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ABSTRACT

EYE GAZE FOR REFERENCE RESOLUTION IN MULTIMODAL
CONVERSATIONAL INTERFACES

By

Zahar Prasov

Multimodal conversational interfaces allow users to carry a spoken dialogue with an

artificial conversational agent while looking at a graphical display. The dialogue is

used to accomplish purposeful tasks. Motivated by previous psycholinguistic findings,

this dissertation investigates how eye gaze contributes to automated spoken language

understanding in such a setting, specifically focusing on robust reference resolution—

a process that identifies the referring expressions in an utterance and determines

which entities these expressions refer to. As a part of this investigation we attempt

to model user focus of attention during human-machine conversation by utilizing the

users’ naturally occurring eye gaze. We study which eye gaze and auxiliary visual

factors contribute to this model’s accuracy. Among the various features extracted

from eye gaze, fixation intensity has shown to be the most indicative in reflecting at-

tention. We combine user speech along with this gaze-based attentional model into an

integrated reference resolution framework. This framework fuses linguistic, dialogue,

domain, and eye gaze information to robustly resolve various kinds of referring expres-

sions that occur during human-machine conversation. Our studies have shown that

based on this framework, eye gaze can compensate for limited domain models and di-

alogue processing capability. We further extend this framework to handle recognized

speech input acquired situated dialogue within an immersive virtual environment. We

utilize word confusion networks to model the set of alternative speech recognition hy-

potheses and incorporate confusion networks into the reference resolution framework.

The empirical results indicate that incorporating eye gaze significantly improves ref-

erence resolution performance, especially when limited domain model information is



available to the reference resolution framework. The empirical results also indicate

that modeling recognized speech via confusion networks rather than the single best

recognition hypothesis leads to better reference resolution performance.
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Chapter 1

Introduction

1.1 Introduction and Motivation

1.1.1 Conversational Interfaces

Conversational interfaces allow users to carry a dialogue with a graphical display

using speech to perform a particular task or a group of related tasks. This method of

interaction deviates from more traditional direct manipulation and WIMP (windows,

icons, menus, and pointing devices) interfaces. Conversational interfaces are more

flexible and natural to use. They allow for a better use of human communication

skills, a larger diversity of users and tasks, and a faster task completion rate for

visual-spatial tasks.

The back-bone of conversational interfaces is the component that supports human-

machine dialogue. A dialogue system is used to interpret user input, decide which

actions should be taken as a response to this input, and determine the best way

to present this response to the user. Although, dialogue system architectures vary

greatly in terms of the components they contain, they all revolve around completing

these three tasks.

Currently, a major hurdle of conversational systems is an insufficient language

1



understanding capability. Language understanding errors can cause miscommunica-

tions between a user and a conversational system. When this happens, the system is

likely to behave in an unexpected manner from the user’s perspective. This can lead

to user confusion and dissatisfaction with system performance. More importantly

it can be very detrimental to task success rate and task completion rate. A high

communication error rate makes a conversational system unusable.

1.1.2 Language Understanding

In a conversational system, there exist three levels of language processing in order to

obtain an overall interpretation of a user input utterance. First, in the automated

speech recognition (ASR) stage, the speech signal is converted into a textual format.

Next, in the natural language processing (NLP) stage, the recognized text is syntac-

tically and semantically analyzed. A partial semantic representation of the spoken

utterance is constructed. At this point, there may still be some ambiguity about the

precise meaning of the utterance. Finally, in the discourse processing stage, this am-

biguity is resolved by considering the context in which the utterance was produced.

This context can consist of prior dialogue information, visual information, or general

domain knowledge.

Communication errors can occur at any of the three stages of language process-

ing. Some errors may lead to language understanding failure, while others may be

resolved during a later processing stage. For example, given the utterance “the green

chair” and an ASR misrecognition of the word chair visual context may be used to

determine that there is only one green object appearing on the screen; thus enabling

the system to compensate for the ASR error and correctly identify the object in ques-

tion. Although conversational interfaces offer many advantages over more traditional

interfaces, they suffer a major disadvantage in that spoken language input can be

noisy and ambiguous.
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The objective of our work is to improve language understanding capability in a

multimodal conversational interface. In prior work, the general approach to improving

language understanding is to incorporate knowledge into one of the three stages of

language processing. We continue this trend, but from a different perspective. We

study the effects of utilizing naturally occurring eye gaze during human-machine

conversation as an additional knowledge source to the spoken language input. Our

task becomes that of multimodal interpretation given two input modes: speech and

eye gaze.

1.1.3 Multimodal Interpretation

Conversational interfaces that accept and make use of multiple modes of input (such as

speech, lip movement, deictic gesture, eye gaze, etc.) are considered to be multimodal.

Such systems must fuse multiple modes of input to form a cohesive interpretation of

the user’s actions. This process is known as multimodal interpretation. Multimodal

interpreters often attempt to combine several noisy inputs. It has been shown that

the noisy inputs can mutually disambiguate each other and achieve a more robust

interpretation than either of the inputs alone [68].

While most previous work in multimodal interpretation has focused on combining

speech and gesture, here we focus on combining speech and eye gaze information

which is motivated by prior psycholinguistic studies that have shown a tight coupling

between speech and eye gaze during language production [30, 41, 85, 28]. Eye gaze

has been shown to be a window to the mind. That is, the eye fixates on symbols

that are being cognitively processed. The direction of gaze carries information about

the focus of a person’s attention [41]. Knowing the focus of attention can be used to

improve spoken language understanding in a conversational system.

Information obtained from eye gaze based focus of attention can be directly useful

in one important aspect of multimodal interpretation: reference resolution. Refer-
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ence resolution is the process of identifying the best matching referent (object in the

physical or virtual world) given a spoken referring expression. For example, given

the user utterance “I like the one next to the green chair” during interaction with

a conversational interface, the phrases shown in bold are referring expressions that

refer to two objects appearing on the interface.

Reference resolution can be improved by incorporating eye gaze information into

any of the three levels of language processing. Our work is concentrated on fusing

the multimodal inputs during the discourse processing stage while using relatively

standard ASR and NLP techniques. The main rationale for this is that communi-

cation errors are possible even with perfect ASR and NLP. Consider the utterance

in the above example. If there are multiple green chairs on the visible display, it is

impossible to resolve the referring expressions in the utterance purely based on ASR

and NLP results (even with perfect interpretation). Context is necessary to resolve

these references. This context can come from many knowledge sources, including eye

gaze. Eye gaze can be used to determine that a particular chair was recently in the

focus of attention, thus disambiguating the referring expression in this example.

A major advantage of eye gaze is that it is a naturally occurring byproduct of

speech. Eye gaze information is easily available with the help of eye tracking tech-

nology.

1.1.4 Eye Tracking

Eye tracking is the process of measuring eye movement, or changes in gaze direction,

as a user views a real or virtual environment. The direction of eye gaze has been shown

to carry information about the focus of a person’s attention [41]. Even though there

may be some dissociation between covert visual attention and overt visual attention

that is expressed in the form of eye movements, behavioral neurophysiological studies

have shown a tight coupling between the two [30, 21].

4



Eye tracking is used as a mechanism to study attention in various research fields,

including psychology, cognitive science, neuroscience, and computer science. Eye

tracking is used in vision studies to help determine how humans perceive visual scenes.

It is used in psycholinguistic studies to help determine how user comprehend and

produce language [19, 85, 84, 82, 59, 28, 27]. In HCI, eye tracking is used to evaluate

the usability of user interfaces [18, 35, 64]. In human-machine communication, it has

been used as either a direct means of interface control [86, 33, 90] or as a supplemental

input for improved interpretation [61, 78, 3, 80, 60, 54, 75, 17, 2, 20, 76].

1.2 Specific Research Questions

The general goal of this dissertation is to investigate how eye gaze can be used to

improve the robustness of spoken language understanding in a multimodal conversa-

tional system. In doing this, we want to determine the relationship between speech

and eye gaze in reference resolution. Our approach is to combine two pre-existing

technologies and fuse the information that they provide. These technologies are au-

tomatic speech recognition (ASR) and eye tracking. It is important to stress that our

goal is not to improve either ASR or eye tracking performance. Rather it is to use

these two technologies to improve spoken language understanding. More specifically,

this dissertation addresses the following three research questions:

1. Can eye gaze reliably predict user attention during conversation? Is this pre-

diction influenced by other factors from the environment (e.g., visual features

of the display, etc.)

2. Can eye gaze based attention prediction help to resolve linguistic referring ex-

pressions produced during conversation? Will the role of eye gaze change with

different capabilities of automated language processing?
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3. Can findings from conversation with simple static scenes be generalized to an

immersive, situated scenario? What additional modeling is required for situated

dialogue? What additional modeling is required to process recognized speech

input?

To investigate the first question, we have designed an attentional salience model

that identifies a user’s focus of attention while he or she interacts with a conversational

interface. More precisely, this model predicts which objects on the interface are likely

to be referenced in speech within close temporal proximity of any given point in time

during conversation. As a part of this investigation we study the temporal alignment

between speech and gaze. We study the eye gaze based and auxiliary visual features

that can assist attention prediction. We also discuss which evaluation metrics are

appropriate for comparing different attention prediction models.

To investigate the second question, we have developed an integrated probabilis-

tic reference resolution framework. This framework combines various input modes

(particularly speech and eye gaze) to robustly resolve referring expressions belong-

ing to various kinds of grammatical categories. Using this framework we study how

improved domain modeling capability affects the role of eye gaze.

To investigate the third question category, we designed an immersive conversa-

tional interface that supports situated dialogue. Using this interface with a situated

scenario, we collected speech and eye gaze data. We use this data to study the effect

of ASR on reference resolution and how eye gaze can be used to alleviate speech

recognition errors.

1.3 Outline

The remaining chapters of this dissertation are:

• Chapter 2 describes some related work that motivates this study.
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• Chapter 3 provides a discussion of state-of-the-art eye tracking technology.

• Chapter 4 describes two domains and data sets used in this investigation.

• Chapter 5 explores the factors that can be used to predict a users focus of

attention in a multimodal conversational interface.

• Chapter 6 examines the effects of incorporating eye gaze into a probabilistic

reference resolution framework.

• Chapter 7 describes an enhanced framework that incorporates eye gaze with

recognized speech hypotheses for reference resolution within an immersive do-

main.

• Chapter 8 summarizes the main contributions of this dissertation and provides

a glimpse into future research directions.
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Chapter 2

Related Work

In order to study the relationship between speech and eye gaze in multimodal conver-

sational interfaces, we must first understand how these interfaces deviate from more

traditional interfaces. We need to understand how these interfaces are constructed

and what additional challenges they face. At the same time, we must understand

how humans process multimodal information. This will give us some insight about

the relationship between language and eye gaze. Once we know more about this rela-

tionship, we can exploit it when constructing computational systems. In this chapter,

we first give an overview of previous work in multimodal conversational interfaces.

We provide a more detailed focus on the methodology that has been used to inter-

pret multimodal input. Then, we discuss user attention modeling, which can be used

to disambiguate spoken language during multimodal conversation. Next, we discuss

human eye gaze behavior during language production tasks and we explore how eye

gaze has been previously used in human-machine communication.
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2.1 Multimodal Conversational Interfaces

Multimodal conversational interfaces allow users to interact with computers naturally

and effectively. Since their inception, many multimodal systems combining a variety

of input and output modalities have been constructed. Multimodal conversational

interfaces typically combine speech with one or more additional input modalities, in-

cluding manual pointing gestures [4, 62], pen-based gestures [14, 39], lip movements

and facial expressions [71], and eye gaze [49, 78]. Many multimodal systems enhance

information presentation by combining multiple output modalities [9] such as speech,

text, graphics, animation, and video. Multimodal conversational interfaces are most

beneficial in visual and spatial domains. They are prevalent in a variety of applica-

tions including map-based information acquisition and manipulation systems, virtual

reality systems for simulation and training, person identification systems for security

purposes, web-based transaction systems, and mobile hand-held voice assistance.

While conversational interfaces have many advantages over traditional interfaces,

they also face significant challenges. Development of multimodal conversational inter-

faces requires a significant effort in the areas of automatic speech recognition (ASR)

for conversion of acoustic speech signals to machine-readable text strings, natural

language processing (NLP) for interpreting the meanings and intentions of dialogue

utterances, multimodal fusion for consistently combining information from various

input modes, dialogue processing for maintaining a coherent collaborative dialogue,

text-to-speech synthesis for responding to users with speech output, etc. Most of

these technologies are error-prone and can lead to communication errors. A lot of

effort has been put toward preventing and recovering from communication errors.

One obvious and effective error prevention method is to improve multimodal inter-

pretation. Multimodal interpretation is the process of combining ASR, NLP, and

multimodal fusion techniques to generate a semantic representation from the given
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user inputs. We believe that the most beneficial way of utilizing eye gaze information

in a multimodal conversational system is to improve multimodal interpretation.

2.2 Multimodal Interpretation

The goal of multimodal interpretation is to determine the semantic meaning of user

inputs. Different input modes carry different cues about the meaning of a user’s

behavior. Gesture is considered an active input mode because a user must make a

conscious decision to produce this type of input. Conversely, lip movements, facial ex-

pressions, and eye gaze are considered passive input modes because they are naturally

occurring byproducts of interaction. Active input modes tend to be more reliable in-

dicators of user intent [67]. However, passive input modes are unobtrusive and easily

available. They are typically used to assist the prediction and interpretation of active

input modes [67]—most commonly, speech.

One important aspect of multimodal interpretation is multimodal reference reso-

lution: the process of identifying the best matching referent (object in the physical

or virtual world) for each spoken referring expression in an utterance. This requires

the use of automatic speech recognition (ASR), which may often be erroneous. Even

with perfect ASR, language ambiguities make it challenging to determine which ref-

erent objects are referred to with a spoken expression. In multimodal conversational

interfaces, supporting input modes to speech are often used to disambiguate these

expressions. Another challenge, especially during spontaneous conversation, is that

words contained in users’ referring expressions are out of the vocabulary of this conver-

sational system’s domain. When such referring expressions are repeated many times

throughout the conversation, it is possible for the system to learn new vocabulary

using grounded language acquisition techniques.
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2.2.1 Multimodal Reference Resolution

Much of the previous work on multimodal reference resolution has focused on com-

bining speech and deictic gesture inputs. Chai et. al. used a greedy approach based

on cognitive and linguistic theories to interpret speech, gesture, and visual informa-

tion with a map-based user interface [10, 13]. Johnston et. al. used unification [37]

and finite state [38] approaches to parse multimodal input in a map-based domain.

Like deictic gestures, eye gaze provides information about a user’s focus of attention.

The difference is that eye fixations are produced subconsciously, there are far more

eye fixations than gestures during interaction, and eye gaze data is much more noisy

than deictic gesture data. This makes eye gaze more challenging to process than

deictic gestures. Additionally, different cognitive factors govern the relationship be-

tween speech and gesture vs. speech and eye gaze. Thus, speech & gesture reference

resolution should not be reused directly and new algorithms need to be constructed

for fusing speech and eye gaze.

2.3 Modeling User Attention

Most previous work on modeling user attention in a multimodal conversational en-

vironment uses image processing techniques to predict which objects are likely to

be talked about. These studies work on immersive visually rich domains. This en-

ables objects appearing on the interface to be differentiated based on their visual

properties. Eye tracking is mentioned as a potential alternative or even complement

to their techniques, but no data exists supporting this possibility. Some studies do

indeed use eye tracking to model user attention in a conversation system. However,

these studies examine the use of eye gaze as an active mode of input that controls

the navigation of the interface. Additionally, these studies use relatively simple vi-

sual displays. Instead, we utilize eye gaze as a passive input mode that supplements
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speech (the dominant active input mode) in a visually rich domain.

2.3.1 User Attention Modeling via Image Processing

There has been a long-standing goal in AI, HCI, and NLP research to integrate nat-

ural language and visual processing [57]. Much of this effort has focused on natural

language understanding in interfaces that provide a visualized virtual space. Such

interfaces allow users to manipulate objects and refer to these objects using situated

language. Byron [6, 7] defines situated language as language that contains the fol-

lowing two properties: immersion and mobility. Situated language is spoken from a

particular point of view within a visual environment. One of the earliest and most

famous systems to integrate natural language and visual processing is Winograd’s

SHRDLU [87]. It is capable of having a dialogue with a user concerning the activity

of a simulated robot arm in a simple blocks world. Other systems include DenK [47]

and VIENA [40]. Recently, more systems have begun focusing on modeling visual

context to assist natural language understanding [25, 45, 7]. Kelleher [45] and By-

ron [7] explicitly model visual context as user visual attention via image processing

techniques.

Using image processing techniques to model visual salience has been a popular

methodology. These techniques model one of the two types of attentional salience that

is exhibited by humans: bottom-up image-based saliency cues [48]. These cues are

independent of the nature of a particular task. They can be thought of as subconscious

and pre-attentional. Factors such as visual familiarity, intentionality, object category,

an object’s physical characteristics relative to other objects in the scene, and the

geometrical layout of the scene affect the visual salience of an object [50]. Typically,

objects that deviate most from their visual context tend to be most salient [48].

These objects tend to “pop-out”, making them the focus of attention in later stages

of visual processing [63]. For example, a red object amongst many green objects
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will be visually salient. The second form of attention is a deliberate top-down form

of attention that requires an effort from the user. This form of visual attention is

governed by the user’s goals during a particular task. For example, attempting to

find a red horizontal target. The amount of time required to deploy this conscious

form of visual attention is on the same order of magnitude as the time necessary to

make an eye movement [48]. Both mechanisms can operate in parallel.

Thus far, modeling bottom-up attentional salience has been more fruitful than

modeling the top-down more deliberate attention. Modeling image-based saliency

cues has the advantage of being domain and task independent. There is also much less

deviation between humans in how they exhibit this type of attention. Additionally,

well established 3-D graphics techniques are good candidates for this type of modeling.

Two categories of graphics models exist: ray casting and false coloring. “Ray casting

can be functionally described as drawing an invisible line from one point in a 3-D

simulation in a certain direction, and then reporting back all the 3-D object meshes

this line intersected and the coordinates of these intersections [46].” This technique

is often used in offline rendering of graphics, but it is typically too computationally

expensive to use for real-time graphics rendering.

The false coloring technique is more suitable for real-time graphics rendering and

is thus more useful for modeling visual attention. In this model, each object on the

interface is assigned a unique color or vision ID [65]. This color differs from the

color displayed on the interface and is only used for off-screen attentional salience

modeling [45]. In the LIVE project Kelleher et. al. [45, 46] use the false coloring

technique to model visual salience. This is done for the purpose of identifying which

objects in the visual environment are likely to be referred to during speech. Their

basic assumption is that an object’s salience depends on its size and centrality within

a scene. Thus, in their algorithm, each pixel of the false-colored image is weighted

according to its centrality in the scene, with pixels closer to the center receiving
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higher weight. Then, all weighted pixels of the same false color, corresponding to

a unique object, are summed together to construct the object’s salience score. At

each point in time during interaction with the LIVE system, objects can be ranked

by their salience scores. Kelleher et. al. only accommodate a small portion of the

visual salience factors described in [50], but they claim that this is a reasonable visual

salience model that is capable of operating in real-time. Furthermore, the use of false

coloring allows their algorithm to naturally account for the effects of partial object

occlusion [45].

Byron et. al. [6, 7] construct a more sophisticated visual salience model for the

purpose of coreference resolution in a situated dialogue utilizing the Quake II game

engine. In this domain, as in the LIVE project, the field of view presents as ongoing

data stream. However, Byron et. al. explicitly model the temporal features of the

domain along with the visual features described in [50] and [45]. Additionally, in

this domain, the object centrality feature turns out to be a poor indicator of visual

salience due to some navigational control difficulties presented by the interface.

The predominant features considered in Byron’s attentional salience model include

uniqueness (U), recency (R), and persistence (P). An object’s uniqueness—deviation

from context—causes it to become attentionally salient. Here, the uniqueness of

an object is modeled based on its frequency of occurrence in a given time window.

Initially, all objects have the same uniqueness value. Over time, objects that appear

in the field of view more frequently are penalized. Once an object drops out of the

field of view, it is assumed that its attentional salience decays with time. This decay

is modeled by a Gaussian function, which ensures exponential decay. The recency of

an object partially depends on its persistence—the amount of time it was visible prior

to going out of view. The computations of recency and persistence are consistent with

the decay of visual memory [23].
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2.3.2 User Attention Modeling via Eye Gaze

In the iTourist project, Qvarfordt et. al. [78, 77] attempt to take a step toward

using eye gaze as an integrated channel in a multimodal system. They attempt to

determine the visual salience of each object as a user views a map interface designed

to facilitate a trip planning task. As people gaze at objects on the screen, a salience

score (IScore) is calculated for each object. Once this score reaches a predefined

threshold, the object becomes activated and the system provides information about

this object to the user. In this scenario eye gaze is knowingly used by a participant

as an active mode of input.

In this project, the salience score (IScore) was determined by a quadratic com-

bination of eye gaze intensity along with a linear combination of auxiliary features

extracted from eye gaze data. The most important factor in this salience score is the

absolute fixation intensity measure, which is the amount of time object o is fixated in

a given time interval. The auxiliary features considered in this work include fixation

frequency, object size, the categorical relationship with the previous active object,

and the IScore of the previous active object.

Qvarfordt’s IScore measurement is a good starting point for modeling attentional

salience using eye gaze. However, it has several deficiencies that we would like to

overcome. First, it uses eye gaze as an overt conscious mode of input as opposed to

our use of eye gaze as a subconscious auxiliary input mode. This represents itself

in the features where the IScore depends on the previously activated object. In our

scenario, these features are unavailable. Second, the domain used in this work is not

very visually rich and does not demonstrate the use of situated language. Finally, the

influence weight constants are empirically defined. These weights may be dependent

on the given domain or particular task; thus, it is preferable to construct a domain-

independent attentional salience model.
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2.4 Eye Gaze

Previous psycholinguistic studies have shown that eye gaze is one of the reliable

indicators of what a person is “thinking” about [30]. The direction of gaze carries

information about the focus of the user’s attention [41]. Even though there may be

some dissociation between covert visual attention and overt visual attention, which is

expressed in the form of eye movements, behavioral neurophysiological studies have

shown a tight coupling between the two [21, 30]. In this section, we discuss studies that

have utilized eye gaze information during language production and human-machine

communication.

2.5 Role of Eye Gaze in Language Production

Eye gaze has been continually used as a window to the mind in language compre-

hension and production studies. In human language processing tasks specifically, eye

gaze is tightly linked to cognitive processing. Tanenhous et. al. conducted an eye

tracking study to determine that the perceived visual context influences spoken word

recognition and mediates syntactic processing [85]. Meyer et. al. [59] studied eye

movements in an object naming task. It was shown that people consistently fixated

objects prior to naming them. Griffin [28] showed that when multiple objects were

being named in a single utterance, speech about one object was being produced while

the next object was fixated and lexically processed.

Our work differs from these studies in several ways. First, our goal is to improve

automated interpretation of utterances rather than to study the reasons that such

utterances are made. Second, our domain contains a richer visual environment. Third,

utterances produced in our setting are conversational in nature.
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2.6 Role of Eye Gaze in Human-Machine Commu-

nication

Initially in human-machine interaction, eye gaze was used as a pointing mechanism

in direct manipulation interfaces [34] or as an auxiliary modality to speech during

multimodal communication [8, 78, 43]. However, these studies have shown that people

prefer not to use eye gaze as an active input mode, but do not mind using eye gaze

as a passive input mode.

As eye tracking technology becomes more available, eye gaze information is being

used more frequently in human-machine communication as an implicit, subconscious

reflex of speech. During interaction with a multimodal conversational interface, the

eye automatically moves towards the object of interest without the user needing to

make a conscious decision to do so. In fact, the user is often unaware of every object

that was visually attended.

Eye gaze has been used to facilitate human-machine conversation and automated

language processing. For example, eye gaze has been studied in embodied conver-

sational discourse as a mechanism to gather visual information, aid in thinking, or

facilitate turn taking and engagement [61, 3, 80, 60, 2]. Recent work has explored

incorporating eye gaze into automated language understanding such as automatic

speech recognition [75, 17], automated vocabulary acquisition [54, 76], and attention

prediction [78, 20]. While, an improvement in speech recognition is likely to lead

to an improvement in reference resolution and overall multimodal interpretation, it

is insufficient for avoiding all possible reference resolution errors. Even with perfect

speech recognition, language contains enough ambiguity to make reference resolution

a challenging task. For example, given a display containing two (or more) chairs and

the spoken utterance “I would remove that chair”, it is impossible to identify which

chair is being referred to based solely on this utterance. We use eye gaze and visual
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context information to handle such ambiguities.
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Chapter 3

Eye Tracking Technology

3.1 Introduction and Motivation

Major developments in eye tracking technology have been seen in recent years. These

developments are making eye trackers increasingly more accurate, less intrusive, and

less expensive. The tradeoff between these three criteria makes choosing an eye

tracking system a non-trivial task. The following three decisions must be made when

choosing an eye tracker for an experiment:

• Infrared vs. visible light data processing

• Head-mounted vs. remote

• Single camera vs. multi-camera

Eye trackers that use infrared imaging to determine eye gaze position tend to

be significantly more accurate in a laboratory setting than those that use the visible

light spectrum. However, infrared eye trackers are less suited for use outdoors because

of interfering infrared light. Infrared eye trackers use hardware specific methods to

determine eye gaze position. Conversely, eye trackers that work with the visible light

spectrum employ more computationally expensive image processing techniques in

software. Commonly used commercial eye trackers employ infrared imaging. There
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are multiple open source and research prototype eye tracking systems that employ

imaging using the visible light spectrum.

Head-mounted eye trackers tend to be more accurate and more obtrusive than

remote eye trackers. Here, remote eye tracking refers to “a system that operates

without contact with the user and permits free head movement within reasonable

limits without losing tracking [58].” The first remote eye trackers were composed of a

multi-camera setup (which reduces the need for camera calibration), but most recent

commercial and research technology in both head-mounted and remote eye tracking

is based on a single camera setup.

People who are predominantly interested in eye tracking accuracy (e.g. vision and

psycholinguistic researchers) are best served by infrared head-mounted eye track-

ers. People who are interested in unobtrusive, relatively high-accuracy, real-time eye

tracking (e.g. HCI analysis) are best served by infrared remote eye trackers. People

who are interested in inexpensive outdoor or off-line eye tracking are best served by

eye tracking based on the visible light spectrum.

The research focus of this dissertation, eye gaze for reference resolution in mul-

timodal conversational interfaces, does not directly fall into any of these three cate-

gories. However, can be best suited by an infrared remote eye tracker which allows

for unobtrusive, accurate, real-time eye tracking. In our research, eye gaze is used

to predict a user’s focus of attention. This attention prediction model is then used

to improve language understanding via improved reference resolution. Much of this

work consists of offline processing of collected user speech and eye gaze data. Thus,

there is potential for using inexpensive webcam based eye tracking for a portion of

this research. On the other hand, part of this research is investigating fine grained

temporal relationships between spoken referring expressions and corresponding eye

fixations. Commercial infrared eye trackers are more suitable for this investigation.

Webcam-based eye trackers are becoming more suitable for this task as more efficient
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algorithms for detecting eye gaze position are being developed and computer systems

are gaining in processing power.

In the following sections, I will discuss the potential eye tracking technology for

the aforementioned research. First, I will describe the eye tracking requirements

for our investigation. Then, I will compare the available eye tracking technology.

Finally, I will determine which of the eye trackers is best suited for completing this

investigation.

3.2 Requirements

As a part of our investigation, we must conduct user studies to gather user inter-

action data with multimodal conversational interfaces. For example, one user study

(described in detail in §4.3) consists of a Treasure Hunting task in an immersive, sit-

uated game environment. The user study is expected to use a 17 inch LCD monitor

with 1280x1024 resolution. This is equivalent to 41.9 and 33.5 pixels per cm in the

horizontal and vertical directions, respectively. The distance between the user and

the screen (including the eye tracker) is expected to be approximately 60 cm. The

user is expected to interact with the system for a duration of 30 minutes or until the

Treasure Hunting task is finished. In the preliminary user studies, no users were able

to finish the task in less than 30 minutes.

In choosing an eye tracker for any user study, there are several statistics to keep in

mind. These include eye gaze position accuracy, sampling rate, and range of allowable

head movement. Eye gaze position accuracy is typically expressed in terms of visual

angle. It can be converted to distance on the screen if the distance between the user

and the screen as well as the screen resolution are known. For a specific experiment,

the required eye gaze position accuracy is dependent on the screen resolution and

the size of the objects that appear on the interface. If the objects are large and only
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a few objects can appear on the screen at one time, fixations to the correct object

can be identified even with low eye gaze position accuracy. Sampling rate refers to

how often a gaze position is recorded and is typically expressed in Hertz (Hz). The

required sampling rate is dependent on the temporal granularity of the user behavior

to be analyzed. For example, a very high sampling rate is needed to study saccades

because they constitute very rapid eye movements. The range of head movement

refers to the distance (typically measured in centimeters), relative to the position the

head is in during camera calibration, in each of three directions a user’s head can

move without a noticeable degradation in accuracy. The required head movement

range is unlikely to be a bottleneck for the experiments discussed in this dissertation.

Users are expected to move their head freely, but not excessively.

3.2.1 Eye Gaze Position Accuracy

Since eye gaze position is used to determine which object is fixated, the size of the

objects appearing on the interface is critical. Ideally, we would like to ensure that

given a gaze position for an intended object the system is 95% confident that a

sampled gaze point will fall onto this object.

A rough estimate for required gaze position accuracy for the situated environment

can be estimated from data for the static environment. The object sizes in these two

environments are comparable. In the static environment area of the smallest object

1700 pixels when viewed on the screen. The average size for a fixated object is 18208

pixels. A rough approximation for the maximal gaze position accuracy for this setup

can be computed. It is important to note that intentional fixations to an object

tend to occur near its center. This is especially true for small objects. Thus, a

better estimate of required gaze position accuracy is to consider the smallest object

of interest in our study and assume that a user will fixate the exact center of this

object. To simplify this calculation, this object is assumed to have circular shape with
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radius =

√
1700

π
= 23.26 pixels. The results for 95%, 90%, and 80% object

fixation confidence for this scenario are shown in Table 3.1. These estimates are a bit

optimistic for this object because a user is not guaranteed to attempt to fixate on its

exact center. However, larger objects have a much higher gaze-position error tolerance

even if an off-center point is fixated. Thus this is a reasonable approximation for the

maximum gaze position error that can be tolerated

Confidence Level Maximum Error Approximation (in pixels)
95% 23.86
90% 24.52
80% 26.01

Table 3.1: Maximum Allowable Gaze Position Error

3.2.2 Sampling Rate

The required eye tracking sampling rate is dependent on the temporal granularity of

the phenomena to be observed. In our investigation, we are interested in observing

fixations to objects that can be cognitively processed. According to psycholinguistic

studies, fixations lasting as little as 20 ms can be cognitively processed. In the data

we collected for the static scene scenario, the shortest fixation length is 52 ms, the

mean fixation length is 356 ms with a standard deviation of 281 ms.

One important aspect of an eye tracking system is determining whether or not

a gaze point constitutes a fixation. Fixations are typically detected by comparing

a series of consecutive gaze points. If the gaze position is approximately the same

during a series of gaze points whose total length is at least 20 ms, then this series

is deemed to be a fixation. Based solely on a single gaze point, it is impossible

to determine whether this gaze point constitutes a saccade or a fixation. Thus the

minimum acceptable sampling rate for detecting every fixation in our data is 2 gaze

points per 52 ms or, equivalently 38.46 Hz. Detection of 95% of fixations may be
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sufficient. In our data, fewer than 5% of fixations are 120 ms or shorter. Thus, for

this data a sampling rate of 2 gaze points per 120 ms (16.67 Hz) may be acceptable.

3.3 Eye Tracker Comparison

As mentioned in §3.2, available eye trackers vary in eye gaze position accuracy, sam-

pling rate, and range of allowable head movement. In the following sections I will

compare four eye tracking systems according to these three criteria. Two of the sys-

tems are commercial systems based on infrared imaging, while two of the systems

are low cost research prototypes. The Eye Link II is a commercial head-mounted eye

tracker, while the OpenEyes [52] is a low cost head-mounted alternative. OpenEyes

is an open-source open-hardware toolkit for low-cost real-time eye tracking. It uses

a USB web camera with a resolution of 640x480 pixels and with a frame rate of 30

Hz. The Tobii eye tracker is a commercial remote eye tracker, while the web camera

based eye tracker described in Hennessey, et. al. [31] is a low cost alternative. This

eye tracking system also uses a camera with a resolution of 640x480 pixels and with

a frame rate of 30 Hz. Other research prototypes [66, 79, 88] are available. How-

ever, none of these have reported higher accuracies or sampling rates than the two

aforementioned options. Also, many of these have reported a smaller head movement

range. Additionally, Pedersen et. al. [69] claim that they can use a webcam for offline

processing of eye tracking data to achieve comparable performance to commercial eye

trackers, but they do not provide gaze position accuracy statistics for comparison.

3.3.1 Eye Gaze Position Accuracy

Eye gaze position accuracy is typically measured by having users perform a cali-

bration, and then looking at a number of evenly distributed points on the screen.

Accuracy is reported as the average deviation between the intended and measured
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gaze data points. It is typically expressed in terms of error in visual angle between

the actual gaze position and the gaze position predicted by the eye tracker. The

calculation of visual angle can be seen in Figure 3.1. Given the visual angle θ1, gaze

position error can be expressed in terms of distance |ba| using Equation 3.1. Given

|d| = 60 cm and a 41.9 pixels/cm screen resolution, gaze position error can be

expressed in terms of pixel length.

Figure 3.1: Calculation of Visual Angle — For interpretation of the references to
color in this and all other figures, the reader is referred to the electronic version of
this dissertation.

|ba| = tan(θ1)× d (3.1)

The gaze position error for four systems is shown in Table 3.2.

Visual Angle Distance Distance
(degrees) (mm) (pixels)

Eye Link II 0.5 5.24 21.99
Tobii 1750 0.5 5.24 21.99
OpenEyes [52] 1.0 10.48 43.98
Remote web camera [31] 0.9 9.43 39.58

Table 3.2: Eye Gaze Position Error
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Based on these findings, the two commercial eye trackers are clearly more appro-

priate for our investigation than the low cost research prototypes. The commercial

eye trackers fall within the 23.86 pixel maximum gaze position error length (as shown

in Table 3.1), while the research prototypes don’t come close. This table shows the

maximum allowable gaze position error in pixels for the smallest appearing object.

For objects as small as 46.52 pixels in width (corresponding to the smallest object

used in our study), an error of 39.58 pixels is unacceptable. For larger objects this

error may be acceptable.

It is important to note that these results were calculated under ideal conditions.

Head movement and systematic gaze drift can have a drastic effect on these error

lengths (typically doubling them in commercial eye trackers). These types of errors

can be minimized by often recalibrating the eye tracker during a user study. More

accurate eye trackers are preferred because frequent recalibration can be disruptive

during a user study.

3.3.2 Sampling Rate

The sampling or frame rate of a camera is typically reported in Hertz (Hz). The

sampling rates of four eye tracking systems are shown in Table 3.3.

Sampling Rate Sampling Rate
(Hz) (ms)

Eye Link II 250 4
Tobii 1750 50 20
OpenEyes [52] 30 33
Remote web camera [31] 30 33

Table 3.3: Eye Tracker Sampling Rate

Based on these finding, the Tobii 1750 eye tracker is most appropriate for this

investigation. It can achieve a sampling rate higher than the conservative requirement

of 38.46 Hz. The much higher sampling rate of the Eye Link II is likely unnecessary,
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albeit never harmful. The more lenient requirement of 16.67 Hz can be satisfied with

either of the two low cost alternatives.

3.3.3 Head Movement Range

The difference between the systems in terms of head movement range is immaterial

for eye tracking accuracy in the experiments presented in this dissertation. However,

a non-intrusive remote eye tracker with a large range of allowable head movement is

more suitable for human-computer interaction. The display-mounted Tobii 1750 eye

tracker enables natural human-computer interaction during which users may even

be unaware that their eye gaze is being tracked. The Eye Link II head-mounted

eye trackers are less suitable for these experiments because they may make users

uncomfortable, thus affecting the interaction.

3.4 Summary

The analysis in this chapter shows that the Eye Link II and the Tobii 1750 eye trackers

are both adequate for our investigation. The low cost research alternatives may be

adequate under ideal conditions, but are not ready to be used for our eye tracking

needs. Given a choice between the two commercial eye trackers, the Tobii 1750 is

preferred because it is a remote rather than head-mounted eye tracker. This has

the advantage of it being unobtrusive to the user, and thus is more suitable for the

experiments presented in this dissertation.
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Chapter 4

Parallel Speech and Eye Gaze Data

Corpus

4.1 Introduction

Currently, there is no publicly available data corpus that contains a combination of

spontaneous speech and eye movement. As far as we know, only a few studies track

spontaneous speech and eye movement in a visually rich domain [16] [78]. Cooke

[16] has constructed a corpus containing “eye movement direction data and related

spontaneous speech for an unscripted, visually oriented, task constrained, human-

to-human dialogue.” A map-based domain was used for this study. Eye gaze is

utilized as a supplemental input mode to assist in spoken language understanding.

Qvarfordt et. al. [78] also used a map-based domain, but collected speech and eye

movement data during a human-computer dialogue. In this study, eye gaze indicates

user attention and signifies to the computer system that more information is desired

about a particular object appearing on the visual display.

Our aim is to construct a corpus of spontaneous conversational speech and eye gaze

in a visually rich domain. Similarly to [16], eye gaze is not used to directly manipulate

28



the interface, but rather as a supplemental mode of input to assist spoken language

understanding. Similarly to [78], the collected speech portrays a dialogue between

a human user and a computer system. Moreover, our investigation requires a richer

visual domain than exemplified in these studies.

The rest of this chapter describes two domains and corresponding user studies

that were used to construct a parallel speech and eye gaze data corpus consisting of

two datasets. A domain with a static visual interface is described in §4.2 and the

experimental design used for data collection within this domain is presented in §4.2.2.

A domain with a more complex immersive visual interface is described in §4.3 and

the experimental design for this domain is presented in §4.3.2. The resulting parallel

data corpus is described in §4.4. With the data corpus collected in these studies, we

are capable of addressing the research questions proposed in §1.2.

4.2 Static Domain

4.2.1 Interaction Environment

In the first user study, a static multimodal conversational interface is used to collect

speech and gaze data. Users view a 2-dimensional snapshot of a 3-dimensional virtual

bedroom (shown in Figure 4.1) and answer a series of questions about what they

observe. In this figure, each object is shown with a unique ID that is hidden from

the users. The scene used in this experiment contains objects such as a door, a bed,

desks, chairs, etc. It contains many distinct yet similar objects, most of which users

are familiar with. Some of the objects in the room are arranged in a typical expected

fashion, while other objects are out of place. Many objects visually overlap (are in

front or behind) other objects.

Each object is defined as a Region of Interest that the system “knows” about. Each

Region of Interest belongs to a generic semantic category. The object categorizations
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Figure 4.1: Virtual Bedroom Scene
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Semantic Category Contained Objects (Ids)

bed {19}
blanket {21}
candle {26}
chair {7, 25}
curtains {5}
door {22}
lamp {3, 8, 11, 17, 23}
mirror {9}
picture {1, 2, 14, 15}
pillows {20}
plant {27}
table {12, 18, 24}
window {6}
OTHER {4, 10, 13, 16, 28}

Table 4.1: Semantic Categories in Virtual Bedroom

are shown in Table 4.1. This table shows the semantic categories with corresponding

objects in the virtual bedroom scene. More detailed visual and linguistic information

that is made available to the system is shown in Appendix A.

The rationale behind using this scene lies particularly in that this interface ex-

hibits the aforementioned traits. One important trait is that multiple similar objects

(e.g. multiple paintings) shown on the interface. This is likely to cause users to use

similar vocabulary when referring to these objects, allowing eye gaze to be used as

a disambiguation mechanism. Having distinct objects in the scene allows users to

unambiguously refer to a particular object. This allows us to demonstrate the useful-

ness of utilizing eye gaze in spoken language understanding without constraining the

scenario to require eye gaze for language interpretation. Another important trait is

allowing the scene to contain overlapping objects. This complicates the problem, but

makes it more realistic. When objects overlap, the direction of eye gaze does not pro-

vide sufficient amount of information to uniquely determine the object of attention.

Thus, eye gaze becomes less reliable. We believe that it is important to consider

and be able to deal with this problem. One more important trait is having some
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unexpected objects shown on the interface. According to vision studies, users are

more likely to attend to an object in a scene if it contains unexpected characteristics;

that is, significantly deviates from its surrounding objects. For example, a red object

among many green ones or a toaster in a barn. As discussed in [28], users are likely

to attend objects as they prepare to speak about them. These two phenomena may

come into conflict. Placing some unexpected objects in the visual environment allows

us to study whether one of the two phenomena dominates.

4.2.2 Experimental Design

Participants

Ten participants partook in the experiment. Of these, data for 4 participants had to

be thrown out. Three were thrown out because inaccurate eye gaze tracking and one

because of a failed speech recording. The remaining 6 participants were comprised of

a mixture of graduate students and faculty from Michigan State University. Three

were male and three were female. Four were native English speakers, while two spoke

English as a second language.

Procedure

Users are asked to answer a series of questions about various objects in the virtual

bedroom described in §4.2. These questions range from factual questions about par-

ticular objects to open-ended questions about collections of objects. For example, the

following three questions were included in this experiment:

• Is there a bed in this room?

• What do you dislike the most in this room?

• How would you like to change the furniture in the room?
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SR Research Experiment Builder1 is used to construct the experiment procedure.

Our experiment involves 14 trials (one per question) that are split into 3 sessions.

Each session is preceded by eye tracker calibration. Frequent re-calibration of the eye

tracker ensures accuracy. Vision studies suggest re-calibrating the eye tracker at least

every 10 minutes. In our study, each session takes less than 10 minutes.

A particular trial involves displaying the scene to the user, asking the user a

question about the scene, and recording their response as well as eye gaze. The user

decides when he or she is finished with the trial by pressing any key on the keyboard.

The trial flowchart is shown in Figure 4.2.

Each trial is followed by drift correction that forces the user to look at the center

of the screen. This has a dual purpose. First, it acts as a mini-calibration that

compensates for the drift between the eye and the crosshairs on the eye tracker.

Second, it ensures that all trials begin with the user looking at the same point in the

image. This eliminates any user bias of looking at a particular object before speech

onset.

Apparatus

The Eyelink II head-mounted eye tracker (shown in Figure 4.3) sampled at 250 Hz

is used to track user eye movements. Eye gaze points were garnered using only pupil

reflection (rather than pupil and corneal reflection). The eye tracker automatically

saves the screen coordinates and time-stamps of each gaze point. The collected raw

gaze data is extremely noisy. The data is processed to eliminate irrelevant gaze

points and smoothed to identify gaze fixations. The fixation compilation procedure

is described in more detail in §4.4.1. All regions of interest circumscribing a fixation

point are considered to be fixated.

Concurrently with eye tracking, user speech data is recorded using a noise-canceling

1http://www.sr-research.com/optns_eb.php
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Figure 4.2: Screenshot of Trial Flowchart Constructed with SR Research Experiment
Builder

Figure 4.3: Eyelink II Head-Mounted Eye Tracker
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microphone and the Audacity Sound Editor2. Each utterance is manually transcribed

and annotated with the help of the Audacity toolkit. Each referring expression in

the utterance is annotated with the correct references to either a single object (region

of interest found in the eye gaze data) or multiple objects. The resulting data set is

used to conduct our investigation.

4.3 Immersive Domain

4.3.1 Situated Interaction Environment

For the second user study, we created a 3D virtual world (using the Irrlicht game

engine3) to collect data containing situated language and eye gaze. We conduct a

Wizard of Oz study in which the user must collaborate with a remote artificial agent

cohort (controlled by a human) to solve a treasure hunting task. The cohort is an

“expert” in treasure hunting and has some knowledge regarding the locations of the

treasure items, but cannot see the virtual environment. The user, immersed in the

virtual world, must navigate the environment and conduct a mixed-initiative dialogue

with the agent to find the hidden treasures. Such an environment allows us to study

situated language in a spatially rich, purposeful, and easily controllable environment

as is sometimes done in video game environments [25].

A snapshot of a sample interaction with the treasure hunting environment is shown

in Figure 4.4. Here, the user has just entered a computer room and is currently

fixating on the file cabinet. The user’s eye fixations are represented by white dots,

while the user’s saccades (eye movements) are represented by white lines.

The treasure hunting environment contains similar types of objects as the bedroom

scene described in §4.2. A user can navigate through this environment and converse

2http://audacity.sourceforge.net
3http://irrlicht.sourceforge.net/
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Figure 4.4: Screenshot of Situated Treasure Hunting Environment

with the system while viewing the objects from any vantage point the user prefers.

This means that objects that are being referred to by the user may visually overlap

(e.g. the chair and the file cabinet object in 4.4) or may no longer be in the field

of view, altogether. Each object is specified by a three dimensional model whose

location relative to the environment, and consequently relative to the field of view

is available to the system. In total 155 unique objects that encompass 74 different

semantic categories (e.g. chair, plant, cabinet, etc.) are present in the treasure

hunting environment.

4.3.2 Experimental Design

Participants

Sixteen participants partook in the experiment. Data for one of the participants had

to be thrown out because of a failure in training an automatic speech recognition
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user model. All of the participants were comprised of students from Michigan State

University.

Procedure

Users are presented with a virtual castle and a treasure hunting task. They are told

to navigate the castle and communicate with an artificial conversational assistant to

find the treasure. The assistant has partial knowledge about where the treasure is

and how to find it. The user has additional knowledge about what can be seen in

the castle environment. Together they are responsible for deciphering this puzzle. In

reality the conversational assistant consists of a Wizard of Oz interface operated by

a human. All user speech and eye gaze is automatically recorded by the system.

Apparatus

The Tobii 1750 display-mounted eye tracker (shown in Figure 4.5) sampled at 50 Hz is

used to track user eye movements. Eye tracking is integrated into the treasure hunting

interface; automatically saving the screen coordinates and time-stamps of each gaze

point. The noisy raw gaze coordinate data is is processed to eliminate irrelevant gaze

points and smoothed to identify gaze fixations; described in more detail in §4.4.1.

Each object in the line of view of a fixation constitutes a potentially fixated object;

with an object in the foreground being assigned a higher fixation probability than

one in the background.

Automatic speech recognition (ASR) is also integrated into the treasure hunting

interface. A noise-canceling microphone is used to record user speech data. Mi-

crosoft Speech SDK is used to construct an n-best list of ASR hypotheses for each

user utterance. Each utterance in this data is manually annotated to include speech

transcription, identification of referring expressions, and the set of objects that the

expressions refer to.
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Figure 4.5: Tobii Display-Mounted Eye Tracker

4.4 Data Processing

As mentioned in §4.1, our goal is to construct a parallel corpus of spontaneous con-

versational speech and corresponding eye gaze. The collected data, as it is described

above, cannot serve this purpose. It needs to be post-processed in order to construct

the desired parallel corpus. The following sections describe this in more detail.

4.4.1 Postprocessing of Eye Movement Data

The collected raw gaze data is extremely noisy. The raw data consists of the screen

coordinates of each gaze point sampled at every four milliseconds. As can be seen in

Figure 4.6(a), this data is not very useful for identifying fixated objects. This figure

shows all of the gaze points occurring for a particular trial of a particular user study.

The raw gaze data is processed to eliminate irrelevant gaze points and smoothed to

identify fixations. Irrelevant gaze points occur either when a user looks on-screen

or when a user makes saccadic eye movements. Vision studies have shown that no

cognitive processing occurs during saccadic eye movements; this is know as “saccadic

suppression” [56]. In addition, to removing invalid gaze points the data is smoothed

by aggregating short, consecutive fixations. It is well known that eyes do not stay

still, but rather make small frequent jerky movements. In order to best determine
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fixation locations, five consecutive gaze locations are averaged together to identify

fixations. The processed eye gaze data can be seen in Figure 4.6(b). Here, each point

represents a gaze fixation. The gaze fixations tend to be congregated around regions

of interest.

(a) Raw fixation on the display (b) Smoothed fixation on the display

Figure 4.6: The 3D Room Scene for User Studies and Eye Fixations on the Interface

Given a domain model specifying the location of each object on the screen, the

gaze fixation coordinates can be used to determine which objects are fixated at a

particular time. Note that it is impossible to uniquely identify exactly which object

is fixated at a given moment because several objects may overlap. The resulting eye

gaze data consists of a list fixations, each of which is time-stamped and labeled with

a set of potentially attended interest regions.

4.4.2 Annotation of Speech Data

Speech data acquired from user interaction with the static multimodal interface is

manually transcribed and timestamped with the help of the Audacity toolkit. This

toolkit is used to detect pauses (short periods of silence in the speech signal). The

beginning of a pause signifies the end of a word, while the end of a pause signifies the

beginning of the next word. This information is used to determine the start and end
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timestamp of each word in the transcript.

Speech data acquired from user interaction with the immersive multimodal inter-

face is also manually transcribed. However, the timestamp information is automat-

ically determined by combining the transcript with the ASR recognition hypotheses

that are generated by Microsoft Speech SDK.

In both data sets, each utterance is manually annotated with all referring expres-

sions. Each exophoric referring expression (one that refers to an object appearing in

the virtual environment) is labeled as either a definite or pronominal noun phrase.

Additionally, it is labeled with all of the objects that are being referred to by the

expression.

4.5 Summary

This chapter documents the design and collection of a parallel speech and eye move-

ment corpus within two domains. A user study was conducted for each domain,

resulting in two datasets. Dataset 1 is created via user interaction with the static

multimodal interface and is used for constructing attention prediction and reference

resolution models described in Chapters 5 and 6, respectively. Dataset 2 is created

via user interaction within the immersive virtual world and is used for constructing

reference resolution models described in Chapter 7. Both datasets contain annotated

spontaneous conversational speech with references to objects in the extralinguistic

environment along with eye fixations corresponding to the referenced objects.
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Chapter 5

Eye Gaze in Attention Prediction

5.1 Introduction

In a conversational system, determining a user’s focus of attention is crucial to the

success of the system. Motivated by previous psycholinguistic findings, we are cur-

rently examining how eye gaze contributes to automated identification of user atten-

tion during human-machine conversation. As part of this effort, we investigate the

contributing roles of various features that are extracted from eye gaze and the visual

interface. More precisely, we conduct a data-driven evaluation of these features and

propose a novel evaluation metric for performing such an investigation. In this chap-

ter, we describe this empirical investigation and discuss further implications of eye

gaze based attention prediction for language understanding in multimodal conversa-

tional interfaces.

This investigation differs from previous work in two aspects. First, previous stud-

ies examine the use of eye gaze as an active mode of input that controls the navigation

of the interface. This work has shown that gaze fixation intensity (commonly referred

to as dwell time) is an important feature for predicting user attention [78, 77]. More

precisely, the dwell time is the total amount of time that a particular object is fixated
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during a given time window, while the fixation intensity is the ratio betwen the dwell

time and the length of the time window (which is typically kept constant). The work

reported here addresses a different scenario, where speech is the main mode of inter-

action, while eye gaze is a naturally occurring byproduct. Second, unlike previous

investigation focusing on the role of eye gaze in language production [59, 27], our work

is conducted in a conversational setting that involves interaction between a user and a

machine. Additionally, as described in Chapter 4, a more visually rich domain is used

than in typical eye tracking studies. These unique settings, which have received less

attention, apply to a range of realistic and important problems that involve speech

communication between a user and a graphical display. This chapter investigates the

role of eye gaze in this important setting. Specifically, we attempt to address the

following research questions:

1. How are pertinent eye gaze fixations temporally distributed relative to spoken

utterances?

2. What effect do eye gaze based features have on performance of the user attention

prediction task?

3. Can auxiliary visual features further enhance the reliability of the prediction?

If so, what effect do different representations of these auxiliary visual features

have on performance of the attention prediction task?

4. What are appropriate evaluation metrics for measuring the reliability of different

features in the attention prediction task?

In the rest of the chapter we describe the problem in more detail and attempt

to answer these research questions. The attention prediction problem is formally

defined in §5.2. Sections §5.3 - §5.6 address the four research questions posed above.

Specifically, §5.3 explores the temporal alignment between speech and eye gaze, §5.4
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discusses the evaluation metrics used to conduct our evaluation, §5.5 describes the

features that are considered in our study, and §5.6 presents the experimental results of

our feature evaluation. Finally, §5.7 provides the highlights of what has been learned

from this investigation.

5.2 Problem Definition

We formulate the attention prediction task as an object activation problem. This

task involves identifying whether at a given time a particular object on the graphic

display is activated or not. An object is considered to be activated if it is, indeed, the

focus of attention. This problem can be modeled as a binary classification problem.

However, the binary decision of whether or not an object is activated is too coarse

to portray a realistic model of human focus of attention. Instead, we determine the

likelihood that each object is activated and rank the objects in descending order

based on their activation score (also called attentional salience score). This method

can be used to model a gradual change of the focus of attention with respect to time.

An object’s likelihood of activation, unlike its class label, cannot jump from 1 to

0 instantaneously. Additionally, this method allows us to make a more fine-grained

evaluation of our feature set because an object may have more possible ranking scores

compared to just two boolean values.

5.2.1 Object Activation Model

To serve our purpose, we chose the logistic regression model in our investigation. This

model can be used combine multiple continuous numerical features for predicting

object activation and because can directly compute the probability of an object to

be activated—this value can be used to rank object of activations. This approach

computes a model that best describes the data while minimizing assumptions made
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about how the data is generated (maximizing entropy). It can be used to objectively

determine the reliability of various features for the object activation task. Features

that consistently cause the model to achieve higher performance can be considered

more reliable.

Logistic regression uses a well-known objective function to determine the likelihood

that a given data instance belongs to a particular class [81]. This model assumes

that the log-ratio of the positive class to the negative class can be expressed as a

linear combination of features as in the following equation:

log

(
p(y+|−→x )

p(y−|−→x )

)
= −→x−→w + c (5.1)

where the following constraint holds:

p(y+|−→x ) + p(y−|−→x ) = 1 (5.2)

Here, y refers to the class label (in our case, y+ means activated and y− means

not activated),
−→x refers to the feature vector, and

−→w and c are parameters to be

learned from the data. Thus, the activation score can be formally defined in Equation

(5.3):

AS(−→x ) = p(y+|−→x ) =
1

1 + e−
−→x−→w−c (5.3)

The logistic regression model was chosen for this study because it can be used to

combine continuous numerical features in order to directly compute the probability

of an object activation, which can be used to rank objects according to the activation

score. Additionally, logistic regression has been shown to be effective for constructing

a ranking model within a small data set [70]. It would be useful to compare the logis-

tic regression results with other machine-learned ranking models. Ranking Support

Vector Machines (SVM) [32, 36] and Naive Bayes [91] models have been shown to be
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particularly effecting for creating ranking models for information retrieval. Decision

tree induction, classification rules, and neural networks have also been shown to cre-

ate competitive ranking models for certain domains. A comparison of these models is

out of the scope of this work. For a rigorous survey on ranking models, see the paper

“Learning to Rank for Information Retrieval” [53].

5.2.2 Dataset

The dataset used to develop the object activation model is derived from the Parallel

Speech and Eye Gaze Data Corpus described in Chapter 4. The collected eye gaze

data consists of a list fixations, each of which is time-stamped and labeled with a

set of interest regions. Speech data is time-stamped and each referring expression

in the speech utterance is manually annotated with the correct references to either

a single object (region of interest found in the eye gaze data) or multiple objects.

The data instances used to train and evaluate the various configurations of the object

activation model is constructed by segmenting the parallel corpus into frames.

Here a frame denotes a list of data instances occurring during a particular time

window W . Each frame corresponds to a spoken reference, while each data instance

corresponds to an interest area that is fixated during W . For each object that is

deemed to be attended (according to the human annotator), the corresponding data

instance is assigned the positive (y+) class label. For each object that is fixated, but

not referenced, the corresponding data instance is assigned the negative (y−) class

label. The feature vector for each data instance is computed from the eye gaze data.

The features are described in more detail in §5.5. In total, 449 frames containing

1586 data instances were used in the reported studies.

Currently, we have setW to [-1500..0] ms relative to the onset of a spoken referent

to an on-screen interest area. Other time windows are possible, but this one seemed to

achieve the best empirical results. This time window is comparable to prior language
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production studies, which have shown that users typically fixate an object between

0 and 1200 ms prior to naming the corresponding object in speech. In our case, a

slightly wider range for W is reasonable because our display is visually richer than

the one used in the aforementioned studies.

5.2.3 Activation Model Training

The Bayesian Logistic Regression Toolkit [22] provided by Rutgers University is used

to create computational models that rank objects of interest in a given time window

W based on their likelihood of activation. In the training phase the system automati-

cally learns the influence weights of our various features that maximize this function’s

correspondence with our data (or equivalently, minimizes deviation from our data).

Given an unknown data instance, the resulting model provides the likelihood that

this data instance belongs to the activated class.

5.2.4 Application of Activation Model

Here we discuss how to apply an activation model to rank objects of interest in a

given time window (represented as a frame of unclassified data instances). As we have

already mentioned, an activation model can provide the likelihood that a particular

data instance belongs to the activated class. Given a data frame associated with a

particular time window, the model is applied to each instance in the frame. The data

instances are then ranked in descending order based on their likelihood of activation

as determined by the model. Note that our data collection scheme guarantees that

each data instance in a particular data frame must correspond to a unique object of

interest. Thus, the result is a ranked list of objects.

A single set of data was used for both training and testing in this evaluation. A

rigorous evaluation should use other classification models as comparisons to logistic
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regression as well as a dedicated testing set for evaluation. However, this was not

done because this was a preliminary and exploratory study designed to determine

which features must be explored in more detail. The goal of this study was feature

construction rather than a rigorous feature evaluation. Moreover, the data set that

was used is very small: there are 449 time periods sampled; each time period is

1500-ms long and contains a mixture of 3.5 (on average) activated and non-activated

objects.

5.3 Temporal Alignment between Speech and Eye

Gaze

As a preliminary, to gain a better understanding of our problem and our dataset, we

investigate the alignment between the speech and eye gaze data streams. Previous

psycholinguistic studies have shown that on average eye gaze fixations to an object

in a visual scene occur 932 ms before the onset of a spoken reference in a language

production task [27]. Pertinent eye fixations—that is, those to objects that will be

referenced—can range anywhere from 1500 ms before onset up until onset of a spoken

reference. Knowing the range and the mean does not provide sufficient information

about the nature of pertinent eye fixations in our complex scenes. We also need to

know how eye gaze fixations are distributed relative to the onset of a spoken reference.

This will allow us to have a better understanding of which eye fixations are indicative

of attentional salience and which are irrelevant. Fixations that are deemed to be

pertinent can be given a higher weight in our object activation model. Additionally,

this experiment will allow us to validate our choice for time window W .

Figure 5.1 shows a histogram reflecting the percentage of pertinent fixations based

on the time difference between the onset of a fixation and the corresponding spoken

referring expression. Here the X-axis represents the starting point of a fixation within
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time window W , occurring prior to the onset of a reference to an object. This value

ranges from 1500 ms before reference onset until precisely at onset. Fixations are

aggregated into interval bins of 100 ms. The Y-axis represents the proportion of

fixations that contain an object matching the referenced object. This proportion was

calculated with the following procedure:

1. Each fixation is classified as pertinent or irrelevant. Irrelevant fixations are

those that do not contain an object that is reference within time window W .

Note that a several objects may be fixated during a single fixation. Also, note

that this classification occurs relative to a particular spoken reference. Thus, a

particular fixation can be classified as pertinent for one reference, but irrelevant

for another.

2. Each fixation is classified into a bin of length 100 ms. The bins represent

the amount of time that passes between the start of an eye fixation and an

object reference. Thus, for example, the bar between 300 and 400 represents

all fixations that begin occurring in the time range [-400..-300] relative to an

object reference.

3. To calculate the percentage, the number of pertinent fixations in each bin is

divided by the total number of fixations in this bin.

It is important to determine which time periods are most likely to generate a

pertinent fixation. However, the large spread indicates that pertinent fixations are

fairly evenly distributed during the 1500 ms time interval prior to a spoken reference.

Nevertheless, as can be seen from Figure 5.1, there is a general trend that a fixation

is more likely to be pertinent if it occurs close center of the 1500 ms time range rather

than on the outskirts. The fixation data is shown to have a negative skew. That is,

the left (lower value) tail of the graph is longer. Thus, a fixation is more likely to be
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Figure 5.1: Percentage of Pertinent Eye Fixations Grouped by Onset

pertinent if its to the right of the mean—further from the spoken reference, but still

within the 1500 ms time range—than to the left.

Figure 5.2: Percentage of Pertinent Fixated Objects Grouped by Dwell Time

It is also important to identify which fixation lengths are most likely to generate

a pertinent fixation. The length of any one particular fixation is not important as

the total dwell time for each object during the 1500 ms time window. The dwell

time is the sum of the lengths of all fixations to a particular object occurring during
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the given time window. Figure 5.2 shows the relationship between an object’s total

dwell time and likelihood of being referenced during speech. The total dwell time is

aggregated into 100 ms interval bins. For example, the bin marked 0 contains all of

the instances where an object’s dwell time was in the range (0..100] ms. This figure

shows a general trend that an object with a larger dwell time (or fixation intensity)

is more likely to be referenced than an object with a small dwell time. However, this

relationship is not completely monotonic.

5.4 Evaluation Metrics

To evaluate the impact of different features on attention prediction, we borrowed the

evaluation metrics used in the Information Retrieval (IR) and Question Answering

(QA) fields. In these fields, three key metrics have been widely used to assess sys-

tem performance are Precision, Recall, and Mean Reciprocal Ranking (MRR). In IR,

Precision measures the percentage of retrieved relevant documents out of the total

number of retrieved documents and Recall measures the percentage of retrieved rele-

vant document out of the total number of relevant documents. In QA, MRR measures

the average reciprocal rankings of the first correct answers to a set of questions. For

example, given a question, if the rank of the first correct answer retrieved is N , then

the reciprocal ranking is 1/N . MRR measures the average performance across a set

of questions in terms of their reciprocal rankings.

Given these metrics, we examined whether they could be applied to our problem

of attention prediction. In the context of attention prediction, the document retrieved

or answer retrieved should be replaced by objects activated. For example, the pre-

cision would become the percentage of the number of correctly identified activated

objects (i.e., those objects are indeed the attended objects) out of the total number of

activated objects. The reciprocal ranking measurement would become the reciprocal
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ranking of the first correctly activated object.

Since the result from the logistic regression model is the likelihood for an object

to be activated, it is difficult to precisely determine the number of objects that are

activated based on the likelihood. Presumably, we can set up a threshold and consider

all the objects with the likelihood above that threshold activated. However, it will

be difficult to determine such a threshold. Nevertheless, the likelihood of activation

can lead to the ranking of the objects that are likely to be activated. Thus, the

desired evaluation metric for this investigation should determine how well our model

ranks the objects in terms of possible activation of those objects. For these reasons,

we decide that the precision and recall metrics are not suitable for our problem and

MRR seems more appropriate.

Even with the MRR measurement, there is still a problem. MRR in QA is con-

cerned with the reciprocal ranking of the first correct answer; but, here in attention

prediction, multiple objects could be simultaneously attended to (i.e., activated) in

a given frame. We need to consider the reciprocal ranking for each of these objects.

Therefore, we extended the traditional MRR to a normalized MRR (NMRR) which

takes all attended objects into consideration. The normalized MRR is defined in

Equation (5.4)

NMRR =
MRR

UpperBoundMRR
(5.4)

where the upper bound MRR represents the MRR of the best possible ranking.

For example, suppose the logistic regression model ranks the likelihood of acti-

vation in a frame of four objects as shown in Table 5.1. Among these objects, only

lamp and bed lamp are referenced in user speech within this frame. In this case,

NMRR =
1/2 ∗ (1/2 + 1/3)

1/2 ∗ (1 + 1/2)
= 0.556 (5.5)

Here, the numerator represents the mean reciprocal ranking of the predicted acti-
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Object Class Label Rank
ID # Description

12 dresser - 1
3 floor lamp + 2
8 bed lamp + 3
19 bed - 4

Table 5.1: Sample Test Data Frame with Four Ranked Instances

vations in this frame. The denominator represents the MRR of the best possible

ranking, which in this case would rank lamp and bed lamp as the top two ranked

objects.

With the evaluation metrics defined, proceed to the feature evaluation.

5.5 Feature Evaluation

5.5.1 Eye Gaze Features

Gaze fixation has been shown to be closely tied to user attention. Fixation intensity

can be crudely defined as the length of a fixation upon an object in a visual scene.

Generally, long fixations signify that a user is attending to this object. This increase in

likelihood of attention increases the likelihood that this object will be referenced in the

user’s speech. Here, we describe four different representations of the fixation intensity

measure. The reason to consider these variations is to evaluate their potentially

different impact and reliability for prediction of user attention. We identified the

following variations:

• Absolute Fixation Intensity (AFI): the proportion of time spent fixating on an

object during a particular time window W . The time window considered in

this study ranges from onset of a spoken reference to 1500 ms prior to this

reference. Objects that are fixated for a long period of time are considered to

be more likely to be activated than those fixated for a short period of time.

52



• Relative Fixation Intensity (RFI): the ratio between the AFI of a candidate

object in time window W and the maximal AFI in W . An object may have a

low AFI, but still have a high RFI.

• Weighted Absolute Fixation Intensity (WAFI): As discussed in §5.3, not all fix-

ations are equally important in predicting user focus of attention. Presumably,

fixations appearing closer to the reported mean (758 ms prior to onset of a

spoken referent) are more indicative of the user’s true focus of attention. The

WAFI measure takes this factor into consideration by weighting the fixation

durations based on a skew-normal distribution. The weighting is done based on

Figure 5.1, which shows that this distribution seems to accurately describe the

eye gaze data.

• Weighted Relative Fixation Intensity (WRFI): ratio between WAFI of an object

and the maximum WAFI in a particular window W .

While fixation intensity is likely to be the most important factor, we hypothesize

that other auxiliary features can also contribute to the eye gaze behavior and thus

the prediction of attention. We discuss those features in §5.5.2.

5.5.2 Visual Features

Object Size

When users interact with a graphic display, the size of the object on the display can

potentially affect user eye gaze behavior, and thus affect the prediction of attention.

For example, it is difficult to fixate on small objects for long periods of time. People

instinctively make small jerky eye movements. Large objects are unaffected by these

movements because these movements are unlikely to escape the object boundary.

Thus our hypothesis is that small objects with a lower fixation intensity are still
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likely to be the attended objects (i.e., be activated by the eye gaze). To take this

effect into consideration, we use the object size to represent the area of a candidate

object relative to a baseline object (e.g., the largest object in the scene). To obtain

the value for this feature, each object is specified by a list of (x, y) scene coordinates.

An object’s area is represented by the bounding box considering only the minimal

and maximal x and y coordinates. The object size feature is normalized by taking

a ration of a candidate object to a baseline object (the largest object in the visual

scene).

Visual Occlusion

In a graphical display, it is likely that objects overlap with one another. The visual

occlusion of an object represents how much of this object is obstructed (by other

objects) from the user’s viewpoint. We hypothesize that when user eye gaze happens

to simultaneously fixate on two overlapping objects, the user is likely to be more

interested in the object appearing in front. Objects in the back are less likely to be

attended. This aspect can be considered on either a fixation level or a time window

level.

When considering visual occlusion on a fixation level, this feature can be used to

clarify ambiguous fixations. Ambiguous fixations are those for which a single unique

object cannot be determined. Fixations are partially disambiguated by removing

all objects that are visually occluded by another object within the duration of this

fixation. Unfortunately, this does not completely disambiguate fixations because a

fixation may cover the area of two non-overlapping objects if these two objects are

very close together.

When considering visual occlusion on a time window level—as a group of con-

secutive fixations in a particular time window—we calculate the amount of visual

occlusion for each object during a particular time window. To take this aspect into
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consideration, we can use the following two variations of this feature:

• Absolute Visual Occlusion: the area of an object that is obstructed from vision

by objects that were fixated during time window W .

• Relative Visual Occlusion: the percentage of an object that is obstructed from

vision. This value is equivalent to the ratio between Absolute Visual Occlusion

and Size for each object.

It is important to note the difference between representing visual occlusion on a

fixation level vs. a time window level. First, two objects may be considered visually

occluded during the entire time window, but not during any fixation in W . This

occurs, when two overlapping objects are fixated during W , but never at the same

time. Conversely, if an object is visually occluded during any fixation in W , its

Absolute Visual Occlusion and Relative Visual Occlusion measures must have non-

zero values. The other important difference is how this feature is used in our model.

When considering visual occlusion on a time window level, this feature is one of the

features used to create models for attention prediction. However, when considering

visual occlusion on a fixation level, it is not directly used in model creation. Instead,

it is used to preprocess the data, disambiguating indistinct fixations supplied to the

logistic regression framework.

Fixation Frequency

According to Qvarfordt [78], fixation frequency may be an important feature to con-

sider. This feature represents the number of times an object was fixated in W. For

example; if a user looks at an object, then looks away from it, and then looks back;

the fixation frequency for this object will be 2. According to Qvarfordt [78], when a

user looks back and forth toward an object, it seems likely that the user is interested

in this object.
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5.6 Experimental Results

To evaluate the role of fixation intensity (i.e., Question 2) and auxiliary visual features

(i.e., Question 3) in attention prediction, we conducted a five set cross-validation.

More specifically, the collected data are randomly divided into five sets. Four of these

sets are used for training, while the remaining set is used for testing. This procedure

is repeated five times, with alternating test sets, and the averaged results are reported

in the following sections. The object activation models were created using two data

sets. The first is the original data set described in §5.2.2, while the second is a

version of this same data set that is preprocessed to partially disambiguate fixations

to multiple objects. Fixations in the preprocessed data set are disambiguated using

the visual occlusion feature considered on a fixation level. That is, each fixation is

considered to correspond to a unique object appearing on the interface, namely the

frontmost object that is fixated.

5.6.1 Experiment 1: Eye Gaze Feature Evaluation

In this section we compare object activation models created by using each of the four

variations of the fixation intensity measure. The goal here is to determine the effect of

weighting fixations based on their distributions of starting times relative to a spoken

reference versus treating every fixation equally. First, we discuss the methodology

for creating weighted fixation intensity measures. Then we present results comparing

the various object activation models and discuss their implications.

To create our two weighted fixation intensity measures (WAFI and WRFI) we

use the statistics acquired about the distribution of fixations starts. More precisely,

we weight each fixation by a skew-normal density function [1] with mean, standard

deviation, and skewness discovered while addressing Question 1.

The results of each model constructed from its corresponding variation of the fix-
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Fixation NMRR Evaluation
Intensity Original Preprocessed Data Set
Variation Data Set (Disambiguated Fixations)

AFI 0.661 0.752
WAFI 0.656 0.745
RFI 0.652 0.754
WRFI 0.650 0.750

Table 5.2: Evaluation of Fixation Intensity Weighting using the NMRR Metric

ation intensity feature are are shown in Table 5.2. These results clearly indicate that

there is very little variation among the different representations of fixation intensity

across each of the two datasets. The first thing to note is that this lack of variation is

to be expected between relative and absolute versions of the same fixation intensity

measurement (AFI vs. RFI and WAFI vs. WRFI). This is because the evaluation

conducted here is based on mean reciprocal ranking. Given two objects in a single

time frame W, the one with the higher absolute fixation intensity is guaranteed to

have a higher relative fixation intensity. Thus, the object ranking remains unchanged.

The effect of weighting fixation intensity seems to decrease performance on the

object activation task. This decrease is virtually negligible. Nonetheless, this result is

somewhat vexing as we expected that weighting the fixation intensity would improve

prediction of object activation. One possible explanation for this lack of improvement

is that fixations are fairly evenly distributed during each time frame W. This makes

the weight function very flat and virtually insignificant. Another possibility is that

the distribution of fixation starts has multiple peaks rather than a single peak at

the mean as is the assumption of the normal distribution. Thus, neither the normal

distribution nor the skew-normal distribution accurately models the distribution of

eye fixation starts relative to spoken object references.
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Row Features Original Disambiguated
Data Set Data Set

AFI RFI AFI RFI

1 Fixation Intensity Alone 0.661 0.652 0.752 0.754
2 Fixation Intensity +

Absolute Visual Occlusion 0.667 0.666 0.758 0.754
3 Fixation Intensity +

Relative Visual Occlusion 0.667 0.669 0.762 0.751
4 Fixation Intensity +

Size 0.656 0.657 0.763 0.759
5 Fixation Intensity +

Fixation Frequency 0.653 0.644 0.743 0.756
6 All features

(Absolute Visual Occlusion) 0.662 0.663 0.768 0.760
6 All features

(Relative Visual Occlusion) 0.660 0.669 0.764 0.768

Table 5.3: Evaluation of Visual Features using the NMRR Metric

5.6.2 Experiment 2: Visual Feature Evaluation

In this section we evaluate the performance of auxiliary visual features on the object

activation task. Configurations of various combinations of these features with fixa-

tion intensity are examined. Given that the effect of weighting fixation intensity is

insignificant, only AFI and RFI are considered. The results are shown in Table 5.3

and discussed separately for each feature.

Visual Occlusion

As Table 5.3 shows, all configurations that use the preprocessed data set, which

augments the fixation intensity measurement with a fixation-level account of visual

occlusion, perform significantly better than their counterparts that use the original

data set. The only difference between the preprocessed and original data sets is the

incorporation of the fixation-level visual occlusion feature. This clearly means that

visual occlusion is a reliable feature for the object activation prediction task. However,

it is also clear that the representation of visual occlusion is very important. Adding
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the frame-based visual occlusion feature to the logistic regression model (rows 2 and

3) has almost no effect. It may be possible that a better representation for visual

occlusion remains unexplored.

On average, the effect of both absolute and visual occlusion is more significant for

the original data set (especially when RFI is used). This is not surprising because

the preprocessed data set partially incorporates the visual occlusion feature, so the

logistic regression model does not get an added bonus for using this feature twice.

Object Size

The object size feature seems to be a weak predictor of object activation. Using

only the fixation intensity and object size features (row 4 of Table 5.3), the logistic

regression model tends to achieve approximately the same performance as when the

object size feature is excluded.

This result is quite unexpected. As we have already mentioned, human eye gaze

is very jittery. Our expectation is that small objects can have a low fixation intensity

and still be activated. Thus, in our model small objects should need a lower fixation

intensity to be considered as activated than do large objects. Our results do not

support this general trend. A possible explanation is that this trend should only be

apparent when using a visual interface with a mixture of large and small objects. In

our interface, most of the objects are fairly large. For large object, jittery eye move-

ments do not alter fixation intensity because the eye jitter does not cause fixations

to occur outside of an object’s interest area boundary. Even when some objects are

smaller than others, they are not sufficiently small to be affected by eye jitter. Thus,

it is likely that the size feature should only be considered when comparing fixation

intensities of sufficiently small objects to larger counterparts. At this point, it is

unclear how small is sufficiently small.
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Fixation Frequency

Fixation frequency is a weak predictor of object activation. Incorporating the fixation

frequency feature into the Bayesian Logistic Regression framework creates models

that tend to achieve worse performance than when this feature is left out. At best,

models using fixation frequency achieve a comparable performance to those not using

it. According to Qvarfordt [78], fixation frequency is an important feature to consider

because one way of signifying interest in objects is looking back and forth between two

or more objects. In this case, each of these objects would have a fairly low fixation

intensity as time is spent across multiple objects, but each of the objects should be

considered activated. In our user studies, however, we did not find this user behavior

and our results are consistent with this observation. This behavior is likely to be

specific to the map-based route planning domain where users often need to look back

and forth between their starting and destination location.

5.7 Discussion

We have shown that fixations that are pertinent in the object activation problem are

fairly evenly distributed between the onset of a spoken reference and 1500 ms prior.

Fixation intensity can be used to predict object activation. Weighting fixations based

on a skew-normal distribution does not improve performance on the object activation

task. However, preprocessing our fixation data by including the fixation-level visual

occlusion feature considerably improves reliability of the fixation intensity feature.

Moreover, since performance is so sensitive to feature representation, there is much

potential for improvement. We have also presented the NMRR evaluation metric that

can be used to evaluate the quality of a ranked list.

This work can be extended to combine our activation model with spoken language

processing to improve interpretation. This question can be addressed by constructing
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an N-best list of spoken input with an Speech Recognizer (ASR). The speech-based

ranked lists of utterances and the gaze-base ranked lists of activations can be used

to mutually disambiguate [68] each other in order to more accurately determine the

object(s) of interest given an utterance and a graphical display. This knowledge

can be used to plan dialogue moves (e.g. detect topic shifts, detect low-confidence

interpretations, determine the need for confirmation and clarification sub-dialogs,

etc.) as well as to perform multimodal reference resolution [11]. We believe that this

work will open new directions for using eye gaze in spoken language understanding.

5.8 Summary

In this chapter, we present an eye gaze based approach for modelling user focus of

attention. We use the collected data that is described in Chapter 4 along with the

Bayesian Logistic Regression Toolkit to construct these models. These models incor-

porate various eye gaze and auxiliary visual features. Our feature evaluation, using

the novel Normalized Mean Reciprocal Rank metric, indicates that fixation intensity–

the amount of time that an object is fixated during a given time window–is by far the

most important factor in predicting a user’s focus of attention. The auxiliary visual

features do not produce a significant improvement in attention prediction accuracy.

Neither does weighting the fixation intensity feature based on the temporal locations

of eye fixations relative to the target spoken utterance. These results have impor-

tant implications for language understanding in visual and spatial environments. The

ability to reliably predict user focus of attention will allow for more effective reference

resolution. This will, in turn, improve language understanding and overall usability

of multimodal conversational interfaces.
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Chapter 6

Eye Gaze in Reference Resolution

within a Static Domain

6.1 Introduction

Our hypothesis is that exploiting user eye gaze can help alleviate language processing

problems in conversational interfaces. There has been a significant body of work in

the field of psycholinguistics studying the link between eye gaze and speech [28, 30]

[41, 85]. Eye gaze has been shown to be a window to the mind. That is, the eye

fixates on symbols that are being cognitively processed. The direction of gaze carries

information about the focus of a person’s attention [41].

Eye-tracking technology is being incorporated into speech-driven computer inter-

faces more and more frequently [43, 77, 78]. However, it remains unclear exactly to

what degree eye gaze is capable of helping automated language processing. In this

work, we investigate what information can be obtained from eye gaze as it relates to

reference resolution in multimodal conversational interfaces. Reference resolution is

the process of identifying application specific entities that are referred to by linguistic

expressions. For example, identifying a picture on the interface that is referenced by
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the expression “the painting of a waterfall”.

When a referring expression is uttered by a user, according to Conversation Im-

plicature [26], users will not intentionally make ambiguous expressions to confuse

the system. The reason that the system fails to correctly resolve some references is

because the system lacks the adequate domain models or linguistic processing ca-

pability that a human may have. More referring expressions can be resolved with

more sophisticated domain modeling and corresponding linguistic processing. How-

ever, sufficiently representing domain knowledge and processing human language has

been a very difficult problem. Moreover, some domain information is very difficult to

encode during design time. This is especially true for dynamic information that can

change as the user manipulates the interface. For example, an object—presented via

the user interface—that is perceived to be upside-down can be rotated by the user to

no longer have this property. The rotation operation is likely to change the language

used to describe this object. While encoding the orientation information of each ob-

ject is relatively simple, encoding this potential change in language is difficult. This

domain information is often necessary to disambiguate spoken references. Thus our

investigation considers whether the use of eye gaze can compensate for some of these

limitations. We hypothesize that the use of eye gaze has the capacity to eliminate

the need to encode some complex domain information without sacrificing reference

resolution performance.

To investigate the role of eye gaze in reference resolution in multimodal conversa-

tional interfaces we proceed with two primary research objectives. First, we construct

a general probabilistic framework that combines speech and eye gaze information for

robust reference resolution. This framework is capable of independently encoding

linguistic, dialogue, domain, and eye gaze information and combining these various

information sources to resolve references to objects on the interface. Second, we at-

tempt to validate our hypothesis that utilizing eye gaze in reference resolution can
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compensate for a lack of sophisticated domain modeling. Specifically, we compare

the amount of information provided by utilizing eye gaze relative to that provided

by increasing levels of encoded domain complexity (along with linguistic processing

capable of handling this new domain information). To pursue these objectives, we use

transcribed speech rather than automatically recognized speech data as a first step

in our investigation. This allows us to focus on studying the relationship between eye

gaze and linguistic processing without additional confounding variables. The findings

from this initial investigation will help us better understand the role of eye gaze in

spoken language understanding and establish an upper bound performance for our

next step of processing recognized speech.

In the following sections we discuss our investigation in more detail. We describe

our integrated reference resolution framework in §6.2. We proceed to discuss the

experiments we conducted using the integrated framework to process our collected

data in §6.3. We conclude with some implications of this investigation and provide

some potential research directions for the future 6.4.

6.2 Multimodal Reference Resolution

Reference resolution in a Multimodal Conversational Interface is the process of iden-

tifying the intended objects given a user’s spoken utterance. Figure 6.1 shows a

sample dialogue in our conversational interface with the referring expressions to con-

crete objects marked in bold. Each Si represents a system utterance and each Ui

represents a user utterance. In this scenario, referring expressions tend to be definite

noun phrases, such as “the bed”, or pronouns, such as “it” or “that”. Note that

some pronouns may have no antecedent (e.g. “it” in utterance U2) or an abstract

antecedent [5], such as “democracy”. Some expressions, (i.e. evoking references) ini-

tially refer to a new concept or object. Conversely, anaphoric references subsequently
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S1 What is your favorite piece of furniture?
U1 I would say my favorite piece of furniture

in the room would be the bed
U2 It looks like the sheet is made of leopard skin
U3 And I like the cabinets around the bed
U4 Yeah I think that’s is my favorite
S2 What is your least favorite piece of furniture?
U5 The brown chair toward the front

with the candlestick on it
U6 It seems pretty boring

Figure 6.1: Conversational Fragment with Different Types of Referring Expressions

refer back to these objects. Anaphoric referring expressions are the most common

type of endophoric referring expressions—referring to an entity in the dialogue. Ex-

pressions that are not endophoric, must be exophoric—referring to an entity in the

extralinguistic environment. Evoking references are typically exophoric.

A robust reference resolution algorithm should be capable of handling referring

expressions that belong to a multitude of grammatical categories, as described above.

We focus on resolving the most common referring expressions: definite noun phrases,

which can be either exophoric or endophoric, and anaphoric pronouns whose an-

tecedents are entities in the extralinguistic environment. These referring expressions

compose a grave majority of the references found in our collected dialogs.

We have constructed an integrated probabilistic framework for fusing speech and

eye gaze for the purpose of conducting reference resolution. An integrated framework

achieves two important objectives: (1) a single framework is capable of combining

linguistic, dialogue, domain, and eye gaze information to resolve references and (2)

a single framework is capable of resolving both exophoric and endophoric references.

In fact, the system does not need to know whether an expression is exophoric or

endophoric to reliably resolve it. This framework contains parameters that can be

determined empirically or through machine learning approaches. The following sec-

tion describes the framework.
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6.2.1 Integrated Framework

Given an utterance with n referring expressions r1, r2, . . . , rn, the reference reso-

lution problem can be defined as the process of selecting a sequence of sets of objects

O1, O2, . . . , On that best matches the referring expressions in the given utterance.

Directly determining the best match is very difficult and potentially intractable.

To make this problem tractable we simplify it in two ways. First, we make the

assumption that the occurrence of one referring expression is independent of another.

Thus, the matching between Oj and rj can be done individually for each expression

rj . Next, we construct each object set Oj using a two phase process. In the first

phase, the likelihood P (oi|rj) that rj refers to object oi is determined for each

object in O, which is the set of all possible objects in the domain. In the second

phase, Oj is constructed by combining the top k ranked oi’s, where k depends on

whether referring expression rj is singular or plural.

Previous studies have shown that user referring behavior during multimodal con-

versation does not occur randomly, but rather follows certain linguistic and cognitive

principles [13, 44]. Different referring expressions signal the cognitive status of the

intended objects. In our investigation, we model the user’s cognitive status by con-

sidering two sources of potential referents: Visual History (VH) and Dialogue History

(DH). Each source reflects a different cognitive status, which is often associated with

different types of referring expressions. Visual History represents the visible display

information available on the time scale of the currently processed spoken utterance.

It is usually associated with exophoric references. Dialogue History represents the

stack of previously resolved spoken utterances in the current conversation. It is often

associated with anaphoric references.

We can use Equation 6.1 to determine the probability of a particular object

being referenced given a particular referring expression. Here, we introduce a hidden
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variable T , which represents the cognitive status model of the intended object (either

VH or DH):

P (oi|rj) =
∑

T∈{V H,DH}
P (oi|T, rj)P (T |rj) (6.1)

= P (oi|V H, rj)P (V H|rj) +

P (oi|DH, rj)P (DH|rj)

Equation 6.1 first evaluates the likelihood of each cognitive status associated with

the given referring expression. Then, given the cognitive status and the referring

expression, it determines the probability that a particular object is referenced. Lin-

guistic and domain information can be extracted for each referring expression rj while

dialogue and eye gaze information is encoded into the DH and VH, respectively. Al-

gorithm 1 demonstrates the procedure to resolve a given referring expression rj using

Equation 6.1. This algorithm allows us to achieve the objectives of integrating linguis-

tic, dialogue, domain, and eye gaze information into a single probabilistic framework

that is capable of resolving both exophoric and endophoric references. In the fol-

lowing sections we show the specifics of how this information is integrated into the

framework.

6.2.2 Likelihood of Cognitive Status

In Equation 6.1, P (V H|rj) and P (DH|rj) represent the likelihood of the cogni-

tive status given a referring expression. These quantities are determined based on the

grammatical category of the referring expression (pronoun, definite noun, etc.). For

example, if rj is a definite noun phrase, it is likely referring to an element from the

visual history. This is because definite noun phrases are often made as evoking refer-
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Algorithm 1 Resolve Referring Expression

Input: rj {referring expression to be resolved}

Input:
−→
O {set of potential referent objects}

Input:
−→
F {list of eye fixations}

1: V H ← constructVH(
−→
F )

2: for all oi ∈
−→
O do

3: compute P (oi|V H, rj)
4: end for

5: for all oi ∈
−→
O do

6: compute P (oi|DH, rj)
7: compute P (oi|rj)← P (oi|V H, rj)P (V H|rj)

+P (oi|DH, rj)P (DH|rj)
8: end for

9: sort
−→
O in descending order according to P (oi|rj)

10: if numberStatusKnown(r) then
11: m← number(rj)
12: else
13: find the smallest i, such that P (oi|rj) > P (oi+1|rj)
14: m← i
15: end if
16:
−→o = ∅

17: for i = 0 to m do
18:

−→o ← −→o ∪ oi
19: end for
20: return

−→o
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ences, mentioning objects that do not appear in the dialogue history. Those definite

noun phrase references that are subsequent references to already mentioned objects

are unlikely to have recently occurred in the dialogue history because the more recent

mentions tend to be pronouns. Thus, in this situation P (V H|rj) will be high and

P (DH|rj) will be relatively low.

In the case expression rj is a pronoun, we consider the VH and DH equally

important in resolving pronominal referring expressions. This is because we expect

the intended object to be recently present in the VH as well as the DH. Given that

in our domain referent objects rarely go out of view, users are likely to gaze at these

objects, thereby putting them in the recent visual history. Thus, we set

P (V H|rj) = P (DH|rj) = 0.5

If rj is not a pronoun, it is typically a definite noun phrase given our domain. In

this case the DH is unlikely to contain useful information. Thus we set

P (V H|rj) = 1.0

P (DH|rj) = 0.0

This means that these phrases take into account only the currently processed utter-

ance.

Although we empirically set these parameters, it is possible to directly learn them

from the data. It is important to note that small deviations in these probabilities

have a minuscule effect on our reference resolution results.
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6.2.3 Likelihood of Objects

Given the cognitive status, the likelihood that an object is referred to can be repre-

sented by the following equation:

P (oi|T, rj) =
AS(oi, T )α(T ) × Compat(oi, rj)1−α(T )∑
i

AS(oi, T )α(T ) × Compat(oi, rj)1−α(T )
(6.2)

where

• AS: Attentional salience score of a particular object. This score estimates

the salience of object oi given a cognitive status. For example, if the modeled

cognitive status is VH, the salience of the object can be determined based on

eye fixations that occur at the time the user utters referring expression rj along

with a combination of the object’s visual properties. If the modeled cognitive

status is DH, the score is based on how recently in the dialogue oi has been

mentioned.

• Compat: Semantic compatibility score. This score represents to what degree

that a particular object is semantically compatible with the referring expression.

Factors such as the object’s semantic type, color, orientation, and spatial loca-

tion should be considered. Here, linguistic and domain information are brought

together. For example, every color that is contained in the domain model must

be contained in the system’s lexicon and must be identified as a color when

spoken by a user.

• α(T ): Importance weight of Attentional Salience relative to Compatibility.

This weight depends on whether the cognitive status T is modeled as the visual

history or dialogue history.

The details of these functions are explained next.
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Attentional Salience with Cognitive Status Modeled as Visual History

When the cognitive status is modeled as T = V H , AS(oi, V H) represents an

object’s visual salience. There are many different ways to model the attentional

salience of objects on the graphic display. For example, visual interface features, such

as object centrality and size, can be extracted using image processing [46]. In con-

tinuously changing domains temporal features such as prominence and recency of an

object appearing on the visual interface [7] can be used.

Instead of using visual features, we compute the attentional salience score with

the use of eye gaze. One method of doing this is by using our previously developed

attention prediction algorithm [74]. In this work the attentional salience score of an

object is represented by the Relative Fixation Intensity of this object. That is,

AS(oi, V H) = RFI(oi) ∈ [0..1]

We have previously shown that the attentional salience of an object can be reliably

modeled by the Relative Fixation Intensity (RFI) feature obtained from collected eye

gaze data. Fixation Intensity represents the amount of time that an object is fixated

in a given a time window W . The RFI of an object is defined as the ratio between

the amount of time spent fixating a candidate object during W and the amount of

time spent fixating the maximally long fixated object during W . The intuition here

is that objects that are fixated for a long period of time are considered to be more

salient than those fixated for a short period of time. However, long period of time

should be defined relative to other fixated objects during the same time period. A

user may look at an object for a short period of time relative to W , but if this is the

only object fixated during this time, it is likely to be salient. In our previous study

[74], a good time range for W was empirically found be [-1500..0] ms relative to the

onset of a spoken reference. This range conforms to prior psycholinguistic studies
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that show that on average eye fixations occur 932 ms (with sizable variance) prior to

the onset of a referring expreession [27, 28].

We chose to use the Attentional Salience model as defined here for three reasons.

First, we believe that models based on eye-tracking data are more reliable than models

based on image processing. Second, the model based on the RFI feature is the

simplest eye gaze based model. Although, auxiliary gaze-based features (e.g. fixation

frequency) and visual interface-based features (e.g. object occlusion and object size)

can potentially improve the AS model, [74] shows that consideration of these features

provide only a marginal improvement in the reliability of the attention prediction

model given the domain described in the Data Collection section. Finally, the RFI-

based model can generalize to any visual domain and makes for a good baseline.

Attentional Salience with Cognitive Status Modeled as Dialogue History

When cognitive status is modeled as T = DH , an object’s salience within the

dialogue is represented by

AS(oi, DH). In our investigation, this score indicates how recently (on a dialogue

history time scale) a particular object has been referred to. An object’s salience

within a dialogue decays exponentially over time as shown in Equation 6.3

AS(oi, DH) =
(1/2)ni

Z
∈ [0..1] (6.3)

where, ni is the number of referring expressions that have been uttered since

the last time object oi has been referred to and Z is the normalization factor∑
i

(1/2)ni .

The dialogue history information is represented as a table of such salience scores.

Initially each object’s score is 0. When an expression referring to an object is uttered,

its score is set to 1. At the same time, the scores of each other object are divided by 2.
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Referring Expression Object
o18 o19 o21 o24 · · ·

U1 the bed 0 1 0 0 0
U2 the sheet 0 1/2 1 0 0
U3 the cabinets 1 1/4 1/2 1 0
U3 the bed 1/2 1 1/4 1/2 0
U4 that’s 1/4 1 1/8 1/4 0

Table 6.1: Sample Dialogue History Table

For example, the first four utterances of the dialogue in Figure 6.1 would result in the

scores shown in Table 6.1. Here, the first two columns represent a time step during

which a referring expression is uttered. The remaining columns represent all of the

objects that could possibly be mentioned. The object IDs correspond to those shown

in Figure 4.1. Each cell represents the corresponding object’s salience score within

the dialogue. In this example, after U2 is uttered and its only referring expression is

resolved to object o21, this object’s score is set to 1. The salience scores of all other

objects are divided by 2. Thus, when U3 is uttered,

AS(o21, DH) =
1

1 + 1/2
= 2/3

making o21 the most salient object. Utterance U3 contains two referring expression

which are processed in the order of being spoken. Given that the referring expression

“the cabinets” is correctly resolved to the two cabinets o18 and o24, the salience

scores of each of these two objects are set to 1 and once again all other scores are

discounted.

Semantic Compatibility The semantic compatibility scoreCompat(oi, rj) rep-

resents to what degree object oi is semantically compatible with referring expression

rj . The compatibility score is defined in a similar manner as in our previous work

[13, 11]:
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Compat(oi, rj) = Sem(oi, rj)×
∏
k

Attrk(oi, rr) (6.4)

In this equation:

• Sem(oi, rj) captures the coarse semantic type compatibility between oi and

rj . It indicates that the semantic type of a potential referent should correspond

to the semantic type of the expression used to refer to it. Consequently, in our

investigation, Sem(oi, rj) = 0 if the semantic types of oi and rj are different

and Sem(oi, rj) = 1 if they are the same or either one is unknown.

• Attrk(oi, rr) captures the object-specific attribute compatibility (indicated

by the subscript k) between oi and rj . It indicates that the expected features

of a potential referent should correspond to the features associated with the

expression used to refer to it. For example, in the referring expression “the

brown chair”, the color feature is brown and therefore, an object can only

be a possible referent if the color of that object is brown. Thus, we define

Attrk(oi, rr) = 0 if both oi and rj have the feature k and the values of this

feature are not equal. Otherwise, Attrk(oi, rr) = 1.

Attentional Salience vs. Semantic Compatibility In Equation 6.2, α(T )

represents the importance tradeoff between attentional salience and semantic com-

patibility. A high value of α(T ) indicates that the AS score is more important for

reference resolution than the semantic compatibility score. A low value indicates that

the opposite is true. For different kinds of interfaces α(T ) may change. For example,

if an interface is composed of many very small objects or many overlapping objects,

eye gaze becomes less reliable. In this case, α(T ) should be fairly low. In our in-

vestigation, we wanted both quantities to have equal importance. However, semantic

compatibility should win out in case of a tie. A tie can occur if all elements in T are
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semantically incompatible with referring expression rj and no compatible elements

are salient. Thus, we set α(T ) = 0.49 for both VH and DH. If we do not want

to integrate eye gaze in reference resolution, we can set α(T ) = 0.0. In this case,

reference resolution will be purely based on compatibility between visual objects and

information specified via linguistic expressions.

6.2.4 Selection of Referents

Once the likelihoods for each candidate object are computed according to Equation

6.1 we can proceed to selecting the most probable referenced-object set Oj given a

referring expression rj . First, objects are ranked according to the probabilistic frame-

work. Next, the number of objects being referenced is considered. Each reference can

be singular or plural. If it is plural, the exact number of objects being referenced

may be known (e.g. “these two pictures”) or unknown (e.g. “these pictures”). If

rj is singular, the highest ranked object is selected. If more than one object has

the highest score, there is an ambiguity and reference resolution fails. If rj is plural

and the number of referenced objects is known to be k, then the top k objects are

selected. If rj is plural, but the number of referenced objects is unknown, then all of

the objects that have the top score are selected.

6.3 Experimental Results

As we have already mentioned, a major goal of this work is to investigate whether

or not the use of eye-tracking data can compensate for an incomplete domain model

without sacrificing reference resolution performance. We categorize four different

levels of domain models. These models vary in complexity such that a complex model

completely entails a simpler model as shown in Figure 6.2. In addition to these four

levels, we consider an empty domain model that contains no domain information or
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linguistic processing.

Figure 6.2: Domain Hierarchy

• Empty (�): This model makes no domain or linguistic information available.

When it is employed, referents are determined purely based on eye gaze.

• Simple (Simp): Domain and linguistic information is limited to a coarsely de-

fined semantic type of each object (e.g. lamp, chair, painting, etc.).

• Complex Static (CStat): Various object attributes are encoded. These at-

tributes satisfy the requirement of being inherent to a particular object. More

precisely, these attributes cannot be changed through interaction with the in-

terface (e.g. floor lamp, painting of a waterfall).

• Complex Dynamic (CDyn): Object attributes that can potentially change are

encoded (e.g. green chair, crooked lamp). For example, a user may say “paint

the chair red” when talking about the green chair. After this operation, the

chair is no longer green.

• Complex Spatial (CSpat): Spatial relationships between objects are encoded

(e.g. the chair next to the bed, the one above the waterfall). Given that a

user can move around in the interface, spatial relationships are clearly dynamic

attributes.
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The domain model variation is incorporated into our probabilistic framework via

the semantic compatibility function shown in Equation 6.4. The Simple domain

encodes information necessary to make coarse semantic type compatibility judgments

Sem(oi, rj) while each of the more complex domains add more attributes to be

considered by Attrk(oi, rr). It is important to note that an increasing level of

linguistic processing capacity is associated with an increasing level of domain model

complexity. For example, if the domain model contains the notion of a painting of

a waterfall (o2 in Figure 4.1), the token waterfall must be present in the system’s

lexicon and the system must be able to determine that this token is an attribute of

object o2.

The Simp domain model has the advantage of being completely independent of

the specific tasks that can be performed by the conversational interface. That is,

this domain model can be constructed by simply knowing the semantic type of the

objects present in the interface. The more complex domain models attempt to en-

code information that uniquely distinguishes objects from one another. This require

knowledge about the similarity and difference between these objects, the kinds of

references people tend to make to various objects, as well as information about the

visual layout of these objects. This information is highly dependent on the design of

the interface as well as the task being performed.

Here, we aim to compare the reference resolution performance of the speech &

eye gaze algorithm to a speech-only algorithm. In this comparison the inclusion or

exclusion of eye gaze is the only variable. As we have shown, eye gaze can be encoded

into our reference resolution framework as AS(oi, V H). Eye gaze information can

be removed by changing the AS(oi, V H) score to be uniformly distributed over all

objects oj . Next, we proceed to analyze the impact of eye gaze on reference reso-

lution, we use the 371 collected multimodal inputs described in the Data Collection

section. Note that in our current work, most of the parameters were empirically de-
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termined. The results presented here should not be viewed as a formal evaluation

of the approach, but rather an analysis of the role of eye gaze in compensating for

insufficient domain modeling. We are in the process of collecting more data and will

do a formal evaluation in the near future.

Figure 6.3 shows the performance comparison of the reference resolution algorithm

that incorporates eye gaze data vs. the speech-only algorithm. The comparison is

performed using each of the aforementioned domain complexities in terms of reference

resolution accuracy. This chart shows that the speech & eye gaze algorithm performs

significantly better than the speech-only algorithm for each of the domain variations.

The best performance of approximately 73% is reached when eye gaze is combined

with the most complex level of domain (CSpat).

Figure 6.3: Overall Reference Resolution Accuracy

Table 6.2 shows a more detailed picture of the effect of eye gaze in multimodal

reference resolution for each level of domain complexity. References are divided into

pronouns and definite noun phrases. In our data set, all referring expressions to con-

crete objects are comprised of these two grammatical categories. Here, we investigate

whether the effect of eye gaze varies depending on the grammatical category of the
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referring expression. Of the 371 total inputs (Table 6.2a), 84 (22.64%) are pronom-

inal references (Table 6.2b) and 287 (77.36%) are definite nominal references (Table

6.2c). Each category of expression exhibits a significant1 improvement (p < 0.05) in

reference resolution accuracy when eye gaze is used. Additionally, they both exhibit

diminishing returns with increasing domain complexity. That is, the improvement

gained by using eye gaze is larger when the domain is simpler. This effect appears

to be slightly more evident in the case of pronominal noun phrases, but there is

insufficient data to make this conclusion.

Interestingly, the addition of eye gaze information to the simple domain has a

larger affect on reference resolution performance than the addition of domain infor-

mation. In Table 6.2a, compare the top row (Simp) with gaze to the bottom row

(CSpat) without gaze. The former outperforms the latter 245 to 221, for a 57.05%

vs. 41.61% increase over the baseline case (Simp without gaze). This result implies

that gaze-data can potentially provide information toward the reference resolution

task that isn’t provided by a fairly complex domain model.

In addition to considering the orthogonal information provided by eye gaze relative

to domain modeling, we want to consider the amount of common information. Our

objective is to determine the coverage of eye gaze relative to domain model complexity

as it pertains to the reference resolution task. Here, coverage refers to the percentage

of references that require a complex domain definition to be resolved by the speech-

only algorithm that can instead be resolved by resorting to eye gaze with the Simp

domain model. Table 6.3 displays this comparison. Here references are subdivided

by according to the minimal domain information necessary to resolve the particular

referent. For example, the second row of Table 6.3a shows the number of references

that cannot be resolved by the Simp domain, but can be resolved by adding static

1The significance tests were conducted using a paired t-test comparing each user’s
reference resolution accuracy with and without the use of eye gaze information.
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Domain Without With t-value P-value Improvement
Type Gaze Gaze

(a) � 0 147 — — —
Total Simp 156 245 11.87 0.0001 57.05%

CStat 186 256 11.80 0.0001 37.63%
CDym 207 266 10.81 0.0001 28.50%
CSpat 221 271 5.48 0.0028 22.62%

(b) � 0 30 — — —
Pronoun Simp 21 43 3.99 0.0104 104.76%

CStat 26 44 3.22 0.0234 69.23%
CDym 33 47 3.80 0.0127 42.42%
CSpat 33 47 3.80 0.0127 42.42%

(c) � 0 117 — — —
Definite Simp 135 202 11.39 0.0001 49.63%

CStat 160 212 10.80 0.0001 32.50%
CDym 174 219 9.82 0.0002 26.86%
CSpat 188 224 3.99 0.0105 19.15%

Table 6.2: Reference Resolution Improvement Due to Eye Gaze

attribute information to the domain model.

Several implications can be made from these results. The first is that eye gaze can

be used to resolve a significant number of references that require a complex domain

when eye gaze is not used. Eye gaze is most beneficial when little domain information

is available. Additionally, eye gaze does not completely eliminate the need for domain

modeling. As shown in table 6.2, eye gaze alone can be used to resolve only about

40% (147 out of 371) references. Rather some of the errors that are caused by having

an insufficient domain model are alleviated when eye gaze is used. The second thing

to note is that the Simp domain with eye gaze information can resolve almost all

(98.72%) of the references that can be resolved with the same domain, but without

eye gaze information. While this result is not very surprising, one may have expected

that the coverage would be 100% in this case, but it is apparent that eye gaze can

introduce a small amount of noise into the reference resolution process. The Attention

Prediction model is not perfect and eye gaze is well known to be noisy.
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Domain Resolved Coverage by
Type References Simp Domain

with Eye Gaze
(a) Simp 156 154 98.72%
Total CStat–Simp 30 19 63.33%

CDyn–CStat 21 9 42.86%
CSpat–CDyn 14 6 42.86%

(b) Simp 21 20 95.24%
Pronoun CStat–Simp 5 5 100.00%

CDyn–CStat 7 2 28.57%
CSpat–CDyn 0 0 —

(c) Simp 135 134 99.26%
Definite CStat–Simp 25 14 56.00%

CDyn–CStat 14 7 50.00%
CSpat–CDyn 14 6 42.86%

Table 6.3: Reference Resolution Coverage via Eye Gaze

6.4 Discussion

Given that the best performing reference resolution algorithm achieves about 73%

accuracy, it is important to consider the sources that cause the errors in the remaining

27% of referring expressions. Typically, errors occur when neither domain information

nor gaze is capable of the resolving a referring expression alone. Several factors can

cause errors in each of the modalities.

First, the current framework is only capable of handling anaphoric pronouns (those

that refer back to an entity in the dialogue), but not cataphoric pronouns (those that

refer to an entity in the forthcoming speech). Additionally, the language processing

component has some limitations. For example, the phrase “the chair to the left of the

bed” can be interpreted, but “the bed with a chair to the left” cannot. This example

demonstrates the difficulty of linguistic processing and provides more motivation for

using eye gaze to compensate for such deficiencies.

Second, as has been noted, eye gaze data is very noisy and eye gaze is far from a

perfect predictor of user focus of attention. Some of this noise comes from inaccurate
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eye tracker readings. Additionally, errors in visual attention prediction can arise

from an insufficiently accurate temporal mapping between speech and eye gaze. For

example, a user may look at an object and then wait a significant amount of time

before referring to it. Thus, this object’s salience will be far lower than intended

by the user. Alternatively, a user’s overt attention (eye gaze) may be disassociated

from the user’s covert attention. This may happen because the user has become very

familiar with the visual interface and no longer needs to fixate an object to be able to

refer to it. Further investigation is necessary to pinpoint exactly what causes these

eye gaze errors and how much reference resolution suffers because of them.

Our current investigation has focused on processing transcribed linguistic expres-

sions. When real-time speech is used, an important issue that needs further inves-

tigation is the effect of eye gaze when automatic speech recognition is considered.

Speech recognition errors cause even more difficulty for linguistic processing. For ex-

ample, even if there exists a sophisticated spatial model of the objects appear on the

interface, a failure in linguistic processing can cause these domain models to become

useless. Eye gaze is likely to compensate for some of these failures in the same way

as it compensates for insufficient domain modeling.

6.5 Summary

In this chapter, we present an integrated approach that incorporates eye gaze for

reference resolution. The empirical results show that the use of eye gaze improves

interpretation performance and can compensate for some problems caused by the

lack of domain modeling. These results have further implications for constructing

conversational interfaces. The improvements in interpretation of object references

gained via incorporating eye gaze will allow systems to make fewer unexpected and

erroneous responses. Additionally, reducing the reliance on complex domain modeling
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will make multimodal conversational interfaces easier to design.
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Chapter 7

Eye Gaze in Reference Resolution

within an Immersive Domain

7.1 Introduction

In our quest to improve spoken language understanding, we have been studying how

eye gaze can be utilized for reference resolution in multimodal conversational systems.

As a first step in this investigation, we have developed salience models that can be

used to predict a user’s focus of visual attention (as discussed in Chpater 5). These

models incorporate features derived from the user’s eye gaze along with features

derived from the visual environment. We have shown that fixation intensity—the

amount of time a user gazes on a visual object during a given time window—is the

key feature necessary to model a user’s visual focus of attention.

In the next part of our investigation, we developed an integrated framework that

is capable of resolving spoken references to objects that appear on the interface. This

framework seamlessly combines linguistic, dialogue, domain, and eye gaze informa-

tion. Using these models, we are capable of studying which factors have a significant

impact on robust reference resolution in a multimodal conversational interface. We
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have shown that using this gaze-based attentional salience model significantly im-

proves reference resolution performance. Moreover, we have shown that using eye

gaze outperforms using complex domain modeling techniques.

However, these investigations were conducted in a setting where users only spoke

to a static visual interface. In situated dialogue, human speech and eye gaze patterns

are much more complex. The dynamic nature of the environment and the complexity

of spatially rich tasks have a massive influence on what the user will look at and

say. It is not clear to what degree prior findings can generalize to situated dialogue.

It is also unclear how effectively our integrated reference resolution framework can

accommodate automatic speech recognition (ASR) input and whether this can be

done in real-time. In this chapter we provide analysis of our investigation to address

these questions.

The treasure domain, presented in §4.3, provides an immersive environment to

study situated language. The study of situated language “focuses primarily on in-

vestigations of interactive conversation using natural tasks, typically in settings with

real-world referents and well-defined behavioral goals [84].” Situated language is spo-

ken from a particular point of view within a physical or simulated context [6]. An

interface that supports situated language has the following requirements: a spatially

(visually) rich environment [24] that allows for immersion and mobility [7] and a

purposeful dialogue that encourages social and collaborative language use [24]. Col-

laborative dialogue can have properties that are distinct from other types of dialogue.

For example, Piwek et. al. [72] found that the cognitive modeling of one’s partner

in a collaborative dialogue in Dutch can produce dialogue patterns that are contrary

to the Givenness Hierarchy [29]. In this setting, users were pairs of partners and

the speaker directs his or her partner to construct a small object. Speakers in this

setting tended to use distal expressions (“this/these”) for referents already known to

the hearer, and proximal expressions (“that/those”) for new items that the hearer

85



was being instructed to locate. We believe that an immersive, situated scenario will

allow us to extend our study of eye gaze in a multimodal conversational interface.

It is important to consider such a scenario when studying spoken language un-

derstanding. One reason is that many conversational utterances can only be un-

derstood with respect to the context of the language use. This context includes a

shared visual space along with shared conversational goals which exhibit collabora-

tive processes intrinsic to conversation. Many conversational characteristics emerge

only when both conversational parties have common goals and each party participates

as both a speaker and listener [84]. Another reason for considering this scenario is

that it more accurately represents real-world conversation. Immersion and mobility

in a visual environment are necessary for users to produce realistic spatial references,

such as “the book to the right” or “the plant near the bed”. These qualities are also

necessary for the production of references to objects that were at one time, but are

no longer, visible on the user’s display. The static multimodal conversational inter-

face is insufficient for modeling natural real-world conversation as it does not support

immersion and mobility, nor does it allow for collaborative language use.

Using an immersive, situated scenario rather than a static visual scene requires

additional investigation. We proceed with the research objective of integrating rec-

ognized speech input with the reference resolution framework while maintaining real-

time computational performance. We augment the integrated reference resolution

framework presented in Chapter 6 to allow for ASR rather than transcribed speech

input. We present various models that can support recognized speech input. Specif-

ically, we attempt to use information from the entire n-best list of recognition hy-

potheses for each utterance to identify the referring expressions that are present in

this utterance and to resolve each referring expression to the corresponding set of

reference objects. We focus on resolving exophoric referring expressions, which are

non-pronominal noun phrases that refer to entities in the extralinguistic environment
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(e.g. “the book to the right” or “that one plant”) because they are tightly coupled

with a user’s eye gaze behavior. We present several reference resolution algorithm

variations that use a confusion network to represent an n-best list of recognition

hypotheses. We evaluate the use of confusion networks as models of ASR input in

terms of reference resolution accuracy and computation speed. Finally, we attempt

to determine to what degree the results from the investigation of user interaction

with a static multimodal conversational interface can generalize to interaction with

an immersive multimodal conversational interface.

In the remaining sections of this chapter we present a detailed description of the

process and effects of integrating recognized speech input into our reference resolution

framework within situated dialogue. In §7.2 we discuss the challenges of using recog-

nized speech input for reference resolution. We also describe the modifications that

are made to the integrated reference resolution framework presented in Chapter 6 to

allow for recognized rather than transcribed speech input. In §7.3 we describe how

eye gaze can be used to improve reference resolution performance despite a significant

number of speech recognition errors. In §7.5 we present the computational complexity

of the resulting algorithm and evaluate its potential to be used for real-time process-

ing. In §7.4 we present the experiments we conducted using the integrated framework

focusing on the effect of ASR and eye gaze input on reference resolution. In §7.6 we

discuss the steps that should be taken to utilize the presented reference resolution

algorithm in a different domain. Finally, in §7.7 we discuss the implications of the

empirical results and present a reference resolution error analysis.

7.2 Incorporating Recognized Speech

Chapter 6 presents our investigation of reference resolution with speech input that has

been transcribed by a human annotator. This is useful for obtaining an estimate of
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the upper bound performance of our reference resolution algorithms. However, direct

speech input must be considered so that we have a clear picture of reference resolution

performance in a realistic, fully automated multimodal conversational system. Such

a system must contain an automatic speech recognition (ASR) component. An ASR

component is responsible for converting acoustic speech signals into machine-readable

text strings. It has been well documented that ASR can be very error-prone. Speech

recognition errors can have a significantly detrimental effect on reference resolution.

In fact, erroneous recognition of spoken references are the leading cause of incorrectly

resolved references [12].

Given that the purpose of our research is to improve spoken language understand-

ing via eye gaze rather than ASR improvement, we use an off-the-shelf commercial

ASR product. Specifically we use the Microsoft Speech SDK, which takes an acoustic

speech signal as input and produces a transcript for each spoken utterance. This

results in an n-best (with n = 100) list of recognition hypotheses that are ranked

in order of likelihood. We use this n-best list of recognition hypotheses to determine

and resolve all referring expressions that are present in a given utterance. In this

section, we describe how to mitigate the adverse effect of ASR on exophoric reference

resolution.

7.2.1 Problem Formulation

Table 7.1 shows a portion of a sample dialogue between a user U and an artificial

agent S within the Treasure Hunting immersive virtual world (described in §4.3).

Each Ui represents a user utterance and and each Si represents an artificial agent

(i.e. system) utterance. Exophoric referring expressions are enclosed in brackets here.

In our dataset, an exophoric referring expression is a non-pronominal noun phrase

that refers to an entity in the extralinguistic environment. It may be an evoking

reference that initially refers to a new object in the virtual world (e.g. an axe in
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utterance U2) or a subsequent reference to an entity in the virtual world which has

previously been mentioned in the dialogue (e.g. an axe in utterance U3). In our

study we focus on resolving exophoric referring expressions, which are tightly coupled

with a user’s eye gaze behavior. Here, we present an approach for using a list of

recognition hypotheses in exophoric reference resolution.

S1 Describe what you’re doing.
U1 I just came out from the room that

I started and i see [one long sword]
U2 [one short sword] and [an axe]
S2 Compare these objects.
U3 one of them is long and one of them

is really short, and i see [an axe]
S3 Do you see another one.
U4 yeah I see a
U5 [three shields] and [three brown arrows]
U6 and [three green arrows]

Figure 7.1: Conversational Fragment with Exophoric Referring Expressions

One way to use the speech recognition results (as in most speech applications)

is to use the top ranked recognition hypothesis. This may not be the best solution

because it leads to a large amount of information being ignored. Table 7.1 demon-

strates this problem. Here, the number after the underscore denotes a timestamp

associated with each recognized spoken word. The strings enclosed in brackets de-

note recognized referring expressions. In this example, the manual transcription of

the original utterance is shown by Ht. In this case, the system must first identify

one long sword as a referring expression and then resolve it to the correct set of

entities in the virtual world. However, not until the twenty fifth ranked recognition

hypothesis H25, do we see a referring expression closest to the actual uttered re-

ferring expression. Moreover, there may not be a single recognition hypothesis that

contains the entire referring expression, but each constituent word from the referring

expression may be contained in some recognition hypothesis. Thus, for the purpose

89



of resolving referring expressions, it is desirable to consider the entire n-best list of

recognition hypotheses.

Hypothesis Utterance: i just came out from the room that
i started and i see [one long sword]

Ht : . . . i 5210 see 5410 [one 5630 long 6080 sword 6460]
H1: . . . icy 5210 winds 5630 along 6080 so 6460 words 68000
H2: . . . icy 5210 [wine 5630] along 6080 so 6460 words 6800
...
H9: . . . icy 5210 winds 5630 along 6080 [sword 6460]
...
H25: . . . icy 5210 winds 5630 [long 6080 sword 6460]
...

Table 7.1: Portion of Sample n-best List of Recognition Hypotheses

Consequently, we need to augment our integrated reference resolution framework

(described in Chapter 6) to use the entire n-best list of recognition hypotheses as input

instead of transcribed speech input. As we have said, the goal of reference resolu-

tion is to find a mapping between a sequence of referring expressions r1, r2, . . . , rn

and a sequence of object sets O1, O2, . . . , On. Directly finding the probability

P (O1, O2, . . . , On|r1, r2, . . . , rn) is computationally intractable in a real-time

system. Instead, our current approach is to calculate P (oi|rj) for each referring

expression rj and object oi independently.

This presents several challenges. First, given a list of recognition hypotheses, it

may be difficult to determine the number of referring expression n that were pro-

duced in the given utterance. This problem can be seen in Table 7.2. Based on

the shown ASR hypotheses, it is not clear whether this utterance contains zero, one,

two, or more referring expression. Here, the system must identify the lamp and the

desk as referring expressions in order to have a chance to resolve them. However, no

recognition hypothesis contains the correct number of referring expression, which in

this case is two. Nonetheless, it is clear that both referring expressions are present in
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the n-best list. In addition to knowing how many referring expressions are present in

an utterance, it is necessary for the system to know their temporal alignment. Even

if there is a way to identify the presence of referring expressions, it is not trivial to

determine which recognition hypotheses should be used to resolve these references.

Viewing Table 7.2 again as an example, lets assume that the reference resolution al-

gorithm has determined that the the spoken utterance contains a referring expression

that begins at timestamp 1540. There are two potential referring expressions that

fit this criteria: the plants and the lamp. The algorithm could naively take the

highest ranked referring expression and resolve it. However, there may be more in-

formation available to the system. For example, lets consider the situation in which

the field of view contains a lamp but no plants, and the user’s gaze if fixated on this

lamp. This can indicate that the lamp is the more likely referring expression and

that it should be resolved to the lamp object that is being viewed.

Utterance: I like [the lamp] and [the desk]

Ht: I 1020 like 1160 [the 1540 lamp 1670] and 1860 [the 2130 desk 2310]
H1: I 1020 like 1160 camping 1580 [the 2130 desk 2310]
...
H6: I 1020 bike 1160 [the 1540 plants 1670] until 1860 dusk 2310
H7: I 1020 like 1160 to 1540 camp 1670 until 1860 dusk 2310
H8: [light 1050] [the 1540 lamp 1670] and 1860 [the 2130 desk 2310]
...

Table 7.2: n-best List of Recognition Hypotheses with Multiple Referring Expressions

We attempt to address the aforementioned difficulties by developing algorithms

that combine an n-best list of ASR hypotheses with, dialogue, domain, and eye gaze

information. This is done by modifying the reference resolution framework described

in Chapter 6 to employ word confusion networks, which are described in the following

section.
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7.2.2 Word Confusion Networks

A word confusion network (WCN) is a compact representation of a word lattice or

n-best list [55]. Word lattices and word confusion networks are both directed graph

representations of alternative ASR hypotheses, but with different topological struc-

ture. Figure 7.2 depicts the topology of portions of a sample word lattice and word

confusion network for the utterance “...I see one long sword”, both corresponding

to the n-best list of ASR hypotheses shown in Table 7.1. In the word lattice, each

vertex represents a word occurring during a particular time interval and the probabil-

ity that it was uttered during this time interval. Each incoming edge represents the

word’s language model scores. In the word confusion network, each vertex represents

a point in time. Each edge represents a word and the probability that this word was

uttered in the time interval specified by the adjoining vertices. Here, all probability

values are represented in log scale. Typically an acoustic score is incorporated into

the word probability score calculation for word lattices and word confusion network.

For the purpose of this work, however, acoustic information is ignored because it has

a negligible effect on WCN word error rate when timing information is available [55].

The word confusion network representation of ASR hypotheses has several advan-

tages over the n-best list and word lattice representations for the purpose of reference

resolution. Word confusion networks are capable of representing more alternative

hypotheses in a more compact manner than either n-best lists or word lattices. It

has been shown that word confusion networks constructed from only the top 5 % of

word lattice links can represent more hypothesis paths than the original word lat-

tice [55]. Moreover, these word confusions networks outperformed both n-best list

(n = 300) and word lattice representations in terms of word recognition accuracy.

This can be attributed to two key factors: (1) a larger hypothesis search space and (2)

a more direct estimation of word recognition accuracy—rather than sentence recog-
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(a) Portion of sample word lattice

(b) Portion of sample word confusion network

Figure 7.2: Word Lattice and Confusion Network Topology
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nition accuracy—using word posterior probabilities [55]. A compact representation

is critical for efficient post-processing of ASR hypotheses, especially for a real-time

conversational system. A large hypothesis space is important because an uttered

referring expression may not be present in the top few recognition hypotheses, as ex-

emplified in Table 7.1 and Table 7.2. In this case, the presence of a salient potential

referent that is very compatible with a low probability referring expression may be

able to provide enough evidence to determine that the referring expression was indeed

uttered. Another feature of confusion networks is that they provide time alignment

for words that occur at approximately the same time interval in competing hypothe-

ses as shown in Figure 7.3. The figure shows an portion of the WCN for the utterance

“. . . I see one long sword” along with a timeline (in milliseconds) depicting the eye

gaze fixations to potential referent objects that correspond to the utterance. Time

alignment is useful for efficient syntactic parsing as well as for approximating the

timing information of each uttered word, which is necessary for modeling attentional

salience of potentially referenced objects.

7.3 Multimodal Reference Resolution

We have developed an algorithm that combines an n-best list of speech recognition

hypotheses with dialogue, domain, and eye gaze information to resolve exophoric

referring expressions. In this section, we describe the algorithm, starting with the

input and output and proceding with the detailed algorithm.

7.3.1 Input

There are three inputs to the multimodal reference resolution algorithm for each

utterance: (1) an n-best list of alternative speech recognition hypotheses (n = 100

for a WCN and n = 1 for the top recognized hypothesis), (2) a list of fixated
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Figure 7.3: Parallel Speech and Eye Gaze Data Streams, including WCN
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objects (by eye gaze) that temporally correspond to the spoken utterance and (3) a

set of potential referent objects. The set of potential referent objects can vary from

utterance to utterance. An object is considered to be a potential referent if it is

present within a close proximity (in the same room) of the user while an utterance is

spoken. This is because people typically only speak about objects that are visible or

have recently been visible on the screen during the treasure hunting task.

7.3.2 Output

The objective of this reference resolution algorithm is to identify the referring expres-

sions in a given utterance and to resolve each to a set of potential referent objects.

Thus, the desired output of the algorithm is a temporally ordered list of (referring

expression, referent object set) pairs. For example, the utterance “I see axes and one

long sword” should produce the following output:

1. (axes, {axe big, axe small})

2. (one long sword, {sword long})

where axe big, axe small, and sword long are potential referent objects for this utter-

ance.

7.3.3 Algorithm

The pseudo code for our Multimodal Reference Resolution algorithm is shown in

Algorithm 2. The algorithm takes three inputs: (1) an n-best list of ASR hypotheses,
−→
H ; (2) a set of potential referent objects,

−→
O ; and (3) a list of eye fixations to potential

referent objects,
−→
F . The algorithm proceeds with the following four steps:

Step 1: Construct Word Confusion Network In line 1, a word confusion

network WCN is constructed from the input n-best list of alternative recognition
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Algorithm 2 Multimodal Reference Resolution

Step1 {
Step2

{

Step3


Step4

{

Input:
−→
H {n-best list of ASR hypotheses}

Input:
−→
O {set of potential referent objects}

Input:
−→
F {list of eye fixations}

1: WCN ← constructWordConfusionNetwork(
−→
H )

2: parse(WCN)

3:
−→
R ← extractReferringExpressions(WCN)

4: let
−→
RR = ∅

5: for all rj ∈
−→
R do

6: {Ensure:
−→oi ⊂

−→
O }

7:
−→oi ← resolveReferringExpression(rr,

−→
O ,
−→
F )

8:
−→
RR←

−→
RR ∪ (rj ,

−→oi )
9: end for

10: prune(
−→
RR)

11: sort
−→
RR in ascending order according to timestamp

12: return
−→
RR

hypotheses with the SRI Language Modeling (SRILM) toolkit [83] using the procedure

described in [55]. This procedure aligns words from the n-best list into equivalence

classes. First, instances of the same word containing approximately the same starting

and ending timestamps are clustered. Then, equivalence classes with common time

ranges are merged. For each competing word hypothesis its probability is computed

by summing the posteriors of all utterance hypotheses containing this word. In our

work, instead of using the actual posterior probability of each utterance hypothesis

(which was not available), we assigned each utterance hypothesis a probability based

on its position in the ranked list. Figure 7.2(b) depicts a portion of the resulting word

confusion network (showing competing word hypotheses and their probabilities in log

scale) constructed from the n-best list in Table 7.1.

Step 2: Extract Referring Expressions from WCN In line 2, the word confu-

sion network is syntactically parsed using a modified version of the CYK [15, 42, 89]
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parsing algorithm that is capable of taking a word confusion network as input rather

than a single string. We call this the CYK-WCN algorithm. To do the parsing, we

applied a set of grammar rules which are shown in Appendix B. A parse chart of

the sample word confusion network is shown in Table 7.3. Here, just as in the CYK

algorithm the chart is filled in from left to right then bottom to top. The difference

is that the chart has an added dimension for competing word hypotheses. This is

demonstrated in position 15 of the WCN, where one and wine are two nouns that

constitute competing words. Note that some words from the confusion network are

not in the chart (e.g. winds) because they are out of vocabulary. The result of

the syntactic parsing is that the parts of speech of all sub-phrases in the confusion

network are identified. Next, in line 3, a set of all exophoric referring expressions
−→
R (i.e. non-pronominal noun phrases) found in the word confusion network are ex-

tracted. Each referring expression has a corresponding confidence score, which can

be computed in many many different ways. Currently, we simply take the mean of

the probability scores of the expression’s constituent words. The sample WCN has

four such phrases (shown in bold in Table 7.3): wine at position 15 with length 1,

one long sword at position 15 with length 3, long sword at position 16 with length

2, and sword at position 17 with length 1.

...
5
4

length 3 NP → NUM Adj-NP
2 Adj-NP → ADJ N,

NP → Adj-NP
1 (1) N → wine, NP → N ADJ → long N → sword,

(2) NUM → one NP → N

... 14 15 16 17 18 ...
WCN position

Table 7.3: Syntactic Parsing of Word Confusion Network
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Step 3: Resolve Referring Expressions In lines 4-9, each referring expression

rj is resolved to the top k potential referent objects, where k is determined by

information from the linguistic expressions. In line 7, the procedure for resolving a

single referring expression described Chapter 6 Algorithm 1 is utilized. Resolving

each referring expression results in a list of (referring expression, referent object set)

pairs
−→
RR with confidence scores, which are determined by two components. The first

component is the confidence score of the referring expression, which is explained in

Step 1 of the algorithm. The second component is the probability that the referent

object set is indeed the referent of this expression (which is determined by Equation

6.2). There are various ways to combine these two components together to form an

overall confidence score for the pair. Here we simply multiply the two components.

The confidence score for the pair is used in the following step to prune unlikely

referring expressions.

Step 4: Select References The last step of the algorithm is to select and return

the final list of (referring expression, referent object set) pairs. In line 10, the list

of (referring expression, referent object set) pairs is pruned to remove pairs that fall

under one of the following two conditions: (1) the pair has a confidence score equal to

or below a predefined threshold ε (currently, the threshold is set to 0 and thus keeps all

resolved pairs) and (2) the pair temporally overlaps with a higher confidence pair. For

example, in Table 7.3, the referring expressions one long sword and wine overlap in

position 15. Finally, in line 11, the resulting (referring expression, referent object set)

pairs are sorted in ascending order according to their constituent referring expression

timestamps.
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7.3.4 Algorithm Variations

Referring Expression Start Boundary Detection

One variation of Algorithm 2 is to use referring expression start boundary detection

to determine the order in which the referring expressions should be resolved. This is

in contrast to resolving all referring expressions and then pruning the resultant set.

Instead, a greedy method is used to iteratively resolve and prune referring expressions.

Specifically, the following procedure is used in place of lines 4 through 10 of Algorithm

2: (1) the position in the word confusion network that is most likely to contain a

referring expression start boundary is determined; (2) out of the referring expressions

that share this start boundary, the one with the highest confidence score is resolved;

and (3) all temporally overlapping referring expressions are pruned (i.e. removed from

consideration for resolution).

Noting that each potential referring expression corresponds to some position in

the word confusion network, the crux of the above procedure is determining which

confusion network position corresponds to the start boundary of a referring expres-

sion that has indeed been uttered. There are many possible ways to accomplish this.

In the work presented here, semantic compatibility scores between the potential ref-

erent objects and the potential referring expressions corresponding to each confusion

network position are calculated. For each position, the most salient potential referent

object is compared with each referring expression and the mean compatibility score

is calculated. The position with the highest score is determined to be the most likely

to contain a referring expression start boundary.

Consideration of Referring Sub-expressions

Another variation of Algorithm 2 is to allow the extractReferringExpressions(WCN)

function (in line 3) to return a referring expression if it is contained in another referring
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expression found in the word confusion network. By default, a referring expression is

returned only if it is not part of another referring expression in the confusion network.

For example, given that the referring expression “the big red chair” is a potential re-

ferring expression to be resolved; then, unlike the basic algorithm, this variation

would allow the sub-expression “big chair” to be a potential referring expression as

well. This variation of the algorithm has the potential to improve reference resolution

performance by considering a larger variety of potential referring expressions with a

larger variety of start boundaries. The tradeoff is that more potential referring ex-

pressions must be considered (which will increase processing time) and that many of

these potential referring expressions may be incomplete.

7.4 Experimental Results

Using the data corpus presented in §4.3, we applied the multimodal reference reso-

lution algorithm described above on the 2052 annotated utterances (from 15 users)

consisting of 2204 exophoric referring expressions. The reference resolution model

parameters are set according to those empirically determined using the static domain

(described in §6.2. For each utterance we compare the reference resolution perfor-

mance with and without the integration of eye gaze information. We also evaluate

using a word confusion network compared to a 1-best list to model speech recogni-

tion hypotheses. For perspective, reference resolution with recognized speech input

is compared with transcribed speech.

7.4.1 Evaluation Metrics

The reference resolution algorithm outputs a list of (referring expression, referent

object set) pairs for each utterance. We evaluate the algorithm by comparing the

generated pairs and their individual components to the annotated “gold standard”
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using F-measure. We perform the following two types of evaluation:

• Lenient Evaluation: Due to speech recognition errors, there are many cases in

which the algorithm may not return a referring expression that exactly matches

the gold standard referring expression. It may only match based on the object

type. For example, the expressions one long sword and sword are different,

but they match in terms of the intended object type. For applications in which

it is critical to identify the objects referred to by the user, precisely identifying

uttered referring expressions may be unnecessary. Thus, we evaluate the ref-

erence resolution algorithm with a lenient comparison of (referring expression,

referent object set) pairs. In this case, two pairs are considered a match if at

least the object types specified via the referring expressions match each other

and the referent object sets are identical.

• Strict Evaluation: For some applications it may be important to identify exact

referring expressions in addition to the objects they refer to. This is important

for applications that attempt to learn a relationship between referring expres-

sions and referenced objects. For example, in automated vocabulary acquisition,

words other than object types must be identified so the system can learn to as-

sociate these words with referenced objects. Similarly, in systems that apply

priming for language generation, identification of the exact referring expressions

from human users could be important. Thus, we also evaluate the reference res-

olution algorithm with a strict comparison of (referring expression, referent

object set) pairs. In this case, a referring expression from the system output

needs to exactly match the corresponding expression from the gold standard.
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7.4.2 Role of Eye Gaze

We evaluate the effect of incorporating eye gaze information into the reference reso-

lution algorithm using the top best recognition hypothesis (1-best), the word confu-

sion network (WCN ), and the manual speech transcription (Transcription). Speech

transcription, which contains no recognition errors, demonstrates the upper bound

performance of our approach. When no gaze information is used, reference resolution

solely depends on linguistic and semantic processing of referring expressions. For each

evaluation metric (lenient and strict) the best performing WCN variation is shown.

Table 7.4 shows the lenient reference resolution evaluation using F-measure. This

table demonstrates that lenient reference resolution is improved by incorporating eye

gaze information. This effect is statistically significant in the case of transcription

and 1-best (p < 0.0001 and p < 0.009, respectively) and marginal (p < 0.07) in

the case of WCN.

Configuration Without Gaze With Gaze

Transcription 0.619 0.676
WCN 0.524 0.552
1-best 0.471 0.514

Table 7.4: Lenient F-measure Evaluation

Configuration Without Gaze With Gaze

Transcription 0.584 0.627
WCN 0.309 0.333
1-best 0.039 0.035

Table 7.5: Strict F-measure Evaluation

Table 7.5 shows the strict reference resolution evaluation using F-measure. As can

be seen in the table, incorporating eye gaze information significantly (p < 0.0024)

improves reference resolution performance when using transcription and marginally

(p < 0.113) in the case of WCN optimized for strict evaluation. However there is

no difference for the 1-best hypotheses which result in extremely low performance.
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This observation is not surprising since 1-best hypotheses are quite error prone and

less likely to produce the exact expressions.

Since eye gaze can be used to direct navigation in a mobile environment as in

situated dialogue, there could be situations where eye gaze does not reflect the content

of the corresponding speech. In such situations, integrating eye gaze in reference

resolution could be detrimental. To further understand the role of eye gaze in reference

resolution, we applied our reference resolution algorithm only to utterances where

speech and eye gaze are considered closely coupled (i.e., eye gaze reflects the content

of speech). More specifically, following the previous work [76], we define a closely

coupled utterance as one in which at least one noun or adjective describes an object

that has been fixated by the corresponding gaze stream.

Tables 7.6 and 7.7 show the performance based on closely coupled utterances

using lenient and strict evaluation, respectively. In the lenient evaluation, reference

resolution performance is significantly improved for all input configurations when eye

gaze information is incorporated (p < 0.0001 for transcription, p < 0.015 for

WCN, and p < 0.0022 for 1-best). In each case the closely coupled utterances

achieve higher performance than the entire set of utterances evaluated in Table 7.5.

Aside from the 1-best case, the same is true when using strict evaluation (p < 0.0006

for transcription and p < 0.046 for WCN optimized for strict evaluation). This

observation indicates that in situated dialogue, some mechanism to predict whether a

gaze stream is closely coupled with the corresponding speech content can be beneficial

in further improving reference resolution performance.

Configuration Without Gaze With Gaze

Transcription 0.616 0.700
WCN 0.523 0.570
1-best 0.473 0.537

Table 7.6: Lenient F-measure Evaluation for Closely Coupled Utterances
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Configuration Without Gaze With Gaze

Transcription 0.579 0.644
WCN 0.307 0.345
1-best 0.045 0.038

Table 7.7: Strict F-measure Evaluation for Closely Coupled Utterances

7.4.3 Role of Word Confusion Network

The effect of incorporating eye gaze with WCNs rather than 1-best recognition hy-

potheses into reference resolution can also be seen in Tables 7.4 and 7.5. These

tables show results for the best performing WCN variation, which allows for referring-

subexpressions and considers referring expression start boundaries (described in more

detail in §7.3.4). Table 7.4 shows a significant improvement when using WCNs rather

than 1-best hypotheses for both with (p < 0.015) and without (p < 0.0012)

eye gaze configurations. Similarly, Table 7.5 shows a significant improvement in

strict evaluation when using WCNs rather than 1-best hypotheses for both with

(p < 0.0001) and without (p < 0.0001) eye gaze configurations. These results

indicate that using word confusion networks improves both lenient and strict refer-

ence resolution. This observation is not surprising since identifying correct linguistic

expressions will enable better search for semantically matching referent objects.

Effect of using Referring Expression Start Boundary Detection

In this section, we compare two versions of the reference resolution algorithm both

of which operate on a word confusion network. One variation employs referring

expression start boundary detection as described in §7.3.4, while the other employs

the basic algorithm as described in §7.3.3.

Table 7.8 shows this comparison. As can be seen in this table, the reference

resolution algorithm with boundary detection outperforms the algorithm without

boundary detection when evaluated on each evaluation metric regardless of whether
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Evaluation Metric Without Boundary Detection With Boundary Detection
(F1-measure) Without Gaze With Gaze Without Gaze With Gaze

Lenient 0.484 0.533 0.508 0.544
Strict 0.309 0.333 0.319 0.337

Table 7.8: Evaluation of Algorithm using Referring Expression Start Boundary

eye gaze information is available to the system. Although the improvement is not

significant, a marginal improvement is noticeable according to the lenient evaluation

metric when eye gaze information is incorporated (p < 0.14). In this case the

F-measure improves from 0.484 to 0.508 (+0.024).

Effect of permitting Referring Sub-expressions

In this section, we again compare two variations of the multimodal reference resolution

algorithm both of which operate on a confusion network. Both algorithms take a word

confusion network as input and extract potential referring expressions from it. One

version permits potential referring expressions to be sub-expressions of other potential

referring expressions as described in §7.3.4, while the other does not.

Table 7.9 compares these two variations. As can be seen in this table, permitting

referring sub-expression consideration marginally (p < 0.124) improves reference

resolution performance according to the lenient evaluation metric when eye gaze is

incorporated. The effect is insignificant when eye gaze is used. However, the perfor-

mance is significantly (p < 0.0001) diminished according to the strict evaluation

metric regardless of whether eye gaze is incorporated. Permitting sub-expressions

allows the algorithm consider a larger variety of potential referring expressions with

a larger variety of start boundaries which makes it more likely to find a match with

a potential referent object. This makes it more likely that a resolved referring ex-

pression is correct in terms of lenient evaluation, but is incomplete and therefore

is incorrect in terms the strict evaluation. Thus, systems for which it may be vi-

tal to resolve exact referring expressions should not permit referring sub-expressions.
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Evaluation Metric Don’t permit Sub-expressions Permit Sub-expressions
(F1-measure) Without Gaze With Gaze Without Gaze With Gaze

Lenient 0.484 0.533 0.509 0.546
Strict 0.309 0.333 0.251 0.269

Table 7.9: Evaluation of Algorithm allowing Referring Sub-expressions

However, systems that require referent object identification with an inexact referring

expression may benefit from allowing referring subexpressions, especially in combi-

nation with incorporating referring expression start boundary information (as shown

above in §7.4.3).

7.4.4 Role of Word Confusion Network Depth

Although WCNs lead to better performance, utilizing WCNs is more computationally

expensive compared to 1-best recognition hypotheses. Nevertheless, in practice, WCN

depth, which specifies the maximum number of competing word hypotheses in any

position of the word confusion network, can be limited to a certain value |d|. For

example, in Figure 7.3 the depth of the shown WCN is 8 (there are 8 competing word

hypotheses in position 17 of the WCN). The WCN depth can be limited by pruning

word alternatives with low probabilities until, at most, the top |d| words remain in

each position of the WCN. It is interesting to observe how limiting WCN depth can

affect reference resolution performance. Figure 7.4 demonstrates this observation. In

this figure the resolution performance (in terms of lenient evaluation) for WCNs of

varying depth is shown as dashed lines for with and without eye gaze configurations.

As a reference point, the performance when utilizing 1-best recognition hypotheses is

shown as solid lines. It can be seen that as the depth increases, the performance also

increases until the depth reaches 8. After that, there is no performance improvement.
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Figure 7.4: Lenient F-measure at each WCN Depth

7.5 Computational Complexity Analysis

It is our claim that the multimodal reference resolution algorithm presented in Algo-

rithm 2 is acceptable for real-time processing of spoken utterances. The multimodal

reference resolution procedure takes the following three inputs: (1) an n-best list of

ASR hypotheses, (2) a set of potential referent objects, and (3) a list of eye fixations

to potential referent objects. Several steps of this algorithm have an asymptotic ex-

ecution time complexity of O(N3) with respect to the size of one of these inputs.

This is seemingly problematic for this algorithm’s use in a real-time multimodal con-

versational system. However, in practice the size of each of these inputs is kept small,

thereby enabling real-time multimodal reference resolution. The rest of this section

provides a detailed computational complexity analysis to illustrate this point.
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7.5.1 Confusion Network Construction

In line 1 of Algorithm 2, a word confusion network is constructed from an n-best list

of ASR hypotheses. More generally, a word lattice is used instead of an n-best list.

An n-best list, however, can be viewed as a word lattice with each node having exactly

one incoming and one outgoing word link. A word confusion network is constructed

by finding an acceptable multiple alignment of word lattice hypotheses [55]. Since

there is no known efficient solution for optimal lattice alignment, in [55] Mangu, et.

al. present a heuristic approach based on lattice topology, word timing information,

and phonetic similarity between words in competing recognition hypotheses. This

procedure consists of three steps: (1) word lattice pruning; (2) intra-word clustering;

(3) and inter-word clustering. In the lattice pruning step, all word links whose prob-

ability is below an empirically defined threshold are removed from the lattice; 95%

of word links can be removed without increasing the resulting word error rate [55].

In the intra-word clustering step, identical words that overlap in time are grouped

into equivalence classes. In the inter-word clustering step, similar equivalence classes

are combined. The final equivalence classes make up a confusion network which can

represent all hypotheses in the original (pruned) lattice.

The lattice alignment algorithm, specifically the inter-word clustering and intra-

word clustering steps, has an asymptotic computational complexity of O(|L|3),

where |L| is the number of links in the word lattice. Typically, |L| is kept small

via the pruning step, which can remove 95% of the lattice links without sacrificing

word recognition performance. According to [55], the lattice alignment algorithm

resulted in average runtimes with a real time factor of 0.55 when processing lattices

in the Switchboard corpus (on a 400 MHz Pentium-II processor). Real time factor

(RTF) is defined as the ratio between the time it takes to process an input speech

signal and the duration of the input speech signal. It is a hardware dependent metric
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that is commonly used to measure the speed of an ASR system. An RTF of 0.55 is

under the 1.0 RTF threshold that is commonly used to determine whether or not an

ASR system is acceptable for real-time processing.

Additionally, in our study an n-best list is used rather than a word lattice as

input to the confusion network construction algorithm. This has two desired effects.

First, it simplifies the speech input model by eliminating acoustic scores from the

ASR hypotheses. In our study, we focus on post-processing out-of-the-box ASR

hypotheses. Moreover, it has been shown in [55] that the availability of an acoustic

similarity between words has no effect of the quality of confusion network construction

(measured by word error rate) when timing information for each word is present.

Second, the number of word links in the n-best list is greatly reduced compared to

the word lattice. The number of word links in the n-best list is bounded byO(n·|w|),

where n is the number of hypotheses in the list and |w| is the number of words in

the input speech signal; or, more precisely, the number of words in the longest ASR

hypothesis for a given utterance. In our study, confusion networks were constructed

using the SRI Language Modeling Toolkit (SRILM) [83]. As n-best lists were used

as input rather than complete word lattices, word lattice pruning was unnecessary to

ensure real-time performance. Real-time performance is discussed further in §7.5.5.

7.5.2 Confusion Network Parsing

In lines 2 and 3 of Algorithm 2, a word confusion network is syntactically parsed in

order to extract all referring expressions (noun phrases) that occur in it. Here, the

CYK algorithm is modified to the CYK-WCN algorithm, which accepts a word confu-

sion network as input instead of a single string and stores all noun phrase substrings

during parsing. The standard CYK algorithm (using an efficient normal form for the

grammar) has an asymptotic computational complexity of O(|G| · |w|3) [51], where

|G| is the size of the grammar and |w| is the number of words in the the input string.
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When using a confusion network as input, each of |c| positions—also called confu-

sion sets—in the confusion network must be processed. Each confusion set consists of

at most |d| competing words, which we refer to as the depth of the confusion network.

The number of confusion sets |c| in a particular WCN is proportional to the number

of words |w| in the longest ASR hypothesis used to construct this WCN. Parsing

a WCN of depth 1 is identical to parsing a single string. When parsing a WCN of

depth d, the step that checks for production rule applications must be altered. For

each binary production rule, every word pair in two confusion sets is compared in this

step. This results in |G| · |d|2 comparisons for each pair of confusion sets. There-

fore, the overall computational complexity for the CYK-WCN algorithm becomes

O(|G| · |d|2 · |w|3).

7.5.3 Reference Resolution

In lines 4 through 9 of Algorithm 2, all |r| referring expressions that are extracted

from the word confusion network are resolved to a set of referent objects. The loop is

executed |r| times and is dominated by the resolveReferringExpression procedure

in line 7. This procedure is shown in more detail in Algorithm 1.

In this algorithm every operation can be performed in linear time except sorting

the potential referent objects
−→
O , which is shown in line 8. In lines 1 through 3,

the system must computes the visual history V H of each of |O| potential referent

objects. In order to accomplish this, |f | gaze fixations that occur during the given

utterance must be processed. Each potential referent object that is not processed

receive a zero (or a very small uniform non-zero) visual salience score. In lines 4

through 7, the likelihood of each potential referent object given a referring expression

is computed. This computation requires that all |O| potential referent objects must

be processed. In line 8, the potential referent objects are sorted in O(|O| · log(|O|))
time. To finish resolving the given referring expression, in lines 9 through 18, the
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most salient m potential referent objects are selected. In the worst case, when the

referring expression’s number status is unknown and all potential referent object have

equivalent salience values, m = |O|. This results in a O(|f | + |O| · log(|O|))
asymptotic computational complexity for the entire resolveReferringExpression

procedure.

Consequently, lines 4 through 9 of Algorithm 2 result in a O(|r| · |f | + |r| ·
|O| · log(|O|)) complexity. Typically, including in our work, users produce short

utterances during interaction with a conversational system. Noting that the number

of gaze fixations |f | during a given utterance is proportional to the length of the

utterance (in terms of time), |f | can be eliminated from the complexity calculation;

resulting in a O(|r| · |O| · log(|O|)) asymptotic computational complexity.

7.5.4 Reference Selection

In lines 10 and 11 of Algorithm 2, the final (referring expression, referent object set)

pairs are selected for the given utterance. In line 10, low-probability and temporally

overlapping pairs are pruned. This is a O(|r|2) operation because each pair must be

compared with each other pair to determine if they temporally overlap. In line 11,

the pairs are sorted according to timestamp. This is a O(|r| · log(|r|) operation.

7.5.5 Applicability as a Real Time System

One potential concern of using word confusion networks rather than 1-best hypothe-

ses is that they are more computationally expensive to process. The asymptotic

computational complexity for resolving an utterance, using the multimodal reference

resolution algorithm presented in Algorithm 2 is the summation of three compo-

nents: (1) O(|G| · |d|2 · |w|3) for confusion network construction and parsing, (2)

O(|r| · |O| · log(|O|)) for reference resolution, and (3) O(|r|2) for selection of
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(referring expression, referent object set) pairs. Here, |w| is the number of words

in the input speech signal (or, more precisely, the number of words in the longest

ASR hypothesis for a given utterance); |G| is the size of the parsing grammar; |d| is
the depth of the constructed word confusion network; |O| is the number of potential

referent objects for each utterance; and |r| is the number of referring expressions

that are extracted from the word confusion network. In order for this algorithm to

be acceptable for real time processing the input sizes must be kept small.

One way to achieve fast processing time is to keep user utterances short. This is

because both the number of words in an input utterance ASR hypothesis |w| and

the number of referring expressions in a word confusion network |r| are dependent on

utterance length. In our study, using the Microsoft Speech SDK, utterance bound-

aries are determined by a 500 ms period of silence; which typically correspond to

intentional pauses in user speech. This typically results in very short utterances;

with a mean length of 6.41 words and standard deviation of 4.35 words. In fact, of

the 2052 utterances in our evaluation data set, none exceed 31 words. Moreover, if

computation speed is of the utmost importance, utterances can be made arbitrarily

small by bounding an utterance based on a maximum number of words in addition to

bounding the utterance by a period of silence. However, this could hinder reference

resolution (and other utterance processing) performance because utterances would

often be unnaturally split.

Another way to improve processing speed is to use a depth-limited word confusion

network. Limiting the depth |d| of a confusion network increases WCN parsing speed.

Given that a WCN is constructed from an n-best list in our study, its depth is limited

by |n| and thus can be no greater than 100 words. In practice; |d| has a mean of

10.1, a standard deviation of 8.1, and a maximum 89 words. In practice, as shown

in Figure 7.4, limiting |d| to 8 words achieves comparable reference resolution results

to using a full word confusion network.
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One more way to improve processing speed is to limit the number of potential

referent objects |O| for each utterance. In a large system the number of potential

referent objects is likely to be the bottleneck for utterance processing speed. Fortu-

nately, users almost always refer to objects that either have recently been visible on

the screen or that have recently been referred to in the dialogue. Thus, these are

the only objects that need to be considered when resolving a given utterance. In

the immersive treasure hunting domain, which contains 155 unique objects, an object

constitutes a potential referent if it is present in the same room as the user or in the

dialogue history.

To demonstrate the applicability of our multimodal reference resolution algorithm

for real-time processing we applied it on the Parallel Speech and Eye Gaze Data

Corpus in an Immersive Domain presented in §4.3. This corpus contains utterances

with a mean input time of 2927.5 ms and standard deviation of 1903.8 ms. The most

complex (and slowest) variation of the reference resolution algorithm was considered.

On a 2.4 GHz AMD Athlon(tm) 64 X2 Dual Core Processor, the runtimes resulted

in a real time factor of 0.0153 on average. Thus, on average, an utterance from

this corpus can be processed in just under 45 ms, which is well within the range of

acceptable real-time performance.

7.6 Domain Customization

Domain modeling can be a time-consuming and costly endeavor. Thus, a major aim

of this dissertation is to design and present a multimodal reference resolution algo-

rithm that is domain-independent in as much as possible. We explore the use of eye

gaze for reference resolution in a situated dialogue with minimal domain modeling.

Particularly, we investigate to what extent eye gaze information can compensate for

missing domain information. Despite our best effort to minimize the algorithm’s re-
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liance on domain-specific information, a minimal domain model must be constructed

in order to transfer our multimodal reference resolution algorithm to a new domain.

Domain customization requires modification of the following three domain aspects:

(1) potential referent object model, (2) language processing capabilities, and (3) refer-

ence resolution algorithm parameters. Here, we discuss the steps that must be taken

in order to successfully complete this migration.

Several attributes of each potential referent object in the domain must be specified.

First, a unique object ID must be assigned so that the reference resolution algorithm

is able to identify referred-to objects. Then, one or more semantic object types

must be encoded for the purpose of grouping objects together into categories and

producing competing potential referents for each referring expression. Next, objects

must be grouped in terms of their location in the visual environment in order to

determine the proximity of an object to the user, which is used to determine the list

of potential referent objects for a given utterance. In the Treasure Hunting domain,

objects are grouped in terms of which room they are contained in. That is, when

the user is in a particular room, all of the objects in this room are potential referent

objects. Alternatively, the set of potential referent objects for a given utterance

can be determined by the recency of the object being visible on the screen. In this

case, a temporal recency cutoff value must be established. The final domain model

specification is to encode any important visual attributes. These attributes include

size, color, shape, material, and any other distinguishing object characteristics that

may be used by users to uniquely identify each object. Depending on the desired

reference resolution accuracy, this step may be ignored because, in many cases, eye

gaze information is sufficient to uniquely identify a potential referent object. However,

including more information will improve reference resolution performance.

Some language processing capabilities must be modified to complete a domain

customization. Particularly, a domain specific lexicon and parsing grammar must be
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considered. The lexicon must specify the nouns and adjectives that can be used to

refer to each potential referent object and its visual attributes. For example, if a

large blue sofa is present in the domain model, the following terms associated with

this object should be present in the lexicon: sofa, couch, lounge, big, large, huge, blue,

dark, etc. Instead of specifying each word that can be associated with a potential

referent object, a semantic database tool such as WordNet along with several seed

words can be used to garner synonyms, hypernyms, hyponyms, and other semantic

relationships between the lexical entries and potential referent objects. A portion of

the lexicon does not relate to any particular potential referent object, and thus are

domain independent. For example, articles, pronouns, numeric phrases, etc. can be

reused without modification. In addition to the lexicon, the parsing grammar must

be modified to conform to a new domain. Specifically, part of speech (POS) tags must

be assigned for each term in the lexicon. The POS tags do not have to be manually

specified and can be obtained using an automatic POS tagger with high accuracy. The

remaining parsing grammar needs to undergo only minor modifications to account for

domain-specific idioms and may largely remain unaltered from the parsing grammar

shown in Appendix B.

For optimal reference resolution performance, moving to a new domain requires

some reference resolution parameter tuning. These parameters include those involved

in referring expression recognition (e.g. maximum WCN depth) and those involved

in resolving a given referring expression (e.g. likelihood of cognitive status P (T |rj),

importance weight of Attentional Salience relative to compatibility α(T )).

7.7 Discussion

In Section 7.4.2 we have shown that incorporating eye gaze information improves

reference resolution performance. Eye gaze information is particularly helpful for re-
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solving referring expressions that are ambiguous from the perspective of the artificial

agent. Consider a scenario where the user utters a referring expression that has an

equivalent semantic compatibility with multiple potential referent objects. For exam-

ple, in a room with multiple books, the user utters the open book to the right,

but only the referring expression the book is recognized by the ASR. If a particular

book is fixated during interaction, there is a high probability that it is indeed being

referred to by the user. Without eye gaze information, the semantic compatibility

alone could be insufficient to resolve this referring expression. Thus, when eye gaze

information is incorporated, the main source of performance improvement comes from

better identification of potential referent objects.

In Section 7.4.3 we have shown that incorporating multiple speech recognition hy-

potheses in the form of a word confusion network further improves reference resolution

performance. This is especially true when exact referring expression identification is

required (F-measure of 0.333 from WCNs compared to F-measure of 0.035 from

1-best hypotheses). Using a WCN improves identification of low-probability refer-

ring expressions. Consider a scenario where the top recognition hypothesis of an

utterance contains only a referring expression that has no semantically compatible

potential referent objects. If a referring expression with a high compatibility value

to some potential referent object is present in a lower probability hypothesis, this

referring expression can only be identified when a WCN rather than a 1-best hy-

pothesis is utilized. Thus, when word confusion networks are incorporated, the main

source of performance improvement comes from better referring expression identifica-

tion. Clearly, reference resolution performance still suffers from sub-optimal speech

recognition (in comparison to manual transcriptions). However, it is important to

note that it is not the goal of this paper to address speech recognition performance,

but rather to use available speech recognition results to improve reference resolution

performance.
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The best reference resolution performance is achieved when considering only closely

coupled utterances and evaluating the reference resolution algorithm on transcribed

data. As can be seen in Section 7.4, even in this case, reference resolution results

are still relatively low, achieving the highest F-measure of 0.7 using the Resolved

Concept evaluation. Reference resolution can be further improved by incorporating

more domain model information, such as object attributes (e.g. color, shape, size)

that can be used to uniquely identify potential referent objects. Improved processing

of complex referring expressions, such as spatial referring expressions (e.g. the book

to the right), can also be used to uniquely identify potential referent objects. The

following section describes in more detail the error sources that must be considered

for improved reference resolution performance.

7.7.1 Error Analysis

A reference resolution error in an utterance can occur for two reasons (1) a referring

expression is incorrectly recognized or (2) a recognized referring expression is not

resolved to a correct referent object set. The closely coupled transcribed configuration

produces an F1-measure of 0.941 and 0.710 according to the Recognized Concept

and Identified Object Set evaluation metrics, respectively. This indicates that a small

portion of the reference resolution error is caused by incorrect referring expression

recognition and a larger portion of the error is caused by incorrect referent object

set identification. In this section, we elaborate on the potential error sources that

diminish reference resolution performance.

Given transcribed data which simulates perfectly recognized utterances, all refer-

ring expression recognition errors must arise due to incorrect language processing.

Most of these errors occur because the parsing grammar has insufficient coverage.

These errors fall into the following three categories (shown with examples containing

incorrectly recognized referring expressions marked in bold):
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1. Incorrect part of speech (POS) interpretation of a word. An example of this

is when a word that has a homonym is encountered, e.g. “can I pick up the

statue” where can is a verb that is treated as a referring expression (noun). An-

other example is when a word has multiple parts of speech, e.g. “the computer

is electronic” where electronic is an adjective that is treated as a referring

expression (noun).

2. A noun modifier is treated as a head noun. For example, in the utterance

“there is a desk lamp” the referring expression shown in bold is parsed as two

consecutive referring expressions a desk and lamp rather than a single referring

expression because the word desk is treated as the head noun of a phrase rather

than a noun modifier.

3. Out-of-vocabulary (OOV) words. For example, in the utterance “it is a fern

in a potted plant” the word fern is OOV and cannot be used to distinguish

between two potted plant potential referent objects.

Object set identification errors are more prevalent than referring expression recog-

nition errors. The majority of these errors occur because a referring expression is

ambiguous from the perspective of the conversational system and there is not enough

information to choose amongst multiple potential referent objects. There are several

potential reasons for this which are described below (shown with examples containing

incorrectly resolved referring expressions marked in bold):

1. A distinguishing object attribute is not encoded into the domain knowledge.

For example, in the utterance “there is a small gold ring” the gold color of

the ring is the attribute that distinguishes this ring from another visible ring

and without this knowledge the system is faced with an ambiguity.

2. An explicit distinguishing spatial relationship between objects cannot be estab-
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lished by the system. For example, in the utterance “I see pottery on a table”

without the spatial relationship between the objects of pottery and the table,

the system is unable to distinguish between these pottery that’s on the table

and the other visible objects of pottery.

3. An implicit distinguishing spatial relationship between objects cannot be es-

tablished by the system. Sometimes users do not linguistically specify that the

spatial location of an object is what uniquely identifies it. For example, during

the utterance “I see a picture of a lighthouse and a chair” there are two chairs

visible on the screen creating an ambiguity. However, only one of the chairs

is near the picture, and thus the user is implicitly using this information to

uniquely identify which chair is being referred to.

4. The system lacks pragmatic knowledge that can be used to distinguish between

multiple objects that can be called by the same name. For example, in the

phrase “a armchair and a sofa” which is uttered by a user viewing a small and

a large sofa, the word sofa can refer to either of the two objects. Here, the

system lack pragmatic knowledge necessary to discern that if one of the sofas

is referred to as an armchair and the other a sofa, the latter expression refers

to the larger one.

5. A singular noun phrase refers to multiple objects. For example, the utterance

“i see a computer” refers to a computer body, monitor, keyboard, and mouse.

Since this expression is singular, the system resolves it to a single object.

6. A plural referring expression is resolved to an incorrect number of referent ob-

jects. For example, the utterance “the bowls have some blue” refers to four

bowls, but is resolved to fewer than four bowls because those are more salient

than the remaining bowls.
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Some of these errors can be avoided when eye gaze information is available to the

system because it can be used to disambiguate referring expressions. However, due to

the noisy nature of eye gaze data, many such referring expressions remain ambiguous

even when eye gaze information is considered.

One additional error source that impacts our reference resolution evaluation is

annotation error. Some ambiguous referring expressions are misinterpreted by the

annotator because our annotators were not experts in the Treasure Hunting domain

within the immersive environment. Ideally, the data should be annotated by multiple

human annotators and only utterances with high agreement should be evaluated.

This was not done because annotation errors constitute a minor portion of the overall

reference resolution error and because we did not have the resources to complete this

labor intensive and tedious task.

7.8 Summary

In this chapter, we have examined the utility of eye gaze ans word confusion networks

for reference resolution in situated dialogue within a virtual world. We have presented

an implementation of a real-time multimodal reference resolution algorithm. For each

utterance, the algorithm takes automatic speech recognition and eye gaze fixation

information as input and returns a list of (referring expression, referent object set)

pairs. The empirical results indicate that incorporating eye gaze information with

recognition hypotheses is beneficial for the reference resolution task compared to

only using recognition hypotheses. Furthermore, using a word confusion network

rather than the top best recognition hypothesis further improves reference resolution

performance. Our findings also demonstrate that the processing speed necessary

to integrate word confusion networks with eye gaze information is well within the

acceptable range for real-time applications.
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Combining eye gaze with word confusion networks can overcome a large portion

of speech recognition errors for the reference resolution task. Eye tracking technology

has improved significantly in the past decade. Integrating non-intrusive (e.g., Tobii

system) and high performance eye trackers with conversational interfaces is becoming

more feasible. The results from this work provide a step towards building the next

generation of intelligent conversational interfaces.
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Chapter 8

Conclusions

8.1 Contributions

This dissertation presents investigations on the role of eye gaze for reference resolu-

tion in multimodal conversational systems. We address the following three research

questions (posed in Chapter 1):

1. Can eye gaze reliably predict user attention during conversation?

2. Can eye gaze based attention prediction help to resolve linguistic referring ex-

pressions produced during conversation?

3. What additional modeling is required for reference resolution within an immer-

sive, situated scenario? Particularly, what additional modeling is required to

process recognized speech input?

The empirical results have demonstrated that incorporating eye gaze can poten-

tially improve modeling attentional salience and understanding spontaneous speech

within a multimodal conversational interface. The following sections highlight specific

research contributions.
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8.1.1 Eye Gaze in Attention Prediction

We have systematically analyzed the role of eye gaze for attention prediction in a

multimodal conversational system. Specifically, we developed several variations of eye

gaze based attentional salience models. The empirical results indicate that fixation

intensity—the amount of time that an object is fixated during a given time window—

is the most important factor in predicting a user’s focus of attention. Modeling a

fixation to an area on the screen that includes full or partial object occlusion as a

fixation to only the fore-front object (rather than considering all objects that overlap

with the fixation point) produced a significant improvement in attention prediction

results. Other visual features do not produce a significant improvement in attention

prediction accuracy when eye gaze information is present.

8.1.2 Eye Gaze in Multimodal Reference Resolution

We have systematically analyzed the role of eye gaze for reference resolution in a

multimodal conversational system. We developed an integrated reference resolution

framework that combines linguistic, dialogue, domain, and eye gaze information to

robustly resolve referring expressions. These referring expressions are found in spon-

taneous spoken utterances that are collected during human interaction with a mul-

timodal conversational interface. We used the integrated framework to evaluate the

effect of eye gaze on multimodal reference resolution. The empirical results show

that eye gaze can significantly improve reference resolution performance, especially

when little domain information is available to the system. Moreover, eye gaze can

partially compensate for a lack of domain model information. Referring expressions

that require complex domain modeling to be resolved without the aid of eye gaze, can

be correctly resolved at a 43 % rate with the use of a minimal domain model (only

taking into account the semantic type of objects and terms that refer to them) when
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eye gaze is present.

8.1.3 Integrating Eye Gaze with Automatically Recognized

Speech in Multimodal Reference Resolution

We have systematically analyzed the role that eye gaze has for overcoming speech

recognition errors for the purpose of improving real-time reference resolution. We

have investigated various models of automatically recognized speech as input to our

integrated multimodal reference resolution framework as well as various ways to incor-

porate eye gaze and recognized speech into the reference resolution framework. The

empirical results show that using a confusion network structure to model alternative

recognized speech hypotheses outperforms using only the top recognition hypothesis

on the reference resolution task. Using eye gaze to post-process referring expressions

extracted from the confusion network further improves reference resolution perfor-

mance.

8.1.4 Immersive Multimodal Conversational Interface

We have developed an immersive multimodal conversational interface that supports

spontaneous speech and eye gaze input. It supports system and user initiated mul-

timodal conversation and can be used to exhibit situated language. The interface

contains 188 3D models of objects that can be viewed from any direction (allowed by

the physics of the virtual world). This system can be used as a test-bed for future

study of multimodal conversation as well as for development of real-world multimodal

applications.
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8.1.5 Parallel Speech and Eye Gaze Data Corpus

We have constructed a parallel speech and eye gaze data corpus that has been collected

via two user studies. The corpus contains time-synchronous multimodal data. That

is, each word and each eye gaze fixation has a corresponding start and end time.

The data has been annotated to include transcript of speech, as well as marking of

all occurring referring expressions and the objects that are being referred to by the

expression. This data corpus will be made available to the research community.

8.2 Future Directions

The goal of this dissertation is to study the affect of eye gaze on language under-

standing in multimodal conversational systems. We focus on studying eye gaze as

a subconscious information channel that can be used as an indicator of the focus of

attention. However, realistic conversation exhibits social interaction, during which

eye gaze may be used in a variety of other ways.

During social interaction eyes are used for seeing (i.e. strictly for vision), looking

(i.e. intentional eye direction for gathering visual information), thinking (i.e. raising

or closing of eyes to aid the thinking process), and communicating information [73].

Seeing and looking behaviors can be used to identify the focus of attention. A thinking

behavior, such as an aversion (i.e. look away) gesture, can be used to indicate a period

of cognitive load and that the per is thinking and has not simply stopped speaking

[60]. Communicating information is not the intent of these eye behaviors, but rather

a byproduct. The most common intentionally communicative act is mutual gaze,

which involves fixating on a conversational partner and delineates attentiveness to

the conversational partner. Breaks in mutual gaze are important signals used to

manage the turn-taking sequence [3]. Other communicative gaze acts include the

exposure of emotional, belief, and goal states, and requests for feedback [73, 3]. In
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future work, we intend to consider the impact of such eye gaze behavior during social

interaction on language understanding.
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Appendix A

Regions of Interest

Object Id Semantic Category Attributes

Static Dynamic

1 picture {girl} {upsidedown}

2 picture {waterfall}

3 lamp {floor}

4 -

5 curtains

6 window

7 chair {green}

8 lamp {desk}

9 mirror

10 -

11 lamp {chandalier}

12 table {desk}

13 -

14 picture {forest}

15 picture {flowers} {crooked}

16 -
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17 lamp {bedside} {crooked}

18 table {cabinet}

19 bed

20 pillows

21 blanket

22 door

23 lamp {bedside}

24 table {cabinet}

25 chair {brown}

26 candle

27 plant

28 -
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Appendix B

Parsing Grammar

NP → Adj-NP Adj-NP → Adj Base-NP
| Base-NP | Adj One
| Dem
| Num-NP Base-NP → Base
| Pron | Base PrepBase
| Dem Adj-NP
| Dem Base-NP Num-NP → Num Base-NP
| Dem Num-NP | NumAdj Base-NP
| Dem One | NumAdj One
| Def-art Adj-NP
| Def-art Base-NP NumAdj → Num Adj
| Def-art Num-NP
| Def-art One PrepBase → Prep Base
| Indef-art Adj-NP
| Indef-art Base-NP Adj → Adj Adj

Num → One
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Appendix C

Interior Decoration Data

Documentation

C.1 Domain Knowledge Files

The following are user-independent files that are used to encode knowledge in the

Interior Decoration domain:

Interest Area Definition (interestAreas.ias) File:

The interest area definition file specifies the location of each interest area (object) in

the interior decoration scene, one per line. Each line, excluding comments (lines that

start with the pound symbol (#)), is a tab delimited list with the following fields:

1. shape: RECTANGLE or FREEHAND

2. object id: integer value

3. coordinate list:

• for RECTANGLE shape: tab separated list consisting of the upper left x,
upper left y, lower right x, and lower right y coordinates defining the
rectangle
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• for FREEHAND shape: list of tab separated x,y coordinate pairs defining a
polygon

4. object name: string value

objectOverlapMatrix.csv:

The semicolon-separated (*.csv) file contains a square matrix specifying the pairwise

area of visual overlap (in pixels squared) between objects. Each row and column

corresponds to an object ID number. The matrix diagonal represents an object’s

size (overlap with itself), with a value of 0 indicating an invalid object that is not

considered in any further processing. A negative value indicates that the object in row

y is behind the object in column x. For example, window (id=6) is behind curtain

(id=5) and they overlap by |14942| pixels squared.

semanticDomainKnowledge.xml:

The domain model file defines the semantic properties and terminology that can be

used to refer to each object in the domain.

Each object must have a type property and may have additional properties (e.g.,

classification, color, size, location, orientation). Each object property is annotated

with a concept (WordNet synset in the format of “<word>#<pos-tag>#<sense-id>”.

Each property has a list of gold standard attributes that correspond to the object. The

gold standard terminology is manually compiled from all users’ speech transcripts. An

example object is shown in Figure C.1, where:

• Object lamp bedleft (id=17) has three properties.

• The concept of property type is “lamp#n#2”.

• The concept of property classification is “bedside#n#1”.

• The concept of property orientation is “crooked#a#1”.
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• The gold standard terms that can refer to this object are “lamp”, “lampshade”,
“bedside”, and “crooked”.

<object name="lamp_bedleft" id="17">

<properties>

<type text="lamp#n#2">lamp lampshade</type>

<classification text = "bedside#n#1">bedside</classification>

<orientation text="crooked#a#1">crooked</orientation>

</properties>

</object>

Figure C.1: Example object in semanticDomainKnowledge.xml domain model file

Lexicon Files:

Two alternative lexicon files specify valid lexical entries and their part of speech

(POS) tags in this domain. Each line, excluding comments (lines that start with

the pound symbol (#)), has the format of “<lexical entry>:<POS>”. The file

lexiconSpatial.txt contains the same lexical entries as lexiconNonSpatial.txt

plus additional spatial language terminology.

Parse Rule (lexiconSpatial.txt) File:

This file defines the parsing grammar. Each line, excluding comments (lines that start

with the pound symbol (#)), specifies a production rule consisting of two elements—

(1) a list of non-terminal symbols that can be generated from (2) another non-terminal

symbol—separated by the colon symbol (:).

Canonicalization Files:

Three alternative canonicalization files specifies a list of lexical entries with corre-

sponding (attribute, value) pairs that encode a semantic interpretation in the interior

decoration domain. The files are formatted as follows:
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@<lexical entry>

attribute1 : value1

attribute2 : value2

...

attributen : valuen

-------

@<lexical entry>

...

For example, the lexical entry them has attributes NUMBER and TOPIC with values

Multiple and Collection, respectively—indicating that this lexical entry refers to

an unknown-sized collection of objects.

The three alternative canonicalization files are supersets of each other, with the

file canonSimple.txt defining only attributes pertaining to semantic types; the file

canonComplexStatic.txt additionally defining attributes pertaining to static (un-

changeable) object properties; and the file canonComplexDynamic.txt defining addi-

tional attributes pertaining to dynamic object properties.

C.2 User Data Files

The following are data files that were constructed via user studies in the Interior

Decoration domain:

user<id> speech sentences.xml:

This user speech log file contains a list of “trials”, indicating a user’s answer to a

question posed about the interior decoration scene. Each trial consists of one or more

sentences. Each sentence consists of words or references (referring expressions), which
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themselves consist of words. Each referring expression is classified as type “1” or “2”

indicating a definite noun phrase or a pronominal expression, respectively. A sample

trial is shown in Figure C.2, where:

• Each word contains the attributes token (which indicates the uttered word)
and timestamp.

• The <reference/> tag contains the referring expression “the desk”.

• This definite noun phrase (type=“1”) refers to object with id=“12” and starts
9448 ms after beginning of the trial.

<trial id="12">

<sentence>

<word token="my" timestamp="7240"/>

<word token="favorite" timestamp="7344"/>

<word token="piece" timestamp="7608"/>

<word token="of" timestamp="7776"/>

<word token="furniture" timestamp="7893"/>

<word token="is" timestamp="8610"/>

<reference token="the desk" type="1" id="12" timestamp="9448">

<word token="the" timestamp="9448"/>

<word token="desk" timestamp="9792"/>

</reference>

</sentence>

...

</sentence>

...

</trial>

Figure C.2: Example trial in user<id> speech sentences.xml file

fixation <id>.csv:

The semicolon-separated (*.csv) file contains a log of user gaze fixations produced by

the EyeLink II eye tracker. Each row in the file contains the following columns:
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• user ID (RECORDING_SESSION_LABEL)

• trial number (TRIAL_LABEL)

• fixation start, end, and duration times in ms (CURRENT_FIX_START, CURRENT_FIX_END,
CURRENT_FIX_DURATION, respectively)

• a set of fixated objects identified by their ID numbers (CURRENT_FIX_INTEREST_AREAS)

• the user’s pupil size (CURRENT_FIX_PUPIL) in arbitrary units that vary with
subject setup
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Appendix D

Treasure Hunting Data

Documentation

D.1 Domain Knowledge Files

The following are user-independent files that are used to encode knowledge in the

Treasure Hunting domain:

semanticDomainKnowledge.xml:

The domain model file defines (1) the semantic properties and terminology that can

be used to refer to each object in the domain and (2) the semantic properties of object-

independent terminology that can be used to refer to any object in the domain.

Each object must have a type property and may have additional properties (e.g.,

color, size, shape, material). Each object property is annotated with a concept (Word-

Net synset in the format of “<word>#<pos-tag>#<sense-id>”. The type property

has a list of singular and plural gold standard nouns that can be used to refer to the

object. Other properties each have a list of gold standard attributes that correspond

to the object. The gold standard terminology is manually compiled from all users’
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speech transcripts. Additional words are added for terms that can be spelled multiple

ways (e.g. bathtub and bath tub), with tokens in compound terms separated by an

underscore. An example object is shown in Figure D.1, where:

• Object apple has two properties: type and color.

• The concept of property type is “apple#n#1”; the concept of property color

is “color#n#1”.

• The gold standard singular nouns are “apple” and “fruit”.

• The gold standard plural nouns are “apples”, “fruit”, and “fruits”.

• The gold standard word for property color is “red”.

<object name="apple">

<properties>

<type text="apple#n#1">

<noun_singular>apple fruit</noun_singular>

<noun_plural>apples fruit fruits</noun_plural>

</type>

<color text="color#n#1">red</color>

</properties>

</object>

Figure D.1: Example object in semanticDomainKnowledge.xml domain model file

The object-independent terminology includes adjectives, prepositions, definite

and indefinite articles, demonstratives, locatives, pronouns, and numeric expres-

sions. Each term may include zero or more properties with each property having

a single value. Figure D.2 shows an example demonstrative with three proper-

ties: category anaphora, anaphora manner, and topic having the respective values

“yes”, “demonstrative”, and “collection”.

objects.csv:

The comma-separated values file is composed of a list of objects in the Treasure Hunt-

ing virtual world along with their properties. Very similar objects are grouped into
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<dem name="these">

<properties>

<category_anaphora value="yes"/>

<anaphora_manner value="demonstrative"/>

<topic value="collection"/>

</properties>

</dem>

Figure D.2: Example demonstrative (dem) in semanticDomainKnowledge.xml do-
main model file

one semantic name. For example, each unique door object in the virtual world is

semantically named a door object. Each row in the file contains an object ID, the

room in the virtual world that contains this object, a list of constituent objects (de-

limited by a space character), and the semantic name. Three sample rows are shown

in Table D.1. Here, two specific door objects (door bathroom1 and door bathroom2)

compose the door bathroom object. Each of these objects are in the bathroom and

each of them have the semantic name door.

ID ROOM CONSTITUENTS NAME
door bathroom bathroom door bathroom1 door bathroom2 door
door bathroom1 bathroom door
door bathroom2 bathroom door

Table D.1: Example row in objects.csv file

cnfParserules.csv:

The comma-separated values file defines the parsing grammar, which is shown in its

entirety in Appendix B. The file is composed of a list of production rules, with one

rule per row. In each row, the first column denotes a list of non-terminal symbols

that can be generated from the non-terminal symbol in the second column.
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D.2 User Data Files

The following are data files that were constructed via user studies in the Treasure

Hunting domain:

* annotated.xml

This log file contains a list of dialogue turns with zero or more <user_input/> tags

and exactly one <system_response/> tag, denoting user and system dialogue turns,

respectively. Each user input consists of recognized, transcribed, and annotated

speech (with reference resolution tags) along with gaze fixation information. A sample

user input is shown in Figure D.3, where:

• The user’s speech starts at “12868124101485” (system time in ms) and lasts for
8380 ms.

• The <transcript/> tag contains manually transcribed (gold standard) speech.

• The <rr_annotation/> tag contains reference resolution annotations of the
speech transcript using the following XML-like markup—with angle brackets
(<) replaced by square brackets ([):

– The text in each [ref/] tag denotes a referring expression.

– The object attribute denotes a set of objects referred to by the referring
expression.

• The <wavefile/> tag contains the relative path to the audio file that was used
to generate the recognized speech. Additionally, the wavefile name is used to
uniquely identify the utterance (e.g. 20081010-105510-601).

• Each <phrase/> tag contains a recognition hypothesis (Microsoft Speech Rec-
ognizer).

• The <gaze/> tag contains all of the gaze fixations occurring concurrently with
the speech input.

• Each gaze fixation (specified by <gaze_fixation/> tags) starts at a particular
time (system time in ms) and is positioned on particular screen coordinates
(e.g. pos="568,364").
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• Each <gaze_fixation/> tag contains a list of potentially fixated objects (spec-
ified by <mesh/> tags) along with their fixation probabilities. Multiple visually
overlapping objects may be fixated simultaneously. The fixation probabilities
are calculated based on the distance between the user’s eye camera and an ob-
ject: the i-th closest object is given the probability

p =
1

i

(
n∑
i=1

1

i

)−1

* gsTurns.xml:

This log file contains a list of dialogue turns with zero or more <user_input/> tags

and exactly one <system_response/> tag, denoting user and system dialogue turns,

respectively. Each user input consists of speech (gold standard, i.e. transcribed

and timestamped) and gaze fixation information, exemplified in Figure D.4. In this

example:

• The <speech/> tag contains two attributes: (1) a unique utterance id and (2)
and a flag specifying whether the user’s speech matches its accompanying gaze
fixation. In this example, matched="1" because the user mentions an object
(desk 75) that has been captured by a gaze fixation.

• The user’s speech starts at “12868124101485” (system time in ms) and lasts for
8380 ms.

• Each <phrase/> tag contains the timestamped (in ms) tokens of the speech
transcript.

• Each <gaze/> tag contains all of the gaze fixations occurring concurrently with
the speech input.

• Each <gaze_fixation/> tag contains a list of potentially fixated objects (spec-
ified by <mesh/> tags) along with their fixation probabilities.

* scene.xml:

The scene log file contains a record of visible entities on the screen each time the

user’s gaze is captured. An example record is shown in Figure D.5, where:
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<user_input>

<speech>

<transcript>it’s a wooden desk with three drawers on the

right side</transcript>

<rr_annotation>[ref object="{desk_75}"]it’s[/ref]

[ref object="{desk_75}"]a wooden desk[/ref] with

[ref object="{desk_drawer1, desk_drawer2, desk_drawer3}"]

three drawers[/ref] on the right side</rr_annotation>

<wavefile>log\user2001\audio\20081010-105510-601.wav</wavefile>

<phrase start="12868124101485" length="8380" rank="0">

<token start="4290" length="390">and</token>

<token start="4680" length="190">say</token>

<token start="4870" length="360">wooden</token>

<token start="5230" length="370">desk</token>

<token start="5600" length="440">with</token>

<token start="6070" length="380">three</token>

<token start="6450" length="630">drawers</token>

<token start="7170" length="260">from</token>

<token start="7430" length="130">the</token>

<token start="7560" length="300">right</token>

<token start="7860" length="470">side</token>

</phrase>

<phrase start="12868124101485" length="8380" rank="1">

...

</phrase>

...

</speech>

<gaze>

<gaze_fixation start="12868124100940" length="40" pos="568,364">

<mesh prob="0.55">computer_monitor</mesh>

<mesh prob="0.27">desk_75</mesh>

<mesh prob="0.18">castle</mesh>

</gaze_fixation>

<gaze_fixation start="12868124101080" length="20" pos="771,375">

<mesh prob="0.67">computer_body</mesh>

<mesh prob="0.33">castle</mesh>

</gaze_fixation>

...

</gaze>

<user_input>

Figure D.3: Example user input in * annotated.xml file
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<user_input>

<speech utt_id="20081010-105510-601" matched="1">

<transcript>it’s a wooden desk with three drawers on the right

side</transcript>

<phrase start="12868124101485" length="8380">

<token start="4290" length="390">it’s</token>

<token start="4680" length="190">a</token>

<token start="4870" length="360">wooden</token>

<token start="5230" length="370">desk</token>

<token start="5600" length="440">with</token>

<token start="6070" length="380">three</token>

<token start="6450" length="630">drawers</token>

<token start="7190" length="240">on</token>

<token start="7430" length="130">the</token>

<token start="7560" length="300">right</token>

<token start="7860" length="390">side</token>

</phrase>

</speech>

<gaze>

<gaze_fixation start="12868124100940" length="40">

<mesh prob="0.550000">computer_monitor</mesh>

<mesh prob="0.270000">desk_75</mesh>

<mesh prob="0.180000">castle</mesh>

</gaze_fixation>

<gaze_fixation start="12868124101080" length="20">

<mesh prob="0.670000">computer_body</mesh>

<mesh prob="0.330000">castle</mesh>

</gaze_fixation>

...

</gaze>

</user_input>

Figure D.4: Example user input in * gsTurns.xml file

• A user’s gaze fixation lasting 80 ms is captured at time "12868123694708"

(system time in ms) at position "605,558" (screen coordinates in pixels). This
gaze fixation falls on two objects, specified by <mesh/> tags.

• The visible objects on the screen are specified in the <scene/> tag. Here, each
<mesh/> tag contains the center position (screen coordinates: pos="x,y") and
the surrounding rectangle (screen coordinates: rect="left,top,bottom,right")
of the object’s visible region.
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<record>

<gaze_fixation start="12868123694708" length="80" pos="605,558">

<mesh>door_dining</mesh>

<mesh>castle</mesh>

</gaze_fixation>

<scene>

<mesh pos="565,529" rect="487,552,573,578">sword_long</mesh>

<mesh pos="599,502" rect="496,595,545,604">sword_short</mesh>

<mesh pos="564,788" rect="244,0,968,1135">door_dining</mesh>

</scene>

</record>

Figure D.5: Example record in * scene.xml file

nbest\*.nbest:

This directory contains files generated from the * annotated.xml log specifying an

n-best list for each user utterance, identified by the utterance ID. The files use the

SRI Decipher(TM) NBestList2.0 format. Each recognition hypothesis in the file has

the following format:

(score) w1 ( st: st1 et: et1 g: g1 a: a1 ) w2 ...

Here, a word is followed by a start and end time, language model and acoustic score.

The scores are in bytelog scale; a bytelog is a logarithm to base 1.0001, divided by

1024 and rounded to an integer. More information about this file format can be found

in the SRILM manual:

http://www-speech.sri.com/projects/srilm/manpages/nbest-format.5.html

confusionNetwork\*.cn:

This directory contains files specifying a confusion network (also called word mesh) for

each user utterance, identified by the utterance ID. These files use the wlat-format (a

file format for SRILM word posterior lattice) and are generated from the nbest\*.nbest
files with the SRILM toolkit. The file is formatted as follows:
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name s

numaligns N

posterior P

align a w1 p1 w2 p2 ...

info a w start dur ascore gscore phones phonedurs

...

The file format specifies the name of the confusion network s, the number of

alignment positions A and the total posterior probability mass P contained in the

confusion network, followed by one or more confusion set specifications. For each

alignment position a, the hypothesized words wi and their posterior probabilities pi

are listed in alternation. The *DELETE* tag represents an empty hypothesis word.

Following the info tag, word-level information is specified for alignment position a and

hypothesized word w. For the purpose of this work, the word start time start and

duration dur (in ms) is considered. The remaining acoustic information is ignored.

More information about this file format can be found in the SRILM manual:

http://www-speech.sri.com/projects/srilm/manpages/wlat-format.5.html
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