use and results of the procedure published by the Standardisation
Project for Optical Techniques of Strain measurement (SPOTS) for a successful calibration of
a digital image correlation system. The details of the calibration specimen used are discussed
together with procedure and criteria that must be met to achieve calibration. The system
was evaluated over a range of 289 to 2110 ustrain, with a resulting calibration uncertainty
ranging from 14.0 to 28.7 ustrain. This calibration uncertainty will be used in the validation

process to provide confidence in the experimental results.

3.1 Reference Material for Calibration

To perform a successful calibration of a strain measurement system, it is necessary to be
able to produce a known strain field to compare to the results generated by the measurement
system. This can be achieved using a reference material. The SPOTS consortium performed
an extensive investigation to identify five essential attributes (easy optical access, lack of

hysteresis, an in-plane strain field, traceability to an international standard, and utilization

17



of the length standard for traceability) and 24 desirable attributes of a reference material for
the calibration of a full-field optical system for strain measurement [6]. These attributes were
used to assess a large number of candidate designs for the reference material that resulted
in the selection of the design shown in Figure 3.1, which consists of a central beam loaded

in symmetrical four-point bending.

The reference material has several noteworthy design features. Reproducibility between
experiments and between laboratories was a major concern of the SPOTS group, which
has been addressed by making the specimen and loading frame monolithic. The beam and
the loading frame are therefore machined from a single piece of material. The specimen is
designed such that the user has options for applying and measuring displacement loading.
Feature A from Figure 3.1 shows the tabs which allow the use of a variety of measurement
devices that need to have been calibrated with respect to the standard for length. Feature
B shows the holes for tensile loading of the specimen as well as the half-cylinder at the top
to ensure proper alignment in the case of compressive loading. Feature C is simple design
feature which serves as an interlock to prevent an overload to the reference material which
could cause plastic deformation. Feature D is one of the whiffle-trees which supports the
beam. Ideally rollers or knife edges would be used to minimize the transmission of lateral
and rotational forces, but the monolithic design makes their use difficult. The constraint
imposed by the use of the whiffle-trees can be described by Equation 3.1. The correction
factors are k and 7 which are unknown, and must be found either through experimentation
or analysis. The quantity vqyg is average of the two displacement readings obtained from
the measurement devices attached to Feature A. The experimental procedure is used here,

and is explained in more detail in the next section.
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Figure 3.1: Drawing of the reference material showing some of the design features. A: Mea-
surement tabs. B: Mounting holes for tensile loading and semi-circle for compressive loading.
C: Interlock to prevent overload. D: Whiffle tree that allows for monolithic manufacturing
of the specimen. E: Gauge section.
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Finally, Feature E is the gauge section, which is the area between the two inner loading
points where the bending moment is constant along the length of the beam. The strain is
measured in this region using the instrument being calibrated and the results compared to
the analytical solution. A linear least squares fit is used to analyze the differences between
the two quantities, producing two parameters, o and 5. The SPOTS guidelines provide a
detailed procedure for this comparison and for determining the calibration uncertainty which

have been followed here.

3.2 Experimental Set-Up and Procedure

3.2.1 Reference Material

The reference material used for this calibration procedure was manufactured using electric
discharge machining (EDM) from a single piece of 5 mm thick 2024-T351 aluminum. The
specimen beam depth (W) was 15 mm. A detail of the gauge section of the calibration
specimen is shown in Figure 3.1, and illustrates the dimensions W, a, and ¢. The values for

these dimensions are listed in Table 3.1.

3.2.2 Determination of the correction factors k£ and n

There were two steps in the calibration process: one to determine the correction factors
described in Equation 3.1, and the second to acquire the strain data using the instrument

being calibrated. For both steps, the specimen was mounted in a servo-hydraulic test ma-
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Table 3.1: The critical dimensions of the calibration specimen and their associated uncer-
tainties

Parameter Units Nominal Value Uncertainty, u

w mm 15 0.017
a mim 45 0.017
c mm 15 0.017
Vavg pm 27.5, 110, 218 0.89
k - 0.986 0.006
n mm -0.068 0.006

chine (MTS 810, Eden Prairie, MN) using the loading holes. This arrangement allowed the
specimen to be loaded in tension. The specimen was oriented upside down in the load frame
relative to Figure 3.1 and the usual orientation in guidelines. This minimized the rigid body
movement of the specimen relative to the camera. To measure the applied displacement in
the specimen, two aluminum blocks were machined to hold a pair of digital displacement
indicators (Mitutoyo 543-392, Kawasaki-shi, Japan) on each side of the specimen. The cal-
ibration results are evaluated using the unit of length, so it is important that displacement
measurement devices have a calibration history traceable to an international standard. In
this case, the indicators were purchased with calibration certificates which provide traceabil-
ity to the National Institute of Standards and Technology (NIST). The certificates provide a
level of expanded uncertainty for each of the indicators, which was taken into account when
calculating the overall uncertainty of the system.

Figure 3.2 shows the calibration specimen installed in the test machine with the digital
indicators attached using the custom mounting blocks. Strain gauges (Vishay EA-13-120LZ-
120/E, Raleigh, NC) were bonded to the top and bottom surfaces of the gauge section.
The relatively small (5 mm) thickness of the specimen meant that single axis gauges had

to be used. Figure 3.3 shows the location of the strain gauges on the specimen. The strain
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Figure 3.2: Close-up of the calibration specimen installed in the MTS load frame. The digital
indicators are mounted to the specimen by custom-machined mounting blocks.

measurements were acquired using two digital strain indicators (Measurements Group P-
3500, Raleigh, NC). To find the correction factors k and n described earlier, it was necessary
to acquire data from the strain gauges as a function of applied displacement to the specimen.
For this, the test machine was operated in displacement control, and readings were taken
from the strain gauges. In this way, approximately 30 strain measurement readings were

obtained as a function of the applied displacement load.

3.2.3 Calibration Measurements

To prepare a specimen for use with a digital image correlation system, its surface is typically
painted with a white and black speckle pattern. However, this calibration was performed

with the specimen surface prepared using a procedure described by Lopez-Crespo et al. [39]
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Figure 3.3: Model of the reference material showing the strain gauge locations and the
reference coordinate system.
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Figure 3.4: The pattern produced on the surface of the specimen by using grit paper.

which eliminated the need to use paint. First the surface was sanded with 220 grit and
then 400 grit paper, which yielded a high contrast pattern for the DIC images. A typical
image of the surface is shown in Figure 3.4. A macro lens (Tamron SP 90mm F/2.8 1:1
macro, Saitama-city, Japan) was fitted to the DIC camera which made it possible to fill the
camera’s field of view with the gauge section of the specimen. To provide bright, uniform
illumination of the specimen, a fiber optic ring light (Edmund Optics 58-839, Barrington,
NJ) and illuminator (Dolan-Jenner DC-950H, Boxborough, MA) were used. The ring light
was used in place of the standard LED floodlight because when it was used with the highly
reflective bare metal surface it tended to produce glare. The camera and lens were positioned

perpendicular to the surface of the gauge section at a distance of 265 mm.

The SPOTS procedure states that for a proper calibration test setup, the gauge section
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of the beam should fill 90% of the short dimension of the detector, with at least a resolution
of 10 x 10 pixels. The detector used for this calibration has a resolution of 1040 x 1392
pixels, which for 90% coverage of the short dimension yields an area of approximately 1.3
million pixels. The procedure also states that the applied displacement be over a range
between 10% and 90% of the maximum allowable load. The minimum slit diameter that can
be typically manufactured using EDM for the interlock (C in Figure 3.1) is the maximum
allowable deflection for a beam with a depth of 15 mm (see Appendix A of the SPOTS
Guidelines at www.opticalstrain.org). This value is typically between 0.25 and 0.30 mm,
which gives a maximum allowable displacement range between 225 to 270 pum. To avoid

damage to the specimen, a maximum displacement value of 225 um was chosen.

In order to ensure a correct initial displacement reading, the digital indicators were
installed in their proper locations and zeroed with the specimen laying flat on a laboratory
bench. This prevented the weight of the indicators from imposing a displacement load on
the system. The specimen was then mounted in the test machine and a 1-2 ym displacement
pre-load applied to remove any slack in the system prior to applying the calibration loading.
The test machine control software (MTS Station Manager, MTS, Eden Prarie, MN) was
set to apply the load at a rate of 0.3 mm/minute and the DIC system was programmed
to record images at 2 second intervals. To capture the displacement measurements from
the digital indicators as the specimen was being loaded, the DIC system’s second camera
was positioned to capture the values displayed by both indicators. This provided an exact
displacement measurement corresponding to each image captured of the gauge section of
the specimen. Using this procedure resulted in more data than required for the calibration

procedure, so the three displacements that were used for the analysis were 27.5, 110, and
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218 pm. These values were chosen in part to allow comparison of the results to those from

a previous calibration of an electronic speckle pattern interferometer [23].

3.3 Results and Discussion

3.3.1 Correction Factors and their Uncertainty

The SPOTS procedure gives values for the correction factors from finite element analysis,
but it also allows them to be found experimentally, as was done in this study. The values of
the strain parallel to the neutral axis, obtained from the strain gauges on the top and bottom
surfaces of the beam were plotted in order to find the constraint correction factors k£ and 7.
Figure 3.5 shows the quantities plotted as a function of applied displacement load between 0
and 180 um. The correction factors k and n were determined from the coefficients resulting
from a linear fit to the data. Using this method, k£ was found to be 0.986 and n was -0.068.
The results from the finite element analysis given in the SPOTS guidelines are for a beam
depth W ranging from 15 mm to 30 mm and yield £ = 0.94 and 7 varying linearly from
-0.10 to -0.18. The slightly higher k value from the experiment indicates that the specimen
had slightly less rotational constraint than the finite element model, and the smaller n value
indicates less translational constraint in the z-direction. Table 3.1 lists the values found for
the correction factors as well as their associated uncertainty, which was calculated from the

variance of the fitted line.
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Figure 3.5: Plot of the strain from the gauges mounted to the top and bottom surfaces of
the specimen. A linear fit was applied to the data to determine the correction factors k£ and

n.

3.3.2 Specimen Dimensions and Associated Uncertainty

For this calibration, the uncertainty in these dimensions was calculated from the manu-
facturing tolerances, which is specified as 0.05 mm by the SPOTS guidelines. However,
an alternative way to determine the uncertainty would be to measure the geometry using
a series of independent observations, and then calculate the mean and standard deviation
from the measurements. The uncertainty for the applied displacement was a function of the
digital indicators, which were purchased with NIST calibration certificates. The certificates

provided the measurement range and uncertainty for each indicator.

3.3.3 Measurement System Results and Associated Uncertainty

Figure 3.6 shows the strain along the centerline of the gauge section parallel to the applied

load obtained from Equation 3.1 and from the digital image correlation system for the three
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displacement load steps. Figure 3.7 shows the data generated by the DIC system for the
218 um load step. The deviations, d, were then calculated for each of the load steps by
subtracting the measured strain, ez from the strain predicted using Equation 3.1. A linear
least-squares fit was then applied to the deviations, resulting in the fit parameters o and [

shown in the following equation,

dk =a+ Bky (3.2)

where the subscript k£ indicates the load step. The variances of a and [ were also calculated
and used to find the uncertainty for each fit parameter. The range formed by plus or minus
twice the uncertainty creates a 95% confidence interval for each of the parameters. This data

is summarized in Table 3.2.

Table 3.2: Summary of the fit parameters calculated for each of the displacements, as well
as their associated 95% confidence levels

Applied Displacement, vgyq

Fit Parameter Units 275 pm 110 pm 218 pm
Q pstrain -3.2 2.0 11.9
u() pstrain 1.29 1.69 2.66
95% Confidence Interval (o) pstrain +2.57  £3.38  £5.36
B pstrain mm—! -4.4 -4.9 -3.6
u(pB) pstrain mm~! 0.32 0.42 0.67

95% Confidence Interval (3) pstrain mm™—! +0.65 +0.85  +1.34

Next, the total uncertainty in the measured strain, e;4 for the calibration was calculated
using the root-sum-of-squares method to combine the contributing uncertainties. This quan-
tity includes the uncertainty in the dimensions, material properties and correction factors
for the calibration specimen, as well as for the applied displacement measurements. The
flowchart in Figure 3.8 shows how each of these components contributes to the minimum

measurement uncertainty for the system. For each of the three displacement load steps, the
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Figure 3.6: The measured and calculated ey strain values for each of the three displacement
load steps: 27.5 um (top), 110 pym (middle), and 218 pm (bottom).
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Figure 3.7: Principle strain data generated by the DIC system for the 218 pm displacement
load. For interpretation of the references in color in this and all other figures, the reader is
referred to the electronic version of this thesis.

mean residual deviations (o, + fry) + 2u(dy.) were plotted along with the expanded un-
certainty of the calibration specimen, £2ug, in Figure 3.9. The quantity 2u(dj.) provides
a 95% confidence interval around the regression line for the deviations found from Equa-
tion 3.2, and the area bounded by +2u(yg indicates the uncertainty from the calibration

specimen.

According to the SPOTS guideline, an appropriately calibrated instrument is one in which
there is complete overlap between the expanded uncertainty of the reference material and the
mean residual deviations o . +3..y. In an ideal system, both . and ;. would be zero and no
adjustments would be necessary. On the other hand, when |a| is less than twice its expanded
uncertainty, 2u(ay.), there is a statistically significant offset in the calibration. When |3;.| is

less than twice its expanded uncertainty, 2u(/3}.), there is a statistically significant deviation

30



: material __~ Key to sources of error/uncertainty

. L~ |
!_ uncertainty, u(v) |r g i arising primarily from optical instrument
. I arising primarily from RM manufacture
| geometric uncertainties o~ 'l-j' o o analvs
r—p— arising primarily from measurement/analysis
! u(W), u(@), u(c) | calibration
____________ specimen ~
constraint correction uncertainty, L
uncertainties u(k), u(n) | :: Ucg
calibration minimum
displacement uncertainty, :> measurement
measurement ::> u uncertainty
uncertainty, cal
”(Vavg) .
strain
measurement i e
uncertainty, {77
u(dy)

Figure 3.8: The total measurement uncertainty of a system is a combination of uncertainties
from the calibration specimen and from the measurement system.

in the calibration in which the deviations increase as a function of the distance, y from the
center of the beam. It should be noted that both of these cases were true for all of the values

of o and § with the exception of a for the 110um displacement.

3.3.4 Overall System Results and Associated Uncertainty

The resulting calibration uncertainty of the system, ucr 47,, was found using the maximum
strain value from each of the load steps and the results from the combination of the uncer-
tainties of the reference material and of the strain measurements. To better understand

the significance of ucr 47, the relative uncertainty, u can be calculated which expresses

rel
uc AL, as a percentage of the measured strain value. Table 3.3 summarizes these values.

There were some challenges encountered during the calibration procedure that had to be
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Figure 3.9: Plots of the expanded uncertainty of the calibration specimen u¢yg along with
the mean residual deviations o, + .y and the scatter band around the deviations +2u(dy.)
for each load step: 27.5 pm (top), 110 pm (middle), and 218 pm (bottom).
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Table 3.3: Summary of the uncertainty values for each of the load steps. The uncertainty
values listed are for the maximum strain of each load step. Unless otherwise noted, the
values listed are pstrain.

Vavg (Hm) u(dk) ucs UCAL (exx)y:W/2 - (Emc)y:7W/2 Upel

27.5 13 5 14.0 289 4.8%
110 17 6 18.3 1103 1.7%
218 27 8 28.7 2110 1.4%

overcome to achieve acceptable results. In comparison to Whelan et al. [23], the specimen
used for this calibration had a thickness of 5 mm as compared to 10 mm. The greater
thickness allowed Whelan et al. to use strain gauge rosettes, where it was only practical to
use single axis gauges for this specimen. The lack of a rosette meant that care had to be
taken to ensure that the gauges were aligned properly on the specimen. It was also found
that the thin specimen did not stand upright on its own very well, making it unstable under
compressive loading. As a result, tensile loading using the mounting holes was chosen for

this calibration procedure.

Another challenge was to obtain accurate strain measurements at the smallest load dis-
placement step, 27.5 ym. An example of an initial measurement taken at this displacement
is shown in Figure 3.10. This figure shows that there is a deviation in the measured versus
predicted strain values as a function of the distance in the y-direction from the neutral axis
of the specimen. This was corrected first, by ensuring that the surface stayed flat when
preparing it with the grit paper by using a sanding block. Initially, the surface was sanded
by hand, which may have affected the flatness of the specimen. And second, the camera was
rotated by 90 degrees which aligned the sensor’s higher resolution dimension with the y-axis

of the gauge section and allowed the camera to be moved closer to the specimen.
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Figure 3.10: One of the early measurements obtained for the 27.5 pym displacement load.
It was determined that the original hand polishing technique was causing deviations in the
measured strain values at the extreme edges of the beam.

3.4 Conclusions

The results of calibrating a digital image correlation system have been presented according
to the procedure described by the SPOTS guideline. The system was shown to achieve an
acceptable calibration as defined by the guideline and the minimum relative uncertainty for
future measurements made with the optical setup was evaluated as 5% for maximum strains
of the order of 120 ustrain and 1.4% for maximum strains of the order of 1000 ustrain. The
calibration provides confidence for future strain measurements made with the system, and
establishes traceability for the measurements to the international standard for length. The
latter is important when analyses are associated with regulatory procedures. In addition,
the procedure was performed using only the bare metal of the specimen, without the need
to paint the surface with a speckle pattern. Some of the challenges of the procedure have

been discussed.
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Chapter 4

Experimental Methods

This chapter details the experimental equipment and methods used for the two studies dis-
cussed in this thesis. The first study used an aluminum plate loaded in tension. The second
study used a composite panel which was bolted on one end and loaded compressively. Exper-
imental data for these two studies was acquired using digital image correlation, which yielded
maps of principle strain data. The previous chapter described the calibration procedure for
the digital image correlation system (Q-400, Dantec Dynamics, Ulm, Germany) which was
used to gather the full-field experimental data for these studies. The same 50,000N servo-
hydraulic loading frame and control system (MTS 810, Eden Prairie, MN) that were used for
the calibration in the previous chapter were also used for the experimental setups described

in this chapter.
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4.1 Aluminum Plate Tensile Study

4.1.1 Specimen Description

The specimen was a 100 mm x 300 mm plate manufactured from 1 mm thick 6061-T6
aluminum. A 15 mm hole was drilled in the center of the specimen. The complete dimensions

are shown in Figure 4.1.

4.1.2 Experimental Procedure

For this study, the aluminum specimen was mounted in the loading frame and subjected to
tensile loading. Initially, the specimen was located in the machine using the hydraulic wedge
grips supplied with the machine (MTS Series 647 hydraulic wedge grips, Eden Prairie, MN).
The wedges were 25 mm wide and designed to be used with specimens of the same width or
narrower. When this is the case, there are small tabs on the side of the wedges that can be
used to align the specimen in the fixture. Since the aluminum plate specimen was 100 mm
wide, these tabs had to be removed and the alignment performed visually. As a result, there
was concern that misalignment of the plate might be causing asymmetric loading. Also, as
the width of the plate was much wider than the grips, the force was not evenly distributed
along the entire width of the plate.

To overcome these problems, the mounting system of the plate was changed from a
clamped system to a pin system. Two thick aluminum plates were bolted to each end of the
specimen using three bolts per side. The thick aluminum plates had a hole to mount the
specimen into the loading frame using a steel pin. This allowed the plate to naturally align

itself as force was applied. The images in Figure 4.2 provide a comparison of the original
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Figure 4.1: The dimensions of the aluminium plate used for this study. The area outlined
by the dashed line indicates the region of interest for the experimental data capture.
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and updated loading methods.

The first step in the experimental data collection procedure was to mount the specimen in
the load frame to properly position the camera and light source. The lens with a medium focal
length was chosen (Schneider Cinegon 1.4/12-0515) to provide an appropriate field of view
of the experimental region of interest. Care was taken to position the camera perpendicular
to the specimen and to fill the short width of the camera’s detector with the area of interest.
The HILIS LED floodlight supplied with the DIC system was positioned to provide uniform
illumination of the specimen. The image in Figure 4.3 shows the experimental setup used

for this test.

The next step was to run the calibration routine for DIC software so that it could deter-
mine the intrinsic and extrinsic parameters for the particular setup being used. At this point
the focus and aperture settings on the lens were locked, and the specimen removed from the
loading frame. The 8 mm x 8 mm plate was used to perform the calibration procedure shown
in Figure 4.4. The specimen was then mounted back in the loading frame in preparation for

the experiment.

To acquire the data, the load frame was operated in displacement control with a crosshead
speed of 1 mm/min. The DIC system was set up to record images at 2 second intervals.
A small 120N preload was applied to the specimen before starting the test to remove any
slack from the system. Images were acquired of the loading sequence until the plate reached

failure, which was around 20kN.

Then the images were processed using the Istra 4D software to determine the displacement
and strain components of the specimen during the loading procedure. A facet size of 25 pixels

was used with a grid spacing of 5 pixels. The data were exported in HDF5 format for further

38



& L
o W1
it ha

Figure 4.2: Pictures showing the original loading configuration using hydraulic wedge grips
(left), and the final configuration using pin loading (right).
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Figure 4.3: The experimental test setup used for the aluminum plate study.
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Figure 4.4: The calibration procedure using an 8mm x 8mm plate supplied with the DIC
system.
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processing in Matlab.

4.2 Composite Plate Study

4.2.1 Specimen Description

The specimen for this study was an inhomogeneous composite panel consisting of an alu-
minum backing plate with ceramic tiles and a pre-impregnated composite overwrap. Figure

4.5 gives the dimensions of the panel as a function of the tile size a.

4.2.2 Experimental Procedure

For this study, it was desired to load the composite panel specimen in compression by holding
one end fixed with a bolted joint, and to apply a force to the opposite end of the panel. The
initial testing was performed using a reconfigurable hydraulic actuator mounted to a T-bed,
which is shown in Figure 4.6. It was later discovered that the data captured from this setup
was not valid due to out-of-plane displacement of the specimen. A fixture was manufactured
to mount the specimen in the MTS 810 load frame to repeat the tests.

To help minimize the impact of the out of plane displacement of the panel, a smaller
area was investigated with a dimension of 45 mm x 32 mm. The Tamron macro lens was
also used (the same one from the calibration procedure) because its 90 mm focal length
meant that the camera could be moved farther away from the panel, to approximately 650
mm. The LED floodlight supplied with the DIC system was positioned to provide uniform
illumination of the specimen. The image in Figure 4.7 shows the experimental setup.

The focus and aperture settings on the lens were locked, and the composite panel spec-
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Figure 4.5: Dimensions of the composite panel described as a function of the tile size a.
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Figure 4.6: The model showing how the protective panel attached to the test fixture and
where the loading was applied (top). The panel installed in the test fixture (bottom).
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Figure 4.7: Picture of the revised experimental test setup for the composite panel study.
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imen was removed from the load frame. The DIC software was calibrated using 4 mm x 4
mm target plate, which is similar to the one used in Figure 4.4.

The loading for this study was performed in a quasi-static fashion. A 0.5 kN pre-load was
applied, and a reference image captured manually. Then the load was increased incrementally
to 4.45 kN, 8.9 kN, 13.34 kN, and 17.79 kN, with images captured at each step.

The images were processed using the Istra 4D software to determine the displacement
and strain components of the specimen during the loading procedure. A facet size of 25
pixels was used with a grid spacing of 12 pixels. The data was exported in HDF5 format for

further processing in Matlab.
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Chapter 5

Image Decomposition Methodologies

This section describes the methodologies for the Zernike, Tchebichef, and Fourier descriptors,
as well as a hybrid approach applying both the Fourier transform and moment descriptor.
An example deconstruction and reconstruction is provided for each methodology. The same
experimental data set was used for all of the examples in this section. For each, first the
entire strain map was used, then a cropped smaller area examined. The entire experimental
data set was 175 x 175 pixels with a total of 30,625 points and the cropped data set was 59

x 59 pixels for a total of 3,481 pixels.

5.1 Zernike Moment Descriptor

A set of orthogonal complex polynomials valid over a unit circle was given by Zernike [33]:
Vam(z,y) = V,, g = Bnm(p)e™ (5.1)

where,
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n Non-negative integer representing the order of the radial polynomial

m Positive and negative integers subject to constraints n — |m| even, |m| < n representing

the repetition

p Length of vector from the origin to (z,y)

0 The angle between vector p and the z-axis in the counter-clockwise direction

Rp,m Radial polynomial defined as

n—|m|
Rom(p)= > (=1)° - T(:_S)Ti_m 2 (5.2)
5 R

The inner product between any two Zernike polynomials can be written as

(Vp,q: Vnym) = /()% /01 Vpq(p,8) (Vn,m(/% 9)>pdﬂd€ (5.3)

The Zernike moments of an image with intensity, I(x,y), can be found by projecting the

image onto the complex Zernike polynomials, Vp m

<[($’, y)a Vn m>
Z, = : 5.4
i <Vp7q’ Vn7m> ( )

Figure 5.1 and Figure 5.2 show the maximum principle strain map from the aluminum
plate decomposed into Zernike moments with a maximum order of 8. A maximum order of 8
results in 45 Zernike moments to completely describe the image. To check how well these 45
moments describe the original strain map, a reconstruction is performed from the moments.

In the case of Figure 5.1, the reconstructed map does not match the original strain map very
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well. The discontinuity produced by the hole in the experimental specimen was not captured

by the Zernike moments.

Figure 5.2 gives the results from analyzing a subset of the experimental strain map not
containing the hole. For this subset of data, the reconstructed map matches the original

more closely than Figure 5.1.

5.2 Tchebichef Descriptor

The Tchebichef moments of an MxN discrete image are given by [10],
M—-1N-1
Tpg= >, Y tp@)ig(y)f(z.y) (5.5)
=0 y=0

where {p(z) and t4(y) are the normalized Tchebichef polynomials

. _ tpla) . tq(x)
= pzzp, M)’ = pq(qu) >0
Mo ) ) £
plp, M) = e M M2 (5.7)

The discrete Tchebichef polynomials are given by,

tn(z) = nl é(—m”—k (N n__l R k) <” Z ’“) (Z) (5.8)

The experimental strain map was then decomposed into Tchebichef moments with a

maximum order of 8. Figure 5.3 shows the Tchebichef moments from the decomposition
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Figure 5.1: An example of image decomposition and reconstruction of a maximum principal
strain map using Zernike moments with a maximum order of 8, which results in 45 moments.
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Figure 5.2: This decomposition and reconstruction uses a subset of the data from Figure
5.1. The data has been cropped to eliminate the discontinuity resulting from the hole.
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and the reconstructed strain map. Similar to the results using the Zernike descriptor, the

Tchebichef moments were not able to reconstruct the hole in the original strain map.

Figure 5.4 shows the Tchebichef moments and the reconstructed strain map from a subset
of the experimental strain map not containing the hole. The reconstructed strain map using

the subset of data matches the original very well.

5.3 Hybrid Fourier-Moment Descriptors

This section explores the use of taking the Fourier transform of the image before decomposing
with either the Zernike or Tchebichef moments. The Fourier transform is usually performed
on a signal or shape and converts it from the spatial domain to the frequency domain. The
result of applying the Fourier transform to a data set is a magnitude and phase map. All
of the information contained within the image is preserved by taking the Fourier transform,
but no data compression is achieved, which is why the Fourier transform is not suitable
for image decomposition by itself. However, transforming the image into the frequency
domain enables the moment descriptors to operate on discontinuities such as the hole. In
the examples presented here, the moment descriptors are used decompose the magnitude

map.

The continuous Fourier transform is given by,

FT(u,v) = /__I:O /__ZO 6_2W(um+uy)[($,y)dxdy (5.9)
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Figure 5.3: An example of image decomposition and reconstruction of a maximum principal
strain map using Tchebichef moments with a maximum order of 8, which results in 45
moiments.
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Figure 5.4: This decomposition and reconstruction uses a subset of the data from Figure
5.3. The data has been cropped to eliminate the discontinuity resulting from the hole.

o4



The Discrete Fourier Transform (DFT) is given by,

K—1L—1 uk vl
—12 S 2o
DFT(u,v) = 2 Y > e ' 7T<K L)I(k:,l) (5.10)
k=0 1=0

Figure 5.5 shows the magnitude and phase maps from applying the discrete Fourier
transform to the experimental data set. The magnitude map has very large spikes at the
corners which are difficult for the moment descriptors to capture. By taking the logarithm
of the magnitude map it is possible to reduce the size of these spikes and make it easier to
see the detail of the map. The DFT can also be split into real and imaginary parts, which

are also shown at the bottom of Figure 5.5.

Figure 5.7 shows the results of performing an image decomposition and reconstruction by
first applying the DFT to the experimental data set. The Zernike moment descriptor is then
used to decompose the logarithm of the magnitude map from the DFT. The reconstruction is
performed by reconstructing the magnitude map from the Zernike moments, and then using
the magnitude map along with the phase information to move back to the spatial domain

using the inverse Fourier transform.

Figure 5.8 performs the same procedure with the Tchebichef moments used in place of the
Zernike moments from the previous example. Using this approach, the reconstructed strain
maps shown in Figures 5.7 and 5.8 capture the shape of the original strain map, including

the hole, which the moment descriptors were not able to achieve by themselves.
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Figure 5.5: An example of applying the Discrete Fourier Transform (DFT) to an experimental
data set, which produces a phase map and a magnitude map. The magnitude is also shown
separated into real and imaginary parts.
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Figure 5.6: The Discrete Fourier Transform (DFT) applied to a subset of the experimental
data set from Figure 5.5. The subset has been cropped to eliminate the discontinuity caused
by the hole.
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Figure 5.7: The results of applying the hybrid Fourier-Zernike decomposition to the ex-
perimental strain data. In comparison to the decomposition that used only the Zernike
descriptor, the hole feature has been retained in this reconstruction.
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Figure 5.8: The results of applying the hybrid Fourier-Tchebichef decomposition to the
experimental strain data. In comparison to the decomposition that used only the Tchebichef
descriptor, the hole feature has been retained in this reconstruction.
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5.4 Summary of Results

Figure 5.9 shows the reconstruction results from all of the image decomposition methods for
the experimental strain map. The reconstructed map is shown along with the residual found
by subtracting the reconstructed map from the original map. The percentage correlation
between the original and reconstructed maps is also shown. This figure shows that applying
the Fourier transform to the data set permitted the hole feature to be retained. The Fourier-
Tchebichef decomposition provided the best results with 84% correlation between the original
and reconstructed strain maps.

Figure 5.10 shows the results for the subset of experimental data. In comparison to the
results described in Figure 5.9, applying the Fourier transform to this data set caused the
reconstruction quality to decrease. For the Zernike descriptor, the correlation decreased from
99% to 76%. For the Tchebichef descriptor, the correlation was reduced from 99% to 97%.

These results indicate that there is not one single image decomposition methodology that
is appropriate for all situations. The Fourier-Tchebichef approach provided the best results
when there was a hole present in the strain map, while both the Zernike and Tchebichef
descriptors provided similar results when applied to a smaller subset of the original data

that did not contain the hole feature.
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Figure 5.9: Comparison of the correlation of the original and reconstructed strain maps for
the different decomposition methodologies.
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Figure 5.10: Comparison of the correlation of the original and reconstructed strain maps for
the cropped experimental results.
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Chapter 6

Results from Aluminum Plate Study

6.1 Introduction

For the initial study to determine the feasibility of the Zernike moment descriptor for image
decomposition, it was decided to use a 100 mm x 300 mm plate loaded in tension. A hole
was added in the center of the plate to provide a discontinuity in the strain field for the
study. The plate was manufactured from 1 mm thick 6061-T6 aluminum. The drawing in

Figure 4.1 gives the detailed geometry of the plate.

A series of images were collected as the plate was loaded to failure, which resulted in a
total of 120 images. It was desired to compare the strain map from one step, so one was
selected that had large strain values, but before yielding of the plate occurred. The graph

in Figure 6.1 shows the load history and indicates which data set was used for this study.
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Figure 6.1: The load history of the plate up to failure. The data from step 50 was used for
this comparison study.

6.2 Computational Model

A computational analysis was performed using Hypermesh 10 and RADIOSS (Altair, Troy,
MI, USA). The plate was modeled in 2 dimensions, with quad shell elements. The elements
were assigned the material properties of 6061-T6 aluminum with a modulus of 69 GPa and
a thickness of 1 mm. Three different mesh sizes were used to investigate convergence of the
model. The coarse mesh had an average element size of 1 mm resulting in a total of 6,900
elements. The fine mesh had an average element size of 1 mm for a total of 27,600 elements.
The finest mesh had an average element size of 0.5 mm with a total of 110,000 elements. The
pictures in Figure 6.2 show the differences in the mesh sizes. To simulate the experimental
loading condition, the elements at the top of the plate were held fixed, while the elements

at the bottom had a force applied to them in the —y direction. The loading conditions can
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be seen in Figure 6.3.

The post-processing of the models was performed using Hyperview (Altair, Troy, MI,
USA). A simple averaging filter was applied to the results which calculated the average of
the elements passing through each node. The data was exported as a TIF image file for

further processing in Matlab.

6.3 Comparison of Results using Image Decomposition

The comparison of the experimental and computational results for this study was performed
using a modified version of the Matlab script ImPaCT produced by Patki [8]. The maximum
principal strain maps for the experimental and computational results were imported into
Matlab and the script was used to decompose them using the Fourier-Zernike and Fourier-
Tchebichef descriptors. These methods were chosen from the results of Chapter 5, which
demonstrated that applying the Fourier transform to the data set before using one of the
moment descriptors produced the best results for strain maps with discontinuities.

The first comparison applies the Zernike descriptor to the magnitude map from the
Fourier transform. This is shown in Figure 6.4. To perform a comparison of the moments,
they were plotted against one another as shown in Figure 6.5. The experimental moments
are shown on the z-axis, and the computational moments on the y-axis. If there were
perfect correlation between the experimental and simulation moments, they would all lie
along a straight line with a gradient and an R? value of 1. Therefore, information about
the correlation of the two data sets can be determined from the gradient of the line and the
R2 value from the scatter of the data points. In this case, the data is skewed towards the

experimental data with a gradient value of 0.88. The R? value of 0.98 indicates that form
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Figure 6.2: This figure shows the different mesh sizes overlaid on the finite element analysis

results. The maximum principle strain is shown.



Figure 6.3: An example of one of the meshes used, showing the boundary conditions. The
elements highlighted in blue were fixed in all degrees of freedom. The elements highlighted
in red had a force applied to them in the —y direction.
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of the data sets match well.

A comparison was then made by applying the Tchebichef descriptor to the magnitude map
from the Fourier transform. The moments produced from applying the Fourier-Tchebichef
decomposition to the experimental and simulation data sets are shown in Figure 6.6. Figure
6.7 shows the moments from the simulation data set plotted against the moments from the
experimental data set. The results from applying the Fourier-Tchebichef decomposition are
similar to those from the Fourier-Zernike decomposition. The gradient of the line is 0.87,
which indicates a slight bias towards the experimental data. The R2 value of 0.99 indicates

that the form of the data sets match well.
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