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ABSTRACT

A METHOD FOR THE VALIDATION OF COMPUTATIONAL MODELS
USING DIGITAL IMAGE CORRELATION AND IMAGE

DECOMPOSITION

By

Christopher M. Sebastian

Recently, there has been a drive to create more efficient designs of vehicles. This has led

to the use of new materials and more rigorous optimization of components. As the design

envelope is pushed and new materials are explored, it is more important than ever to ensure

that designs are based on a model that has been validated. Currently, a typical validation

consists of a simple point-to-point comparison. This method assumes that the model has

identified the areas of high stress correctly, but leaves the rest of the model un-validated.

This thesis proposes a method to validate computational models using image decomposi-

tion and digital image correlation. Digital Image Correlation (DIC) is capable of producing

full-field strain maps with on the order of 105 to 106 data points. The challenge then becomes

comparing the massive amounts of experimental and simulation data. Image decomposition

provides a way to reduce those data sets to less than 100 moments while preserving the

original information. These compressed data sets can be compared more easily than the

original data. As a part of the validation process, the DIC system was calibrated according

to a recently published draft ISO standard.

Finally, two studies are presented which use image decomposition to compare simula-

tion and experimental results. The first involves an aluminum plate with a hole loaded in

tension. The second is a composite protective panel which is bolted at one end and loaded

compressively.
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Chapter 1

Introduction

Computational methods of stress and strain analysis, such as finite element analysis, have

been a very important tool in the engineering design process, especially as computing power

has decreased in cost. Initially, this led to a shift in the engineering design community from

experimentation to computational analysis. Experimentation can be slow and costly, and

often the desired geometry has to be greatly simplified in order to perform tests. Compu-

tational methods allow complex geometries to be tested (and many different iterations) for

a relatively low cost. This has led to creation of products from largely un-validated compu-

tational models. The problem with designs using this method are that any problems with

the computational model will not be discovered until the prototype phase, or worse, during

production.

Companies have since realized money is more wisely spent earlier in the design phase,

where discovering a problem earlier on can save several times the cost of discovering a problem

in the prototype or manufacturing phase [1]. This has led to the development of such tools

as Design For Six Sigma (DFSS) which provide a disciplined approach to the design process
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●Evolving design requirements

●Extensive design rework

●Performance assessed by “build 
and test”

●Performance and process 
problems fixed after product in use

●Quality “tested in”

●Disciplined CTC (critical-to-
customer requirements) flowdown

●Controlled design parameters

●Performance modeled and 
simulated

●Designed for robust performance 
and producibility

●Quality “designed in”

Predictive
Design Quality

DFSS
Reactive

Design Quality

Figure 1.1: The desire by companies to move from a reactive design process to a predictive
process has resulted in more emphasis being placed on modeling and simulation [1].

with the ultimate goal of no defects in the manufactured product. This is a very ambitious

goal, and DFSS has varying levels of success depending on the type and scope of product, but

the underlying concepts are sound. Figure 1.1 illustrates the desire in industry to shift from

a test-heavy design approach to one that makes extensive use of modeling and simulation.

Rather than going through an iterative design-and-test process, companies would prefer to

perform only enough tests to validate their computational models. The iterative process

can then be carried out through less expansive simulations. As a result, more emphasis has

once again been placed on experimental methods and their role in the validation process of

computational models.

Making a comparison between the experimental data and computational results presents

several challenges. For a simple 1-D or 2-D problem, a quick graphical comparison can usually

be made by simply plotting the two sets of results and gaging how well they match. If a more

extensive analysis is desired, the data points must align with each other, or interpolation
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must be performed. The comparison becomes even more difficult in 3-D, as one must ensure

that the coordinate systems are properly aligned, that both data sets are scaled and oriented

the same.

This work proposes the use of image decomposition to perform the comparison between

experimental and computational data sets. Image decomposition be can used to address

the alignment and scaling issues, as well as providing data compression. Often a data set

with 105 or 106 data points can be represented by less than 100 moments resulting from an

image decomposition. If these moments can be shown to capture with sufficient accuracy

the information from the original data set, then a simpler comparison is possible using 100

moments as opposed to 105 or more data points.

1.1 Background

Current validation practices, especially in industry, usually consist of point to point com-

parisons of areas of high stress identified by a computational model. This assumes that the

model has correctly identified the high stress areas, and leaves the rest of the model un-

validated. To make matters worse, the design is often optimized by removing material from

the un-validated areas of predicted low stress. For lightweight structures that are pushing

the design boundaries, this could potentially cause problems if the model was not correct.

Optical techniques such as digital image correlation (DIC) [3], electronic speckle pattern

interferometry (ESPI) [4], and digital photoelasticity [5] have the ability to produce full-field

stress and strain data that could be used for more comprehensive validations of computa-

tional models. While these techniques are well-established in the experimental mechanics

field, the wider stress analysis community and industry, in particular, seem to be reluctant to
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adopt these methods. One possible explanation for the lack of interest by the stress analysis

community is the almost complete lack of standards or accepted methodologies for processes

such as the calibration of the optical instruments. This thesis addresses that problem by

performing a calibration of the optical strain measurement device used for the experimental

data collection.

Calibration of the strain measurement system is an essential step in acquiring data for

the validation of computational models. The recently published guide from the Standardised

Project for Optical Techniques of Strain measurement (SPOTS) seeks to fill the current lack

of standards by providing a universally appropriate calibration procedure for static and

pseudo-static experiments [6]. The product of performing this calibration procedure is a

minimum level of uncertainty for the measurement system which is important to provide

confidence in the experimental results used in the validation process.

1.2 Motivation

The primary motivating factor for this thesis is the concept of design validated by experiment,

which involves a structured methodology to use experimentation to ensure the quality of

components designed using computational simulations. As was previously discussed, this

concept has become especially important as more emphasis has been placed on the use of

computers for simulation. The flowchart in Figure 1.2 shows the dual paths of simulation

and experimentation ultimately coming together with a quantitative comparison between

the two. This flowchart is from the ASME Guide for the Verification and Validation of

Computational Solid Mechanics [2], which states that a comparison should be made, but

doesn’t provide a procedure to do so.
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Reality of Interest
(Component , Subassembly, Assembly, or 

System)

Conceptual Model

Abstraction

Mathematical 
Model Physical Model

Computational 
Model

Experiment 
Design

Simulation Results Experimental Data

Simulation 
Outcomes

Experimental 
Outcomes

Quantitative 
Comparison

Acceptable 
Agreement ?

Next Reality of Interest in the 
Hierarchy

Physical
Modeling

Mathematical
Modeling

Implementation

Calculation

Uncertainty
Quantification

Implementation

Experimentation

Uncertainty
Quantification

Preliminary
Calculations

Yes

No

Revise
Appropriate

Model
Or

Experiment

Validation

Code
Verification

Calculation
Verification

Modeling, Simulation & 
Experimental Activities
Assessment Activities

Figure 1.2: Flowchart for verification and validation activities for simulation and experimen-
tal methods [2].
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Typically, image decomposition has been used in biometrics (for face, iris, and fingerprint

recognition), and image analysis and retrieval. The properties that make image decompo-

sition well-suited to those tasks have also given it potential for use in the experimental

mechanics field. Work by Wang demonstrated the use of image decomposition for mode

shape recognition [7], and Patki used it for damage assessment in composite samples [8].

There are many different types of shape descriptors available, but this thesis concentrates

on the Zernike [9], Tchebichef [10], and Fourier descriptors [11]. Image decomposition makes

the data sets much more manageable, as it is possible to reduce a data set by several orders

of magnitude. The Zernike descriptor is invariant under translation, rotation, and scaling,

which eliminates the need to exactly align the two data sets to be compared.

1.3 Thesis Overview

This thesis is organized as follows. A literature review is presented which describes the

current state of validation practices used for computational models. The calibration of

a digital image correlation system is presented. The various types of shape descriptors

are investigated to identify which ones to pursue for image decomposition in experimental

mechanics. An overview of the current uses of image decomposition and reconstruction is

given. The objectives of this thesis are described, in relation to the current state of art and

the knowledge gaps that this thesis will fill.

The Experimental Methods section begins with a brief overview of digital image corre-

lation, which was the primary method used to acquire experimental data. The practical

knowledge necessary to perform the calibration of a DIC system is described, and the re-

sults of performing such a calibration are presented. The experimental setups, methods, and

6



procedures used to acquire experimental data are detailed.

The image decomposition methodologies used for the analysis in this thesis are described

in detail. The basic underlying math of each descriptor is described. An example decom-

position is provided for each descriptor to illustrate the various strengths and weaknesses

of the different methods. The hybrid decomposition technique resulting from applying both

the Fourier transform and a moment descriptor is discussed.

The results of two studies using image decomposition to compare full-field experimental

data obtained from digital image correlation and finite element analysis are presented. The

first study uses the data obtained from loading a thin, aluminum plate with a hole in tension.

The second study compares the strain distributions generated from applying a structural load

to an inhomogeneous composite panel.

Finally, conclusions and future work are discussed.
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Chapter 2

Literature Review

2.1 Validation of Computational models using Exper-

imentation

Over the past 15 years, there have been several different guides, standards, and editorials

published which addressed the need for verification and validation of computational models.

In 1998, the American Institute for Aeronautics and Astronautics (AIAA) published a guide

for the computational fluid dynamics community [12]. The Department of Defense has

published several iterations of instructions regarding Modeling and Simulation Verification,

Validation, and Accreditation activities, the latest of which was issued in 2009 [13]. In

2005, the Clinical Biomechanics journal issued an editorial statement which defined minimal

requirements for a numerical study for a paper to be considered for publication.

The most recent document published concerning the solid mechanics community is the

2006 ASME Guide for Verification and Validation in Computational Solid Mechanics (ASME

V&V) [2], which incorporates material from a paper published a few years earlier by Oberkampf
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et al. [14]. An overview and summary of the guide was published by Schwer [15], who was the

chair of the Performance and Test Codes (PTC) 60 committee that produced the guide. In

the overview, Schwer states that one of the most common misconceptions about the ASME

V&V guide was that it would provide a definitive verification and validation procedure for

computational solid mechanics. Rather, it is a “foundational document” which provides

a framework and defines terminology to create a standardized language. The flowchart in

Figure 1.2 outlines the procedure that should be followed to compare simulation outcomes

and experimental outcomes. The relevant terms defined in the ASME guide are included

throughout this section, and are given in bold type. The following are some basic terms

necessary for the discussion in this section.

experimental data: raw or processed observations (measurements) obtained from perform-

ing an experiment.

experimental outcomes: features of interest extracted from experimental data that will be

used, along with estimates of the uncertainty, for validation comparisons.

simulation: the computer calculations performed with the computational model.

simulation outcomes: features of interest extracted from simulation results that will be

used, along with estimates of the uncertainty, for validation comparisons.

simulation results: output generated by the computational model.

The guide is broken up into four main sections: Introduction, Model development, Veri-

fication, and Validation. The primary concern of this thesis is the validation section, which

deals with the comparison of the computational model and experimental results. Often, the
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terms verification and validation are used interchangeably, but there is a distinction between

them:

verification: the process of determining that a computational model accurately represents

the underlying mathematical model and its solution.

validation: the process of determining the degree to which a model is an accurate represen-

tation of the real world from the perspective of the intended uses of the model.

The main goal of the verification process is to ensure that mathematical model and

algorithms used by the software are correct and that they produce accurate results, while

the validation process ensures that physics of the model are correct by comparing the results

to experimental data. There are also several different types of models, each representing

a different concept or component. The flowchart in Figure 2.1 shows the progression from

the conceptual model to the final computational model. This thesis focuses on the results

produced from the computational model.

model: the conceptual, mathematical, and numerical representations of the physical phe-

nomena needed to represent specific real-world conditions and scenarios. Thus, the

model includes the geometrical representation, governing equations, boundary and ini-

tial conditions, loadings, constitutive models and related material parameters, spatial

and temporal approximations, and numerical solution algorithms.

Both the ASME guide [2] and Oberkampf et al. [14] discuss the use of metrics to make a

quantitative comparison between the simulation outcomes and the experimental outcomes.

The two sources differ slightly in the wording of the definition of “metric,” but it is essentially

a measure. The metric should quantify both errors and uncertainties, and “actively resolve
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Figure 2.1: Flowchart showing the model hierarchy from concept to computational [2].

assessment of confidence for relevant system response measures for the intended application

of the code” [14]. In essence, the ideal metric would provide a number indicating the level of

confidence in the agreement between the simulation outcomes and experimental outcomes,

taking into account the error and respective uncertainties.

An examination of the literature published in the last ten years reveals that a common

type of comparison is to plot the experimental data along with the computation data gener-

ated from the model together on the same plot [16, 17]. A metric is not used when performing

this type of comparison. Instead, the extent of the agreement is qualitatively judged by how

well the two lines match up with one another. To perform a simple quantitative assessment

the relative error between the two sets of data can be calculated according to equation 2.1

[18].

RelativeError =
computation−measured

measured
(2.1)
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The relative error metric can be effectively applied to point comparisons or lines of data,

but is not very effective for more complex comparisons. For example, it is not a good choice

to compare tensors, or data with time or spatial components. Also, as the measured value

approaches zero, the quantity becomes undefined. This can be a problem for comparing

things like waveforms, in which the signal can cross zero.

Even with the availability of full-field methods of collecting strain data, the comparison

is still often reduced to checking a few points rather than using the full data set. There are

studies available which describe the collection of data using full-field methods, but do not

explicitly describe the validation procedure, e.g. [19].

2.1.1 Calibration

There is not much literature on the calibration of full field optical methods of stress and

strain measurement, and most of it was produced recently. There are two ASTM standards

from 1997-98 stemming from the glass industry that discuss a method of calibration for

surface stress measuring devices used in glass production [20, 21]. The procedure consists of

using either a cantilever beam or a beam subject to four-point bending and loaded in such a

fashion as to produce a known stress on the surface of the beam. In 2002, ASTM published

a guide for evaluating optical strain measurement systems, but its primary purpose was to

help users of optical measurement systems understand some of the accuracy issues related

to them [22]. This standard did help to establish a framework and terminology relevant to

the performance of calibrations of optical systems.

In 2002, a European consortium was formed involving a group of University and National

labs, device designers and manufacturers, and end-users. This consortium eventually led to
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the Standardisation Project for Optical Techniques of Strain measurement (SPOTS) which

published a two part online guide in 2007, Calibration and Evaluation of Optical Strain Mea-

surement Systems [6]. The first part of the guide describes the development of a reference

material and the procedure to perform a calibration of an optical system of strain mea-

surement. The second part describes the development of a standardized test material for

the evaluation of optical systems of strain measurement. In 2008, a calibration of a speckle

interferometry system was published that followed the SPOTS guidelines [23]. An updated

version of the guide was published in booklet form in 2010. The process has been started to

implement the guide as an ISO standard.

2.2 Shape Descriptors

Shape descriptors are a part of a larger body of algorithms used for shape analysis. Gener-

ally speaking, there are space-domain techniques and scalar transform techniques. A review

paper by Pavlidis [24] helped to classify the many types of shape analysis algorithms. Tech-

niques which produce another image are space-domain techniques. Those that produce a

number or numbers (scalar or vector), are scalar transform techniques. Shape descriptors

can also be information preserving or information non-preserving. Descriptors which are

considered information preserving allow accurate reconstruction of the image from the shape

descriptors. This thesis will primarily concerned with moment descriptors, and combining

moment descriptors with the use of the Fourier transform.
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2.2.1 Moment Descriptors

The use of moment descriptors is considered an information preserving scalar transform

technique. There are two main types of moment descriptors: continuous and discrete. The

commonly used continuous moments are Legendre and Zernike, both of which have the

advantage of being invariant under translation, rotation, and scale [25]. This means that

transformations which do not impose a strain on the object will produce the same values

for the moments. This is a very important property, which means that two data sets do not

have to be perfectly aligned or of the same scale to make a comparison using moment de-

scriptors. There are several types of discrete moment descriptors, but the two most common

are Tchebichef and Krawtchouk. Moment descriptors are also orthogonal, which minimizes

redundancy. The Zernike moments are only valid over a unit circle domain. In order to

use the continuous Zernike moments with a discrete image, the Zernike polynomial must be

approximated. Hwang provides an accurate form of the Zernike moments for discrete images

[26].

Zernike moments are commonly used in biometrics for things such as face recognition

[27, 28] and handprint recognition [29]. They have also found their way into the medical

field for tumor and polyp detection [30, 31].

2.2.2 Image Reconstruction

In image decomposition, there is a desire to ensure that the moments that have been produced

as a part of the process accurately describe the original image. For the discrete Tchebichef

moments, an image can be completely described by a finite set of moments related to the

size of the image [32]. The continuous moments use integrals that must be approximated by
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summations that result from numerical errors. This affects the invariance and orthogonality

properties, which in turn makes it impossible to achieve perfect reconstruction of a discrete

image [10].

Usually it is not necessary to use all of the moments, or “full-spectrum” to adequately

describe an image. This is due to the fact that the lower-order moments tend to capture the

shape of the object, while the higher order moments tend to provide detail. Typical examples

of reconstruction of continuous moments usually use a binary image of a letter or a character,

and perform the reconstruction with different orders of moments [9, 33]. In comparison,

there are studies available for the discrete moments which evaluate the reconstruction using

grayscale images [34]. A metric such as the mean-square error or the signal-to-noise ratio is

used to compare the reconstructed image to the original image.

While the discrete moment methods would appear to be the better choice for analyzing

images, they do have some disadvantages. Discrete moments do not have the discretization

error that the approximated continuous moment functions exhibit, but they do show nu-

merical instability for larger images. Bayraktar et al. showed that for a 256 x 256 image,

the reconstruction error decreases as the order increases up to a point, then it jumps up

suddenly [35]. This typically only affects larger images using high orders of moments.

2.3 Objectives

While there is an awareness by the stress analysis community that computational models

need to be validated by experiment, the current practice of using strain gauges to make a

point-by-point comparison is not sufficient. This section has presented some of the work

that is being done to change this, but currently there is a very limited amount of literature
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describing the use of full-field experimental data to validate simulations [36]. However,

there has been some recent success using image decomposition for vibration mode-shape

recognition [7, 37, 38] and damage characterization [8]. The objectives of this thesis are

therefore:

1. To perform a calibration of the experimental measurement system to quantify the level

of uncertainty in future measurements.

2. To develop an image decomposition methodology using moment descriptors.

3. To use the methodology developed to compare experimental and simulation outcomes.
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Chapter 3

Calibration

This chapter describes the use and results of the procedure published by the Standardisation

Project for Optical Techniques of Strain measurement (SPOTS) for a successful calibration of

a digital image correlation system. The details of the calibration specimen used are discussed

together with procedure and criteria that must be met to achieve calibration. The system

was evaluated over a range of 289 to 2110 µstrain, with a resulting calibration uncertainty

ranging from 14.0 to 28.7 µstrain. This calibration uncertainty will be used in the validation

process to provide confidence in the experimental results.

3.1 Reference Material for Calibration

To perform a successful calibration of a strain measurement system, it is necessary to be

able to produce a known strain field to compare to the results generated by the measurement

system. This can be achieved using a reference material. The SPOTS consortium performed

an extensive investigation to identify five essential attributes (easy optical access, lack of

hysteresis, an in-plane strain field, traceability to an international standard, and utilization
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of the length standard for traceability) and 24 desirable attributes of a reference material for

the calibration of a full-field optical system for strain measurement [6]. These attributes were

used to assess a large number of candidate designs for the reference material that resulted

in the selection of the design shown in Figure 3.1, which consists of a central beam loaded

in symmetrical four-point bending.

The reference material has several noteworthy design features. Reproducibility between

experiments and between laboratories was a major concern of the SPOTS group, which

has been addressed by making the specimen and loading frame monolithic. The beam and

the loading frame are therefore machined from a single piece of material. The specimen is

designed such that the user has options for applying and measuring displacement loading.

Feature A from Figure 3.1 shows the tabs which allow the use of a variety of measurement

devices that need to have been calibrated with respect to the standard for length. Feature

B shows the holes for tensile loading of the specimen as well as the half-cylinder at the top

to ensure proper alignment in the case of compressive loading. Feature C is simple design

feature which serves as an interlock to prevent an overload to the reference material which

could cause plastic deformation. Feature D is one of the whiffle-trees which supports the

beam. Ideally rollers or knife edges would be used to minimize the transmission of lateral

and rotational forces, but the monolithic design makes their use difficult. The constraint

imposed by the use of the whiffle-trees can be described by Equation 3.1. The correction

factors are k and η which are unknown, and must be found either through experimentation

or analysis. The quantity vavg is average of the two displacement readings obtained from

the measurement devices attached to Feature A. The experimental procedure is used here,

and is explained in more detail in the next section.
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Figure 3.1: Drawing of the reference material showing some of the design features. A: Mea-
surement tabs. B: Mounting holes for tensile loading and semi-circle for compressive loading.
C: Interlock to prevent overload. D: Whiffle tree that allows for monolithic manufacturing
of the specimen. E: Gauge section.
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εxx =
vavg

6W2
(ky + η) (3.1)

Finally, Feature E is the gauge section, which is the area between the two inner loading

points where the bending moment is constant along the length of the beam. The strain is

measured in this region using the instrument being calibrated and the results compared to

the analytical solution. A linear least squares fit is used to analyze the differences between

the two quantities, producing two parameters, α and β. The SPOTS guidelines provide a

detailed procedure for this comparison and for determining the calibration uncertainty which

have been followed here.

3.2 Experimental Set-Up and Procedure

3.2.1 Reference Material

The reference material used for this calibration procedure was manufactured using electric

discharge machining (EDM) from a single piece of 5 mm thick 2024-T351 aluminum. The

specimen beam depth (W ) was 15 mm. A detail of the gauge section of the calibration

specimen is shown in Figure 3.1, and illustrates the dimensions W , a, and c. The values for

these dimensions are listed in Table 3.1.

3.2.2 Determination of the correction factors k and η

There were two steps in the calibration process: one to determine the correction factors

described in Equation 3.1, and the second to acquire the strain data using the instrument

being calibrated. For both steps, the specimen was mounted in a servo-hydraulic test ma-
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Table 3.1: The critical dimensions of the calibration specimen and their associated uncer-
tainties

Parameter Units Nominal Value Uncertainty, u

W mm 15 0.017
a mm 45 0.017
c mm 15 0.017
vavg µm 27.5, 110, 218 0.89
k - 0.986 0.006
η mm -0.068 0.006

chine (MTS 810, Eden Prairie, MN) using the loading holes. This arrangement allowed the

specimen to be loaded in tension. The specimen was oriented upside down in the load frame

relative to Figure 3.1 and the usual orientation in guidelines. This minimized the rigid body

movement of the specimen relative to the camera. To measure the applied displacement in

the specimen, two aluminum blocks were machined to hold a pair of digital displacement

indicators (Mitutoyo 543-392, Kawasaki-shi, Japan) on each side of the specimen. The cal-

ibration results are evaluated using the unit of length, so it is important that displacement

measurement devices have a calibration history traceable to an international standard. In

this case, the indicators were purchased with calibration certificates which provide traceabil-

ity to the National Institute of Standards and Technology (NIST). The certificates provide a

level of expanded uncertainty for each of the indicators, which was taken into account when

calculating the overall uncertainty of the system.

Figure 3.2 shows the calibration specimen installed in the test machine with the digital

indicators attached using the custom mounting blocks. Strain gauges (Vishay EA-13-120LZ-

120/E, Raleigh, NC) were bonded to the top and bottom surfaces of the gauge section.

The relatively small (5 mm) thickness of the specimen meant that single axis gauges had

to be used. Figure 3.3 shows the location of the strain gauges on the specimen. The strain
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Figure 3.2: Close-up of the calibration specimen installed in the MTS load frame. The digital
indicators are mounted to the specimen by custom-machined mounting blocks.

measurements were acquired using two digital strain indicators (Measurements Group P-

3500, Raleigh, NC). To find the correction factors k and η described earlier, it was necessary

to acquire data from the strain gauges as a function of applied displacement to the specimen.

For this, the test machine was operated in displacement control, and readings were taken

from the strain gauges. In this way, approximately 30 strain measurement readings were

obtained as a function of the applied displacement load.

3.2.3 Calibration Measurements

To prepare a specimen for use with a digital image correlation system, its surface is typically

painted with a white and black speckle pattern. However, this calibration was performed

with the specimen surface prepared using a procedure described by Lopez-Crespo et al. [39]
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Figure 3.3: Model of the reference material showing the strain gauge locations and the
reference coordinate system.
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Figure 3.4: The pattern produced on the surface of the specimen by using grit paper.

which eliminated the need to use paint. First the surface was sanded with 220 grit and

then 400 grit paper, which yielded a high contrast pattern for the DIC images. A typical

image of the surface is shown in Figure 3.4. A macro lens (Tamron SP 90mm F/2.8 1:1

macro, Saitama-city, Japan) was fitted to the DIC camera which made it possible to fill the

camera’s field of view with the gauge section of the specimen. To provide bright, uniform

illumination of the specimen, a fiber optic ring light (Edmund Optics 58-839, Barrington,

NJ) and illuminator (Dolan-Jenner DC-950H, Boxborough, MA) were used. The ring light

was used in place of the standard LED floodlight because when it was used with the highly

reflective bare metal surface it tended to produce glare. The camera and lens were positioned

perpendicular to the surface of the gauge section at a distance of 265 mm.

The SPOTS procedure states that for a proper calibration test setup, the gauge section
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of the beam should fill 90% of the short dimension of the detector, with at least a resolution

of 10 x 10 pixels. The detector used for this calibration has a resolution of 1040 x 1392

pixels, which for 90% coverage of the short dimension yields an area of approximately 1.3

million pixels. The procedure also states that the applied displacement be over a range

between 10% and 90% of the maximum allowable load. The minimum slit diameter that can

be typically manufactured using EDM for the interlock (C in Figure 3.1) is the maximum

allowable deflection for a beam with a depth of 15 mm (see Appendix A of the SPOTS

Guidelines at www.opticalstrain.org). This value is typically between 0.25 and 0.30 mm,

which gives a maximum allowable displacement range between 225 to 270 µm. To avoid

damage to the specimen, a maximum displacement value of 225 µm was chosen.

In order to ensure a correct initial displacement reading, the digital indicators were

installed in their proper locations and zeroed with the specimen laying flat on a laboratory

bench. This prevented the weight of the indicators from imposing a displacement load on

the system. The specimen was then mounted in the test machine and a 1-2 µm displacement

pre-load applied to remove any slack in the system prior to applying the calibration loading.

The test machine control software (MTS Station Manager, MTS, Eden Prarie, MN) was

set to apply the load at a rate of 0.3 mm/minute and the DIC system was programmed

to record images at 2 second intervals. To capture the displacement measurements from

the digital indicators as the specimen was being loaded, the DIC system’s second camera

was positioned to capture the values displayed by both indicators. This provided an exact

displacement measurement corresponding to each image captured of the gauge section of

the specimen. Using this procedure resulted in more data than required for the calibration

procedure, so the three displacements that were used for the analysis were 27.5, 110, and
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218 µm. These values were chosen in part to allow comparison of the results to those from

a previous calibration of an electronic speckle pattern interferometer [23].

3.3 Results and Discussion

3.3.1 Correction Factors and their Uncertainty

The SPOTS procedure gives values for the correction factors from finite element analysis,

but it also allows them to be found experimentally, as was done in this study. The values of

the strain parallel to the neutral axis, obtained from the strain gauges on the top and bottom

surfaces of the beam were plotted in order to find the constraint correction factors k and η.

Figure 3.5 shows the quantities plotted as a function of applied displacement load between 0

and 180 µm. The correction factors k and η were determined from the coefficients resulting

from a linear fit to the data. Using this method, k was found to be 0.986 and η was -0.068.

The results from the finite element analysis given in the SPOTS guidelines are for a beam

depth W ranging from 15 mm to 30 mm and yield k = 0.94 and η varying linearly from

-0.10 to -0.18. The slightly higher k value from the experiment indicates that the specimen

had slightly less rotational constraint than the finite element model, and the smaller η value

indicates less translational constraint in the x-direction. Table 3.1 lists the values found for

the correction factors as well as their associated uncertainty, which was calculated from the

variance of the fitted line.
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Figure 3.5: Plot of the strain from the gauges mounted to the top and bottom surfaces of
the specimen. A linear fit was applied to the data to determine the correction factors k and
η.

3.3.2 Specimen Dimensions and Associated Uncertainty

For this calibration, the uncertainty in these dimensions was calculated from the manu-

facturing tolerances, which is specified as 0.05 mm by the SPOTS guidelines. However,

an alternative way to determine the uncertainty would be to measure the geometry using

a series of independent observations, and then calculate the mean and standard deviation

from the measurements. The uncertainty for the applied displacement was a function of the

digital indicators, which were purchased with NIST calibration certificates. The certificates

provided the measurement range and uncertainty for each indicator.

3.3.3 Measurement System Results and Associated Uncertainty

Figure 3.6 shows the strain along the centerline of the gauge section parallel to the applied

load obtained from Equation 3.1 and from the digital image correlation system for the three
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displacement load steps. Figure 3.7 shows the data generated by the DIC system for the

218 µm load step. The deviations, d, were then calculated for each of the load steps by

subtracting the measured strain, εxx from the strain predicted using Equation 3.1. A linear

least-squares fit was then applied to the deviations, resulting in the fit parameters α and β

shown in the following equation,

dk = α + βky (3.2)

where the subscript k indicates the load step. The variances of α and β were also calculated

and used to find the uncertainty for each fit parameter. The range formed by plus or minus

twice the uncertainty creates a 95% confidence interval for each of the parameters. This data

is summarized in Table 3.2.

Table 3.2: Summary of the fit parameters calculated for each of the displacements, as well
as their associated 95% confidence levels

Applied Displacement, vavg
Fit Parameter Units 27.5 µm 110 µm 218 µm

α µstrain -3.2 2.0 11.9
u(α) µstrain 1.29 1.69 2.66
95% Confidence Interval (α) µstrain ±2.57 ±3.38 ±5.36
β µstrain mm−1 -4.4 -4.9 -3.6
u(β) µstrain mm−1 0.32 0.42 0.67
95% Confidence Interval (β) µstrain mm−1 ±0.65 ±0.85 ±1.34

Next, the total uncertainty in the measured strain, εxx for the calibration was calculated

using the root-sum-of-squares method to combine the contributing uncertainties. This quan-

tity includes the uncertainty in the dimensions, material properties and correction factors

for the calibration specimen, as well as for the applied displacement measurements. The

flowchart in Figure 3.8 shows how each of these components contributes to the minimum

measurement uncertainty for the system. For each of the three displacement load steps, the
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Figure 3.6: The measured and calculated εxx strain values for each of the three displacement
load steps: 27.5 µm (top), 110 µm (middle), and 218 µm (bottom).
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Figure 3.7: Principle strain data generated by the DIC system for the 218 µm displacement
load. For interpretation of the references in color in this and all other figures, the reader is
referred to the electronic version of this thesis.

mean residual deviations (αk + βky) ± 2u(dk) were plotted along with the expanded un-

certainty of the calibration specimen, ±2uCS , in Figure 3.9. The quantity 2u(dk) provides

a 95% confidence interval around the regression line for the deviations found from Equa-

tion 3.2, and the area bounded by ±2uCS indicates the uncertainty from the calibration

specimen.

According to the SPOTS guideline, an appropriately calibrated instrument is one in which

there is complete overlap between the expanded uncertainty of the reference material and the

mean residual deviations αk+βky. In an ideal system, both αk and βk would be zero and no

adjustments would be necessary. On the other hand, when |αk| is less than twice its expanded

uncertainty, 2u(αk), there is a statistically significant offset in the calibration. When |βk| is

less than twice its expanded uncertainty, 2u(βk), there is a statistically significant deviation
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Figure 3.8: The total measurement uncertainty of a system is a combination of uncertainties
from the calibration specimen and from the measurement system.

in the calibration in which the deviations increase as a function of the distance, y from the

center of the beam. It should be noted that both of these cases were true for all of the values

of α and β with the exception of α for the 110µm displacement.

3.3.4 Overall System Results and Associated Uncertainty

The resulting calibration uncertainty of the system, uCAL, was found using the maximum

strain value from each of the load steps and the results from the combination of the uncer-

tainties of the reference material and of the strain measurements. To better understand

the significance of uCAL, the relative uncertainty, urel, can be calculated which expresses

uCAL as a percentage of the measured strain value. Table 3.3 summarizes these values.

There were some challenges encountered during the calibration procedure that had to be
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Figure 3.9: Plots of the expanded uncertainty of the calibration specimen uCS along with
the mean residual deviations αk + βky and the scatter band around the deviations ±2u(dk)
for each load step: 27.5 µm (top), 110 µm (middle), and 218 µm (bottom).
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Table 3.3: Summary of the uncertainty values for each of the load steps. The uncertainty
values listed are for the maximum strain of each load step. Unless otherwise noted, the
values listed are µstrain.

vavg(µm) u(dk) uCS uCAL (εxx)y=W/2 − (εxx)y=−W/2 urel

27.5 13 5 14.0 289 4.8%
110 17 6 18.3 1103 1.7%
218 27 8 28.7 2110 1.4%

overcome to achieve acceptable results. In comparison to Whelan et al. [23], the specimen

used for this calibration had a thickness of 5 mm as compared to 10 mm. The greater

thickness allowed Whelan et al. to use strain gauge rosettes, where it was only practical to

use single axis gauges for this specimen. The lack of a rosette meant that care had to be

taken to ensure that the gauges were aligned properly on the specimen. It was also found

that the thin specimen did not stand upright on its own very well, making it unstable under

compressive loading. As a result, tensile loading using the mounting holes was chosen for

this calibration procedure.

Another challenge was to obtain accurate strain measurements at the smallest load dis-

placement step, 27.5 µm. An example of an initial measurement taken at this displacement

is shown in Figure 3.10. This figure shows that there is a deviation in the measured versus

predicted strain values as a function of the distance in the y-direction from the neutral axis

of the specimen. This was corrected first, by ensuring that the surface stayed flat when

preparing it with the grit paper by using a sanding block. Initially, the surface was sanded

by hand, which may have affected the flatness of the specimen. And second, the camera was

rotated by 90 degrees which aligned the sensor’s higher resolution dimension with the y-axis

of the gauge section and allowed the camera to be moved closer to the specimen.
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Figure 3.10: One of the early measurements obtained for the 27.5 µm displacement load.
It was determined that the original hand polishing technique was causing deviations in the
measured strain values at the extreme edges of the beam.

3.4 Conclusions

The results of calibrating a digital image correlation system have been presented according

to the procedure described by the SPOTS guideline. The system was shown to achieve an

acceptable calibration as defined by the guideline and the minimum relative uncertainty for

future measurements made with the optical setup was evaluated as 5% for maximum strains

of the order of 120 µstrain and 1.4% for maximum strains of the order of 1000 µstrain. The

calibration provides confidence for future strain measurements made with the system, and

establishes traceability for the measurements to the international standard for length. The

latter is important when analyses are associated with regulatory procedures. In addition,

the procedure was performed using only the bare metal of the specimen, without the need

to paint the surface with a speckle pattern. Some of the challenges of the procedure have

been discussed.
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Chapter 4

Experimental Methods

This chapter details the experimental equipment and methods used for the two studies dis-

cussed in this thesis. The first study used an aluminum plate loaded in tension. The second

study used a composite panel which was bolted on one end and loaded compressively. Exper-

imental data for these two studies was acquired using digital image correlation, which yielded

maps of principle strain data. The previous chapter described the calibration procedure for

the digital image correlation system (Q-400, Dantec Dynamics, Ulm, Germany) which was

used to gather the full-field experimental data for these studies. The same 50,000N servo-

hydraulic loading frame and control system (MTS 810, Eden Prairie, MN) that were used for

the calibration in the previous chapter were also used for the experimental setups described

in this chapter.
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4.1 Aluminum Plate Tensile Study

4.1.1 Specimen Description

The specimen was a 100 mm x 300 mm plate manufactured from 1 mm thick 6061-T6

aluminum. A 15 mm hole was drilled in the center of the specimen. The complete dimensions

are shown in Figure 4.1.

4.1.2 Experimental Procedure

For this study, the aluminum specimen was mounted in the loading frame and subjected to

tensile loading. Initially, the specimen was located in the machine using the hydraulic wedge

grips supplied with the machine (MTS Series 647 hydraulic wedge grips, Eden Prairie, MN).

The wedges were 25 mm wide and designed to be used with specimens of the same width or

narrower. When this is the case, there are small tabs on the side of the wedges that can be

used to align the specimen in the fixture. Since the aluminum plate specimen was 100 mm

wide, these tabs had to be removed and the alignment performed visually. As a result, there

was concern that misalignment of the plate might be causing asymmetric loading. Also, as

the width of the plate was much wider than the grips, the force was not evenly distributed

along the entire width of the plate.

To overcome these problems, the mounting system of the plate was changed from a

clamped system to a pin system. Two thick aluminum plates were bolted to each end of the

specimen using three bolts per side. The thick aluminum plates had a hole to mount the

specimen into the loading frame using a steel pin. This allowed the plate to naturally align

itself as force was applied. The images in Figure 4.2 provide a comparison of the original
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Figure 4.1: The dimensions of the aluminium plate used for this study. The area outlined
by the dashed line indicates the region of interest for the experimental data capture.
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and updated loading methods.

The first step in the experimental data collection procedure was to mount the specimen in

the load frame to properly position the camera and light source. The lens with a medium focal

length was chosen (Schneider Cinegon 1.4/12-0515) to provide an appropriate field of view

of the experimental region of interest. Care was taken to position the camera perpendicular

to the specimen and to fill the short width of the camera’s detector with the area of interest.

The HILIS LED floodlight supplied with the DIC system was positioned to provide uniform

illumination of the specimen. The image in Figure 4.3 shows the experimental setup used

for this test.

The next step was to run the calibration routine for DIC software so that it could deter-

mine the intrinsic and extrinsic parameters for the particular setup being used. At this point

the focus and aperture settings on the lens were locked, and the specimen removed from the

loading frame. The 8 mm x 8 mm plate was used to perform the calibration procedure shown

in Figure 4.4. The specimen was then mounted back in the loading frame in preparation for

the experiment.

To acquire the data, the load frame was operated in displacement control with a crosshead

speed of 1 mm/min. The DIC system was set up to record images at 2 second intervals.

A small 120N preload was applied to the specimen before starting the test to remove any

slack from the system. Images were acquired of the loading sequence until the plate reached

failure, which was around 20kN.

Then the images were processed using the Istra 4D software to determine the displacement

and strain components of the specimen during the loading procedure. A facet size of 25 pixels

was used with a grid spacing of 5 pixels. The data were exported in HDF5 format for further
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Figure 4.2: Pictures showing the original loading configuration using hydraulic wedge grips
(left), and the final configuration using pin loading (right).
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Figure 4.3: The experimental test setup used for the aluminum plate study.
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Figure 4.4: The calibration procedure using an 8mm x 8mm plate supplied with the DIC
system.
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processing in Matlab.

4.2 Composite Plate Study

4.2.1 Specimen Description

The specimen for this study was an inhomogeneous composite panel consisting of an alu-

minum backing plate with ceramic tiles and a pre-impregnated composite overwrap. Figure

4.5 gives the dimensions of the panel as a function of the tile size a.

4.2.2 Experimental Procedure

For this study, it was desired to load the composite panel specimen in compression by holding

one end fixed with a bolted joint, and to apply a force to the opposite end of the panel. The

initial testing was performed using a reconfigurable hydraulic actuator mounted to a T-bed,

which is shown in Figure 4.6. It was later discovered that the data captured from this setup

was not valid due to out-of-plane displacement of the specimen. A fixture was manufactured

to mount the specimen in the MTS 810 load frame to repeat the tests.

To help minimize the impact of the out of plane displacement of the panel, a smaller

area was investigated with a dimension of 45 mm x 32 mm. The Tamron macro lens was

also used (the same one from the calibration procedure) because its 90 mm focal length

meant that the camera could be moved farther away from the panel, to approximately 650

mm. The LED floodlight supplied with the DIC system was positioned to provide uniform

illumination of the specimen. The image in Figure 4.7 shows the experimental setup.

The focus and aperture settings on the lens were locked, and the composite panel spec-
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Figure 4.5: Dimensions of the composite panel described as a function of the tile size a.
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Figure 4.6: The model showing how the protective panel attached to the test fixture and
where the loading was applied (top). The panel installed in the test fixture (bottom).
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Figure 4.7: Picture of the revised experimental test setup for the composite panel study.
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imen was removed from the load frame. The DIC software was calibrated using 4 mm x 4

mm target plate, which is similar to the one used in Figure 4.4.

The loading for this study was performed in a quasi-static fashion. A 0.5 kN pre-load was

applied, and a reference image captured manually. Then the load was increased incrementally

to 4.45 kN, 8.9 kN, 13.34 kN, and 17.79 kN, with images captured at each step.

The images were processed using the Istra 4D software to determine the displacement

and strain components of the specimen during the loading procedure. A facet size of 25

pixels was used with a grid spacing of 12 pixels. The data was exported in HDF5 format for

further processing in Matlab.
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Chapter 5

Image Decomposition Methodologies

This section describes the methodologies for the Zernike, Tchebichef, and Fourier descriptors,

as well as a hybrid approach applying both the Fourier transform and moment descriptor.

An example deconstruction and reconstruction is provided for each methodology. The same

experimental data set was used for all of the examples in this section. For each, first the

entire strain map was used, then a cropped smaller area examined. The entire experimental

data set was 175 x 175 pixels with a total of 30,625 points and the cropped data set was 59

x 59 pixels for a total of 3,481 pixels.

5.1 Zernike Moment Descriptor

A set of orthogonal complex polynomials valid over a unit circle was given by Zernike [33]:

Vn,m(x, y) = Vρ,θ = Rn,m(ρ)eimθ (5.1)

where,
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n Non-negative integer representing the order of the radial polynomial

m Positive and negative integers subject to constraints n− |m| even, |m| ≤ n representing

the repetition

ρ Length of vector from the origin to (x, y)

θ The angle between vector ρ and the x-axis in the counter-clockwise direction

Rn,m Radial polynomial defined as

Rn,m(ρ) =

n−|m|
2∑
s=0

(−1)s
(n− s)!

s!
(
n+|m|

2

)
!
(
n−|m|

2

)
!
ρn−2s (5.2)

The inner product between any two Zernike polynomials can be written as

〈Vp,q, Vn,m〉 =

∫ 2π

0

∫ 1

0
Vp,q(ρ, θ)

(
Vn,m(ρ, θ)

)
ρdρdθ (5.3)

The Zernike moments of an image with intensity, I(x, y), can be found by projecting the

image onto the complex Zernike polynomials, Vn,m

Zn,m =
〈I(x, y), Vn,m〉
〈Vp,q, Vn,m〉

(5.4)

Figure 5.1 and Figure 5.2 show the maximum principle strain map from the aluminum

plate decomposed into Zernike moments with a maximum order of 8. A maximum order of 8

results in 45 Zernike moments to completely describe the image. To check how well these 45

moments describe the original strain map, a reconstruction is performed from the moments.

In the case of Figure 5.1, the reconstructed map does not match the original strain map very
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well. The discontinuity produced by the hole in the experimental specimen was not captured

by the Zernike moments.

Figure 5.2 gives the results from analyzing a subset of the experimental strain map not

containing the hole. For this subset of data, the reconstructed map matches the original

more closely than Figure 5.1.

5.2 Tchebichef Descriptor

The Tchebichef moments of an MxN discrete image are given by [10],

Tp,q =
M−1∑
x=0

N−1∑
y=0

t̃p(x)t̃q(y)f(x, y) (5.5)

where t̃p(x) and t̃q(y) are the normalized Tchebichef polynomials

t̃p(x) =
t̃p(x)√
ρ̃(p,M)

, t̃q(x) =
t̃q(x)√
ρ̃(q,M)

(5.6)

and,

ρ̃(p,M) =
M
(

1− 1
M2

)(
1− 22

M2

)
. . .
(

1− p2

M2

)
2p+ 1

(5.7)

The discrete Tchebichef polynomials are given by,

tn(x) = n!
n∑
k=0

(−1)n−k
(
N − 1− k
n− k

)(
n+ k

n

)(
n

k

)
(5.8)

The experimental strain map was then decomposed into Tchebichef moments with a

maximum order of 8. Figure 5.3 shows the Tchebichef moments from the decomposition
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Figure 5.1: An example of image decomposition and reconstruction of a maximum principal
strain map using Zernike moments with a maximum order of 8, which results in 45 moments.
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Figure 5.2: This decomposition and reconstruction uses a subset of the data from Figure
5.1. The data has been cropped to eliminate the discontinuity resulting from the hole.
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and the reconstructed strain map. Similar to the results using the Zernike descriptor, the

Tchebichef moments were not able to reconstruct the hole in the original strain map.

Figure 5.4 shows the Tchebichef moments and the reconstructed strain map from a subset

of the experimental strain map not containing the hole. The reconstructed strain map using

the subset of data matches the original very well.

5.3 Hybrid Fourier-Moment Descriptors

This section explores the use of taking the Fourier transform of the image before decomposing

with either the Zernike or Tchebichef moments. The Fourier transform is usually performed

on a signal or shape and converts it from the spatial domain to the frequency domain. The

result of applying the Fourier transform to a data set is a magnitude and phase map. All

of the information contained within the image is preserved by taking the Fourier transform,

but no data compression is achieved, which is why the Fourier transform is not suitable

for image decomposition by itself. However, transforming the image into the frequency

domain enables the moment descriptors to operate on discontinuities such as the hole. In

the examples presented here, the moment descriptors are used decompose the magnitude

map.

The continuous Fourier transform is given by,

FT (u, v) =

∫ +∞

−∞

∫ +∞

−∞
e−2π(ux+uy)I(x, y)dxdy (5.9)
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Figure 5.3: An example of image decomposition and reconstruction of a maximum principal
strain map using Tchebichef moments with a maximum order of 8, which results in 45
moments.
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Figure 5.4: This decomposition and reconstruction uses a subset of the data from Figure
5.3. The data has been cropped to eliminate the discontinuity resulting from the hole.
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The Discrete Fourier Transform (DFT) is given by,

DFT (u, v) =
1

KL

K−1∑
k=0

L−1∑
l=0

e
−i2π

(
uk
K +vlL

)
I(k, l) (5.10)

Figure 5.5 shows the magnitude and phase maps from applying the discrete Fourier

transform to the experimental data set. The magnitude map has very large spikes at the

corners which are difficult for the moment descriptors to capture. By taking the logarithm

of the magnitude map it is possible to reduce the size of these spikes and make it easier to

see the detail of the map. The DFT can also be split into real and imaginary parts, which

are also shown at the bottom of Figure 5.5.

Figure 5.7 shows the results of performing an image decomposition and reconstruction by

first applying the DFT to the experimental data set. The Zernike moment descriptor is then

used to decompose the logarithm of the magnitude map from the DFT. The reconstruction is

performed by reconstructing the magnitude map from the Zernike moments, and then using

the magnitude map along with the phase information to move back to the spatial domain

using the inverse Fourier transform.

Figure 5.8 performs the same procedure with the Tchebichef moments used in place of the

Zernike moments from the previous example. Using this approach, the reconstructed strain

maps shown in Figures 5.7 and 5.8 capture the shape of the original strain map, including

the hole, which the moment descriptors were not able to achieve by themselves.
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Figure 5.5: An example of applying the Discrete Fourier Transform (DFT) to an experimental
data set, which produces a phase map and a magnitude map. The magnitude is also shown
separated into real and imaginary parts.
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Figure 5.6: The Discrete Fourier Transform (DFT) applied to a subset of the experimental
data set from Figure 5.5. The subset has been cropped to eliminate the discontinuity caused
by the hole.
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Figure 5.7: The results of applying the hybrid Fourier-Zernike decomposition to the ex-
perimental strain data. In comparison to the decomposition that used only the Zernike
descriptor, the hole feature has been retained in this reconstruction.
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Figure 5.8: The results of applying the hybrid Fourier-Tchebichef decomposition to the
experimental strain data. In comparison to the decomposition that used only the Tchebichef
descriptor, the hole feature has been retained in this reconstruction.
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5.4 Summary of Results

Figure 5.9 shows the reconstruction results from all of the image decomposition methods for

the experimental strain map. The reconstructed map is shown along with the residual found

by subtracting the reconstructed map from the original map. The percentage correlation

between the original and reconstructed maps is also shown. This figure shows that applying

the Fourier transform to the data set permitted the hole feature to be retained. The Fourier-

Tchebichef decomposition provided the best results with 84% correlation between the original

and reconstructed strain maps.

Figure 5.10 shows the results for the subset of experimental data. In comparison to the

results described in Figure 5.9, applying the Fourier transform to this data set caused the

reconstruction quality to decrease. For the Zernike descriptor, the correlation decreased from

99% to 76%. For the Tchebichef descriptor, the correlation was reduced from 99% to 97%.

These results indicate that there is not one single image decomposition methodology that

is appropriate for all situations. The Fourier-Tchebichef approach provided the best results

when there was a hole present in the strain map, while both the Zernike and Tchebichef

descriptors provided similar results when applied to a smaller subset of the original data

that did not contain the hole feature.
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Reconstructed Strain Map Original – Reconstructed

Figure 5.9: Comparison of the correlation of the original and reconstructed strain maps for
the different decomposition methodologies.
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Reconstructed Strain Map Original – Reconstructed

Figure 5.10: Comparison of the correlation of the original and reconstructed strain maps for
the cropped experimental results.
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Chapter 6

Results from Aluminum Plate Study

6.1 Introduction

For the initial study to determine the feasibility of the Zernike moment descriptor for image

decomposition, it was decided to use a 100 mm x 300 mm plate loaded in tension. A hole

was added in the center of the plate to provide a discontinuity in the strain field for the

study. The plate was manufactured from 1 mm thick 6061-T6 aluminum. The drawing in

Figure 4.1 gives the detailed geometry of the plate.

A series of images were collected as the plate was loaded to failure, which resulted in a

total of 120 images. It was desired to compare the strain map from one step, so one was

selected that had large strain values, but before yielding of the plate occurred. The graph

in Figure 6.1 shows the load history and indicates which data set was used for this study.
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Figure 6.1: The load history of the plate up to failure. The data from step 50 was used for
this comparison study.

6.2 Computational Model

A computational analysis was performed using Hypermesh 10 and RADIOSS (Altair, Troy,

MI, USA). The plate was modeled in 2 dimensions, with quad shell elements. The elements

were assigned the material properties of 6061-T6 aluminum with a modulus of 69 GPa and

a thickness of 1 mm. Three different mesh sizes were used to investigate convergence of the

model. The coarse mesh had an average element size of 1 mm resulting in a total of 6,900

elements. The fine mesh had an average element size of 1 mm for a total of 27,600 elements.

The finest mesh had an average element size of 0.5 mm with a total of 110,000 elements. The

pictures in Figure 6.2 show the differences in the mesh sizes. To simulate the experimental

loading condition, the elements at the top of the plate were held fixed, while the elements

at the bottom had a force applied to them in the −y direction. The loading conditions can
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be seen in Figure 6.3.

The post-processing of the models was performed using Hyperview (Altair, Troy, MI,

USA). A simple averaging filter was applied to the results which calculated the average of

the elements passing through each node. The data was exported as a TIF image file for

further processing in Matlab.

6.3 Comparison of Results using Image Decomposition

The comparison of the experimental and computational results for this study was performed

using a modified version of the Matlab script ImPaCT produced by Patki [8]. The maximum

principal strain maps for the experimental and computational results were imported into

Matlab and the script was used to decompose them using the Fourier-Zernike and Fourier-

Tchebichef descriptors. These methods were chosen from the results of Chapter 5, which

demonstrated that applying the Fourier transform to the data set before using one of the

moment descriptors produced the best results for strain maps with discontinuities.

The first comparison applies the Zernike descriptor to the magnitude map from the

Fourier transform. This is shown in Figure 6.4. To perform a comparison of the moments,

they were plotted against one another as shown in Figure 6.5. The experimental moments

are shown on the x-axis, and the computational moments on the y-axis. If there were

perfect correlation between the experimental and simulation moments, they would all lie

along a straight line with a gradient and an R2 value of 1. Therefore, information about

the correlation of the two data sets can be determined from the gradient of the line and the

R2 value from the scatter of the data points. In this case, the data is skewed towards the

experimental data with a gradient value of 0.88. The R2 value of 0.98 indicates that form
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Figure 6.2: This figure shows the different mesh sizes overlaid on the finite element analysis
results. The maximum principle strain is shown.
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Figure 6.3: An example of one of the meshes used, showing the boundary conditions. The
elements highlighted in blue were fixed in all degrees of freedom. The elements highlighted
in red had a force applied to them in the −y direction.
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of the data sets match well.

A comparison was then made by applying the Tchebichef descriptor to the magnitude map

from the Fourier transform. The moments produced from applying the Fourier-Tchebichef

decomposition to the experimental and simulation data sets are shown in Figure 6.6. Figure

6.7 shows the moments from the simulation data set plotted against the moments from the

experimental data set. The results from applying the Fourier-Tchebichef decomposition are

similar to those from the Fourier-Zernike decomposition. The gradient of the line is 0.87,

which indicates a slight bias towards the experimental data. The R2 value of 0.99 indicates

that the form of the data sets match well.
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Figure 6.4: Comparison of the Zernike moments generated by using the logarithm of the
magnitude of the Fourier transform.
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Figure 6.5: The Zernike moments generated from the simulation data plotted against the
moments from the experimental data (top). The moments plotted without the first one to
show the detail of the others (bottom).

70



Figure 6.6: Comparison of the Tchebichef moments generated by using the logarithm of the
magnitude of the Fourier transform.
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Figure 6.7: The Tchebichef moments generated from the simulation data plotted against the
moments from the experimental data (top). The moments plotted without the first one to
show the detail of the others (bottom).
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Chapter 7

Results from Composite Panel Study

7.1 Introduction

In the previous section image decomposition was applied to the comparison of strain maps

for an isotropic homogeneous aluminum plate. This section examines the strain distribution

in an inhomogeneous composite panel. Composite panels are sometimes bolted to a vehicle

structure in order to provide impact protection to the vehicle and its occupants. The panel

is designed with the intention that it should not carry the service loads that are encountered

in typical operation. It is critical to protect the panel from the repetitive or high service

loads that might damage or degrade its protective capacity. The complex design of the panel

makes the development of a computational model of its loading and deformation difficult and

so it was decided that a comprehensive and quantitative validation of the model was both

appropriate and highly desirable. The aim of this study was to use the full-field optical data

from the DIC system to validate the model by comparing the data sets from the computation

and experimentation using image decomposition.
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7.2 Panel Description and Manufacturing

Typical composite protective panels can be rather large in area, which was not practical to

manufacture or test with the equipment available. Therefore, it was decided to make a panel

that was 305mm square. The panel was composed of a 6061-T6 aluminum backing plate to

which alumina ceramic tiles were bonded. A pre-impregnated composite layer (Cycom 381,

Cytec Engineered Materials, Anaheim, California) was wrapped around the entire panel.

The panel was then vacuum-bagged and cured in an oven according to the manufacturer’s

instructions for the composite. Figure 7.1 shows the arrangement of the layers in the panel.

In order to mount the panel in the test machine, two holes were drilled in one end of the panel

using a diamond-tipped drill bit. Figure 4.5 shows the detailed geometry of the composite

panel.

7.3 Computational Model

A numerical analysis was performed using a commercially available finite element software

package (Altair Hypermesh and RADIOSS, Troy, Michigan, USA). The ceramic tiles, backing

plate and composite cover were modeled as separate components. Figure 7.2 shows the

model with and without the composite cover. The model was comprised primarily of

quadrilateral elements with a few triangular elements used only when absolutely necessary

for mesh continuity. The area under the washer faces were constrained for all translation

and rotation degrees of freedom. A compressive force was evenly applied to the nodes on

the top edge of the panel.

An outer composite layer was included in the model as a two-dimensional sheet in which
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Figure 7.1: A cross-section showing the composition of the panel which consists of ceramic
tiles bonded to an aluminum backing plate with urethane, and a pre-preg composite skin
wrapped around the panel.
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Figure 7.2: Screenshots of the protective panel model used for the finite element analysis
without (top) and with (bottom) the composite cover layer.

the resin properties and fiber orientations were defined, whereas the other components were

modeled as three-dimensional. By modeling the composite cover as a separate entity, it was

possible to more accurately define the material properties. The total cover thickness was

1 mm, which was further divided into the composite layer and a resin rich layer. Table

7.1 lists material properties used for the baseline model. The composite weave consisted

of fibers oriented at 0◦ and 90◦. An elastic modulus was defined for each of the weave

directions, corresponding to E1 and E2. The shear modulus, G12, represents the strength of

the material at 45◦. The resin can be treated as isotropic, so the shear modulus (G12) has
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the same value as the modulus (E1/E2). The value for the composite shear modulus was set

equal to the modulus of the resin.

The size of the original mesh that was created was a compromise between the element

size dictated by the thin resin layer and a desire to minimize the number of elements in

the interest of a reasonable processing time. This resulted in an average element size of 3

mm for a total of approximately 97,500 elements. This was the primary mesh used in this

study. However, a finer mesh with an element size of 1.75 mm for a total of 369,400 elements

was created to check if the original mesh was sufficient to describe the strain in the panel

accurately. As there was little difference in the results between the two models, the 3 mm

element size was used because it took much less time to solve.

For the baseline model, the manufacturer’s given material properties were used. However,

the strain values computed with the FE model were much lower than the values found

experimentally. In composite materials, there can be significant variation in the material

properties depending on the layup and curing conditions. Also, there was such a large

mismatch in the modulus value between the ceramic and the urethane that it was decided to

perform a sensitivity analysis to determine which material properties had the largest effect

on the strain distribution in the composite cover.

The sensitivity analysis was performed using design of experiments (DOE). Compared

to the more traditional one-factor-at-a-time approach, design of experiments varies factors

together. This is important because the interaction between factors is considered. A full-

factorial design with four factors was chosen (24), which requires 16 runs to acquire the

necessary data. A 24 full-factorial design provides information about the main effects, the

two-way interactions, and the three-way interactions [40].
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The four parameters that were chosen to be varied for this DOE were: Urethane modulus

(E), Ceramic modulus (E), the composite layer 381 fabric modulus values (E1/E1), and the

composite layer epoxy modulus (E). The modulus of the aluminum was not included in the

analysis as it is an isotropic material whose properties were well-known. The shear modulus

of the composite was set to match the modulus of the resin. The thickness (T) of the

composite layer was held constant at 0.9 mm, and the thickness of the resin-rich layer was

held constant at 0.1 mm for the analysis. A 24 full factorial model was used. The high and

low values chosen for the four materials are listed in Table 7.1. The measured output for the

DOE was the average of the strain values for six elements of the composite cover.

Table 7.1: The material properties used for the finite element models. All values are in MPa,
unless otherwise noted.

Baseline DOE DOE
properties low values high values

Urethane E 3500 25 45

Ceramic E 350000 175000 350000

Aluminum E 69000 69000 69000

381 resin
E1/E2 4800 2400 4800
G12 4800 2400 4800
T 0.1 mm 0.1 mm 0.1 mm

381 composite
E1/E2 50000 25000 50000
G12 4800 2400 4800
T 0.9 mm 0.9 mm 0.9 mm

The results of the DOE were analyzed using the analysis of variance methodology (ANOVA).

The results of the ANOVA are shown in Table 7.2. It can be seen that the fabric modulus

values (E1/E2) and epoxy modulus (E) had the largest impact on the strain values, while

the Urethane and Ceramic had relatively little effect. The interaction between the ceramic

and the epoxy had a significant effect, although much smaller than the primary effects. As
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a result of this study, the low values of the material properties were used in the model.

Table 7.2: ANOVA results from the sensitivity study of the finite element model

Source SS df MS F P % Contrib

Urethane E (A) 2276.1 1 2276.1 1.357 0.452 1.43%
Ceramic E (B) 2571.3 1 2571.3 1.533 0.433 1.61%
381 fabric E1/E2 (C) 76890.7 1 76890.7 45.834 0.093 48.29%
381 epoxy (D) 52193.2 1 52193.2 31.112 0.113 32.78%
AB 482.2 1 482.2 0.287 0.687 0.30%
AC 1485.5 1 1485.5 0.885 0.519 0.93%
AD 843.4 1 843.4 0.503 0.607 0.53%
BC 127.5 1 127.5 0.076 0.829 0.08%
BD 9759.8 1 9759.8 5.818 0.250 6.13%
CD 4629.7 1 4629.7 2.760 0.345 2.91%
ABC 1774.5 1 1774.5 1.058 0.491 1.11%
ABD 1570.1 1 1570.1 0.936 0.511 0.99%
ACD 1852.6 1 1852.6 1.104 0.484 1.16%
BCD 1108.3 1 1108.3 0.661 0.566 0.70%

Error 1677.5 1 1677.5 1.05%

Total 159242.5 15

7.4 Comparison of Results using Image Decomposition

To perform the comparison of the experimental and computational data sets, several patches

of data from different areas of the panel were compared. The ideal comparison would have

been to compare the strain field from the entire panel, but the resolution of the digital im-

age correlation system ultimately dictated the size of the experimental data that could be

captured. The results from Chapter 5 showed that it is not necessary to use the Fourier

transform with data sets such as those presented in this study that do not contain disconti-

nuities. The Tchebichef moments were used for this study as they are discrete and natively

valid over a rectangular domain, which makes them computationally more efficient than the
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Zernike moments for this study.

Figure 7.3 shows the results of the FE analysis superimposed over the experimental

setup. The areas of the panel that were investigated experimentally are indicated in this

figure. The first area examined was the region directly above the bolt hole on the right side

of the panel (RS-bh). The camera system was set up to capture the triple-point, which is

the intersection of three of the ceramic tiles. This area was chosen because the principal

strain value was fairly large, and produced an interesting distribution. An examination of the

strain maps in Figure 7.4, reveals that while the maps are similar in shape, the magnitude

of the experimental strain is significantly larger than the strain predicted by the FE model.

This is captured in the magnitude of the first Tchebichef moment, which is also much larger

for the experimental data than for the FE data.

Figure 7.5 shows a comparison of the experimental and computational moments from the

Tchebichef decomposition; as for the study of the aluminum plate, perfect correlation of the

two data sets would generate a perfectly straight line with a gradient of 1. In this case, the

greater magnitude of the experimental data has resulted in a line with a gradient of 0.63.

One potential reason for the difference in magnitudes of the experimental and simulation

data sets could have been strains caused by the bolt clamp force. In the interest of simplicity,

the area under the washer faces of the bolted joint were constrained for all rotational and

translational degrees of freedom, but no clamp load was applied. It is therefore possible that

the difference in the constraints between the FE model and the experimental condition could

have caused the difference in the strain distributions. To lessen the effect of the clamping

force on the experimental results, the next area for comparison was chosen to be farther

away from the bolted joint. The area examined was RS-3 from Figure 7.3.
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LS-3

RS-3

RS-bh

Figure 7.3: Results of the finite element analysis superimposed on the experimental setup,
indicating the areas that were used for the comparison with the experimental data.
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Figure 7.4: The Tchebichef moments from the maximum principle strain maps of the exper-
imental and simulation results from the area above the bolt hole (RS-bh).
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Figure 7.5: The Tchebichef moments generated from the simulation plotted against the
moments from the experimental data. The solid regression line is fitted to all of the data
while the dashed line excludes the first moment.
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Similar to the area previously examined around the bolt hole, area RS-3 includes a triple

point of the ceramic tiles. As shown in Figure 7.6, the area of high strain extends from the

triple and continues along the interface of the tiles, resulting from the mismatch in stiffnesses

of the ceramic and urethane. The magnitude of these strain maps is much closer than for

the area around the bolt hole. This is evident from comparing the value of the first moment,

which is almost the same for both data sets. This can also be seen from Figure 7.7, where the

gradient of the line is largely dictated by the value of the first moment. For this comparison,

the gradient is 1.01, indicating close agreement between the two data sets. The R2 value for

this comparison is 0.79, which is slightly lower than for area RS-bh, but still indicates good

agreement in the forms of the two data sets. One interesting thing the fact that while the

experimental data has a higher overall magnitude which biases the line in its direction, the

smaller FEA moments appear to have a higher magnitude in general than the experimental

moments. This is evident in the gradient of the dashed line in Figure 7.7, which increases in

value from 1.01 to 1.87 when the first moment is excluded from the fit.

The next two areas that were examined were on the left side of the panel. The first area

was LS-1, which was the farthest away from the bolt hole of all the areas examined. The

region bounded by LS-1 contains two triple points and a high strain area connecting them.

For these strain maps, the simulation results reported by the FE analysis were larger than

the experimental results. An examination of the Tchebichef moments for the two data sets

reveals that not only is the magnitude of the first moment different, but the general values of

all of the moments are different for the two maps. This is more obvious in Figure 7.9, which

has a gradient of 1.34, indicating a strong bias towards the FE results. Also, the moments

do not fall on the regression line very well, as indicated by an R2 value of 0.7097. Similar to

84



Figure 7.7, when the line is fitted to the moments with the first one excluded, the gradient

increases. For this comparison it went from 1.34 to 1.99.

The final area of comparison was area LS-3, which was located slightly above and to the

right of the bolt hole on the left side of the panel. The experimental data obtained for this

area does not match well with the FE model, so the main purpose of including it was to see

how the Tchebichef moments dealt with such a large difference. It is clear from Figure 7.10

that the strain maps do not match well, and the resulting Tchebichef moments appear to be

very different as well. For this case, the overall magnitude of the two maps as determined

by the first moment was very similar, but the majority of the other moments have much

different values. Figure 7.11 supports this conclusion. The gradient of the regression line is

1.028, which would indicate that the magnitudes of the maps are very similar. However, the

R2 value is very low at 0.5129, indicating that the shape of the two maps is very different.
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Figure 7.6: The Tchebichef moments from the maximum principle strain maps of the exper-
imental and simulation results from area RS-3.
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Figure 7.7: The Tchebichef moments generated from the simulation plotted against the
moments from the experimental data. The solid regression line is fitted to all of the data
while the dashed line excludes the first moment.
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Figure 7.8: The Tchebichef moments from the maximum principle strain maps of the exper-
imental and simulation results from area LS-1.
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Figure 7.9: The Tchebichef moments generated from the simulation plotted against the
moments from the experimental data. The solid regression line is fitted to all of the data
while the dashed line excludes the first moment.
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Figure 7.10: The Tchebichef moments from the maximum principle strain maps of the
experimental and simulation results from area LS-3.
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Figure 7.11: The Tchebichef moments generated from the simulation plotted against the
moments from the experimental data. The solid regression line is fitted to all of the data
while the dashed line excludes the first moment.
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Chapter 8

Discussion

Chapter 5 described the procedure to decompose an image using the continuous Zernike

moments and the discrete Tchebichef moments. The decomposition compresses the data

set by several orders of magnitude, which facilitates making a quantitative comparison be-

tween the data sets. Examples of each decomposition methodology were presented using an

experimentally obtained strain map with 30,625 data points. Applying the decomposition

methodology reduced the data set to only 45 moments, which is less than one percent of the

original amount of data.

The exemplar decompositions of the experimental data set demonstrated that the Zernike

and Tchebichef descriptors- when used by themselves- were not able to reconstruct the strain

information or the geometric detail associated with a hole in the specimen. To capture these

features, the Fourier transform was applied to the data set first, and the decomposition ap-

plied to the resulting magnitude map. The outcome for each of the decomposition method-

ologies is shown in Figure 5.9 which shows the percentage correlation of the original and

reconstructed strain map for each of the decomposition methodologies.
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It can be seen from this figure that the Zernike and Tchebichef descriptors achieved 82.3%

and 78.6% correlation with the original data sets, but neither reconstruction retained the

hole. When the Fourier transform was applied to the data first, both the descriptors were

able to capture information associated with the hole. The Fourier-Tchebichef decomposition

produced the best results with a correlation of 84.2% between the original and reconstructed

data sets.

When the decomposition methodologies were used on a subset of the experimental data

set that did not contain the discontinuity associated with the hole, the application of the

Fourier transform decreased the quality of the reconstruction. Figure 5.10 shows the per-

centage correlation for each methodology applied to the subset. For the Zernike descriptor,

applying the Fourier transform decreased the correlation from 99.2% to 75.9%. For the

Tchebichef descriptor, the correlation decreased from 99.2% to 95.5%.

The Tchebichef descriptor had a distinct computation advantage over the Zernike de-

scriptor. This is evident in the time required to process the data sets. Table 8.1 lists the

processing times required for each methodology to decompose the experimental strain map

containing the hole. The two decompositions performed using the Tchebichef descriptor took

5 seconds each, while the Zernike descriptor took 173 seconds and 209 seconds when used

without and with the Fourier transform, respectively.

Table 8.1: Summary of reconstruction results for the experimental strain map

Decompostion Method Correlation Process Time

Fourier-Tchebichef 84.2% 5 seconds
Zernike 82.4% 173 seconds
Tchebichef 78.7% 5 seconds
Fourier-Zernike 53.0% 209 seconds
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Table 8.2 lists the processing times for the subset of the original strain map. The Zernike

and Tchebichef descriptors produced reconstructions that exhibited a 99.2% correlation to

the original data set, but the Tchebichef descriptor was almost five times faster.

Table 8.2: Summary of reconstruction results for the cropped experimental strain map

Decompostion Method Correlation Process Time

Tchebichef 99.2% 4 seconds
Zernike 99.2% 19 seconds
Fourier-Tchebichef 95.5% 5 seconds
Fourier-Zernike 75.9% 32 seconds

Two studies were performed using the image decomposition methodology with the aim

of reducing the data sets to a few moments to perform a comparison. Besides reducing the

number of data points, this methodology allows data with different numbers and pitches of

points, different co-ordinate systems, and different scales to be easily compared. For the

study of an aluminum plate with a hole, the comparison was made between an experimental

data set containing 30,625 points and a simulation data set containing 47,961 points.

The comparison of the experimental and simulation outcomes was performed by plotting

the two sets of shape descriptors against each other. A linear regression line was fitted to the

data and the R2 value calculated. If there was perfect agreement between the experimental

and simulation data, all of the points would lie on a line with a gradient of 1 and an R2 value

of 1. When the gradient deviates from 1, it indicates that the data is biased toward either

the experiment or the simulation. For a gradient greater than 1, the simulation is predicting

higher strain values than the experimental results. If the model is not corrected, this could

lead to unnecessarily over-designing a component. Conversely, if the gradient is less than

1, the simulation is predicting strain values that are too low. This is a dangerous situation

which could result in the component being under-designed for the intended application.
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Similarly, the R2 value is an indication of how well the form of each data set matches. A

value close to 1 indicates that the form data from the simulation matches the experimental

data. This gives confidence that the design of the model is accurately representative of

the experiment. As the value of R2 decreases, it means that the simulation results are not

producing the same features as the experimental data, requiring further investigation of the

model.

The aluminum plate study utilized the hybrid approach in which the Fourier transform

is applied to the data set first. The R2 coefficient of the regression lines fitted to the

Fourier-Zernike and Fourier-Tchebichef comparison plots were essentially the same at 0.98

and 0.99, indicating that form of the experimental and simulation data sets match well.

The gradients are also nearly the same at 0.88 and 0.87. This is an example in which the

simulation is predicting values lower than the experimental results. The model should be

updated to accurately reflect the experimental results to prevent potentially under-designing

the component.

The Tchebichef descriptor was used for the study of the composite panel because the

data was continuous, without any holes or similar features. Figure 8.1 shows where the

experimental data was obtained on the composite panel. Table 8.3 summarizes the results

from the comparisons of the experimental and simulated data sets. The comparisons were

made by fitting a linear regression line to all of the data and also to the data without the

first moment included. The gradient of the line for all of the data points is influenced largely

by the first moment, but as this moment contains information about the overall magnitude

of the map, it is very important and should be included in the fit. However, an interesting

trend appeared for this study in that as the quality of the match between the two data sets
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Figure 8.1: Strain map of the panel from the simulation results, with the boxed areas
indicating where the experimental data were obtained.
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decreased, the remaining moments form a cluster around a line of increasing gradient. This

can be seen in the gradients of the areas RS-3 and LS-1 in Table 8.3, which have values of

1.867 and 1.993, respectively. The fit is especially bad for area LS-3, which actually results

in a fit line with a gradient of 0.312, but the R2 value is very low at 0.0218. Examining the

comparison plot of the moments in Figure 7.11, the data appears to be almost vertical with

the exception of two points.

Table 8.3: Summary of correlation results from the composite panel study.

All moments Excluding 1st moment
Location Gradient R-squared Gradient R-squared

RS-bh 0.648 0.8603 0.743 0.6277
RS-3 1.011 0.7956 1.867 0.6342
LS-1 1.344 0.7097 1.993 0.3067
LS-3 1.028 0.5129 0.312 0.0218

The two comparisons performed for the left side of the panel (LS-1 and LS-3) appear

to generate a worse correlation between the experimental and computational data sets than

those from the right side. The speckle patterns for the left and right sides of the panel were

painted at different times; it is possible that the quality of the speckle pattern has influenced

the experimental results. Figure 8.2 shows the patterns from both sides of the panel. The

speckle pattern on the left side has slightly larger features overall than the pattern on the

right side of the panel. Initially, the left side of the panel was painted with a much larger

speckle pattern than is shown in Figure 8.2. This was done for the purpose of examining a

larger area of the panel. However, the experimental data showed that the speckle pattern

was too large for the strain range that was being examined, so the left side of the panel was

stripped and repainted with the pattern shown in the left image of Figure 8.2.

Figure 8.3 shows the ASME flowchart which was discussed in Chapter 1 as a part of the
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Figure 8.2: Comparison of the speckle patterns on the left side of the panel (left) and the
right side of the panel (right).

motivation for the research described in this thesis. The highlighted area is the validation

portion of the chart in which the experimental and simulation outcomes are to be compared.

The flowchart in Figure 8.4 was created based upon the methodology presented in this thesis

to perform this quantitative comparison using image decomposition. This thesis has pre-

sented a methodology to make the comparison of the experimental and simulation data sets

containing thousands of data point and compressing them to 45 moments. Moment descrip-

tors are also invariant under rotation, scale, and translation, which permits the comparison

of data sets that are not perfectly aligned, have different coordinate systems, or different

spacing of the data points. These moments were then compared by performing a simple

linear fit to the plot of the moments, which resulted in a gradient and R2 value relating to

the level of agreement between the two data sets. In essence, the procedure is able to reduce

a comparison of thousands of data points down to two parameters.
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methods [2]. The outlined area indicates the activities addressed by this thesis.
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8.1 Future Work

Reconstruction- Work reported in the literature of the electrical and computer engineering

community describing the use of the Zernike and Tchebichef descriptors for shape analysis,

tends to provide reconstruction results using a simple example such as a block letter E

[9, 33, 10]. However, when these descriptors are used in other fields there is no discussion of

reconstruction [41, 30, 29]. It would be worthwhile to investigate this phenomenon further

to determine why reconstruction is not typically applied in these fields. The main reason

so much importance has been placed on it here is because, in the example of the aluminum

plate, the hole in the original data set was completely absent from the reconstructed data

set. Therefore, it is conceivable that the moments produced from this decomposition could

be the same as those produced from a different specimen without a hole, meaning that the

moments are not a unique representation of the original data set.

Strain as a Tensor- The analyses presented in this thesis made use of the maps of

maximum principle strain from the experimental and computational results, but strain is a

tensor. Ideally, for the purposes of validation, the tensor results from each data set should

be compared, as opposed to one component at a time or a single component, as here. This

would introduce more complexity to the comparison, but it could be very useful.

Uncertainty Component- Oberkampf discussed the need to include uncertainty in the

metric used to compare experimental and computational data [14]. The examples provided

were for a simple input and the response graph for results, but the process should be extended

into the image decomposition procedure. If the methodology could be improved to utilize

the entire strain tensor as was discussed previously, it should be possible to include the

uncertainty component as well.
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Image Decomposition- The work described in this thesis used the continuous Zernike

descriptor and the discrete Tchebichef descriptor for the decomposition procedure. There

are many other types of moment descriptors, such as Legendre, Krawtchouk, Hahn, and

Poisson-Charlier, that are worth investigating. It is also common in image processing to

break the image down into smaller blocks and then to perform the decomposition on each

block individually. This is done primarily to increase computational efficiency, and may have

some benefit in this application.
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Chapter 9

Conclusions

• The results of calibrating a digital image correlation system were presented based on

the SPOTS procedure. The minimum relative uncertainty for measurements made

with the system was evaluated as 5% for maximum strains of the order of 120 µstrain

and 1.4% for maximum strains of the order of 1000 µstrain. The calibration quanti-

fied the uncertainty in the system thereby providing a level of confidence for future

measurements.

• An image decomposition methodology was developed which can reduce a data set

containing 104 − 106 data points to on the order of 102 moments. Two different

approaches were used: the continuous Zernike descriptor and the discrete Tchebichef

descriptor.

• By applying the Fourier transform to a data set before a decomposition, it was possible

to analyze data sets containing discontinuities. This thesis developed the procedure

to use the Fourier transform with the Tchebichef descriptor. When this method was

applied to an experimental strain map containing a hole feature, reconstruction was
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achieved with 84.2% accuracy while preserving the original feature.

• For strain maps without discontinuities, the Tchebichef descriptor was found to per-

form as well as the Zernike descriptor, but with a much shorter computation time.

For a cropped sub-set of data from an aluminum plate with hole loaded in tension,

the Zernike and Tchebichef descriptors both provided 99.2% correlation between the

original and reconstructed strain maps, but the Tchebichef decomposition took only 4

seconds compared to 19 seconds for the Zernike decomposition.

• A study was performed using the experimental and computational strain data from

a composite protective panel under simulated structural loading. The Tchebichef de-

scriptor was used to decompose the strain data maps.

• A comparison method was developed which consists of evaluating the gradient and R2

values for a linear regression line fitted to the shape descriptors describing the simu-

lation results plotted as a function of those for the experiment results. The gradient

indicates how well the magnitudes of the two data sets match. The R2 value of the

fitted line provides an indication of the level of agreement in the shape of the two

outcomes.

A Fourier-Zernike decomposition, for a study of aluminum plate with a hole subject to

tension, yielded a line with a slope of 0.88 and an R2 value of 0.98, which indicated the

data was biased to the experimental outcome, but that there was good agreement in

the shape of the data sets. For this scenario, an investigation should be performed to

determine why the simulation is predicting lower values than the experimental results

to prevent a potentially under-designed component.
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The agreement between the experimental and simulation outcomes for a composite

panel varied depending on the location of the panel examined. The values for the slope

of the fitted line ranged from 0.648 to 1.344, and the R2 value from 0.5129 to 0.86.

The comparison of data from near the bolt hole (RS-bh) indicates that there is good

agreement in the form of the data, but the simulation is predicting lower values than the

experimental results. This could indicate that the original assumptions made for the

boundary conditions at the bolt connection were not correct and should be reexamined

to determine if they accurately represent the experiment. The poor gradient and R2

values obtained from the left side of the panel could be due to the quality of the speckle

pattern, and should be investigated further.
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