THE EFFECT OF THE METHOD OF DEFROSTING ON THE DRAINED WEIGHTS OF SELECTED MICHIGAN FROZEN FRUITS

> Thesis for the Degree of M. S. MICHIGAN STATE COLLEGE Rudolph Wm. Hirzel 1954

This is to certify that the

thesis entitled

The Effect of the Method of Defrosting on the Drained Weights of Selected Michigan Frozen Fruits

presented by

Rudolph William Hirzel

has been accepted towards fulfillment of the requirements for

M.S. degree in Food Technology

<u>C</u><u>Had</u> Major professor

Date July 29, 1954

O-169

THE EFFECT OF THE METHOD OF DEFROSTING ON THE DRAINED WEIGHTS OF SELECTED MICHIGAN FROZEN FRUITS

В**у**

Rudolph Wm. Hirzel

AN ABSTRACT

Submitted to the School of Graduate Studies of Michigan State College of Agriculture and Applied Science in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

Department of Food Technology

Approved CFBerlond

T66-1.8 H672-

.

This study was carried out during the 1952-53 season to determine the effect of the rate of defrosting on the drained weights of Michigan frozen fruit. The fruits considered were blueberries, Jersey and Rubel varieties; cherries, red and sweet; raspberries; peaches; and strawberries. The study was limited to retail size packages.

1-2-54

All of the fruit was grown and harvested in Michigan. Normal processing plant operation was observed throughout the packaging and storage. Drained weights were determined in grams, and juice volume in milliliters.

The blueberries were packaged in sirup at a 5 + 1 ratio, Four pretreatments were used: untreated, a 10-second steam scald, nicking, and a 10-second steam scald + nicking. The cherries, raspberries, and strawberries were packaged in dry sugar, sucrose sirup, and a 70-30 sucrose-sweetose sirup mixture. The peaches were packaged only in sirup.

Three methods of defrosting were used. They were water at 70° F, and 100° F, and air at 70° F. The effect of the internal temperature at time of determining drained weights was determined. 45° F, 70° F, and 70° F hald for two hours were the temperatures used. Soluble solids of both fruit and juice were determined by use of an Abbe! refractometer.

In all cases the treatment had a significant effect upon the drained weight of the fruit. With blueberries, the drained weight decreased in the following way: untreated, 10-second steam scald, nicked, and 10-second steam scald +

nicked. In all cases, dry sugar produced the lowest drained weight with cherries, raspberries, and strawberries. The sirup drained weights were very similar.

The method of thawing had a marked effect upon the drained weights. The $70^{\circ}F$ was the most consistent and the air at $70^{\circ}F$ produced the lowest drained weights.

The internal temperature to which the fruits were thawed resulted in large fluctuations in the drained weights, but the 70°F was most consistent. The 70°F held for two hours tended, in general, to have lower drained weights.

A significant negative correlation was found between the drained weights and juice volume for all fruits.

There was no relationship of the soluble solids of the fruit and the juice.

In conclusion, any standard drained weight for fruits must consider the type of pretreatment, the method of defrsoting, and the temperature at package center at time of drained weight determination. Future study may indicate a curve factor that would adjust all of these variables to a constant evaluation. • • • • •

•

THE EFFECT OF THE METHOD OF DEFROSTING ON THE DRAINED WEIGHTS OF SELECTED MICHIGAN FROZEN FRUITS

В**у**

-

Rudolph Wm. Hirzel

A THESIS

Submitted to the School of Graduate Studies of Michigan State College of Agriculture and Applied Science in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Department of Food Technology

ACKNOWLEDGEMENTS

The author wishes to express his gratitude to Dr. C. L. Bedford for his constant supervision and guidance throughout the entire course of this study. The author also wishes to express his appreciation to Mr. W. F. Robertson, and Mr. R. L. Strong without whom this study would have been impossible, and also to Dr. W. D. Baten for guidance in the statistical calculations.

Grateful acknowledgement is also due to Mrs. Ardeth Frisbey and the staff of the Horticultural Department.

TABLE OF CONTENTS

Page
INTRODUCTION
REVIEW OF LITERATURE
METHOD
Individual Treatments
Methods of Defrosting
METHOD OF DATA COLLECTION
DISCUSSION
Blueberries
Cherries
Peaches
Raspberries
Strawberries
Soluble Solids
SUMMARY
CONCLUSIONS
TABLES
FIGURES
BIBLIOGRAPHY
APPENDIX

Page

.

LIST OF TABLES

Table		Page
I	Effect of defrosting method on drained weights of blueberries - Jersey variety	. 23
II	Effect of defrosting method on drained weights of blueberries - Rubel variety	• 24
III	Effect of method of defrosting on drained weights of red sour cherries	• 25
· IV	Effect of method of defrosting on drained weights of sweet cherries	• 26
v	Effect of method of defrosting on drained weights of peaches	• 27
VI	Effect of method of defrosting on drained weights of raspberries	• 28
VII	Effect of method of defrosting on drained weights of strawberries	• 29
VIII	Correlation coefficients of drained weights and juice volumes	• 30
IX	Interaction between treatment and method of defrosting	• 31
x	Interaction between treatment and temperature at center of package	• 32
XI	Interaction between method of defrosting and temperature at center of package	• 33
XII	Sample analysis of variance, blueberries - Jersey variety	• 34
XIII	Blueberries - Jersey variety - untreated	• 45
XIV	Blueberries - Jersey variety - 10-second steam scald treatment	• 46
xv	Blueberries - Jersey variety - nicked treatment	• 47
XVI	Blueberries - Jersey variety - 10-second steam scald + nicked treatment	• 1i8
XVII	Blueberries - Rubel variety - untreated	• 49

___ • • • • • • • • • · ·

LIST OF TABLES Continued

Table		Р	age
XVIII	Blueberries - Rubel variety - 10-second steam scald treatment	•	50
XIX	Blueberries - Rubel variety - nicked treatment.	٠	51
XX	Blueberries - Rubel variety - 10-second steam scald + nicked treatment	•	52
XXI	Cherries, red sour - dry sugar treatment	•	53
XXII	Cherries, red sour - sucrose sirup treatment	٠	54
XXIII	Cherries, red sour - 70-30 sucrose-sweetose sirup treatment	•	55
XXIV	Cherries, sweet - dry sugar treatment	•	56
xxv	Cherries, sweet - sucrose sirup treatment	•	5 7
XXVI	Cherries, sweet - 70-30 sucrose-sweetose sirup treatment	•	58
XXVII	Peaches - sucrose sirup treatment	٠	59
XXVIII	Raspberries - dry sugar treatment	•	60
XXIX	Raspberries - sucrose sirup treatment	•	61
XXX	Raspberries - 70-30 sucrose-sweetose sirup treatment	•	62
XXXI	Strawberries - dry sugar treatment	٠	63
XXXII	Strawberries - sucrose sirup treatment	•	64

.

•

.

.

•

LIST OF FIGURES

Figure		P٥	ıge
I	Elueberries - Jersey variety - Regression lines of drained weights on juice volume	•	35
II	Blueberries - Rubel variety - Regression lines of drained weights on juice volume	•	36
III	Cherries - Red Sour - Regression lines of drained weights on juice volume	•	37
IV	Cherries - Sweet - Regression lines of drained weights on juice volume	•	38
v	Peaches - Regression lines of drained weights on juice volume	•	39
VI	Raspberries - Red - Regression lines of drained weights on juice volume	•	40
VII	Strawberries - Regression lines of drained weights on juice volume	•	41

•

-

INTRODUCTION

Frozen blueberries, cherries, peaches, raspberries, and strawberries are all important processed horticultural crops in Michigan. A considerable quantity of this fruit is packed in 30-pound containers for the manufacturing trade. However, in the last five years, there has been an expanding market for the consumer size package, until today 30 percent of the total frozen pack is sold in this manner. With this trend there has resulted a greater interest in the improvement in the definition and objective measurements of quality.

At the present time the U.S. standards of the Production and Marketing Administration are still dependent upon the observation and judgement of trained inspectors. The criteria of the grading is dependent upon general descriptions of shape, color, and character. It is realized that in order to establish objective standards it will be necessary to determine the effect of variety, maturity, and handling.

This study, made in the summer and winter of 1953, was to determine the effect of the method of defrosting on the drained weights. In addition, the effects of the types of sweetening agents and pre-treatment of the fruit is considered in relation to the drained weight. The fruits used were blueberries, red cherries, sweet cherries, peaches, raspberries, and strawberries.

REVIEW OF LITERATURE

In the canning industry, recommended drained weights have been established for fruit packaged in various mediums (8, 9, 10, 11) although the drained weight recommendations are not incorporated in the numerical grade of the finished product, they do give an indication as to quality of fresh fruit, its pre-treatment and its fill-in weight. At the present time no similar standards have been established for frozen foods (12, 13, 14, 15, 16). However, standards now in use state that the package shall be filled with fruit as full as practicable without impairment of quality (12, 13, 14, 15, 16).

Joslyn (2) and Joslyn and Marsh (3) reported that the loss in weight during thawing varied with the kind and character of fruit, and was greatest in water, and least in sirups of certain concentrations. They found that the loss did not vary in a regular manner with the concentration of sirup, and there was no definite relationship between the two.

Woodruff (17) reported that the loss of juice from a frozen fruit on thawing is not due to the rupturing of the cell wall, but due to the denaturization of the protein within the cell.

Marshall (5) and Tressler (7) have reported that the use of dry sugar results in a maximum drained weight.

• - - - · · ·

•

However, work done by Loutfi, Bedford and Robertson (4) on red cherries show the sirup packs to have a consistently higher drained weight. Bedford (1) reported higher drained weights on blueberries, raspberries, and strawberries with the use of sirups.

Cruess and Perry (6) reported that the pre-treatment can have a definite effect on the drained weight. While their work was limited to the action and penetration of sugars, the dry sugar pack produced a lower drained weight than the sirup packs.

METHOD

All of the work was done in the Food Technology Laboratory at Michigan State College. The blueberries were obtained from the Grand Junction area of Michigan. The red cherries were obtained from the Mayes Orchard located at Parma, Michigan. The sweet cherries, raspberries, peaches, and strawberries were from the Michigan State College Horticultural farms located at East Lansing.

The fruit was harvested and immediately brought to the laboratory. The blueberries, raspberries and strawberries were placed in a $35-38^{\circ}$ F cold storage room for one to three hours. The peaches were ripened at 70° F for five days prior to processing. The cherries, both red sour and sweet, were soaked in running water (at 42° F) for six to eight hours prior to pitting.

All fruit was washed, and sorted to remove defective and immature fruit prior to processing. All fruit was packaged in pint Marpack bags (Marathon Corp., Menosha, Wisconsin), heat sealed, and placed in pint Freeztex cartons.

Individual Treatments

Blueberries

Jersey and Rubel varieties were used. They were given identical treatments. The treated blueberries were packaged at a 5 + 1 ratio[#] on the basis of dry sugar (10 oz of fruit to 4 oz of 50° Brix sirup).

<u>Untreated</u> - no pretreatment, berries packaged in sirup and frozen.

<u>10-second Steam Scald</u> - the fruit was given a 10-second live steam scald, then immediately cooled by air blast from an electric fan to 60-65° F and packaged in sirup.

<u>Nicked</u> - the berries were run through a nicker of laboratory design. The purpose of the nicker is to place a series of small cuts in the skin of the fruit 1/16 to 1/4 inch in length, and 1/16 inch apart about the circumference of the berry. The fruit was immediately packaged in sirup.

<u>10-second Steam Scald and Nicked</u> - the blueberries were given a 10-second live steam scald, then cooled by air from an electric fan to $60-65^{\circ}$ F. The fruit was then run through the afore mentioned nicker, and immediately packaged in sirup.

Cherries and Raspberries

The cherries were pitted on a Dunkly pitter of pilot plant capacity.

<u>Dry Sugar</u> - the cherries and raspberries were packaged with dry sugar as a 5 + 1 pack ($12\frac{1}{2}$ oz of fruit to $2\frac{1}{2}$ oz of sugar).

^{*5 + 1} ratio is the designation used in the industry to indicate 5 parts fruit to 1 part sugar. A 50° Brix sirup is 50% sugar, therefore 10 oz of fruit plus 4 oz of 50° Brix sirup is a 5 + 1 ratio.

<u>Sucrose Sirup</u> - Sucrose sirup was added to the cherries and raspberries as a 4 + 1 pack based on dry sugar (12 oz of fruit to 5 oz of 60° Brix sirup).

<u>70-30 Sucrose-Sweetose Sirup</u> - the sweetose sirup used was an enzyme high conversion corn sirup. The mixed sirup was 70 percent sucrose and 30 percent sweetose. The combi-nation sirup was added to the cherries and raspberries at a 4 + 1 ratio based on dry sugar (12 oz of fruit to 5 oz of 60° Brix sirup).

Peaches

Only one treatment of peaches was used as only one method of packing is in commercial use today. The peaches were steam peeled, and cut into twelfths. Sirup was added to the peaches as a 6 + 1 pack based on dry sugar (12 oz of fruit to 5 oz of 40° Brix sirup).

Methods of Defrosting

All packages were weighed prior to defrosting to determine total weight.

For the water thawing procedure a rectangular 2: x 2: x 4: tank with a steam coil was used. The packages were placed on a one-inch screen placed six inches below the top of the tank so that packages were totally submerged in water during thawing. The individual packages were separated by a series of crosswires so there was at least one inch of free water circulating about each package. The water was agitated by a propellor type stirrer, and the temperature was controlled at $\pm 2^{\circ}$ F.

In the air thawing procedure the packages were placed three to four inches apart on a table in a room having a temperature of 70° F, + 2° F.

Representative packages were allowed to thaw until temperature at center of the package reached 45° F, 70° F, and 70° F and held for two hours at 70° F, respectively. The center package temperature of 45° F represents the usual temperature of a housewife's refrigerator. The package center temperature of 70° F is the temperature that is recommended by the U.S.D.A. for grading frozen fruit (12, 13, 14, 15, 16). The temperature of 70° F held for two hours represents a condition where the soluble solids content of fruit and juice have become more nearly equalized.

The time for the package centers to come to the desired temperatures varied according to the method of defrosting.

<u>Water at 70° F</u> - The length of time for the package center to reach 45° F was 55 minutes, and the time for the center to reach 70° F was two hours.

Water at 100° F = The length of time for the package center to reach 45° F was 25 minutes, and the time for the center to reach 70° F was one hour.

<u>Air at 70° F</u> - The length of time for the center package temperature to reach 45° F was five hours, and for the temperature to get to 70° F was seven hours.

₽•

• :

• •

METHOD OF DATA COLLECTION

Temperature

A standard laboratory mercury thermometer was used to indicate the temperature. The package center temperature was taken by "rolling" the package in the hand until a standard temperature was noted.

Drained Weights

The procedure used for obtaining the drained weights was identical to the method outlined by the U.S.D.A. for canned foods (8, 9, 10, 11). A standard No. 8 drained weight sieve containing 8 meshes to the inch was used. Draining time was for two minutes, and the drained weights determined in grams.

Soluble Solids

The refractive index was determined on both fruit and juice with an Abbe' refractometer. The soluble solids of the juice was obtained directly, and the soluble solids of the fruit was obtained on the expressed juice from the drained fruit.

· · · · ·

•

•

b .

DISCUSSION

Blueberries

Jersey variety - The effects of the treatments on the drained weights of the Jersey blueberry variety were very significant (see Tables I and XII). While there was no difference between the drained weights of the untreated and the 10-second steam scalded berries, there was a significant difference between the drained weights of the 10-second steam scalded, nicked, and 10-second steam scalded-nicked berries. The difference in drained weight was greater between the 10-second steam scalded and the nicked berries than between the nicked and steam scalded-nicked berries. The highest drained weight was obtained with the untreated berries.

The skin of the blueberry is rather impermeable to the exchange of sugars. The action of the 10-second steam scald increased the permeability of the skin, and as a result the drained weight decreased. Nicking, which is a cutting of the skin, further reduced the drained weight by allowing the sirup to come in contact with the internal pulpy flesh. The combination of the 10-second steam scalded and nicking caused an even greater lowering of drained weight.

The temperature of the package center had a marked effect upon the drained weights. In general, the drained weights decreased with an increase in temperature, and length of thawing time. The higher temperature caused a greater exchange of liquid from the fruit to the surrounding medium.

An interaction was noted between the treatments and the method of defrosting (see Table IX). An analysis of the two-way tables indicated that there was no one trend. Two methods of thawing -- water at 70° F, and water at 100° F -- produced the highest drained weight with the 10-second steam scald treatment. The 70° F air defrosting gave the highest drained weight in the untreated fruit.

A high negative correlation was obtained between the drained weight and juice volume (see Table VIII). No significant difference was found between the regression curves of the various treatments.

<u>Rubel variety</u> - The results of the drained weights are summarized in Table II. As was the case with the Jersey variety, there was no difference between the drained weights of the 10-second steam scalded, and the untreated berries. The drained weights of the 10-second steam scalded fruit were significantly higher than the nicked or 10-second steam scalded-nicked fruit. Although the difference in drained weights between the treatments was large, they were not nearly as large as in the Jersey variety. The skin of the Rubel may be more permeable to sirups than the Jersey.

In the Rubel variety, the method of defrosting had

۱...

little effect upon the drained weight of the two water defrosting methods; water at 100° F, and water at 70° F. The air thawing at 70° F had a much lower drained weight. This difference may be explained by the length of time for defrosting. In air at 70° F the thawing time was longer therefore a greater exchange of juices was possible.

The effect of the temperature at package center on drained weight was much the same as for Jersey variety. The drained weights decreased as temperature and length of thawing time increased.

An interaction of the drained weights was noted between the treatments and the method of defrosting (see Table IX). The untreated and the 10-second steam scalded had a higher drained weight when defrosted in water at 100° F. The nicked and the 10-second steam scalded-nicked had higher drained weights when thawed in water at 70° F. The reversal of trend occurred between nicked and unnicked berries. The nicked, having more internal pulp surface exposed, were influenced more by the time of thawing.

A significant interaction of drained weights appeared between the method of defrosting and the temperature at package center (see Table XI). The internal package temperature of 45° F had the highest drained weights for all defrosting methods.

As with Jersey variety, the Rubel variety had a high negative correlation between the drained weights and the •

•

• • • • • •

juice volume.(see Table VIII). A difference was found in the regression slopes of untreated and 10-second steam scalded-nicked fruit. The variation in this case may be explained by the size of the Rubel berry. The cutter bed of the nicker is of a set length. As a result, the smaller berry tends to acquire more cuts, as it is forced to make more turns traveling the length of the bed. The greater number of cuts in the surface of the Rubel fruit results in softer berries in the package, and the liquid is not released in the same manner as the Jersey variety.

Cherries

<u>Red Sour</u> - The drained weights of the Red Sour cherries were highly influenced by the method of treatment, and by the thawing temperatures. The drained weights of the dry sugar pack were significantly lower than those of the sirup packs. This lower drained weight is expected, as in the dry sugar all of the liquid must come from the fruit. No difference was found in the drained weights of the sucrose sirup and the 70-30 sucrose-sweetose pack.

The method of defrosting had no effect upon the drained weights. However, the temperature to which the fruit was thawed had a significant effect upon the drained weights. The highest drained weight was obtained for fruit brought to 45° F internal temperature, and the lowest drained weight was when the fruit was allowed to stand for two hours at 70° F. A higher drained weight was obtained for the dry

sugar pack at 45° F. One reason for this is that the dry sugar did not go completely into solution at 45° F and was partially retained as crystals on the surface of the fruit.

An interaction was found between treatment and temperature to which the fruit was thawed (see Table X). The lowest drained weight for the 70-30 sucrose-sweetose sirup was at 70° F while the lowest drained weight for dry sugar and sucrose sirup was at 70° F held for two hours.

A high negative correlation was obtained between the drained weight and juice volumes for all packs (see Table VIII). No significant difference was found between the slopes of the regression curves.

<u>Sweet</u> - The drained weights of sweet cherries are significantly affected by treatments, the method of defrosting and the internal package temperature. The sucrose sirup treatment had the highest drained weight, while the 70-30 sucrosesweetose sirup had the lowest drained weight. The fruit of the sweet cherry was torn considerably while being pitted since no sweet cherry pitter was available, and a sour cherry pitter was used. This tearing resulted in more flesh being exposed to the sirup. This accounts for the fact that while there were differences in the drained weights, they were not nearly as great as in the red cherries.

The drained weights were influenced by the method of thawing. The highest drained weight was obtained by thawing

in water at 70° F. The pulpy flesh condition of the fruit was responsible for the lowest drained weight found at 100° F water thaw.

The marked effect of temperature at package center on drained weight seemed to be dependent upon time. The highest drained weight was obtained when the internal temperature was 45° F, and the lowest drained weight was at 70° F held for two hours. The longer time with lower drained weights would indicate that with greater amounts of flesh exposed, the greater juice loss occurs.

An interaction of drained weights was found to exist between the treatments and the method of defrosting (see Table IX). The sucrose sirup treatment had the highest drained weight in all cases. Dry sugar pack had the lowest drained weight at 100° F, and the 70-30 sucrose-sweetose pack had the lowest drained weight in air at 70° F.

A high negative correlation was found between the drained weight and juice volume (see Table VIII). An analysis of the regression lines showed no significant difference in slopes.

Peaches

The drained weights of sliced peaches did not react in the manner of the other fruits. The effect of the method of defrosting on the drained weight was very marked (see Table V). The air at 70° F produced the highest drained weight, while water at 100° F produced the lowest. The sliced peaches have no skin barrier to the transfer of liquid. All of the surrounding medium is able to be in direct contact with the flesh of the fruit, therefore equalization could more easily occur. The peach, as time increases, tends to pick up liquid from the medium.

A significant interaction was indicated between the method of defrosting and the package center temperature (see Table XI). The highest drained weights were obtained in water at 70° F and 100° F with an internal temperature of 70° F held for two hours.

A marked negative correlation was found between the drained weight and juice volume (see Table VIII). The regression curve had the same general slope as the other curves.

Raspberries

The drained weight of the raspberries were significantly influenced by the method of treatment (see Table VI). The highest drained weights were obtained in the sucrose sirup packs and the lowest weights in the dry sugar packs. The raspberry is composed of a series of small droplets separated by a thin membrane. This membrane is very permeable to the transfer of liquid. As a result the drained weight of the berry was highest with sucrose sirup. Dry sugar pack tends to remove or draw the liquid from the fruit. The sucrose and 70-30 sucrose-sweetose sirup packs had similar drained weights. The method of defrosting had a marked effect on drained weight. Water at 70° F produced the highest drained weight, and water at 100° F produced the lowest drained weight. As the temperature of the water increased there was a tendency for some of the droplets to burst. As a result the drained weight decreased. The temperature of the package center highly influenced the drained weight of raspberries. The higher drained weights were produced by 45° F internal temperature, while the 70° F and the 70° F held for two hours were similar. There must be a certain temperature that must be reached before a rapid exchange of liquid occurs. 45° F seems to be below this critical temperature.

A slight interaction was noted between the treatments and the method of defrosting (see Table IX). Water at 70° F produced the highest drained weights for all treatments. Sucrose sirup had the lowest drained weights at 100° F water, while dry sugar and 70-30 sucrose-sweetose sirup had the lowest drained weights in air at 70° F.

A highly significant interaction was indicated between the treatments and package center temperature (see Table X). The highest drained weight for all treatments was at 45° F internal temperature, while sucrose sirup and 70-30 sucrosesweetose sirup have the lowest drained weight at 70° F held for two hours, and dry sugar having the lowest drained weight at 70° F.

An interaction between the method of defrosting and the

17

temperature at package center occurred (see Table XI). The 45° F internal temperature caused the highest drained weights. Water at 70° F, and air at 70° F had the lowest drained weight at the internal temperature of 70° F held for two hours. Water at 100° F produced the lowest drained weight at 70° F internal temperature.

A highly significant negative correlation was found between the drained weight and juice volume (see Table VIII). There was no significant difference in the slopes of the regression curves.

Strawberries

The drained weights of strawberries were influenced significantly by the treatments. The dry sugar treatments had much lower drained weights than the sirup treatments. The lower drained weight resulted from the fact that all of the juice must come from the fruit. The strawberry has a very thin skin, and when sliced, almost all of the flesh of the fruit is brought in direct contact with the surrounding medium. As a result the juice is released very easily.

The defrosting method causes a marked variation in the drained weights. Strawberries thawed at 70° F water and 70° F air were highest in drained weight, and very similar, while berries thawed at 100° F had the lowest drained weight. This result is in agreement with raspberries. Sliced strawberries form a pulpy mass and as a result do not react as

•

•

- ·

skin fruits. The internal temperature of the package has a marked effect upon the drained weights. A temperature of 45° F caused the highest drained weight, while the 70° F and 70° F held for two hours were lower, and much more similar. Since the strawberries form a mass of pulpy material, and heat conduction is difficult, it is conceivable that a slight amount of ice crystals may have remained in the package center.

A significant negative correlation was found to exist between the drained weight and juice volume (see Table VIII). No significant difference was found in the slopes of the regression curves.

Soluble Solids

The refractive index of all of the fruit and juice was recorded throughout all of the samples. The results are shown in the appendix tables. There was no one correlation or trend shown by any of the fruits under any of the conditions of thawing.

SUMMARY

From the foregoing it is apparent that if drained weights are to be used as a criterion for the standards of frozen fruit, the treatment that the fruit is given must be considered. The drained weights of blueberries were varied with the pretreatments with the untreated berry having highest drained weights. The type of sweetening agent, dry sugar or sirup, caused a very significant difference. In all cases, the dry sugar pack was lower in drained weight than the sirup pack. Another consideration is the amount of flesh that is exposed by the fruit. If the fruit has a high percent of its flesh exposed, such as peaches, then it must have a classification of its own.

The necessity of further work in this field is shown by variations within the treatments. Jersey and Rubel blueberries did not vary in equal amounts. While the same trend was shown, the difference in the drained weight of the Rubel variety was not nearly as great as in the Jersey variety.

In general, if the dry sugar is in solution, the dry sugar pack always produced the lowest drained weights. Variations occurred within the sirup packs, however, in that the 70-30 sucrose-sweetose sirup produced a higher drained weight in sweet cherries than the sucrose sirup. In all other cases the sucrose sirup had the higher drained weight. Further experimentation should be channeled in this direction. Is this variation caused by the fruit, or by the sirup?

While the defrosting methods produced erratic results, it was felt that the 70° F water thaw with an internal temperature of 70° F produced the most consistent results. Utilizing the 100° F thawing water caused an overheating in parts of the package which influenced the liquid exchange.

It is felt that the 45° F internal temperature will not allow all sugar crystals to get into solution, therefore this low internal temperature will tend to give erratic results.

There is no one trend or relation shown between the soluble solids of the fruit and juice.

21

CONCLUSIONS

l. Drained weight standards for frozen fruit must consider the pretreatments of the fruit. A highly permeable skinned fruit, such as blueberries, is radically altered by physical processes. Nicking, or cutting, has the greatest effect.

2. Drained weight standards for frozen fruit must consider the type of pack. The dry sugar produces a significantly different drained weight than the sirup packs.

3. The smount of flesh exposed must be considered when establishing drained weight standards. A blueberry with no flesh exposed will not react the same as a sliced peach, where the flesh is exposed.

4. It is felt that if drained weights are to be used for standards, a standard thawing method should be adopted. The author recommends the thawing method of 70° F water to an internal temperature of 70° F. The higher thawing temperature and lower internal temperature all produce erratic results.

5. It is felt that further experimentation will produce a common drained weight curve, where a set factor would adjust all pretreatments and treatments to an equal valuation.

TABLE I

Metho		Temperature	e of pack	kage center	Mean	Treatment
defros	ting	45 ⁰ f	70 ⁰ F	70 ⁰ F held 2 hrs		mean
	(°F)	(gms)	(gms)	(gms)	(gms)	(gms)
			Untreat	ted		
Water	70	289•6***	291.6	286.6 286.2	289 •3 289 •0	
Air	100 70	290.8 294.4	290.0 289.8	288.4	299.0	
Mea	n	291.6	290.5	287.1		289 •7
		10-	sec. Stea	am Scald		
Water	70	297.0	291.2	288.6	292.2	
Air	100 70	294•8 293•4	291.8 288.2	286.6 281.0	291.0 297.5	
Mea	n	295.0	290.4	285.4		290.3
			Nicke	əd		
Water	70 100	281.6	275.6 279.2	266.8 273.8	274 •7 278 • 8	
Air	70	283•4 278•0	272.4	270.8	273•7	_
Меа	n	281.0	275•7	270.5		275 •7
		10-sec.	Steam So	cald + Nicke	d	
Water	70	274.8	276.2	267.6	272.9	
Air	100 70	276•2 276•0	272 .2 270 . 2	265•4 269•8	271•3 272•0	
Mea	n	275•7	272.9	267.6		272.1
						· · · · · · · · · · · · · · · · · · ·

EFFECT OF DEFROSTING METHOD ON DRAINED WEIGHTS OF BLUEBERRIES - JERSEY VARIETY

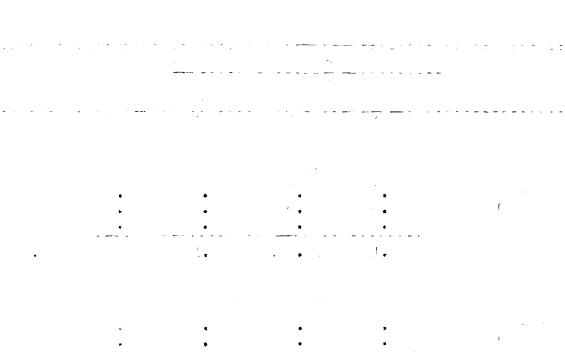
F values LSD 5% 1% 269.0** 1.58 2.09 Treatments Method of defrosting Temperature of package center 2•33 64•7** 1.42 1.89 **Highly significant ***Average of five samples

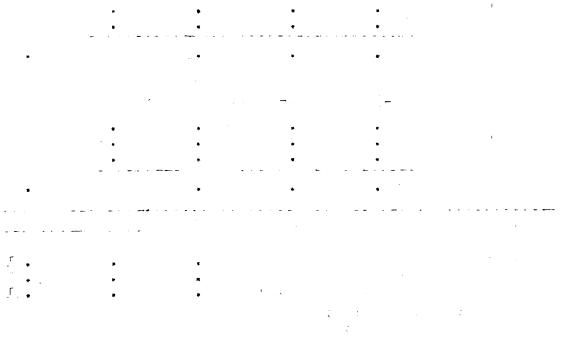
Method of	Temperatur	e of pack	rage center	Mean	Treatment
defrosting	45 ⁰ г	70 ⁰ F	70 ⁰ F held 2 hrs		mean
(^o F)	(gms)	(gms)	(gms)	(gms)	(gms)
		Untreat	ted		
Water 70	290.4	288.4	282.0	286.9	
100 Air 70	291•2 286•0	287•2 272•0	284.0 281.2	287•5 279•7	
Mean	289•2	282.5	282.4		284 •7
	10-	sec. Stea	am Scald		
Water 70 100	288 .2 290.8	283 . 6 286 . 4	281.0 280.2	284 •3 285 • 8	
Air 70	285.2	278.0	277.2	280 .1	
Mean	288.1	282.7	279•5		283•4
		Nicke	ad .		
Water 70	290•0	284.0	277.4	283.8	
100 Air 70	285 .6 288 . 6	279•0 27 7 •2	274•2 275•8	279 •6 280 •5	
Mean	288.1	280.1	275.8		281.3
	10-sec.	Steam So	cald + Nicke	d	
Water 70	279.0	278.8	272.2	276.7	
100 Air 70	275•4 270•0	281 .6 276 . 2	276.8 273.4	277•9 273•2	
Mean	274.8	278.9	274.1		275•9
			F values		LSD
M mo o hm	h -		B A 0 ⁴ **	5%	1%
Treatment Method of	ts f defrosting		70.9** 16.3**	1•58 1•36	
Temperatu	a re of pac ka	ge center	• 70• 7 **	1.36	1.79

EFFECT OF DEFROSTING METHOD ON DRAINED WEIGHTS OF BLUEBERRIES - RUBEL VARIETY

TABLE II

Method of defrosting Temperature of package center **Highly significant

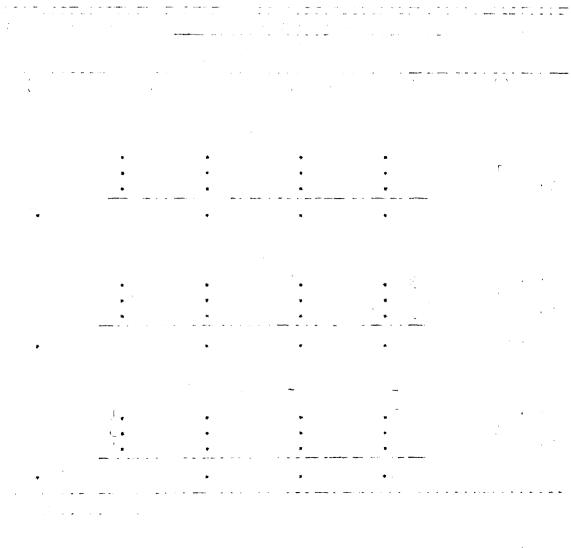

24


TABLE III

EFFECT CF METHOD OF DEFROSTING ON DRAINED WEIGHTS OF RED SOUR CHERRIES

Method of		e of pack	age center	Mean	Treatment
defrosting	45°F	70 ⁰ f	70 ⁰ F held 2 hrs		mean
(°F)	(gms)	(gms)	(gm s)	(gms)	(gms)
		D ry Sug	ar		
Water 70 100 Air 70	293.6 290.6 283.2	278.6 269.6 276.4	269•2 273•4 270•6	280•5 277•9 276•7	
Mean	289.1	274•9	271.1		278.4
		Sucrose S	irup		
Water 70 100 Air 70	303.6 296.8 292.2	299•4 287•0 290•2	287.8 289.6 287.4	296.9 291.1 289.9	
Mean	297.5	292•2	288.3		292 •7
	70 - 30 s	ucrose-Sw	eetose Siru	p	
Water 70 100 Air 70	299.6 303.0 299.0	292.8 280.2 294.0	290.6 288.6 291.0	294 •3 290 •6 294 •7	
Mean	300.5	289.0	290.1	`	293•2
			F values		LSD
Temperat	ts f defrosting ure of packa ly significa	ge center	84•1** 4•4* 57•7**	5% 2•58 2•58 2•58	1% 3.41 3.41 3.41

**Highly significant


TABLE IV

EFFECT OF METHOD OF DEFROSTING ON DRAINED WEIGHT OF SWEET CHERRIES

Method of	Temperature	of pac	kage center	Mean	Treatment
defrosting	45°F	70 ⁰ F	70 ⁰ F held 2 hrs		mean
(°F)	(gms)	(gms)	(gms)	(gms)	(gms)
		Dry Su	gar		
Water 70 100 Air 70	302.2 298.4 301.6	294•4 289•6 285•2	238•4 278•8 282•4	295 .0 288 .9 289 .7	
Mean	300.7	289•7	283.2		291.2
	S	ucrose :	Sirup		
Water 70 100 Air 70	308•0 302•4 309•2	294•6 292•2 293•4	287.2 280.0 289.6	296.6 291.5 297.4	
Mean	306.5	293•4	285.6		295 •2
	70 -3 0 Su	crose-Si	weetose.Siru	.p	
Water 70 100 Air 70	311.0 298.8 297.6	293•4 283•4 285•8	280•8 279•6 277•8	295.1 287.3 287.1	
Mean	302.5	287.5	279•4		289.8
			F values		SD
				5%	1%
	ts f defrosting ure of packag	14•5** 19•2** r 203•6**	2.04 2.04 2.04	2.70	

Highly significant

•

TABLE V

EFFECT OF METHOD OF DEFROSTING ON DRAINED WEIGHTS OF PEACHES

Metho defros		<u>Temperature</u> 45 ⁰ F	e of pack 70 ⁰ F	rage center 70 ⁰ F held 2 hrs	Mean	Treatment mean
	(°F)	(gms)	(gms)	(gms)	(gms)	(gms)
		S	Sucrose S	Sirup		
Water	70	293•4	292.0	295.6	293•7	
	100	276.8	286.4	293.0	285.4	
Air	70	298.2	298.0	287.0	294•4	
Mea	n	289.5	292.1	291 .9		291 .2
				F values	L	SD
					5%	1%
Tem	peratu	f defrosting are of packaged significant	ge center	11.03 ^{**} r 0.92	4.33	5.78

Highly significant

TABLE VI

EFFECT	OF	METHOD	OF	DEFROSTING	ON	DRAINED	WEIGHT	
OF RASPBERRIES								

Method of defrosting	<u>Temperatur</u> 115 ⁰ F	e of pack 70 ⁰ F	age center 70°F held	Mean	Treatment mean
	47 r	10 F	2 hrs		
(°F)	(gms)	(gms)	(gms)	(gms)	(gms)
		D ry Su g	ar		
Water 70	266.2	269.2	267.2	267.5	
100 Air 70	265•6 270•6	262•2 259•4	265•6 263•2	264•5 264•4	
Mean	267.5	263.6	265•3		265 •5
		Sucrose S	Sirup		
Water 70	303.6	281.8	294.6	293•3	
100 Air 70	284 .6 289 .6	281.6 281.0	296.8 282.4	287•7 284•3	
Mean	292.6	281,5	291.3		28 8.5
	70-30 s	ucrose-Sw	reeto se Siru	p	
Water 70	295•4	285.6	282.2	287.7	
100 Air 70	289 . 6 293.0	271.8 276.8	277•2 268•4	279•5 279•4	
Mean	292.7	278.1	275•9		282.2
		******	F values		SD
				5%	1%
Treatment			258•0**	2.301	
	f def rosti ng 1re of packa		11•9** 74•0**	2.301 2.301	

**Highly significant

TAPLE VII

EFFECT OF METHOD OF DEFROSTING ON DRAINED WEIGHTS OF STRAWBERRIES

Metho		Temperature	of pacl	kage center	Mean	Treatment
defros	ting	45 ⁰ ғ	70 ⁰ F	70 ⁰ F held 2 hrs		mean
	(°F)	(gms)	(gms)	(gms)	(gms)	(gms)
			Dry Su	zar		
Water	70	275.6	256.6	250.2	260.8	
	100	255•4	254•4	244•4	251.4	
Air	7 0	275.6	256.0	253.3	261.6	
Mea	n	268.9	255.7	249•3		258 .0
		S	ucrose S	Sirup		
Water	70	278.0	263.8	266.6	269•5	
	100	261.8	252.4	256•4	256.9	
Air	70	275.8	260.2	264.6	266.9	
Mea	n	271.9	258.8	262•5		264•4
				F values	Contraction of the local division of the loc	LSD
					5%	1%
Met Tem	peratu	s defrosting re of package	e cente:	12•54** 6•33** 18•80**	4•58 5•30 5•30	6•09 7•47 7•47

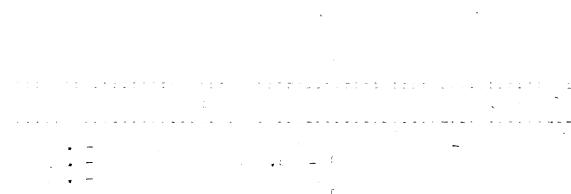

Highly significant

TABLE VIII


CORRELATION COEFFICIENTS OF DRAINED WEIGHTS AND JUICE VOLUMES

Fruit	Treatment	Correlation
Bleuberries - Jersey	Untreated	- •694** - •633**
	10-sec. Steam Scald	- •633 **
	Nicked	- •719**
	10-sec. Steam	
	Scald + Nicked	- •551**
Blueberries - Rubel	Untreated	- •401 ***
	10-sec. Steam Scald	- 888**
	Nicked	- •509**
	10-sec. Steam	
	Scald + Nicked	256
Cherries - Red Sour	Dry Sugar	- •698
	Sucrose Sirup	- •7 89**
	70-30 Sucrose-	
	Sweetose Sirup	- •886**
Cherries - Sweet	Dry Sugar	- •762**
	Sucrose Sirup	- 804**
	70-30 Sucrose-	
	Sweetose Sirup	- •811 ^{**}
Peaches	Sucrose Sirup	- •780**
Raspberries - Red	Dry Sugar	- •730 ^{**} - •363 [*]
	Sucrose Sirup	363
	70-30 Sucrose-	
	Sweetose Sirup	- •869**
Strawberries	Dry Sugar	- hh7**
	Sucrose Sirup	- •147** - •645**

*Significant at 5% level **Significant at 1% level

а н —

~

• — • —

• -

• •

• -• -

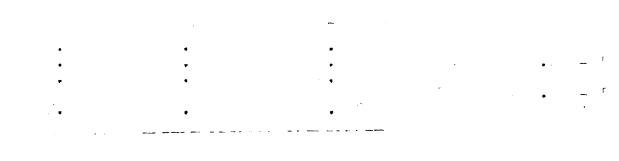
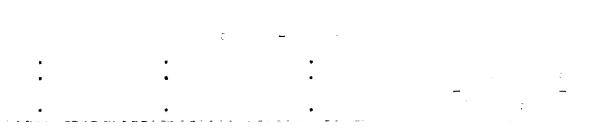

L

TABLE IX


INTERACTION BETWEEN TREATMENT AND METHOD OF DEFROSTING

Treatment	Met	hod of defrosti	.ng
	Water 70°F	Water 100°F	Air 70°F
ى يەرىپىدىنى بىرى بىرىنىغانىيىتىنى يېزىكى بىرى بىرى بىرى بىرى بىرى بىرى بىرى ب	(gms)	(gms)	(gms)
Blue	be rries - Jerse	y Variety	
Untreated 10-sec. Steam Scald Nicked 10-sec. Steam Scald	289•2 292•2 274•6	288.8 291.0 278.8	290.8 287.5 273.7
+ Nicked	270.8	271.6	272.1
		5%	1%
F value 4.04*	LSD	2.83	3.71
Blue	berries - Rubel	Variety	
Untreated	286.9	287.5	283.2
10-sec. Steam Scald Nicked	284 •1 283 • 8	285 .8 279 .6	280 .1 278 . 9
10-sec. Steam Scald + Nicked	276 .7	276.3	274•7
F value $2_{\bullet}3^{*}$	LSD	5% 2•66	1% 3•51
	Cherries - Sw		
Dry Sugar Sucrose Sirup 70-30 Sucrose-	295•0 296•6	288•9 291•5	289 •7 297•4
Sweetose Sirup	295.1	287•4	287.1
		5%	1%
F value 3.45*	LSD	3•53	4.67
	Raspberries -	Red	
Dry Sugar Sucrose Sirup 70-30 Scurose-	267•5 289•9	264•5 286•9	264•4 289•1
Sweetose Sirup	287.7	279•5	279•4
F value 2.6*	LSD	5% 3•63	1% 4.81

		and a second	
		•	
· · · · •	 		



• • f - -• •

 •	*	

• •

		^		
*	•			
•	•	•		
			-	-
•	¢	•		
•	•		· • · · · · · · · · · · · · · · · · · ·	

TABLE X

INTERACTION BETWEEN TREATMENT AND TEMPERATURE AT CENTER OF PACKAGE

Treatment	Temperature of package center		
I reachent	45°F	70°F	70°F held 2 hrs
	(gms)	(gms)	(gms)
Cherries -	Red Sour	,	
D ry Sugar Sucrose Sirup 70-30 Sucrose-Sweetose Sirup	289 •1 297•5 300•5	275•1 290•5 289•0	271•1 278•3 290•1
F value 2.93*	LSD	5% 4•36	1% 5•79
Raspberri	les - Red		
Dry Sugar Sucrose Sirup 70-30 Sucrose-Sweetose Sirup	267•5 298•3 292•7	263.6 286.0 278.1	265 .3 281.7 275.9
F value 11.5**	LSD	5% 3•63	1% 4.81

**Highly significant

- . • •

Method of defrosting		Temperature of package center		
		70 ⁰ f	70 ⁰ F held 2 hrs	
)	(gms)	(gms)	(gms)	
Blueberrie	s - Rubel Va	riety		
	286.8	283.7	278.2	
			277 .1 276 . 9	
			1%	
•9 [#]	LSD	2•37	3.13	
Cherrie	s - Red Sour			
	298 . 9	298 .9	282.5	
	296.8	278.9	283.9	
	27103		283.0	
			1%	
・フン	LSD	4030	5•79	
P	eaches			
	293.4	292.0	295.6	
	274•8 298•2		292•8 28 7 •0	
			1%	
•46 ^{***}	LSD	16.8	22.6	
Raspb	erries - Red			
	288.4	279.5	277•3	
	283-3	272.9	274•8 270•9	
			1%	
•9*	LSD	<i>3</i> •63	4.81	
	Blueberrie e.9* Cherrie e.55*** P e.46*** Raspb	osting 45°F (gms) Blueberries - Rubel Va 286.8 287.5 282.4 -9* LSD Cherries - Red Sour 298.9 296.8 291.5 Peaches 293.4 274.8 298.2 .46*** LSD Respberries - Red 288.4 283.3 286.8	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$	

INTERACTION BETWEEN METHOD OF DEFROSTING AND TEMPERATURE AT CENTER OF PACKAGE

TABLE XI

*Slightly significant *Highly significant

Ĵ,

н
¥
ы
BL
TA

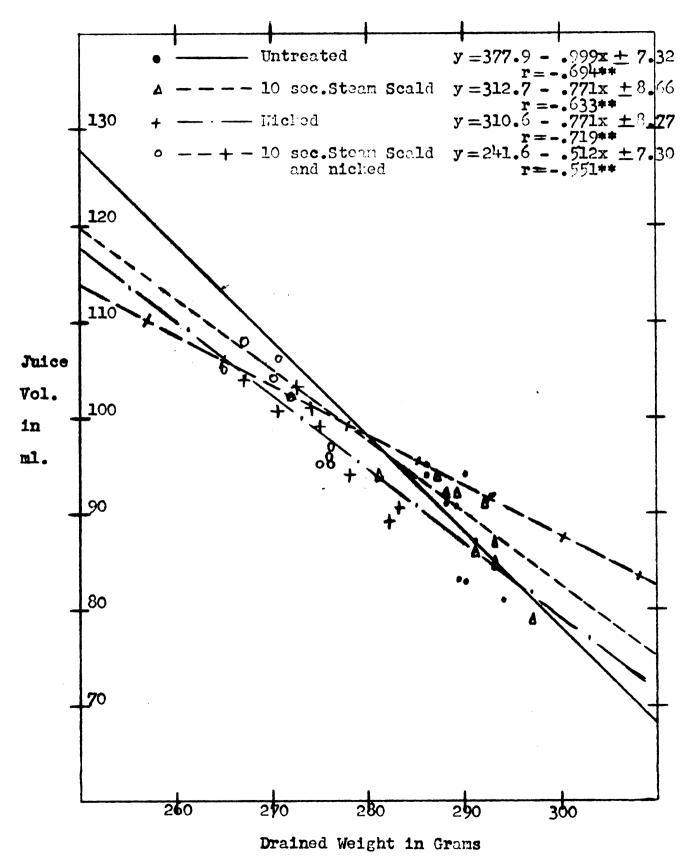
•

SAMPLE ANALYSIS OF VARIANCE*, BLUEBERRIES - JERSEY VARIETY

Source	đf	ſĿ,
Total Treatments Thawing Temperature Temperature at Package Center Treatments x Thawing Temperature Treatments x Temperature at Package Center Thawing Temperature at Package Center Treatments x Thawing Temperature x Temperature at Package Center Error	150000015 1510005	269 • 00 2 • 33 64 • 70 1 • 98 0 • 84

*All analyses followed the seme pattern **Highly significant

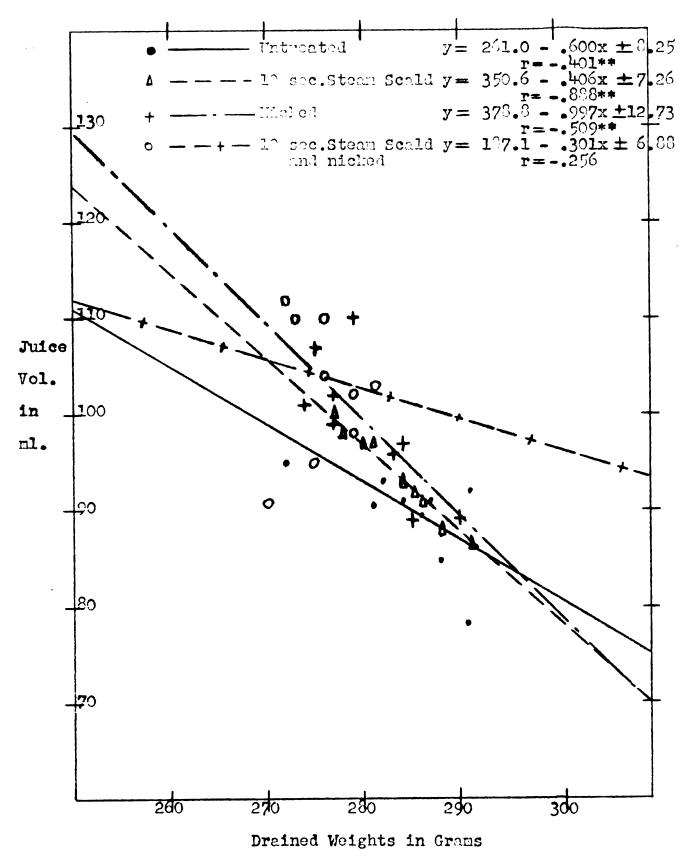
	• • • • • • • •	
* • • •		
		<i>(</i> .
-		
	! n	


• • • • • • • • • • • 1 • 1 • 1

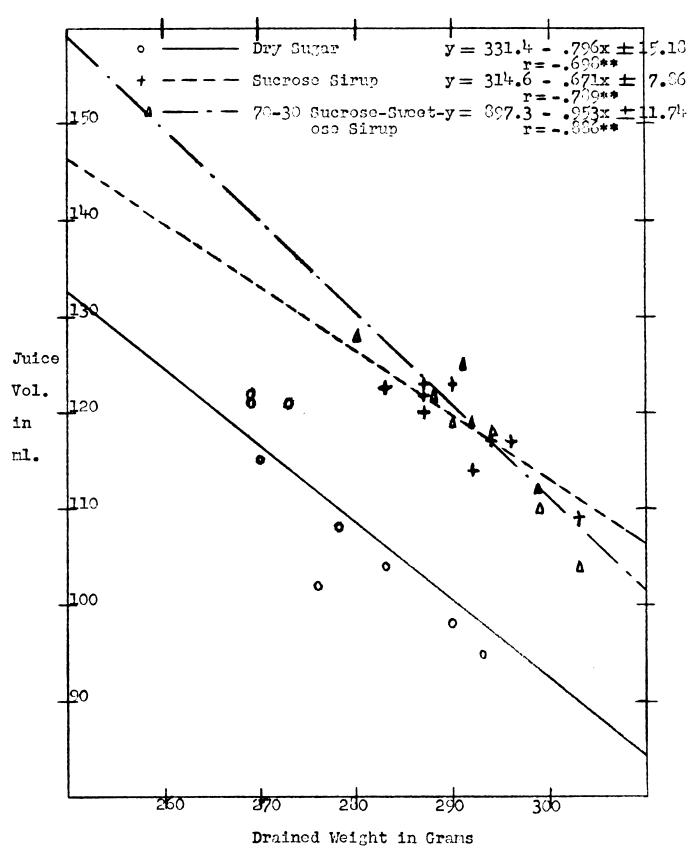
C

•

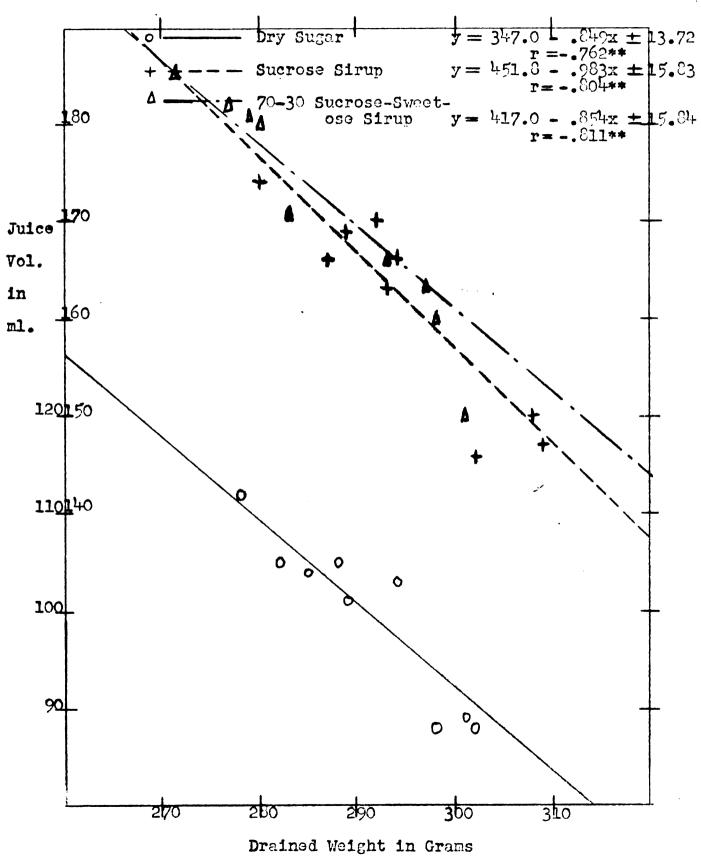
1


Elueberries - Jersey Variety

^{**} Highly Significant

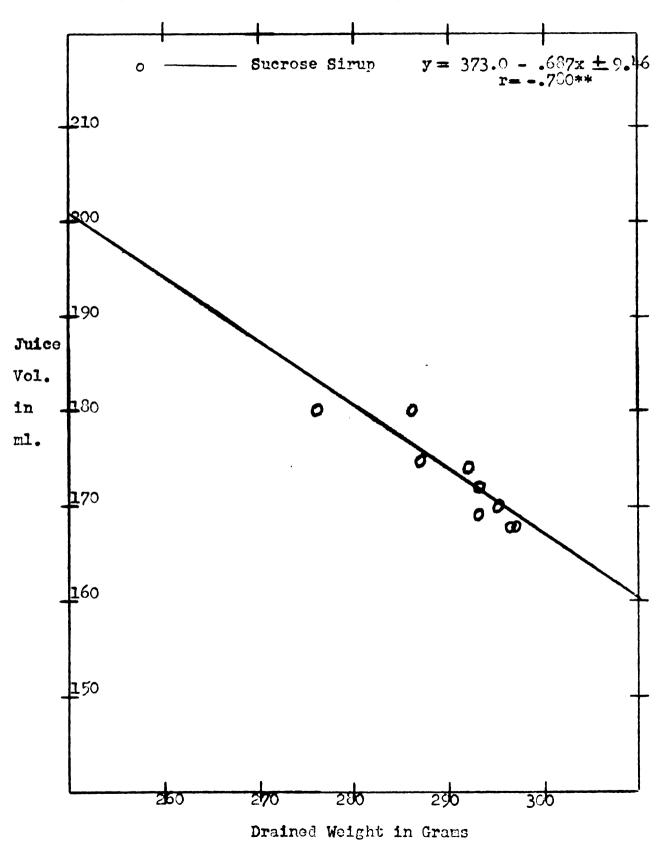

Figure II

Blueberries - Rubel Variety

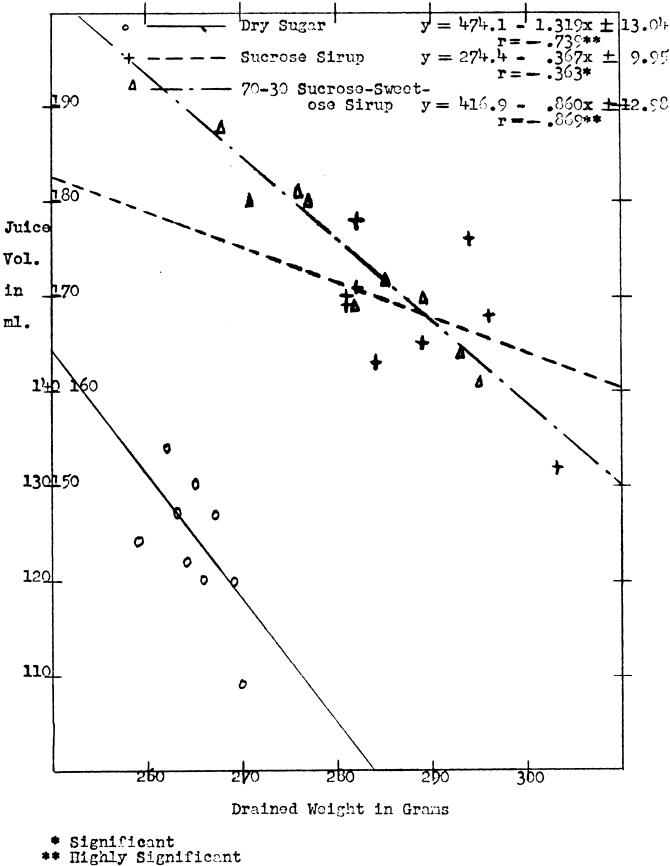


^{**} Highly Significant

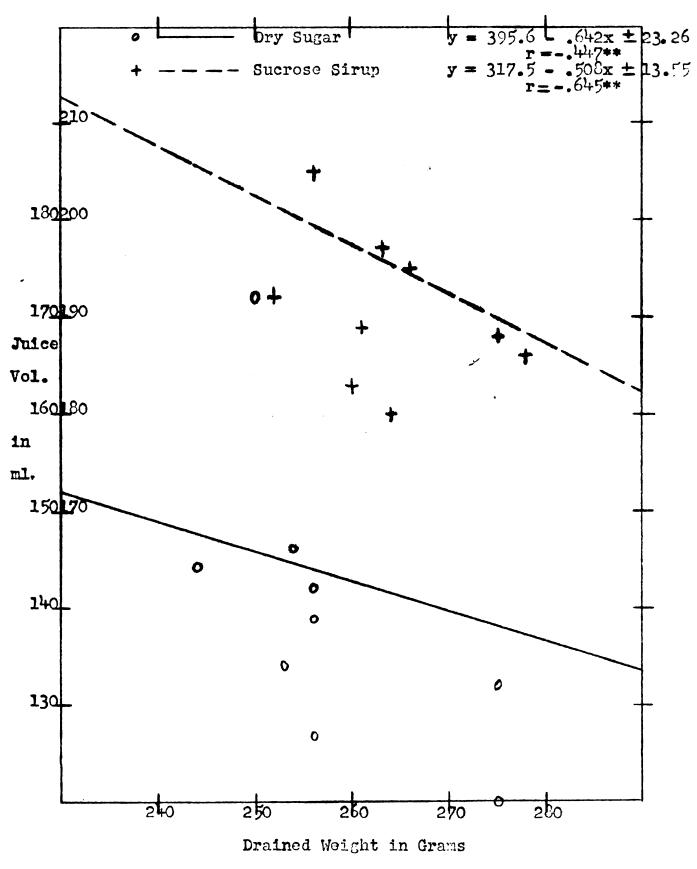
Cherries - Red Sour



Cherries - Sweet



^{}** Highly Significant


Peaches

Raspberries - Red

^{**}

^{**} Highly Significant

BIBLIOGRAPHY

- 1. Bedford, C. L. Unpublished data. 1953.
- 2. Joslyn, M. A. Why freeze fruit in sirup? Food Industry 2:350-352. 1930.
- 3. Joslyn, M. A. and Marsch, G. L. Changes occurring during freezing, storage, and thawing of fruits and vegetables. <u>Calif. Agr. Exp. Sta. Bull.</u> No. 551. 1933.
- 4. Loutfi, S. E., Bedford, C. L., and Robertson, W. F. The use of sugar and ascorbic acid in frozen Montmorency cherries. <u>Quick Frozen Foods</u> 14:55-57. 1952.
- 5. Marshall, R. E. Some trends in the red cherries industry. <u>Canner</u> 104:38. 1947.
- Perry, Wm. J. and Cruess, W. V. Observations on sugar penetrations in frozen fruits. <u>Quick Frozen Foods</u> 15 (11):55. June, 1953.
- 7. Tressler, D. K. and DuBois, C. W. No browning of cut fruit when treated by new process. Food Industry 16: 701.1944.
- 8. U.S. Standards for Canned Blueberries. Mimeo. U.S.D.A. P.M.A. March, 1951.
- 9. U.S. Standards for Canned Red Sour (tart) Pitted Cherries. U.S.D.A. P.M.A. June, 1949.
- 10. U.S. Standards for Canned Sweet Cherries. U.S.D.A. P.M.A. May, 1953.
- 11. U.S. Standards for Canned Raspberries. U.S.D.A. P.M.A. May, 1940.
- 12. U.S. Standards for Frozen Blueberries. Mimeo. U.S.D.A. P.M.A. March, 1951.
- 13. U.S. Standards for Frozen Red Sour (tart) Pitted Cherries. Mimeo. U.S.D.A. P.M.A. June, 1949.
- 14. U.S. Standards for Frozen Sweet Cherries. Mimeo. U.S.D.A. P.M.A. June, 1946.
- 15. U.S. Standards for Frozen Raspberries. Mimeo. U.S.D.A. P.M.A. August, 1948.

- • •

- • • •

- • • • • •

- • • • •

- 16. U.S. Standards for Frozen Strawberries. Mimeo. U.S.D.A. P.M.A. May, 1949.
- Woodruff, J. G. Preservation of fruits and vegetables by freezing as an industry. <u>Fruit Products Journal</u> 11:128-143. 1933.

APPENDIX

Code for Appendix Table Columns

- MD Method of defrosting (^OF)
- TP Temperature of package center (^OF)
- Tm Time in hours and minutes
- Tp Actual temperature of package center (^OF)
- DW Drained weight in grams
- VJ Juice volume in milliliters
- %ssJ Percent soluble solids of juice by refractometer
- %ssF Percent soluble solids of fruit by refractometer

TABLE XIII

MD	TP	Tm	Тр	DW	VJ	%ssJ	%ssF
Water 70 ⁰ F	45°F	1:00	50 52 52 52 52 52 52 52 52 52 52 52 52 52	287 289 288 293 291	84 80 82 85 84	47.8 47.2 46.0 46.2 45.6	14.2 13.8 14.0 13.4 14.6
	70 ⁰ F	2:00	70 69 68 70 68	289 291 292 291 295	85 88 88 90 88	44•6 44•2 44•2 4/4•2 4/4•2 4/2•2	16.4 15.8 15.2 14.7 15.9
	70 ⁰ F held 2 hrs	4:00	70 70 70 70 70	289 291 292 281 290	94 95 97 97 92	42•2 44•8 43•7 43•7 42•2	17.7 18.3 18.4 18.4 18.2
Water 100 ⁰ F	45 [°] f	0:30	47 46 48 44 52	297 288 293 292 282	72 81 87 85 94	47•7 47•7 48•3 46•1 44•3	20.7 16.1 15.9 17.1 15.9
	70 ⁰ f	1:00	70 72 73 76 74	292 292 286 293 287	88 88 93 88 95	45•9 45•5 45•5 45•9 44•7	18.5 16.1 15.5 16.1 16.6
	70 ⁰ F held 2 hrs	3:00	72 72 73 72 72	285 283 286 288 289	95 94 93 93 95	44•6 44•9 44•3 43•5 43•5	17.0 20.8 21.6 17.1 17.8
Air 70 ⁰ F	45°f	5 : 30	48 47 47 45	291 295 298 295 292	78 78 83 81 84	42•4 44•7 43•3 45•7 43•9	17.8 18.3 24.2 17.8 17.0
	70 ⁰ f	8:30	68 70 68 68 68	294 279 293 290 293	87 99 87 92 89	43•9 42•7 45•4 44•0 44•7	20.1 17.5 14.0 15.6 17.1
·	70 ⁰ F held 2 hrs	10:30	72 72 72 72 72 72	288 286 286 291 291	90 92 97 88 91	43•9 44•3 44•3 43•3 43•1	20.6 23.0 18.8 18.2 16.9

					_		
• • · ·		- <u></u>	<u>.</u> •			: · · · · · · · · ·	:
۳. ۱	•			• "			, •
•	•						
	•						
	•			. *	- - - 1,2		
•							
۰ ۲	•						
4	*						
•							
	•	,			- -		
•							
. •	•					<u> </u>	
•	٠		,	•	L		• • •
. •	•						
•	• ,						
•	•			-			
•	•			• •			
•	•						
•	•						
•		•			ŕ		
٠	•		,				
-	•						
٠	• _						
•	, #	۲) (r	,		· į
~ • •	*		•				
•	٠						
•	• 🔪						
•	•						
•	*						
	•			• [ŗ		
•	•						
•	e						
٠	•						

TABLE XIV

•

		10-SECOND	STEAM S	CALD	TREATM	ENT		
MD		TP	Tm	Tp	DW	VJ	%ssJ	%88
Water	70 ⁰ F	45 ⁰ ғ	0:55	46 46 47 43 52	300 302 298 294 291	70 72 82 82 93	45•7 47•4 45•3 46•1 43•4	18. 20. 17. 17. 16.
		70 ⁰ F	1 : 55	68 68 68 71 68	287 291 293 296 289	82 78 88 87 98	45•7 44•8 46•6 42•7 44•5	18 19 22 17 17
		70 ⁰ F held 2 hrs	· 3 : 55	70 70 70 70 70	287 292 290 284 290	98 210 90 90 93	45.0 24.6 43.4 41.7 41.7	17 14 18 17 20
Water	100°F	45 ⁰ ғ	0:25	50 44 46 47	292 296 296 291 299	84 80 86 90 84	44•1 44•2 45•9 45•2 45•3	16 15 19 17
		70 ⁰ F	0:45	74 76 75 72 70	290 289 295 294 291	94 94 86 88 92	45•2 44•9 46•6 44•9 43•7	16 16 20 18 16
		70 ⁰ F held 2 hrs	2:45	70 72 72 72 71	286 289 285 282 291	88 88 101 100 93	45•3 44•9 42•9 43•3 43•8	23 23 20 19 20
Air	70 ⁰ F	45 ⁰ ғ	5 : 15	47 44 44 44 46	293 294 295 289 296	87 85 88 88 88	44•6 47•2 46•5 46•4	17 17 19 17
		70 ⁰ F	8:24	70 68 70 69 69	284 284 292 288 293	95 93 92 92 90	44.6 44.2 44.07 44.07 44.04 44.0	20 18 20 18 21
		70 ⁰ F held 2 hrs	10:24	72 72 73 73 73	277 281 284 283 280	88 89 95 94 104	41.9 41.8 42.1 41.7 42.4	21 20 21 20 17

BLUEBERRIES - JERSEY VARIETY 10-SECOND STEAM SCALD TREATMENT

				-		
			•			
			÷			
	•				· · · · · · · · · · · · · · · · · · ·	• • • • • • •
	•					
•	•					
•	•					
•	•			1		
•	•					
•	•					
•	*					
•	•	(<i>t</i>				
•	•					
•	•					
•	•					r
•	•					
•	•					
•		·	,			
				-	t in	
•	4					
•	•					
•	5					
*						
•	•	· · · ·	,			
•	•	1				
•	•	-				· .
•	•					•
•	•					
•	•				-	
•				•	1	
•						
•	•	٢	×			
•	•			- !		
•	•					
•	•		÷			
•	•					

BLUEBERRIES - JERSEY VARIETY - NICKED TREATMENT

MI)	TP	Tm	Tp	DW	VJ	%ssJ	%ssF
Water	70 ⁰ F	45 ⁰ ғ	0:55	44 44 44 43 45	281 279 289 278 281	78 84 85 98 96	43.9 42.6 40.7 42.2 42.8	19•4 17•6 20•5 16•5 15•6
		70 ⁰ f	1:50	69 68 69 68 71	279 275 273 278 273	90 95 108 98 104	42•7 40•6 41•5 41•6 41•7	20.1 20.2 18.6 16.0 19.2
		70 ⁰ F held 2 hrs	3:50	70 70 70 70 70	266 267 279 268 264	103 106 105 106 105,	40.2 39.5 40.4 39.4 38.6	18.4 18.0 20.6 20.6 21.4
Water	100 ⁰ F	45 ⁰ ғ	0 : 25	44 45 44 44 44	286 276 288 286 281	85 96 90 86 95	43.8 43.2 43.3 43.5 43.2	16.1 17.8 18.0 16.9 19.1
		70 ⁰ f	0:45	65 68 67 70 68	293 279 278 272 274	96 98 96 102 101	42.0 42.2 42.8 42.7 40.8	18.3 18.1 17.5 19.5 18.2
		70 ⁰ F held 2 hrs	2:45	70 70 70 70 70	268 275 274 280 272	98 103 100 100 108	41.6 42.6 43.1 41.4 40.5	18.6 17.1 18.5 18.4 15.0
Air	70 ⁰ F	45°f	5:30	50 46 46 47	273 273 283 283 278	98 100 94 87 96	40.6 40.8 42.6 42.5 42.8	18.9 18.2 18.9 18.9 18.2
		70 ⁰ f	8:30	67 67 67 67 67	267 276 276 272 272	108 100 101 104 105	40.3 41.2 41.2 39.4 39.8	20.1 18.9 19.7 20.1 19.0
		70 ⁰ F held 2 hrs	10 : 30	70 70 70 70 70	269 268 271 271 275	98 98 101 103 101	39•4 39,8 40•3 38•2 38•0	19.6 19,4 21.9 19.6 19.4

-	~~ , '	

		 	 	.	.	
	 	 • • •	• • • •	-	- · ·	·

			 		- -
•	•		;			
	•		:			
	•					
	•					
•		t				
			-			
•	•					
*	•					
•	•					
•	•					
•		1				
			:			
•	•					
•		~				
•	•					
•						
•	•					
•	•					
•	•					
•	•					
	• .					
. •	•		:			
•	•			*		
•	•					
-	•					
•						
_	_					
•	•	-				
•						
	•					
•	•	-				
				· ·		
•	•					
•	•					
•	•					
•	•					
•	•					
•	•	i				
•	•	· .				
•	*	i 1 .				
•	•					
•	•					
	•			÷.		
•	-	- *				
•		ł				
-	-					
•	•	, r				
	•					

TA	BL	E	X	V	Ι

BLUEBERRIES - JERSEY VARIETY 10-SECCND STEAM SCALD + NICKED TREATMENT

MD)	TP .	Tm	Тр	DW	VJ	%ssJ	%ssF
Water	70 ⁰ F	45°F	0:50	44 45 44 43 48	278 273 281 275 267	82 92 95 98 109	43•7 43•2 42•8 42•6 40•0	22.8 22.2 19.7 20.7 18.9
		70 ⁰ f	1:54	69 68 68 68 7 0	269 269 275 273 265	103 105 101 102 110	41.3 40.3 41.2 41.6 40.2	18.3 18.4 18.9 18.4 20.3
		70 ⁰ F held 2 h rs	3:54	70 70 70 70 70	26 7 268 268 270 265	106 108 110 109 110	37•4 40•2 38•6 38•6 39•1	21.0 23.4 20.7 23.1 22.5
Water	100 ⁰ 7	45°F	0 : 25	47 45 41 46 47	273 274 281 276 277	98 97 94 100 98	41 •2 41 •5 43 •2 42 •2 41 •8	18.2 19.5 20.2 18.2 18.4
		70 ⁰ F	0:50	70 68 68 68 72	271 280 271 277 267	94 98 104 105 110	41.8 41.9 43.1 41.8 40.8	18.2 17.6 19.4 20.0 18.4
		70 ⁰ F held 2 hrs	2:50	70 70 70 70 70	265 266 264 264 268	101 98 108 110 109	37.2 40.3 40.5 39.4 39.9	19.8 20.2 18.5 18.2 19.0
Air	70°F	45 ⁰ ғ	5:45	50 47 48 48	270 274 28 3 280 273	98 100 92 94 98	41.4 40.5 41.2 42.2 42.3	16.2 19.4 19.4 23.4 18.4
		70 ⁰ f	8:15	68 68 67 67 67	275 267 271 268 271	103 109 106 110 105	40.0 39.8 39.8 40.1 40.2	18.9 19.6 18.3 21.9 17.7
		70 ⁰ F held 2 hrs	10 : 15	72 72 72 72 72 72	271 270 267 272 269	102 106 108 103 105	39.6 38.8 38.1 38.5 37.5	19.4 17.1 18.5 19.5 19.6

TABLE XVII

ELUEBERRIES - RUBEL VARIETY - UNTREATED

MD		TP	Tm	Тр	D₩	VJ	%ssJ	%ssF
Water	70°F	45 ⁰ ғ	0 : 55	46 45 47 47	290 290 293 289 290	68 75 81 86 83	47•6 47•5 47•5 45•9 47•4	19.7 20.1 15.9 18.9 17.7
		70 ⁰ f	2:00	68 68 68 68 70	285 293 294 287 283	82 78 86 87 91	47•4 46•3 45•8 46•0 45•2	19.7 18.3 20.7 21.1 21.8
		70 ⁰ F held 2 hrs	4:00	70 70 70 70 70	277 290 278 280 285	95 87 94 95	43•3 43•8 42•9 42•8 43•1	20.6 23.3 18.9 22.5 21.2
Water	100 ⁰ F	45 ⁰ f	0:25	46 48 47 48	292 288 294 290 292	85 91 84 84 116	41 • 7 40 • 7 41 • 5 41 • 5 37 • 7	22.1 18.3 17.9 22.6 19.6
		70°F	0 : 55	76 72 73 74 73	287 291 286 285 287	89 85 94 92	45•7 44•9 45•2 45•7 45•2	20.1 20.1 20.0 21.8 20.0
		70 ⁰ F held 2 h rs	2:55	72 72 72 72 72 72	284 277 293 282 284	82 90 88 97 98	45•2 43•8 43•0 44•4 43•2	17.9 17.6 17.6 19.1 19.0
Air	70 ⁰ F	45 ⁰ ғ	5 : 30	48 46 47 47 46	281 290 287 292 281	93 89 88 88 91	40.0 44.2 45.3 45.4 44.7	17.2 20.3 19.8 20.1 20.0
		70 ⁰ f	8:25	68 68 68 68 69	278 283 280 283 283	100 91 99 93 91	43.0 43.6 42.7 43.6 44.1	22.6 22.6 23.1 20.0 20.1
		70 ⁰ F held 2 h rs	10 : 25	74 74 74 74 74	277 282 284 281 282	86 84 94 97 93	42•3 44•1 42•7 43•4 43•3	21.3 21.2 19.5 18.8 19.4

BLUEBERRIES - RUBEL VARIETY 10-SECOND STEAM SCALD TREATMENT

MD		TP	Tm	Tp	D₩	VJ	%ssJ	%ssF
Water	70 ⁰ F	45 ⁰ ғ	0:55	45 445 44	291 285 287 291 285	80 88 92 88 92	45.6 46.1 46.7 44.6 45.2	22.0 20.4 22.7 20.6 23.6
		70 ⁰ f	2:00	68 68 68 68 69	285 280 283 284 286	. 94 94 94 91 91	44•6 44•7 43•9 44•2 49•5	19.6 18.8 18.4 23.3 20.7
		70 ⁰ F held 2 hrs	4:00	70 70 72 72	279 279 282 281 284	97 97 98 95 97	42•4 43•4 43•1 41•5 43•0	19.0 19.5 18.2 19.4 18.9
Water	100 ⁰ F	45 ⁰ f	0:30	46 47 48 48	289 288 295 290 292	88 87 85 88 88	44•2 44•4 45•9 46•2 44•4	17.5 18.2 .20.8 19.1 19.4
		70 ⁰ F	0:50	68 68 68 68	284 289 284 287 288	92 92 94 91 80	44•7 43•8 43•9 44•2 44•2	18.9 18.8 18.3 20.2 17.8
		70 ⁰ F held 2 hrs	2:50	72 72 72 72 72	281 279 281 280 280	90 97 98 100 102	42•7 43•3 42•2 41•8 41•4	21.2 20.0 19.9 19.6 20.0
Air	70 ⁰ F	45°f	5:40	48 45 45 48	295 281 288 280 282	84 93 90 99 92	45•1 43•3 44•2 43•8 43•7	20.7 18.6 19.7 20.3 19.6
		70 ⁰ f	8:30	70 68 69 70 70	283 278 278 275 275 276	98 100 98 100 97	43.2 43.1 43.0 42.9 42.8	18.9 19.6 20.6 17.6 19.4
		70 ⁰ F held 2 h rs	10:30	74 74 74 74 74	278 277 279 276 276	100 101 100 102 101	39•7 41•8 41•7 40•7 40•1	19.5 19.2 20.5 19.2 17.1

TABLE XIX

BLUEBERRIES - RUBEL VARIETY - NICKED

MD		TP	Tm	Тр	DW	VJ	%ssJ	%ssF
Water	70 ⁰ F	45 ⁰ ғ	0: 55	455555 44444	295 289 293 286 287	80 88 87 95 96	44•9 44•7 44•2 43•3 42•8	18.9 18.8 19.0 22.1 18.6
		70 ⁰ f	2:00	68 68 70 70	278 277 287 289 289	100 98 98 94 94	41.9 41.8 40.6 42.2 41.4	18.2 19.5 19.0 18.9 18.5
		70 ⁰ F held 2 hrs	4:00	70 70 70 70 70	276 275 281 278 277	95 95 101 108 109	40.1 40.5 39.6 39.9 40.9	20.1 22.4 23.0 19.5 22.5
Water	100 ⁰ F	45 ⁰ ғ	0:25	45 46 45 45	283 284 288 289 284	80 90 90 88 97	43•9 45•4 43•8 42•8 43•1	23.2 20.8 22.0 22.4 20.6
		70 ⁰ F	0:50	70 68 72 70 72	278 282 2 77 279 279	100 97 103 101 102	43•3 43•8 42•8 42•8 42•2	24.0 20.1 22.5 24.8 23.8
		70 ⁰ F held 2 hrs	2:50	74 72 72 72 74	275 276 276. 275 269	97 94 103 106 105	40.9 40.2 39.7 39.8 40.6	18.9 19.5 19.0 19.7 20.0
Air	70 ⁰ F	45 [°] F	4:45	50 146 48 50	280 285 284 282 287	90 90 104 96 100	43•5 44•7 42•3 42•8 42•7	18.7 20.4 17.8 18.4 19.6
		70 ⁰ f	7:00	68 67 68 70 70	27 7 27 7 276 278 278	107 105 102 80 103	40.1 41.6 40.1 38.8 40.0	19.1 18.9 19.1 18.9 19.5
		70 ⁰ F held 2 hrs	9:00	70 70 70 70 70	276 275 276 277 275	108 108 109 105 109	39.6 39.9 40.2 39.8 39.2	23.0 23.2 21.4 24.2 21.4

BLUEBERRIES - RUBEL VARIETY 10-SECOND STEAM SCALD + NICKED

MD)	TP	Tm	Тр	DW	VJ	% s sJ	%ssF
Water	70 ⁰ F	45°F	0:55	455554 455556	280 279 284 275 277	98 93 98 101 100	41.7 41.4 40.9 41.0 40.2	22.0 19.6 19.7 19.5 18.8
		70 ⁰ F	2:00	70 68 70 68 70	277 277 281 275 284	102 100 106 106 98	40.8 41.2 40.2 39.0 41.9	19.5 20.9 21.2 20.1 19.7
		70 ⁰ F held 2 hrs	4:00	70 72 70 72 70	275 272 271 270 273	116 107 116 111 110	38.0 39.2 38.5 40.1 38.8	19.4 18.5 20.6 17.9 17.8
Water	100 ⁰ F	45 [°] f	0:25	456 445 455	284 281 282 285 280	90 91 98 9 <u>9</u> 100	42.6 42.8 42.1 42.1 40.9	19.0 18.8 17.8 18.3 19.5
		70 ⁰ F	0 : 55	72 84 69 70 70	275 279 275 276 279	200 103 102 106	41.0 20.0 38.3 39.2 41.3	20.2 16.0 19.6 21.2 20.1
		70 ⁰ F held 2 hrs	2:55	72 72 72 72 72	269 275 271 271 265	109 103 111 111 116	39•9 39•6 38•3 38•3 38•1	20.6 23.3 20.5 17.7 19.4
Air	70 ⁰ F	45°f	5:30	50 52 50 50 49	280 281 254 276 282	103 100 94 107 101	41.0 41.3 41.1 29.0 39.8	18.4 20.2 18.9 22.0 17.8
		70 ⁰ F	7 : 40	68 68 69 70	279 276 279 275 272	104 101 101 107 111	40•7 40•3 39•8 40•6 37•4	19.0 19.6 20.3 20.6 20.1
		70 ⁰ F held 2 hrs	9:40	70 70 70 70 70	273 275 275 273 271	111 108 112 110 114	38 • 7 38 • 4 37 • 6 39 • 3 38 • 4	21.5 21.2 24.4 18.4 18.9

TABLE XXI

CHERRIES, KED SOUR - DRY SUGAR TREATMENT

M	D	TP	Tm	Тр	DW	VJ	%ssJ	%ssF
Water	70 ⁰ F	45 ⁰ f	0:45	42 42 43 45 46	306 299 302 289 272	78 98 93 96 110	43•9 44•2 43•8 40•6 43•8	24.8 27.8 33.4 33.4 23.7
		70 ⁰ F	2:00	68 66 69 70 68	292 277 276 276 276	104 112 120 108 96	44•7 41•6 43•0 40•4 39•7	27.9 29.9 29.1 27.9 28.9
		70 ⁰ F held 2 hrs	4:00	72 72 72 72 72 72	267 267 271 274 267	118 118 124 124 126	38.2 38.1 39.0 40.7 38.0	27.9 27.5 27.2 26.5 35.0
Water	100 ⁰ F	45°f	0 : 25	50 45 44 44	275 295 292 294 294	105 86 102 98 100	42.5 43.7 43.7 44.7 44.2	24.7 25.0 19.2 28.4 26.0
		70 ⁰ F	0:55	70 72 74 72 80	268 271 266 279 264	120 122 115 118 131	39•2 42•5 39•0 38•1 38•2	26.5 28.0 27.4 26.0 28.9
		70 ⁰ F held 2 hrs	2:55	71 72 73 72 72	266 275 280 271 275	130 118 115 125 118	38.8 39.1 40.3 38.5 40.2	24.8 27.1 27.6 26.5 26.5
Air	70 ⁰ F	45 [°] f	5:30	50 47 45 50	276 277 288 285 290	106 106 104 110 108	37 • 9 38 • 0 39 • 0 38 • 2 41 • 14	25.5 27.6 26.5 27.2 28.9
		70 ⁰ f	7 : 45	68 68 68 68 68	277 276 284 272 273	108 78 105 110 112	37.1 39.2 39.1 40.4 39.1	34.0 21.4 32.2 25.3 26.0
		70 ⁰ F held 2 hrs	9 : 45	74 74 74 74 74	276 267 271 275 264	112 116 115 115 121	40•1 39•6 35•3 37•3 39•4	26.1 28.1 24.3 28.9 26.3

	CHENN	RIES, RED SO		SUO25	SINUP	H LLL		
MD		TP	Tm	Tp	DW	VJ	%ssJ	%ssF
Water	70 ⁰ F	45°f	0 : 55	48 47 45 48	305 310 306 303 294	110 104 108 110 114	32•5 32•7 32•5 32•5 31•1	28.3 20.1 24.3 19.6 22.5
		70 ⁰ F	1:55	68 67 68 68 69	294 299 291 298 290	120 116 118 112 120	31.2 31.2 29.4 29.3 29.8	23.1 23.9 23.0 22.0 24.3
		70 ⁰ F held 2 hrs	3:55	72 72 72 72 72 72	286 284 293 285 291	124 124 130 130 120	31.0 30.9 27.9 29.1 28.6	24•2 24•2 24•9 26•6 20•1
Water	100 ⁰ F	45 ° f	0 : 25	48 45 46 47 44	287 299 299 303 296	125 112 115 109 118	31•4 30•0 34•3 33•9 30•6	24•9 23•6 27•8 25•5 22•6
		70 ⁰ f	0 : 52	72 70 69 72 69	289 290 281 283 292	122 120 126 126 118	29•3 30•4 30•2 30•6 29•4	25.7 29.1 28.6 23.1 26.3
		70 ⁰ F held 2 hrs	2:52	72 72 73 74 74	291 292 291 280 294	116 118 118 120 116	29•4 29•8 29•5 29•5 28•9	24.8 26.2 27.7 26.1 25.6
Air	70 ⁰ F	45°F	6 : 55	50 46 45 46	291 287 286 300 297	112 120 116 110 112	32.1 29.7 29.1 27.0 28.2	25.4 21.3 25.0 17.8 19.0
		70 ⁰ f	8:30	68 70 68 70 72	280 288 291 293 299	130 130 122 122 112	27 •7 26 •8 27 •9 27 •8 27 •7	27.0 22.0 20.6 23.0 21.8
		70 ⁰ F held 2 hrs	10:30	74 74 74 74 74	280 287 287 289 29!4	125 118 120 120 118	27•9 27•8 25•4 26•4 27•0	24•3 27•9 23•6 30•7 27•2

TABLE XXII

CHERRIES, RED SOUR - SUCROSE SIRUP TREATMENT

.

CHERRIES, RED SOUR 70-30 SUCROSE-SWEETOSE SIRUP TREATMENT

MD		TP	Tm	Tp	DW	VJ	% s sJ	%ssF
Water	70 ⁰ F	45 ⁰ ғ	0:55	455555 4455555 455	306 297 292 300 303	102 110 120 110 110	32•7 31•1 30•7 29•9 31•2	23.8 25.8 24.3 28.3 25.8
		70 ⁰ f	2:00	70 68 68 68 68	298 292 294 291 289	112 118 118 122 126	31.7 29.8 30.0 30.0 28.4	24.7 27.8 24.7 25.0 23.1
		70 ⁰ F held 2 hrs	4:00	68 68 68 68 68	296 284 294 293 296	116 122 120 122 118	31.0 30.4 29.4 28.2 28.8	26.6 22.7 24.8 24.9 25.2
Water	100 ⁰ F	45°f	0 : 25	45 45 45 45 42	304 302 303 302 304	96 100 108 108 109	27.8 27.8 27.9 32.3 32.4	19.1 23.8 22.5 22.6 23.7
		70 ⁰ f	0 : 50	80 76 74 72 74	280 276 289 280 276	128 130 124 130 130	30.6 31.1 31.8 31.2 30.6	22 •3 22•5 24•6 24•7 24•2
		70 ⁰ F held 2 hrs	2:50	72 72 72 72 72 72	282 284 297 286 294	130 128 112 126 118	30.6 30.1 30.1 31.2 29.4	20.1 23.7 23.6 24.4 24.6
Air	70 ⁰ f	45 ^с ғ	5:30	48 48 48 48	287 299 300 301 308	120 140 114 110 108	30.4 29.5 27.7 28.8 28.1	24•4 25•6 23•9 25•4 24•0
		70 ⁰ f	8:25	68 68 68 68 68	285 294 299 302 290	128 118 115 112 120	28.1 27.8 28.1 27.3 28.8	23.2 24.4 23.8 24.9 19.6
		70 ⁰ F held 2 hrs	10 : 25	72 72 72 72 72 72	290 291 287 294 293	128 120 130 124 124	29.0 28.3 28.1 29.0 27.1	24•4 23•7 24•7 24•7 24•9

TABLE XXIV

CHERRIES, SWEET - DRY SUGAR TREATMENT

MD		TP	Tm	Тр	DW	VJ	%ssJ	%ssF
Water	70 ⁰ F	. 45°F	0:52	45655 455	301 298 296 310 306	90 92 84 90 86	45•3 44•7 46•0 41•9 43•8	36•3 27•8 39•1 32•4 33•3
		70 ⁰ f	2:06	68 68 68 68 68	299 302 292 286 293	94 92 120 108 104	43.0 43.0 39.6 42.3 44.1	30.6 28.1 28.9 31.2 32.6
		70 ⁰ F held 2 hrs	4 : 06	72 72 72 72 72	291 285 293 276 297	100 104 110 110 104	37.6 38.7 35.3 37.7 37.2	31 •4 34 •7 30 •4 29 •4 29 •7
Water	100 ⁰ F	45 [°] f	0:25	48 46 45 45 48	298 300 300 296 298	83 78 88 105 90	44•9 46•0 44•3 40•3 45•3	31.1 32.6 29.8 33.4 32.9
		70 ⁰ f	0:50	72 70 72 70 74	294 297 291 285 281	97 88 98 110 112	45•2 47•4 46•3 43•8 44•3	34•1 34•1 33•9 35•3 30•5
		70 ⁰ F held 2 hrs	2:50	72 72 72 72 72	280 278 280 280 276	104 111 111 114 120	42.8 41.8 41.8 38.0 37.8	35•7 32•5 31•1 33•4 32•9
Air	70 ⁰ F	45°r	5:00	48 45 45 48	289 304 313 302 300	90 88 84 88 98	47•1 42•6 41•1 40•8 43•7	31.2 29.8 26.2 28.3 29.0
		70 ⁰ f	7:40	68 68 68 68 68	278 292 288 288 288	105 92 104 110 110	39.6 40.0 42.8 41.2 41.2	34.2 29.4 31.1 31.5 31.1
		70 ⁰ F held 2 hrs	9:40	70 70 70 70 70	277 288 278 283 283	98 96 112 109 110	41 • 3 37 • 6 40 • 2 38 • 3 40 • 6	34•3 28•9 24•3 31•2 32•2

MD		TP	Tm	Тр	DW	VJ	%ssJ	%ssF
Water	70 ⁰ F	45 ⁰ ғ	0:50	45 46 45 45 45 45 45	310 309 312 302 307	150 150 146 154 150	37.8 36.0 35.4 34.5 35.6	26.5 29.1 27.9 28.1 28.2
		70 ⁰ f	1:50	68 68 68 68	305 295 287 295 291	158 165 170 170 170	34•3 36•0 34•9 34•6 35•3	29.8 29.4 26.5 26.1 32.5
		70 ⁰ F held 2 hrs	3:50	70 70 70 70 70	288 286 283 292 287	156 164 173 170 170	34•4 35•2 35•8 33•4 34•3	30.7 31.3 30.8 32.6 27.7
Water	100 ⁰ F	45 ⁰ ғ	0:25	48 48 45 46 47	303 303 304 303 299	138 140 150 152 154	31.7 37.4 36.8 37.2 35.5	28.1 28.9 27.1 32.8 32.2
		70 ⁰ F	0:42	71 72 72 72 69	287 295 291 288 300	162 162 188 168 160	36.2 36.5 33.9 36.0 34.8	30.0 29.5 26.4 27.3 27.9
		70 ⁰ F held 2 hrs	2:42	72 72 72 72 72	283 282 278 283 274	162 184 174 174 178	36.4 33.1 33.3 32.9 33.9	28.2 27.6 29.2 32.2 26.1
Air	70 ⁰ F	45°f	6:05	455 455 46 46	304 314 312 304 312	148 140 150 152 145	32•9 35•5 35•3 35•0 36•0	30•7 29•1 33•2 29•5 32•2
		70 ⁰ F	7:45	67 67 67 67	298 291 295 293 290	162 164 158 170 162	35•4 34•0 34•6 33•9 34•2	31.5 27.6 27.6 30.5 31.6
		70 ⁰ F held 2 hrs	9 : 45	69 69 69 69	289 293 287 291 288	168 168 172 170 170	34•4 31•7 34•3 34•3 33•7	30.5 26.8 28.2 26.2 31.6

TABLE XXV

CHERRIES, SWEET - SUCROSE SIRUP TREATMENT

MD		TP	Tm	Tp	DW	٧J	%ssJ	%ssF
Water	7 0 [°] F	45°f	0:55	45 48 49 49 45	320 310 314 301 310	140 150 152 160 152	35•5 36•2 35•1 34•4 35•0	28.4 28.4 27.1 26.6 26.6
		70 ⁰ f	2:00	68 68 68 68	294 295 289 296 293	168 166 168 164 168	35.2 34.9 35.5 33.9 35.9	28.9 30.4 29.5 27.6 26.5
		70 ⁰ F held 2 hrs	4:00	70 70 70 70 70	282 281 281 275. 285	210 170 174 178 170	31.6 34.1 34.4 35.0 34.3	29.4 30.6 30.1 28.8 31.1
Water]	100 ⁰ F	45°f	0 : 25	47 45 46 45	299 293 305 299 298	158 162 152 158 160	35•2 37•3 37•7 36•2 38•2	24.5 29.5 29.4 28.2 29.1
		70 ⁰ f	1:05	70 72 72 73 74	286 282 281 283 287	164 170 174 176 174	35.6 35.6 34.9 35.1 34.1	28.2 27.9 32.2 29.2 30.5
		70 ⁰ F held 2 hrs	3:05	72 72 72 72 72	282 272 279 286 279	174 184 180 174 194	35.1 32.6 33.8 33.3 32.3	33.1 28.9 31.2 31.4 27.6
Air	70 [°] F	45°F	5:25	50 48 50 50 48	297 300 295 298 298	160 162 164 164 168	31.8 34.1 34.4 33.9 34.6	29•4 29•4 31•8 29•0 33•6
		70 ⁰ F	8:25	70 70 70 70 70	282 296 282 282 287	170 168 176 172 170	32.8 32.8 34.3 33.9 34.0	29.9 28.2 29.9 30.6 31.0
		70 ⁰ F held 2 hrs	10 : 25	72 72 72 72 72 72	277 277 281 277 277	182 181 178 180 189	32.1 32.8 33.9 32.3 32.3	30.1 33.2 30.6 30.5 34.1

CHERRIES, SWEET 70-30 SUCROSE-SWEETOSE SIRUP TREATMENT

		FEROIES - S		511.01	1.0041			
MD		TP	Tm	Tp	DW	VJ	%ssJ	%ssF
Water	70 ⁰ F	45 ⁰ ғ	0 : 53	45 44 45 46	291 285 299 293 299	172 182 168 174 166	23.8 23.2 22.0 23.3 23.8	22.0 20.3 21.6 21.6 20.8
		. 70 ⁰ ғ	2:00	68 68 68 68 68	289 286 299 287 299	174 176 170 180 172	25.0 24.3 22.5 22.6 22.5	20.8 21.8 21.8 17.9 21.4
		70 ⁰ F held 2 hrs	4:00	70 70 70 70 70	289 294 295 297 203	172 170 170 170 168	23.9 23.2 23.1 22.5 21.9	22.6 19.8 21.4 22.5 23.0
Water	100 ⁰ F	45°f	0:29	45 48 45 48 50	282 272 287 275 268	168 180 176 190 190	24.2 23.1 22.5 22.5 22.8	18.9 19.6 20.0 19.0 18.8
		70 ⁰ f	0:55	72 72 70 70 70	281 289 287 285 290	182 178 180 180 180	23.7 23.2 22.8 24.2 22.5	18.3 19.4 22.2 19.9 21.4
		70 ⁰ F held 2 hrs	2:55	70 70 70 70 70	287 292 295 296 294	166 168 174 170 170	24.6 24.4 23.1 22.6 22.6	20.6 24.2 23.8 22.5 21.9
Air	70 ⁰ f	45 ⁰ ғ	5:15	43 43 42 43 43	· 294 287 302 303 305	168 172 168 164 164	23.4 23.9 23.1 23.1 23.7	22.1 19.0 20.8 17.8 22.0
		70 ⁰ f	9 : 45	68 68 68 68	290 302 295 297 306	170 166 170 168 162	23.0 22.7 22.4 22.4 22.0	20.9 20.1 23.0 23.0 21.8
		70 ⁰ F held 2 hrs	11:45	70 70 70 70 70	294 290 284 280 287	162 170 188 188 178	23.7 23.7 22.4 21.2 23.1	19.0 20.2 21.8 21.0 21.4

TABLE XXVII PEACHES - SUCROSE SIRUP TREATMENT

		RASPBERRIES		SUUAII	INCAI	MENT		
MD		TP	Tm	Tp	DW	VJ	%ssJ	%s sF
Water	70 ⁰ f	45 [°] f	1:00	45 46 46 46	265 268 263 269 266	112 105 128 132 125	37•3 36•6 37•3 38•1 37•1	26.0 27.0 27.5 27.6 24.6
		70 ⁰ f	1:55	67 68 67 68 68	268 264 268 266 280	110 114 124 134 118	38.9 39.0 37.0 38.5 38.6	25•8 26•6 23•9 24•6 29•8
		70 ⁰ F held 2 hrs	3:55	68 68 68 68 68	271 268 269 265 263	121 128 126 132 130	37.0 38.7 35.1 36.2 37.5	25.6 27.2 29.8 24.8 27.0
Water	100°F	45 ⁰ ғ	0:30	48 45 46 49	276 265 257 260 270	122 130 130 140 130	36.5 39.2 36.2 35.2 35.0	28•4 26•2 28•5 26•0 25•3
		70 ⁰ f	1:30	70 67 68 68 68	260 271 261 258	138 120 138 136 140	37•1 35•4 37•6 37•5 39•0	31.4 23.0 23.8 23.6 27.0
		70 ⁰ F held	4:30	70 70 70 70 70	267 260 276 262 263	114 114 112 130 140	38.1 37.1 35.3 37.5 37.8	26.2 23.8 22.5 23.9 23.8
Air	70 ⁰ F	45°F	5:00	47 46 45 45 46	270 271 280 266 266	94 100 110 120 122	37.2 36.0 37.4 35.0 35.1	28.2 26.4 26.0 27.8 26.5
		70 ⁰ f	8:15	65 67 68 68	256 257 263 261 260	120 132 120 120 128	37.2 37.6 38.7 38.1 37.1	28.8 29.7 22.4 17.9 20.2
		70 ⁰ F held 2 hrs	10:15	70 70 70 70 70	270 263 256 267 260	125 132 123 125 130	31.6 31.6 31.6 34.3 35.4	17.9 21.8 22.4 25.7 29.8

TABLE XVIII

RASPBERRIES - DRY SUGAR TREATMENT

TABLE XXIX

RASPBERRIES - SUCROSE SIRUP TREATMENT

M	īD	TP	Tm	Tp	DW	VJ	%s sJ	%ssF
Water	70°F	45°f	0:55	46 47 48 46 46	300 298 300 300 320	150 152 154 160 146	37.2 37.8 37.1 35.0 34.4	25.9 25.0 24.5 25.9 29.1
		70 ⁰ f	2:00	70 70 68 68 70	284 281 287 284 283	166 170 166 172 176	34•3 33•9 35•1 32•9 33•6	26.8 27.4 26.8 27.1 22.6
		70 ⁰ F held 2 hrs	4:00	70 70 70 70 70	287 283 281 286 275	178 174 180 172 178	33.0 32.5 32.5 33.4 34.1	31.5 26.8 23.2 27.8 26.2
Water	100 ⁰ F	⊈45 [°] ₽	0 : 25	45 46 46	287 296 304 294 292	174 164 155 160 165	33.8 35.2 35.2 34.6 33.9	23.8 24.8 26.4 21.2 21.4
		70 ⁰ f	0:55	70 70 68 68 69	293 278 290 274 288	165 176 170 180 170	36•5 33•7 34•4 33•9 31•4	23.9 26.8 24.9 21.8 25.8
		70 ⁰ F held 2 hrs	2 : 55	70 70 70 70 70	284 279 283 276 286	150 164 174 182 170	33.2 33.9 33.8 34.1 34.1	29•3 25•6 23•9 30•1 30•5
Air	70 ⁰ F	45 ⁰ f	6:00	50 45 45 46	295 299 298 301 291	170 165 162 160 171	34•4 34•4 34•4 33•9 32•9	22.7 27.0 22.3 29.4 27.1
		70 ⁰ f	8:30	68 67 66 66 66	290 287 288 289 294	168 170 172 170 168	35•0 34•2 35•0 33•8 32•6	20•4 28•4 20•5 28•2 29•0
		70 ⁰ F held 2 hrs	10:30	70 70 70 70 70	279 274 287 282 283	184 188 170 175 174	32.6 34.0 33.6 31.5 31.1	31.6 34.3 28.2 27.8 33.4

RASPBERRIES - 70-30 SUCROSE-SWEETOSE SIRUP TREATMENT

MD		TP	Tm	Тр	DW	VJ	%ssJ	%ssF
Water	70 ⁰ F	45 ⁰ ғ	0:55	44 45 44 46 45	297 295 299 293 293	160 162 158 168 160	32.8 34.2 33.7 34.5 34.3	25.7 28.9 26.1 24.9 27.8
		70 ⁰ f	2:00	68 68 68 68	281 286 292 290 279	178 172 162 168 182	33.2 33.4 34.4 34.2 34.5	23.0 26.0 25.6 26.2 27.6
		70 ⁰ F held	4:00	70 70 70 70 70	282 277 285 285 282	164 164 172 172 176	32.6 33.9 32.6 32.7 33.5	27.6 19.0 23.5 26.2 28.0
Water 100 ⁰ F		45°f	0:25	455555 445555	287 294 283 294 290	172 164 176 166 174	33.2 33.2 34.2 34.9 31.8	24•2 25•4 23•1 25•9 25•4
·		70 ⁰ f	1:05	76 76 76 74 78	273 270 271 268 277	172 180 184 188 180	33.4 31.2 31.6 33.7 31.7	23.1 23.1 20.9 21.8 20.7
·		70 ⁰ F held 2 hrs	3:05	74 74 74 74 74	276 276 277 272 285	174 181 184 188 174	31.8 30.5 31.4 30.6 31.6	30.7 23.6 24.2 24.9 30.1
Air	70 ⁰ F	45°f	5 : 15	45 45 44 44	294 293 289 295 294	160 166 166 164 166	32.1 30.0 32.8 30.5 32.5	27.7 26.1 25.5 28.1 25.6
		70 ⁰ f	8:45	68 68 68 68 68	273 276 280 279 276	181 178 182 180 184	33.6 31.7 31.1 31.0 29.8	27.1 22.1 22.5 22.4 22.8
		70 ⁰ F held 2 h rs	10 : 45	70 70 70 70 70	271 265 265 276 265	190 186 192 180 192	30.6 30.0 29.8 30.8 29.8	25.0 23.7 26.5 23.2 24.9

-	 -

	• • –	• · · · ·		, t <u></u>
			· · · · · · · ·	• · · · •
•	•	,		
•	•			

- •

•

- •

- •

- • •

- •
- •

- •
- •

- ,

STRAWBERRIES - DRY SUGAR TREATMENT

MD		TP	Tm	Тр	DW	VJ	%ssJ	% s sF
Water	7 0°F	45 ⁰ f	0 : 54	45 46 45 46	280 250 285 275 268	122 141 120 144 136	33.4 34.1 34.2 31.1 33.3	24.6 16.2 26.5 25.3 31.2
		70 ⁰ f	2:00	67 67 68 68	260 268 254 2146 255	128 130 144 146 148	33.8 29.9 33.4 31.5 31.3	28.1 19.7 28.8 24.4 23.0
		70 ⁰ F held 2 hrs	4 : 00	68 68 68 68 68	261 252 232 235 251	210 130 170 210 140	28.1 29.9 23.8 24.0 29.5	17.2 21.4 20.9 18.8 24.9
Water 100 ⁰ F		45°f	0:25	45555 4445 455555555555555555555555555	262 252 269 247 26 7	108 126 122 144 134	35.0 37.8 32.2 33.9 35.1	26.2 25.4 20.8 27.9 27.0
		70 ⁰ F	0 : 55	70 72 72 70 72	248 228 243 256 244	152 164 158 148 150	32•3 33•4 33•6 33•8 35•0	26.0 18.8 20.2 23.7 23.2
		70 ⁰ F held 2 hrs	2 : 55	70 70 70 70 70	246 250 240 248 255	130 120 154 154 164	31.2 32.1 31.1 34.7 33.4	28.0 39.0 24.3 29.9 27.9
Air	70 ⁰ f	45°f	5:35	45 44 44 44 44	276 275 276 275 276	112 120 114 126 128	31•1 34•8 31•8 32•1 32•7	23.7 25.6 27.2 24.7 23.9
		70 ⁰ f	9:00	68 68 68 68	261 255 258 248 258	139 140 150 140 142	30•4 33•4 30•0 30•5 31•2	27.2 22.0 20.0 30.1 29.5
		70 ⁰ F held 2 hrs	11:00	72 72 72 72 72	260 247 252 262 249	118 130 140 130 155	32.2 33.9 30.6 30.4 28.1	21.0 23.2 23.6 19.1 22.5

• .

•


TABLE XXXII

STRAWBERRIES - SUCROSE SIRUP TREATMENT

MD		TP	Tm	Тр	DW	VJ	%ssJ	%ssF
Water	70°F	45°f	0:55	44455 44455	262 286 285 280 277	194 180 184 188 187	31.2 30.0 30.5 30.6 30.6	21.3 17.8 20.8 18.8 20.8
		70 ⁰ F	1:05	68 68 68 68 68	268 265 260 264 262	198 200 196 192 200	29.8 30.7 31.1 31.5 31.1	20.7 17.7 17.5 20.7 22.4
		70 ⁰ F h⊖ld	3:05	70 70 70 70 70	266 266 276 257 268	189 190 196 210 194	31.7 30.6 30.4 28.8 30.5	21.8 20.0 17.8 20.2 16.5
Water 100 ⁰ F		45°F	0:25	45 45 47 46	252 265 288 269 275	200 190 178 188 190	32.5 31.2 31.7 31.5 30.3	17.6 19.8 18.6 17.7 20.8
		70 ⁰ f	0:50	69 70 69 70 70	266 242 227 260 267	176 186 218 192 188	33.2 31.5 28.2 32.1 31.6	18.8 22.4 15.5 17.7 15.8
		70 ⁰ F held	2 : 50	70 70 70 70 70	239 263 254 260 262	218 214 208 196 190	30.5 32.7 29.9 31.5 32.2	19.0 19.7 20.7 20.1 20.7
Air	70 ⁰ F	45 ⁰ ғ	5:40	44 44 44 44 44	267 285 258 293 276	192 188 210 172 180	29•7 31•1 31•6 30•0 29•0	24.2 24.7 22.7 15.9 21.3
		70 ⁰ f	8:55	67 67 67 67 67	266 258 265 251 262	198 210 198 210 202	31.6 30.0 28.6 29.4 28.2	29.0 26.2 24.0 25.0 24.8
		70 ⁰ F held 2 hrs	10 : 55	70 70 70 70 70	288 258 271 246 260	188 208 190 214 204	29.9 29.1 30.0 28.3 29.8	28.2 24.3 27.6 23.0 16.5

T664.8 CHEMISTRY LIBRARY 337219 E672 Hirzel

T664.8 H672	CHEMISTRY LIBRARY 337219 Hirzel The effect of the method of defrosting on the drained weights of selected Michigan fro- zen fruits. $\frac{1}{15}/55$

