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ABSTRACT

OPTIMIZATION OF DIFFUSION-ENCODING GRADIENT SCHEME FOR

DIFFUSION-WEIGHTED MAGNETIC RESONANCE IMAGING OF NERVE

FIBERS

By

Shantanu Majumdar

Diffusion-Weighted Magnetic Resonance Imaging (DWMRI or DWI) is a specialized

imaging technique that can be used to quantify diffusivity of water molecules in biological

tissues. Nerve fibers in nervous tissues consist of axon bundles which are highly directional

microscopic tube-like structures with semi-permeable boundaries. Water molecules within

fibers exhibit diffusion anisotropy due to preferential movement of the molecules along the

direction of the fiber. The diffusion anisotropy can be measured by collecting data using

a series of diffusion-encoding gradients (diffusion-encoding gradient scheme) in the DWI

experiment and solving the inverse problem that characterizes the diffusion anisotropy

process. The direction of highest diffusivity gives the direction of the nerve fibers. Hence,

DWI provides a completely non-invasive technique to image nerve fibers and study nerve

connectivity in the brain, the spinal cord or the peripheral nervous system.

In model-based DWI methods (such as diffusion tensor imaging, DTI), the diffusion

process is characterized by a parametric relation between the measured DWI signal and

the diffusion model parameters (diffusivity, fiber orientation) as well as the experimental

parameters (gradient strengths and directions in the scheme). The model parameters are

estimated by solving the inverse problem corresponding to the diffusion process under a

given experimental setting. The estimated model parameters are further used to compute

secondary diffusion-related quantities (such as mean diffusivity and fractional anisotropy

which are potential biomarkers of the health of the nerve fibers) or to reconstruct fiber

tracts connecting different locations in the imaged structure (fiber tractography). It is

important that the diffusion model parameters are precisely estimated since these directly

affect any secondary processing step. The precision of the estimated model parameters



depends on the selection of the experimental parameters and thus can be improved by

optimal selection of these parameters.

In this work, a framework to optimize the diffusion-encoding gradient scheme is de-

veloped for model-based DWI methods. The framework reduces the estimation uncer-

tainty of diffusion model parameters (thus improves precision) by optimally selecting the

diffusion-encoding gradients to minimize an analytical lower bound of the estimation un-

certainty (known as the Cramer-Rao lower bound, CRLB). Focus has been on special

structures, such as the spinal cord, where the axon bundles are oriented in specific di-

rection known a priori . This availability of a priori information of the fiber orientation

has been exploited and embedded into the optimization framework to reduce uncertainty

of parameter estimation. The framework uses subject-specific information on diffusion

parameters and also allows for a safety margin beyond the expected performance range

of diffusion parameters, thereby making it more relevant and less biased. The framework

has been validated via Monte Carlo simulations as well as by conducting DTI experi-

ments on human subjects. Also results from fiber tractography show improvement in the

quality of tracked nerve fibers upon using the optimized gradient scheme. Thus, the use

of the optimization framework can improve the quality of DWI diagnostics by improving

precision of the imaging technique and encourage comparison of patient groups.
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CHAPTER 1

Introduction

1.1 Neuronal connectivity

The human body comprises of a complex network of neural connections between different

organs and the nervous system. Through these neural connections, the functioning of the

different organs is controlled by the central nervous system (CNS). The CNS comprising

of the brain and the spinal cord itself contain neural networks by which different regions

of the CNS communicate with each other. The neural connections are formed by a large

number of nerve cells consisting of a cell body and a tail-like structure called axon. Axons

are specialized structures responsible for conducting action potentials (neural electrical

impulses) from a nerve cell to another. Axons connect with other nerve cells via synapses.

Bundles of axons or axonal fiber tracts (or neural fiber tracts) within the brain, the spinal

cord and the peripheral nervous system provide a communication network for transmitting

a plethora of control signals to a variety of organs. The integrity of the neural network

formed by the neural fiber tracts is extremely important for the normal functioning of the

human body. Thus, there is a need for non-invasive methods for imaging the neural fiber

tracts for proper evaluation of the health of the tracts and the diagnosis of pathology.

The integrity of the neural network can be analyzed by neuronal connectivity studies

which can either be structural (based on neuro-anatomy) or functional (based on neuro-

physiology) studies. Some of the techniques based on measuring neuro-physiological phe-
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nomena (as critically discussed in [1, 2]) are Electroencephalography (EEG, which mea-

sures the electrophysiology in the brain), Magnetoencephalography (MEG, which mea-

sures the induced magnetic field caused by the electrophysiology in the brain), functional

Magnetic Resonance Imaging (fMRI, which measures the hemodynamic response (blood

oxygen level dependent (BOLD) signal [3]), generally in the brain) and Fludeoxyglucose

(FDG) Positron Emission Tomography (FDG-PET, which measures the metabolic ab-

sorption rate in the whole body), O-15 PET (measures cerebral blood flow). It should

be noted that physiological phenomena are largely due to changes in the nerve cell body

rather than the fiber tracts themselves and the connectivity is established in different

parts of the nervous system by either analyzing the temporal correlation of these phys-

iological processes or testing a hypothesis based on a cause-effect relation (causality).

Hence, it’s an indirect way of establishing neuronal connectivity as compared to a more

direct way in neuro-anatomical imaging.

Early techniques in neuro-anatomical imaging were ex vivo and only applicable post-

mortem, such as tract tracing using fluorescent dyes (for example, [4]). However, recent

advances in imaging technology especially in magnetic resonance imaging, have provided

completely non-invasive in vivo methods for studying neuronal connectivity anatomically.

To understand the anatomy of fiber tracts, there is a need to precisely and accurately

visualize the fibers causing little or no damage to the structure. Stejskal and Tanner [5, 6]

showed that nuclear magnetic resonance (NMR) can be used to obtain information about

diffusion of water molecules when confined within restrictive boundaries. They demon-

strated that by applying a pair of diffusion-encoding gradients in a spin-echo experiment,

the NMR signal can be weighted by an additional attenuation factor that depends on the

diffusivity of water molecules. After the advent of magnetic resonance imaging (MRI),

the use of the Stejskal-Tanner pulse sequence [5] (or sequences based on it) during MR

imaging would be known as Diffusion-Weighted MRI (DW-MRI or DWI). An important

observation from the DWI is that the MR signal attenuation due to diffusion depends on

the direction of the diffusion-encoding gradient. Thus, applying diffusion-encoding gradi-

ents along the direction of high water diffusivity produces higher MR signal attenuation
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compared to along any other direction. Hence, DWI can be used to measure diffusion

anisotropy.

In the axon bundles in nerve fibers, the water molecules follow preferential movement

along the fiber direction. This preferential movement is due to barriers to molecular

motion such as myelin (fat) sheath in neural fibers that causes restricted or hindered

diffusion towards the boundary of the fibers and unrestricted diffusion along the longitu-

dinal direction of the fiber. Such anisotropy in the local diffusion process can be measured

by DWI to infer tissue microstructure in the neural fibers. By optimally selecting the

strength and directions of the diffusion-encoding gradient, neural fiber tracts can be more

precisely demarcated. This leads to a more comprehensive study of the neural fiber tracts

and helps to improve the DWI protocols in clinical studies.

1.2 Diffusion-weighted imaging

In diffusion-weighted imaging, the diffusion-weighted MR images are acquired by using

specialized pulse sequences such as the Stejskal-Tanner Spin Echo sequence [5] which

uses additional diffusion-encoding gradients. This pulse sequence can capture the effect

of local water diffusion and attenuate the MR signal according to the diffusion process.

It should be noted that the DWI images themselves are less informative. However, from

post-processing of the DWI image data, quantities characterizing the diffusion process

are estimated which provide more direct information about the imaged structure and

are more commonly used in the analysis or diagnosis of diseases. These quantities can

either be scalar so as to generate a secondary parametric map or these can be angular

information which can be directly used for tracking neural fibers.

The diffusion process can be characterized either by a parametric model or by a non-

parametric process, such as defined by a transform of the DWI data. This distinction

differentiates the post-processing techniques. For model-based post-processing (e.g., DTI

[7], QUAQ (quantitative analysis of q-space) [8], CHARMED (composite hindered and

restricted model of diffusion) [9]), the MR signal is modeled by a parametric relation
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between the signal and diffusion model parameters (such as the local diffusion coefficients

or diffusivities and the fiber orientation angles). This is in contrast to non-parametric

methods (e.g., diffusion spectrum imaging [10], q-ball imaging [11]), where the signal is

processed to obtain probability distributions of quantities of interest. For instance, the

orientation distribution function in q-ball imaging is obtained by performing the Funk-

Radon transform of the DWI data collected under certain experimental settings [11]. The

focus of this work is on model-based methods, such as DTI.

In model-based post-processing approaches, the DWI data is fitted to a diffusion model

to extract specific quantitative information. Diffusion tensor imaging (DTI, [7, 12]), the

most often used model, is based on an anisotropic hindered diffusion model with six

parameters, and yields a local “apparent diffusion tensor”, whose principal eigenvector

provides the fiber orientation. DTI model uses a single tensor to characterize diffusion

within the fiber tracts and as such it reconstructs a single (unidirectional) fiber bundle

within each volume element (voxel) of the image. The DTI model can be modified by

assuming axisymmetric diffusion inside fibers (ADTI), reducing the number of model

parameters to four. A physics-based approach, called QUAQ (quantitative analysis of

q-space [8]), models fibers as impermeable axisymmetric cylinders, and uses the solution

of the diffusion equation inside a cylinder which also contains four parameters.

Figure 1.1. (a) T2-weighted image, (b) fractional anisotropy (FA) map and (c) mean

diffusivity (MD) map. The data for these images are acquired using a DTI protocol

(with MF30 gradient scheme and b = 1000 smm−2) and the images are processed using

FSL software package (Analysis Group, FMRIB, Oxford, UK).
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For neuronal connectivity, diffusivities and fiber orientation maps are investigated since

these can indicate presence and connection of fibers in the imaged region. For example, a

secondary quantity computed based on the DTI processing is fractional anisotropy (FA)

which is a dimensionless number represented by a ratio of diffusion coefficients as defined

in [13]. It is indicative of the local diffusion anisotropy (see Fig. 1.1(b)). FA images

are widely used in connectivity studies (for example, [14]). Another scalar quantity

derived from the DWI data is the mean diffusivity (MD) which provides an average of

diffusivities calculated from the apparent diffusion tensor. The MD is more indicative

of local diffusion isotropy (see Fig. 1.1(c)). For fiber tractography (or tracking), fiber

orientation information as well as other diffusion coefficient based quantities (such as FA)

are collected as the output of DWI post-processing and used in tractographic algorithms

([15, 16]) (see Fig. 1.2). Since fiber tractography is a secondary processing stage, its

precision and accuracy (and, in general, quality) depends on the precision and accuracy

of the post-processing results of DWI.

Figure 1.2. Fiber tracking through Corpus Callosum (a) Axial view, (b) Coronal view.

The fibers shown are 3D reconstructed streamline fibers projected onto the 2D image

views. The color coding indicates the fiber orientation on the RGB scale, namely, red

is right(R)-left(L), blue is superior(S)-inferior(I) and green is anterior(A)-posterior(P)

orientations respectively. Note that the axial and coronal views are not on the same scale.

The data for these images are acquired using a DTI protocol (with MF30 gradient scheme

and b = 1000 smm−2) and fiber tracking is performed using MedINRIA software package

(Asclepios Research Project, INRIA Sophia Antipolis, France). For interpretation of the

references to color in this and all other figures, the reader is referred to the electronic

version of this dissertation.
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In DWI, there are a number of MRI experimental parameters that can be optimally

chosen to improve the precision of the estimated fiber orientation and the diffusion model

parameter. These include the diffusion-encoding gradient strength, gradient directions

and timing parameters, such as the diffusion gradient pulse duration and time inter-

val between the diffusion gradients. Several optimization criteria and gradient-encoding

schemes have been discussed in [17]. DWI protocol optimization can also be based on a

specific structure to be imaged. If adequate knowledge about the structure is available,

optimal schemes based on the a priori knowledge can be designed.

1.3 Optimizing DWI protocols

In the formulation of an optimization problem, it is required to define the optimized

parameters, the optimization cost function which is minimized during the optimization

procedure, other additional parameters which are part of the formulation but not varied,

constraints on the optimized parameters and finally the prior knowledge of the parame-

ters of the problem. After the optimization problem is formulated, the next steps include

the development and implementation of the algorithm that solves the optimization prob-

lem and computes the optimized parameters. Finally, the performance of the optimized

parameters is validated using either simulations or experiments.

A DWI experimental protocol consists of a prescribed list of settings for the different

experimental parameters to be used during imaging. For a Stejskal-Tanner spin-echo

pulse sequence, these include parameters related to the diffusion-encoding gradient (its

strength, direction and timings). In the context of the optimization problem, these are

the optimized parameters. However, a variety of cost functions have been defined by

researchers which address different aspects of the DWI experiment. The optimization

problem depends on the post-processing of the DWI data. Since the focus is on model-

based post-processing (especially DTI), I will discuss some of the optimization done for

the DTI protocol.

A number of DTI diffusion gradient optimization techniques have been proposed previ-
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ously. Numerically optimized schemes (minimum force, minimum energy, minimum con-

dition number), heuristic schemes (orthogonal encoding) and geometric schemes (icosa-

hedral polyhedra) are approaches that only optimize diffusion gradient directions [17].

There are schemes based on optimizing the specific cost function, such as in [18–21].

Hasan et al. [17] summarized several DTI-based or model-independent optimization cost

function to be minimized (variance for the diffusion tensor components, condition num-

ber [19], force [22], Coulomb energy) and compared the resulting schemes via Monte

Carlo simulations. Besides diffusion gradient directions, optimization can also be on the

selection of the diffusion gradient strength, pulse duration and pulse interval between

diffusion gradients and number of diffusion gradient directions, as shown by Alexander et

al. [23] and Brihuega-Moreno [24]. In DTI, the diffusion gradient strength and the timing

parameters are combined into b-factor [12].

In the discussion so far, the various DTI protocol optimization mentioned focus on the

selection of the optimization cost function while not exploring the use of prior knowledge

of the diffusion model parameters which can be effectively used to improve the opti-

mization performance. Use of the prior knowledge constrains the optimization problem.

Hence, the prior should be chosen cautiously so as to not overly constrain the problem.

Typically, the prior knowledge of the imaged structure can be utilized for optimization.

For example, in spinal cord tracts in normal healthy subjects, the nerve fibers are mostly

in the superior-inferior orientation and enclosed within a narrow range of fiber angles.

To illustrate this point, DTI data was collected using standard protocol and analyzed in

the cervical spinal cord region of a healthy adult.

Fig. 1.3(a) shows the coronal view of the spinal cord/brain stem region. The underlying

image is a T2-weighted MRI image used for demarcation of the spinal cord region (dark

region) within the cerebrospinal fluid (CSF) surroundings (bright regions). The overlying

arrows show the fiber orientation (projected on the 2D image) estimated using DTI at

each pixel of the image. The distribution of the deviation angle α w.r.t. the average

orientation of the nerve fibers is plotted in Fig. 1.3(b). It is observed that the majority

(∼85%) of the fiber orientations is contained within a narrow range of fiber angles (cone
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Figure 1.3. DTI results on a healthy adult human in the cervical spinal cord/brainstem

region. (a) Fiber orientations estimated by DTI superimposed over a T2-weighted image,

(b) distribution of the angle between the fiber orientations and the mean fiber orientation.

of half-angle 35◦).

1.4 Motivation and scope of research

Tissue structural information is well documented from anatomical studies for both healthy

([25]) and pathological tissues ([26]). The available knowledge of expected structure

can be represented by mathematical models. For a simple case, the structure can be

modeled as a cone of structural projections with a specified mean orientation and a range

of orientation angles about the mean orientation, as shown for the spinal cord nerve

fibers case in Fig. 1.3. The mean and range values for the cone model can be obtained

from previous DTI studies (as was performed for Fig. 1.3 and other studies such as
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[27, 28]). Similar cone-based structural model can also be applied to other tissues that

show directional nature with long range projections (without sharp bending) and where

the structural information necessary for the model is available from previous DTI studies,

such as median nerves in the wrist [29], optic nerves in the brain [30], peroneal nerves

in the leg [31] and muscle fibers [32]. Apart from the structural information, diffusivity

properties of the tissue can also be obtained from previous DTI studies. Hence, there is

a prevalence of tissues in the human body with available a priori structural information

and this information can be effectively exploited to optimize the DTI protocol.

The research work in this thesis focuses on utilizing the prior information of the imaged

tissue available from previous studies to optimally select the DTI experimental param-

eters (gradient directions and the b-factor) so as to improve the precision (or reduce

uncertainty) of the estimated diffusion model parameters. The optimization framework

developed in this work is based on D-optimality [33, 34] which minimizes the determi-

nant of the Cramer-Rao lower bound (CRLB) of the covariance matrix of the estimated

model parameters. The use of prior information constrains the optimization problem to

improve the precision of the parameter estimation. Such optimized protocol will lead to

more precise estimation of FA, MD and improved fiber tracking.

The optimized DTI protocol can be applied to a number of scenarios. It can be used

for aging related studies of normal subjects where the structural orientation of the tissue

remain consistent and diffusivities for different age groups can be obtained from previous

DTI studies, for example, changes in cervical spinal cord white matter organization in

normal subjects and the correlation with function such as dexterity as demonstrated in

[35]. A second scenario for the application of the optimized protocol could be assessment

of nerve regeneration [36]. In this case, the expected orientation angles of the growing

nerve fibers can be based on previous DTI studies on normal subjects and thus a prior

information based optimized protocol can be used to monitor the regeneration process.

A third scenario could be in the application to the detection of neurodegenerative dis-

eases, such as multiple sclerosis (MS). MS results in demyelination of nerve fibers causing

reduced capability to conduct nerve impulses. Also, MS lesions that are caused due to
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scarring result in transection of fiber tracts. Thus, in MS, the FA values show a significant

decrease as compared to normal subjects [37, 38]. The DTI protocol can be optimized at

a reduced FA value corresponding to MS (rather than normal subjects) and can be used

to improve the detectability of MS.

Although a number of studies have been reported on the optimization of DTI exper-

imental parameters (as summarized by Hasan et al. [17]), few have utilized the prior

structural information. Two recent works on using prior information for DTI protocol

optimization are Peng et al. [21] and Gao et al. [39]). Both of them used the cone model

for fiber orientations. However, each of their techniques have certain shortcomings that I

intend to address in this research work. Their techniques have very specific cost functions,

thus lacking flexibility in selecting the diffusion model parameters for which the protocol

is optimized. The optimization framework developed here provides a number of choices to

select the optimization cost function, such as optimizing for improved precision of all dif-

fusion model parameters, diffusivities only, fiber orientation angles only, variance of FA,

variance of MD, etc. All of these cost functions are derived from the CRLB formulation.

Moreover, diffusion-weighted images suffer from low SNR and since these are magnitude

images, the DTI measurement noise is non-additive Rician rather than additive Gaus-

sian which has been used in these previous works. This research work develops both

the Rician and Gaussian CRLB-based optimization frameworks. Finally, the previous

works have largely used the tensor-based diffusion model for the optimization. However,

the framework developed in this work can optimize for any diffusion model (DTI, ADTI,

CHARMED, QUAQ etc.) although focus has been on DTI only. Thus, this work aims

to provide a more generalized optimization framework for the experimental protocol.

1.5 Outline

This thesis is mainly divided into three sections. The first section comprising of Chapters

2 – 4 consists of a review of the various DWI (and other neuroimaging) techniques, then

a brief description of MRI and DWI principles.
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The second section is mainly in Chapter 5 where the theoretical framework of the

DWI protocol optimization is described in details. This chapter introduces the concept

of CRLB and its use for optimal design of experiments. Also, various noise models, such

as Rician and Gaussian noises, and their corresponding CRLB definitions are derived

in this chapter. The optimization algorithm is also described here. An aspect of DWI

optimization for improvement in the precision of selective diffusion model parameters

is also introduced. Finally, optimized gradient schemes for DTI and ADTI models are

generated and there performance analyzed.

Finally, the third section which are in Chapters 6 and 7 discuss the simulation results

and the spinal cord ADTI study on human subjects. Chapter 6 discusses noise charac-

terization, the simulation results for the effect of various experimental parameters on the

estimation of diffusion model parameters and performance of various estimators. Chapter

7 describes the human study for spinal cord ADTI where the gradient scheme optimiza-

tion procedure and the validation process are described in details. Next, a study on the

effect of optimization on fiber tracking is presented. Finally, an experimental technique

for optimizing both the b-factor and the gradient directions is given which optimizes the

experimental parameters for improved precision of selected diffusion model parameters.

Chapter 8 concludes this thesis by summarizing the results and contributions and

discussing future research works that can benefit from the work done in this research.
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CHAPTER 2

A review of current techniques in

neuroimaging

2.1 Neuronal connectivity: DWI and other compet-

ing technologies

Neuronal connectivity can be classified as structural, functional or effective. While struc-

tural connectivity is a more direct visualization of neural connections, functional and

effective connectivity are related to neurophysiological processes mainly originating from

the nerve cell body instead of the axons. Functional connectivity is defined as the tem-

poral correlations between spatially remote neurophysiological events while effective con-

nectivity is defined as the influence one neural system exerts over another, either at a

synaptic or cortical level [40].

At a conceptual level, both functional and effective connectivity can be observed using

either neuroimaging (such as fMRI, O-15 PET) or electrophysiology (such as EEG, MEG)

[40]. However, at the practical level, neuroimaging and electrophysiological methods are

fundamentally different due to difference in time scales and the measured neurophysio-

logical phenomenon. It is important to note that functional connectivity only provides a

statistical correlation-based relationship without any causal implications, while effective

connectivity measures causal neural connections that can decipher the directionality of
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the neural processes. However the causal relations are generally based on an assumption

of a causality model or framework, such as structural equation modeling [41], dynamic

causal modeling [42], Granger causality mapping [43], multivariate autoregressive mod-

eling [44].

Neuroimaging methods in fMRI measure hemodynamic response (BOLD contrast [45])

and in O-15 PET measure cerebral blood flow [46], while electrophysiological methods

in EEG measure volume conduction [47] or associated effects, such as induced magnetic

field due to volume conduction in MEG [48]. Volume conduction is caused by spike-

trains of neural electrical impulses in active cortical regions. Neuroimaging methods have

better spatial resolution (for example, in fMRI, sub-millimeter voxels can be imaged)

than temporal resolution (for example, in fMRI, temporal resolutions are of the order of

seconds). However, electrophysiological methods have better temporal resolution (order

of milliseconds), but poor spatial resolution (tens of millimeters of separability of cortical

sources).

For studying structural connectivity, techniques can be either based on imaging or

histological studies. One of the histological method for neuroanatomical studies is tract

tracing which involves injecting the tissue sample with lipophilic flourecent dyes [4] and

tracing the labelled neural tracts. This technique is applicable post-mortem and the tissue

staining process generally takes times of the order of more than 24 hours. In the context

of the research work in this thesis, neuroimaging techniques can be broadly classified into

MRI-based and non-MRI based methods. MRI-based neuroimaging methods include T1-

weighted MRI, T2-weighted MRI, MR microscopy (MRM) and finally DWI. While T1

and T2 weighted MRI are currently part of routine clinical MRI, MR microscopy and

DWI are generally research protocols. MRM is essentially ultra high resolution (order of

10–100 microns) MRI which involves the use of ultra-high magnetic field (e.g., 9.4 or 11.7

Tesla) and very high gradients [49]. In-vivo MR microscopy is limited to small animals.

MRM is also reported on excised human tissue samples (post-mortem) from the cortical

region [50]. Amongst non-MRI based methods, X-ray based computed tomography (CT)

methods with contrast enhancement have been reported for neural tracking [51]. Another
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research reported use of scanning electron microscopy (SEM) along with reconstruction

techniques to explore neural connections [52].

With the improvements in MRI technology, diffusion-weighted imaging is more fre-

quently used for neuroanatomical imaging. Neural fiber tracts can be traced in-vivo

from one region of the brain to another completely non-invasively and within a reason-

able scan time (order of tens of minutes). Thus, DWI provides the anatomical aspect

to neuroimaging which is not present in neurophysiology-based methods. Functional or

effective connectivity studies can be either validated or augmented by structural connec-

tivity studies based on DWI. Integration of DWI-based information with functional or

effective connectivity is fast becoming a means of studying different neurological processes

as well as diseases such as Alzheimer’s disease [53] or accessing tumors [54].

2.2 Applications of DWI

After introducing the various techniques in neuroimaging which are contemporary to

DWI-based methods, I will focus on DWI and its various applications. DWI in an MR

imaging method where the MR signal is sensitize to the local diffusion process. Structures

in nerve (axonal) fiber tracts are highly organized and oriented in a particular direction.

Owing to myelin sheath covering the axons, the self-diffusion of water molecules in these

structures is anisotropic in nature with high diffusivity along the direction of fibers and

low otherwise. DWI can measure the diffusion anisotropy by collecting a series of DW

images at different gradient directions. The diffusion anisotropy can be modeled by a

diffusion tensor as in DTI ([7]) or using non-parametric methods as in q-ball imaging

([11]).

In DTI, after the acquisition of DWI data, the diffusion tensor is estimated on a voxel-

by-voxel basis. Next, two types of secondary post-processing can be conducted to obtain

knowledge of neuronal connectivity. The first processing is computation of scalar quan-

tities that are representative of the local diffusion process, such as the eigenvalues of the

diffusion tensor, mean diffusivity, fractional and relative anisotropy [13]. These scalar

14



metrics can be used for further quantitative analysis in studying connectivity. These

have been used for detection of stroke [55] and multiple sclerosis [56]. The second pro-

cessing is fiber tracking which is generally the visual representation of reconstructed nerve

fiber tracts. Fiber tracking uses the local fiber orientation (in the form of direction an-

gles) calculated from the DWI data processing and applies either deterministic tracking

([16, 57, 58]) or probabilistic tracking algorithms ([59, 60]). Deterministic tracking algo-

rithms estimate a streamline fit using continuous tracking to reconstruct the fibers using

local fiber orientation information and additional constraints (on FA, for example). This

algorithm require a seed region to initiate the tracks. Probabilistic methods provide

probability maps of connectivity of a seed region to the rest of the brain (or specified

targets in the brain). Two common techniques are “FACT” (fiber assignment by con-

tinuous tracking, [16] used by DTIStudio software package) which gives deterministic

reconstructed fiber tracks and “Probtrack” [59] (part of FSL package) which provides

a quantitative voxel-by-voxel probability of connection of seed to targets. Tracking can

also be performed by using thresholded FA maps which are projected on to a standard

space and computing statistical quantities such as mean, variance or Z-score as shown in

Tract-Based Spatial Statistics (TBSS [14]) method.

Based on the scalar metrics derived from the post-processing of DWI data (such as FA,

MD, diffusivities) or fiber connectivity information, DWI can be applied for the diagnosis

of pathology. For example, DTI-based metrics have been used as biomarkers for detecting

spinal cord diseases, such as multiple sclerosis [56], amyotrophic lateral sclerosis [61], aging

and spondylosis-related changes [62], as well as spinal cord compression [27]. Many of

these studies involve characterizing the difference in the DTI-based biomarkers between

normal and pathological population which helps to identify the range of values of these

metrics. In the context of DWI protocol optimization in this thesis, such prior knowledge

of range of values can be used to optimize the DWI protocol to diagnose specific diseases.

Applications of DWI can also be based on the imaged target organs in the body. DWI

can be for neuroimaging in the brain, spinal cord and the peripheral nervous system. DWI

can also be extended to any tissue which exhibit an organized and oriented structure,
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such as skeletal muscle fibers. DWI applications for skeletal muscle fibers are especially

interesting in this context since the DWI protocol optimization discussed in the thesis

can be extended for imaging muscle tissues. Some of the recent work conducted on DWI

of muscle include use of DTI-based fiber tracking for in vivo three-dimensional (3D)

architecture of skeletal muscles in mice hind leg [63], application of DTI fiber tracking

in human skeletal muscle and test the cause of the heterogeneity in pennation angle

(fiber orientation) [64] and creating biomechanical models of the quadriceps mechanism in

humans using DTI fiber tracking information [32]. The DTI-based fiber tracking provides

information on the local orientation of the muscle fibers (pennation), fiber length and

cross-section of the fiber bundles. These information correlate to muscles physiological

cross sectional area which can be used to predict the muscular force produced by the

muscle [32].

The work in this thesis will focus on the spinal cord. DTI has been used for studies

on the spinal cord [65–67] and have shown promising results. Ries et al. [65] applied

DTI to subjects suffering from narrowing of the cervical canal and observed substantial

differences in diffusion characteristics to detect lesions in the spine. Mottershead et al. [66]

demonstrated the existence of a strong correlation between myelin content and axonal

density with diffusion anisotropy. Ducreux et al. [67] reconstructed 3D fiber tracts to

visualize the deformation of the posterior spinal cord lemniscal and corticospinal tracts.

DTI has been proven to be a valuable diagnosis tool for spinal cord diseases, such as

multiple sclerosis [56], amyotrophic lateral sclerosis [61], aging and spondylosis-related

changes [62], as well as spinal cord compression [27].

ADTI diffusion model has been used in the cervical spinal cord experiment in this

work. Previously, the axisymmetric diffusion assumption has been used by Anderson [68]

to estimate fiber diffusion properties through high angular resolution diffusion imaging

(HARDI), and by Assaf et al. [9] with the composite hindered and restricted model of

diffusion (CHARMED) to model diffusion in intra-axonal compartments. The mean of

the secondary and tertiary eigenvalues of the diffusion tensor has also been used previously

to compute the transverse diffusivity to investigate regional differences in white matter
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tracts in the cervical spinal cord funiculli in humans [69], as well as in rat spinal cord

studies [70, 71].

2.3 Prior work on DWI protocol optimization

DTI protocol can be broadly divided into selection of the b-factor (which combines diffu-

sion gradient strength and the timing parameters) and selection of the diffusion gradient

directions. For the diffusion gradient directions, a number of gradient scheme have been

discussed by Hasan et al. [17]. These gradient scheme are either selected based on ge-

ometry (such as icosahedral polyhedra) or heuristics (orthogonal encoding) or numerical

optimization (by minimizing a cost function, such as minimum energy, minimum force).

Some other examples of numerically optimized gradient scheme is discussed next. Pa-

padakis et al. [18] isolated the effect of gradient directions from the weighting b-factor

for the diffusion tensor estimation. They defined an “index of DTI”, which relates the

variance of the measured data to the total variance of the measured tensor components

and used it as a measure of optimality of the diffusion gradient directions. Skare et al.

[19] proposed the condition number as a means of studying the noise propagation, and

showed improvements in the estimation of the FA by minimizing condition number of the

transformation matrix for a given gradient scheme. Batchelor et al. [20] showed that noise

propagation in DTI is anisotropic and used the standard deviation of FA as a measure of

optimality. Variance of FA was also used by Peng and Arfanakis [21] to compare several

gradient schemes. Hasan et al. [17] used several DTI-based or model-independent opti-

mization metrics to be minimized (variance for the ADT components, condition number

[19], force [22], Coulomb energy) and compared the resulting schemes via Monte-Carlo

simulations. A common gradient directions optimization scheme is the minimum force

(MF) based scheme by Jones et al. [22]. They proposed that in absence of any prior

knowledge of the tensor to be estimated, gradients can be uniformly distributed in 3-D

gradient space by minimizing Coulomb’s force between unit charges on a sphere where

charges represent the gradient directions. The MF-based gradient schemes do not assume
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any DTI signal model. Besides diffusion gradient directions, optimization can also be on

the selection of the diffusion gradient strength, pulse duration and pulse interval between

diffusion gradients and number of diffusion gradient directions, as proposed by Alexander

et al. [23].

So far I discussed optimization by the selection of cost function. Next, I will discuss

optimization using prior knowledge of the structure. Thus, these will fall under con-

strained optimization procedures. Work on the optimization of estimation of DTI model

parameters using prior structural information has been previously discussed by Peng et

al. [21], Gao et al. [39] and Yanasak et al. [72]. Each of these works attempted to im-

prove certain aspects of the DTI model parameter estimation. Peng et al. [21] reduced

the total variance of FA by using a 30◦ cone of fibers as a prior structural information

for the fiber bundles in the corticospinal tract. Gao et al. [39] showed an optimization

procedure based on simulated annealing to simultaneously optimize various DTI experi-

mental parameters. They used 20◦ cone configurations in their procedure and proposed

to apply it to neonatal DTI. Simulated annealing is a stochastic minimization technique

[73] which is based on the annealing process (slow cooling process) in metallurgy and is

known to be robust with respect to local minima problems common in gradient-based

minimization methods. Yanasak et al. [72] proposed a gradient scheme to improve the

precision of angular measurements in DTI. They showed that restricting the zenith angles

of diffusion gradient directions within certain bands can improve the precision of angular

measurements significantly.

In this thesis, I have extensively used CRLB to derive the cost function to predict

the uncertainty of the diffusion model parameters so that an optimized DWI protocol

parameters can be obtained. CRLB is defined by both the noise and the signal model.

Use of CRLB has been previously demonstrated by Brihuega-Moreno et al. [24] for the

optimal selection of b-values (or b-factors) by minimizing the CRLB of diffusion coefficient

with respect to the b-values. They assumed Gaussian noise model for magnitude MR

images in the definition of CRLB. However, the Rician noise model is a more accurate

noise model for magnitude MR image data. Alexander [23] demonstrated the use of
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Rician CRLB in the optimization of acquisition parameters based on the CHARMED

model [9]. Both the Rician CRLB [23, 74]) and the Gaussian CRLB has been derived

and analyzed in this work. Through this work a number of scenarios of signal and noise

models have been analyzed. For each case, the CRLB and the cost function has been

obtained and optimization was validated, either by simulations or by DTI experiments.
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CHAPTER 3

Basic principles of nuclear magnetic

resonance imaging

3.1 Nuclear magnetic resonance and signal genera-

tion

Atoms with an odd number of protons and/or neutrons (odd mass number) have nuclear

spin angular momentum. The nucleus of these atoms can be considered as spinning

charged sphere which can possess small magnetic moment. In biological specimen, the

most common nucleus that is used for NMR is Hydrogen (1H) which has a single proton.

It is abundantly found in water (H2O) and fat or other organic molecules. Examples of

other common nuclei used in MR studies are Phosphorus (31P), Sodium (23Na), Carbon

(13C).

From a quantum mechanical perspective [75, 76], the spin angular momentum of a

nucleus is quantized and can exist in only certain states. For hydrogen, the nuclear

spin can take only two quantum states of angular momentum which are given by ~Iz,

where Iz = ±1/2 and ~ is the reduced Planck’s constant (~ = 1.054 × 10−34 J s). Thus,

two populations of spins of hydrogen nuclei can exist in a specimen. In the absence

of any external magnetic field, the spin populations are equal in number and cancel

each other’s magnetic moments. Thus, the net magnetic dipole moment of the overall
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population is zero. When the specimen is exposed to a constant external magnetic field,

B0 (with magnitude B0 and direction along +Z-axis in the laboratory reference frame

by convention), the spins tend to align with the field in either parallel or anti-parallel

fashion and attain potential energy due to the interaction between magnetic moment and

the external applied field, B0 (Fig. 3.1 (a)). Since, the spins are at two distinct states of

angular momentum (and thus magnetic moment), the application of the external field,

B0, results in spins at two distinct potential energy levels separated by an energy gap,

∆E, given by ∆E = γ~B0, where γ is gyromagnetic ratio (Fig. 3.1 (b)).

(a)

(b)

Figure 3.1. (a) Alignment of spins with B0 (most are parallel, while some can be anti-

parallel to B0. M is the net magnetization vector. (b) Separation of spin energy into

low and high levels when subjected to B0.

Although, the spins tend to occupy the lower energy state (parallel), the energy gap,

∆E, is easily overcome due to the thermal energy of the nuclei (from body temperature).

The ratio of the spin population in the two energy states in presence of an external
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magnetic field can be given by n+/n− = e∆E/kT , where n+, n− are the spin populations

at lower and higher energy states respectively and k is the Boltzmann constant (k =

1.38 × 10−23J K−1). Typically, this corresponds to about 3 parts per million per Tesla

at 310 K temperature of excess lower energy spins. This excess spin population causes a

net magnetic moment along the direction of the applied field. Sum total of the magnetic

moments in a voxel (or volume element) is denoted by net magnetization, M , which is a

vector and it is also aligned with the applied magnetic field, B0, at equilibrium. Thus,

at equilibrium, only longitudinal magnetization exist.

Any longitudinal magnetization (along B0) due to magnetic resonance is difficult to

measure since it’s contribution can not be distinguished from that of B0 while taking

field measurements. In order to generate and measure a unique MR signal, the net mag-

netization, M , needs to be reoriented or flipped away from the longitudinal direction. To

achieve this flip, spins in the lower energy state must be shifted to the higher energy state

by providing energy equal to ∆E. Based on quantum mechanical model, the frequency

equivalent of ∆E is called Larmor frequency, ω0. Magnetic resonance is exhibited when

external magnetic field at frequency equal to Larmor frequency, ω0, is applied to a spin

system thereby causing energy transfer from the source field to the spin system. Larmor

frequency is given by,

ω0 = γB0

or

f =
γ

2π
B0 (3.1)

,where ω0 is known as the Larmor frequency and γ is gyromagnetic ratio. For 1H , γ/2π

= 42.576 Mhz T−1.

The net magnetization, M , and the applied external magnetic field, B0, follow a

relation given by the Bloch’s equation (without the relaxation and diffusion terms),

dM

dt
= M × γB0 (3.2)

Since, the net magnetization (M) is related to the angular momentum of the spins, the

solution to Bloch’s equation gives the angular frequency with which spins would precess
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about B0 if not aligned with it. And it turns out to be the same as Larmor frequency,

ω0. Thus, the rate at which the spins precess about the direction of the external static

magnetic field, B0, is also given by the Larmor frequency, ω0.

Going back to the process of flipping the magnetization vector, an additional external

high frequency (radio frequency, RF) magnetic field pulse, B1 (apart from the static

magnetic field, B0) tuned to the Larmor frequency, ω0, when applied transverse to B0,

would cause the spins and the net magnetization, M , to flip towards the transverse

direction of B0 (Fig. 3.2 (a)). Since the RF field is at frequency ω0, it carries energy

equivalent to ∆E which is necessary to transfer spins to the higher energy state. While

flipping the spins, the spins and net magnetization, M , would follow a precessing motion

about B0 at frequency ω0. This can be explained using Eq. 3.2 in the context of B1

where B1 creates a torque that rotates the M vector towards the transverse direction

(Fig. 3.2(b)). Generally, B1 is of the order of a few Gauss in strength and milliseconds

in duration.

B1 = B1cos(ω0 t)i −B1sin(ω0 t)j (3.3)

where B1 is the magnitude of B1 and i, j are the unit vectors along +X and +Y directions

in laboratory reference frame and t is the time. If the RF pulse is applied to spins at

equilibrium, then right after flipping, the spins would have phase coherence (i.e., the spins

are rotating in phase). Also, the net magnetization vector, M , is nutated towards the

X-Y plane. By careful design, an RF pulse can be applied to flip M completely to 90◦.

Thus, M will have no longitudinal component. Such an RF pulse is called a 90◦ pulse.

The MR signal is a measure of the transverse magnetization and is collected after the

RF pulse is turned off. In absence of the RF pulse, magnetization relaxation initiates and

the net magnetization, M , tends to return to the equilibrium state and towards the B0

direction. The relaxation process consists of the growth of the longitudinal magnetization

and it is accompanied by the decay of the transverse magnetization (Fig. 3.2 (c)). The

former follows T1-recovery (Fig. 3.3 (a)), while latter follows T2-decay (Fig. 3.3 (b)).

T1-recovery corresponds to spin-lattice relaxation where the spins return to lower energy

state while releasing energy, ∆E, to the surrounding lattice. T2-decay, on the other hand,
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(a)

(b)

(c)

Figure 3.2. (a) M when RF pulse, B1, is applied as seen in the laboratory reference

frame (b) M nutated by flip angle θ as seen in the rotating reference frame. (c) M

during relaxation after RF pulse is turned off as seen in the laboratory reference frame.

Mz and Mxy are the longitudinal and transverse magnetizations respectively.
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Figure 3.3. (a) T1 recovery of longitudinal magnetization and (b) T2 decay of transverse

magnetization. M0 is the equilibrium magnetization.

corresponds to the dephasing of the precessing spins while returning to lower energy

states. The dephasing can be attributed to spin-spin interactions owing to local field

interactions due to individual magnetic fields of each spin. When the RF pulse is applied

to spins in equilibrium, then the moment after the RF pulse is turned off, the spins are

in phase coherence (or in phase). However, due to the spin-spin interactions, the phase

coherence is lost resulting in the T2-decay of transverse magnetization. The time constant

characterizing the return of the magnetization vector along the longitudinal direction is

called T1, while the time constant characterizing the decay of the magnetization vector

component in the transverse plane is called T2. In human tissue, T1 values range from

180–2000 ms (at 1 T) whereas for T2 values, the range is 40–300 ms (at 1 T) [77]. The
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MR signal is proportional to the magnitude of the transverse magnetization which is in

turn dependent on the density of the nucleus in the volume of the specimen as well as

the relaxation time constants. Thus, the contrast mechanism in the MR signal between

tissues is mainly dictated by the spin density and the relaxation time constants (T1 and

T2). Additional signal weighting can be achieved by specialized pulse sequences, such

as diffusion-weighting, which is described in the next chapter. The signal right after the

excitation pulse (90◦ pulse) is known as free induction decay (FID). The signal can be

represented mathematically by,

S(x, y) = Kρ(x, y)[1 − e−TR/T1(x,y)]e−TE/T2(x,y) (3.4)

where S(x, y) is the signal at (x, y) location, ρ is density of the nuclei, T1 and T2 are the

relaxation and decay time constants, respectively. K is any other gain constants lumped

together, such as digitizer gain, coil sensor gain. TR is the pulse repetition time which

corresponds to the time after which the sequence of RF excitation signal is repeated

to take measurement at different locations in the specimen. TE is echo time and it

corresponds to the time at which the data is acquired. Echoes will be discussed later.

In practice, the resonant frequency is not uniform all through the specimen due to

main field inhomogeneity, susceptibility effects, chemical shifts and the application of the

linear gradient field itself. Due to additional dephasing effects on the spins, these effects

cause additional loss of the transverse magnetization resulting in a faster decay rate and

a shorter time constant (called T ∗
2 ) as compared to the T2 decay. The expression for the

MR signal is updated as,

S(x, y) = Kρ(x, y)[1 − e−TR/T1(x,y)]e−TE/T
∗
2 (x,y) (3.5)

3.2 MR Imaging

MR imaging method can be classified into two main types, namely, 2D multi-slice and

3D volumetric. In 2D multi-slice imaging, the images are obtained from exciting slices

of the target object (using slice-selective RF excitation and linear gradient field) while in
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3D volumetric imaging, the whole object is excited (using nonselective RF excitation).

Following the RF excitation, the spins are spatially encoded with slightly different res-

onant frequencies and phases by using linear gradient magnetic fields. The MR signal

measured by the receiver coil is finally due to the summation of the signals from all the

spatially encoded spins. After the measurement of the MR signal, image reconstruction

is performed which can also be of two types, namely, projection-reconstruction and 2D

Fourier transform methods. I will focus on the 2D multi-slice and 2D Fourier transform

based imaging since this is commonly used in diffusion-weighted imaging.

3.2.1 Slice selection

For 2D multi-slice MR imaging, the signal is collected from specific slices excited by

applying special RF pulses and linear gradient fields transverse to slicing plane. In order

to excite a slice perpendicular to the longitudinal axis (Z-axis), of thickness ∆z, the

gradient Gz(z)k is turned on which provides spatial encoding along Z-direction (k is

the unit vector along +Z direction). Gz = ∂Bz/∂z, ω = γBz and thus, slice frequency

bandwidth, ∆ωz = γGz∆z. Alongside, B1 must be applied and be tuned to the Larmor

frequencies of the spins only in the slice of interest. Since the slice requires a frequency

band (∆ωz) which is equal to γGz∆z, B1 (magnitude of B1) has to be designed to carry

a frequency band that matches the frequencies in the slice (Fig. 3.4). This is commonly

achieved by providing a sinc-modulated RF pulse. The B1 excitation takes the form of,

B1 = B1(t)cos(ω0t)i −B1(t)sin(ω0t)j (3.6)

3.2.2 2D Fourier transform method for imaging

After the slice selection process, it can be assumed that all of the signal comes from

spins in the slice section only. The spins in the slice plane (X-Y plane) are further

spatially encoded for frequency and phase such that the signal collected can be represented

in k-space. k-space represents the spatial frequency domain corresponding to Fourier

transform of an image in spatial variables, (x, y, z). Since this is a 2D process, only x, y
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(a)

(b)

(c)

Figure 3.4. Schematic showing slice (∆z) selection in z-direction using Gz field in (a) and

the sinc-modulated B1 RF signal in frequency (b) and time (c) domains respectively.

variables are used in the expression assuming z to be fixed. The measured demodulated
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Figure 3.5. Schematic showing k-space imaging using 2D Fourier transform method.

MR signal can be expressed as,

s(t, ty) =

∫

x

∫

y
m(x, y)e−iγGyytye−iγGxxt dxdy

= F2D{m(x, y)}, kx = (γ/2π)Gxt, ky = (γ/2π)Gyty (3.7)

where F2D refers to the 2D Fourier transform in k-space and kx and ky represent the

spatial frequencies (Fig. 3.5).

3.2.3 Phase encoding

From Eq. 3.7, it is seen that phase encoding of the spins can be achieved by applying a

gradient along the +Y-direction, Gy (Gy = ∂Bz/∂y), for a fixed time interval, ty. This

step warps the spins and provides the necessary phase offset (and thus sets the spatial

frequency ky) required for the Fourier transform representation (in Eq. 3.7) before signal

measurement (data acquisition) is performed. Note that in Eq. 3.7, Gy is assumed to be

constant. For a more general representation of phase encoding,

ky = (γ/2π)

∫ ty

0
Gy(t

′)dt′ (3.8)

where Gy(t
′) is the gradient along +Y-direction varying with time, t′.

3.2.4 Frequency encoding

After the phase encoding step, the spins are set to a particular spatial frequency, ky,

along the Y-direction. However, in order to differentiate between the spins along the
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X-direction (Fig. 3.6), spins are frequency encoded by applying a gradient along the

+X-direction, Gx (Gx = ∂Bz/∂x), such that ω(x) = γ(B0 + Gxx) = ω0 + γGxx. The

measured MR signal, s(t, ty), is a function of time and the time dependence is reflected

in kx = (γ/2π)Gxt. During data acquisition, sampling of the time-dependent MR signal

represents sampling of k-space along the kx spatial frequency.

(a)

(b)

Figure 3.6. (a) Schematic showing absence of spatial encoding when no gradient field is

used. (b) Schematic showing encoding of a fixed length (2L) in x-direction using gradient

field, Gx.

3.3 Using echoes

During the frequency encoding of spins, the k-space is often sampled from the most

negative to the most positive spatial frequency value. In terms of the gradient, this can

be achieved by placing a dephasing gradient lobe of negative field strength preceding the

main gradient (rephasing) lobe of positive field strength. The time at which the phase
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accumulation due to the dephasing lobe is canceled by that of the rephasing lobe is the

time of echo (TE) which is also the time at which the center of k-space is reached. This

kind of echo is called gradient echo since such an echo can cancel the effect of dephasing

caused by itself. Generally, the sampling of k-space is symmetric about the center of

k-space such that the dephasing lobe is half the time duration as the rephasing lobe (as

shown in Fig. 3.7). Gradient echo based sequences are fast, but still produce T ∗
2 -weighted

images since the gradient echo does not compensate for the MR signal loss due to field

inhomogeneity sources.

Figure 3.7. Gradient echo pulse sequence diagram showing the timings of the slice selec-

tion, phase-encoding and frequency-encoding gradients.

Spin-echo sequences are used to cancel the effect of field inhomogeneity at a voxel.

Spin-echo pulse sequence is a specialized pulse sequence where the additional dephasing

due to field inhomogeneity sources is reversed by application of a second RF pulse with

180 flip angle. As shown in Fig. 3.8, the initial signal dies at a rate given by the T ∗
2 decay.

Then, a 180◦ pulse is applied which causes phase reversal and after a time called echo
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time (TE), the spins undergo complete rephasing (constructive interference) to produce

an MR signal called spin-echo. The spin-echo signal is stronger and the signal level is

only limited by the intrinsic T2 decay (as shown in Fig. 3.8) as compared to T ∗
2 decay in

absence of any spin-echo sequence.

Figure 3.8. Spin-echo pulse sequence diagram showing the timings of the slice selection,

phase-encoding and frequency-encoding gradients.

3.4 T1 and T2 weighting

As shown in Eq. 3.4, the signal at any location can be represented in terms of the density

of the nuclei or spins (ρ), T1 and T2. When a spin-echo sequence is used, the signal

expression remains the same as Eq. 3.4 even though the field inhomogeneity sources are

taken into consideration.

In order to obtain T1-weighted images, TR ≈ T1 of the target tissue and TE is short
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such that,

S(x, y) ≈ Kρ(x, y)[1 − e−TR/T1(x,y)] (3.9)

This is a fast scan and typical TE = 20 ms and TR = 600 ms for B0 = 1.5 T.

For a T2-weighted image, TR is much longer than the T1 in the target tissue and

TE ≈ T2 of target tissue. Signal is represented as,

S(x, y) ≈ Kρ(x, y)e−TE/T2(x,y) (3.10)

These are long scans due to longer TR and typical TR = 2500 ms and TE = 80 ms at B0

= 1.5 T.
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CHAPTER 4

Concepts in diffusion-weighted MRI

4.1 Self-diffusion of water in nervous tissue

Water (H2O) molecules (hence, protons H+ in water) exhibit self diffusion. Molecular

self-diffusion is different from regular diffusion since the diffusion of particles occurs within

itself (i.e., the diffusing particle, protons in this case, and the medium are the same) and

it is due to the kinetic energy of the particle from thermal agitation (Brownian motion).

Fig. 4.1 (a) depict the case of Brownian motion of water molecules for a healthy axon

fiber where it can be observed that the preferential movement of water along the fiber

orientation and restricted motion in the transverse direction. Note, in this case, an

impermeable axon boundary has been defined. Alternately, a semi-permeable boundary

can also be defined. Fig. 4.1 (b) shows a case of a ruptured axon fiber and its effect

on the movement of water molecules. It can be seen that at the location of the rupture,

the water molecules are less restricted in motion towards the transverse direction to fiber

orientation. These examples show that the molecular self-diffusion delineates the tissue

microstructure due to its preferential movement.

Bundles of nerve fibers form tracts in the central nervous system (e.g., corticospinal or

pyramidal tract travel between the cerebral cortex and the spinal cord) or nerves in the

peripheral nervous system (e.g., common peroneal nerve in the legs). Myelinated nerve

fibers are covered by layers of specialized membrane known as myelin, which contain
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lipids (fats) and provide natural barrier to the movement of water molecules. A bundle

of nerve fibers can be treated as bundles of tubes carrying water. At microscopic length

scale, which is of the size of the diameter of nerve fibers, the water diffusion is isotropic

but restricted or hindered by barriers. However, at macroscopic length scale (such as few

millimeters as in the spatial resolution of MRI), the diffusion process can be modeled

as homogeneous, unrestricted and anisotropic [7], such as in DTI/ADTI. In QUAQ [8],

on the other hand, diffusion is modeled as a spatially restricted but isotropic process

representing impermeable cylinders of water.

(a) (b)

Figure 4.1. Brownian motion of water molecules in (a) a healthy axon fiber and (b) an

axon fiber with a rupture.

Principles of molecular diffusion are governed by Fick’s laws. Fick’s first law relates

the diffusive flux (amount of particles passing through a fixed area in a short time) with

the concentration gradient and the constant of proportionality is defined as the diffusion

coefficient.

J = −D∇c (4.1)

where J is the diffusive flux vector (unit: mol mm−2 s−1), c is the concentration (unit:

mol mm−3) of the particles at a position (x, y, z) , D is the diffusion coefficient or diffu-

sivity (unit: mm2 s−1) and ∇ is the derivative operator (∇ = (i∂/∂x, j∂/∂y, k∂/∂z)).

Fick’s first law shows that whenever a spatial concentration gradient is created, the par-
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ticles will diffusion in the opposite direction to the concentration gradient to equalize the

concentrations. Combining the law of conservation of mass (continuum principle) with

Fick’s first law, Fick’s second law of diffusion is obtained. The second law shows the

effect of diffusion on changes in concentration, c, with time, t.

∂c

∂t
= ∇ · (D∇c) (4.2)

For constant D with respect to space, the above equation simplifies to ∂c/∂t = D∇2c,

where ∇2 = ∇ · ∇.

Historically, the first mathematical description of Brownian motion and its relation

with molecular diffusion was done by Albert Einstein (in 1905 [78]). Einstein provided

a statistical description of the Fick’s second law of diffusion and defined a probability of

finding a particle at a position at a particular time when under diffusion. His work showed

that Brownian motion of particles in a fluid medium was a thermodynamic phenomenon

which can be characterized statistically by a probability function. Einstein reformulated

Fick’s second law as [78, 79],

∂Ψ(r, t)

∂t
= D∇2Ψ(r, t) (4.3)

where Ψ(r, t) is the probability of finding a particle at position r at time t. Let the

conditional probability (or propagator), Ps(r0|r, t), be the probability that a particle

starting at r0 would diffuse to r in time t and that Ψ(r, t) =
∫

Ψ(r0, 0)Ps(r0|r, t), such

that,

∂Ps
∂t

= D∇2Ps (4.4)

Solving the reformulated Fick’s law for a freely diffusing particle under the initial condi-

tion Ps(r0|r, t) = δ(r − r0), (δ being the Dirac delta function in this case),

Ps(r0|r, t) = (4πDt)−3/2exp

[

−(r − r0)
2

4Dt

]

(4.5)

Thus, the root mean squared distance traveled after a time t during free diffusion in any

direction is given by
√

2Dt. Einstein also defined the diffusion coefficient, D = kT/b

where k is the Boltzmann’s constant, T is the temperature and b is the drag coefficient.

Torrey [80] later included the diffusion term in the famous Bloch equation using the

results from Einstein’s work (see Eq. 4.6).
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4.2 Pulsed gradient spin echo sequence for diffusion

quantification

Stejskal and Tanner [5, 6] proposed the famous pulsed gradient spin-echo (PGSE) ex-

periment to quantify diffusivity (or diffusion coefficient) of fluids using NMR. In this

experiment, a pair of diffusion-encoding gradients is placed on both sides of the 180◦

RF pulse. A typical example with rectangular gradient pulse is shown in Fig. 4.2. In

absence of diffusion, the phase accumulation in the spins due to the first gradient pulse

is canceled by the second gradient pulse resulting in only a T2-weighted signal. However,

due to diffusive movement of spins, the MR signal suffers additional attenuation which

can be expressed as a function of diffusivity. PGSE experiment is a generic experiment

for the quantification of diffusivity of fluids since it follows the physics of diffusion and

links it with the signal acquisition process.

Figure 4.2. Schematic of the PGSE sequence showing only the timing of the diffusion-

encoding gradient and the RF pulses. Here, τ = TE/2, where TE is the echo time.

Torrey introduced the diffusion term in Bloch’s equation [80] which is given by

∂M (r, t)

∂t
= γM(r, t) × B +

M0 −Mz

T1
k − Mxy

T2
n + ∇ ·D∇M(r, t) (4.6)

where M(r, t) is the net magnetization vector at a position r at time t, B is the applied

magnetic field (along the +Z direction, k), D is the diffusivity. M0, Mz are the initial

magnetization and the longitudinal magnetization (along the +Z direction) component
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respectively. Mxy is the transverse magnetization component perpendicular (along the

n direction) to the applied field B. T1, T2 are the relaxation time constants. ∇ is the

gradient operator. Note that the velocity term in the Bloch Torrey equation (Eq. 4.6) is

ignored.

Eq. 4.6 assumes diffusion to be isotropic and uniform, hence, representing the micro-

scopic nature of self-diffusing water molecules. The transverse component of the mag-

netization vector, Mxy, after application of a gradient (G(t) = {gx(t), gy(t), gz(t)}), is

given by,

Mxy(r, t) = m(r, t) exp

[

−(jω0 +
1

T2
)t

]

(4.7)

∂m(r, t)

∂t
= −jγ(r · G(t)) m(r, t) +D∇2m(r, t) (4.8)

where ∇2 = ∇ · ∇, is the Laplacian operator.

The solution for m(r, t) in Eq. 4.8 when D = 0 is of the form [75],

m(r, t) = A exp (−jγr · F (t)) (4.9)

where

F (t) =

∫ t

0
G(t′)dt′ (4.10)

The G(t) is assumed to be only a function of time, t, and is constant in space and A is

a constant. When D 6= 0, A → A(t) in Eq. 4.9 assuming D is only a function of time,

t, and is constant within the imaging voxel space. Substituting Eq. 4.9 in Eq. 4.8 and

simplifying,

∂A(t)

∂t
= −γ2D(F (t) · F (t))A(t) (4.11)

Thus,

ln

[

A(t)

A(0)

]

= −γ2D

∫ t

0

[

F (t′) · F (t′)
]

dt′

= −γ2D

∫ t

0

[(

∫ t′

0
G(t′′)dt′′

)

·
(

∫ t′

0
G(t′′)dt′′

)]

dt′
(4.12)

where A(t) and A(0) are the echo signal intensities at times t and t = 0 respectively.

For a spin echo sequence, let the 90◦ pulse be applied at time t = 0, and the 180◦ pulse

be applied at time t = τ . The gradient, G(t), can be turned on as follows (shown in Fig.
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4.2):

G(t) =


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

0, 0 < t ≤ t1

g, t1 < t ≤ t1 + δ

0, t1 + δ < t < τ

0, τ ≤ t ≤ t1 + ∆

g, t1 + ∆ < t ≤ t1 + ∆ + δ

0, t1 + ∆ + δ < t ≤ 2τ

(4.13)

where g is a constant vector not dependent on time. Thus, a pair of diffusion-encoding

gradients is applied on both sides of the 180◦ pulse. Note that in practice, a perfect

rectangular gradient pulse is not possible and generally a trapezoid pulse is practical

which has a rising and falling edge (whose slope is decided by the slew rate of the MRI

scanner).

The integral, F (t), is calculated for the different time intervals as follows:

F (t) =

∫ t

0
G(t′)dt′ =




























































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















0, 0 < t ≤ t1

g(t− t1), t1 < t ≤ t1 + δ

gδ, t1 + δ < t < τ

−gδ, τ ≤ t ≤ t1 + ∆

−gδ + g(t− t1 − ∆), t1 + ∆ < t ≤ t1 + ∆ + δ

0, t1 + ∆ + δ < t ≤ 2τ

(4.14)

Note that at time, t = τ , the 180◦ pulse causes phase reversal.

Using Eq. 4.14 in Eq. 4.12 and simplifying the results leads to the famous Stejskal-

Tanner diffusion equation for echo signal attenuation, as given by,

A(t = 2τ) = A(0)exp

[

−γ2g2δ2
(

∆ − δ

3

)

D

]

= A(0)exp(−bD) (4.15)

where g = |g| (magnitude of the g vector). Note that when the diffusion gradient is turned

off (g = 0), the spin-echo signal intensity is simply the T2-weighted signal. It should be

noted that imaging gradients also contribute to the diffusion sensitization of the MR signal
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although their contribution can be considered negligible when relatively large diffusion-

encoding gradients are applied [81]. Thus, even the T2-weighted reference image is slightly

diffusion-weighted. However, when imaging gradients are also considerably large, such as

in MR microscopy, the diffusion coefficient has to be accurately estimated by considering

the effect of imaging gradients.

4.3 Propagator formalism

Since self-diffusion of water molecules can be hindered by barriers (such as myelin sheath

in nerve fibers) or restricted spatially, a formalism is necessary where appropriate bound-

ary conditions can be applied on diffusion. In this case, the probabilistic approach to

describing diffusion in space and time is favorable as was introduced by Einstein while

explaining Brownian motion. Such approach can be used to represent both restricted and

unrestricted (or free) diffusion.

The propagator is defined by the probability P (r0|r, t) that a particle initially at

position r0 will have moved to a position r after a time interval t. The echo signal

attenuation, E, [6, 82] in terms of the propagator is given by,

E(g, t) =

∫

V0

P0(r0)

∫

V
P (r0|r, t)exp[−jγδ(r − r0) · g]dV dV0 (4.16)

where g is the diffusion-encoding gradient and g ≡ {gx, gy, gz}. Note that the above

expression of the echo attenuation assumes narrow gradient pulse, i.e., ∆ ≫ δ such

that the average displacements during the gradient pulse is negligible compared with

the average displacements between the gradient pulses. P0(r0) is the probability of the

diffusing particle at r0 at the time of the first gradient pulse. γ is the gyromagnetic ratio

and δ is the duration the diffusion gradient pulse.

This relation can be approximated assuming r0 does not affect the echo attenuation.

This holds true for narrow pulsed field approximation where the diffusion pulse duration

is small enough so that diffusion during the encoding period is ignored. Also, omitting

the integral for P0(r0) gives a Fourier relationship between the echo attenuation and the
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propagator as given [6],

E(g, t) =

∫

V
Pa(r, t)exp[−jγδr · g]dV (4.17)

where Pa(r, t) = P (0|r, t). The solution of echo attenuation relies on obtaining an

expression for the propagator Pa(r, t) and then applying the Fourier relation to obtain

the expected echo attenuation, E.

Callahan [83] suggested the use of q-space formulation to represent the echo attenuation

and making use of the Fourier relation with respect to the propagator. Here, q represents

the reciprocal space vector corresponding to the displacement vector (r−r0) in a Fourier

transform pair. The echo attenuation has been rewritten as [83],

E(q,∆) =

∫ ∫

ρ(r0, 0)P (r0|r,∆)exp[j2πq · (r − r0)]dr0dr (4.18)

where ρ(r0, 0) is the starting spin density. The reciprocal space vector q is defined

as a function of the diffusion gradient as (2π)−1γδg. For the case of the restricted

diffusion of diffusivity, D, confined within a pore of size a, the echo attenuation can

be approximated by a Fourier relation [83], E(q,∆ → ∞) = |S(q)|2, where S(q) is

the Fourier transform of ρ(r). This is under the assumption that ∆ ≫ a2/D such

that P (r0|r,∆ → ∞) → ρ(r) and also ρ(r0, 0) → ρ(r0). Physically, the assumption

∆ ≫ a2/D means that sufficient time is given between the diffusion encoding gradient

pulses for the diffusing water molecules to reach the impermeable boundary of the pore,

otherwise for shorter ∆, the diffusion will become unrestricted. The Fourier relation

explains the famous diffusive diffraction pattern seen in PGSE experiments with small

impermeable pores of uniform size [83].

So far I have shown that the echo attenuation is the Fourier transform of the propagator

over space. Thus, in order to obtain an expression for the echo attenuation, the expression

of the propagator has to be available. The propagator is generally solved from Fick’s law

by applying appropriate boundary conditions required by the problem ([83]). The Fick’s

law can be applied directly to the propagator (P (r0|r, t)),

D∇2P =
∂P

∂t
(4.19)

41



This is equation can be solved using standard eigenmode expansion, the initial condition

that P (r0|r, t = 0) = δ(r0 − r) and proper boundary conditions.

4.4 Parametric DWI

In complex structures, such as nerve fibers, it is difficult to characterize the exact nature

of diffusion on a macroscopic length scale. Hence, a number of parametric models have

been suggested to interpret the echo attenuation signal observed in the PGSE experiment.

Three of such types are described in the following subsections, namely, DTI, ADTI and

QUAQ.

4.4.1 DTI formulation

At macroscopic length scales, diffusion can be modeled as an anisotropic and homogeneous

process [7]. Diffusion anisotropy can be represented by a rank 2 tensor (also called a

dyad). A rank 2 tensor is a 3 × 3 matrix. The generalization to 3D anisotropic diffusion

process is best understood from Fick’s first law. From Fick’s first law, it is known that

J = −D∇c, where J is the diffusive flux, c is the concentration at a position and ∇c

gives the concentration gradient vector. For an isotropic diffusion case where D is a scalar

quantity, the diffusive flux, J , is along the direction of the concentration gradient vector,

∇c. However, when diffusion is anisotropic, a diffusion tensor, D is used in place of the

scalar D and Fick’s first law becomes, J = −D · ∇c. Now, the diffusive flux, J , need

not be along the direction of the concentration gradient vector, ∇c, and this direction

is governed by the tensor operation (D) on the concentration gradient vector (∇c). An

analogy of such an anisotropy is stress tensor and force relation. It is known that stress

can be tensile (normal) and shear (tangential). Thus, force (F) exerted due to stress (T)

on a surface (s) is given by, F = T · s where the force (F) need not be in the direction of

the surface normal s.

The use of diffusion tensor was presented by Basser et al. [7, 12] who also introduced the

technique Diffusion Tensor Imaging (DTI). In the case of axonal fiber tracts, the tensorial
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notation interprets the hindrance of diffusion of water molecules in the transverse direction

to the fiber orientation (due to semi-permeable myelin sheath membrane) as anisotropic

diffusion and the eigenvectors of the tensor matrix indicate the principal directions of

diffusion. However, this model does not consider restricted diffusion as will be discussed

later.

The DTI signal formulation can be derived by generalizing Eq. 4.12 and using a

diffusion tensor D for the diffusion process. Thus,

ln

[

A(t)

A(0)

]

= −γ2
∫ t

0

[

F (t′) · D · F (t′)
]

dt′

= −γ2
∫ t

0

[(

∫ t′

0
G(t′′)dt′′

)

· D ·
(

∫ t′

0
G(t′′)dt′′

)]

dt′
(4.20)

The above step can be written using matrix form as [12],

ln

[

A(t)

A(0)

]

= −γ2
∫ t

0

[

F (t′)TDF (t′)
]

dt′

= −γ2
∫ t

0

[

F (t′)F (t′)T
]

dt′ : Deff

= −b : Deff

(4.21)

where b is the b-matrix and Deff is the “effective” diffusion tensor. “:” is the generalized

dot product (applicable to tensors). T represents the transpose operation. The effective

diffusion tensor gives an equivalent tensorial representation of the diffusion process for

the time period [0, TE ] assuming a medium with a fixed diffusion tensor during this

time. Thus, Deff has no time dependence although the actual diffusion process is time-

dependent. Also, the tensor is assumed to have no spatial variation within the voxel.

The effective diffusion tensor can be written as a product of the b-matrix and Deff as

ln

[

A(t)

A(0)

]

= −
3
∑

i=1

3
∑

j=1

bijD
eff
ij (4.22)

where bij and Deff
ij are the ijth elements of the b and the Deff matrix respectively. For

the PGSE sequence given in Fig. 4.2, the DTI equation can be rewritten in matrix form
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as,

ln

[

A(TE)

A(0)

]

= −γ2δ2
(

∆ − δ

3

)

gTDeffg

= −γ2δ2
(

∆ − δ

3

)

g2ĝTDeffĝ

= −b ĝTDeffĝ

(4.23)

where ĝ is the unit column vector along the gradient direction and ĝ ≡ [ĝx, ĝy, ĝz]
T . b

is the b-factor and g is the gradient column vector as defined before. This is the classic

echo signal formulation for the DTI model. For the sake of simplicity of notation, Deff

will be written as D only although wherever applicable, the proper tensor will be used.

From a probabilistic standpoint, as was introduced earlier in this chapter, Eq. 4.23

shows that water molecules follow simple anisotropic unrestricted diffusion governed by

a 3D Gaussian probability distribution of displacement, P (r0|r, t).

P (r0|r, t) =
1

√

(4πt)3|D|
exp[−(r − r0)

TD−1(r − r0)

4t
] (4.24)

This shows that the diffusion tensor is proportional to the 3D variance of the probability

of displacements. This result has been shown by a number of researchers [6, 7].

The effective diffusion tensor matrix (D) is a symmetric 3 × 3 matrix with six unique

parameters which quantifies the anisotropic diffusion within each voxel in the 3D space.

D =







Dxx Dxy Dxz
Dxy Dyy Dyz
Dxz Dyz Dzz






(4.25)

and ĝ = [ĝx ĝy ĝz]
T = the diffusion gradient direction unit vector (column vector) written

in matrix format. The expression for the echo signal attenuation was defined as [7],

E(g) =
A(TE)

A(0)
= exp

(

−bĝTDĝ
)

= exp
[

−b
(

ĝx
2Dxx + ĝy

2Dyy + ĝz
2Dzz + 2ĝxĝyDxy + 2ĝxĝzDxz + 2ĝy ĝzDyz

)]

(4.26)

In a fiber, there is preferential diffusion along the longitudinal direction which gives

the fiber orientation. Thus, after estimating the D matrix from the DWI data using the

model in (4.23), the fiber orientation is given by the direction of principal eigenvector of

the D matrix. Thus, from eigen decomposition,

DE = EΛ (4.27)
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where E is the matrix of eigenvectors (column vectors) (e1, e2, e3) and Λ is the eigenvalue

matrix,

E = [e1|e2|e3] (4.28)

Λ =







λ1 0 0

0 λ2 0

0 0 λ3






(4.29)

If λ3 > λ2 > λ1, then e3 is the principal eigenvector and the fiber orientation is given

by the direction of e3. The diffusion coefficient along this direction will be given by the

eigenvalue, λ3. For the sake of clarity, it is assumed that principal fiber direction is along

the +Z-axis of the diffusion space and define, D‖ = λ3, D⊥1 = λ2, D⊥2 = λ1.

From the perspective of model parameter estimation, for the DTI formulation, the

model is composed of the 6 diffusion coefficients of the effective diffusion tensor ma-

trix. Also, an additional A(0) signal is required. However, these model parameters

are dependent of the coordinate axis. To obtain a set of parameters which are inde-

pendent of the coordinate axis, the set of eigenvalues and the Euler angles as model

parameters are collected. Thus, if the set of model parameters is defined as β, then,

β ≡ {D‖, D⊥1, D⊥2, θF , φF , ψF }, where D‖, D⊥1, D⊥2 are the longitudinal and trans-

verse diffusivities and θF , φF , ψF are the Euler angles. This is also a 6-parameter model.

The diffusion process could be best described by an diffusion ellipsoid diagram shown in

Fig. 4.3.

Decomposing D into its eigenvectors and eigenvalues,

D = RTD0R, where D0 =







D⊥2 0 0

0 D⊥1 0

0 0 D‖






(4.30)

and R = R(θF , φF , ψF ) represents the combined rotation matrix which can be decom-

posed into component rotation matrices as shown.

R = Rz(ψF ) ∗Ry(θF ) ∗Rz(φF ) (4.31)

Ry(θF ) =







cos(θF ) 0 −sin(θF )

0 1 0

sin(θF ) 0 cos(θF )






(4.32)
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Figure 4.3. DTI diffusivity ellipsoid indicating diffusivities (D‖, D⊥1, D⊥2) and the ori-

entation angles (θF , φF , ψF ).

Rz(φF ) =







cos(φF ) sin(φF ) 0

−sin(φF ) cos(φF ) 0

0 0 1






(4.33)

Rz(ψF ) =







cos(ψF ) sin(ψF ) 0

−sin(ψF ) cos(ψF ) 0

0 0 1






(4.34)

4.4.2 ADTI formulation

For axisymmetric DTI model [8, 84, 85], transverse diffusivity is assumed isotropic (Fig.

4.4). Thus, D⊥1 = D⊥2 = D⊥. Also, D‖ ≥ D⊥ and ψF is identically zero. This leads

to a 4-parameter model. Let β be the parameter set, β ≡ {D‖, D⊥, θF , φF }. D is

decomposed into its eigenvalues and eigenvectors as:

D = RTD0R, where D0 =







D⊥ 0 0

0 D⊥ 0

0 0 D‖






(4.35)
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and R is the transpose of the matrix of eigenvectors. If R = I, a 3 × 3 identity matrix,

then D = D0 and the fiber orientation, given by the principal eigenvector direction, is

along the +Z-direction. So, for the fiber orientation to be at the spherical coordinates

(θF , φF ), the tensor (D0) will also be oriented along the fiber direction. Thus, in case

of a fiber oriented at the spherical coordinates (θF , φF ), R = R(θF , φF ) will be the

rotation matrix which reorients the coordinate axis along the fiber direction. It can be

decomposed into component rotation matrices as shown.

R = Ry(θF )Rz(φF ) (4.36)

Ry(θF ) =







cos(θF ) 0 −sin(θF )

0 1 0

sin(θF ) 0 cos(θF )






(4.37)

Rz(φF ) =







cos(φF ) sin(φF ) 0

−sin(φF ) cos(φF ) 0

0 0 1






(4.38)

The expression for the echo attenuation or the normalized MR signal for the ADTI

model in matrix format can be simplified as,

E = exp
(

−bĝTDĝ
)

= exp
(

−bĝTRTD0Rĝ
)

= exp
(

−b(Rĝ)TD0Rĝ
)

= exp
(

−bĝ′TD0ĝ
′
)

(4.39)

where column vector ĝ′ = Rĝ and ĝ′ ≡ [ĝx
′, ĝy′, ĝz ′]T and ĝ ≡ [ĝx, ĝy, ĝz]

T as before. T

is the transpose of a matrix. b is the b-factor. Expanding the exponent,

ĝ′TD0ĝ
′ = ĝ2

zD‖ + (ĝ2
x + ĝ2

y)D⊥ (4.40)

Since R is the transpose of the matrix of eigenvectors which reorients the coordinate

axis along the fiber, ĝ′ = Rĝ is the projection of the gradient direction ĝ on to the eigen

directions. Let f̂ be the unit column vector along the fiber direction given by spherical

coordinates (θF , φF ). Then, projection of the gradient direction on the fiber direction,

47



Figure 4.4. ADTI diffusivity ellipsoid indicating diffusivities (D‖, D⊥) and the orientation

angles (θF , φF ).

g‖ = ĝT f̂ , is the same as ĝz. And the transverse component is given by, g⊥ =
√

ĝ2
x + ĝ2

y .

Thus, the ADTI signal equation can be rewritten as,

E = exp
(

−b(g2
‖D‖ + g2

⊥D⊥)
)

(4.41)

Also, g2
⊥ = 1 − g2

‖. D‖ and D⊥ are the diffusion coefficients in the parallel and

perpendicular directions to the fiber orientation, respectively.

4.4.3 QUAQ formulation

In quantitative analysis of q-space [8] (QUAQ), the diffusion process is modeled by unre-

stricted diffusion on the longitudinal direction to the fiber and restricted diffusion along

transverse direction. Each fiber population is assumed to consist of an impermeable
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cylindrical shape, with self-diffusion coefficient D inside the cylinder (and no diffusion

outside), an average or “apparent” radius a and orientation angles in spherical coordi-

nates of the individual fibers (φF , θF ). The MR signal attenuation is formulated in the

q-space, where q is the reciprocal space vector [83] corresponding to a position r. The

echo attenuation at time, ∆, in terms of q is given by,

E(q,∆) = E‖(q‖,∆)E⊥(q⊥,∆) (4.42)

where E‖(q‖,∆) and E⊥(q⊥,∆) are the contributions due to the longitudinal and trans-

verse components of diffusion respectively. Here, q‖ = γδg‖/2π, g‖ = g · f and f is the

unit vector along the fiber direction defined in spherical coordinates by (θF ,φF ). And,

q⊥ =
√

1 − q2‖ .

For the longitudinal unrestricted diffusion, the simple Gaussian propagator can be used

and the echo attenuation is given by,

E‖(q‖) = exp

[

−4π2
(

∆ − δ

3

)

D q2‖

]

(4.43)

For the transverse restricted diffusion, the solution for the echo attenuation for a cylin-

drical pore using the propagator formalism is shown in [8, 83]. The narrow pulse-width

assumption has been applied in the derivation (∆ ≫ δ). Since the transverse component

of echo attenuation is being calculated, the coordinate axis is aligned with the fiber ori-

entation such that the cylinder is along Z-axis with (r, θ) as the cylindrical coordinates

with respect to the central axis. The echo attenuation for the transverse component is

given by[8],

E⊥(q⊥) = 4

(

J ′0(2πa q⊥)

2πa q⊥

)2

+ 4
∞
∑

k=1

(

2πa q⊥J ′0(2πa q⊥)

(2πa q⊥)2 − β2
0,k

)2

exp

(

−β2
0,k
D∆

a2

)

+8
∞
∑

n=1

∞
∑

k=1

(

2πa q⊥J ′n(2πa q⊥)

(2πa q⊥)2 − β2
n,k

)2
β2
n,k

β2
n,k − n2

exp

(

−β2
n,k

D∆

a2

)

where q⊥ = γδg⊥/2π and g2
⊥ = 1 − g2

‖. βn,k is the kth root of the first derivative of the

Bessel function of order n, Jn, such that (J ′n(βn,k) = 0) [8].

While, in DTI, the diffusion tensor that is estimated is an “apparent” or “effective”

diffusion tensor that approximates the actual diffusion process in each voxel as a unre-
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stricted (barrier-free) anisotropic diffusion process, in QUAQ, the actual isotropic diffu-

sion process within a network of impermeable cylinders is considered. Hence, in DTI, the

estimated diffusivities strongly depend on the acquisition parameters, while, in QUAQ,

the estimated parameters have a physical interpretation in direct correlation with the

physical problem under investigation.

4.5 Non-parametric DWI

An alternate method of analyzing the diffusion-weighted data is by solving for the con-

ditional probability function (P (r0|r, t)) or the propagator for the diffusion process as

is without using a parametric model for the propagator. Such methods are known as

q-space imaging (QSI) or diffusion spectrum imaging (DSI) [86]. In QSI, the sampling

is performed in the Fourier space of displacements, i.e., q-space over a regular grid. The

reconstruction is performed via Fast Fourier transform and a discrete representation of

the probability function is obtained [87]. The need for QSI arose due to the need to

resolve fiber crossings where a simple single fiber model can not provide accurate results.

QSI requires dense sampling on the 3D Cartesian grid (thus is very time consuming) and

uses large pulsed gradients. Total scan time depends on the number of samples of the

q-space and thus depends on the number of diffusion-weighted images acquired which is

significantly higher for non-parametric DWI than model-based DWI (such as DTI). For

example, a typical full brain DTI with 15 diffusion directions can be around 2 min (for

TR = 6.4 s, NEX = 1), while a full brain QSI (such as Q-ball imaging) with 252 directions

can be around 27 min [11] (for TR = 6.4 s, NEX = 1). Due to long scan times, QSI is

not clinically viable. Since the focus is on resolving the fiber orientations in a crossing

fiber situation, a cumulative probability with respect to the propagator called orientation

distribution function (ODF, φ(x̂)) is estimated.

φ(x̂) =

∫ ∞

0
P (αx̂)dα (4.44)

where x̂ is the unit vector in the direction of displacement vector x. Hence, the ODF

is the radial projection of the propagator on to a unit sphere. It has higher values
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at a particular orientation when the presence of a fiber is more probable. The ODF

can be obtained by acquiring data on spherical shells in q-space and reconstructing the

ODF using fitting methods as in high angular resolution diffusion imaging (HARDI [88])

or transform methods, such as Funk-Radon transform in Q-ball imaging (QBI [11]).

Although a non-parametric approach is applied in the estimation of the propagator and

the ODF, the interpretation of the ODF often involves fitting the ODF to model-based

functions (e.g., spherical harmonics [89, 90]) in order to identify fiber tracts.

4.6 Experimental DTI protocol used in this work

4.6.1 Pulse sequence

For the DTI experiment, the sequence used is based on the PGSE experiment suggested by

Stejskal and Tanner but with a number of modifications. The sequence is a spin-echo echo-

planar imaging (SP-EPI) sequence. This sequence belongs to the fast imaging methods.

Since the DTI models unrestricted diffusion, the narrow pulse assumption (∆ ≫ δ) is

not required in the pulse sequence [82]. The following are the salient features of the DTI

pulse sequence used in the GE Signa HDx 3T scanner (GE Healthcare, Waukesha, WI):

1. Use of echo-planar imaging: Echo planar imaging is one of the fast imaging methods

in MRI and it was first introduced by Mansfield [91]. The use of EPI drastically

reduced the MRI scan times and made imaging large parts of the body possible

within a tolerable amount of scan time. In EPI, the k-space plane is sufficiently

sampled to reconstruct an image after a single RF excitation. The planar k-space

sampling is done by alternating the readout gradient which produces a train of

gradient echoes and phase encoding the echoes using intermediate short gradient

pulses (blips). Fig. 4.5 shows the schematic for a typical EPI sequence along with

the k-space trajectory for MR signal acquisition.

2. Use of spatio-spectral RF pulse: In a conventional RF pulse (such as the 90◦ pulse),

the spin flip is achieved by a single pulse. Additionally, for slice selection, the slice
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(a)

(b)

Figure 4.5. (a) A schematic of a typical echo-planar imaging sequence for gradient echo.

(b) The k-space trajectory for the EPI sequence.

selected gradient (Gz) is turned on in case of 2D multi-slice MR imaging. However,

the chemical shift effect where protons in the fat (or molecules other than water)

precess at a slightly different Larmor frequency as compared to protons in water
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leads to image artifacts, such as ghosting [92]. In order to minimize this effect, a

spatially as well as spectrally (frequency) selective RF pulse sequence is used [92].

The spectral selection is done using a sequence of RF pulses (instead of a single

RF pulse) where each RF pulse is tuned at the Larmor frequency of protons in

water and the pulses are spaced at time intervals equal to half of the time period

corresponding to the frequency difference between Larmor frequencies of protons in

water and fat [92]. This way the RF excitation of protons in fat is suppressed. Note

that the effective flip angle of the combined RF pulse sequence is the cumulative

sum of the individual flip angles. Fig. 4.6 shows the traditional single RF pulse and

12 pulse spatio-spectral pulse sequence used in the GE scanner for DTI experiments.

Flip angles of the RF pulses in the spatio-spectral pulse in Fig. 4.6(b) add up to

90◦.

(a)

(b)

Figure 4.6. (a) Single RF pulse with slice select gradient. (b) 12 RF pulses of the

spatio-spectral pulse sequence with the slice select gradients.
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3. Use of dual spin-echo: Diffusion-weighted imaging is prone to field gradient eddy

current effects due to the fast switching of strong gradient fields. Such switching

induces eddy current on the conductive surfaces of the MRI scanner and the current

can linger even after the switching event is past. The presence of eddy current

causes spatial magnetic field distortion which results in phase error during k-space

sampling resulting in numerous image artifacts, such as contraction, dilation, shift,

shear and ghosting. The problem could be severe in diffusion-weighted imaging

since diffusion-weighting is performed with varying gradient field strengths and

could result in image misregistration between the diffusion-weighted images [93]. In

a dual-spin echo sequence, a second 180◦ pulse is applied so as to refocus the spins

twice. Such a twice-refocused spin-echo sequence is less prone to field gradient eddy

current effects. Eddy current effect is generally modeled as an exponential decay

with a decay constant. If the eddy current decays slowly, then during readout the

eddy current induced residual field will attenuate the MR signal additionally. This

effect is also more pronounced in EPI sequences. The pulse durations (δs) can be

optimally selected to completely cancel the effect of eddy currents at a particular

decay constant [93], thereby reducing the eddy current induced residual field effect

on the MR signal. After twice refocusing, the eddy current build-up at the time of

acquisition is reduced to zero. In the DTI framework, such modifications in the pulse

sequence results in a modified expression of the b-factor and the b-factor has to be

recalculated in terms of the new timing parameters. Although analytical expressions

of the b-factor exists under different assumptions of the timing parameters (for

example, [94]), on the GE scanner, the b-factor is numerically estimated [95] by

using the definition of the b-matrix which is based on gradient waveform integration

equation shown in Eq. 4.21: b = γ2
∫ TE
0

[

F (t′)F (t′)T
]

dt′. The integration based

technique, however, assumes piecewise linear segments of the gradient waveform.

During the DTI experiment, the user prescribes a b-factor for the scan. Using

the integration technique [95], the calculated b-factor is matched with the user-

prescribed b-factor to estimate the gradient strengths along the different gradient
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coordinate axes. The calculated b-factor is adjusted iteratively until the value is

within a tolerance range of the prescribed b-factor.

4.6.2 Experimental settings

Apart from the standard settings for Spin-Echo pulse sequence such as TE , TR, diffusion-

related experimental parameters are the b-factor, the diffusion-encoding gradient direc-

tions (vector g) and the number of gradient directions (N). Since b-factor is a function

of the diffusion-encoding gradient strength (G), diffusion pulse duration (δ) and pulse

separation or diffusion time (∆), these can also be separately set during experiments.

Note that the time of echo, TE , is dependent on the selection of the ∆ and δ. And for the

dual-spin echo sequence, an effective b-factor based on the individual timing parameters

is calculated and used in the DTI model. From an optimization perspective, in this work,

focus is on the diffusion-encoding gradient vector, g, and its distribution in gradient space

(or q-space). Also, the selection of the b-factor on the whole and its influence on the es-

timation performance is investigated without going into the dependence of the b-factor

on the individual timing parameters.

4.7 Fiber assignment by continuous tracking

Estimated diffusion model parameters in DTI (or ADTI) can be used to track white

matter connectivity from a seed region to the rest of the imaged tissue by estimating

white matter tract trajectories. In general, fiber tracking algorithms can be based on a

deterministic framework, such as ones proposed by Mori et al. [16], Conturo et al. [58]

and Basser et al. [96], or on a probabilistic framework, such as ones proposed by Poupon

et al. [97], Parker et al. [98] and Behrens et al. [59]. While deterministic algorithms are

fast and more often used clinically [99], probabilistic techniques could potentially be more

accurate (for example, as shown by Behrens et al. [59]) but tend to be computationally

intensive (hence slow) and generally require more data. A commonly used deterministic

fiber tracking algorithm is fiber assignment by continuous tracking or FACT. Alternately,
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a common example of probabilistic fiber tracking is implemented in the software package

FSL which is called “probtrack” [59, 100] which uses the estimates of posterior probabili-

ties of local fiber orientations obtained from “Bayesian Estimation of Diffusion Parameters

Obtained using Sampling Techniques” (BEDPOST) [59, 101] to calculate a probabilistic

connectivity map from a seed to different targets in the imaged structure.

The general notion for the deterministic fiber tracking based on DTI is to define a seed

region (for example, a seed voxel) in image space and trace a streamline by following the

direction of the principal eigenvector of the diffusion tensor (which represents the direction

of the fastest diffusion within a voxel) from the seed voxel to other voxels within the 3D

image under certain constraints based on the local diffusion anisotropy and curvature

of the estimated streamlines. Mathematically, this is equivalent to solving an ordinary

differential equation (ODE) numerically for a curve in 3D space given an initial condition

(seed) [96, 99] and where the unit tangent vector at a point on the trajectory is equated

to the principal eigenvector of the estimated diffusion tensor. The numerical integration

for solving the ODE can be a first order method (as in the Euler’s method [16]) or higher

order method (as in the Runge-Kutta method [96]).

FACT method introduced by Mori et al. [16, 102] is one of the most common methods

for deterministic fiber tracking. The tracking is initiated from seed points (generally

voxel center) and the direction of the track is changed from the current voxel’s principal

eigenvector direction to that of the neighboring voxel at the point on the boundary of

the voxels where the track leaves the voxel and enters the next. This ensures that tracks

are reconstructed more realistically than by merely connecting the centers of the voxels

[16]. The tracking algorithm uses a brute-force approach where tracks originate from seed

points from the uniformly sampled 3D image space (for example, voxel centers). From

this ensemble of reconstructed fibers, specific tracks are visualized by selecting specific

ROI which the tracks originate from or pass through [102, 103]. The FACT method

is implemented in the DTIStudio software [103] which is used for the fiber tracking

analysis in this work. FACT-based tracking has been previously used for visualizing

white matter connectivity for in vivo DTI experiments, such as in the human brain for
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cortical association tracts [104] and corpus callosum [105] and in the spinal cord for

detecting spinal cord compression [27] and astrocytomas [67].

In the FACT algorithm, generation of arbitrary tracks is restricted by constraining the

trajectory paths with thresholds based on the local diffusion anisotropy (FA threshold)

and curvature of the evolving fiber track (curvature threshold). High FA threshold makes

sure that tracking is performed within the highly anisotropic white matter regions and

not the low anisotropy gray matter or CSF. The curvature threshold ensures that sharp

changes in the fiber track are avoided [102]. Selection of the threshold values is generally

based on previous studies in the region of interest and is user defined, although studies on

the sensitivity of these thresholds to the fiber tracking result can help select the thresholds

more robustly [106].

While FACT-based fiber tracking provides a visual interpretation of the white matter

tracts in the form of estimated streamlines, certain tract-based metrics can also be defined

to quantify the quality of the tracked fibers and compare across subjects. Correia et al.

[107] defined a number of such metrics. DTIStudio computes some of these metrics as

part of the output of the tracking analysis, such as, the total number of fibers tracked

(TF), the average number of fibers per voxel in the tracked fibers (AF) and the average

length of fibers tracked (AL). These metrics can be ROI specific (calculated for tracks that

are either originating from or passing through the ROI voxels) or for the whole image.

The length-based metrics (AL) and number of fibers based metrics (TF, AF) provide

independent information about the white matter integrity [107]. For example, higher AL

indicates longer fiber tracks and thus better long range white matter connectivity and

integrity. On the other hand, higher TF indicates more fiber tracks from the ROI and

thus indicates better chance of connectivity. AF indicates the track density with respect

to an ROI. These metrics have been previously used for fiber tracking analyses, such as

in studying age-related degradation in the central nervous system where both TF and

AF showed good correlation (negative correlation) with age for different white matter

tracts [108]. FACT-based algorithms are commonly used for clinical studies and hence

this work will explore the effect of gradient optimization on FACT-based fiber tracking.
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CHAPTER 5

Optimization of gradient scheme in

diffusion-weighted imaging

The gradient scheme in diffusion-weighted imaging consists of the diffusion gradient direc-

tions and the b-factor which is calculated based on the parameters related to the gradient

strength and time durations. In this work, I have focused on the optimal selection of the

gradient directions. However, I have also studied the b-factor optimization. The opti-

mization is based on D-optimality [33, 34] which minimizes the Cramer-Rao lower bound

(CRLB) on the estimation variance and uses the Fisher information matrix [109]. The

optimization procedure will only improve precision (or reduce estimation uncertainty).

The procedure assumes that the parameter estimator is unbiased, i.e., there is no dif-

ference (or no bias) between the expected and true values of the parameters. In case

the estimation is actually biased, minimizing the CRLB could still minimize the uncer-

tainty in the estimation, but the analytical CRLB will not be equal to the actual lower

bound of the uncertainty. The effect of the optimization on the bias depends on the prob-

lem formulation, especially the signal and the noise model. The optimization is applied

to DTI (and ADTI) signal model which assumes that the diffusion phenomenon in the

nerve fibers strictly as an unrestricted diffusion and is described by a three-dimensional

Gaussian distribution. Another signal model, called the QUAQ model, assumes that the

diffusion occurs in impermeable tubes with unrestricted diffusion along the direction of
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the tube and restricted diffusion in the transverse direction. The noise model can be

considered as Gaussian (at SNR > 5) or in general Rician. The Gaussian noise model,

which is more popular, has a simpler formulation than the Rician model. Both noise

models have been considered in this work.

5.1 General concepts in parameter estimation and

optimization

5.1.1 Cramer-Rao Lower Bound

Given the model-based normalized MR signal E and the variance σ2 of the noise in the

MRI data, the experimental measurement of the normalized MR signal (noisy signal),

Ê, follows a probability distribution function (pdf), p(Ê|E, σ2). For a set of N diffusion-

weighted images with different gradients, the joint pdf for the measurement column vector

(Ê = [Ê1, Ê2, Ê3, ..., ÊN ]T ) will be

p(Ê) =

N
∏

i=1

p(Êi|Ei, σ2) (5.1)

assuming each measurement of the normalized MR signal, Êi, to be independent and

having the same variance (σ2) but different model signals, Ei. The model signal, Ei,

depends on the diffusion model parameters, denoted by a column vector of parameters

β := [β1, β2, β3, ..., βM ]T (for M diffusion model parameters), as well as the MRI exper-

imental parameters, denoted by α vector. Thus, p(Ê) can be rewritten as p(Ê|β,α).

The experimental parameters (α) can be separated into the b-factor and the set of gra-

dient directions or gradient scheme. Each ith gradient direction, gi, can be represented

as gi ≡ {gxi, gyi, gzi} ≡ {θi, φi}. The (θi, φi) representation is preferred since there

are fewer parameters in this form. In matrix form, the gradient scheme consisting of N

gradient directions, Ω , is defined as, Ω := [θ1, θ2, θ3, ..., θN , φ1, φ2, φ3, ..., φN ]T . Thus,

α := [b,Ω ]T .

The Cramer-Rao Lower Bound (CRLB) [109] on the variance of the estimated model
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parameters (β̂ = [β̂1, β̂2, β̂3, ..., β̂M ]T ) can be given by the inequality,

Σ(β̂) − I−1(β) ≥ 0 (5.2)

where Σ(β̂) is the covariance matrix of the diffusion model parameter estimates (β̂)

defined as,

Σ(β̂) = 〈(β̂ − 〈β̂〉)(β̂ − 〈β̂〉)T 〉 (5.3)

where 〈 〉 is the expectation operation. I(β) is the Fisher information matrix for the true

parameters (β) and ‘≥ 0’ refers to a matrix being positive semidefinite. The Cramer-Rao

covariance lower bound is given by,

ΣCR(β) = I−1(β) (5.4)

and the jkth element of the Fisher information matrix is defined as,

[I(β)]jk = −〈∂
2lnp(Ê)

∂βj∂βk
〉 (5.5)

where βj and βk are the jth and kth diffusion model parameters from β, respectively.

The expectation operation (〈 〉) is taken with respect to p(Ê) (Eq. 5.1). Both j ∈ [1,M ]

and k ∈ [1,M ], where M is the number of diffusion model parameters in β. The Fisher

information matrix is a function of p(Ê) and thus depends both on β and α. So, I(β)

can be rewritten as I(β,α). Thus, ΣCR(β) can also be written as ΣCR(β,α) and

depends on both the diffusion model parameters and the MRI experimental parameters.

By optimizing the experimental parameters (α), the covariance bound on the diffusion

model parameter estimates can be minimized. This covariance bound is achieved by any

unbiased and minimum variance estimator. Thus, an optimal experimental design can

be obtained. As shown later, using determinant of the CRLB matrix as a cost function

for the optimization problem, an overall minimal uncertainty can be achieved in the

estimation.

5.1.2 Sensitivity matrix

As will be discussed later, the definition of CRLB (and the Fisher information matrix)

involves the sensitivity matrix (X) which is essentially Jacobian matrix of the signal at
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different gradients with respect to the different diffusion model parameters. The jkth

element of the sensitivity matrix, X, is given by,

[X]ij :=
∂E(β; gi; b)

∂βj
(5.6)

where i ∈ [1, N ] and j ∈ [1,M ], N and M are the number of gradient directions used

in the DTI experiment and the number of diffusion model parameters respectively. In

matrix form, the sensitivity matrix can be defined as,

X =

















∂E(β;g1;b)
∂β1

∂E(β;g1;b)
∂β2

...
∂E(β;g1;b)

∂βM
∂E(β;g2;b)

∂β1

∂E(β;g2;b)
∂β2

...
∂E(β;g2;b)

∂βM
... ... ... ...

∂E(β;gN ;b)
∂β1

∂E(β;gN ;b)
∂β2

...
∂E(β;gN ;b)

∂βM

















(5.7)

Sensitivity matrices are critical to the definition of CRLB since it links the covariance

bound to the sensitivities of the signal with respect to different model parameters. Al-

though sensitivity matrix depend exclusively on the signal model, but, as will be shown

later, modified sensitivity matrices for Rician noise case would also depend on the noise

variance. In later sections, the detailed formulation for the sensitivity matrix for ADTI

and DTI model is given. For signal models with simple analytical expressions, such

as ADTI and DTI, the sensitivity matrices are computed analytically. Otherwise, the

sensitivities can be calculated numerically.

5.1.3 Noise models

MRI images are reconstructed from the complex k-space data by taking the magnitude of

the Fourier inverse of the k-space data. Assuming that both the real and imaginary part

of the Fourier inverse data contain Gaussian noise, the noise in the magnitude images is

Rician in nature. Thus, if x is the noisy signal following Rician pdf, then x = ‖ xc ‖

(magnitude of the complex signal, xc), where xc = m+nr + jni and m is the magnitude

of the complex signal without noise and nr and ni are Gaussian noise signals with zero

mean and σ2 variance. Through a rotation of the quadrature detector [110], all the signal

intensity is shifted to the real component of the complex signal. Thus, the imaginary
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component of the signal is only noise, ni, and has a zero mean and σ2 variance. The

Rician pdf is given by [111, 112],

p(x|m, σ) =
x

σ2
exp(−x

2 +m2

2σ2
) I0(

xm

σ2
) (5.8)

where x is the random variable following the Rician pdf which is defined by the two

parameters, the magnitude (m) and variance (σ2). I0 is the zero order modified Bessel

function of the first kind. Note that x, m and σ are strictly non-negative. An important

observation regarding the Rician pdf is that the mean and the variance of the Rician pdf

depend on both the m and σ parameters, as given by,

Mean(x) = σ

√

π

2
L1/2(

−m2

2σ2
) (5.9)

Var(x) = 2σ2 +m2 − πσ2

2
L2

1/2(
−m2

2σ2
) (5.10)

where L is the Laguerre polynomial. L1/2 can be written in terms of the modified Bessel

functions as,

L1/2(x) = exp(
x

2
)[(1 − x)I0(

−x
2

) − xI1(
−x
2

)] (5.11)

where I0 and I1 are the modified Bessel functions of the zero and first order respectively.

There are two important approximations to the Rician pdf which depend on the SNR.

At very low SNR (when m ∼ 0), the Rician pdf reduces to Rayleigh distribution which

is given by,

p(x|σ) =
x

σ2
exp(

−x2

2σ2
) (5.12)

On the other hand, at high SNR ((m/σ) > 5) [113, 114], the noise tends to be more

Gaussian (Fig. 5.1) following the pdf given by,

p(x|m, σ) =
1√

2πσ2
exp(−(x−m)2

2σ2
) (5.13)

Fig. 5.1 shows different Rician pdf when m and σ are varied. It is interesting to observe

the non-central nature of the Rician pdf. The pdf becomes more Gaussian as the signal

level (m) increases or the noise level (σ) decreases. From these plots, it can be observed

that when a Gaussian pdf is assumed at low SNR instead of the Rician pdf, the mean

value of the pdf is affected and this shows as a bias in the estimated parameters of the

pdf.
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Figure 5.1. Rician distribution at different SNRs (SNR = m/σ). Distribution are gener-

ated by (a) varying m and fixing σ at 1.0 and (b) varying σ and fixing m at 2.5.

5.1.4 Choice of estimators for different noise models

The selection of estimator for the parameter estimation largely depends on the amount of

information available about the estimation problem. In case when the noise model is not

known, a least-squares estimator is preferred. For a non-linear signal model, a non-linear

least-squares estimator can be used for estimation such as least-squares estimator based

on the Levenberg-Marquardt (LM) algorithm [115, 116].

In this work, both the Rician and the Gaussian noise cases have been considered. For

the Gaussian noise case (which is generally assumed in absence of any noise information),

a least-squares estimator (LS) based on the LM algorithm is used. Since for the Rician
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case the parameter estimates are biased due to the non-linear nature in which Rician noise

is injected into the signal, two methodologies were followed. From previous works such as

Henkelman [110], Gudbjartsson, Patz [113], Koay, Basser [114], a correction scheme has

been suggested to remove the bias in the estimation. For the first method, a correction

scheme suggested by Gudbjartsson, Patz [113] is used since the assumption is that the

data SNR are high enough (SNR>3) to assume a Gaussian noise. So, the correction

fixes the bias only and does not affect the variance of the estimates. This estimator

will be called least-squares with correction (LSC). The second methodology is based on

probabilistic methods and the maximum likelihood estimator (MLE) for the Rician noise

model is used. Such estimators have been discuss previously by Sijbers et. al. [117] and

these require the knowledge of the noise model explicitly. The advantage of using MLE

is that there is no need to apply any bias correction to the data since the correction is

inherent in the estimator.

5.1.5 Relation with FA, MD and α

The minimization of the determinant of CRLB provides an optimized gradient scheme

with respect to the uncertainty in the estimation of diffusion model parameters. Since

the diffusion model parameters are sometimes not the quantities of interest, it would be

important to find the relation of the performance of the schemes (in terms of CRLB) with

clinical biomarkers used for the identification of diseases, such as FA, MD and the fiber

angular deviation (α). FA and MD are functions of only the longitudinal and transverse

diffusivities in the diffusion model. FA is a dimensionless, normalized quantity that

indicates the local anisotropy in the imaging target [13]. MD, on the other hand, is the

mean of the diffusivities (trace of the diffusion tensor divided by 3). Finally, the angular

deviation is the deviation from the mean fiber orientation. This is a single quantity that

represents the angular position of the fiber in the voxel with respect to the mean fiber

orientation, instead of the two fiber direction parameters (θF , φF ). FA, MD and the

angular deviation are quantities that can be interpreted more easily in a pathological

condition than the diffusion model parameters.
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In this section, the relationship of the performance of the diffusion gradient scheme

with the variances of FA, MD and angular deviation is studied. For the DTI model, MD

is defined as

MD =
D‖ +D⊥1 +D⊥2

3
= Dav (5.14)

and FA is defined as [13],

FA =

√

√

√

√

3

2

(D‖ −Dav)2 + (D⊥1 −Dav)2 + (D⊥2 −Dav)2

D2
‖ +D2

⊥1 +D2
⊥2

(5.15)

where D‖, D⊥1 and D⊥2 are the eigenvalues of the diffusion tensor, D. By convention,

D‖ is the diffusivity along the fiber orientation and D⊥1 and D⊥2 are the transverse

diffusivities. For the ADTI model, the expressions for FA and MD are simplified by

setting D⊥1 = D⊥2 = D⊥, as given by

FA =
D‖ −D⊥
√

D2
‖ + 2D2

⊥
(5.16)

and

MD =
D‖ + 2D⊥

3
= Dav (5.17)

The angular deviation (α) is defined as

α = cos−1(f · f0) (5.18)

where f represents the voxel fiber direction unit vector and f0 is the mean fiber direction

unit vector defined as the average fiber orientation in voxels in the region of interest. Fiber

direction is the direction of the principal eigenvector of the diffusion tensor matrix, D.

The dot operation (·) represents the scalar product.

The propagation of uncertainty principle is used to find the variance of FA, MD and α

in terms of the variance bounds from the CRLB matrix. Assuming each metric, f (FA

or MD) is expanded by Taylor series expansion upto first order, for the DTI model, the

expansion is given by,

f ≈ f0 +D‖
∂f

∂D‖
+D⊥1

∂f

∂D⊥1
+D⊥2

∂f

∂D⊥2
(5.19)
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Thus,

σ2
f ≥ σ2

D‖

(

∂f

∂D‖

)2

+ σ2
D⊥1

(

∂f

∂D⊥1

)2

+ σ2
D⊥2

(

∂f

∂D⊥2

)2

+ 2 cov(D‖, D⊥1)
∂f

∂D‖

∂f

∂D⊥1

+ 2 cov(D⊥1, D⊥2)
∂f

∂D⊥1

∂f

∂D⊥2
+ 2 cov(D‖, D⊥2)

∂f

∂D‖

∂f

∂D⊥2

(5.20)

where cov() is the covariance function.

For FA, the variance can be computed from Eqs. 5.15 and 5.20. The following can be

computed easily from the FA definition (Eq. 5.15),

∂FA

∂D‖
= (2 A− B − C − 2 D‖ FA

2)/(2 SS FA) (5.21)

∂FA

∂D⊥1
= (2 B − A− C − 2 D⊥1 FA

2)/(2 SS FA) (5.22)

∂FA

∂D⊥2
= (2 C − B −Q− 2 D⊥2 FA

2)/(2 SS FA) (5.23)

where

A = D‖ −Dav

B = D⊥1 −Dav

C = D⊥2 −Dav

SS = D2
‖ +D2

⊥1 +D2
⊥2

(5.24)

For MD, the expressions are simpler than that of FA as shown below (Eq. 5.14).

∂MD

∂D‖
=
∂MD

∂D⊥1
=
∂MD

∂D⊥2
=

1

3
(5.25)

For variance of angular deviation, the first-order Taylor series approximation is given

by

σ2
α ≥ σ2

θF

(

∂α

∂θF

)2

+ σ2
φF

(

∂α

∂φF

)2

(5.26)

where

∂α

∂θF
= − cos(φF )cos(θF )

√

1 − (cos(φF )sin(θF ))2
(5.27)

and

∂α

∂φF
=

sin(φF )sin(θF )
√

1 − (cos(φF )sin(θF ))2
(5.28)

66



This is assuming that the covariance between θF and φF is zero. Note that the expression

for the variance is the same for DTI and ADTI model, since α only depends on the θF , φF

parameters (in f ) and f0 does not depend on the model.

The variances and covariances of the diffusion parameters are replaced by the bounds

obtained from the CRLB of the variance of the parameters. For DTI, the model param-

eters are β = {D‖, D⊥1, D⊥2, θF , φF , ψF }. The CRLB matrix can be decomposed into

diagonal and off-diagonal matrices as follows,

ΣCR = Σ1 + Σ2 + Σ3 (5.29)

where,

Σ1 =

























σ2
D‖

0 0 0 0 0

0 σ2
D⊥1

0 0 0 0

0 0 σ2
D⊥2

0 0 0

0 0 0 σ2
θF

0 0

0 0 0 0 σ2
φF

0

0 0 0 0 0 σ2
ψF

























(5.30)

and

Σ2 =



















0 cov(D‖, D⊥1) cov(D‖, D⊥2) cov(D‖, θF ) cov(D‖, φF ) cov(D‖, ψF )

0 0 cov(D⊥1, D⊥2) cov(D⊥1, θF ) cov(D⊥1, φF ) cov(D⊥1, ψF )

0 0 0 cov(D⊥2, θF ) cov(D⊥2, φF ) cov(D⊥2, ψF )

0 0 0 0 cov(θF , φF ) cov(θF , ψF )

0 0 0 0 0 cov(φF , ψF )

0 0 0 0 0 0



















(5.31)

and Σ3 = ΣT
2 , where T is the transpose operation.

Thus, the variance bounds of the estimates are computed from CRLB, ΣCR, as follows:

σ2
D‖

= ΣCR[1, 1]; σ2
D⊥1

= ΣCR[2, 2]; σ2
D⊥2

= ΣCR[3, 3]

cov(D‖, D⊥1) = ΣCR[1, 2]

cov(D⊥1, D⊥2) = ΣCR[2, 3]

cov(D‖, D⊥2) = ΣCR[1, 3]

(5.32)

Also, the variance bounds of θF and φF are obtained as

σ2
θF

= ΣCR[4, 4]; σ2
φF

= ΣCR[5, 5] (5.33)
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Similarly, for the ADTI model, the model parameters β = {D‖, D⊥, θF , φF }. The

ΣCR can also be written in expanded matrix form as

ΣCR = Σ1 + Σ2 + Σ3 (5.34)

where

Σ1 =















σ2
D‖

0 0 0

0 σ2
D⊥

0 0

0 0 σ2
θF

0

0 0 0 σ2
φF















(5.35)

and

Σ2 =











0 cov(D‖, D⊥) cov(D‖, θF ) cov(D‖, φF )

0 0 cov(D⊥, θF ) cov(D⊥, φF )

0 0 0 cov(θF , φF )

0 0 0 0











(5.36)

and Σ3 = ΣT
2 , where T is the transpose operation.

Thus, the variance bounds of the estimates are computed from CRLB, ΣCR, as follows:

σ2
D‖

= ΣCR[1, 1]; σ2
D⊥ = ΣCR[2, 2]; cov(D‖, D⊥) = ΣCR[1, 2] (5.37)

And, the variance bounds of θF and φF are obtained as,

σ2
θF

= ΣCR[3, 3]; σ2
φF

= ΣCR[4, 4] (5.38)

5.2 CRLB for different noise models

5.2.1 Rician noise case

In case of DTI data, the Rician noise model is incorporated as follows: the magnitude

data is computed from the complex data

Ec = (E(β; α) + nr) + jni (5.39)

where E(β; α) is the modeled MR signal (real quantity), nr, ni are zero mean and σ2

variance Gaussian distributions, β; α are the diffusion model parameters and experimen-

tal parameters respectively, as defined before. It should be noted that the complex signal
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is rotated by a rotation of the quadrature detector towards the real axis [110, 114]. Hence,

the imaginary component only contains the noise while the real component contains the

signal and the noise. The measured signal is Ê =‖ Ec ‖ which has a Rician pdf given by,

p(Ê|E(β; α), σ2) =
Ê

σ2
I0(

EÊ

σ2
) exp(−Ê

2 + E2

2σ2
) (5.40)

When a set of N measurements is taken at different diffusion-encoding gradient direc-

tions (g vectors), the measurement vector, Ê = {Êi, i ∈ [1, N ]}, follows a multivariate

Rician distribution p(Ê|β; α) ∼ R(µ(β; α),C(β; α)) where µ(β; α) is the mean vector of

expected value of the measured normalized MR signal, Ê, and C(β; α) is the covariance

matrix of measurements.

The jkth element of the Fisher information matrix for Rician pdf [118] can be shown

to be

[I(β,α)]jk =

N
∑

i=1

1

σ4

∂Ei
∂βj

∂Ei
∂βk

(E2
i − Zi) (5.41)

where

Zi =

∫ ∞

0
E2
i I

2
1 (
EiÊ

σ2
) I−2

0 (
EiÊ

σ2
) p(Ê)dÊ (5.42)

and p(Ê) = p(Ê|E, σ2) (Rician pdf). I0 and I1 are the zero-order and first-order modified

Bessel functions of the first kind respectively. Eq. 5.41 can be rewritten using Zi = W 2
i ,

[I(β,α)]jk =
N
∑

i=1

1

σ4
{(Ei −Wi)

∂Ei
∂βj

} {(Ei +Wi)
∂Ei
∂βk

} (5.43)

Since Zi are all positive as seen in Eq. 5.42, Wi are all real-valued. Let X1 and X2 be

the modified model sensitivity matrices and their ijth elements are defined as follows:

[X1]ij := (Ei −Wi)∂Ei/∂βj (5.44)

[X2]ij := (Ei +Wi)∂Ei/∂βj (5.45)

In matrix-expanded form, the modified sensitivity matrices can be written as,

X1 =











(E1 −W1)∂E1/∂β1 (E1 −W1)∂E1/∂β2 ... (E1 −W1)∂E1/∂βM
(E2 −W2)∂E2/∂β1 (E2 −W2)∂E2/∂β2 ... (E2 −W2)∂E2/∂βM

... ... ... ...

(EN −WN )∂EN/∂β1 (EN −WN )∂EN/∂β2 ... (EN −WN )∂EN/∂βM











(5.46)
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and

X2 =











(E1 +W1)∂E1/∂β1 (E1 +W1)∂E1/∂β2 ... (E1 +W1)∂E1/∂βM
(E2 +W2)∂E2/∂β1 (E2 +W2)∂E2/∂β2 ... (E2 +W2)∂E2/∂βM

... ... ... ...

(EN +WN )∂EN/∂β1 (EN +WN )∂EN/∂β2 ... (EN +WN )∂EN/∂βM











(5.47)

X1 and X2 are both N ×M matrices and depend on β, Ω and the b-factor. i ∈ [1, N ]

and j ∈ [1,M ]. Also Ei = E(gi; b; β) corresponds to the ith diffusion-weighted signal

obtained using the diffusion gradient gi, b-factor and parameter set β. In terms of the

original sensitivity matrix (X), the modified sensitivity matrices can be written as,

X1 = E1X

X2 = E2X

(5.48)

where

E1 =











(E1 −W1) 0 ... 0

0 (E2 −W2) ... 0

... ... ... ...

0 0 ... (EN −WN )











(5.49)

and

E2 =











(E1 +W1) 0 ... 0

0 (E2 +W2) ... 0

... ... ... ...

0 0 ... (EN +WN )











(5.50)

and

X =















∂E1
∂β1

∂E1
∂β2

...
∂E1
∂βM

∂E2
∂β1

∂E2
∂β2

...
∂E2
∂βM

... ... ... ...
∂EN
∂β1

∂EN
∂β2

...
∂EN
∂βM















(5.51)

Eq. 5.43 can be written as,

I(β,α) =
1

σ4
(XT

1 X2) (5.52)

Thus, the corresponding Rician CRLB in matrix form is given as,

ΣCR(β,α) = I−1(β,α) = σ4(XT
1 X2)

−1 (5.53)

Note that (XT
1 X2) is an M ×M matrix. Using the determinant identity, det(rQ) =

rMdet(Q) and also det(Q−1) = 1/det(Q) for an M ×M matrix Q and a scalar r, the
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determinant of Eq. 5.53 gives,

det ΣCR = det
(

σ4(XT
1 X2)

−1
)

=
σ4M

det (XT
1 X2)

(5.54)

5.2.2 Gaussian noise case at high SNR

At high SNR, the Gaussian approximation holds good. In such a case, an additive white

Gaussian noise case with zero mean and σ2 variance is considered. The observed signal

can be expressed as,

Ê = E(β; α) + n (5.55)

where n is zero mean and σ2 variance Gaussian distribution and

p(Ê|E(β; α), σ2) =
1√

2πσ2
exp(−(Ê −E)2

2σ2
) (5.56)

When a set of N measurements is taken at different diffusion-encoding gradient direc-

tions (g vectors), the measurement vector, Ê = {Êi, i ∈ [1, N ]}, follows a multivariate

Gaussian distribution p(Ê|β; α) ∼ N(µ(β; α),C(β; α)) where µ(β; α) is the mean vec-

tor of expected value of the measured normalized MR signal, Ê, and C(β; α) is the

covariance matrix of measurements.

For normally distributed measurements, p(Ê; β; α) has a mean vector µ(β; α) and

covariance matrix σ2I . Since the measurements are uncorrelated and has the same vari-

ance, σ2, the covariance matrix is a diagonal matrix with σ2 as the diagonal element.

The jkth element of the Fisher information matrix can be computed by [109],

[I(β; α)]jk = [
∂µ(β; α)

∂βj
]T

1

σ2
I [
∂µ(β; α)

∂βk
] (5.57)

where I is identity matrix of size N x N , N being the number of DTI images acquired. T

represents transpose operation. j, k ∈ [1, M ] where M is the number of diffusion model

parameters (for example, M = 4 for ADTI).

Since the covariance bound is given by ΣCR(β; α) = I−1(β; α) and simplifying Eq.

5.57 [109],

ΣCR = σ2(XTX)−1 (5.58)
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where X is called the model sensitivity matrix. Sensitivity matrix, X, are based on the

partial derivatives of the model E(β; α) w.r.t. the parameters: ηj(β; α) := ∂E(β; α)/∂βj

with j ∈ [1,M ].

For N diffusion-encoding gradient directions used during DTI experiment, a sequence

of N diffusion-encoded images is collected. The sensitivity matrix X ∈ R
N×M is defined

as X(β; α) :=
(

Xi,j
)

N×M where Xi,j := ηj(gi; b; β) [119].

From Eq. 5.58, applying determinant operation on both sides of the equations,

det ΣCR =
σ2M

det (XTX)
(5.59)

5.2.3 Interpretation of CRLB

The determinant of CRLB (ΣCR) corresponds to the product of the variance bounds of

the estimated parameters, assuming the parameters to be orthogonal to each other. It

is proportional to the bound on the hypervolume of uncertainty in the estimation of β

parameters, the hypervolume being defined as the product of the standard deviations of

the estimated parameters. The lower the hypervolume, the smaller will be the overall

uncertainty of estimation. From Eq. 5.54, it can be observed that the cost function is

a function of both experimental noise (σ) and the model sensitivity matrices (X1 and

X2). For the Gaussian case (Eq. 5.59), the relation between the sensitivity matrix and

noise variance is decoupled [119]. However, this is not the case for the Rician noise model

(Eq. 5.54) since the modified sensitivity matrices (X1 and X2) depend on σ2 also.

The model sensitivity matrices are functions of the gradient scheme (Ω), the b-factor

and the estimation parameter set (β). Thus, in order to reduce the determinant of ΣCR

by optimizing the gradient scheme(Ω) only, the gradient scheme should be chosen to

maximize the determinant of XT
1 X2 (or minimize 1/ det (XT

1 X2)), assuming a fixed

σ, thereby creating an experimental design for which the bound of the hypervolume of

uncertainty (
√

det ΣCR) is minimized. If a bound on uncertainty can be optimized by

design, then any minimum variance unbiased (MVU) and efficient estimator [109] can be

shown to attain the bound asymptotically while performing the parameter estimation.

Such a determinant-optimal or simply D-optimal [33, 34] experimental design forms the
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basis for designing optimal ADTI experiments in this work.

5.2.4 Sensitivity matrix computation

The definition of the CRLB involves the sensitivity matrix which is the Jacobian matrix

of the signal with respect to the model parameters at different gradient directions. The

following show the derivation for the sensitivity matrix for the ADTI and DTI model.

ADTI model

The expression for the normalized MR signal, E, for the ADTI model can be written as,

E = exp(−b(g2
‖D‖ + g2

⊥D⊥)) (5.60)

where g‖ = g · f and f is the unit vector along the fiber direction defined in spherical

coordinates (θF, φF). Also, g2
⊥ = 1 − g2

‖. The ADTI diffusion model parameter set,

β = {D‖, D⊥, θF , φF }.

A row of the sensitivity matrix, X, is defined as,

[X]i. =

[

∂Ei
∂D‖

∂Ei
∂D⊥

∂Ei
∂θF

∂Ei
sin(θF )∂φF

]

(5.61)

Using Eq. 5.60 and 5.61,

∂E

∂D‖
= −bg2

‖E (5.62)

∂E

∂D⊥
= −bg2

⊥E (5.63)

∂E

∂θF
= −bE(2g‖)(D‖ −D⊥)(sin(θ)cos(θF )cos(φ− φF ) − cos(θ)sin(θF )) (5.64)

∂E

sin(θF )∂φF
= −bE(2g‖)(D‖ −D⊥)(sin(θ)sin(φ− φF )) (5.65)

where θ, φ are the spherical coordinate angles for the gradient direction (g ≡ {θ, φ}).

To account for the curvature of the spherical coordinate system, the partial derivative

w.r.t. φF is divided by sin(θF ). Since the b-factor is fixed, the gradients are sampled

on a sphere of constant radius. These analytical expressions provide considerable insight

into the sensitivity of the MR signal w.r.t. to the diffusion model parameters. The first
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observation is that all the sensitivities (derivatives) are weighted by the signal and the

b-factor. Thus, gradients sampling the regions of high signal or where high b-factor is

used will always provide better estimates of the parameters. However, high b-factor

causes the signal to reduce due to more signal attenuation. Hence, there has to be a

compromise solution between the choice of signal level and the b-factor. Next, for the

diffusivities, the sensitivities are proportional to the projections of the gradient direction

vector onto the fiber direction, i.e., g‖ and g⊥. Thus, the sampling locations selected

along the longitudinal direction will lead to a more sensitive estimation of D‖ and the

ones along the transverse direction lead to a more sensitive estimation of D⊥. For the

angular parameters, the interpretation is not direct. Apart from signal and b-factor,

the sensitivities w.r.t. angular parameters are also proportional to the difference of the

diffusivities (D‖ −D⊥), which is indicative of the local diffusion anisotropy.
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Figure 5.2. Plot of (a) the normalized MR signal and (b) its square for the ADTI model

with respect to the gradient direction angles (θ, φ) with the mean fiber direction is at

(θF , φF ) = (0◦, 0◦). The gray scale represents the corresponding signal value.

Figs. 5.2 and 5.3 show the variation of the normalized MR signal and the sensitivities

(and squares) with changing gradient directions (given by θ, φ). The following model

parameters are used to generate the sensitivity and normalized MR plots: D‖ = 1.62 ×

10−3 mm2 s−1, D⊥ = 0.148 × 10−3 mm2 s−1, θF = 0◦, φF = 0◦, σ = 0.1 (FA =

0.9,MD = 0.638 × 10−3 mm2 s−1), b = 1000 s mm−2. The axisymmetric nature of

the signal model shows up nicely on the plot for MR signal. The axisymmetry is also

observed in the sensitivities w.r.t. D‖ and D⊥, but not in the sensitivity for angular
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Figure 5.3. Plot of the sensitivity values and their square for the ADTI model with

respect to gradient direction angles (θ, φ). Shown in the figure are sensitivity values and

their squares w.r.t. D‖ ((a) and (b)), D⊥ ((c) and (d)), θF ((e) and (f)) and φF ((g)

and (h)). The mean fiber direction is at (θF , φF ) = (0◦, 0◦). The gray scale represents

the corresponding sensitivity values or its square.
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parameters. The squares of the sensitivities are also shown to demonstrate the model

axisymmetry and also since the definition of CRLB uses the square of the sensitivity

matrices (i.e., XT
1 X2 for Rician case and XTX for Gaussian case), the square of the

sensitivity determines the optimized gradient distribution based on the CRLB.

DTI model

In this section, the sensitivity matrix computation is shown for the general 6-parameter

non-axisymmetric DTI or simply DTI case. Here, β = {D‖, D⊥1, D⊥2, θF , φF , ψF } and

number of estimation parameters (M) is 6. The normalized MR signal, E, is represented

in terms of the diffusion model and experimental parameters as

E = e−bg
TRTD0Rg (5.66)

The DTI model sensitivity matrix is composed of partial derivatives of the signal with

respect to parameters. A row of the sensitivity matrix, X, is given by,

[X]i. =

[

∂Ei
∂D‖

∂Ei
∂D⊥1

∂Ei
∂D⊥2

∂Ei
∂θF

∂Ei
sin(θF )∂φF

∂Ei
∂ψF

]

(5.67)

The partial derivatives are analytically computed using signal equation Eq. 5.66 as

follows:

∂E

∂D‖
= −bEgTRT ∂D0

∂D‖
Rg (5.68)

where

∂D0

∂D‖
=







0 0 0

0 0 0

0 0 1






(5.69)

This follows from the definition of the signal model (Eq. 5.66) and that D0 is only

dependent on the diffusivities (D‖, D⊥1, D⊥2). Similarly,

∂E

∂D⊥1
= −bEgTRT ∂D0

∂D⊥1
Rg (5.70)

where

∂D0

∂D⊥1
=







0 0 0

0 1 0

0 0 0






(5.71)
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∂E

∂D⊥2
= −bEgTRT ∂D0

∂D⊥2
Rg (5.72)

where

∂D0

∂D⊥2
=







1 0 0

0 0 0

0 0 0






(5.73)

For the partial derivatives with respect to Euler angle parameters (θF , φF , ψF ), the

chain rule for the derivatives is applied as follows:

∂E

∂θF
= −bEgT

(

∂R

∂θF

T

D0R + RTD0
∂R

∂θF

)

g (5.74)

where

∂R

∂θF
= Rz(ψF )

∂Ry(θF )

∂θF
Rz(φF ) (5.75)

and

∂Ry(θF )

∂θF
=







−sin(θF ) 0 −cos(θF )

0 0 0

cos(θF ) 0 −sin(θF )






(5.76)

For computing the partial derivative with respect to φF , the reduction in the latitudinal

distance of the sphere due to the curvature has to be considered. Thus, an additional

sin(θF ) must be divided as shown:

∂E

sin(θF )∂φF
=

−bE
sin(θF )

gT

(

∂R

∂φF

T

D0R + RTD0
∂R

∂φF

)

g (5.77)

where

∂R

∂φF
= Rz(ψF )Ry(θF )

∂Rz(φF )

∂φF
(5.78)

and

∂Rz(φF )

∂φF
=







−sin(φF ) cos(φF ) 0

−cos(φF ) −sin(φF ) 0

0 0 0






(5.79)

Finally, the partial derivative computed with respect to ψF is as follows:

∂E

∂ψF
= −bEgT

(

∂R

∂ψF

T

DR + RTD
∂R

∂ψF

)

g (5.80)

where

∂R

∂ψF
=
∂Rz(ψF )

∂φF
Ry(θF )Rz(φF ) (5.81)
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and

∂Rz(ψF )

∂ψF
=







−sin(ψF ) cos(ψF ) 0

−cos(ψF ) −sin(ψF ) 0

0 0 0






(5.82)

Since, by definition, ψF (the third Euler angle) is the angle that the x-axis of the

rotated transverse diffusion plane makes with the line of nodes, this rotation is not on a

spherical latitude and the division by sin(θF ) is not required.

Note that the earlier analysis of the ADTI case was performed at θF = 0◦. But, this

value cannot be used for the DTI case since at θF = 0◦, φF and ψF are indistinguishable.

Using the definition of rotation matrix (R) above,

Ry(θF ) = I (5.83)

R = Rz(ψF ) ∗Ry(θF ) ∗Rz(φF ) = Rz(ψF ) ∗Rz(φF ) = Rz(ψF + φF ) (5.84)

where I represents the identity matrix of size 3 × 3. The problem with the above condition

is that the derivatives of E w.r.t. φF and ψF become equal and XTX has a rank less

than M (number of parameters, ie, 6). From the definition of CRLB, the CRLB becomes

indefinite. This problem can be solved by computing the derivatives at an angle other

than θF=0◦, say θF=90◦.

The variation of the signal and the partial derivatives with respect to different DTI

model parameters under an axisymmetric and non-axisymmetric condition are shown

in Figs. 5.4 and 5.6 and their squares in Figs. 5.5 and 5.7 . The parameters values

used to generate the sensitivities and the normalized MR signal for the axisymmetric

case in Fig. 5.4 are: D‖ = 2 × 10−3 mm2 s−1, D⊥1 = 0.2 × 10−3 mm2 s−1, D⊥2 =

0.1999 × 10−3 mm2 s−1, θF = 90◦, φF = 0◦, ψF = 0◦(FA = 0.891,MD = 0.8 ×

10−3 mm2 s−1), b = 1000 s mm−2, N = 30. For the non-axisymmetric case in Fig. 5.6,

the parameter values used are: D‖ = 2 × 10−3 mm2 s−1, D⊥1 = 0.2 × 10−3 mm2 s−1,

D⊥2 = 0.05 × 10−3 mm2 s−1, θF = 90◦, φF = 0◦, ψF = 0◦(FA = 0.935,MD =

0.75 × 10−3 mm2 s−1), b = 1000 s mm−2, N = 30. The axes of the plot represents

the diffusion gradient direction in spherical coordinates, i.e., θ and φ on a unit sphere.

For the nearly axisymmetric case, the plots look similar to the ADTI sensitivity plots.
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This validates that the DTI formulation can incorporate the axisymmetric case also.

Note that these cases are slightly non-axisymmetric (or nearly axisymmetric) so that the

CRLB matrix is not singular. For a perfectly axisymmetric case, ηψF
will vanish making

the CRLB matrix singular since its determinant will be zero. For the non-axisymmetric

case, the normalized MR signal and the sensitivities w.r.t. to diffusivities are no longer

axisymmetric as expected. Thus, the DTI formulation provides for a more general model

although being more complicated than the ADTI formulation. Similar to the ADTI case,

variation of the square of the sensitivities and the normalized MR signal can indicate how

the final distribution of the optimized gradient distribution will be. CRLB is inversely

proportional to the determinant of the square of the sensitivity matrix and thus optimal

gradient directions will sample regions in the gradient space where the product of the

sensitivities will be higher.
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Figure 5.4. Variation of the sensitivity values and the normalized MR signal w.r.t. dif-

fusion gradient direction angles (θ, φ) for nearly axisymmetric case for the DTI model.

Shown in the figure are sensitivity values w.r.t. (a) D‖, (b) D⊥1, (c) D⊥2, (d) θF ,

(e) φF , (f) ψF and (g) the normalized MR signal. The mean fiber direction is at

(θF , φF ) = (90◦, 0◦).
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Figure 5.5. Variation of the squares of sensitivity values and the normalized MR signal

w.r.t. diffusion gradient direction angles (θ, φ) for nearly axisymmetric case for the DTI

model. Shown in the figure are squares of sensitivity values w.r.t. (a) D‖, (b) D⊥1, (c)

D⊥2, (d) θF , (e) φF , (f) ψF and (g) the normalized MR signal. The mean fiber direction

is at (θF , φF ) = (90◦, 0◦).
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Figure 5.6. Variation of the sensitivity values and the normalized MR signal w.r.t. diffu-

sion gradient direction angles (θ, φ) for non-axisymmetric case for the DTI model. Shown

in the figure are sensitivity values w.r.t. (a) D‖, (b) D⊥1, (c) D⊥2, (d) θF , (e) φF , (f) ψF
and (g) the normalized MR signal. The mean fiber direction is at (θF , φF ) = (90◦, 0◦).
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Figure 5.7. Variation of squares of the sensitivity values and the normalized MR signal

w.r.t. diffusion gradient direction angles (θ, φ) for non-axisymmetric case for the DTI

model. Shown in the figure are squares of sensitivity values w.r.t. (a) D‖, (b) D⊥1, (c)

D⊥2, (d) θF , (e) φF , (f) ψF and (g) the normalized MR signal. The mean fiber direction

is at (θF , φF ) = (90◦, 0◦).
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5.3 Partitioning CRLB matrix for optimized estima-

tion of selected parameters

Generally, in an estimation problem, such as the estimation of DTI/ADTI model param-

eters, there are only certain parameters that are of interest and the rest can be assumed

to be “nuisance” parameters which are although estimated, but are not used or is not of

interest for further analysis. In the case of DTI, if the analysis is based on determining

the FA or MD in the voxel, only the diffusivities are of interest. Similarly, if the purpose

of the analysis is fiber tracking, only angular parameters, such as θF , φF are of interest.

Thus, a gradient optimization scheme that can optimize the model parameter estimation

to reduce the uncertainty of selective parameters is highly desirable.

In the context of DTI/ADTI model parameter estimation, there are two kinds of pa-

rameters, namely, diffusivity and angular parameters. I will focus on each of the kind of

parameters individually and come up with the gradient scheme optimization for selective

parameter estimation of each kind. The basic idea is factorization of the CRLB matrix

and optimize for the determinant of the sub-matrix which carries the variances of the

parameters of interest. This has been discussed in [33, 120]. Based on the discussion on

the derivation of the CRLB matrix, the Rician CRLB is given by

ΣCR = σ4(XT
1 X2)

−1 (5.85)

and the Gaussian CRLB is given by

ΣCR = σ2(XTX)−1 (5.86)

where X, X1 and X2 are the sensitivity matrices. Columns of these matrices con-

tain partial derivatives with respect to diffusion model parameters computed at different

experimental settings, such as diffusion gradients.

Let a row of the sensitivity matrix be

[X ]i. =

[

∂Ei
∂β1

......
∂Ei
∂βM1

∂Ei
∂βM1+1

......
∂Ei
∂βM

]

(5.87)

where the vertical line divides the matrix into partial derivatives of M1 diffusivities and

M −M1 angular parameters. Thus, the XTX can be partitioned into four sub-matrices,
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as given by

XTX =

[

A1 A2

A3 A4

]

(5.88)

where A1, A2, A3 and A4 are the sub-matrices after matrix squaring. Here, A1 is the

autocorrelation matrix of the partial derivatives with respect to only diffusivities and

A4 is the autocorrelation matrix of the partial derivatives with respect to only angular

parameters. A2 and A3 are cross-correlation matrices between the diffusivity and angular

matrices. Similarly, the CRLB matrix can be partitioned into four sub-matrices as given

by,

ΣCR =

[

B1 B2

B3 B4

]

= σ2

[

A1 A2

A3 A4

]−1

(5.89)

where B1 and B4 are the CRLB sub-matrices with respect to only diffusivity and angular

parameters, respectively. Thus, in order to minimize the CRLB of estimation variance of

diffusivities only, determinant of B1 can be minimized instead of the entire CRLB matrix.

Using Woodbury’s matrix inversion formula [120, 121], B1 is computed as,

B1 = σ2(A1 − A2A
−1
4 A3)

−1 (5.90)

The inversion is under the condition that A4 is not singular (i.e., det(A4) 6= 0). Scharf

et al. [120] shows another way of partitioning the CRLB matrix which is applicable only

to Gaussian CRLB case. However, Eq. 5.90 is a more general form of partitioning the

CRLB matrix and is useful for Rician CRLB case where the non-symmetric matrix is

partitioned, as given by

XT
1 X2 =

[

A1 A2

A3 A4

]

(5.91)

Here X1 and X2 are the modified sensitivity matrices which can also be split into the

partial derivatives of the diffusivity and angular parameters as shown for the sensitivity

matrix (X) case.

5.3.1 Diffusivities

For DTI case, model parameters are β = {D‖, D⊥1, D⊥2, θF , φF , ψF }. In order to opti-

mize the gradient scheme only for the diffusivities, CRLB matrix is partitioned to contain
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the variance of only diffusivities. Thus, the sensitivity matrix is partitioned to separate

the diffusivities as given

[X]i. =

[

∂Ei
∂D‖

∂Ei
∂D⊥1

∂Ei
∂D⊥2

∂Ei
∂θF

∂Ei
sin(θF )∂φF

∂Ei
∂ψF

]

(5.92)

Next, using Eq. 5.90, the B1 matrix will only contain the variances of the diffusivities.

Finally, the cost function for the optimization of gradient directions becomes det(B1).

For ADTI model, the parameter set is β = {D‖, D⊥, θF , φF}. Thus, to optimize the

diffusivities, the sensitivity matrix is partitioned as

[X ]i. =

[

∂Ei
∂D‖

∂Ei
∂D⊥

∂Ei
∂θF

∂Ei
sin(θF )∂φF

]

(5.93)

As before, using Eq. 5.90, the B1 matrix is computed and the cost function is the

determinant of the B1 matrix.

For Rician CRLB matrix, the partitioning is similar except that instead of X, modified

sensitivity matrices (X1 and X2) are partitioned individually using Eq. 5.91 and Eq.

5.90 is used to compute the B1 matrix.

5.3.2 Angular parameters

For DTI model, selective optimization for angular parameters is done by partitioning the

sensitivity matrix as

[X]i. =

[

∂Ei
∂θF

∂Ei
sin(θF )∂φF

∂Ei
∂D‖

∂Ei
∂D⊥1

∂Ei
∂D⊥2

∂Ei
∂ψF

]

(5.94)

Note that only the θF , φF parameters are considered in the angular parameters set since

these directly affect the fiber orientation and α. ψF is treated as a nuisance parameter

along with the diffusivities. Finally, B1 is computed according to Eq. 5.90 and the

optimization cost function is det(B1).

For ADTI model, the sensitivity matrix is also partitioned to separate the angular

parameters as given by

[X ]i. =

[

∂Ei
∂θF

∂Ei
sin(θF )∂φF

∂Ei
∂D‖

∂Ei
∂D⊥

]

(5.95)
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As before, using Eq. 5.90, the B1 matrix is computed and the cost function is the

determinant of the B1 matrix.

Rician CRLB case is handled as mentioned in the previous section, but with the new

partitions of the modified sensitivity matrices.

5.4 Gradient scheme optimization framework

The proposed optimization framework is based on D-optimality and its application for

the design of optimal experiments [33, 34]. As described earlier, optimization is de-

fined by optimal selection of experimental parameters by minimizing the determinant

of CRLB matrix. The analysis has focussed on optimizing the gradient scheme (Ω)

for different signal models (such as DTI, ADTI) and noise models (Rician and Gaus-

sian). For the DTI model ([7]), the rotationally invariant diffusion model parameters

are β = {D‖, D⊥1, D⊥2, θF , φF , ψF } (M = 6). For the ADTI model, from axisymmetry

assumption, the model parameters are β = {D‖, D⊥, θF, φF} (M = 4).

The optimal diffusion gradient scheme is obtained by solving the following equation,

Ωopt = arg

[

min
Ω

(

max
{θF,φF}∈Λ

f

)]

(5.96)

where f := 1/ det (XT
1 X2) (for the Rician noise case) or f := 1/ det (XTX) (for the

Gaussian noise case). Since f is a scaled form of det ΣCR, minimizing f is equivalent

to minimizing det ΣCR. In Eq. 5.96, the maximum value of f (worst case of f) within

a cone (Λ) that includes the majority of fiber directions is searched and then this value

is minimized w.r.t. the gradient scheme (Ω) to reach the optimal gradient design (Ωopt).

The formulation is robust since the gradient scheme is optimal for an uncertainty range

of fiber orientations. The a priori structural information is incorporated in Eq. 5.96 by

measuring Λ from preliminary DTI scan on a subject. Since the optimization is local in

parameter space, the mean values of diffusion model parameters (β) (also obtained from

preliminary DTI scan) are used to calculate f .
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5.4.1 Reformulation of the gradient scheme

To reduce the computation time for gradient scheme optimization, the definition of the

gradient scheme is reformulated as Ω = {(θr,∆φr, Nr); r ∈ [1, P ]}, where P is the number

of rings, each located at inclination angle (θr) with azimuthal offset angle (∆φr) and Nr

uniformly distributed points [84, 85]. Under this formulation, the number of optimization

parameters is greatly reduced. For example, for a 30-gradient direction problem (Fig.

5.8), instead of defining Ω in 60 variables, Ω = {(θi, φi); i ∈ [1, 30]}, it can be redefined

in 9 variables, Ω = {(θr,∆φr, Nr); r ∈ [1, 3]} for P = 3 (3-ring configuration). P is

selected by trying a number of configurations (such as P = 3, 4, 5, 6 and 7) and choosing

the best in terms of cost function, i.e., the one that gives the minimum cost function.

This framework helps improve the optimization speed significantly (when P is less) and

also provides flexibility in designing complex schemes (for large P ).
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Figure 5.8. Gradient directions (white circles) on a 2D opened hemisphere showing a

reformulated scheme (for P = 3). Mean fiber orientation is at (θF , φF ) = (0◦, 0◦). The

gray scale underlay shows the normalized MR signal variation due to changing gradient

directions (θ, φ).

The representation of the gradient scheme in a ring-like formation originates from

the observation that upon application of the axisymmetric condition on the diffusion

model such that the diffusion in the plane transverse to the fiber direction is isotropic,

the optimal sampling locations in the gradient space collapse onto axisymmetric rings

about the mean fiber direction [39, 72, 119]. This phenomenon can be seen in analytical

derivations as well as by numerical simulations. Thus, sets of gradient directions can be
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grouped into ring-like distribution and defined as given in the reformulated definition of

Ω . Although this representation puts constraints on the gradient distribution, by adding

additional parameters such as ∆φr in the definition of Ω , even non-axisymmetric cases

can be represented. So, a range of distribution patterns of gradient directions can be

achieved by the reformulated gradient scheme.

5.4.2 Algorithm

The robust optimization problem defined in Eq. (5.96) is solved for the DTI and ADTI

models. A preliminary optimization using θF = 0◦ and Λ = 0 is performed to provide a

starting point, Ω0 := arg [minΩ f ], for the robust optimization algorithm. This strategy is

preferred to choosing an arbitrary gradient scheme and results in shorter computational

times. For the computation of Ω0, a simulated annealing method, which performs a

stochastic exploration of the sampling space controlled by a temperature parameter (T ),

is implemented using the full set of variables [122]. Simulated annealing is a stochastic

minimization technique [73] which is based on the annealing process (slow cooling process)

in metallurgy and is known to be robust with respect to local minima problems common

in gradient-based methods. Details of this algorithm are given in Appendix A (Fig. A.3

and Fig. A.4). Solutions satifying the T -dependent Metropolis criterion [73] are accepted,

while others are rejected. The exploration stage is necessary to avoid local optima (the

cost function f is nonconvex), and the step-size for exploration is progressively reduced

after a maximum number of rejection steps are reached [119].

In the second stage, the robust optimization problem (Eq. 5.96) is solved using the

reduced-order parameterization with P rings. The ring locations, {θi ∈ [0, π/2]; i ∈

[1, P ]}, and number of points, {Ni ∈ [1, N − P ]; i ∈ [1, P − 1]}, are initialized based on

the clustering of the q-space sampling scheme Ω0. These parameters are optimized by

iterating on possible values for Ni and P and using a deterministic gradient-based “min-

imax” algorithm [123] for θi. Eq. (5.96) is solved iteratively by updating the parameters

of Ω until the changes in these parameters do not change the cost function significantly.

The optimization is implemented in Matlab (Mathworks Inc., Natick, MA) using routines
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from the Optimization Toolbox.
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Figure 5.9. Robust optimization results for the ADTI model with Rician CRLB for

b = 1000 smm−2 with P = 3 rings for fiber orientations within a cone of axis along the z-

axis and cone angle Λ = 35◦. (a) Gradient directions (white circles) an opened hemisphere

with gray scale equal to the normalized MR signal. (b) Comparison of performance curves.

5.4.3 Optimization Efficiency

ADTI model

Eq. 5.54 (Rician noise case) or Eq. 5.59 (Gaussian noise case) can be used to predict the

performance of the diffusion-encoding gradient scheme (Ω) before performing the ADTI

experiment. A gradient scheme has a better performance when det ΣCR is lower with

respect to another scheme. Also, a scheme is more robust (in terms of fiber angular

deviation (α) from the mean fiber orientation) than another scheme when det ΣCR is
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Figure 5.10. Variation of normalized hypervolume of uncertainty for 30-direction optimal

gradient schemes for ADTI model. The cone angles vary as (Λ = [10◦− 90◦]) and Rician

noise case is selected. Noise level, σ = 0.1. Normalization reference is MF30 gradient

scheme.

low over a broader range of α. This performance range (of α) is determined by the value

of the cone angle (Λ) used during the optimization procedure.

Fig. 5.10 shows the variation of normalized hypervolume of uncertainty

(DOPT /DMF30, DOPT=
√

det ΣCR,OPT , DMF30=
√

det ΣCR,MF30) for the optimal

30-direction gradient schemes at different cone angles (Λ). Normalization is w.r.t. hyper-

volume of uncertainty for the MF30 scheme. The MF30 is a 30-direction MF technique-

based gradient scheme [22] which does not use any a priori angle information (Λ). For

smaller cone angles (Λ = 10◦), the performance of the optimized gradient scheme is better

than MF30 only when the fiber orientation is close to the mean fiber orientation (α = 0◦).

As the cone angle is increased, the performance becomes worse and eventually at Λ = 90◦

(completely uncertain case) DOPT /DMF30 remains always less than unity, albeit close

to unity, indicating a mildly improved performance compared to that of MF30.
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DTI model

The performance prediction of an optimized gradient scheme for DTI case is done by

computing the determinant of CRLB (at some fixed noise, σ2) for different values of θF

and φF . Only these two parameters are chosen since the scheme is made robust with

respect to a range of fiber orientations. Thus to verify if the robustness is achieved, the

CRLB is computed in a range of fiber orientations given in terms of θF and φF . The

Fig. 5.11 shows the 2D performance plots for a non-axisymmetric diffusion case under

Gaussian noise.
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Figure 5.11. Plot of the ratio of hypervolumes for OPT30 w.r.t. MF30 scheme optimized

using Gaussian noise assumption and for the DTI model. The contour line at unity value

shows the cone of angles within which the optimization performance is improved.

The interpretation of the Fig. 5.11 is straightforward. Since a reduced uncertainty for

a range of fiber orientations is desired when compared to the performance of the standard

scheme such as MF30, it is verified if the robust optimal scheme is theoretically robust

(based on the CRLB) in performance within an angular deviation defined by Λ from

the mean fiber orientation. Fig. 5.11 shows the plot of the ratio of the cost function

(detΣCR) for the optimized scheme w.r.t. MF30 scheme. The optimization is performed

at Λ = 35◦. Thus, the ratio should be less than unity for angles within the cone angle

range as observed in Fig. 5.11. Note, the true fiber orientation is at (θF , φF )=(90◦,0◦).

Since Λ is specified during optimization and its value collected from the preliminary DTI
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scan on the subject, the robust optimization is subject specific, and thus more accurate.

5.4.4 b-factor optimization

In the discussion so far, I focussed on the optimization of the gradient directions to

minimize the cost function (i.e., determinant of ΣCR) within a range of fiber orientation.

However, in all of these cases, the b-factor has been kept constant. In this section, I discuss

the optimization of the b-factor as well as the gradient scheme using a modified form of

Eq. 5.96. Here the b-factor is included as an optimized parameter in the optimization

problem which can be written as,

αopt = arg

[

min
b,Ω

(

max
{θF,φF}∈Λ

f

)]

(5.97)

where, α ≡ [b,Ω ], f := 1/ det (XT
1 X2) (for Rician noise case) or f := 1/ det (XTX) (for

Gaussian noise case). Note that the sensitivity matrix, X (and the modified sensitivity

matrices, X1 and X2) are functions of both the gradient scheme (Ω) and the b-factor.

Under this optimization scheme, the b-factor is considered on the whole rather than

considering its individual components, such as the diffusion gradient strength, gradient

pulse durations and the diffusion pulse interval. While optimizing for the b-factor, it

will be assumed that the values that are obtained are achievable and within limits of

the MRI scanner. This results in additional constraint on the optimization problem. A

change in the b-factor could be accomplished by changing any of its components. But,

it is preferred that the change in the b-factor is caused by the change in the diffusion

gradient strength only, while keeping the timing parameters fixed. However, in general,

the diffusion gradients are set at the maximum by the hardware already. Thus, the b-

factor needs to increased by increasing the pulse duration or the inter-pulse intervals.

This leads to increase of TE . In addition to longer diffusion gradients, the SNR will

drop in the diffusion-weighted images. This limits the upper value of b-factor on clinical

scanners.

Inclusion of b-factor in the optimization framework result in a modified algorithm for

the framework. The modifications include:
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1. Using simulated annealing method for the combined optimization of the b-factor

and the gradient scheme: the algorithm discussed previously uses a preliminary

exploratory stage based on simulated annealing method [73] to avoid the local

minima problem (see Appendix A (Fig. A.3 and Fig. A.4) for flowchart of the

optimization procedure) and then uses the reformulated gradient scheme (discussed

in the section ‘Reformulation of the gradient scheme’ and Appendix A (Fig. A.5))

to search for the optimized gradient scheme. When the b-factor is included in the

optimization, the local minima problem is severe since the b-factor scales the model

parameter sensitivities directly and thus has more influence over the CRLB matrix

than the gradient directions. Hence, when optimizing for the b-factor, a simulated

annealing method with slower cooling rate and finer step size adjustment is used

(see Appendix A (Fig. A.6 for flowchart and detailed steps)).

2. No use of the reformulated gradient scheme: Owing to local minima problem and

significant variations in the echo signals while changing the b-factor, the reformu-

lated gradient scheme could pose additional constraints and as such is not used.

3. No use of the exploitation stage: In the previous algorithm, the second stage based

on the reformulated gradient scheme used a gradient descent-based method to reach

an optimal location quickly. However, due to local minima issues, the gradient

descent technique could not be applied.

From the derivation of the sensitivity matrix for both the ADTI and DTI model, it

is observed that sensitivities are proportional to the b-factor and hence if the b-factor

is varied, the optimization algorithm will attain higher b-factors to reduce the CRLB

variance. On the other hand, regions where determinant of CRLB matrix is low generally

correspond to regions where signal levels are high for a fixed b-factor. But, in order for

the signal level to be high, the b-factor has to be low. Thus, there is a definite region

where an optimal b-factor which satisfies both the high signal criterion as well as the high

sensitivity criterion is attained by the optimization algorithm.

In optimizing the b-factor, an important observation is that at high b-factor values, the
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signal will be low and as such the SNR will also be low. Under such conditions, the Rician

noise model and use of the maximum likelihood estimator is most appropriate. However,

the SNR can be improved by increasing the number of excitations and thus using more

averaging to reduce the noise. So, at high b-factor, even though the signal level is low,

but a good SNR can be obtained by averaging of more images. The disadvantage of this

method is that the total scan time greatly increases. Still, the most common practice

while using high b-factor is increasing the number of averages in the MR data acquisition.

5.4.5 Additional constraints on FA and MD in gradient scheme

optimization

After discussing the gradient scheme optimization and the b-factor optimization, in this

section, I will discuss the inclusion of additional constraints on FA and MD into the

optimization problem. The optimization cost function (determinant of ΣCR), so far, was

computed for a fixed value of diffusion model parameters and optimized within a range

of fiber directions. This notion can be extended to FA and MD values range as well. In

other words, the cost function can be optimized within a range of both fiber directions

as well as a range of FA and MD values. The range of FA and MD essentially sets a

constraint on the diffusivity values. The optimization problem can now be modified as

follows,

αopt = arg

[

min
b,Ω

(

max
C

f

)]

(5.98)

where constraints are denoted by C and given by,

C ≡ {θF, φF} ∈ Λ & FA ∈ [FA0, FA1] & MD ∈ [MD0,MD1] (5.99)

where, as before, f := 1/ det (XT
1 X2) (for Rician noise case) or f := 1/ det (XTX) (for

Gaussian noise case). The range of FA values is given by [FA0, FA1] and the range of

MD values is given by [MD0,MD1]. Also, the fiber angular range is given, as before,

by {θF, φF} ∈ Λ, where Λ is the cone of fiber orientations. This is the optimization

problem formulation in a very generalized form and could incorporate prior information

of both the fiber orientation as well as the diffusivities (in the form of FA and MD). The
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optimization algorithm is the same as the one used for b-factor optimization. However,

due to a large number of constraints, the computation time for the optimization is much

higher as compared to just optimizing the gradient directions.

5.5 Comparison of optimized gradient schemes and

their predicted performances

This section presents a comparison of spatial distributions and the predicted performances

for various optimized schemes. Both ADTI and DTI diffusion model and Rician and

Gaussian noise model have been considered for the gradient optimization.

For the ADTI case, the parameter values and noise level used for the gradient opti-

mization process are: D‖ = 1.62×10−3 mm2 s−1, D⊥ = 0.148×10−3 mm2 s−1, θF = 0◦,

φF = 0◦, σ = 0.1. This corresponds to FA = 0.9,MD = 0.638 × 10−3 mm2 s−1 Exper-

imental settings are : b = 1000 s mm−2, N = 30. Prior structural information used:

Λ = 35◦.

For the DTI case, the parameter values and noise level used for the gradient op-

timization process are: D‖ = 2.2 × 10−3 mm2 s−1, D⊥1 = 0.4 × 10−3 mm2 s−1,

D⊥2 = 0.3657 × 10−3 mm2 s−1, θF = 90◦, φF = 0◦, ψF = 0◦, σ = 0.1. This cor-

responds to FA = 0.802,MD = 0.989 × 10−3 mm2 s−1 Experimental settings are :

b = 1000 s mm−2, N = 30. Prior structural information used: Λ = 35◦.

5.5.1 Distribution of gradient directions

Fig 5.12 shows the optimized gradients distribution on an opened unit hemisphere for the

ADTI diffusion model and Rician and Gaussian noise models under different optimality

criteria. The MF30 scheme is also shown for comparison. The CRLB-based D-optimality

criterion is inversely related to the determinant of the square of the sensitivity matri-

ces. Hence, by minimizing the determinant of the CRLB for the gradient directions, the

optimization framework distributes these gradients in regions where the square of the

sensitivity is higher. Determinant of the square of the sensitivity matrices is propor-
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tional to the product of the individual parameter sensitivities, such as sensitivities w.r.t.

D‖, D⊥, θF and φF for ADTI, and the optimization framework looks for regions where the

majority of the model sensitivities are high. Referring to the sensitivity plots in Fig. 5.3

which shows the spatial variation of the sensitivities caused due to the prior assumption

of the fiber structure, for the all parameters case, the region transverse to the fiber orien-

tation corresponds to higher overall square sensitivity values and hence are sampled more

in this region by optimization (shown in Fig. 5.12 (a) and (b)). For the diffusivity only

case, both the regions transverse and towards the fiber orientation are sampled (shown

in Fig. 5.12 (c) and (d)) and for the angular parameters only case, only transverse region

is sampled after gradient optimization (shown in Fig. 5.12 (e) and (f)). Note that the

sensitivity being a function of the normalized MR signal which is also higher transverse

to the fiber orientation also influences the distribution of the gradient directions, pushing

these towards the transverse direction. Results of Rician and Gaussian cases are similar

but Rician CRLB optimized cases are more dispersed than the Gaussian CRLB optimized

cases which could be due to the rescaling of the sensitivity matrix in the Rician case as

shown in Eq. 5.48. MF30 (Fig. 5.12 (g)) scheme uniformly samples the gradient space

since it does not use any optimization based on prior structural knowledge.

Fig. 5.13 shows the distribution of the optimized gradient directions on an opened

sphere for the DTI model. Here the true fiber orientation is along +X-zxis to avoid the

singularity in the CRLB definition when the fiber is at +Z-axis. While the reasoning

for the distribution is same as in the ADTI case, i.e., regions of higher overall square

sensitivities are selected by the optimization framework, the distribution is consistently

towards the transverse orientation, even for the diffusivities only case. This can be

explained from the sensitivity plots for the DTI model (see Figs. 5.4 – 5.7) where the

square sensitivities of most of the DTI model parameters (except for D‖) are higher

transverse to the fiber orientation. This effect is less pronounced in the ADTI since it

has fewer diffusion model parameters.
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Figure 5.12. Optimized Gradient schemes for the ADTI diffusion model under the fol-

lowing optimality criteria: optimize for all parameter ((a) Rician and (b) Gaussian),

diffusivities only ((c) Rician and (d) Gaussian) and fiber orientation only ((e) Rician and

(f) Gaussian). MF30 scheme is shown in (g). The fiber orientation, (θF , φF ) = (0◦, 0◦).
The gray scale values represent the normalized MR signal and the white circles are the

locations of the diffusion gradient unit vector on an opened unit hemisphere.

5.5.2 Performance curves

Fig. 5.14 shows the performance curves of various optimized gradient schemes for the

ADTI model. The CRLB-based hypervolume has been reduced for the OPT30 scheme

compared to the MF30 scheme in the desired angular deviation from the fiber orientation

defined by the cone angle during optimization. The curve is smooth for the all parameter

case, but fluctuates for the diffusivities only or angular parameters only cases within the

cone angle even though there is reduction in the hypervolume compared to MF30.
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Figure 5.13. Optimized Gradient schemes for the DTI diffusion model under the following

optimality criteria: optimize for all parameter ((a) Rician and (b) Gaussian), diffusiv-

ities only ((c) Rician and (d) Gaussian) and fiber orientation only ((e) Rician and (f)

Gaussian). The fiber orientation, (θF , φF ) = (90◦, 0◦). The gray scale values represent

the normalized MR signal and the white circles are the locations of the diffusion gradient

unit vector on an opened unit hemisphere.

Fig. 5.15 shows the performance plots of various optimized gradient schemes for the

DTI model. The contour line indicates the unity ratio level which coincides with the cone

angle set during optimization. Thus, a optimized scheme perform as designed within the

cone angle. The reduction is more significant for the all parameter case (Fig. 5.15 (a) and

(b)) than other cases (Fig. 5.15 (c) – (f)). The region of overall higher square sensitivities
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is more when more diffusion parameters are selected for improved precision since there

is a possibility of more overlapping regions of higher individual sensitivities which is not

the case for fewer model parameters, such as diffusivities only or angular parameters only

cases.
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Figure 5.14. Performance curves for the ADTI diffusion model for optimization w.r.t. all

parameters ((a) Rician and (b) Gaussian), diffusivities ((c) Rician and (d) Gaussian) and

angular parameters ((e) Rician and (f) Gaussian).
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Figure 5.15. Performance plots for the DTI diffusion model for optimization w.r.t. all

parameters ((a) Rician and (b) Gaussian), diffusivities ((c) Rician and (d) Gaussian) and

angular parameters ((e) Rician and (f) Gaussian). Gray scale values indicate the ratio of

CRLB-based hypervolume of OPT30 by MF30 and the contour lines are at unity ratio.
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CHAPTER 6

Evaluation of estimation

performance by simulations

In this chapter, various Monte Carlo simulations are performed to (a) evaluate the noise

models, (b) evaluate the performance of different parameter estimators and (c) evaluate

the effect of the non-optimized experimental parameters in terms of performance indices.

Finally, simulations are performed to study the performance of the optimized gradient

schemes for the ADTI and the DTI models with Rician and Gaussian noise models. Cases

for gradient optimization based on selected model parameters are also considered, such

as diffusivities only or angular parameters for fiber directions only, for different diffusion

and noise models.

6.1 Noise characterization

The normalized MR signal (or echo attenuation) due to diffusion is defined as the ratio

of two magnitude MR signals obtained with and without the application of diffusion

gradients respectively. Assuming that measured complex MR signals contain additive

white Gaussian noise, the corresponding magnitude MR signals (MR image intensities)

will contain Rician noise [110, 114] and the normalized MR signal being defined as the

ratio of two magnitude MR signals will follow a ratio pdf of two Rician distributed

random variables. The ratio pdf can be approximated by a Rician pdf or a Gaussian pdf.
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In this section, an evaluation of the Rician approximation of the ratio pdf is performed

and sources of error are analyzed. For comparison, the Gaussian approximation is also

included in the evaluation.

6.1.1 Method

Let the measured (noisy) normalized MR signal, E, be defined as E = S/S0, where S

and S0 are the measured magnitude MR signals with and without diffusion-weighting.

Let Sc = m+ nr + jni and S = |Sc|, where Sc is the measured complex MR signal with

diffusion-weighting, nr, ni are N(0, σ) (Gaussian pdf). Also, S0c = m0 + n0r + jn0i and

S0 = |S0c| where S0c is the measured complex MR signal without diffusion-weighting,

n0r, n0i are N(0, σ0) (Gaussian pdf). Thus, S ∼ R(m, σ) and S0 ∼ R(m0, σ0) are the

Rician pdfs of the measured magnitude signals.

For the simulations, a set of values form, m0, σ, σ0 are selected. Also, each realization

of the random variables can be averaged simulating the number of excitations (NEX) in

MRI experiments. 106 realizations of S and S0 are generated to compute the realizations

of E. In the first simulation, the distribution of E is fitted to a Rician pdf by the method

of moments (matching the expected value and the variance) to estimate mE and σE for

the pdf of E. In the second simulation, S0 is considered a fixed non-random variable

equal to m0 under the assumption m0 >> σ0 and the E is regenerated and fitted to a

Rician pdf by the method of moments to estimate mE and σE for the pdf of E. The

distribution of E from both simulations are also fitted to Gaussian pdfs by the method

of moments to estimate mE and σE for the pdf of E for the Gaussian fit.

For both simulations, m0 = 697 and σ0 = 100. These values are estimated from the

T2-weighted MR signals for the cervical spinal cord region in the white matter tract

voxels for one subject (imaging protocol is given in the next chapter) based on techniques

described in [124]. In ADTI or DTI model, the range of the normalized MR signal

values is limited by the maximum and minimum diffusivities for a fixed b-factor. The

intermediate values of the signal are obtained due to variation in the diffusion gradient

direction. The limits of m can be calculated using, m = m0 exp(−bD), where b is the
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b-factor and D is the diffusivity. From previous studies, two values for the diffusivity D,

1.62 × 10−3 mm2 s−1 and 0.1485 × 10−3 mm2 s−1 were selected. This gives the range of

m as m ∈ {0.1979m0, 0.8620m0}. Both simulations are performed at 10 values in this

range of m values. Each of the simulations are repeated for NEX = 2 and 4.

6.1.2 Results
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Figure 6.1. Comparison of the estimated and true values of the normalized MR signal (E)

for the cases of Rician and Gaussian fit to the distribution of S/S0 and S/m0. Simulations

are run at (a) NEX = 2 and (b) NEX = 4.

Fig 6.1 shows the comparison of the estimated and true values of the normalized MR

signal (E) for the cases of Rician and Gaussian fits to the distribution of S/S0 and

S/m0. For each case of NEX, the mean and the standard deviation (SD) of the relative

difference of the estimated normalized MR signal (E) with respect to the true value of E,
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i.e., E−(m/m0), are calculated. For NEX = 2, the mean and the SD of relative difference

are (−1.02±0.75)×10−3 (for the Rician fit of S/S0), (1.52±0.62)×10−2 (for the Gaussian

fit of S/S0), (−2.89±6.89)×10−5 (for the Rician fit of S/m0) and (1.23±0.71)×10−2 (for

the Gaussian fit of S/m0). For NEX = 4, the mean and the SD of relative difference are

(−2.27± 1.26)× 10−4 (for the Rician fit of S/S0), (7.42± 2.87)× 10−3 (for the Gaussian

fit of S/S0), (−4.49± 7.05)× 10−5 (for the Rician fit of S/m0) and (6.02± 3.38)× 10−3

(for the Gaussian fit of S/m0). It is clear from these results that the Rician fit is better

than the Gaussian fit of S/S0 as the Gaussian fit is more biased as seen from the mean

values of the relative difference. A similar trend is seen for the case of Rician fit of S/m0

compared to the Gaussian fit. The bias reduces with increasing NEX from 2 to 4.
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Figure 6.2. Variation of the estimated σE of the noisy normalized MR signal (Ê) for

the cases of Rician and Gaussian fits to the distributions of S/S0 and S/m0 respectively.

Simulations are run at (a) NEX = 2 and (b) NEX = 4.
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Fig. 6.2 shows the variation of the estimated σE for the noisy normalized MR signal for

the cases of Rician and Gaussian fits to the distributions of S/S0 and S/m0 respectively

at two values of NEX. These results indicate that while using the distribution of S/S0

for the noisy normalized MR signal, the estimated σE increases with respect to the value

of the true normalized MR signal E. This is true for both the Rician fit and Gaussian fit

to the S/S0 distributions. The Gaussian fit underestimates σE compared to the Rician

fit of S/S0 in general and more so at lower signal levels. For the NEX = 4 case, σE is

further decreased indicating that more averaging could reduce the dependence of σE on

E. However, when assuming m0 >> σ0 such that S/S0 can be approximated to S/m0,

the estimated σE for the Rician fit does not change with the true normalized MR signal.

However, for the Gaussian fit of the distribution of S/m0, the σE parameter is again

underestimated, the effect becoming worse at lower signal levels. In this work, I used

the S/m0 distribution and select the value of σE = 0.1 (for NEX = 2 case) based on

the result of these simulations. However, in order to use the S/S0 distribution and fit a

Rician distribution to it, a signal-dependent σE has to be used. The covariance matrix

definition in the CRLB formulation has to be corrected to incorporate this effect.

6.1.3 Discussion

S and S0 are both signals with a Rician pdf since these are obtained from magnitude

MR images. The exact nature of the distribution of S/S0 has not been explored in these

simulations. However, the effect of fitting the distribution of S/S0 to a Rician and a

Gaussian pdf has been demonstrated. While fitting these distributions to that of S/S0

results in the dependence of the σE on the true normalized MR signal, the estimated

value of E is largely unaffected since the bias shown in the estimates is negligible. The

dependence of σE on E is further reduced by increasing NEX during signal acquisition.

In this work, it is assumed that m0 >> σ0 such that S/S0 is approximately equal to

S/m0 and the Rician fit of this distribution is more appropriate. The value of m0 is

measured by a single acquisition of S0 at NEX = 2. As shown in the simulations, using

the assumption m0 >> σ0, σE can be assumed constant with respect to E. Thus, in

106



the CRLB formulation, the covariance matrix (Σ) of the measurements of the normalized

MR signal (E) can be assumed to be σEI (i.e., Σ = σEI), where I is an identity matrix of

size N ×N , with N being the number of measurements (equal to the number of diffusion

gradient directions in the DTI experiment). However, using this assumption, the CRLB

will underestimate the bound of the covariance of parameter estimation. To correct the

CRLB formulation, the covariance matrix of the measurements can be redefined as a

diagonal matrix to include the dependence of σE on E, i.e., ijth term of the covariance

matrix becomes, [Σ]ij = {σEi for i = j, 0 otherwise}.

6.2 Performance of Estimators

Different estimators selected to perform the parameter estimation are evaluated for pre-

cision (uncertainty) and accuracy (bias) in the estimation of the model parameters. The

selection of the estimator is essential since the performance of the model parameter es-

timation is determined by the estimator although the performance can be predicted an-

alytically using the CRLB formulation. The CRLB gives a bound on the estimation

uncertainty which is attained when the estimator is minimum variance, unbiased and

efficient [109]. However, this is only true asymptotically (for infinite signal samples and

infinitesimally small tolerance settings of the estimator). In reality, a finite tolerance

setting is set for the convergence to the final solution and also a finite number of sig-

nal samples are available for the parameter estimation. Thus, estimator performance in

terms of its precision and accuracy needs to be evaluated by means, such as Monte Carlo

simulations and proper settings for tolerances has to be made before using the estimator

for the analysis of experimental data.

DTI data being MRI magnitude data always contain Rician noise. However, if a high

SNR is assumed (SNR > 5), the Gaussian approximation is reasonable. This approxima-

tion simplifies the analysis significantly and hence is more popular although inaccurate.

In the simulations, different scenarios of signal and noise models are considered and the

corresponding analysis is presented for them. In this section, the performance of different
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estimators, namely least-squares (LS), least-squares with bias correction (LSC) and max-

imum likelihood estimator (MLE), are evaluated in terms of its uncertainty (precision)

and the bias (accuracy) in the estimation of diffusion model parameters.

For the estimator performance evaluation, ADTI signals (using a particular gradient

scheme) are injected with noise (Rician or Gaussian) and a number of trials are simulated

where in each trial the parameter estimation is performed by different estimators. After

the estimation, the estimation covariance matrix and its determinant are computed. Also

the bias is calculated from the true parameter values. A total of 20000 realizations of

the ADTI signal are generated for each set of parameter values. The following parameter

values are used for the simulation: ADTI diffusion model parameters: D‖ = 1.62 ×

10−3 mm2 s−1, D⊥ = 0.148 × 10−3 mm2 s−1, φF = 0◦, θF = 90◦, σ = 0.1. FA =

0.9,MD = 0.638×10−3 mm2 s−1 Experimental settings are : b = 1000 s mm−2, N = 30.

Two gradient schemes are used: MF30 and OPT30. OPT30 is the optimized gradient

scheme obtained at the same parameter values and a cone angle of Λ = 35◦. Same b-

factor and N are used for the optimization. Note that the θF is set to 90◦ since at 0◦, the

distribution of θF is one-sided and non-symmetric. Thus, to display the full distribution

of θF , the fiber is directed towards the +X axis instead of the +Z axis. The estimators

were: LS, LSC and MLE (for the Rician noise case) and LS only (for the Gaussian

noise case). For each estimator, the settings are: maximum number of iterations = 105,

tolerance in variable values = 10−6, use Levenberg-Marquardt algorithm. The purpose

of this simulation exercise is to study the estimation performance of each estimator in

terms of the uncertainty (standard deviation in the model parameter estimates), bias

(mean signed difference (MSD)) and overall uncertainty (hypervolume of uncertainty =

determinant of covariance matrix).

6.2.1 Rician noise

For the Rician noise case, noise is injected in the complex signal and ADTI signal is the

magnitude of the noisy complex signal. Although the MLE seems to be the most suitable

estimator for this noise model, use of LS and LSC is also considered due to their popularity
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in usage. Tables 6.1, 6.2 and 6.3 show the estimation results (parameter estimates, the

mean signed difference (MSD = mean(β̂− β), where β̂ and β are the estimated and true

values of the model parameters) and the hypervolume of uncertainty (
√

det(Σ)) for the

three estimators and for both MF30 and OPT30 gradient schemes. The performance of

MLE is the best in terms of bias correction in the Rician noise injected data. Although,

MLE does not have the lowest hypervolume of uncertainty, which is obtained for the LS

case. This is because the estimator cost function in LS is the square of fitting error and

it will give the better result for covariance matrix. However, there is more bias in the LS

case as compared to MLE case. LSC estimator has better bias correction as compared

to LS, but is worse in the uncertainty. Its performance is somewhat in between LS and

MLE. Based on these simulations, MLE is most suitable for Rician noise based data since

it can achieve comparable precision with higher accuracy.

Table 6.1. Simulation results for the least-squares (LS) estimator performance assuming

Rician noise model

β True
MF30 OPT30

Est. MSD Est. MSD

D‖(×10−3 mm2 s−1) 1.620 1.564 ± 0.125 -0.057 1.571 ± 0.133 -0.049

D⊥(×10−3 mm2 s−1) 0.149 0.143 ± 0.037 -0.006 0.142 ± 0.038 -0.006

θF (◦) 90.000 89.982 ± 2.775 -0.018 89.985 ± 2.636 -0.015

φF (◦) 0.000 0.025 ± 2.741 0.025 -0.008 ± 2.647 -0.008

Hypervolume (× 10−11) 0.970 0.931

MSD is the mean signed difference between estimates and the true values, MSD

= mean(β̂ − β), where β̂ and β are the estimated and true values of the model

parameters. Hypervolume =
√

detΣ, where Σ is covariance matrix of estimates.

6.2.2 Gaussian noise

For the Gaussian noise case, the noise is additive and zero mean, σ2 variance. So, it should

not create any bias in the estimates. Also, under this case, the least-squares estimator

is the same as the maximum likelihood estimator [109]. Hence, for this case, only the

least-squares estimator performance in shown. The Gaussian approximation holds good

for SNR > 5 [114]. This is not always observed in DTI data. However, for other MRI
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Table 6.2. Simulation results for the least-squares with bias correction (LSC) estimator

performance assuming Rician noise model

β True
MF30 OPT30

Est. MSD Est. MSD

D‖(×10−3 mm2 s−1) 1.620 1.636 ± 0.136 0.016 1.637 ± 0.144 0.017

D⊥(×10−3 mm2 s−1) 0.149 0.146 ± 0.038 -0.003 0.146 ± 0.038 -0.003

θF (◦) 90.000 89.986 ± 2.780 -0.014 89.984 ± 2.647 -0.016

φF (◦) 0.000 0.028 ± 2.742 0.028 -0.007 ± 2.650 -0.007

Hypervolume (× 10−11) 1.078 1.034

MSD is the mean signed difference between estimates and the true values, MSD

= mean(β̂ − β), where β̂ and β are the estimated and true values of the model

parameters. Hypervolume =
√

detΣ, where Σ is covariance matrix of estimates.

Table 6.3. Simulation results for the maximum likelihood (ML) estimator performance

assuming Rician noise model

β True
MF30 OPT30

Est. MSD Est. MSD

D‖(×10−3 mm2 s−1) 1.620 1.626 ± 0.140 0.005 1.627 ± 0.141 0.007

D⊥(×10−3 mm2 s−1) 0.149 0.145 ± 0.038 -0.003 0.145 ± 0.038 -0.003

θF (◦) 90.000 89.986 ± 2.781 -0.014 89.998 ± 2.670 -0.002

φF (◦) 0.000 -0.032 ± 2.768 -0.032 0.007 ± 2.634 0.007

Hypervolume (× 10−11) 1.129 1.027

MSD is the mean signed difference between estimates and the true values, MSD

= mean(β̂ − β), where β̂ and β are the estimated and true values of the model

parameters. Hypervolume =
√

detΣ, where Σ is covariance matrix of estimates.

based analysis where the image has better SNR, Gaussian approximation is commonly

used.

6.3 Validation of performance curves

Performance curves are validated by Monte Carlo simulations for the performance of

the optimized 30-direction gradient scheme as well as the standard MF30 scheme by es-

timating the diffusion model parameters using different estimators and computing the

covariance and its determinant. This process is repeated for a range of fiber orien-

tation angles and the performance curves based on estimated uncertainties are gener-

ated. These are finally compared with the curves generated by CRLB formulation.
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Table 6.4. Simulation results for the least-squares (LS) estimator performance assuming

Gaussian noise model

β True
MF30 OPT30

Est. MSD Est. MSD

D‖(×10−3 mm2 s−1) 1.620 1.634 ± 0.134 0.014 1.636 ± 0.140 0.016

D⊥(×10−3 mm2 s−1) 0.149 0.146 ± 0.038 -0.003 0.146 ± 0.038 -0.002

θF (◦) 90.000 90.020 ± 2.747 0.020 89.987 ± 2.621 -0.013

φF (◦) 0.000 0.001 ± 2.737 0.001 -0.012 ± 2.625 -0.012

Hypervolume (× 10−11) 1.042 0.993

MSD is the mean signed difference between estimates and the true values, MSD

= mean(β̂ − β), where β̂ and β are the estimated and true values of the model

parameters. Hypervolume =
√

detΣ, where Σ is covariance matrix of estimates.

For each simulation for each fiber angle, 20000 realizations of the ADTI signal under

noise level of σ = 0.1 (Gaussian and Rician) are generated using both standard and

optimized gradient schemes. The model parameter values used in the simulation are:

D‖0 = 1.62 × 10−3mm2 s−1, D⊥0 = 0.148 × 10−3mm2 s−1, θF = [90 − 25]◦ in steps of

5◦ and φF = 0◦. The optimized gradient scheme was computed at the same parameter

values as mentioned except θF = 90◦. Thus, in terms of the angular deviation from the

+X axis (θF = 90◦), the range of α = [0 − 65]◦.

To verify the robustness of the scheme, the simulations were run at different fiber ori-

entations and hence angular deviations (α) from the original fiber orientation of (90◦, 0◦)

(Fig. 6.3). Three estimators are compared, namely, LS, LSC and MLE . The simulations

were run to verify that the predicted improvement in performance shown by the CRLB

formulation is also observed in practice with the selected estimators. Also by running

the simulation at different angular deviations the robustness of the scheme w.r.t. angular

deviation (α) is verified. Finally, the results would also show that predicted performance

relate well with the estimated performance and thus to analyze a scheme, a prediction is

good enough instead of performing lengthy Monte Carlo simulations.

The prediction represents a bound on the cost function. In practice, for the simulations,

the estimated hypervolume (
√

detΣ) would be different from the predicted bound. This

difference will depend on the estimator tolerance settings and the number of realizations

of the signal. The smaller the tolerance and the larger the number of realizations, the
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closer will be the estimation to the CRLB prediction. It will also depend on the choice

of the estimator since estimation will approach the predicted bound asymptotically when

the estimator is a minimum variance, unbiased and efficient estimator. But, a similar

trend is visible in the estimated hypervolume as compared to the hypervolume predicted

from the CRLB formulation. These are observed in the Fig. 6.3.
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Figure 6.3. Variation of ratio of hypervolume of uncertainty (DOPT /DMF , D =
√

det (ΣCR)) for ADTI model from Monte Carlo simulations w.r.t. angular deviation

(α) at σ = 0.1, Λ = 35◦. Gaussian case with LS estimator (a) and Rician case with LS

(b), LSC (c) and ML (d) estimators.

In Fig. 6.3, the cases of Gaussian and Rician noise models and the effect of optimization

on the hypervolume of uncertainty has been demonstrated. For the Gaussian case (Fig.

6.3(a)), the least-squares (LS) estimator has been used and it is seen that the prediction

and estimation correlate well. For the Rician noise case (Fig. 6.3(b–d)), the performance

is compared for the least-squares estimator(LS) with that of least-squares with noise

correction (LSC) and maximum likelihood (ML) estimators. Under similar tolerance

settings for each of the estimators, it is observed that MLE has performed well for the

optimized scheme. Additionally, it estimates the expected values of the parameters better

than LSC estimator since it models noise directly into the estimator as has been shown
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in the previous section.

6.4 Simulation for effect of b-factor, N and Λ in ADTI

model

Via simulations, the effect of various parameters, including the b-factor, the number

of gradient directions (N) and the cone angle (Λ) of fiber directions, on the overall

uncertainty of ADTI parameters estimation was investigated. Although the focus is

on the optimization of the diffusion gradient directions while keeping b-factor and the

number of gradient directions fixed and assuming a certain prior cone angle (Λ) for the

fiber directions, these simulations indicates the effect of other non-optimized experimental

parameters.

For each simulation, a particular setting of b-factor, N , Λ and the gradient schemes

are used and multiple trials are simulated. In each trial, the diffusion model parameters

(D‖, D⊥, θF , φF ) and the noise level (σ) are chosen from a distribution and the cost

function based on the Rician CRLB and the variance of FA are computed based on the

chosen model parameters. The distribution from which model parameters are chosen

incorporate spatial (voxel-to-voxel) variation observed in biological tissues. Finally, after

the simulation is completed, performance indices are computed over all trials for each

simulation.

6.4.1 Performance indices

Certain indices are defined to assess whether the optimized gradient scheme worked better

than a standard (commonly used) gradient scheme, such as MF30 scheme [22]. These are

defined in the following:

1) µr1 : the mean ratio of hypervolume of uncertainties in successful trials. µr1 =

mean(r1), r1 = DOPT /DMF , where D =
√

det ΣCR at each successful trial (r1 < 1)

and OPT indicates the optimized scheme and MF indicates the MF-based scheme used as

a reference for normalization. Since µr1 is computed in successful trials only, it is always
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in the range [0, 1]. A lower µr1 indicates better performance.

2) PS : percentage success rate denotes the number of trials (in percentage) out of

total trials where the normalized hypervolume is less than unity (r1 < 1).

3) eSNR : effective SNR is defined as the ratio of the mean of all diffusion-weighted

signals calculated in all trials over the root mean squared noise values provided in all

trials. Since there are different diffusion gradient directions, there are different diffusion-

weighting (and signal levels) in the DTI data. Thus, an effective signal level (averaging

all diffusion-weighted signals) is used to compute the eSNR. The eSNR can indicate how

effectively the diffusion gradients sample the gradient space.

4) σ2
FA : variance of FA is computed using the propagation of error theory [125]. It is

computed as a function of the variances of the diffusivities (D‖ and D⊥) which are given

by the Rician CRLB. It is normalized with respect to the corresponding value for the

reference scheme.

6.4.2 Simulation parameters

The following diffusion model parameters and noise levels were used in the simulations

(percentage variation are shown in parentheses): D‖ = 1.6204 ± 0.081 × 10−3 mm2

s−1 (5%) ; D⊥ = 0.14852 ± 0.0074 × 10−3 mm2 s−1 (5%) ; (θF , φF ) = (0◦, 0◦); σ =

0.1 ± 0.005 (5%); Rician CRLB; Number of trials = 10000. Other constraints include:

0.6 ≤ FA ≤ 1 and MD ≤ 1.2 × 10−3 mm2 s−1. All varying parameters are uniformly

distributed about their mean values.

D‖ = (1.6204± 0.081)× 10−3 mm2 s−1 and D⊥ = (0.14852± 0.0074)× 10−3 mm2 s−1

was used for the simulation results. These values correspond to high FA voxels (average

FA = 0.9) in the white matter tracts between the C1 and C2 levels of the cervical spinal

cord. The values of the diffusivity parameters are based on a preliminary DTI data ob-

tained using a standard protocol (b = 1000 smm−2 and MF30 gradient scheme). Similar

values (λ1 = 1.7 × 10−3 mm2 s−1, λ2 = λ3 = 0.2 × 10−3 mm2 s−1 and a corresponding

FA = 0.87) have been used in previous simulation experiments in the works of Alexander

[23], Peng et al. [21] and Gao et al. [39]. The simulations in this work were performed
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using diffusivity values with high FA since these values are representative of the white

matter tract regions and not are contaminated by the gray matter or CSF regions.

6.4.3 Effect of b-factor

Simulations were run using diffusion model parameters defined previously and varying

the b-factor between b = 1000 s mm−2 and 4500 s mm−2 (b = [1000, 1200, 1500, 2000,

2500, 3000, 3500, 4000, 4500] s mm−2). The cone angle, Λ = 35◦ and number of diffusion

gradients, N = 30 were used for all the cases. For each case of b-factor, an optimized

gradient scheme was generated and its performance indices were computed using MF30

at b = 1000 s mm−2 as the normalization reference scheme. Similarly, simulations were

run with MF30 at different b-factors and the indices were computed with respect to the

same reference scheme (i.e., MF30 at b = 1000 s mm−2).

For both the optimized and MF30 schemes, the performance (based on indices µr1 and

PS) only improves within a certain range of b-factor (Fig. 6.4 (a) and (b)). However,

for the optimized case, the range of high performance is broader than the MF30 case.

A similar trend is seen for variance of FA. This effect was also demonstrated by Gao

et al. [39] where they have showed that when a cone angle of fiber distribution is used

for optimizing the diffusion gradient, the b-factor range increased as compared to an

un-optimized (MF-based) scheme.

Generally, changes in the b-factor is restricted by the MRI scanner gradient strength

limitation and the SNR. It can be clearly seen from the simulation (Fig. 6.4 (c)) that the

effective SNR decreases with the increase of the b-factor. However, the optimized scheme

shows better SNR compared to MF30 at higher b-factors. A commonly used b-factor in

DTI experiment is 1000 s mm−2 (for example, in [62]) and this was used in the ADTI

experiments. The optimized gradient scheme depends on the selection of the b-factor and

the performance of the optimized scheme varies with the changes to the b-factor as shown

in these simulations.
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Figure 6.4. Effect of varying b-factor on the diffusion gradient optimization. Performance

indices (a) normalized hypervolume for successful trials (µr1), (b) percentage success rate

(PS), (c) effective SNR (eSNR) and (d) normalized variance of FA (σ2
FA) are shown for

different b-factors and for both the optimized gradient schemes (OPT) and the MF30

scheme (MF).

6.4.4 Effect of number of diffusion gradient directions (N)

Studies based on DTI showing the effect of number of gradient directions on noise prop-

agation indicate that a higher number of gradient directions is preferred over signal av-

eraging when characterizing noise sensitivity for a DTI gradient scheme [125]. In this

section, the effect of number of diffusion gradient directions on the overall performance

of the parameter estimation is investigated under the Rician CRLB formulation.

Simulations were run using diffusion model parameters defined previously and a varying

number of diffusion gradients (N) from 20 to 80 (N = [20, 30, 40, 50, 60, 80]). For each case

of N , an optimized schemes was generated and its performance indices were computed

with MF15 (N=15) as a reference. Similarly, the MF-based schemes were simulated at
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various N values and MF15 was used as the reference. Two b-factors, b = 1000 s mm−2

and 2500 s mm−2 and a cone angle of Λ = 35◦ in all cases were used.
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Figure 6.5. Effect of varying number of diffusion gradients (N) on the diffusion gradient

optimization. Normalized hypervolume for successful trials (µr1) ((a) and (b)), effective

SNR (eSNR) ((c) and (d)) and normalized variance of FA (σ2
FA) ((e) and (f)) are shown

for different N and for both the optimized gradient schemes (OPT) and the MF-based

schemes (MF). Figures (a), (c) and (e) are for b = 1000 smm−2, whereas figures (b), (d)

and (f) are for b = 2500 smm−2.

Based on Fig. 6.5, µr1 in general decreases with the increase inN for both the optimized
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and MF30 schemes. This is expected since more samples lead to a lower CRLB. But,

at a higher b-factor (b = 2500 s mm−2), better performances are achieved with a lower

number of gradients as compared to the corresponding MF case. This result suggests

that the number of gradient directions and equivalently the scan time can be reduced

to obtain the same performance as the MF scheme. The effective SNR is steady with

respect to changes in N . Normalized variance of FA correlates well with µr1 as the

number of diffusion gradients increases. N = 30 was selected for the ADTI experiments.

This provides good performance with µr1 and also eSNR. This is also a commonly used

number of diffusion gradients reported in other studies.

6.4.5 Effect of Cone angle (Λ)

In the diffusion gradient scheme optimization, an a priori range of fiber orientation an-

gles is assumed as defined by the cone angle (Λ). It signifies the uncertainty of fiber

orientations in the ROI voxels. This uncertainty can vary from a small angle (Λ = 10◦)

to a completely uncertain case (Λ = 90◦). The performance will vary depending on the

choice of the Λ parameter during optimization.

For the simulations, diffusion model parameters defined previously were used along with

Λ varying from 10◦ to 90◦ (Λ = [10 20 35 40 60 90]◦). A b-factor of 1000 s mm−2 and N

= 30 are used for all simulations. For each value of Λ, an optimized scheme is generated

and performance indices are computed with MF30 as a reference. The normalization

reference was MF30 with b = 1000 smm−2. As shown in Fig. 6.6, µr1 increases with the

cone angle. Both PS and the effective SNR decrease with the increase in the cone angle.

But these do not change for MF30. The changes in the performance indices (µr1 and PS)

reach steady state after approximately a cone angle of 40◦ and remains approximately

steady till 90◦. At completely uncertain case of Λ = 90◦, the optimized gradient scheme

performs similarly as MF30. The variance of FA shows an opposite trend as compared to

µr1. It decreases with the increase in the cone angle (Λ) till about 40◦ where it reaches

a plateau and then begins to increases. No changes are seen for MF30. This could be

explained from the fact that when smaller cone angles are used for gradient optimization,
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the optimization can get too specific and reduces the uncertainty of the fiber direction

parameters (θF and φF ) and not diffusivities (D‖ and D⊥). However, after Λ = 40◦, this

effect is reduced. The variance of FA is a function of the variances of the diffusivities (D‖

and D⊥). The optimization need not provide a reduction of uncertainty in estimation of

both the angular parameters (θF and φF ) and the diffusivities (D‖ and D⊥) concurrently.

However, it does provide a scheme with reduced overall uncertainty. This can be explained

since D-optimality uses determinant of the CRLB which is essentially the product of the

variances of the diffusion model parameters. Thus, although the determinant of CRLB

is reduced by optimization, all individual variances are not concurrently reduced.
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Figure 6.6. Effect of varying cone angle (Λ) on diffusion gradient optimization. Per-

formance indices (a) normalized hypervolume for successful trials, (µr1), (b) percentage

success rate (PS), (c) effective SNR (eSNR) and (d) normalized variance of FA (σ2
FA) are

shown for different Λ and for both the optimized gradient schemes (OPT) and the MF30

scheme (MF).
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6.4.6 Selection of b-factor, N and Λ

The selection of the experimental settings for b-factor and the number of gradient di-

rections (N) as well as the prior structural information in cone angle Λ is vital for the

performance of the gradient optimization procedure. As shown in the previous section, b-

factor can have an optimal value for best estimation performance in uncertainty reduction

under the diffusion model parameter values used for the simulation. This observation was

exploited in the b-factor optimization in Chapter 5, section “b-factor optimization”. Due

to hardware constraints on the MRI scanner, the optimal b-factor need not be achievable.

Also, it is observed that higher b-factor, lower is the eSNR. Since the cost function (deter-

minant of the CRLB matrix) does not include any SNR term directly, an optimization for

b-factor based on CRLB only need not have the best eSNR performance. Based on these

arguments, it is suggested that while performing b-factor optimization, an additional con-

straint on eSNR can be applied to the optimization problem (for example, eSNR > 4).

Also, MRI hardware limitations can also be incorporated as a limit on the values b-factor

can take during it’s optimization.

For the selection of the number of diffusion gradients, it is observed that the higher

the number of gradients, the better the estimation performance is in terms of estimation

uncertainty. However, more gradients requires a longer acquisition time. N = 30 is

used commonly and will be used for this work. Also, as shown before, similar estimation

performance can be achieved by fewer gradients when gradient optimization is performed.

This can be used to reduce the acquisition time.

The prior structural information as given by the cone angle (Λ) is best obtained from

a preliminary scan on each subject. A Λ = 35◦ is generally found in most subjects.

Although, smaller cone angle would mean lower uncertainty in the fiber orientation esti-

mation, but performance of the diffusivities estimation is affected at this angle. On the

other hand, at higher cone angles, the uncertainty in fiber orientation is affected. Using

a preliminary DTI scan makes sure that the subject-to-subject variability is considered

during gradient scheme optimization and also that extremes in Λ are not selected, such

as Λ = 0◦ (completely certain fiber orientation) or Λ = 90◦ (completely uncertain fiber
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orientation).

6.5 Comparison of performance indices for opti-

mized gradient schemes

In this section, gradient schemes designed for the ADTI and the DTI diffusion model with

Rician noise and optimized for all parameters, diffusivities only and angular parameters

only cases (in Chapter 5, section 5.5) are evaluated in terms of the performance indices,

such as PS , µr1 and eSNR. Also, the CRLB of variance of individual diffusion model

parameters and FA, MD and α are compared in the evaluation of the gradient scheme.

A series of simulations are performed for the evaluation with each simulation consisting

of a number of trials. At each trial, the normalized MR signal and the sensitivities are

calculated based on the Rician CRLB which uses diffusion model parameter values and the

experimental settings (b-factor, gradient scheme). Diffusion model parameter values are

obtained from a uniform distribution with specified means and variances. This simulates

the spatial variation of the diffusion parameter values in a tissue. Experimental settings

are kept fixed within a simulation. Simulations are performed for both the OPT30 and

MF30 schemes and finally, for each simulation, the performance indices and variance

bounds are computed.

For the distribution of diffusion model parameter values, the mean values are specified

in Chapter 5, section 5.5 and the standard deviation for diffusivities is 5% of the mean.

The fiber angles are uniformly distributed within the cone angle. Also the noise stan-

dard deviation is 5% of central value which simulates the spatial variation of the noise

parameter, σ, within a tissue.

Three cases of gradient optimization are considered, namely, gradients optimized for all

parameters (“All”), for diffusivities only (“Diffusivities only”) and for angular parameters

(“Angles only”) for fiber orientation only.
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Table 6.5. Simulation results for the ADTI optimized gradient scheme for Rician noise

model

All Diffusivities

only

Angles only

PS µr1 PS µr1 PS µr1

HyperVol 74.3 0.959 65.8 0.962 84.1 0.950

σ2
D‖

1.1 0.995 71.3 0.980 0.3 0.998

σ2
D⊥

32.3 0.942 70.0 0.884 59.5 0.969

σ2
FA 26.6 0.949 72.8 0.876 42.6 0.976

σ2
MD 4.3 0.999 21.4 0.956 0.0 0.0

σ2
θF

99.8 0.899 7.2 0.975 71.4 0.949

σ2
φF

56.0 0.932 7.1 0.957 76.9 0.931

σ2
α 65.0 0.925 6.1 0.958 56.8 0.946

6.5.1 ADTI model

In Table 6.5, the simulation results show the effect of using optimized gradients on the

variance of the individual diffusion model parameters, FA, MD and α using performance

indices. For the “All” parameters case, the overall reduction in the hypervolume of

uncertainty (as shown by a 74.3% success rate at 0.959 hypervolume ratio) also results

in the reduction of variance of the angular parameters and α. However, the effect on the

variance of diffusivities is not significant. The eSNRs are 5.737 for MF30 and 5.859 for

OPT30 schemes for this case. For the “Diffusivities only” case, the percentage success

is smaller than the “All” parameter case. However, the effect on the variance of D‖ and

D⊥ is significant. Since the optimization cost function is to minimize the uncertainties

in the diffusivities only, the variances of angular parameters are not reduced sufficiently

by gradient optimization. The eSNRs are 5.736 for MF30 and 5.702 for OPT30 for

this case. The variance of FA is also reduced sufficiently. But, the variance of MD is

not reduced sufficiently. For the “Angles only” case, the reduction in the cost function

results in the reduction in the expected variances of θF and φF . This is an expected and

a desired result. Effect on the variances of the diffusivities is less significant which is also

expected. The eSNRs are 5.740 for MF30 and 5.872 for OPT30 for this case. Except for

the “Diffusivities only” case, the eSNR is always improved by gradient optimization.
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6.5.2 DTI model

Table 6.6. Simulation results for the DTI optimized gradient scheme for the Rician noise

model

All Diffusivities

only

Angles only

PS µr1 PS µr1 PS µr1

HyperVol 100.0 0.759 100.0 0.797 99.6 0.923

σ2
D‖

0.0 0.0 0.0 0.0 32.8 0.962

σ2
D⊥1

100.0 0.806 100.0 0.768 81.3 0.957

σ2
D⊥2

100.0 0.816 100.0 0.688 100.0 0.814

σ2
FA 28.1 0.976 25.6 0.952 40.9 0.955

σ2
MD 0.0 0.0 0.0 0.0 40.6 0.965

σ2
θF

85.9 0.910 78.2 0.809 98.1 0.872

σ2
φF

89.5 0.911 53.9 0.937 68.1 0.958

σ2
α 79.8 0.915 55.7 0.874 92.8 0.921

From the simulation results in Table 6.6, it is observed that while the hypervolume of

uncertainty is reduced with PS > 99% for all the cases, the reduction is not consistent in

all the diffusion model parameters, especially D‖ and MD where the uncertainty is not

reduced for the “All” and the “Diffusivities only” cases compared to MF30. This can be

explained referring to the sensitivity plots in Figs. 5.4 – 5.7 where it is observed that the

majority of the high square sensitivity regions lie transverse to the fiber orientation (for

all parameters except D‖) and as such the optimization framework selects the transverse

region predominantly. The high square sensitivity region for D‖ lies towards the fiber

orientation which the framework does not sample. This effect is more pronounced in

the “All” parameters and “Diffusivities only” cases since here the majority of the higher

square sensitivity regions are transverse to the fiber orientation. Interestingly, in a coun-

terintuitive sense, this effect is less observed for the “Angles only” case due to an overlap

in the high square sensitivity regions for the fiber angles (θF , φF ) and D‖ (see Figs. 5.4

– 5.7). This effect was not significantly observed in the ADTI case since the high sensi-

tivity regions are more overlapping than DTI and hence a common optimal region can

be obtained by optimization. Thus, using D-optimality criterion need not optimize the
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gradients to improve the precision of all diffusion model parameters simultaneously, but

it will reach an overall optimal state w.r.t. the majority of the chosen model parameters.

The eSNR values were 4.735 for “All” case, 4.627 for “Diffusivities only” case and 4.485

for the “Angles only” case compared to 4.216 for MF30, indicating an improvement in

SNR.
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CHAPTER 7

Spinal cord axisymmetric diffusion

tensor imaging

7.1 A validation study for gradient scheme optimiza-

tion

In this section, a diffusion gradient optimization procedure is developed that is based on

D-optimality [33, 34] for the ADTI model which reduces the overall uncertainty in the

estimation of diffusion model parameters in the cervical spinal cord and brain stem region.

The optimized gradient scheme is designed to perform within a cone of fiber directions

with the mean fiber orientation being the axis of the cone. The cone angle is determined

by the a priori knowledge of the spinal cord structure obtained from preliminary DTI

experiments. The performance of the optimal scheme was compared with the MF-based

gradient scheme in terms of various performance indices defined in Chapter 6 previously

and also directly comparing the estimated standard deviations of different diffusion model

parameters. Also, the Rician noise model [23, 74] than Gaussian noise model has been

used to improve the estimation accuracy.
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7.1.1 Experimental Protocol

To experimentally validate the optimization framework, MRI data was collected with the

diffusion gradient directions optimized for a cone of fiber directions with the b-factor and

the number of gradient directions fixed (as used in routine MRI experiments). This study

was approved by the Institutional Review Board (IRB) for conducting research on human

subjects. Five healthy subjects (4 males, 1 female, average age 29 years) participated

in this study and provided their signed IRB-approved informed consent. The following

steps were performed:

1) Preliminary scan to collect a priori information: A preliminary DTI scan was per-

formed on the upper spinal cord and the brain stem region with a 15-direction MF-based

gradient scheme (MF15). The T2 and diffusion-weighted images were acquired using a

dual spin-echo EPI sequence on a 3T GE Signa HDx scanner (GE Healthcare, Waukesha,

WI), equipped with an 8-channel head coil with the following parameters: 22 contiguous

3-mm axial interleaved slices, TR = 7000 ms, TE = 77.4 ms, matrix size =128 x 128, FOV

= 16 cm x 16 cm, number of excitations = 1, parallel imaging acceleration factor = 2, b

= 1000 s mm−2, 15 diffusion gradient directions (MF15) and scan time = 1 min 52 sec.

The subject exited the scanner and was scanned again after the optimized gradients were

calculated. For the post-processing of the preliminary data, MD, FA, the ADTI model

parameters (D‖, D⊥, θF , φF ) and angular deviation (α) from the mean fiber orientation

were computed for each voxel. After visually locating the spinal cord from the T2 image,

an automatic ROI voxel selection was performed by applying the following thresholds to

extract the spinal cord tracts: FA ≥ 0.6 (for high anisotropy), MD ≤ 2.5 × 10−3mm2 s−1

(for removing CSF) and α corresponding to 80% of the distribution of fiber orientations

(to select majority of the tract voxels). Fig. 7.1 shows the process of selection of the

ROI voxels in the white matter tracts of the cervical spinal cord and brain stem regions.

For the ROI voxel extraction (shown in Fig. 7.1), a cuboidal region enclosing the spinal

cord below the C1 vertebral level and up to the C2 vertebral level was initially selected

manually. However, this region contains white matter tracts as well as the gray matter

in the spinal cord and CSF in the surroundings. To eliminate the gray matter and CSF
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region voxels, an FA (FA > 0.6) and MD (MD < 2.5 ×10−3 mm2 s−1) based thresholding

was applied to the manually selected region. FA values of 0.6 or above have been pre-

viously reported [28, 69] in the cervical spinal cord region of healthy subjects. The high

FA threshold ensures minimal contamination of the ROI voxels with gray matter which

cover a significant portion of the spinal cord. The presence of gray matter or CSF in the

ROI voxels will result in lower overall FA estimation since gray matter or CSF regions are

inherently less anisotropic in terms of diffusion than the white matter tracts. Since the

main focus of the study is on normal healthy subjects, this thresholding method worked

well in extracting the white matter tracts and reducing contamination by gray matter

and CSF regions. Also, for the brain stem region, this method was applied to extract only

the healthy white matter tracts (shown in Fig. 7.1). Table 7.1 shows the mean values of

diffusivity and the cone (Λ) values used for the design of the optimized gradient table for

different subjects.

Table 7.1. Average diffusivities and cone angles from preliminary DTI experiment data

of five subjects

Subjects D‖ × 10−3 D⊥ × 10−3 Λ

(mm2 s−1) (mm2 s−1) (◦)
1 1.819 0.233 35
2 1.494 0.159 35
3 1.388 0.176 35
4 1.791 0.178 35
5 1.909 0.321 40

2) Gradient scheme optimization: The optimized gradient schemes were designed off-

line based on the information obtained from the preliminary DTI experiment and solving

the cost function for robust optimization (minimizing det(ΣCR)). A b-factor = 1000 s

mm−2 and σ = 0.1 was selected for the procedure. The selection of noise level (σ) is

specific to the MRI scanner used since it depends on the state of the scanner. From

previous DTI studies not reported in this paper, σ was found to be approximately 0.1

and has been used in the gradient optimization. Fig. 7.2(a) shows the designed gradient

scheme for one of the subjects. The scheme for this subject was designed with Λ = 35◦

and the number of rings used in this design was 7 (P = 7, Nr={2, 2, 2, 4, 4, 6, 10}).

127



(a)

(b) R − L (mm)

I −
 S

 (
m

m
)

0 20 40 60
0

20

40

60

(c) R − L (mm)

I −
 S

 (
m

m
)

0 20 40 60
0

20

40

60

(d) R − L (mm)

I −
 S

 (
m

m
)

0 20 40 60
0

20

40

60

(e) R − L (mm)

I −
 S

 (
m

m
)

0 20 40 60
0

20

40

60

Figure 7.1. (a) T1 coronal view of the cervical spinal cord and brain stem near the C1 -

C2 vertebral region. The boxed region is selected manually and further magnified in (b)

(e). (b) T2 coronal image showing the segmented spinal cord within the initial ROI in (a)

after removal of the CSF surrounding the spinal cord by MD thresholding. (c) T2 coronal

image showing the selected white matter ROI voxels in (b) after removal of gray matter

voxels by FA thresholding. Similarly, the brain stem region is first manually selected in

(a), and then thresholded in two stages, (d) and (e), to extract the ROI voxels.
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Figure 7.2. Optimized gradient scheme (white circles) for 30 gradient directions on a 2D

opened hemisphere for cone angles (a) Λ = 35◦ (b) Λ = 90◦ (completely uncertain fiber

orientation case). Underlying grayscale image shows the normalized MR signal levels over

the hemisphere changing with respect to the diffusion gradient direction (θ, φ). Mean

fiber orientation is at (0◦, 0◦).

The procedure took about 20 minutes for each subject.

3) Data collection and analysis with the optimized ADTI protocol: The main ADTI

experiment was conducted with the same MRI protocol as the preliminary scan except

that the 30-direction optimized diffusion gradient scheme (OPT30) was used and number

of excitations = 2 (for additional SNR improvement). The scan time per dataset was 7

min 21 sec. For comparison purpose, an equivalent dataset was acquired with the MF30

gradient scheme. Six data sets were acquired with each gradient scheme on each subject

to have sufficient data for covariance computation. For subject-wise post-processing,

the data sets were first linearly registered (using FLIRT in FSL [126]) to align the spinal

cords. Next, the automatic ROI selection was performed by applying thresholds described

in step 1 to identify the common voxels amongst the 12 data sets. The normalized MR

signal (E) was calculated by normalizing the diffusion-weighted MR signals with a non-

diffusion-weighted (T2-weighted) value for each ROI voxel.
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7.1.2 Statistical Analysis

The sample size was increased from originally 6 data sets (for each gradient scheme) to

6000 data sets using a repetition bootstrap resampling technique [127]. Due to limitations

on collecting large amounts of data for each subject, bootstrap resampling techniques are

performed to compute statistics of a representative sample set of the subject data. The-

oretically, if the subject were to be scanned indefinitely, only then the true values of

the parameters can be estimated. However, in reality it is not possible. Via computer

simulations, a large data set can be generated. But, in the case of DTI experiment,

large dataset can not be collected due to time constraints. Thus, only a representative

data set (for example, 6 data sets for each gradient scheme and each subject) is collected

and by resampling, a large dataset is generated which can be used to compute statistics,

such as the covariance matrix. The resampling technique in this work incorporated a

sampling with replacement within the original data sets. For each subject, 6 datasets

of 30-direction diffusion-weighted data were collected. Thus, for each diffusion-weighted

volume corresponding to a diffusion gradient direction, there are 6 volume data. During

repetition bootstrap, secondary datasets of 30-direction diffusion-weighted data are gen-

erated by selecting with replacement diffusion-weighted volumes from the 6 original data

set. This process can be repeated for 6000 times to generate the bootstrapped datasets.

Also, while performing the bootstrapping, the mean of the measured DTI signal from

the original datasets was preserved such that the sample mean of the final dataset (with

6000 data) was the same as the original dataset. This ensured that the technique did not

inject an artificial bias into the measured DTI signal.

The bootstrapped data from the common voxels (ROI voxels) were used for estimating

the diffusion parameters and their mean and covariances. Maximum likelihood estimator

(MLE) [117] using the Rician noise model was used for the diffusion parameter estimation.

The covariance matrix (for estimated model parameters), its determinant and square root

(hypervolume of uncertainty, for example , DOPT=
√

det ΣOPT ) were computed at the

ROI voxels. The performance indices, PS and µr1, and the eSNR were computed over

the ROI voxels for each subject data.
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Unpaired t-tests (left-tailed and assuming unequal variance) were performed for com-

paring the estimated hypervolume of uncertainty and the standard deviations (root-mean-

squared (RMS)) of the model parameters (D‖, D⊥, θF and φF ) and FA over the ROI

voxels. The mean values of diffusivities (D‖ and D⊥) and the angular deviations (α) and

the standard deviations of model parameters and FA over ROI voxels are also reported.

7.1.3 Results for optimization using cone of fibers obtained

from a priori information

The reduction in estimation uncertainty is demonstrated in Fig. 7.3 through the distri-

butions of the ratio of the hypervolumes of uncertainty for five subjects. DOPT 30 and

DMF30 are the hypervolumes of uncertainty for the optimized and MF30 schemes respec-

tively. For the estimation, the hypervolumes are computed from the estimated covariance

matrix using MLE. For the prediction, these correspond to the hypervolume bound de-

fined by the Rician CRLB. Table 7.2 shows the estimation results on a subject-by-subject

basis and supports the following observations:

1) Reduction in uncertainty: More than 62% voxels demonstrate estimation uncertainty

reduction for all subjects as indicated in PS in Table 7.2. The mean ratio in successful

voxels, µr1, is much less than unity in all cases showing improvement in overall uncer-

tainty reduction. Table 7.2 also shows that the improvement in uncertainty is accurately

predicted based on the CRLB formulation. DOPT 30 is significantly less than DMF30 on

three subjects and approach significance in two subjects.

2) Standard deviations of model parameters: For the angular model parameters, θF

and φF , the standard deviations (RMS) over the ROI voxels always show improvement

for the optimized ADTI protocol compared to MF30 scheme (Table 7.4). The t-test

shows that the results approach significance. The standard deviations for the diffusivities

and FA indicate improvement, but not consistently for all the cases (Table 7.5). The

optimization reduces the overall uncertainty but not necessarily the uncertainty for all

model parameters concurrently.

3) Mean of the estimates: The mean of the estimates of diffusivity values (D‖ and
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Figure 7.3. Region of interest (ROI) voxel distributions with respect to hypervolume

ratio (DOPT 30/DMF30) for different subjects. DOPT 30 and DMF30 are square roots of

the determinants of covariance matrix of parameter estimation (
√

detΣ for estimation

(Est.) and
√

detΣCR for prediction (Pred.)) for OPT30 and MF30 schemes respectively.

Figs. (a) to (e) correspond to subject number 1 to 5. Majority of the ROI voxels for each

subject are in the less than unity range indicating an overall uncertainty reduction in the

parameter estimation.

D⊥) and angular deviation (α) averaged over ROI voxels for the optimized and MF-

based protocol are similar (Table 7.7). The mean % relative differences between these
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two protocols (absolute difference divided by the mean) for all five cases in Table 7.7 are

3.52 % for D‖, 8.29 % for D⊥ and 7.47 % for the mean α. The effect of optimization

on the accuracies of the estimated diffusivities and angular deviation is less than 10%

with respect to the MF30 protocol and can be considered as not affecting the estimation

accuracy (or bias) sufficiently.

4) Signal-to-noise ratio: The optimized protocol has consistently higher eSNR as com-

pared to the MF-based protocol as shown in Table 7.2, suggesting that the optimized

gradient scheme samples the gradient space better than the MF30 case with respect to

the eSNR.

Table 7.2. Performance comparison of the optimized scheme (OPT30) and MF30 from

subject data

Subjects Total voxels PS (%) µr1 D =
√

detΣ × 10−11

Est. Pred. Est. Pred. MF30 OPT30 p-value
1 47 74.5 78.7 0.521 0.541 5.550 3.267 0.002
2 16 62.5 75.0 0.457 0.536 7.273 4.785 0.021
3 37 64.9 67.6 0.539 0.563 4.688 3.482 0.088
4 19 68.4 63.2 0.544 0.608 6.982 3.627 0.108
5 19 78.9 73.7 0.453 0.551 13.969 6.779 0.029

D = hypervolume of uncertainty; PS = 100 × Voxels (DOPT30/DMF30 < 1) / Total voxels; µr1 =

Mean (DOPT30/DMF30) in successful voxels; eSNR = effective SNR

Table 7.3. eSNR comparison of the optimized scheme (OPT30) and MF30 from DTI

subject data

Subjects eSNR

MF30 OPT30
1 3.780 4.286
2 3.709 3.934
3 4.106 4.363
4 3.945 4.340
5 3.401 3.828

7.1.4 Results for optimization without a priori knowledge of

cone of fibers

Healthy spinal cord tract fibers tend to be oriented within a narrow angular range. How-

ever, pathological spinal cord might have more uncertain fiber orientations. The uncertain
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Table 7.4. Comparison of standard deviations (SD) of angular parameters at ROI voxels

from subject data using optimized gradient scheme (OPT30) and MF30

Subjects SD of θF (◦) SD of φF (◦)
MF30 OPT30 p-value

(SDOPT 30 <

SDMF30)

MF30 OPT30 p-value

(SDOPT 30 <

SDMF30)
1 3.234 2.774 0.0006 3.262 2.758 0.0001
2 3.800 3.360 0.0274 3.864 3.289 0.0089
3 3.333 2.976 0.0027 3.334 3.115 0.0430
4 3.320 2.961 0.0998 3.360 2.965 0.0628
5 4.341 3.746 0.0387 4.281 3.851 0.1153

Table 7.5. Comparison of standard deviations (SD) of diffusivities at ROI voxels from

subject data using optimized gradient scheme (OPT30) and MF30

Subjects SD of D‖ × 10−3 SD of D⊥ × 10−3

(mm2 s−1) (mm2 s−1)

MF30 OPT30 p-value

(SDOPT 30 <

SDMF30)

MF30 OPT30 p-value

(SDOPT 30 <

SDMF30)
1 0.315 0.291 0.0836 0.064 0.058 0.0047
2 0.318 0.278 0.1035 0.066 0.066 0.6012
3 0.269 0.239 0.0809 0.060 0.059 0.3832
4 0.330 0.278 0.1796 0.064 0.055 0.0757
5 0.387 0.295 0.0449 0.071 0.058 0.0067

Table 7.6. Comparison of standard deviations (SD) of FA at ROI voxels from subject

data using optimized gradient scheme (OPT30) and MF30

Subjects SD of FA

MF30 OPT30 p-value

(SDOPT 30 <

SDMF30)
1 0.046 0.039 0.0003
2 0.054 0.051 0.2514
3 0.045 0.046 0.6365
4 0.046 0.045 0.4522
5 0.057 0.047 0.0154

fiber orientation scenario was experimentally simulated by first generating the optimized

gradient scheme with Λ = 90◦ (OPT30-90) for a healthy subject (subject 1). Next, the

ADTI experiment was conducted using the OPT30-90 and MF30 schemes and the ROI

voxels (62 voxels) were selected in the brain stem region (beyond the spinal cord region,
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Table 7.7. Comparison of mean values of diffusivities and angular deviation at ROI voxels

from subject data using optimized gradient scheme (OPT30) and MF30

Subjects D‖ × 10−3 mm2 s−1 D⊥ × 10−3 mm2 s−1 α (◦)
MF30 OPT30 MF30 OPT30 MF30 OPT30

1 2.334 2.354 0.269 0.259 4.90 ± 1.00 4.50 ± 1.30
2 1.989 2.103 0.224 0.256 6.70 ± 1.30 7.20 ± 1.30
3 2.017 2.009 0.217 0.250 5.00 ± 1.00 5.80 ± 1.70
4 2.282 2.127 0.283 0.304 6.90 ± 1.60 7.30 ± 3.40
5 2.059 1.983 0.223 0.230 8.10 ± 1.10 8.20 ± 1.90

see Fig. 7.1) where the mean angular deviation of fibers are higher than the upper spinal

cord tracts (α ∼ 19 ± 9◦ (using MF30)). From the data analysis, it is found that the PS

(61.3% (estimated) and 62.9% (predicted)) is less than for the previous human studies

(for Λ < 90◦ cases), but the eSNR of OPT30-90 (4.180) is still better than MF30 (3.808).

The standard deviations of the estimated ADTI model parameters and FA are shown in

Table 7.8. From the analysis results, it is observed that the use of OPT30-90 reduced

the uncertainty of the diffusivity parameters and FA significantly while not changing the

uncertainties in the fiber orientation angles sufficiently. This is expected for the fiber

orientation estimation since the fiber orientation is completely uncertain from a priori

knowledge. The mean diffusivities of OPT30-90 and MF30 are approximately equal to

each other. D‖ = 1.575 × 10−3 mm2 s−1(for MF30) and 1.570 × 10−3 mm2 s−1(for

OPT30-90), D⊥ = 0.540 × 10−3 mm2 s−1(for MF30) and 0.514 × 10−3 mm2 s−1(for

OPT30-90). Thus, an overall reduction of the estimation uncertainty via the optimiza-

tion is achieved. This procedure suggests that the optimization process can be applied

to pathological cases with a higher uncertainty in fiber orientation.

7.2 Fiber tracking analysis

In this section, a quantitative analysis of the effect of the diffusion gradient optimization

on the tracking metrics is studied. Firstly, a simulation experiment is performed where

fiber tracking is conducted based on data from OPT30 and MF30 gradient schemes on a

simulated fiber bundle and is used to compare fiber tracking metrics (TF, AF and AL)
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Figure 7.4. Distributions of relative differences for various estimated quantities under the

DTI and ADTI model. Differences of (a) λr = (λ2 + λ3)/2 and D⊥, (b) λ1 and D‖, (c)

FA (d) MD, (e) θF and (f) φF are shown. These results are based on the voxels in the

cervical spinal cord white matter tracts (C1-C2 region) from five subject data collected

using the MF30 gradient scheme.
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Table 7.8. Comparison of standard deviations (SD) of estimated ADTI model parameters

and FA at the ROI voxels for subject 1 with gradients optimized for a completely uncertain

fiber orientation (OPT30-90) and MF30.

Model parameters MF30 OPT30-90 p-value
(SDOPT 30−90 < SDMF30)

D‖ × 10−3( mm2 s−1) 0.236 0.187 0.047

D⊥ × 10−3( mm2 s−1) 0.068 0.062 0.028

θF (◦) 6.551 6.745 0.306

φF (◦) 7.852 9.239 0.246

FA 0.086 0.080 0.024

under the two schemes. Secondly, ADTI experimental data on healthy subjects collected

in the previous section are used for fiber tracking and comparing tracking metrics. The

results from both the simulations and experimental data indicate that by optimization

of the diffusion encoding gradients, fiber tracking in general can be improved.

7.2.1 Method

A simulation experiment is performed where a synthetic fiber bundle of radius 6 mm and

length 46 mm oriented along the +Z direction and surrounded by a 12 mm radius cylinder

of isotropic medium is simulated. 10 sets of ADTI data are generated using both MF30

and OPT30 schemes. For the fibers, the following diffusion model parameters were used:

D‖ = 1.6204 × 10−3 mm2 s−1, D⊥ = 0.148 × 10−3 mm2 s−1, θF = 0◦, φF = 0◦ (FA =

0.9, MD = 0.639 ×10−3 mm2 s−1). For the surrounding medium, isotropic diffusion was

assumed with MD = 2.6 × 10−3, FA = 0. Rician noise is added to the data at σ = 0.1.

b = 1000 smm−2 and N = 30 gradient directions. ADTI data is processed using diffusion

tensor calculations and fiber tracking modules in DTIStudio (version 3.0.2) (Copyright

Mori, Jiang, Radiology department, Johns Hopkins University, Baltimore, MD, USA)

[103]. Fiber tracking settings were: starting FA = 0.6, stopping FA = 0.6 and curvature

limit = 40◦. TF, AF and AL metrics were calculated for each dataset. Fig. 7.5 shows

the fiber tracking done on one of the MF30-based simulated data.

For the fiber tracking analysis of experimental data, the five subject ADTI data was

used which was collected using the MF30 and OPT30 protocols (described in the section
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Figure 7.5. Fiber tracking based on simulated fiber bundle surrounded by isotropic

medium.

7.1). The 12 volume data collected for each subject are co-registered using FLIRT in

FSL package [126]. The seed ROI is drawn manually for each subject case in the inferior

end of the cervical spinal cord below the C2 vertebral level (shown for one subject case

in Fig. 7.6) and used for fiber tracking in all the 12 co-registered volume data. The

following FACT settings were used: starting FA = 0.6, stopping FA = 0.6 and angle of

curvature limit = 40◦. FA value of 0.6 has been reported for the cervical spinal cord region

previously [28, 69]. The FACT curvature limit equal to or similar to 40◦ has been used

previously [67, 103]. Fibers tracked using the seed ROI for one subject are shown in Fig.

7.7. After the tracks were reconstructed, the metrics TF, AF and AL were calculated.

7.2.2 Fiber tracking results

Table 7.9 shows the fiber tracking results for the simulation experiment. It is observed

that both the TF and AF metrics are significantly higher for OPT30 than MF30. The

AL is almost equal for both the cases.
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(a) (b)

(c)

Figure 7.6. (a) Coronal view, (b) sagittal view and (c) axial view of T2-weighted image

of the cervical spinal cord with the seed ROI shown in red.

Figure 7.7. 3D fiber tracking shown in the cervical spinal cord region using the DTIStudio

software.
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Table 7.9. Comparison of fiber tracking results for OPT30 and MF30 protocols using

simulated fibers.

Metric MF30 OPT30 p-value
TF (number of fibers) 1025 ± 30 1066 ± 28 0.003
AF (fibers per voxel) 15.1 ± 0.4 15.5 ± 0.4 0.014

AL (mm) 45.4 ± 0.05 45.4 ± 0.04 0.335

Table 7.10 shows the estimated TF metric from the same seed ROI for each subject in

the 12 datasets under the two gradient schemes (OPT30 and MF30). It is observed that

the total number of fibers is higher on an average for the OPT30 protocol as compared to

the MF30 protocol. Table 7.11 shows the AF metric for all the subjects. This quantity

is also higher on an average for the 5 subjects for OPT30 protocol compared to MF30

protocol. Finally, Table 7.12 shows the estimated AL metric for all the subject data. The

average length of fibers tracked is moderately higher for the OPT30 protocol than that

of the MF30 protocol.

The OPT30 scheme is designed to improve the overall precision of the estimated diffu-

sion model parameters which is expected to improve any secondary processing done based

on these parameters. In the previous section, the fiber orientation estimation showed bet-

ter precision (less standard deviation) when using the OPT30 scheme. Also, FA = 0.6

was used in the design of the OPT30 scheme (for the extraction of white matter voxels).

In the FACT algorithm, FA = 0.6 was also used and all other FACT parameters, seed

ROI as well as the imaging parameters (except for the gradient scheme) were same for

both the OPT30 and MF30 cases. Thus, an unbiased comparison of the fiber tracking was

performed for the two cases. Since the FACT algorithm traces streamlines in the image

space based on the estimates of the local fiber orientation and FA, number of streamlines

traced reduces if these estimates are less precise. Thus, improvement in the precision of

diffusion parameter estimation shows up as an increase in the number of fibers tracked

(TF). The increase in TF also increases the AF metric. The AL metric was only moder-

ately high for the OPT30 case indicating less effect of the gradient optimization on the

length of the fibers tracked.
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Table 7.10. Comparison of fiber tracking results for OPT30 and MF30 protocol for the

total number of reconstructed fibers (TF) through the ROI using 5 ADTI subject data

Subjects Grad. Sch. Datasets 1 – 6 Mean ± SD

1
OPT30 227 166 224 219 168 189 199 ± 28
MF30 158 133 175 124 128 137 143 ± 20

2
OPT30 140 186 115 134 132 134 140 ± 24
MF30 70 88 134 135 111 93 105 ± 26

3
OPT30 202 176 167 161 164 203 179 ± 19
MF30 110 123 142 120 149 133 130 ± 15

4
OPT30 203 176 178 190 184 179 185 ± 10
MF30 164 146 132 125 160 146 146 ± 15

5
OPT30 140 157 173 172 186 156 164 ± 16
MF30 167 105 127 139 106 110 126 ± 24

Table 7.11. Comparison of fiber tracking results for OPT30 and MF30 protocol for the

average fibers per voxel (AF) using 5 ADTI subject data

Subjects Grad. Sch. Datasets 1 – 6 Mean ± SD

1
OPT30 7.6 6.4 7.4 7.1 6.4 6.6 6.9 ± 0.5
MF30 6.6 5.5 7.2 5.8 6.1 5.9 6.2 ± 0.6

2
OPT30 5.7 6.5 5.1 5.4 5.8 5.0 5.6 ± 0.5
MF30 4.1 3.8 5.0 5.4 4.2 4.6 4.5 ± 0.6

3
OPT30 6.1 5.5 5.8 5.4 5.4 5.9 5.7 ± 0.3
MF30 5.4 5.2 5.7 4.7 6.2 6.1 5.5 ± 0.6

4
OPT30 7.1 6.0 5.7 6.1 5.5 5.2 5.9 ± 0.6
MF30 4.7 5.3 4.6 4.4 5.4 4.8 4.9 ± 0.4

5
OPT30 4.9 5.1 6.3 5.6 5.9 5.7 5.6 ± 0.5
MF30 5.4 4.6 4.6 5.0 4.4 4.8 4.8 ± 0.4

Table 7.12. Comparison of fiber tracking results for OPT30 and MF30 protocol for the

average length (in mm) of fibers (AL) tracked using 5 ADTI subject data

Subjects Grad. Sch. Datasets 1 – 6 Mean ± SD

1
OPT30 30.7 25.7 27.6 26.6 26.0 29.2 27.6 ± 1.9
MF30 27.9 25.1 32.1 27.8 28.4 25.5 27.8 ± 2.5

2
OPT30 24.1 26.6 23.8 21.6 23.0 21.4 23.4 ± 1.9
MF30 17.8 18.1 21.4 20.7 19.7 20.7 19.7 ± 1.5

3
OPT30 27.1 24.9 24.9 23.8 23.1 24.7 24.8 ± 1.4
MF30 25.2 22.8 24.6 22.2 26.0 26.0 24.4 ± 1.6

4
OPT30 28.6 27.8 24.4 26.4 24.4 24.5 26.0 ± 1.9
MF30 21.1 20.8 19.5 19.2 20.2 21.3 20.3 ± 0.9

5
OPT30 20.6 24.4 26.9 23.5 26.4 25.9 24.6 ± 2.3
MF30 22.4 21.6 22.4 24.3 20.8 24.0 22.6 ± 1.3
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7.3 A partitioned CRLB based optimization of b-

factor and diffusion gradient scheme

Optimization of DTI experimental parameters depends on the selection of the cost func-

tion that is minimized during the optimization process. Hasan et al. [17] discuss a number

of cost functions which have been previously reported, such as the total variance of esti-

mates of the diffusion tensor matrix elements [18], the Coulomb’s force or energy assuming

the gradient directions are point charges on a unit sphere [22], the product of the inverse

of the squares of singular values of the encoding matrix, condition number of the encod-

ing matrix, variance of secondary metrics such as FA [21] or ADC (apparent diffusion

coefficient) [24].

The CRLB provides a theoretical lower bound of the variance of the estimated diffusion

model parameters in terms of the signal noise and the DTI experimental parameters

provided the noise pdf is known and follows regularity condition [109]. Previous use

of CRLB can be seen in the work by Brihuega-Moreno et al. [24] for optimizing the

b-factor for improved precision of ADC estimation and Alexander [23] for optimizing

the diffusion gradient strength, the pulse interval between the diffusion gradient pulses

and the diffusion pulse duration for reducing the overall uncertainty of the simplified

CHARMED model parameters [9]. For a multi-parameter diffusion model, such as DTI

or ADTI, the CRLB matrix can be partitioned to select the uncertainty bounds of only

a subset of the diffusion model parameters (as shown in Chapter 5, section 3). The

determinant of the sub-matrix corresponding to the subset of the model parameters can

be minimized with respect to experimental parameters to obtain D-optimal experimental

parameters (gradient scheme or b-factor or both).

For the spinal cord tracts, the axon bundles are oriented in the superior-inferior orien-

tation within a narrow range of fiber directions. Thus, the range of fiber angles is fairly

known a priori which can be used to improve the precision of the diffusion parameter es-

timation. As described in Chapter 5, the subsets of the set of diffusion model parameters

can be in general grouped into diffusivities (such as D‖ and D⊥ for the ADTI model)
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and angular parameters for the fiber orientation (θF and φF ). In this section, a com-

bined b-factor and gradient scheme optimization technique is developed for the cervical

spinal cord tracts where the precision in the estimation of only diffusivities is improved

by using a partitioned CRLB as the cost function and the a priori fiber orientation range

information.

7.3.1 Method

Definition of the partitioned CRLB

The cost function for the partitioned CRLB matrix for the ADTI model for diffusivities

only case has been defined previously in Chapter 5, section 5.3.1. The determinant of

the sub-matrix B1 can be minimized with respect to both the b-factor and the gradient

directions such that the overall uncertainty of the diffusivities is reduced.

Optimization procedure

For the optimization of the b-factor and gradient scheme, the prior information used were

as follows: D‖ = 1.6 × 10−3 mm2 s−1, D⊥ = 0.148 × 10−3 mm2 s−1, (θF , φF ) = (0◦, 0◦)

(+Z-axis). This corresponds to an FA = 0.9 and MD = 0.639 × 10−3 mm2 s−1. The

range of fiber orientation (cone angle), Λ = 25◦. The cone angle value is smaller than the

values used previously since this corresponds to voxels with a high mean FA = 0.9. The

number of gradient directions is fixed to 30 directions. The optimization was performed

by minimizing the cost function (det(B1)) within the cone angle of fiber orientation using

simulated annealing technique [73] (flowchart for this step is described in Appendix I).

The optimized b-factor was found to be 2062 smm−2 and the gradient scheme is shown

in Fig. 7.8.

Experiment

This study was approved by the Institutional Review Board (IRB) for conducting research

on human subjects. One healthy subject (male, age 29 years) participated in this study

and provided his signed IRB-approved informed consent. The experiment was conducted
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Figure 7.8. Distribution of 30 gradient directions (white circles) on a opened unit hemi-

sphere shown with an underlay image of the normalized MR signal at b = 2062 smm−2

and FA = 0.9.

using OPT30 and MF30 schemes at the C1-C2 vertebral location of the cervical spinal

cord with the following settings: T2 and diffusion-weighted images were obtained using a

dual spin-echo EPI sequence on a 3T GE Signa HDx scanner (GE Healthcare, Waukesha,

WI), equipped with an 8-channel head coil with the following parameters, 12 contiguous

3-mm axial interleaved slices, TR = 4500 ms, TE = 90.3 ms, matrix size =128 x 128, FOV

= 16 cm x 16 cm, number of excitations = 4, parallel imaging acceleration factor = 2, b

= 2062 smm−2, 30 diffusion gradient directions and scan time per dataset = 9 min 23

sec. Maximum likelihood estimator was used for the ADTI model parameter estimation

assuming Rician noise model. The post-processing technique is same as described in

section 7.1.1.

7.3.2 Results

Fig. 7.9 shows the ROI voxel distribution with respect to the hypervolume ratio and

it is observed that majority of the voxels (PS = 72.2% of 36 ROI voxels) have reduced

overall uncertainty in the diffusivities estimation (µr1 = 0.742). The prediction based on

the partitioned Rician CRLB matrix shows similar results with PS = 69.4% and µr1 =

0.786. The eSNR is 2.736 for the MF30 and 2.881 for the OPT30 case, thus indicating

improvement in the overall SNR. These eSNR values are less than the previously reported

values in section 7.1 (which were around 5) due to the use of a higher b-factor (b =

2062 smm−2) in this experiment than the previous case (b = 1000 smm−2). Simulations
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Figure 7.9. ROI voxel distribution with respect to hypervolume ratio (DOPT 30/DMF30)

based on the ADTI datasets from MF30 and OPT30 gradient scheme for one healthy

subject. Estimated PS = 72.2% and µr1 = 0.742 for 36 ROI voxels. Estimation is based

on the covariance of estimates and prediction is based on the Rician CRLB formulation.

in Chapter 6 section 6.4.3 also demonstrate the decreasing trend of eSNR with increasing

b-factor.

Table 7.13. Comparison of ADTI parameter standard deviations (RMS) in the ROI voxels

for data based on MF30 and OPT30 gradient schemes and one healthy subject

Model parameters MF30 OPT30 (b opt.) p-value

SDOPT30 < SDMF30

D‖ × 10−3 mm2 s−1 0.562 0.527 0.122

D⊥ × 10−3 mm2 s−1 0.046 0.043 0.045

MD × 10−3 mm2 s−1 0.169 0.159 0.141

FA 0.0543 0.0536 0.495

θF (◦) 2.992 2.945 0.355

φF (◦) 3.082 2.962 0.238

Table 7.13 shows the RMS standard deviations (SD) of the ADTI parameters for the

ROI voxels when using MF30 and OPT30 schemes on a single healthy subject. In gen-

eral, the SD values for all the parameters are less for the OPT30 case than the MF30

case indicating reduction in the parameter estimation uncertainty due to optimization.

However, for the diffusivities estimation, the reduction is more statistically significant

(especially for D⊥) than the angular parameters estimation which is expected since the

optimization cost function specifically optimized for the partitioned Rician CRLB for the
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Table 7.14. Comparison of ADTI parameter mean values in the ROI voxels for data based

on MF30 and OPT30 gradient schemes and one healthy subject

Model parameters MF30 OPT30 (b opt.)

D‖ × 10−3 mm2 s−1 2.311 2.246

D⊥ × 10−3 mm2 s−1 0.212 0.233

MD × 10−3 mm2 s−1 0.912 0.904

FA 0.886 0.873

θF (◦) 88.413 88.545

φF (◦) 0.294 0.868

diffusivities. Table 7.14 shows the mean values of the estimated ADTI parameters and FA

and MD obtained by averaging over the ROI voxels for the MF30 and OPT30 schemes.

The parameters values are similar under the two protocols indicating no significant bias

due to the gradient scheme and b-factor optimization. Note that the coordinate axis is

rotated towards the X-axis so that the mean fiber angles are close to (θF , φF ) = (90◦, 0◦).

This is done to avoid the discontinuity in φF at (0◦, 0◦) which affects the calculation of

mean and SD.

7.4 Discussion

7.4.1 Justification for the use of axisymmetric diffusion model

for cervical spinal cord

In this section, the pertinence of the choice of the ADTI model is examined instead of the

use of the general DTI model by comparing the estimated values of the diffusion model

parameters, FA and MD. To estimate these quantities, the five subject data collected

using the MF30 scheme only and the same ROI voxels from the C1-C2 region of the

cervical spinal cord as described in the procedure in the “Experimental Protocol” section

were used.

For transverse diffusivities, the following group statistics (mean and standard deviation

(SD)) were obtained: D⊥ = (0.345 ± 0.131) × 10−3 mm2 s−1, λ2 = (0.468 ± 0.147) ×

10−3 mm2 s−1 and λ3 = (0.288 ± 0.133) × 10−3 mm2 s−1. The radial diffusivity (λr)
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is defined as the mean of the secondary and tertiary eigenvalues of the diffusion tensor

(λr = (λ2 + λ3)/2) and find that λr = (0.378 ± 0.13) × 10−3 mm2 s−1 . Fig. 7.4(a)

shows the distribution of the relative difference between λr and D⊥, defined as 100 ×

(λr −D⊥)/((λr + D⊥)/2), for which the mean and SD are (11.1 ± 12.6) %. Also, it is

observed that about 70% of the voxels have less than 10% difference between D⊥ and λr

(90% voxels less than 21% difference). These results indicate that D⊥ is approximately

equal to the λr with a relatively small bias. With regard to longitudinal diffusivities,

D‖ = (1.84 ± 0.34) × 10−3 mm2 s−1 and λ1 = (1.70 ± 0.29) × 10−3 mm2 s−1. In Fig.

7.4(b), the group mean and SD for the relative difference between λ1 and D‖, defined

as 100 × (λ1 −D‖)/((λ1 +D‖)/2), is (-7.4 5.9)% and about 80% of the voxels have the

relative difference less than 10% between D‖ and λ1, thereby revealing that D‖ obtained

with ADTI is equivalent to the primary eigenvalue λ1 obtained with DTI.

Figs. 7.4(c)–(f) show the distributions of the relative differences in FA, MD and differ-

ence in angular parameters (θF , φF ) between the ADTI and the DTI models. The group

means and SDs for the relative difference for FA (defined as 100 × (FADTI − FAADTI))

is (-3.6 ± 3.3) % and for MD (defined as 100 × (MDDTI − MDADTI)/MDDTI) is (-2.57

2.58) %. Similarly, for the angular parameters, the group mean and SDs for the difference

is (-0.08 2.13)◦ for θF and (0.09 ± 2.04)◦ for φF . Thus, both models lead to similar

estimations of FA, MD and the angular parameters (θF , φF ). Hence, any diagnosis based

on FA, MD or fiber tractography should not be affected by the ADTI assumption. More-

over, the ADTI model reduces the number of diffusion model parameters from six to

four, and thus allows a shorter computation time for the optimization framework. This

is advantageous for routine clinical studies.

Thus, in terms of diffusivities, the ADTI and DTI models result in analogous dis-

tributions in the cervical spinal cord white matter tracts (C1-C2 region). Hence, this

framework based on the ADTI model can be used in applications where only the trans-

verse diffusivity is used to characterize the tissue properties. To deal with the inherent

limitation of the ADTI model in cases where the secondary and tertiary eigenvalues of the

diffusion tensor need to be characterized, a future study based on the non-axisymmetric
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DTI model will be performed.
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Figure 7.10. Distributions of optimized diffusion gradient directions (indicated by white

circles) on an opened unit hemisphere. Underlying grayscale image shows the normalized

MR signal levels over the hemisphere changing with respect to the diffusion gradient

direction (θF , φF ). Optimized gradients are shown for the ADTI model in (a) and the

non-axisymmetric DTI model in (b) for healthy white matter tracts with FA = 0.745, MD

= 0.818 ×10−3 mm2 s−1. For the pathological case (cervical spinal cord in ALS patients),

optimized gradients are shown for the ADTI model in (c) and the non-axisymmetric DTI

model in (d) with FA = 0.45, MD = 0.96 ×10−3 mm2 s−1. For all cases, the fiber

orientation angle is (θF , φF ) = (0◦, 0◦).

7.4.2 Optimized distribution of gradient directions

The optimized gradient schemes computed based on the ADTI and DTI models lead to

different characteristics in the spatial distribution of gradient directions. Figs. 7.10(a) and

7.10(b) represent the optimized gradient distributions from these two model assuming FA

= 0.745 and MD = 0.818 ×10−3 mm2 s−1 obtained from the group averages of the healthy

subjects. Let us then consider a pathological condition (amyotrophic lateral sclerosis

(ALS) case reported by Nair et al. [128]), for which the DTI diffusivities were calculated

directly from the definition of FA, MD and λr: λ1 = 1.44× 10−3 mm2 s−1, λ2 = 0.927×

10−3 mm2 s−1 and λ3 = 0.513 × 10−3 mm2 s−1, resulting in λr = 0.72 × 10−3 mm2 s−1.

The ADTI diffusivities are calculated by fitting the ADTI model to 30 diffusion-weighted

normalized MR signals, which are simulated based on the eigenvalues of the diffusion
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tensor values above, b-factor = 1000 smm−2, MF30 gradient scheme and fiber oriented

along +Z direction. The estimated ADTI parameters are: D‖ = 1.46 × 10−3 mm2 s−1

and D⊥ = 0.712 × 10−3 mm2 s−1. Figs. 7.10(c) and 7.10(d) show the corresponding

optimized gradient distributions using DTI and ADTI, respectively, with FA = 0.45, MD

= 0.96 ×10−3 mm2 s−1 for the pathological condition defined above. It is observed that

the optimized gradients are distributed more uniformly in the transverse orientation in

the ADTI case than in the DTI case for both the healthy and the pathological case.

This is expected given the axisymmetry assumption in the ADTI model, which results in

the axisymmetry of the MR signal with respect to the fiber orientation as shown in the

underlay images in Figs. 7.10(a) and 7.10(c).

The optimized distribution of the gradient direction on the unit sphere largely depends

on the symmetry in the transverse diffusivity, the overall diffusion anisotropy (the dif-

ference in the longitudinal and transverse diffusivity) and the cone angle within which

the optimal performance is designed. The higher the overall diffusion anisotropy, the

greater the MR signal is in the transverse direction to the fiber orientation in comparison

to the MR signal in the longitudinal direction (as seen in the underlay images in Fig.

7.10). Since D-optimality based framework uses the square of sensitivity matrices (which

are also a function of normalized MR signal), regions of higher sensitivities are along the

transverse direction rather than along the direction of the fiber orientation when diffusion

anisotropy is high. The axisymmetry assumption of the diffusion tensor results in the

normalized MR signal and diffusivity sensitivities also being axisymmetric about the fiber

orientation (see Figs. 7.10(a) and 7.10(c)). Thus, for the ADTI model, the optimized

gradient directions tend to be uniformly distributed about the fiber orientation (also see

Fig. 5.12). This is an important effect of the gradient optimization framework on the

gradient distribution.

If the general DTI model is used, and if the secondary and tertiary eigenvalues of the

diffusion tensor are significantly different from each other, the optimized gradients will no

longer tend to be distributed uniformly about the axis along the fiber orientation (also see

Fig. 5.13). The gradients will sample more of the region corresponding to the direction
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of the tertiary eigenvector than the region corresponding to the secondary eigenvector

of the diffusion tensor (shown in Fig. 7.10(d)). In this case, the diffusion tensor model

without the axisymmetric assumption has to be employed in the signal formulation since

the use of the axisymmetric DTI formulation would result in additional uncertainty in the

estimation of diffusion model parameters. The case when the overall diffusion anisotropy

is low (low FA cases), the signal level difference between the longitudinal and transverse

directions will also become low. Under such circumstance, the optimization framework

would distribute the gradients more evenly on the unit sphere as compared to more

transversely in case of high anisotropy (as seen in Fig. 7.10(c)).

7.4.3 Clinical relevance

FA threshold of 0.6 has been used to extract white matter tracts specifically and minimize

the selection of voxels with gray matter of CSF contamination. Since the validation study

was only on healthy subjects, this high FA thresholding worked well. Also, use of FA

threshold for ROI voxel extraction has been previously reported by Wheeler-Kingshott

et al. [129]. For low FA cases (pathology), the choice of the FA threshold will depend

on the application. If only the pathological voxels need to be extracted, a specific range

of FA values (corresponding to the pathology) can be used instead of a high FA cutoff.

A manual segmentation based on the anatomical structure would be more appropriate

(for example, using T1-weighted or T2*-weighed anatomical images). But the assistance

from the FA image has been quite valuable based on my experience in identifying the

white matter regions without gray matter or CSF contamination.

Cardiac and respiratory motions were not factored in this protocol optimization. The

parameter estimation will likely be improved if the effect of the cardiac and respiratory

motion is reduced through the use of gated sequences. However, these procedures require

more acquisition time and were not suitable in the present study. Both the bulk motions

mentioned above have been minimized by applying image co-registration techniques in the

pre-processing steps. In addition, physiological motion would affect both the optimized

schemes and MF30 equally, without changing the outcome of the comparisons.
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A limitation in the proposed work is that the optimization procedure needs a prelimi-

nary scan (2 min for the OPT30 protocol). An extra 20 min is required to generate the

optimized gradient scheme with four 3.3 GHz CPUs. The computation time can be short-

ened by parallelizing more CPUs which will allow the data acquisition with the optimized

gradient scheme in the same scan session as the preliminary scan. Most clinical spinal

cord MR protocols consist of routine anatomical scans. These scans can be conducted

while the computation of the optimized gradient scheme is being performed.

The use of the determinant of the CRLB matrix results in a global optimal state with

respect to the uncertainty in the estimation of the diffusion model parameters. But

the precisions of all the individual diffusion model parameters might not be improved

simultaneously. If one aims to optimize the estimation of only a subset of the diffusion

model parameters (for example, only the diffusivity parameters and not the angular

parameters), then the diffusion gradients can be optimized by minimizing the determinant

of a partition of the CRLB matrix for D-optimality [120].

Finally, it is noted that the use of the gradient optimization can be extended to regions

outside the central nervous system wherever the white matter tracts are directed in a

particular orientation and over a range of distance, such as the median nerves in human

wrists. Work done by Meek et al. [29] who demonstrated the feasibility of in vivo three-

dimensional reconstruction of the median nerves in human wrists by DTI-based fiber

tracking can be further improved by this gradient optimization. The ADTI can also

be applied to non-nervous tissues that exhibit organized and orientated structure, such

as the skeletal muscle tissues. DTI has been reported to track muscle fibers in skeletal

muscles and to create biomechanical models of the muscles based on the estimate of local

orientation of the fibers (pennation angle), fiber length and cross-section of the fiber

bundles in humans [32]. An optimized gradient scheme will improve the estimation of

such metrics.
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7.4.4 Fiber tracking in cervical spinal cord

The effect of the gradient scheme optimization on fiber tracking metrics (TF, AF and

AL) can be shown by a simple demonstration of the FACT algorithm given in Fig. 7.11.

In this case, a 2D FACT algorithm is implemented using brute-force method [103] for an

image of size 5 × 3. The boxes represent the image pixels, the arrows indicate the fiber

orientations within the pixels and the orange lines are the fiber tracks. The true fiber

orientation is along the vertical direction.

Going from left to right column, the number of pixels with uncertain fiber orientation

increases. It is observed that the left column with the least uncertain fiber orientations

has the most number of tracks reaching the seed voxels. Also, the number of tracks per

voxel is higher for this column of fibers and the fibers track the length of the column. For

the middle column, there is a pixel in the middle with higher uncertain fiber orientation

which results in reduced track density although the number of fibers reaching the seed

voxels is same as in the left column. Finally, at the right column, there are more pixels

with uncertain fiber orientations and this affects both the number of fibers reaching the

seed voxels as well as the track density.

This simple demonstration clearly explains the fiber tracking results from the simula-

tion experiment as well as ADTI experiment based on the 5 subject ADTI data where

the tracking using the OPT30 protocol gave higher TF and AF metrics on an average for

each subject than the MF30 protocol. The average length of the fiber tracks were only

moderately higher for the OPT30 protocol indicating that MF30 could also track similar

distances as OPT30 but only with fewer tracks. The larger the number of tracks gener-

ated, the better is the confidence in the estimated tract bundle which indicates reduced

uncertainty in the overall fiber tracking. This shows that gradient scheme optimization

to reduce the uncertainty of the diffusion model parameters also reduces the uncertainty

in the results of a secondary post-processing such as fiber tracking.

Fiber tracking results can be sensitive to the choice of FACT thresholds (FA and track

curvature) and could result in the omission of certain tracks by minor change in the

threshold values as shown by Brecheisen et al. in the brain [106]. However, FA ∼ 0.6 has
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Figure 7.11. An illustration of the FACT algorithm applied to a 2D distribution of fiber

orientations. Tracks are shown in orange. Each box represents a pixel with the fiber

orientation shown by the arrow. True fiber orientation is along the vertical. Light red

pixels are ones with more uncertain fiber orientation. The green pixels are the seed (ROI)

pixels. Only tracks penetrating the seed pixels are retained.

been widely reported for the healthy cervical spinal cord white matter in other studies

[28, 69, 129] and its selection as a threshold should reduce spurious fiber tracks passing

through gray matter and CSF. The curvature threshold is to prevent sharp turns in the

fiber track within the locality of the voxels and use of a 40◦ threshold is also commonly

used [67, 103] and is not a restrictive value. Moreover, by generating more tracks because

of the gradient scheme optimization, the sensitivity of these thresholds to fiber tracking

could potentially reduce.

7.4.5 Partitioned CRLB-based b-factor and gradient scheme op-

timization

This validation experiment aimed to verify two aspects of the CRLB-based optimization,

namely, the use of the partitioned CRLB to selectively improve the precision of a subset

of the diffusion model parameters and the use of a combined b-factor and gradient scheme
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optimization. The study can be considered to be a more general case of the study for

only gradients directions described in section 7.1.

Simultaneous optimization of b-factor and gradient scheme optimization has been re-

cently reported by Gao et al. [39] where they demonstrated a unified optimization ap-

proach for the selection of the b-factor, the diffusion gradient directions and the timing

parameters (such as ∆, δ, TE and readout time, R) using a stochastic optimization frame-

work based on the simulated annealing algorithm [122]. They also used a cone of fiber

angle information as a prior knowledge for the optimization. Their work aimed to mini-

mize the trace of the covariance of the estimated parameters assuming an additive white

Gaussian noise model. While their work is similar to the work presented in this section,

there are certain limitations of their work that have also been considered here. They did

not use a Rician noise model which is relevant for magnitude MR signals at low SNR,

such as in DTI of the cervical spinal cord. Also, the selective improvement in precision

of subset of diffusion parameters was not used by them.

In this work, the b-factor has been considered as a single lumped experimental pa-

rameter. However, this assumes that TE and the readout time for the b = 0 and b 6= 0

images are kept equal and are not optimized. The b-factor and the gradient directions are

independent of each other and can be simultaneously optimized (as done in this work)

since the b-factor can be decoupled from the b matrix definition as shown by Basser et

al. [12] (for trapezoidal diffusion gradient pulses in traditional spin-echo sequence) and

Finsterbusch [94] (for square gradient pulses in dual-spin echo sequence).

This work presents a generalized framework for the selective improvement in the pre-

cision of a subset of diffusion parameters based on CRLB. For the validation, the pre-

cision of the diffusivities are minimized. A somewhat similar work has been reported

by Brihuega-Moreno et al. [24] where b-factor was optimized for reducing the Gaussian

CRLB of the estimated ADC values either for a single ADC measurement or a range of

ADC measurements. The full CRLB matrix consisted of the S0 (non-diffusion weighted

MR signal) as well as ADC as the model parameter and the b-factor optimization focused

on the element of the CRLB matrix corresponding to ADC only. However, their frame-
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work was much simplified due to the use of scalar ADC instead of the diffusion tensor

and also the use of Gaussian noise model. This work and work on Chapter 5 section 5.3

provides a more generalized framework for DTI/ADTI model and for both Rician and

Gaussian noise model.

Increase in the b-factor affects the SNR of the DWIs adversely (as shown by the sim-

ulations in Chapter 6, section 6.4) since higher b-factors are achieved by higher gradient

strength and/or longer TE and timing parameters all of which result in lower MR signal.

In this section, the optimized b-factor at an FA = 0.9 was 2062 smm−2 which is higher

than the generally used b = 1000 smm−2. The eSNR was correspondingly lower (∼ 3) for

this study as compared to section 7.1 (∼ 5). This variation in the SNR necessitates the

use of the Rician noise model especially when b-factor is optimized in a DTI experiment.

7.4.6 Justification for the use of prior information

Use of prior information in the optimization of gradient scheme can have potential draw-

backs and is debatable. Firstly, using prior knowledge results in improved parameter

estimation only towards estimating certain specific model parameter values. Secondly, if

prior knowledge is available with certainty, there is no need for imaging. The optimiza-

tion framework developed in this work intends to address these issues and thereby justify

the use of such optimized scheme as compared to un-optimized schemes.

In the developed optimization technique, preliminary short DTI scans are performed

on each subject to collect subject-specific information, such as the cone angle (Λ) and

mean diffusivities (D‖, D⊥). The cone angle used as an input for solving the robust

optimization problem not only results in improved overall precision of estimates within the

cone but also beyond it, upto certain safety margin, as shown in the performance curves

in Section 5.5.2. Similarly, for diffusivities, ranges of FA and MD can also be used to

constrain the robust optimization problem along with the use of cone angle, as described in

Section 5.4.5. Use of subject-specific information and presence of safety margin indicates

that the optimization framework improves the parameter estimation for subject-specific

parameter values, which is relevant, and allows for a range or margin beyond the subject-
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specific parameter values, making it less biased. Even for pathological cases, the proper

subject-specific information would help improve the precision of parameter estimation

since pathological condition does not necessarily mean completely uncertain scenario.

For example, DTI of pathological cases (e.g., multiple sclerosis [130]) report pathological

ranges of FA or MD values and degeneration of nerve fibers can result in larger cone angle

values. This subject-specific information can be used to develop optimized scheme for

pathological cases also. Also, the prior knowledge is only approximate and not known with

certainty since it is based on a short DTI scan (with fewer diffusion gradient directions),

thus there is a need for a full scan with the optimized gradient scheme and the prescribed

number of gradient directions.

A practical scenario for the use of the optimization framework can be outlined as

follows: a preliminary scan on the subject provides subject-specific information on the

diffusion model parameter values. While the program for computing the optimized gra-

dient scheme is running, the subject goes through routine scans, such as T1-weighted

volumetric and T2-weighted. These routine scans take about 20 minutes in total which

is similar to the computation time to obtain the optimized gradients. Finally, data is

acquired using the optimized gradient scheme. By using multi-core computers, the opti-

mized gradients can be computed faster than 20 minutes. And thus the total procedure

can be “online” without having the patient exit the scanner.
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CHAPTER 8

Conclusions

8.1 Summary

Diffusion-weighted imaging provides a non-invasive technique to delineate the nerve fiber

tracts at a macroscopic level and to perform in vivo fiber tracking. Compared to other

neuroanatomical imaging methods which are generally microscopy-based methods (for

example, scanning electron microscope [52], MR microscopy [49]) which require special

hardware and high field gradients (MR microscopy [49]) and cannot image in vivo or

are invasive (tract tracing using fluorescent dyes [4]), DWI-based methods can be eas-

ily implemented on a conventional MRI scanner and does not require special hardware

requirements for the scanner. This technique is applicable to humans in vivo and a

considerable coverage of the imaged target is achievable (for example, full brain DTI).

While neurophysiology-based methods, such as EEG and fMRI can provide effective and

functional connectivity information in neural networks respectively, the neuroanatomical

information can be used to validate and augment such connectivity information, thus

providing a complete picture of the neuronal connectivity. Owing to these advantages,

DWI-based methods (especially, diffusion tensor imaging, DTI [7]) is being used exten-

sively to explore nerve fiber tracks.

The focus of this research work was to develop a diffusion gradient optimization frame-

work for DTI to improve the precision or reduce the uncertainty in the diffusion model

157



parameter estimation. A detailed evaluation of the effect of experimental settings (such

as the b-factor, number of diffusion gradients (N)), effects of selection of noise models

and effects of selection of parameter estimators on the overall estimation uncertainty has

been demonstrated. Finally, the estimation performance of the gradient optimization is

validated by computer simulations and a five-subject human study for cervical spinal cord

DTI.

8.1.1 Gradient scheme optimization

The diffusion gradient optimization framework is developed for the DTI and the ADTI

diffusion models. These are investigated under both Rician and Gaussian noise. The

diffusion gradient optimization framework is based on D-optimality ([33, 34]) which min-

imizes the CRLB on the estimation variances of the diffusion model parameters. The

framework utilizes the prior structural knowledge of the imaged organ. For the spinal

cord, the prior structural information of the nerve fibers can be represented by a cone

model with known mean fiber orientation and the spread of the fibers from the mean

as defined by the cone angle (Λ). The gradients are optimized to perform within the

cone angle and thus for a range of fiber orientations. The gradient optimization can be

performed for improved estimation of either all the diffusion model parameters or for

selected model parameters, such as only for diffusivities or angular parameters for fiber

orientation. Depending on the user’s choice of the model parameters to have improved

estimation, appropriate optimization cost function can be selected.

The optimization framework was extended to include b-factor optimization along with

the optimization of the diffusion gradient directions. Due to limitation of scanner hard-

ware, b-factor cannot be set any value and hence its optimization requires more constraints

(such as limits on the gradient strength and the timing parameters) than that of the dif-

fusion gradient directions. In this work, the gradient scheme optimization was performed

at an assumed fixed value of the diffusion model parameters (i.e., diffusivities and the

mean fiber direction are fixed) which are obtained from preliminary DTI experiments.

While the cone angle (Λ) incorporates a range of fiber orientation for which the diffusion

158



gradients are optimized by the optimization framework, a range of diffusivity values can

also be used as prior information in the optimization problem, thus, generalizing the prior

knowledge to both diffusivity and fiber direction information.

8.1.2 Simulation experiments

An evaluation of the noise models used for the normalized MR signal is performed by

simulations. The normalized MR signal being a ratio of two magnitude MR signals is a

ratio of two Rician distributed random variables. However, in this work, the ratio pdf has

been approximated by a Rician pdf assuming that the normalizing signal has a negligible

variance as compared to its magnitude (hence high SNR). This approximation allows

using a fixed value of σ in the Rician CRLB definition. The simulations indicated that

when the Rician approximation is not used, σ of the Rician fit of the ratio pdf shows

dependence on the normalized MR signal. However, this dependence can be minimized

by increasing the number of MR signal acquisitions (NEX). The DTI experiments are

conducted at NEX = 2 for which I assume the approximation of fixed σ holds good.

Next, a comparison of the estimation performance of three estimators, namely, LS,

LSC and ML estimators, is done. While LS estimator is applicable when noise model is

not known, LSC is more applicable when systematic error (bias) is needed to be removed

from the measurements. ML estimator is used when noise model is known a priori .

From the performance comparison of the estimators for both the optimized gradient and

MF30 gradient scheme, it was shown that while LS estimator obtained marginally lower

hypervolume values than ML estimator, ML provided the most unbiased estimates of

the ADTI model parameters while having comparatively low hypervolume values. Thus,

ML estimator was used for the data analysis in the spinal cord ADTI experiment. Also,

the performance curves which shows the variation of the normalized hypervolume with

respect to angular deviation from the mean fiber orientation was validated by Monte

Carlo simulations with all the three estimators (for the Rician noise) and LS estimator

(for the Gaussian noise). The simulations indicated that MLE was the most appropriate

estimator in the case of Rician noise model and ADTI diffusion model.
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For the study on the effect of b-factor, it was shown that for both the optimized

and MF30 schemes, the performance (based on performance indices µr1 and PS) only

improves within a certain range of b-factor. However, for the optimized case, the range

of high performance is broader than the MF30 case. Thus, when a cone angle of fiber

distribution is used for optimizing the diffusion gradient, the b-factor range increased

as compared to an un-optimized (MF-based) scheme. Increase in b-factor reduces the

eSNR. This shows that a limit on allowable eSNR can also be applied while doing the

b-factor optimization. For the effect of the number of gradient directions, it was seen

that increasing the number of gradients reduced the estimation uncertainty which was

expected since more measurements result in more extracted information from the data.

For the effect of cone angle, smaller the cone angle, better is the estimation performance

(i.e., more reduced is the uncertainty). Smaller cone angle indicates less uncertainty in

the fiber orientations.

Monte Carlo simulations for the ADTI and DTI experiments were conducted to assess

the estimation performance of the optimized gradient scheme compared with the MF30

scheme when either all model parameters or diffusivities only or the angular parameters

for fiber orientation only were selected. While the hypervolumes of uncertainty were

reduced in all the cases as indicated by the performance indices (PS and µr1), the effect on

individual parameter estimation varied. For example, for ADTI, when all parameters are

selected, most of the improvement in precision was visible in the angular parameters. But,

when the diffusivity only parameters are selected, uncertainties of both the diffusivities

(D‖, D⊥) as well as uncertainty in FA was reduced. Also, for the angular parameters

case, uncertainty of both the angle parameters (θF and φF ) and angular deviation (α)

was reduced. Results for the DTI model indicated that while overall improvement in

the hypervolumes was achieved, individual parameters not always improved in precision,

especially D‖ which showed no improvement for the all parameters and the diffusivities

only cases. This was since the majority of the high square sensitivity regions for the

diffusion model parameters were transverse to the fiber direction, which was not the

case with D‖. Improving the precision of D‖ would require the framework to exclusively
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optimize for D‖ and not for other diffusivities.

Selecting all parameters during optimization of diffusion gradients results in a global

optimal state and an overall improvement in precision. However, this does not mean im-

provement in the precision of all the model parameter estimates simultaneously. Selection

of model parameters for diffusion gradient optimization finally depends on the applica-

tion. For diagnosis based on diffusivity-related metrics, such as FA or MD, it would

be desirable to improve the precision of diffusivities only. While for fiber tractography

applications which rely on the precise estimation of fiber direction angles, the angular

parameters should be selected during gradient optimization.

8.1.3 Spinal cord ADTI experiments

This work included a five-subject human study on the cervical spinal cord DTI for the

validation of the diffusion gradient optimization for reduced uncertainty in the diffusion

model parameter estimation. Step-by-step procedure including the ADTI protocol has

been described for conducting the study and analyzing the data.

Based on the spinal cord and brain stem imaging results, it is conclusively demonstrated

that the diffusion-encoding gradient optimization has performed significantly well in the

region of interest (spinal cord/brain stem white matter tracts). These regions contain

fibers oriented within certain range (or cone) of directions and the gradient optimiza-

tion takes into account this prior knowledge and has performed better in this cone of

fiber directions. The new gradient optimization scheme does not bias the estimation as

differently as the standard gradient scheme (MF30). This is crucial since a bias in the

estimates will affect the secondary metrics, such as FA, MD and would cause erroneous

diagnosis of the imaged tissue. Another aspect of the CRLB-based gradient optimization

is that performance improvements can be predicted prior to conducting the DTI exper-

iment. This is because the CRLB provides an analytical lower bound on the expected

variance. The expected performance can be predicted from the analytical formulation of

the CRLB. Such a prediction capability is convenient and essential for the evaluation of

the new gradient scheme before human subject scanning is performed.
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This work assumes axisymmetry in the diffusion tensor model, i.e., the secondary and

the tertiary eigenvalues of the diffusion tensor are assumed equal. The comparison of

the estimates of the ADTI and the DTI parameters indicated that D‖ and D⊥ of the

ADTI model are equivalent to λ1 (primary eigenvalue of diffusion tensor) and λr (radial

diffusivity defined as the mean of secondary and tertiary eigenvalues of diffusion tensor)

of the DTI model, respectively. Also, FA, MD and the fiber angles (θF , φF ) estimated for

both the ADTI and DTI models were approximately equal indicating that the use of the

ADTI model will not affect any diagnosis based on these metrics. Also, the transverse

diffusivity (D⊥) estimated from the ADTI model could be potentially used for diagnosing

spinal cord pathology.

By reducing the uncertainty in parameter estimation, more confidence is ensured in

the estimates of diffusivities and fiber orientation. This implies that any secondary pro-

cessing, such as fiber tracking, performed based on these estimates would also have lower

uncertainty. In the fiber tractography analysis, FACT-based [16] fiber tracking was per-

formed on the ADTI datasets in the cervical spinal cord region. For all the five subjects,

the average of number of fibers tracked and the average fiber density were higher for

the optimized ADTI protocol than MF30 protocol. This shows that the quality of fibers

tracked in the spinal cord region improved upon the optimization of the gradient scheme.

Since the optimization has so far used a narrow cone angle representing higher certainty

in the fiber direction, a case where the cone angle of 90◦ indicating completely uncertain

fiber orientation was used for gradient optimization and its performance was validated

by a one-subject ADTI experiment. The estimation results indicate that the optimized

gradient scheme still outperformed the MF-based technique, albeit marginally.

In this work, a combined b-factor and gradient scheme optimization method was also de-

veloped and a preliminary experimental validation was presented by a one-subject ADTI

experiment. The technique is applied in the cervical spinal cord/brain stem region near

C1-C2 vertebral levels and aimed at reducing uncertainty of only the diffusivities while

using prior knowledge of the fiber orientation. The optimization was performed at a high

FA value (FA = 0.9). From the validation experiment, the model parameter estimation
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results indicate that the uncertainty of the diffusivities was reduced as expected from

the CRLB formulation. Also, the estimates were not biased. It was observed that at

high b-factor, the SNR of the DW image was low and only at higher NEX (= 4) could

a discernible diffusion-weighted image be scanned. Also, the TR and TE of the sequence

was changed to accommodate the high b-factor. This indicates that changes in the b-

factor requires additional consideration and these could be formulated as constraints in

the optimization problem.

Use of prior information can be justified since by using subject-specific information

based on a preliminary scan, each optimized gradient scheme is made specifically op-

timized for the subject. Also, safety margin on the performance extends the range of

expected performance. Finally, development of an “online” method where the subject

does not exit the scanner, will make the optimization more practical.

8.2 Contributions

The research work done in this thesis contributes to different aspects in optimal design

of DTI/ADTI experiments. The following are some of the contributions of this research

work:

1. The diffusion gradient scheme for DTI/ADTI was improved so as to achieve more

precise estimates of tissues properties (diffusivities and fiber orientation). Practical

application to spinal cord ADTI experiments was demonstrated. Improvements in

the fiber tracking of white matter tracts was also verified from the experiments.

2. A five-subject human study on the spinal cord as well as detailed simulations to

validate the optimization procedure was presented. There are no stringent require-

ments on the MRI scanner in terms of the RF pulse strength and timing, gradient

strengths or use of custom-built pulse-sequence. Hence, this technique is readily

usable by other research groups in further studies and the results can be cross-

validated easily.
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3. Application of advanced techniques in the design of optimal experiments were pro-

posed, such as the use of CRLB, injection of prior knowledge into the optimization

problem, use of various signal and noise models, partitioned-CRLB methods and

use of various estimators. The theoretical framework for the optimization can be

used for the design of any experiment that fits similar requirements of the DTI

experiment. This shows an immense possibility of the use of techniques developed

in this research for other fields, either within MRI or beyond.

4. The equivalence of the 4-parameter ADTI model and general 6-parameter DTI

model is demonstrated in terms of the estimates of longitudinal and transverse

diffusivities. Also, the FA, MD and fiber angle orientations are similar in these two

models. Since only four diffusion-weighted MR images are sufficient to estimate the

ADTI diffusion parameters, ADTI experiments can be shorter in scan time than a

general DTI experiment which indicates potential clinical application.

5. ADTI diffusion gradients can be optimized to precisely estimate the transverse

diffusivity, which has recently shown high sensitivity to the detection of spinal cord

diseases, such as ALS or MS. ADTI optimized gradient schemes can be used in

place of current protocols to detect such pathologies.

8.3 Future Work

In this research, a comprehensive diffusion-encoding gradient optimization framework has

been developed and analyzed for the ADTI/DTI model with Rician or Gaussian noise.

The framework uses subject-specific information and performs within the prescribed range

of diffusion parameter values including certain safety margin, thus making this technique

less biased and more applicable to clinical DTI studies. An important future work would

be the development of an online optimization technique where the subject does not exit

the scanner and the total examination time is within an acceptable time limit.

Although the work has mainly focussed on ADTI/DTI, the framework can be extended

to any diffusion model, such as the CHARMED model ([9, 131]) and any cost function
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can also be used (for example, determinant of CRLB matrix can be replaced by variance

of FA). In methods such as HARDI or q-ball imaging [86, 88], the post-processing does

not use any assumption of the diffusion model although the data acquisition is done

using the similar DWI pulse sequences as DTI, such as Stejskal-Tanner PGSE sequence.

These non-parametric techniques estimate the orientation distribution function directly

from the diffusion-weighted MRI data, but require a large amount of data due to their

non-parametric nature. In the study of the effect of number of gradient directions on the

estimation performance, it was seen that equivalent estimation performance (in terms

of performance indices) was predicted with the use of fewer diffusion gradient directions

when optimization of the gradient directions was performed based on prior structural

knowledge. This observation can be exploited in the case of non-parametric DWI (such as

q-ball imaging) to reduce the number of gradient directions used in the DWI experiment.

This could potentially reduce the overall acquisition time and make these non-parametric

techniques more clinically usable.

Instead of using a cone angle of the fiber orientation, information of the range of

diffusivities (or FA and MD) can also be used for the optimization of the gradient scheme.

One application that seems relevant in this regard is the tract-based spatial statistics

(TBSS) [14]. TBSS is a voxel-based multiple subject analysis of diffusion-weighted data

where FA maps from a group of subjects are co-registered using non-linear techniques and

from the group mean of the aligned FA maps a “group mean FA skeleton” is created. The

FA skeleton is obtained by thinning the FA maps and applying thresholding to remove

low mean FA and/or high inter-subject variability. Essentially, the mean FA skeleton

corresponds to the centers of all fiber bundles that are common to the subjects and

generally the range of FA in the mean skeleton is narrow. If a priori knowledge of the

FA range in the mean skeleton FA is available about a subject group, this optimization

framework could potentially be used to estimate the FA values in the range more precisely

and hence extract the FA skeleton more precisely as well.

Going beyond neuroimaging, DTI has also been applied to track muscle fibers in skeletal

muscles to study the three-dimensional (3D) architecture of skeletal muscles in mice ([63])
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and in humans [64]. DTI has also been reported to be used to create biomechanical

models of the quadriceps mechanism in humans [32]. These studies show feasibility of

fiber tracking using DTI of skeletal muscles. The fiber tracking provides information

on the local orientation of the fibers (pennation angle), fiber length and cross-section

of the fiber bundles which correlate with muscles physiological cross sectional area, an

indicator of force that the muscle can exert [32]. Muscle fibers are fairly organized and

oriented in a particular direction. This prior knowledge of the fiber orientation can

be incorporated in the DTI gradient scheme optimization framework to more precisely

estimate the pennation angle.

By the above instances, the potential future uses of the gradient scheme optimization

framework are demonstrated for applications in neuroimaging and imaging of non-nervous

tissues, such as skeletal muscles.
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APPENDIX A

Flowcharts and instructions for the

overall optimization procedure

In this section, a detailed step-by-step description along with flowcharts of the overall

procedure is given. The steps should provide necessary information for any third party

to optimize the gradients, conduct the optimized DTI experiment and perform the post-

processing necessary. Although the described steps are specifically for spinal cord ADTI

experiment, the gradient optimization algorithm can be extended to other regions, such

as the brain or muscles. I begin with some information on the selection of subjects and

other formalities, such as Institutional Review Board (IRB) approval.

1. Obtain IRB approval to conduct human research: A proper certificate of approval

from the Institution’s review board (for Michigan State University, this is the

Biomedical and Health IRB under the Human Research Protection Program) must

be obtained if DTI experiments are to be carried out on human subjects. For

animal subjects, certificate of approval needs to be obtained from appropriate au-

thority (for Michigan State University, this is the Institutional Animal Care and

Use Committee).

2. Subject recruitment: For the optimization study, no specific subject recruitment

criterion was used. Only criterion was that subject should be normal with no

history of spinal cord disease or injury. Age matching is not necessary, but was
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used for the experiments.

3. Preliminary DTI scan: This step is to collect subject-specific structural information

of the spinal cord region. A standard MF15 based DTI protocol is used. Typical

protocol is given by: T2 and diffusion-weighted images acquired using a dual spin-

echo EPI sequence on a 3T GE Signa HDx scanner (GE Healthcare, Waukesha, WI),

equipped with an 8-channel head coil with the following parameters: 22 contiguous

3-mm axial interleaved slices, TR = 7000 ms, TE = 77.4 ms, matrix size =128 x 128,

FOV = 16 cm x 16 cm, number of excitations = 1, parallel imaging acceleration

factor = 2, b = 1000 s mm−2, 15 diffusion gradient directions (MF15) and scan

time = 1 min 52 sec.

4. Preliminary DTI data processing: The flowchart of the preliminary data processing

is shown in Fig. A.1. DTI images from the scanner are stored in DICOM (Digital

Imaging and Communications in Medicine) format which are converted to NIfTI

(Neuroimaging Informatics Technology Initiative) 4D volume data format. The

data ordering in the NifTI file is converted from neurological (RAS) to radiological

(LAS) order so as to use this data in FSL software package. Eddy current correction

is performed to reduce the image distortion (contraction, shift and shear) caused

due to eddy currents. This is performed using FSL’s FDT toolbox “eddy correct”

routine. Here the diffusion-weighted images are registered with the T2-weighted

image (i.e., the image with no diffusion weighting) using affine transformation (12

degrees of freedom). After the preprocessing, spinal cord region is identified visually

and DTI/ADTI fit is performed to estimate the model parameters. Also, FA, MD

are calculated. Spinal cord is extracted from the region by applying FA > 0.35 and

MD < 2.5 ×10−3mm2s−1 thresholds. Now, distribution of fiber angular deviation

(α) is computed and the cone angle is determined by selecting the α at 80% cumu-

lative distribution. Next, spinal cord tracts voxels are extracted in the spinal cord

region by putting α < Λ and FA > 0.6 thresholds. Finally, the mean diffusivities

and the fiber angle in the spinal cord tract voxels are calculated and along with the

cone angle information are saved for the gradient scheme optimization.
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Figure A.1. Flowchart for the processing of the preliminary DTI data to compute the

cone angle (Λ) and the mean of ADTI model parameters in the spinal cord tract region.

5. Gradient scheme optimization: The optimization is performed off-line and the sub-

ject does not need to be in the scanner during the calculation of the optimized

gradient scheme. The flowcharts for the optimization scheme including b-factor

optimization are shown the following figures (Fig. A.2 to Fig. A.6). At the

beginning, the optimization problem is initialized by selecting the signal model

(ADTI/DTI) parameters, noise model(Rician/Gaussian), cost function (full CRLB

or partial CRLB), prior knowledge (cone angle and mean values of diffusion model

parameters) and finally to include b-factor optimization or not. Depending on
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whether b-factor optimization is used or not, there are two options for the opti-

mization. One is for only gradient direction optimization which uses a user input

b-factor and the other is the optimization of both b-factor and gradient directions.

For the optimization of the gradient directions only, the procedure asks the user for

a b-factor and then proceeds in a two-stage gradient directions optimization. In the

first stage, a sub-optimal solution of the optimization problem (i.e., a set of gradient

directions, Ω) is obtained by simulated annealing method (see Fig. A.3). At this

stage of the optimization, the cost function is minimized without using the cone

angle (Λ) (uses only the mean values of the model parameters). Basic flowchart of

the simulated annealing method is shown in Fig. A.3 and the stopping criteria is

expanded in Fig. A.4. Simulated annealing (SA) is a stochastic method [73] used

here for the minimization of the cost function. The method is inspired from the

annealing technique in material science which involves heating the material to a

temperature and then cooling is slowly in a controlled fashion so that the crystals

in the material are formed without defects. In SA, at each iteration, the algorithm

allows for an additional case where the intermediate solution is accepted even if the

cost function is not reduced. The criteria is based on a probabilistic thresholding

method shown in the flowchart (Fig. A.3). This helps to prevent local minima

problems which are particularly rampant in gradient-based methods.

The next step in the optimization is the robust optimization of the gradient direc-

tions which uses the cone angle information (see Fig. A.5). The algorithm starts

by using the sub-optimal solution. Then, it discretizes the cone of angles into a set

of angular locations (grid) and looks for the worst case of cost function (maximum)

within the discretized cone of angles. After the worst case location is identified,

gradient of the cost function is calculated by finite difference method at the worst

case location and the solution is updated along the negative gradient direction (for

minimization of cost function). The process is iterated till generally the relative dif-

ference in the cost function is within tolerance levels or number of iterations have

exceeded or if the solution starts to oscillate. The oscillation issue arises due to

171



fixed step size issues. At each iteration, the algorithm finds a different worst case

location within the cone of angles and minimizes the cost function at that location.

Thus, this algorithm literally flattens the cost function curve within the cone of

angles and thus brings a uniform cost performance for a range of angles in the cone,

making the gradient scheme robust within the cone. Another important aspect of

this algorithm is the reformulation of the gradient scheme into a ring-based dis-

tribution of gradient directions. This greatly reduces the number of optimization

parameters (from the original set of gradient directions angles to a few parameters

such as number of rings, number of points on the rings and there zenith angle and

azimuthal offset angles). Algorithm uses a predefined set of number of rings and

number of points on the rings and tries a number of such configurations to choose

the best case.

For the b-factor optimization step, a simulated annealing method is preferred since

both the b-factor as well as the gradient directions are varied simultaneously and

local minima problems are significant. Gradient-based methods are bound to be

stuck at the local minima instead of the global minimum. The algorithm merges

the SA methods with the robust optimization methods described previously except

for the reformulation of the gradient scheme part. The flowchart is shown in Fig.

A.6.
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Optimization settings initialization: select

signal (ADTI/DTI),

noise (Rician/Gaussian),

cost function (Full CRLB or partial CRLB),

prior information (cone angle (Λ), mean values of 

diffusivities, (D||, D⊥) for ADTI)

Sub-optimal solution 

using Simulated 

annealing (without 

using cone angle)

Robust optimal 

solution with gradient 

descent algorithm 

(using cone angle)

Performance check 

via simulations

Robust optimal solution 

for b-factor and gradient 

directions using Simulated 

Annealing (using cone 

angle) 

Performance check 

via simulations

User input: b-

factor

Do b-factor 

optimization?

No Yes

Figure A.2. General overview of the overall gradient and b-factor optimization scheme.

Flowcharts for simulated annealing, robust optimization and b-factor optimization are

shown in Figs. A.3–A.6.
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Set initial solution Ω0 and calculate cost function, S0

Set the simulated annealing parameters: start and stop temperature, 

cooling rate, starting step size, success count (Nsucc) = 0, reject 

count (Nrej) = 0, iterations at fixed temperature (NtryT) = 0

Is stopping 

criteria 

satisfied?

Is S < S0 ?

Accept Ω as 

new solution,  

++Nsucc, 

S0=S

Accept Ω as new 

solution,  

++Nsucc, Nrej=0, 

S0=S

Reject Ω

as new 

solution, 

++Nrej

Update gradient direction angles, Ω, by random increment 

and calculate new cost function, S

Exit algorithm 

and set Ω as 

the final 

solution

Yes

Yes

Yes

No

No

No
Is rand < 

exp[-0.5 (S-S0)/S0T]?

Figure A.3. Flowchart describing the simulated annealing algorithm to find the sub-

optimal solution (not using the cone angle information). Ω = {gi; i ∈ [1, N ]}, N is

the number of gradient directions (N = 30). gi is the ith gradient direction vector:

gi ≡ [gxi, gyi, gzi] ≡ [θi, φi]. Cost function, S = detΣCR, full or detΣCR, partial. S is a

function of Ω . S0 is the initial value of cost function for gradient scheme Ω0 and it is later

updated in every iteration. ‘rand’ is a function that generates random numbers between

0 and 1 with uniform probability. The flowchart for the decision box for stopping criteria

is shown in Fig. A.4.

174



Is step size 

too small?

Is NtryT > 

max_NtryT or 

Nsucc > 

max_Nsucc?

Yes

Is Nrej > 

max_Nrej?

Is T > min_T?

Is T > 

min_T?

Reduce step size, new T = 

cool (T), reset NtryT = 1, 

Nsucc = 1, Nrej = Nrej/2

Stopping 

criteria 

Satisfied

No

Stopping 

criteria 

Satisfied

Stopping 

criteria 

Satisfied

new T = cool 

(T), reset 

NtryT = 1, 

Nsucc = 1

Stopping 

criteria 

NOT 

Satisfied

Stopping 

criteria 

NOT 

Satisfied

No
Stopping 

criteria 

NOT 

Satisfied

Yes

Yes

Yes

Yes

No

No

No

Figure A.4. Flowchart for the stopping criteria in the simulated annealing algorithm.

Here, NtryT = number of trials at a fixed temperature T, max NtryT = maximum limit of

NtryT, Nsucc = success count, max Nsucc = maximum limit of Nsucc, Nrej = consecutive

rejection count, max Nrej = maximum limit of Nrej, T = temperature(simulated), min T

= minimum limit of T, cool(T) = cooling method for T.
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Set sub-optimal solution as 

initial solution, Ω0

Is iter > 

iterMax or del 

< delMin or 

osc > 

oscMax?

Reformulate the gradient 

scheme in ring-based 

parameters

Initialize optimization parameters: iter, 

iterMax, del, delMin, osc, oscMax, 

stepsize

User input: 

ring 

configurations

Discretize cone region into finite number 

of angular locations

Find worst case (max) cost function within cone 

and calculate gradient of cost function at worst 

case location 

Change solution, Ω, towards negative gradient 

direction (gradient descent)

Update 

iter, del, 

osc

Exit algorithm 

and set Ω as 

final solution

Yes

No

Figure A.5. Flowchart for the robust optimization procedure for the gradient directions

utilizing the cone angle information of fiber orientations. Ω = {gi; i ∈ [1, N ]}, N is the

number of gradient directions (N = 30). gi is the ith gradient direction vector. Cost

function, S = detΣCR, full or detΣCR, partial. iter = number of iterations, iterMax

= maximum limit of iter, del = absolute relative change in the cost function (abs(S −
S0/S0)), delMin = minimum limit of del, osc = number of oscillations in the cost function,

oscMax = maximum limit of osc.
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Set initial solution Ω0 and preset b-factor and calculate 

cost function, S0

Set the simulated annealing parameters: start and stop temperature, 

cooling rate, starting step size, success count (Nsucc) = 0, reject 

count (Nrej) = 0, iterations at fixed temperature (NtryT) = 0

Update Ω and b by random 

increment

Is stopping 

criteria 

satisfied?

Is S < S0 ?

Accept Ω, b 

as new 

solution,  

++Nsucc, 

S0=S

Accept Ω, b as 

new solution,  

++Nsucc, Nrej=0, 

S0=S

Reject Ω, b 

as new 

solution, 

++Nrej

Find worst case (max) cost function within discretized 

cone and set it as the new value of S 

Exit algorithm 

and set Ω, b
as the final 

solution

Yes

Yes

Yes

No

No

No
Is rand < 

exp[-0.5 (S-S0)/S0T]?

Figure A.6. Flowchart for the robust optimization of gradient directions and b-factor using

simulated annealing algorithm utilizing the cone angle information of fiber orientations.

Here, Ω = {gi; i ∈ [1, N ]}, N is the number of gradient directions (N = 30). gi is

the ith gradient direction vector: gi ≡ [gxi, gyi, gzi] ≡ [θi, φi]. Cost function, S =

detΣCR, full or detΣCR, partial. S is a function of Ω . S0 is the initial value of cost

function for gradient scheme Ω0 and it is later updated in every iteration. The flowchart

for the decision box for stopping criteria is shown in Fig. A.4.
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6. The performance check consists of calculating the 1D plot the cost function w.r.t.

angular deviation, α, or 2D plot of cost function w.r.t. (θF , φF ). Next, the cost

functions are calculated using the CRLB formulation for a range of diffusivity as

well as fiber directions. Finally, performance indices, such as mean ratio of cost

functions of OPT30 versus MF30 under successful voxels (µr1) and the percentage

success (PS) is calculated from simulations.

7. Performing the DTI/ADTI experiment with optimized gradient and/or b-factor:

Multiple sets of data are collected using the optimized protocol and a standard

MF30 protocol. Typical protocol remains the same as the preliminary DTI scan

except that number of excitations = 2 (for additional SNR improvement). The

scan time per dataset was typically 7 min 21 sec. For b-factor optimization, the

optimized b-factor is used and number of excitations = 4. Since a different b-factor

is used, this results in different TE .

8. Processing of the data from the optimized ADTI/DTI scan: The flowchart for

the processing is shown in Fig. A.7. The flowchart is similar to the preliminary

DTI data processing except that since multiple datasets are involved, a 4D volume

registration technique is incorporated in the work flow. After the spinal cord tract

voxels are extracted in each of the 4D volume, a common set of voxels are identified

amongst all the datasets. This common voxels data is then extrapolated using

repetition bootstrapping method to obtain 6000 data samples. The extrapolated

dataset is then used for model parameter estimations and calculation of covariance

matrix and the variances of various quantities.
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DTI Datasets

Data conversion (DICOM to NifTI)

Eddy Current Correction

Spinal cord region mask generation

Linear rigid-body registration of different data volumes

DTI/ADTI model parameter estimation of co-registered 

DTI data in the spinal cord region

ROI voxel extraction

Repetition bootstrapping to extrapolate 6 

original datasets to 6000 datasets

Statistical analysis of estimated ADTI parameters 

in ROI voxels

Compare estimation performance of OPT30 

and MF30

Figure A.7. Flowchart for the processing of the multiple DTI 4D volume datasets obtained

by using the optimized protocol and compared to the MF30 protocol.
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APPENDIX B

Gradient tables for the spinal cord

imaging study
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Figure B.1. Diffusion gradient directions (white circles) for Subject 1 optimized using

prior structural information. The underlay shows the normalized MR signal w.r.t. gradi-

ent direction angles (θ, φ).
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Table B.1. DTI Gradient Table for Subject 1

gx gy gz gx gy gz

1.000 -0.000 0.001 0.215 -0.923 0.318

-1.000 -0.000 0.001 -0.692 -0.648 0.318

0.800 -0.600 0.001 -0.907 0.275 0.318

-0.800 0.600 0.001 -0.215 0.923 0.318

0.674 0.712 0.198 0.692 0.648 0.318

-0.674 -0.712 0.198 0.580 -0.111 0.807

0.896 -0.011 0.445 0.404 -0.430 0.807

-0.011 -0.896 0.445 0.074 -0.586 0.807

-0.896 0.011 0.445 -0.284 -0.517 0.807

0.011 0.896 0.445 -0.534 -0.251 0.807

0.843 -0.039 0.536 -0.580 0.111 0.807

-0.039 -0.843 0.536 -0.404 0.430 0.807

-0.843 0.039 0.536 -0.074 0.586 0.807

0.039 0.843 0.536 0.284 0.517 0.807

0.907 -0.275 0.318 0.534 0.251 0.807
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Figure B.2. Diffusion gradient directions (white circles) for Subject 2 optimized using

prior structural information. The underlay shows the normalized MR signal w.r.t. gradi-

ent direction angles (θ, φ).

Table B.2. DTI Gradient Table for Subject 2

gx gy gz gx gy gz

-1.000 -0.000 0.008 -0.227 -0.915 0.334

1.000 -0.000 0.008 0.679 -0.654 0.334

-0.787 -0.617 0.011 0.906 0.261 0.334

0.787 0.617 0.011 0.227 0.915 0.334

-0.742 0.656 0.139 -0.679 0.654 0.334

0.742 -0.656 0.139 -0.578 -0.110 0.809

-0.879 -0.004 0.477 -0.403 -0.429 0.809

0.004 -0.879 0.477 -0.074 -0.584 0.809

0.879 0.004 0.477 0.283 -0.516 0.809

-0.004 0.879 0.477 0.532 -0.251 0.809

-0.823 -0.023 0.567 0.578 0.110 0.809

0.023 -0.823 0.567 0.403 0.429 0.809

0.823 0.023 0.567 0.074 0.584 0.809

-0.023 0.823 0.567 -0.283 0.516 0.809

-0.906 -0.261 0.334 -0.532 0.251 0.809
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Figure B.3. Diffusion gradient directions (white circles) for Subject 3 optimized using

prior structural information. The underlay shows the normalized MR signal w.r.t. gradi-

ent direction angles (θ, φ).

Table B.3. DTI Gradient Table for Subject 3

gx gy gz gx gy gz

-1.000 -0.000 -0.000 -0.229 -0.915 0.332

1.000 -0.000 -0.000 0.678 -0.656 0.332

-0.789 -0.615 0.010 0.907 0.259 0.332

0.789 0.615 0.010 0.229 0.915 0.332

-0.740 0.656 0.144 -0.678 0.656 0.332

0.740 -0.656 0.144 -0.580 -0.110 0.807

-0.879 -0.004 0.477 -0.404 -0.430 0.807

0.004 -0.879 0.477 -0.075 -0.586 0.807

0.879 0.004 0.477 0.284 -0.518 0.807

-0.004 0.879 0.477 0.534 -0.252 0.807

-0.822 -0.022 0.569 0.580 0.110 0.807

0.022 -0.822 0.569 0.404 0.430 0.807

0.822 0.022 0.569 0.075 0.586 0.807

-0.022 0.822 0.569 -0.284 0.518 0.807

-0.907 -0.259 0.332 -0.534 0.252 0.807
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Figure B.4. Diffusion gradient directions (white circles) for Subject 4 optimized using

prior structural information. The underlay shows the normalized MR signal w.r.t. gradi-

ent direction angles (θ, φ).

Table B.4. DTI Gradient Table for Subject 4

gx gy gz gx gy gz

-1.000 -0.000 0.003 -0.184 -0.933 0.310

1.000 0.000 0.003 0.716 -0.626 0.310

-0.774 -0.634 0.005 0.900 0.307 0.310

0.774 0.634 0.005 0.184 0.933 0.310

-0.643 0.743 0.187 -0.716 0.626 0.310

0.643 -0.743 0.187 -0.579 -0.112 0.807

-0.910 -0.004 0.414 -0.403 -0.431 0.807

0.004 -0.910 0.414 -0.072 -0.585 0.807

0.910 0.004 0.414 0.286 -0.516 0.807

-0.004 0.910 0.414 0.534 -0.250 0.807

-0.856 -0.059 0.513 0.579 0.112 0.807

0.059 -0.856 0.513 0.403 0.431 0.807

0.856 0.059 0.513 0.072 0.585 0.807

-0.059 0.856 0.513 -0.286 0.516 0.807

-0.900 -0.307 0.310 -0.534 0.250 0.807
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Figure B.5. Diffusion gradient directions (white circles) for Subject 5 optimized using

prior structural information. The underlay shows the normalized MR signal w.r.t. gradi-

ent direction angles (θ, φ).

Table B.5. DTI Gradient Table for Subject 5

gx gy gz gx gy gz

-1.000 -0.000 0.000 -0.251 -0.884 0.395

1.000 0.000 0.000 0.640 -0.659 0.395

-0.728 -0.686 0.001 0.891 0.225 0.395

0.728 0.686 0.001 0.251 0.884 0.395

-0.688 0.721 0.082 -0.640 0.659 0.395

0.688 -0.721 0.082 -0.564 -0.118 0.817

-0.721 0.624 0.301 -0.387 -0.427 0.817

-0.624 -0.721 0.301 -0.062 -0.573 0.817

0.721 -0.624 0.301 0.287 -0.500 0.817

0.624 0.721 0.301 0.526 -0.236 0.817

-0.868 -0.087 0.489 0.564 0.118 0.817

0.087 -0.868 0.489 0.387 0.427 0.817

0.868 0.087 0.489 0.062 0.573 0.817

-0.087 0.868 0.489 -0.287 0.500 0.817

-0.891 -0.225 0.395 -0.526 0.236 0.817
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Figure B.6. Diffusion gradient directions (white circles) for Subject 1 optimized using

completely uncertain fiber orientation. The underlay shows the normalized MR signal

w.r.t. gradient direction angles (θ, φ).

Table B.6. DTI Gradient Table for Subject 1 with Λ = 90◦

gx gy gz gx gy gz

-0.718 -0.000 0.696 0.908 0.065 0.414

0.000 -0.718 0.696 0.398 0.819 0.414

0.718 0.000 0.696 -0.510 0.754 0.414

0.000 0.718 0.696 -0.508 -0.258 0.822

-0.707 -0.707 0.000 0.478 -0.311 0.822

0.707 -0.707 0.000 0.030 0.569 0.822

0.707 0.707 0.000 -0.008 -0.533 0.846

-0.707 0.707 0.000 0.008 0.533 0.846

-0.447 -0.391 0.804 -0.834 -0.473 0.284

0.391 -0.447 0.804 -0.150 -0.947 0.284

0.447 0.391 0.804 0.647 -0.708 0.284

-0.391 0.447 0.804 0.957 0.065 0.284

-0.908 -0.065 0.414 0.546 0.788 0.284

-0.398 -0.819 0.414 -0.276 0.918 0.284

0.510 -0.754 0.414 -0.890 0.357 0.284
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