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Abstact

Numerical Simulations of Waves in a

Magnetically Structered Atmosphere

by

Thomas Peter Espinola

A physical model for simulating waves in a stellar atmosphere was

developed from a combination of basic fluid mechanics, plasma

physics, and electrodynamics. The model was three dimensional and

included the effects of gravity, magnetic fields, and viscosity. An

algorithm was developed to numerically implement this model. The

resulting program used an explicit time integration scheme based on

Runge-Kutta and a combination of finite difference and spectral

methods to evaluate the spatial derivatives. A number of numerical

boundary conditions were developed— the most successful used a

modified Sommerfeld radiation condition. The program was written

and coded in Fortran on a Vax computer. Additional routines were

written to evaluate the required fast fourier transforms and to graph

and display the data. The program was tested on a large number of

one and two dimensional problems for which the solutions were

known. These problems included acoustic waves. Alfvén waves,

magnetoacoustic waves, shocks, rarefactions, and contact

discontinuities. The numerical results agreed with the analytic -

solutions of the physical problems to within the precision requested of

the simulation. The program proved to be stable and robust for all the

problems attempted.

This program was then used to simulate three problems for which

analytic solutions are not known. All three simulations concerned the

propagation of waves in magnetically structured atmospheres and

may be applied to outstanding problems in solar physics. First, the

interactions of non-linear waves and a flux slab were studied. From

the result it is apparent that sources of shocks and rarefactions, such



as the solar convection zone, do not concentrate the magnetic field in

flux sheaths. Next I used the program to simulate the interaction of

non-linear waves with a flux tube. The results suggest that the

magnetic fields in flux tubes are also not concentrated by pairs of

passing shocks and rarefactions; however, a complete demonstration

of this would require a finer grid than was practical with the available

computing power. The last and most interesting problem simulated

was the interaction of oblique acoustic waves and a plane magnetic

interface. The results show that while a region of the interface does

remove energy from the waves by resonant heating, resonant heating

within a sunspot-photosphere interface cannot account for the

observed absorption of solar p-mode waves. Sufficient transmission

of energy occurs so that the results are consistent with the

observations if the absorption takes place by another mechanism in

the sunspot interior. The simulation suggests that a two dimensional

fine magnetic structure may be capable of absorbing the observed

fraction of wave energy.
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1

Physical Theory

The basic physical theory, developed in the following chapter, is a combination of

fluid mechanics, plasma physics, and electrodynamics. The theory is greatly

simplified by a number of assumptions about the atmosphere. The resulting eight

partial differential equations give a complete local description of the behavior of the

gas and fields. L

 

 

 



1 .1 Electrodynamics

The problems of interest concern the electrodynamics of moving media; therefore,

two frames of reference are of primary importance. The laboratory frame of reference

is at rest relative to the observer while the oo-moving frame is at rest relative to the

moving media. Quantities in the laboratory frame will be represented by unprimed

variables and those in the co-moving frame by primed variables. For a complete

glossary of symbols, see Appendix A.

First, consider the Maxwell equations which hold for either frame:

V0 D = P, (1.1a)

8B
Vx =-5-f (Lib)

V0 B = 0 (1.10)

mm = 433% (1.1a)

where D is the electric flux density in coulombs/meter, 99 is the charge density in

coulombs/m3, E is the electric field in volts/meter, B is the magnetic flux density in

Teslas, H is the magnetic field in amperes/meter, and J is the current density in

amperes/meterz. A well posed problem requires three additional equations. I will be

considering only linear, isotropic media, for which Ohm’s holds in the co-moving

frame

J' = oE' (1.2)

where o is the conductivity of the medium in mho/meter. The constituent equations

also hold only in the co-moving frame,

0' = eE' (1.3a)

B‘ = uH' - (1.3b)

where e is the permitivity in farads/meter and u is the permeability in henrys/meter.

These seven equations interrelate the electromagnetic field quantities and seem to

be uncoupled from the motion of the fluid; however, J may depend explicitly on the

velocity of the medium. The motion of the fluid is coupled to the fields through the

Lorentz force equation, which is covariant,

F = q(E + VXB) (1.4)

For the problems of interest, one may make the following simplifying assumptions,

which are known as the magnetohydrodynamic, or MHD, approximations (Hughes &

Young, 1966, §6.3):



1. The fluid velocities will remain nonrelativistic. One may then replace ywith 1 in

the Lorentz transforms. Therefore,

 

 

E'= 15+sz (1.5a)

szH

D= D+ (1.5b)

H'=H-vxb (1.5c)

B'=B-"”c‘2IE (1.5a)

J'=J - pev (1.5a)

P: P,--‘%- (1. 5:)

The conductivity is very large so that E's-'0. The Lorentz transform then yields

E a —vxa and De—vxi-I/c2 a o.

The permitivity and permeability equal those of free space. Both these

assumptions are very good for astrophysical plasmas. The assumption that

e=eo sometimes breaks down for other uses of the MHD approximations.

The induced magnetic fields are small compared to the external fields. This

assumption, which followsfor (1), yields 8' :8 as follows

8-_-Vx(chB)_ B+0r(_v_:)
 

   
Vc2E -

B'eB

Since u=p°, H = H' follows directly. For another permeability, H=_ H' may still be

a good approximation.

The displacement current may be neglected as compared to the conduction

current. Therefore, high frequency phenomena cannot be considered.

The current densities in the laboratory and co-moving frames are equal since

. 2
Ig _ I. _ I V.J ~ - V

J J pQV J (p: c2)v -J 0r(Jc7)

Also, the charge density in the co-moving frame, p'e, vanishes since the medium

is a conductor. Thus

 

J'=J=0'(E+VXB)

Moreover, o is assumed constant and independent of frequency, 8, and E but not

necessarily independent of temperature or other fluid variables.
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The Maxwell equations with the MHD approximations thus may be written as:

 v-D= v31 (1.6a)

an

VxIE-----a—t (1.6b)

V-B=O (1.6c)

VxH=J (1.6d)

and Ohm's law is

J=O’(E+VXB) (1.6s)

 
Using these and the constituent equations allows one to solve for the time evolution

of any of the fields. Of most interest here is the evolution of the magnetic field.

Solving Ohm's law for E yields

 

   

J
E = '6: “ V X B

Substituting VXH for J

V x H

E a G ' v X B

Using this in the curl E equation (1.6b) yields

V x H

T = V x(V xB)- 0'

Therefore, one gets the following for the time evolution of B:

68

—=Vx(VxB)VxMVx B) (1.7a)

where n: 1/ouo is the magnetic diffusivity. This equation may be simplified when

written using the Einstein summation convention.

33—?” ‘ng [B,v,-- Bji+v”(3%?35.)]: o (1.710)

If n is independent of position, one may use the ideJntity

VxVxB= V(V-B)-

to get

T'VX(VXB)+71VZB (1.70)

Equation 1.7 fully specifies the electrodynamics under the MHD approximations.



1 .2 Fluid Equations

A complete description of the MHD system requires equations describing the

behavior of the material particles as well as those describing the electromagnetic

fields. The media of primary interest are astrophysical plasmas. The plasma

equations can be quite complicated when the electrons, ions and neutral particles

are treated separately and the binary interactions are considered in detail. For

simplicity, I will consider only ideal plasmas which may be described by one-fluid

equations (Krall & Trivelpiece, 1973, §3.5). The equations describing such a plasma

reduce to those of a fluid with a local charge density.

First consider the continuity equation

a

a—fw-pv = o (1.8)

The validity of this equation may be shown by considering an arbitrary closed, fixed

volume, V, within the viscous, compressible fluid. It has a boundary (surface area)

av. Let M be the total mass, in kilograms, within this volume. Thus

r1 =va dzx

Where 9 is the mass density in kilograms/meter? Taking the time derivative of both

sides and remembering the volumeis fixed,

THIS—tpdsx

However, the change of mass in the absence of sources or sinks must result from the

flow across the boundary. Thus

8M
at :16?!)-dA

where the negative comes from the convention that dA is directed outward causing

positive flows to decrease the mass within the volume. Equating these two forms for

the time change in mass yields

J'V-a—pdsx-=I-pv-dA

The integral on the right hand side may be3converted to a volume integral using the

divergence theorem to yield



IV?“ = )vwpv)dx

LES—Ft) +V-3pv)dx =

Since the volume is arbitrary, the integrand must vanish everywhere; thus the

continuity equation is verified.

To derive the momentum equation, once again consider the closed volume, V. Let m

 

be the total momentum in this volume. Thus

3 I

m=I pV d X

and

3

5L“--J(-§-{pv)d x (1.9)

a v

The change of momentum within the volume, in the absence of sinks or sources for

mass, results from the following three sources:

1. External body forces acting within the volume. Let f be the sum of all such forces.

I will postpone considering the nature of these forces until later. The time rate of

change of momentum resulting from these forces is given by

3

9.91:1de

at

2. The flow of momentum across the boundary given by

a_r_n2 :I—(pV)V-UA

at W

3. Pressure and viscous forces acting on the boundary;

5.31%; =I-PdA +[1-dA

av av

where ‘l: is the viscous stress tensor discussed later.

Thus the total change in momentum in the volume is given by

3

5L“ :I f d x +I—(pv)v-dA +I-PdA +I1-dA

5‘ v av v a



The three surface integrals may be combined to yield

3

abi? =I f d X +I-(pVV+P;-1)'GA

V av

where 1 is the unit tensor (order two). This surface integral may then be converted to

a volume integral to yield

am _ 3 - - 3

a -Ivf d x +IvV-(pvv+P; I” x

Equating this to the time rate of change of momentum from equation (1.9) yields

3

I [gipv- f+ V-(pvv+P;-1)] d x = 0

v

Once again the integrand must vanish since the volume is arbitrary. This gives the

momentum equation

Ba—{pV+V-(pVV+P,1,-L)=f (1.10)

The viscous stress tensor, t,is defined such that

dfv = jgdA

or, using the Einstein summation convention

where 1v is the viscous force acting on the boundary of the volume. For the form of

Tij- one must rely on a combination of experiment and theory to give (Huang, 1963,

pp 113-116)

_ aVi an 2 aVk aVk

Tij - §l[ m‘kai - 3611.3)?“ ] + {237k

where {1 and {2 are the coefficients of viscosity which may be functions of the fluid

variables.

The external forces of primary interest include gravity,

f9= P9 (1.11)

and the magnetic body force

fm=JxB=-BxJ=-BXVXH =-LBxVxB (1.1213)

2 0

f '(B'V)B _ VIBI

m _—”o —2“° (1.12b)

or in summation notation

. 3.3.

E, Jaxj ax, 211o

 

(1.120)



Combining these two external forces gives

2
(BV__)_B _VIBI

fP9+-—11° 2n,

The last term in equation (1.13) may be grouped with the pressure on the left side of

the momentum equation to yield

(1.13)

7§pv+V-'[pVV+(P+'ZB—u|:)1- 1']: pg +(—B-—-V)B (1.14)

Consideration of the energy equations begins with the first law of thermodynamics

dU = (id + 6w

which holds in the co-moving frame. U is the internal energy contained in dV, a small

volume moving with the fluid. Defining a as the internal energy per unit mass and

using -Pdv for work yields

f’ldez dq- Pdv

d8: 99 - EV

M M

The dq term includes the energy gained from external forces, viscous damping, joule

heating, as well as heat transfer. As the volume is allowed to become smaller and

smaller, one may make the following substitutions

_ r1
dV---p—zdp

run»

V 91-111-10
mpvp

where Q is the energy input per unit time per unit volume. Combining these gives

de_ _lidP 0

dt pza‘t p (145)

as the time rate of change for e. To find the rate of change of e in the laboratory

frame, one must use

and

in equation (1.15) to yield

be -P Q___P Q
g—t+v-.Ve p2(-pV-v)+5— FV'V-r-fi

I am interested in finding the time rate of change of pa; so,



198 be .93 -_ 9-
g-tpez e —ta +p-a—tze +p pV-V+p v-Ve)

g—tpe= e—i):--vae- PV- v+Q=e g—pwV-pv--V-pev--PV- V+Q

From the continuity equation, the first two terms on the right hand side equal zero so

g—tpez—Vpev -PV-v+Q =-Vpev -V-Pv+ v-VP+Q

Thus

%pe+V-[v(pe+P)]=V-VP+Q (1.16)

This equation determines the time rate of change of the internal energy. Q contains

the external heating as well as heat transport, so

0 : QT+ and... QEM +0vis

where

CIT = V-kTVT (1.17a)

8v

0 =1,557 (1.17b)

- . 12 m III2 II 2
0:M=J.E=_=_T_ =—IVxB| (1.17c)

Po

Therefore the internal energy equation has the final formV

giPe+V-[V(pe+P)]: v--VP+VkTVT+Tij::‘j+-1|VXB|2 (1.18)

The Grad term has been dropped since radiative transport is not being considered.

An additional equation, which considers the evolution of kinetic energy, can be

obtained by taking the scalar product of the momentum equation and the the velocity.

This equation, although unnecessary to describe the fluid, is useful in verifying the

conservation of energy since it may be added to the internal energy equation to

obtain the total (mechanical) energy equation. The scalar product is easiest to

evaluate in summation notation.

a a

V,- gPVI ” V157} PVIVJ' +P6ij- TIj )= vifi

This may be simplified by using

a 1 2 . = a I 2 a _



to yield

5_1 2.1 222 2.1 2 -1. 25 BE- 3atzpv 2v t+axj2pv vJ 2v fipvl+iavaifiJ1113va1

and

a 1 2_ 1 2 313 b 1 2 3P 3
__ V — - .—— .— . a . .

5129 v (57" a—x.pvJ)+§--)Z'J.2pv VJ"'V1 axi viaxJTiJ thi

The termin the pflarentheses vanishes from the continuity equation. Thus

a 2 6P 3

5‘29V215‘xJ2p" VJ' Vja—xj’via‘xJTij ' Vifi

11 2 9:1 2 5P a 3V1

612’” +axJ-zp"Vj”VJa"><J-’ axJ-ViiJ'I TJ‘J'axJ- Viif

a 2 a V2 1 3P
3%!” +59%“ vJ—vJ'tJJ.)= vaJ- 115M}- vJS-J-J-j (1.19)

Adding the internal energy equation (1.18) and the kinetic energy equation (1.19)

yields an equation for the total (mechanical energy),

a 2 a 2

3742‘” +pe)+é—§j[(-;—pv +pe+P)Vj_V111j]= VIfI+QT+QEM (1.20s)

or in vector notation

3 1 2

$913)! +Pe)+V-[V(%pv2+pe+P)-V-1-I<JVT]= v 1+ ileBI2

(1.20b)

Notice that the viscous heating no longer appears on the right hand side. Viscosity

only changes kinetic energy into thermal energy so does not appear as a source in

the total energy equation. Similarly, the resistive heating term would not appear as a

source if the “total” energy included the magnetic energy density, 82/2110.

These fluid equations are not complete since there is one more variable than

equation. The equations are closed using an appropriate equation of state. For the

completely ionized astrophysical plasmas being considered, the ideal gas law may

be used. For the variables chosen, the law has the form

P=Ir1lpe (1 21)

where y is now the ratio of specific heats. Use of this equation of state assumes that

all the internal energy is thermal. For other MHD problems, as well as for

astrophysical problems considering ionization, a more complicated equation may be

required.
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1.3 Equations in Conservation Form

The eight equations which describe the time evolution of the system may be

simplified, both conceptually and computationally, by transforming them into the

conservation form. Each equation then assumes the form

8R

fi+V-F=S (1.22)

where R is the variable (such as por pe), F is the flux, and S is the source term.

The fluid equations assume this form if we make the following identifications:

1. For the continuity equation (1.8),

R: p F: pV S=0

Fi= 9V:

2. For the momentum equations (1.10), consider the x component equation. The

other components have the analogous form.

R: va Fi= pVxVi+P5xi-txi S=fx

3. For the internal energy equation (1.17)

R: pe F=(pe+P)v S:v-VP+Q

bP
FJ-z (pe+P)vJ- Sva + 37:0

The magnetic equations (1.7) also assume the conservation form if we make the

following identifications:

4. Once again consider only the x component.

BB 33-

Rsz FiszVJ-BJ-Vx+fl(a—x':-a‘) 8:0

These eight conservation equations completely specify the time evolution of the

magnetohydrodynamic fluid. They are written out in full, with the addition of

stratification, in appendix B.

Notice that these equations may be written as a single matrix equation with the form

3R
a—t“ +V. F“! S“

The program treats the equations this way with or=1 for p; a=2,3,4 for pvx, pvy, pvz;

or=5 for pe; and a=6,7,8 for Bx, By,Bz.

11



1.4 Addition of Stratification

In the presence of an uniform external gravitational field, the compressible fluid will

exhibit stratification. The equations, as derived to this point, have an equilibrium

solution giving the resulting stratification for any given temperature profile. I have

chosen to eliminate this explicit dependence in the equations, however, by a change

of variables. I believe this is preferable because it emphasizes the variation from

equilibrium, minimizes the range in magnitude of the fluid variables, and, perhaps

most importantly, reduces the dependence of the numerical equilibrium solution on

the numerical boundary conditions. The exact equilibrium solution satisfying the

equations under the approximations introduced by the the numerical scheme

depends on the choice of numerical method. For problems in which the variation

from equilibrium is small compared to the equilibrium values themselves, the errors

introduced by requiring the equilibrium solution to satisfy the numerical scheme may

exceed the numerical errors in the variation from equilibrium by orders of magnitude.

The numerical method at the boundary is often of a lower order than in the interior;

so, this effect is exaggerated near the boundary. This boundary effect on the

equilibrium solution may be removed by eliminating the explicit stratification in the

variables as follows.

First, include the gravity body force as given in equation (1.11) with the restriction the

g be constant in the negative 2 direction. In effect, the direction of gravity defines the

z direction. For an isothermal atmosphere, the equilibrium atmosphere is given by

p(z)=p(0)exp(-%) H=£P_9_ (1.23)

where H is the scale height. If one lets pJJ and Po be defined as follows:

(1.24)

 

where the subscript indicates the fluid variable has the stratification

12

 



divided out as in equation (1.24). The gravitational force term cancels

out of the momentum equations and the calculations are considerably

simplified. A similar technique can be employed for any case in which

the equilibrium temperature profile is explicitly known as a function of

height. The full equations giving the flux and source terms are

summarized in Appendix B.
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1.5 Equations in Dimensionless Conservation Form

There are three primary reasons for stating the equations in dimensionless form.

First, by appropriate scaling of the dimensionless variables, one may avoid the

computational difficulties arising from very small or large numbers. The computer

program is less likely to suffer from rounding errors and the user is less likely to be

buried in numbers which are difficult to interpret. Second, one may discover the

dimensionless physical parameters which determine the problem. Third, the results

of a run may be applied to all problems which have the same dimensionless

parameters. The effects of scaling will be removed from the equations.

To make the equations dimensionless, I chose three scaling parameters. The first, M,

has dimensionality of density and is characteristic of the plasma densities in the

problem. The second, L, is a characteristic length in the problem, while the third, T, is

a characteristic time scale. If one makes the following substitutions:

.._P.
M

Z

x=iL9 g=—Jg_2 2=T9

2

8-8012

L

T T

V=V°—L- C=C°T

where the variable with the nought subscript are the variables from the previous

section and the unsubscripted variables are dimensionless, the equations are

unchanged in form. The value of these three constant were chosen so that the

density, the cell size, and the speed of sound each equal 1.0 for the equilibrium

solution.

The parameters which specify the problem must also be scaled as follows:

14



With these substitutions, the eight equations retain their form but the variables are all

dimensionless.

gagii'g—JBIVJBBMW-3233:30] 0

g—f+v.pV:0

g—tpwv- [pVV+(P+ J2—ilj)1'1]‘ pg +
(___BV)B

Jitpew-hV(Pe+P)]=V-VP+T ~~3JJ1L~¢|V=KBI2Ij-ZTV‘:

A number of dimensionless parameters appear in the usual theoretical consideration

of fluid mechanics and magnetohydrodyanmics. These parameters determine the

nature of the problem independent of the physical scaling. A number of these

parameters, their physical interpretation, and their dependence on program variables

are outlined below (Hughes&Young,1966).

1. The Reynolds number (=LV0/fi) is a measure of the ratio of inertial to viscous

forces. It is specified in the choice of g; however, the real viscosity is vanishingly

small. Only the numerical viscosity is of importance and its size is determined by

computational considerations. In this program, the Reynolds number is always

large.
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. The Frounde number (=V02/gL) is a measure of the ratio of inertial forces to

gravitational forces. It and the scale height are determined by the choice of g.

. The Prandtl number (=cp§po/kT) is determined by kT(see 1.18a) and g. It is a

measure of the ratio of viscosity to thermal diffusivity. As with the Reynolds

number, it is not physically significant for the problems considered but may be

used for computational purposes.

. The plasma [3 (=2uoP/BZ) is determined by the choice of B. This parameter,

which is the ratio of gas pressure to magnetic pressure, determines the Alvfén

speed and, therefore, the slow mode and fast mode magnetoacoustic wave

speeds.

The Strouhal number (=voT/L) may be of importance for fluid flows including

oscillations under the action of external driving forces (of period T). It is a

measure of the size of the oscillation to the characteristic length. For this

program, the Strouhal number is generally in the range of 10-100.
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2

Numerical Methods

The eight partial differential equations derived in chapter 1 describe the time

evolution of the fluid in the laboratory frame. Several numerical methods must be

developed to use these equations computationally. Finite difference methods are

used to evaluate the 2 spatial derivatives while pseudospectral methods are used for

the x and y derivatives. The grid points are allowed to move arbitrarily in the z

direction, so a coordinate transformation is required. Several different scheme were

tried for time integration of the equations. l have chosen to use a fourth order Runge

Kutta like scheme which treats the equations as coupled ordinary differential

equations. Each of these numerical techniques is developed in the following

sections.
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2.1 Spatial Derivatives Using Finite Difference Methods

I wish to approximate the 2 spatial derivative of a function whose value is known at a

finite set of discrete points. Assume the value of the function f13 =f(z )3) is known for

all{£ : 2 =0,1,2,...,NL}. To find the finite differrence approximation to the

derivative 81/82, define L to be an independent, continuous variable. Also define

z(L)= z); and f(L)= f3 for L=£. For other values of L, I only require that f(L) and z(L)

be continuous and sufficiently differentiable. Since f(L)=f(x,y,z,t),

o o
ar_araz+_a;a Jaawfla

aL'azaL ax L by L at L

_31

g;_ aL

5L

Therefore the problem reduces to finding the finite difference approximation for af/BL

and az/aL. Values of these functions are known for an evenly spaced (in L) set of

points.

Expand 1 about the point L=2 using a Taylor expansion to find an approximation forf

at the grid points L<£,

3 4

ar a’r 3231 32 51

2'4 f3 4 al- 8 5L2 3 31.3 + 3 3L4

1 4-3—bf 913-11%,221‘1

r -r-2—af+ .33__4.il+£fl

J z _111.1121 .121 ,1 a‘r

1" aL 2 aL 6 5L 24 314

where all the partial derivatives are evaluated at L=J2. Use has been made of the

fact AL=1 between adjacent points. Similarly for points with L>£.



f£+J=f2+ Igf+%-§L7 +%-§%§- +2i4$

f£+2=f£ 2%4-2? +.%.:_:.;. + -§-%:_4[

f2+3=f2+3fi+3§§
+%-§—:§- +%7_§%

fJ+4=fJ+4-§-|‘:—+8.aa_:§ +3336} +§§§g

This expansion can be inverted (neglecting terms of order greater than four) to give

the required relation between anal. and f at adjacent points. This inversion is most

easily done using matrix methods. As an example, consider the fourth order

centered difference. The earlier expansion becomes, in matrix form,

      

4 2 f
- -— — 2

{in (‘2? 1.31/1)
112-1 1 '1 —2' "3' 2‘2 5'2}

r = l o o o o 2—

i I I I 5L2

9+1 ‘ ‘ 7 ? 2‘4 23.31.

f 3 2 5'-
\ 2+2/ I 2 2 3 3 / \fl/

.aL“.

This has the form f=A-af. The solution is then af=A'1-f. A microcomputer was used

to invert the matrix to yield

      

f
/ a: \ / o o I o o \ (1J_2\

_ 1 -£ .2 --1_

M 12 3 0 3 I2 1'“

_afi _ -1 .1 -1 _1 -1

3

at __I_ _ _1_
3L 2 I 0 I 2 1M

4

\11/ \ I -4 6 -4 I / \rJJZ/

'aL ‘ 'J I I. .3

Considering only af/BL one finds
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bf

‘51" = (131-2-81,»+82+1-+2)/12 (2.26)

Similarly

.33 - -

The same method is used to find the approximation for ar/aL near the boundary;

however, the presence of the boundary requires an off center scheme. The resulting

fourth order off-center differences are

(%E)=(-251+4812-3613 +1614 ~315 )/12 (22c)

(-§[-)2=(--3r -Ior2 +1813 -6I'4 +I5 )/I2 (2211)

€-[-)NL_-=1(-1NL_4+61NL_3-Iar L_2+lOfNL_1+31NL)/12 (229)

%[-)NL= (3rNL_4- I fifNL_3+36fNL_2-481NL_1+2SfNL )/ I 2 (2.20

Sometimes a lower order method may be used at the boundary to minimize the

boundary effects.

These finite difference approximations are good to fourth order only for continuous,

four time differentiable functions. This limitation is sometimes important because

several test problems have discontinuous initial conditions.
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2.2 Spatial Derivatives Using Spectral Methods

Derivatives in the x and y direction are evaluated using a pseudo-spectral method

and a fast Fourier transform (Gottlieb and Orzsag,1977). For simplicity, I will discuss

the x direction only. The y direction is completely analogous.

The function, f, is known at a discrete set of evenly spaced points ({xi} j=0,1,...,NX).

This function can be approximated be a complex Fourier transform of the form

NJ 2ni -

f(x): 2 ’fj e(Ax M)” (2.3)

J=0

If NJ=NX, the Fourier series will give the exact values for x=xj while giving a smooth

approximation to f between the grid points. One may take the derivative of this

function to yield

 

NJ 2711' -
Z x . —— JX

bf: 3:0ofj( Aiflnixhegx NX) (24)

In my program a fast Fourier transform is used to find the coefficients in

equation (2.3) and the inverse transform is then used to reconstruct the derivatives

in equation (2.4). Since the Fourier approximation to f is continuous, this method

does not work well for some functions. The well known Gibbs phenomena makes

this method especially inappropriate for problems in which the function or its first

derivative is discontinuous. This becomes important for several of the test problems

which have discontinuous initial conditions.
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2.3 Coordinate Transformations for Dynamic Grid

The equations developed in chapter one are for a system of coordinates at rest

relative to the laboratory. If I wish to evaluate the functions and their derivatives in

another reference frame, I will need to develop the appropriate transformations. I wish

to use the new system of coordinates associated with the moving, or dynamic, grid.

The grid is allowed to move in the z direction to facilitate driving waves from the

boundary as well as to allow the points to be concentrated in regions of interest.

Although there are occasions when it may be useful to allow the grid to move in the x

and y directions as well, the grid may then become twisted, which adds an

unacceptable level of complication. This sort of problem is associated with two and

three dimensional Lagrangian methods, which attempt to use the co-moving

coordinates.

Denote the laboratory coordinates as xi ({xi : x,y,z,t}) and the new frame coordinates as

xi' ({xi' : x',y',z',t'}). The coordinate transform, Fl, which may be nonlinear, is assumed

to be known

K x=x(x',g',z',t') \

l U=U(x',y',z',t')

Z=Z(x',g',z',t')

t=t(xfigfizfit?

\ z

N

I

N -

  

To transform the derivatives required by the equation, one needs the relation

a _ 3X- a
a7;_(_1. _

Define 8N as the matrix which transforms the derivatives in one frame to derivatives in

the other. It is then given by

~ aX‘

..= _J.aN,J (ax;
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therefore

/ \

(9:. w 9; al
' bx' bx' bx' ' '

9L .92 9; 9.1

~ 09' 09' 09' bg'

a”’ 2x. 29. 0.2. _t
02' bz' bz' bz'

ax fl a: at .I

\bt' bt' bt' bt'll

This matrix is nonsingular if the coordinate transform can be inverted to give xi'(xj). It is

assumed that transforms which are useful here can be inverted. Thus

This may be used to calculate the laboratory frame derivatives from any moving frame

denvafives.

For this program, x, y, and t remain the same as the laboratory frame while the grid is

allowed to move in the z direction. The new coordinates are {x,y,L,t} and the required

coordinate transform is

Z
!

\

II
II

N
c

x
_ J

(X'.y'. L .t')

F
‘
N
C
C
X

l
l

(
'
0
'
-

  

This yields
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/ \

II I 0 sf. 0 \|

.. o I 33. o

3N = 02

0 0 3L 0

' 0 o 95. I '\\ bt //

This matrix is easily inverted to give

/ \

.5;- Q?-

.l 1 0 bx' 0L 0 \-

I J‘- 9-z o
by' DL

0

(3N)-1= Oz

0 O I/ZTL 0

0

 
' -9; 9.2

\ 0 bt' DL 1,,

Therefore, one may evaluate the laboratory frame derivatives required in the

equations with

9_= 9. _ 9.2. 92 9.
bx bx' ax' bL DL (2.58)

9.= 9__9_z. 92 9_

59 09' 09' DL 9L (2%)

L- 9.2 L

bz ’ 1/aL bL (2.5c)

L - L- 0—2 Q’- L

at " bt' bt' bL bL (2.5d)

using only derivatives in the moving frame.
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2.4 Time Integration of the Equations

The equations from chapter 1 and numerical methods from 2.1-2.3 are used together

to calculate the time rate of change of each of the eight gas variables. A numerical

scheme is still required for the time integration. A number of explicit techniques were

tried, including Euler’s, predictor-corrector, and leapfrog methods. The final program

uses the fourth order Runge Kutta like method outlined below. It was chosen

because it permits larger time steps and, more importantly, gives a measure of the

accumulating numerical error resulting from the time integration.

Using the equations of chapter 1 and the earlier derived numerical methods, I have

written a subroutine which returns the value of dR/dt using the variables at the current

time step so

is}? 5 f'(R(t),t)

A second subroutine uses these derivatives to find R at t+At using the following fourth

order Plunge-Kutta formula (Abramowitz and Stegun,1964, §9.2)

k1: At f'(R(t),t)

k2= At f'(R(t)+ k,/2,t+At/2)

k3= At f'(R(t)+ k2/2,t+At/2)

k4= At f'(R(t)+ k3,t+At)

k1 k2 k3 k4

RM”: “‘0 * F * a * ‘3' * '5' (2.6)

The resulting error is of order (At)5. By calculating a new value R1 using one step of

2At and comparing the result with the value, R2, obtain from two steps of At, one gets

an indication of the size of the error, E, as follows:

R, = R(t+2 At) + «9 (2M)5

R2= R(t+2 At) +2¢(At)5

£52¢(At)5=(R1-R2)/15

Where CD is a numerical constant (assumed independent of At) characteristic of the

equations. This can be used to choose the largest time step which produces a

desired accuracy, 60, (Press et al, 1986, §15.2). If the current step size results in an

unacceptably large error, it can be repeated with a smaller time step chosen as

follows:
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1/4
E

Atnw = 0.9 At“K12) (2.7)

The factor of 0.9 has been included as a safety factor to reduce the probability of

repeating a step because At is slightly too large. The exponent, 1/4, comes from the

desire to limit the error accumulated over all steps. If the error is acceptable, At can

be increased with the following

1/5
E

Atnew = 0.9Ato1d(_Esz) (2.8)

This method provides a straightforward way to obtain the maximum At consistent with

a desired accuracy; moreover, it produces large time steps for the slowly changing

parts of problem and concentrates many steps during the rapidly varying portions.

The cost is an extra three evaluations of dR for each two At. The derivative must be

evaluated four times for each At. Thus the cost is about 3/8, which is generally made

up by the larger time step.
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2.5 Numerical Boundary Conditions

The eight equations describe the behavior of the fluid throughout its volume;

however, the region treated numerically is restricted. Since the problems to be

considered are not strictly outflow, numerical boundary conditions will be required to

maintain numerical stability. Periodic boundary conditions are used for the x and y

boundaries as is implicit in the use of pseudo-spectral methods. The lower 2

boundary is used to drive the waves into the fluid and so explicit conditions will be

specified for most problems. The upper boundary may be open or reflecting. To

produce an open boundary, l have used a modified Sommerfeld radiation condition

similar to the method suggested by Orlanski (Orlanski, 1976, pp251-269).

It is assumed that a disturbance near the boundary obeys the wave equation

.51 fl -
at + C 52 '0 (2.9)

For each variable, t, this equation is used to determine the wave speed. If c>Az/At,

the flow is strongly outward and ft+At(NL) can be extrapolated from ft(NL-1). If c<0

then the wave propagation is into the region and the boundary conditions must be

given explicitly. When 0<c<Az/At, there is a outward moving wave (assumed to be

obeying equation 2.9). Any function of the form

f(Z,t):f(Z"Ct)

identically satisfies this equation so, the new value of ft+At(NL) is given by

t+At _ t+At_ _
f(zNL ,t+At)--f(zNL ct CAt)

=r(z;:“-cAt,t)

t

=1'(zt (2.110)

t+At_ t _ fl

NL-l’t)+(zNL zNL-l CA”(62)
NL-l

The new value of R is calculated and the required value of dR/dt is returned by the

subroutine calculating the time derivative. Note that each variable will have its own

characteristic wave speed and thus its own extrapolation. In the program p, Vx: vy, vz,

e, Bx, By, and B2 are chosen as the {f} rather than p, pvx, pvy, pvz, pe, Bx, By, and

32.

The dynamic grid greatly complicates the implementation of this method. Moreover,

the time derivative used in equation (2.10) is evaluated only to second order, so the

boundary may dominate in determining the time step. This becomes a problem when
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a large amplitude wave (or shock) passes the boundary. If this occurs and is not the

region of interest, the boundary may be “stepped” over the shock by suddenly

truncating the region to exclude the shock. The number of grid points may be

permanently reduced or extra points may be added between existing points by

interpolation.

Another approach may be used for an open boundary when a single outgoing wave

velocity can be determined. The values of the variables at an interior point are noted

and the position of the point is propagated outward at the wave velocity. When this

point passes the boundary, its position and its values of the variables replace the

boundary values. A new interior point is chosen and the process repeated. This

method worked well for acoustic waves, Alfvén waves, and other cases with a single

well defined wave velocity.

To produce a reflecting boundary, two algorithms were used. The simplest was to

continually set the variables at the boundary to the initial values. A better method

was to set the values at the boundary to those of the next point towards the interior

and to reverse the normal velocity; that is,

ONE PNL-I

(Vx)NL=(Vx)NL-1

(Vz)NL‘-' ‘(Vz)NL-1

eNL=9NL-1

BNL=BNL-1

These conditions were used on both boundaries for some problems in which the

motion of interest was along the x direction.

Periodic boundary conditions were also occasionally used. In this case, I set

fNL=f4

fNL-1=f3

f2=fNL-2

f1=tNL-3

for each of the variables. These conditions were most useful for problems which

were independent of 2, such as the ID (in x) test problems.

The effectiveness of these conditions is discussed in chapter 3 for several test

problems.
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2.6 Numerical Viscosity

Explicit numerical schemes for nonlinear problems are frequently subject to an

instability arising from a transfer of energy from long wavelength to short wavelength

oscillations. As a result, an oscillation with a wavelength equal to the grid spacing

eventually grows to swamp the motions of interest. A similar difficulty arises from the

presence of shocks. The standard way of handling these problems is to add

artificially large viscosity to the equations. I have already included viscosity in the

equations, so the these instabilities can be controlled by the proper choice of

coefficients in the equation

av av

T" = g{(137,- ex.) 23513' ext] C2 aii "al,:

The second coefficient, £2, is sufficient to control the short wavelength oscillation;

however, £1, may be needed in the presence of oblique shocks or transverse waves.

If the oscillations occur in the fourier (x) direction, they may be reduced or eliminated

by removing the highest frequency components. This fourier smoothing has much

the same effect as artificial viscosity.

As a result of the addition of this artificial viscosity, real shock waves are widened in

profile. The solutions in front of and behind the shocks are unchanged but the shock

itself is rounded. This is discussed in greater detail in section 3.2.
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3

Test Problems

The program was tested on a number of problems for which the analytic solutions

were known. Each of the following sections contains one class of test problem and

the results of the computer simulations of that problem. The first few problems are

one dimensional, the next few are plane-wave, and the last few are two dimensional.
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3.1 Acoustic Waves

The first and simplest test problem was to drive low amplitude sound waves from the

lower 2 boundary. First, a single sinusoidal (in time) pulse was started and followed

as it moved in the positive 2 direction. A sample graph of the resulting wave is given

figure 3.1. The wave traveled with the expected speed and pulse length. There was

some raggedness at the trailing edge of the pulse resulting from difficulty in stopping

the driving force at the correct time (which generally fell in the middle of a time step).

There was a reflection from the upper boundary with an amplitude of about 5%.

A similar simulation was performed with an acoustic pulse traveling in the x-direction.

Since the boundary conditions are periodic in x, the pulse was driven from an interior

point by sinusoidally varying the density and pressure, but not the velocity. One pulse

traveled in each direction. Numerical viscosity and fourier smoothing were used to

minimize the difficulties arising from the spatial discontinuity at the driving point. A

sample graph is given in figure 3.2. Once again, the wave traveled with the expected

speed and pulse length. The ragged trailing edge is again apparent.

Next, a continuous acoustic wave was driven from the lower boundary. The results,

as shown in figure 3.3, were as predicted by theory. After the initial transient

reflections passed the upper boundary, the reflections decreased in amplitude to less

than 2%. This improvement can be attributed to use of the the Sommerfeld wave

boundary conditions. These boundary conditions should work best when the net

outflow results from a wave with uniform and constant speed. They did not work as

well for the abrupt beginning and ending of the acoustic pulse.
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3.2 One Dimenslonal Shock Wave

Another simple problem which is analytically soluble is that of a piston moving into or

out of a uniform, non-magnetic fluid. If the piston moves inward, the fluid is divided

into two regions separated by a shock as pictured in figure 3.4.

 

V Regionl Region2

% :1 :2
 

Figure 3.4: Adiabatic shock resulting from an inward moving piston.

To the right of the shock, the fluid parameters are all the same as the initial fluid at

rest. To the left of the shock, the velocity of the fluid is that of the piston. The

solutions for the remaining post—shock quantities are (see Appendix C)
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The values which result from my choices of the initial fluid parameters and some

values for the piston velocity are given in Table 3.1. When the code was used to

simulate this problem using no viscosity, the post-shock instability alluded to in

section 2.6 dominated. Sample output for such a case (vp=0.1) is given in figure 3.5.

This instability was eliminated by the addition of viscosity.
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vp pt T1 Vs

0.01 1.01003 1.00667 1.00667

0.05 1 .05082 1 .03363 1.03389

0.10 1.10321 1.06793 1.06889

0.25 1.26868 1.17591 1.18046

0.50 1.56343 1.37914 1.38743

1.00 2.15139 1.91234 1.86852

vp—aao 4.00000 3/4vp2/y 4/3 vp

Table 3.1: Solution for piston problem, y=5/3, p2=1.0 , T2=1.0

Sample output is given for such a case (vp=o.1, §2=0.15) in figure 3.6. The

post-shock oscillations have been eliminated at the cost of widening the shock. For

weak shocks, the shock assumes a profile given by a hyperbolic tangent. In this

case, the thickness of the shock can be described by a single parameter 8 where

tanh(z/8) describes the shape of the profile. For weak shocks in an ideal gas,

(Landau & Lifshitz, 1959, §92)

f -I ge2
13161

The program was run for each of the first five piston speeds in table 3.1 with the

viscosity chosen to give a shock thickness of about 4.0. The program worked well in

each case. The average value of the gas variables behind the shock and the speed

of the shock varied from the theoretical values by less than 1%. The amplitude of the

reflection of weak shocks from the open boundary were of approximately the same

size as those from the acoustic pulses; however, strong shocks were reflected with

an amplitude of 10-15%. For problems in which this presents a problem, the

program would have to step over the shock.

36



 

1. 10*-

D
e
n
s
i
t
y

.08"

 

 

V
e
l
o
c
i
t
y

l
j,

 

 

1 . 09-

1 . 08-

1 .07-

1 . 06-

. 05-

1 . 04-

T
e
m
p
e
r
a
t
u
r
e

1.03-

1.02-

1.01‘

1.00- 

-
b

1

-
(
r

 
-
b

 

0.00

Figure 3.5 : Sample output for piston with vp=0.1 and no viscosity.

t=60.0

Z

37

1 l I 1 I T r r 1

10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00

 



D
e
n
s
i
t
y

V
e
l
o
c
i
t
y

P
P
P
P
P
P
P
P
P
P
P

T
e
m
p
e
r
a
t
u
r
e

Figure 3.6: Computational results for shock wave in z direction.

. 06‘-

.05"

.e4~-

.03"

. 02--

.01“

 

 

 

 

u
h

d
b

.
1

A A

 

'-‘n

 

i i I

10.00 20.00 30.00

vp=0.1 , §2=0.15 , and 1=60.0

l i 3

40.00 50.00 60.00

2

38

I

70.00

I

80.00

I

90.00

 



A similar problem was run in the spectral direction. Since the shock could not be

driven from a boundary, an initial discontinuity was used to create the shock. The

numerical domain was initially divided into two regions — one region had v=vp while

the other had v=-vp. Both regions had the same density and temperature. For t>0,

there is a region in which the gas has come to rest as well as the initial two regions.

A shock is driven into each of the initial regions. The solution is the same as the

piston problem given in figure 3.4 except that region 1 is at rest rather than region 2.

Because of the periodic boundary conditions, there is also an interface at which the

gases are moving away from each other. Rarefaction waves are generated at this

junction. These are considered in the next section.

The program was run for several of the piston speeds in table 3.1. Numerical

viscosity and fourier smoothing were used to minimize the effect of the spatial

discontinuity; however, very small time steps were still initially required. These small

steps and the requirement for a large number of cells (only one fourth of the domain

was useful for the shock problem) slowed the program considerably —- each run took

about eight hours on the Vax.

The post shock values again were within 1% of the theoretical values; however, the

program had some difficulty with modeling the shock itself. This is most evident in

the dip just behind the shock in figure 3.7. This was a remnant of the initial

discontinuity and decreased with time.
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3.3 One Dimensional Rarefaction

If a piston moves oUt of a uniform fluid, a rarefaction wave travels into fluid. For

piston velocities less than the critical value, 2c/(?f -1), one expects the solution shown

in figure 3.8 (Landau &Lifshitz,1959,§92.).
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Figure 3.8: Theoretical solution for outward moving piston.

The fluid in region 1 has the same velocity as the piston. In region 2, the original

conditions persist. The two regions are separated by a rarefaction wave; the leading

edge of which moves with the velocity, va=co (the initial sound speed). The velocity

of the trailing edge, vb, may be either to the right or to the left and depends on v as

follows:

p

_ 7+1

”1: - Co"? ”v'
The value of the fluid variables in region 1 also depend on v and are given by

2 p

_ 7-1 1va 7:1

91-41(1'7'30)

3!

EM IXEI)?"

2 co

Table 3.2 contains the values of the fluid variables which result from my choice of

density and temperature and several piston speeds. Within the rarefaction wave

itself, the speed of the gas is given by

IvI=-.,—i,—(c.- %)

where x is the distance from the front of the rarefaction and t is the time since the

piston began moving outward.
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The computer program was run for each of the piston speeds in table 3.2. Sample

output is shown in figure 3.9. The average values for the gas variables in region I

agreed with theory to within 1% for vpso.6. For greater piston speeds, the numerical

domain did not contain any of region 1. The rarefaction wave had the expected

profile and traveled with the correct speed. There was a small wave packet which

preceded the rarefaction wave which I believe was caused by the initial temporal

discontinuity. It may be eliminated by increasing the numerical viscosity; however,

this also changes the profile of the rarefaction. For purposes of this test, I felt the

small oscillations were not significant and the viscosity was not increased.

vp p p e vb

0.00000 1.00000 0.60000 0.90000 1 .00000

0.10000 0.90330 0.50645 0.84100 0.86667

0.20000 0.81304 0.42495 0.78400 0.73333

0.30000 0.72900 0.35429 0.72900 0.60000

0.40000 0.65096 0.29337 0.67600 0.46667

0.50000 0.57870 0.241 13 0.62500 0.33333

0.80000 0.51200 0.19661 0.57600 0.20000

0.80000 0.39437 0.12725 0.48400 -0.06667

1.00000 0.29630 0.07901 0.40000 0.33333

1.50000 0.12500 0.01875 0.22500 -1.00000

2.00000 0.03704 0.00247 0.10000 -1 .66667

Table 3.2: Gas variables after the passage of the rarefaction cause by a piston moving

at selected speeds.

The upper boundary performed fairly well in this test. It reflected the waves with an

amplitude of about 5%. The reflected rarefaction eventually passed through the

original rarefaction and continued to propagate through region 1. '

A similar test was run in the spectral direction. Since the rarefaction could not be

driven from the boundary, an initial discontinuity in velocity was used as explained in

section 3.2. Because the numerical domain also included a shock, the viscosity

could not be kept as low. The program was run for the lower piston speeds and the

numerical results for region 1 were again within 1% of the theoretical values.

Sample output is given in figure 3.10.
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Computational results for rarefaction wave in the z direction.
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3.4 Shock tube

Another one dimensional problem which was run in both directions consists of two

semi-infinite regions of gas initially separated by a partition. The two regions are in

thermal equilibrium but have different pressures. At t=0, the partition is broken and

the gas begins to move due to the pressure gradient. For t>0, the gas is divided into

four regions as shown in figure 3.11.
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Figure 3.11: Theoretical solution for the shock tube.

Regions 1 and 4 are the remaining parts of the original regions and the initial

conditions persist in them. Regions 2 and 3 share the same velocity (toward

regiont) and pressure but have different densities and temperatures. The regions

are separated from each other by a shock wave moving into region 1, a contact

discontinuity moving with the gas in regions 2 and 3, and a rarefaction wave moving

into region 4. The leading edge of the rarefaction moves with initial sound speed.

The speeds of the remaining interfaces, as well as the values of the pressure,

density, velocity, and temperature in regions 2 and 3 depend on the initial pressure

ratio. The theoretical solution for this problem follows directly from the combination

ratio V3 P3 92 T2 VS 93 T3 Vb

1.50000 .12158 1.21972 1.12628 1.08296 1.08433 1.32492 .92059 .83790

2.00000 .20764 1.39727 1.22082 1.14454 1.14796 1.61280 .86636 .72315

4.00000 .41361 1.90515 1.45984 1.30504 1.31306 2.56319 .74327 .44853

5.00000 .47931 2.09391 1.53853 1.36099 1.36935 2.96595 .70599 .36092

6.00000 .53272 2.25753 1.60289 1.40841 1.41634 3.33765 .67638 .28970

8.00000 .61643 2.53295 1.70395 1.48652 1.49210 4.01247 .63127 .17810

10.00000 .68081 2.76108 1.78142 1.54993 1.55205 4.62006 .59763 .09226

Table 3.3: Theoretical values for shock tubes.
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of the shock and rarefaction wave solutions. The values which result for my choice

of variables and several initial pressure ratios are given in table 3.3.

The program was used to simulate a shock tube with motion in the finite difference

direction for each of the initial pressure ratios in table 3.3. Numerical viscosity was

used because of the presence of the shock. The numerical results agreed with the

theoretical values given in the table to within 1%. The program did have some

difficulty modeling the contact discontinuity as can be seen in the temperature

oscillations near the discontinuity in figure 3.12, sample output for a shock tube with

an initial pressure ratio of 10. I believe this difficulty could be eliminated by using a

non-zero thermal conductivity (kT in eq 1.17a). I did not incorporate this change

since contact discontinuities only result from initial discontinuities, which can be

avoided when necessary.

The program was also used to simulate a shock tube with motion in the spectral

direction for the smaller values of initial pressure ratios (rati055). For the larger

values, the time steps became extremely small for the time just after t=0. Numerical

viscosity and fourier smoothing were both used to minimize the difficulties arising

from all the discontinuities. The numerical results were again within 1% of the

theoretical values except for the value of gas velocity in regions 2 and 3. The

average value there was still close to the theoretical, but there was a spatial variation

in the velocity caused by the contact discontinuity which caused the average value to

be uncertain by about 2%. Figure 3.13, which is sample output for an intitial ratio of

2, shows the difficulty in both the temperature and velocity graphs.

The difficulty experienced by both spatial methods in attempting to model the contact

discontinuity makes it essential to avoid this type of discontinuity in the initial

conditions. This program would need to be improved to give a useful simulation of

problems in which contact discontinuities cannot be avoided.
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Initial pressure ratio=10:1.
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3.5 Alfvén Waves

With the addition of a magnetic field, several new wave modes are possible. The

simplest of these are Alfvén waves which propagate along the field lines with a

velocity A, where

2

A‘= BO

61%

These waves are transverse oscillations in the velocity and magnetic field — the

density, temperature, and longitudinal components of the velocity and magnetic field

are undisturbed. In simulating this mode, I used the usual initial conditions and

Bz=Bzo

Bx=on= 0.0

An Alfven wave was driven from the lower boundary by sinusoidally varying Bx and

vx as follows:

 

Vx = Vo Sin(C01)

and Bx = -Bzo vo sin(oot)/A

The program was run for several choices of Va, which effects only the amplitude of

the wave, Bzo,which effects the Alfvén speed, and 0). Sample output showing the

spatial variation in B)( and vx is given in figure 3.14. The remaining variables were

constant (20.05%) throughout the numerical domain and the wave propagated at the

theoretical Alfvén speed to within 1%(the accuracy of determining the group velocity).

The program was then run with propagation in the x direction. The waves were

generated by varying the transverse velocity. Both fourier smoothing and artificially

large viscosity (9, in this case) were required to overcome the spatial discontinuity at

the driving point. I obtained results equal in accuracy to that of the wave propagating

in the z direction.

Next the program was used to simulate an Alfvén wave propagating at an angle to

the magnetic field. The background magnetic field had both x and 2 components and

the wave propagated in the x or z direction. The y components of the velocity and

magnetic field varied while all the other variables remained constant. Sample output

is given in figure 3.15. Once again only By and vy varied - the other variables

remained constant (:l:0.05%). The wave velocity was once again within uncertainty of

the theoretical value(i1%). In this case, the coupling between the driving point and

the wave was not as good as in the case of the propagation along the field lines. The
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driving point in figure 3.15 oscillated with an amplitude of 0.020 in vy. The wave,

however, had an amplitude of only 0.017 (or 85% of expected). No other modes

were excited and I am not sure of the cause for this decoupling.
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3.6 Magnetoacoustic Waves

The introduction of a magnetic field causes the acoustic mode of oscillation to split

into two modes. These two modes, called the fast mode and slow mode, consist of a

coupled oscillation in all the variables except those tangential components which

vary in the Alfvén mode of oscillation. The phase velocities of these two modes are

given by (Hughes & Young,1966)

 

 

 

 

 

 

1.

2

A2+A2+c2 2 2 2 2

a =:l: x z 0.. Ax+Az+C° 22

- C A
slow 2 2 o z

1.

2

A2+A2+C2 2 2 2 2
a = X z 0 + AX+AZ+CO _ CZAZ

fast 2 2 o 2

where co is the sonic speed, Az is the Alfvén speed in the direction of propagation,

and A)( is the Alfvén speed in the direction perpendicular to the direction of

propagation. The coordinate axes have been chosen such that By=0.0 (without loss

of generality).

For propagation along the magnetic field (Ax=0.0), there is only one mode of

oscillation, in which a=co. This case was easily simulated by the program. The

waves were driven exactly as they were for the acoustic wave in section 3.1.

For the general case, I tried several different ways of driving the waves. When the

transverse magnetic field (Bx) and velocity were varied and the remaining variables

held constant at the driving point, both modes were generated simultaneously.

Figure 3.16 shows sample output for such a case. The relative strength of the modes

depended on the relative amplitude of the oscillation in velocity and magnetic field.

A considerable amount of “noise” was also generated which was reduced by using

non-zero viscosity and magnetic diffusion.

52



D
e
n
s
i
t
y

.0000

 

.0050‘

.0040-

.0030‘

.0020-

.0010-

.0000-

.9990-

.9980-

.0030‘

.0020-

.0010‘

.0010'

.0020-

.0000-

.9980'

.9960-

.9940-

.9920‘

.9900‘

.9880~

.98601

I
I

I 
0.00

l l l j l l l

I I I I I

20.00 40.00 60.00 80.00

i i

2 100.00

Figure 3.16: Simultaneously generated fast and slow mode magnetoacoustic wave pulses.

t=60.0 , «1:.01, §1=.05.

53



Next I solved the linearized equations to find the relations in the variation of p ,vx, vy.

e, and Bx to get

vzzw sin(wt)

p=p,(1+%"-sin(wt))

-A A

v = _I—z— w sin(cot)
X

oz- A2z

e=e°[ l+(7-1)%sin(wt)]

a

2_ A22
 B=B (1+ wsin(cot))

X X0

0

where a is either afast or aslow. When these relations were used to drive waves from

the lower 2 boundary, only the chosen wave was generated. The program was used

to simulate fast and slow mode magnetoacoustic waves propagating at a variety of

angles to the magnetic field (by vary 8)( and 82). Figures 3.17 and 3.18 show some

typical output (propagation at 45° to the field). A numerical instability developed in

the propagation of the slow mode wave which was eliminated by using a non-zero

magnetic diffusivity, n. The value used (11:0.01) still corresponded to a very low

resistivity.

For propagation in the spectral direction, I used both of the methods outlined above.

When just the tangential velocity and field were varied, the results were much the

same as in the finite difference direction. There were fewer difficulties with the

“noise”, probably resulting from the fourier smoothing; therefore, I did not need to

use a non-zero magnetic diffusivity.

When the driving point was oscillated using the theoretical relations above, both

modes were generated. Since the relations could be correct for only one of the two

directions in which the waves propagated, the waves propagating in the “wrong"

directions were about equal in amplitude. In the forward direction, the chosen mode

dominated. Sample output is shown in figure 3.19, which was driven as a fast wave.

Notice that the slow mode waves appear symmetrically. This suggests to me that it

may be possible to drive only the fast mode if the correct driving mode can be

determined.
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3.7 Nonlinear Waves in Magnetic Atmosphere

The last class of test problems considered was that of shock waves and rarefaction

waves propagating through a uniform magnetic atmosphere. Theoretical solutions

are available for the simpler cases and the results for the cases for which theoretical

solutions are not known will be needed for comparison in chapter 4. For the simplest

case of waves propagating in the direction of the field, the problem may be solved

theoretically. The waves propagate exactly as they would in the absence of the

magnetic field and the the solutions from section 3.1 and 3.2 still pertain.

For the case where the waves propagate perpendicular to the field, theoretical

solutions are also available. The solution to the piston driven shock given in

appendix C, can be extended to include the magnetic field; however, the resulting

equation in a, the ratio of densities, is cubic. Analysis of this equation revealed one

real root which was found numerically for the chosen initial fluid parameters and

several values for the piston speed. These values are listed in table 3.4. The results

obtained from the simulation were in excellent agreement (i0.1°/o) with these values.

Sample output is given in figure 3.20.

vp/c p1 T1 vs B1

0.010 1.00765 1.00507 1.31539 3.02296

0.050 1.03852 1.02572 1.34818 3.1 1555

0.100 1.07799 1.05158 1.38227 3.23396

0.250 1.20061 1.13274 1.49617 3.60182

0.500 1.41553 1.28602 1.70328 4.24658

1.000 1.85403 1.70618 2.17092 5.56209

Table 3.4: Theoretical Solution for Shock— Bz=3.0
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Figure 3.20b: Shock moving normal to a uniform magnetic field. Vp=0.1 B2=-3.0

l was unable to find a solution in the literature for a rarefaction wave in a magnetic

fluid. The solution used in section 3.3 (Landau & Lifshitz, 1959, §92) is a similarity

solution with the acoustic speed as the characteristic velocity. I assumed that the

presence of the magnetic field would not introduce a characteristic length and,

therefore, the similarity solution could still be used. The characteristic velocity, in this

case, would be the magnetoacoustic wave speed (only one mode is possible for

propagation perpendicular to the field). Table 3.5 lists the values given by this

solution for several piston speeds.

vp/c p1 T1 vb B1

0.010 0.99239 0.99492 1.29670 2.97717

0.050 0.96232 0.97472 1.24340 2.88696

0.100 0.92559 0.94976 1.17670 2.77677

0.250 0.82105 0.87682 0.97670 2.46315

0.500 0.66483 0.76174 0.64337 1.99449

Table 3.5: Theoretical values for rarefactions— Bz=3.0

Once again the computer simulation of this problem yielded results in agreement

with the analytic values (10.1%). Sample output is given in figure 3.21.
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For the most general case of a shock propagating at an angle to the magnetic field,

the equation in a, the ratios of densities, is cubic in a2 and cannot be solved

analytically. An analysis given by Hughes and Young (Hughes & Young, 1966,

§10.4) reveals that there are three real solutions for a and vs. The first solution is

called a slow shock since it reduces to a slow mode magnetoacoustic wave in the

small amplitude limit. The second solution, called a fast shock, reduces to a fast

mode magnetoacoustic wave. The third solution, call an intermediate shock, has a

shock speed which approaches the Alfvén speed in the small amplitude limit.
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Figure 3.22: Shocks resulting from driving a piston at an angle to the magnetic field.

Figure 3.22 illustrates what happens when a piston is driven into the fluid at an angle

to the magnetic field. The boundary values specified at the piston did not include the

transverse velocity or magnetic field; therefore, a frictionless piston was being
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modeled. In this case, any or all of these type of shocks may result from the piston.

Output for a sample run is given in figure 4.4. As can be seen, two shocks result and

propagate independently. The first and larger shock is a fast shock and the second

is a slow shock. No intermediate shock was generated. The results for the case

Bx=Bz=3.0 (8:45°) are summarized in the following table.

Vp

0.010

0.050

0.100

0.250

0.500

1.000

P1

1.0081

1.0411

1.0837

1.218

1.460

1.98

in

-0.0025

-0.0112

-0.0208

-0.042

-0.063

-0.06

1}

1.0054

1.0273

1.0555

1.145

1.315

1.77

3.023

3.112

3.221

3.541

4.062

5.03

132

1.0062

1.0309

1.0624

1.161

1.338

1.724

-0.0046

-0.0226

-0.0443

-0.1048

-0.1908

V22

0.0089

0.0443

0.0887

0.224

0.454

0.935

Table 3.6: Shocks caused by driving a piston at 6=4S° to a uniform magnetic field.

T2

1.0041

1.0205

1.0414

1.107

1.235

1.604

Bx2

3.028

3.140

3.281

3.709

4.438

5.89

These results can be used to determine what transverse velocity must be specified to

generate any fast shock. This was done, iteratively if necessary, to obtain or. and vs

as a function of vp for the fast shocks. Since the slow shock in figure 3.22 moves into

a region whose fluid parameters were determined by the fast shock, it was more

difficult to determine what transverse velocity was required to produce the desired

slow shock moving into the undisturbed fluid.

Vp

0.000

0.010

0.050

0.100

0.250

0.500

Table 3.7: Post shock fluid values for a oblique fast shock.

p

1.0000

1.0069

1.0351

1.070

1.180

1.377

Vx

0.0000

-0.0052

-0.025

-0.049

-0.116

-0.206
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T

1.0000

1.0046

1.0232

1.0470

1.122

1.268

BX

3.000

3.032

3.157

3.317

3.794

4.58

1.453

1.482

1.519

1.634

1.839
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Figure 3.23b: Piston driven oblique shocks.

To isolate the dependence of slow and fast shocks on the angle between the shock

and the magnetic field, I ran the piston at the same speed at different angles. The

results are summarized in table 3.8.

9 Pt Vx1 T1 91 92 Vx2 V22 T2 92

0 1.1032 0.0000 1.0679 0.00

15 1.1013 -0.0073 1.0668 16.30 1.0886 -0.0334 0.0914 1.0585 17.95

30 1.0967 -0.0123 1.0639 32.12 1.0823 -0.0351 0.0918 1.0544 33.28

45 1.0906 -0.0142 1.0600 47.30 1.0805 -0.0293 0.0955 1.0533 47.86

60 1.0849 -0.0126 1.0563 61.86 1.0794 -0.0206 0.0984 1.0525 62.08

75 1.080 -0.0077 1.0537 76.05 1.0784 -0.0105 0.0997 1.0519 76.07

90 1.0779 0.0000 0.1000 1.0517 90.00

Table 3.8: Post shock fluid values for different angles between piston and field.
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When the piston was withdrawn from the fluid, two rarefactions resulted. This case is

illustrated in figure 3.24. The two waves have leading edge velocities equal to the

slow and fast magnetoacoustic wave speeds for the region, so I have called them fast

and slow rarefactions. Sample output is given in figure 3.25.

IIIIIIIIIIIIIIIIII

IIIIIIIIIIIIIIIIII

IIIIIIIIIIIIIIIIII

OOOOOOOOOOOOOOOOOO

 
  

, . E E E E 5 SI owgigigigégég - 33535555353 fa st 355335553; -

// Regtonl rarefaction Regtonz rarefaction Reg1on3

/ p Vc 35323353555E;EgEgEgEgEgSgEgEgSgEgSgi slow V5353553555E;Egigigigigfgégigigigégigi fast

V1=vp §s§s§s§2§2:2§2§2§2§5§s§s§2§s§2§2§5§s V2 Vs=0

91 s:33sis§a;a§s§s§s§s§2§s§s§5§s§s§s§2§ e2 es=e°

p1 '=:3:E:E:E:E:E:E:E:Eziziriziriziziti p2 :3:3:5:3:5152:53323355:3383 '33“).

C b a

Figure 3.24: Rarefactions resulting from withdrawing a piston at an angle to the field.

The results of running the simulations for a number of different piston velocities are

given in the following table.

Vp P1 Vx1 T1 8x1 92 Vx2 V22 T2 Bx2

-0.010 0.9921 0.0028 0.9947 2.976 0.9938 0.0047 -0.0090 0.9958 2.972

-0.050 0.9607 0.0139 0.9736 2.883 0.9695 0.0238 -0.0446 0.9795 2.859

-0.100 0.9219 0.0275 0.9473 2.771 0.9399 0.0481 -0.0883 0.9596 2.722

-0.250 0.810 0.068 0.869 2.450 0.858 0.124 -0.213 0.904 2.329

-0.500 0.640 0.141 0.744 1.970 0.747 0.259 -0.395 0.824 1.735

-1.000 0.364 0.316 0.527 1.149 0.625 0.510 -0.617 0.732 0.868

Table 3.9: Flarefactions caused by driving a piston at 8=45° to a uniform magnetic field.
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Figure 3.24b: Sample output for oblique rarefactions.

These results for nonlinear waves in a uniform magnetic field will be used for

comparison when I consider the propagation of nonlinear waves through

magnetically structured media.
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4

Waves in Magnetically Structured Media

In the first three chapters, 1 have developed and tested a computer program for

modeling nonlinear disturbances in magnetic fluids. The program was next used to

model several problems for which thetheoretical solution are not known. These

problems all consider waves in magnetically structured media.
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4.1 Nonlinear Waves Incident Normal to 8 Magnetic Flux Slab

The program is able to model the propagation of nonlinear waves through a

magnetically structured atmosphere. Theoretical solutions to problems of this type

are generally unavailable.

The simplest problem of this type is the normal incidence of a nonlinear wave on a

magnetic flux slab. This slab consists of region of high magnetic field embedded in

an environment of weaker magnetic field. The simple slab considered here has a

magnetic field given by

30(2) {50“. |z-z°| < 5

0 , IZ'ZOI >6

The region is initially isothermal and the environment has a higher density to balance

the total internal and external pressures. The wave, propagating in the z direction, is

normal to the surface of the slab.

The computer program was used to model this problem for a variety of shock waves

and magnetic field strengths. From the results of these simulations, I can draw the

following conclusions:

1. Each time a wave crosses an interface, a reflection is possible. The

magnitude of the reflection depends on the strength of the magnetic field

within the slab. As a result of these reflections, the slab sends out wave

pulses in both directions. The amplitude of these waves decline with each

reflection and only the initial reflections were easily followed back through

the environment. The amplitude of the pulses depend on the strength .of the

shock and the magnitude of the magnetic field. The width of the pulse also

depends on the width of the slab.

2. After the shock passes and the slab reaches its final state, the slab is again

in pressure equilibrium with the environment. It is narrower and the

magnetic field strength is increased. The slab is no longer in thermal

equilibrium with the environment. For all cases tried the slab was cooler

than the environment. The density of the slab is increased by a lower ratio

than that of the environment.

3. The slab is still at rest relative to the environment.

4. The final state of the environment is the same as it would have been if the

slab had not been present. The two regions of the environment, one on each
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side of the slab, are still identical.

5. The final state of the slab is denser, hotter, and has a stronger magnetic field

than if a shock had passed through a uniform region with the same initial

conditions.

The results of the simulations are given on the following table. The ratio of densities,

aim is also the ratio of final magnetic field to initial magnetic field. The last column is

the ratio of final to initial width for the slab.

leab vp “in “out Tslab/Tenv waNi

0.10 0.100 1.1031 1.1032 0.9996 0.905

0.50 0.010 1.010 1.010 0.9999 0.990

0.050 1.051 1.051 0.9998 0.951

0.100 1.102 1.103 0.9993 0.907

0.250 1.266 1.268 0.998 0.789

1.00 0.010 1.0099 1.0099 0.9999 0.990

0.050 1.050 1.050 0.9997 0.953

0.100 1.101 1.102 0.9992 0.908

0.250 1.261 1.268 0.998 0.796

3.00 0.010 1.0093 1.010 0.9995 0.991

0.050 1.047 1.051 0.9976 0.954

0.100 1.094 1.103 0.994 0.912

0.250 1.246 1.269 0.991 0.801

0.500 1.519 1.564 0.987 0.656

10.00 0.010 1.0086 1.010 0.999 0.991

0.050 1.043 1.051 0.995 0.957

0.100 1.087 1.103 0.991 0.917 '

0.250 1.226 1.270 0.981 0.810

Table 4.1: Results of simulating a shock incident normal to a slab.

Next, I used an outward moving piston to generate rarefactions which were normal to

the slab. From the results, lcan make the following conclusions.

1. Wave pulses are generated similar to those produced by the shocks—

though opposite in magnitude.

2. After the rarefaction passes and the slab reaches its final state, the slab is

again in pressure equilibrium with the environment. It is wider and the

magnetic field strength is decreased. The slab is no longer in thermal
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equilibrium with the environment. For all cases the slab was hotter than the

environment.

3. The slab is still at rest relative to the environment.

4. The final state of the environment is the same as it would have been if the

slab had not been present. The two regions of the environment, one on each

side of the slab, are still identical.

5. The final state of the slab is less dense, cooler, and has a weaker magnetic

field than if a shock had passed through a uniform region with the same

initial conditions.

The results of the simulations are summarized in the following table.

leab Vp “in “out Tslab/Tenv wf/wi

0.10 -0.010 0.9900 0.9900 1.000 1.010

-0.050 0.9508 0.9507 1.000 1.053

-0.100 0.9033 0.9032 1.000 1.108

-0.250 0.7700 0.7698 1.000 1.300

0.50 -0.010 0.9900 0.9900 1.000 1.010

-0.050 0.9510 0.9507 1.000 1.053

-0.100 0.9036 0.9032 1.000 1.109

-0.250 0.7708 0.7701 1.000 1.305

1.00 -0.010 0.990 0.990 1.000 1.010

-0.050 0.951 0.951 1.000 1.052

-0.100 0.904 0.903 1.000 1.107

-0.250 0.772 0.770 1.002 1.297

3.00 -0.010 0.991 0.990 1.000 1.010

-0.050 0.954 0.951 1.002 1.050 .

-0.100 0.915 0.903 1.008 1.093

-0.250 0.779 0.770 1.007 1.284

-0.500 0.600 0.578 1.024 1.667

10.00 -0.010 0.992 0.990 1.001 1.009

-0.050 0.958 0.951 1.005 1.046

-0.100 0.917 0.903 1.009 1.095

-0.250 0.800 0.770 1.027 1.253

 

Table 4.2: Results of simulating a rarefaction normal to a slab.

It is of interest to note that if a shock is followed by a rarefaction driven by the same

piston speed, the slab and environment each return to its initial state. Therefore a
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source of shocks and rarefactions, such as a convection zone, would not serve to

strengthen or weaken a flux slab provided the source produced identical distributions

of shock and rarefaction strengths.
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4.2 Nonlinear Waves Incident Normal to a Magnetic Flux Tube

As a second magnetic structure, I considered a magnetic flux tube whose magnetic

field was given by

[Bog , x2+22<r2

Bo=

0 , >12+22>r2

Since the symmetry of the tube is not the same as that of the rectangular grid, I used

a gradual boundary described by a hyperbolic tangent:

Bo=;—Bo‘g[ 1+tanh( r-V x2+gz]]

The numerical region was initially isothermal and the density varied to maintain the

pressure balance.

The shock generated by the moving piston propagated in the +2 direction and was

therefore incident normal to tube boundary. Figure 4.1 shows a series of density

plots as a shock passes the tube. Also shown in the figure, are contour plots of the

temperature and speed after the shock has passed. In addition to noise, one can

clearly see the difference in temperature and speed between the tube and its

environment. The noise pictured is due to fluctuations less than the accuracy

requested for the simulation. They are visible because of the near uniformity of the

atmosphere (note the small contour spacings).
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Figure 4.1a: Contour plot of density as a shock wave passes a flux tube.

B°= 3.0 , vp=0.1
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Figure 4.1b: Contour plots of density as a shock wave passes. Also showns

are contour plots of temperature and speed after the shock.
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Because of the amount of time required for each run, I did not use as large a variety

of shock strengths and field strengths as for the slab. From the results of these

simulations 1 can draw the following conclusions:

1. After the shock passes and the tube reaches its final state, it is in pressure

equilibrium with the environment. The tube is no longer in thermal

equilibrium with the environment. For all cases, the tube was cooler than the

environment.

. The density of the tube has increased by a lower ratio than the environment.

. The tube is no longer cylindrical in cross section. The 2 dimension has been

decreased by a fraction similar to that of the slab. The x dimension increases

slightly.

. The tube is not at rest relative to the environment but rather has a relative

velocity in the +2 direction. The fluid in the environment moves around the

tube as it passes.

. Far from the tube, the environment is the same as it would have been if the

tube had not been present. Near the tube, there is a “wake” region where

the velocity is higher and the temperature and density are slightly lower. To

the sides (ix) of the tube, the z velocity is slightly slower. This effect

decreases farther from the tube.

. The final state of the tube is denser, hotter, and has a stronger magnetic field

than if the shock had passed through a uniform region with the tube’s

internal conditions. The average final density and temperature of the tube

were slightly less than those of a slab with the same internal initial

conditions.

. There was some evidence that the tube was not as uniform after the shock

as before. The center was less dense, cooler, moving faster. The magnetic

field was greatest near the center of the tube. To quantify these results

would require a larger grid than is practical on the Vax.

The results of the simulations are given on the following table.
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leab Vp Vin ain aout Tslab/Tenv WH/Wi wL/wi

0.10 0.100 0.1001 1.1030 1.1032 1.000 1.000 0.907

0.30 0.100 0.1002 1.1029 1.1032 0.999 1.000 0.908

1.00 0.100 0.1013 1.1017 1.1032 0.998 1.001 0.908

3.00 0.010 0.012 1.009 1.010 0.999 1.000 0.991

0.050 0.055 1.045 1.051 0.997 1.002 0.954

0.100 0.11 1.09 1.10 0.994 1.004 0.907

0.250 0.264 1.25 1.27 0.989 1.008 0.792

0.500 0.53 1.50 1.56 0.986 1.039 0.637

Table 4.2: Results of simulating a shock incident normally on a flux tube.

Next rarefaction waves were generated normal to the tube. From the results of the

numerical simulation I can make the following conclusions:

1. After the rarefaction passes and the tube reaches its final state, it is in

pressure equilibrium with the environment. The tube is no longer in thermal

equilibrium with the environment. For all cases, the tube was hotter than the

environment.

2. The density of the tube has decreased less than the environment.

3. The tube is no longer cylindrical in cross section. The 2 dimension has been

increased by a fraction similar to that of the slab and the x dimension

decreases slightly.

4. The tube is not at rest relative to the environment but rather has a relative

velocity in the -z direction. The fluid in the environment moves around the

tube as it passes.

5. Far from the tube, the environment is the same as it would have been if the

tube had not been present. Near the tube, there is a “wake” region where

the velocity is higher and the temperature and density are slightly greater.

To the sides (:lzx) of the tube, the z velocity is slightly slower. This effect

decreases farther from the tube.

6. The final state of the tube is less dense, cooler, and has a weaker magnetic

field than if the shock had passed through a uniform region with the tube’s

internal conditions. The average final density and temperature of the tube

were slightly greater than those of a slab with the same internal initial

conditions.

The results of the simulations are given on the following table.
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leab vp V'n 0‘in “out Tslab/Tenv WHNVI WI/wi

0.10 -0.100 -0.1005 0.9033 0.9033 1.000 1.000 1.107

0.30 -0.100 -0.1006 0.9034 0.9033 1.000 1 .000 1 .107

1.00 -0.100 -0.1014 0.9045 0.9033 1.001 0.999 1.105

3.00 -0.010 -0.01 15 0.991 0.990 1.000 1.000 1.109

-0.050 -0.055 0.956 0.951 1.002 0.998 1 .045

-0.100 -0.108 0.912 0.903 1.005 0.996 1 .095

-0.250 -0.261 0.788 0.770 1.013 0.993 1.27

-0.500 -0.51 0.60 0.579 1.038 0.971 1.66

Table 4.2: Results of simulating a rarefaction incident normally on a flux tube.

Because of the coarse grid and final non-uniformity, I am unable to make a

conclusion regarding the effect of alternating shocks and rarefactions. A larger grid

and greater time would be required than is practical on the Vax.
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4.3 Acoustic Waves Incident Obliquely to 8 Magnetic Interface

As the last and most interesting problem, I considered acoustic waves incident

obliquely on a plane parallel magnetic interface. The results of this simulation have

immediate application to several outstanding problems in the solar atmosphere. The

most important of these is the reported absorption of solar p-mode oscillations by sun

spots (Braun et al, 1987). The details of this problem and the application of the

results of this simulation to this problem are considered in the discussion section of

chapter 5.

The magnetic structure for this problem was a plane interface between a field free

region and a region of uniform magnetic field. The numerical domain was originally

isothermal and the density in the the field free region was increased to maintain

pressure equilibrium. The number and range of controllable parameters in this

problem, as well as the large amount of CPU time required for each run, made it

impossible to simulate the full range of problems possible. Therefore, the internal

magnetic field strength was chosen to give a magnetic beta similar to that of a sun

spot and the direction of the field was chosen normal to both the interface and the

direction of wave propagation. These conditions are illustrated in figure 4.2. Several

different magnetic field profiles were used for the interface. None of the profiles used

was based on a sun spot model.
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Figure 4.2: Acoustic wave incident at angle 0 to the interface

To study the large scale effects and the angular dependences, I chose the following

profile:

B z—z

B -—° 1+tanh(—-9-)]

’- 2 [ s
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The parameter s determined the width of the interface and B0 was the interior

magnetic field. The cells were uniform in size. A variety of values was tried for 5

without effecting the large scale results. A value s=2L2 was chosen for the remaining

simulations with this profile.

A piston moving with velocity VI) was used to drive an acoustic wave from the lower

boundary at an angle 6 to the interface. The wavelength, 2., was specified and the

width of the cells in the spectral direction was redefined to meet the periodic

boundary conditions. The required angular frequency for the driving force was

calculated from the wavelength and the speed of sound. The simulation was run

long enough for the transient affects to disappear— at least 8 periods for all

frequencies used. The simulation was run for a variety of wavelengths and angles.

The large scale results were the same for all choices of wavelength within the range

10Lzs7ts100Lz. The angle of incidence was central in determining whether the wave

would be transmitted or reflected. The results can summarized as follows:

1. For small angles of incidence, the wave is mostly transmitted. For 851 5°, the

energy flux in the z direction leaving the interface was greater than 95% of the

incident flux. The transmitted wave was refracted away from the normal as

expected.

2. For angles greater than 30°, the wave was mostly reflected. For 30°56$60°,

the energy flux in the z direction leaving the interface was less than 5% of the

incident flux. A standing wave resulted from the interference of the incident

and reflected waves.

These results are illustrated in the following figures. Figure 4.3 shoWs contour plots

of the flow resulting for 6=15° and vp=0.01. The refraction of the wave can be clearly

seen. The noise in the temperature graph is smaller in magnitude than the accuracy

requested of the simulation and is apparent because of the nearly uniform

temperature. Figure 4.4 illustrates the results for 6=4S°. The standing wave pattern

can be clearly seen in the region above the interface. The distance between the

piston and the interface is not an integral number of half-wavelengths and the results

are similar for the range of wavelengths simulated.
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Figure 4.3a: Contour plots of density and temperature for 9=15°, and vp=0.01.
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Figure 4.4: Contour plots of density and temperature for 0=4S° and vp=0.01.
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Figure 4.4b: Contour plots of speed and total energy density for 0=45° and vp=0.01.
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A second interface profile was chosen to study the small scale details. Since the

interior Alfvén speed exceeds talkx for 6230°, a zone of resonant absorption was

expected within the interface (Steinolfson, 1984) (Tataronis, 1975). To concentrate

on this region, I chose the following profile:

'- 0 Z<Zb

00+01(2-Zo)+02(Z-Zo)2+03(2-Z°)3 2155-25-20

59(2)“ 2 3
Co+C1 (Z-Zo)+C2(2"2°) +03(2'20) 2. f. 2 521

 

The coefficients were chosen such that the Alfvén speed equaled colkx at 20 for 6=45°

and both B and 68/82 were continuous everywhere. The value of zt and 2b were

chosen to determine the width of the interface and nonuniform cell spacing was

used. Half of the cells were within the interface while one quarter was above and

one quarter below the interface. The values used for the majority of the simulations

gave an interface width about one quarter the thickness of the tanh profile and a cell

size one tenth as large. This profile is illustrated in figure 4.5. In addition to the usual

output, I had the program calculate and print the average density, velocities, and

temperature for a full cycle as a function of z; therefore, small differences in these

variables could be differentiated from the periodic variation of the wave.
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Figure 4.5: Profile of density and By. 20:10.00, zb=9.00, and z,=11.00.

The finer grid required a smaller time step and thus considerably more CPU time.

Each simulation required 50-60 hours of CPU time and thus only a few trials were

run. For 8=15°, the results were consistent with the earlier simulations. No resonant

heating was observed. For 8=45°, resonant heating was clearly evident in cells near

20. Figure 4.5 shows contour plots of density and total energy for this simulation. The

region shown is only 40% as large in 2 as figure 4.4. Although the total energy plot is

shifted horizontally because of a difference in phase, the results are clearly

consistent with the earlier simulation. There is only a hint of the resonance zone in

this graph. The heated zone is clearly visible in figure 4.7 which shows temperature

versus 2 for the central (in x) zone.
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Figure 4.6: Contour plot of density and total energy for the fine grid.
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The resonant absorption region can be seen even more clearly in figure 4.8 which

shows the temperature average over a cycle versus 2. The region begins at or just

before 20 and continues to zr l-ran shorter simulations with half the cell size and

compared the results. The temperature rise was similar to that observed for larger

cells and the region was same size; therefore, I concluded that smaller cell size

would not improve the resolution of this resonant heating zone.
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I calculated the amount of surplus thermal energy in the resonant zone to be

(8.9:l:1.9)% of energy available from the wave. Since the region remained in

pressure equilibrium, the magnetic field, and thus the energy stored in the field,

decreased. Considering both thermal energy gain and magnetic energy loss, I found

the resonant zone had absorbed (3.010.6)% of the energy available from the wave.

An additional (4.9io.4)% of the energy was transmitted. I could not directly calculate

the fraction of the energy reflected by the interface; however, the standing wave

pattern was consistent with earlier simulations having reflections greater than 90%.
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5

Conclusion and Discussion
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5.1 General Conclusions

The results of the simulations run in chapter 3 and 4 allow me to make several

conclusions regarding the general approach used. First and foremost, the program

was able to model all of the physical problems attempted. When accepted values

were known, the computational results agreed within the precision requested. The

only exception was in modeling contact discontinuities. I believe this shortcoming

could have been overcome by introducing non-zero thermal conductivity or another

smoothing mechanism. This was not done, however, because contact discontinuities

did not develop in the physical problems.

Several features of the program make it suitable for a wide variety of problems. First,

it is an explicit code. Since no Iinearization or iterative calculations are required, it is

straightforward to include any forces or other extra terms required for a particular

problem. I also believe that explicit methods are easier to understand and

implement.

Second, the dynamic grid allow the program to concentrate on the region of interest.

Small zones, such as the resonant heating zone in section 4.3, could be studied

without increasing the number of grid points beyond reason. Furthermore, fast

moving features, such as shocks, could be followed without increasing the numerical

domain. As another benefit, driving waves from the boundary was straightforward

using the moving grid. For many problems, it would be beneficial to have the grid

dynamic in two or three dimensions; however, this introduces the complication of

grid twisting. More complicated algorithms for managing the grid motion may be able

to overcome this difficulty. I used only the simplest grid motions.

Last, the Runge Kutta like method I used for the time integration proved to be very

stable. It allowed the program to use the largest possible steps consistent with the

requested precision with a minimum of overhead. It is straightforward to understand

and implement. The method was clearly superior to using fixed time steps, either

user chosen or calculated, or to using the Courant condition. Using the Courant

condition becomes complicated with the addition of viscosity, conductivity, and other

dispersive effects. Once implemented, the method was insensitive to other changes

in the program. I would strongly recommend this method to others.
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A number of the aspects of the program, although satisfactory, leave room for change

and improvement. Foremost among these is the choice of numerical boundary

conditions. From my work with this program, I would have to conclude that finding

appropriate, stable, and easily implemented boundary conditions is the most difficult

aspect of simulating magnetohydrodynamics. The method of following a grid point at

the local wave velocity worked well for simulations of waves and other smooth

variations but was not perfect for shocks and other discontinuities. Problem specific

numerical boundary conditions may be required for these types of flow.

The use of a spectral method for taking spatial derivatives worked well for the

problems on which I concentrated; however, there is some cost is using them. The

accuracy of the derivatives obtained from the spectral method greatly exceeded that

of the finite difference method for a given number of grid points, N. The finite

difference method was faster, however, for a given N. This trade-off favored the

spectral method only for N232. Thus for many problems with a small number of grid

points, it would have been preferable to use finite difference methods in both

directions. When computer power allows a larger grid or when using vector

machines, the spectral method is clearly more powerful. For problems for which

periodic boundary conditions are not appropriate spectral methods should not be

used. The modular structure used in my program allowed me to easily substitute

different routines for the spectral derivative subroutine.

Another aspect of this research which may require further work for future problems is

the presentation and interpretation of the data. This type of program generates large

volumes of data which can be difficult to interpret. The linegraph and contour plotting

routines which I wrote were adequate for displaying the static characteristics of one

and two dimensional problems; however, some form of animation would have been

helpful in understanding some of the dynamic aspects of the problems. Additional

display techniques will be required to adequately interpret three dimensional results.

Both animation and three dimensional problems require more computing power than

I had available.

In general, I would conclude that the algorithms, numerical methods, and the

resulting program were successful in simulating the problems attempted within the

constraints imposed by available computing power.

The conclusions which can be drawn from the simulation of non-linear waves
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incident normal to a magnetic flux slab are quite straightforward. First the presence

of the slab does not affect the final state of the fluid away from the slab. Second, the

final state of the interior is different from that which would result if there were no

magnetic structure. The details of the differences are given in section 4.1. Lastly, a

source of shocks and rarefactions, such as the solar convection zone, would not

concentrate the field.

Similar conclusions can be drawn for the simulation of non-linear waves incident

normal to a flux tube. Once again, the magnetic structure effects the final state within

the tube but not in the environment far from the slab. It was not as clear that the

internal structure would be unaffected by repeated passes of shocks and rarefactions

of equal amplitudes. A finer grid and more CPU time would be required to make a

definite conclusion.

The conclusions which can be drawn from the last simulation are discussed in the

next section.
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5.2 Discussion of Acoustic Absorption by Sunspots

The recent observation of absorption of high-degree p-mode solar wave energy by

sunspots (Braun et al, 1987) can be considered in light of the numerical results of

section 4.3. The simulated problem can be interpreted as a simplified simulation of

the interaction between solar p-mode acoustic waves and the sun spot boundary.

From this simple approach, I should be able to address several questions. First, is

the resonant absorption of wave energy of a sufficient magnitude to explain the

observed results? If not, does a sufficient fraction of the incident wave energy pass

through the interface into the sun spot interior where other mechanism could absorb

or redirect the energy? Lastly, is the two dimensional magnetic structure of the sun

spot simulation sufficient to explain the observed absorption or is three dimensional

structure required?

First I must show that the dimensionless parameters chosen are appropriate for the

physical problem. I used the following for the values of the sun spot (Allen,1973):

Rs=15Mm radius of sunspot

B=2750 gauss magnetic field

P=8 x104 dyn/cm2 gas pressure

c=8 km/sec . speed of sound

The units were chosen to be consistent with those used by Braun et al. The choices

for Rs, P, and c yielded the following scaling factors (see section 1.5):

M=2 x 10'7 grams/cm3 density scale factor

L=0.1 Mm length scale factor

T=12.5 sec time scale factor

Using these scaling values and the parameters used in the simulation, I get the

following for the physical parameters:

parameter scaled physical

7. 25 2.5 Mm

Tmax 200 2500 sec

(0 0.25 0.02 rad/sec

B 7.5 2730 gauss

6 interface thickness 2 0.2 Mm

p 1 2 x 10-7 g/cm3

These values are consistent with the sun spot values and the frequencies used by

Braun et al. Note that for the radius and length scaling factor used, the plane
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interface should have been an arc of about 10°. An additional simplification is the

uniform temperature. The above scaling factors give a physical temperature of about

5500K while the actual temperature varies from 4240K on the interior of the sunspot

to 6050K in the surrounding photosphere.

Addressing the first question above, I can consider the energy absorption by the

resonant layer in the interface. Braun et al observed up to 50% absorption. Since

the amount of energy absorbed for a simulation at any angle never exceeded 5%

and was ~0% for angles less than 25°, 1 can conclude that the resonant absorption

can not be the primary mechanism for the observed energy absorption.

To answer the second question, consider the following figure.

 

Incident wave
transmitted

122831119 = «sineeC
 

 

  

Figure 5.1: Wave incident on circular sunspot.

The critical angle, 6c, is the angle at which the majority of the wave energy is

reflected. If 9c=(25°:l;4°) is used as the results of the simulation suggest, the fraction,

f, of the incident energy which passes into the interior is (4215)%. This result is

consistent with observation if a mechanism can be found inside the sunspot which

can absorb nearly all of the acoustic energy which enters.

Lastly, can any two dimensional magnetic structure account for the observed

absorption? The most promising model for such a sunspot consists of a large

number of narrow flux tubes. Incident acoustic waves would be partially transmitted

and partially reflected repeatedly as they pass through this bundle of tubes. Since

the results of the simulations (and observations) suggest that the absorption rate is

largely independent of scaling effects, the results of the simulations may be

applicable to each of these tubes. Using 60:25° and an absorption rate of 3% for the

reflected part of the wave, one gets an average absorption of 1-2% for each tube
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interaction. The observed absorption would require an average of 40-50

interactions. This value is not completely unreasonable. Since the critical region

occurs where the magnetic field is relatively large, the magnetic field need not vanish

between the narrow flux tubes. Three dimensional structures are even more

promising since all is required is a mechanism for deflecting the energy downward.

In summary, 1 would conclude that the simulation shows that resonant absorption by

a single two dimensional magnetic structure cannot account for the observed

absorption. However, the numerical results are consistent with a mechanism inside

the sunspot which absorbs or deflects the energy downward. Moreover, the results

are consistent with absorption by a two dimension fine magnetic structure in which

the magnetic field varies about a relatively large value.
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5.3 Future Problems

There are a very large number of interesting problems which can be simulated by

this program, by its three dimensional sibling, and by programs using similar

algorithms written for different geometries. Most of these require more computing

power than I currently have available; however, some of them do not require a

supercomputer.

The current program should be used to simulate the normal incidence of non-linear

waves on flux tubes with a much finer grid than was used here. This should resolve

the question whether a source of small shocks and rarefactions can concentrate the

field in a tube. The interaction of acoustic waves and sunspots could be further

studied using the same circular flux tube. My experiences in section 4.3 suggest that

a grid at least 10 times as fine as that used in section 4.2 would be required to study

the absorption zone. The two dimensional code could also be used to study surface

waves and solitons along flux slabs. I was able to take a preliminary look at these

problems using the Vax but a detailed analysis required more grid points and CPU

time than was practical.

A completely three dimensional Cartesian program would allow for the study of flux

tube models of sunspots. By placing the z direction along the symmetry axis of the

tube, gravity could be included. This would allow for the modeling of tapering flux

tubes, sausage and kink mode tube waves, and a large number of similar problems.

Even using a supercomputer, however, the total number of grid points would have to

be kept fairly small. Thus problems such as the oblique incidence of acoustic waves

on flux tubes could not be done with the resolution necessary to study small

resonance zones.

Perhaps the greatest promise for simulating these flux tube problems lies in rewriting

the program in cylindrical coordinates. Small cells could be used in the interface

while larger cells could be used on both the inside and outside. The two

dimensional program could be used to simulate normal incidence. This problem

may be within the grasp of the Vax and will probably be the next problem I consider

unless a larger computer becomes available. A three dimensional program would

put the modeling of oblique incidence of acoustic waves on flux tubes within the

grasp of supercomputers. Simulations of non-symmetric tube waves would also be
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possible.

A two or three dimensional spherical algorithm would be possible using methods

similar to those used in my current program. I have no plans at present to attempt

this since no currently accessible astrophysical problems lend themselves to this

symmetry. When sufficient computing power becomes available it may be possible

to model proto-stellar collapse including magnetic fields. A Poisson solving

algorithm would be required to handle the self-gravity. I include this aside because it

was interest in this problem which originally started me down this line of research.
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Appendix A

Glossary of Symbols

B— magnetic flux density

c— speed of light

D— electric flux density

E— electric field

F— total force

f— body force per unit volume

g— gravitational field

H— magnetic field

J— current density

P— pressure

R— array containing all eight fluid variables

q— electric charge

t— time

v— fluid velocity

oc—ratio of densities

B—ratio of gas pressure to magnetic pressure

y—ratio of specific heats

e—permitivity

C—viscosity

n— magnetic diffusivity

u—permeability

p— mass density

96'— charge density

o— electric conductivity

t—viscous stress tensor
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Appendix B

Summary of Equations

In chapter 2, l have developed the following equations which describe the time

evolution of a magnetohydrodynamic fluid. The variables are defined in the

laboratory frame, are dimensionless, and have the stratification divided out. Each

equation is written below in vector form and summation form. The equations are

presented in complete detail on the pages 104-105.

1. The continuity equation

 

g—p+V--=pv 0 (1.8)

becomes

_23 -21:
+-V-pv H

with the addition of stratification. In summation form

1_p_a_ -va
at ax,pj=H

2. The momentum equations

Bl2

a (B-V)B
_ v .. = _—atp +v. [pVV+(P+IB2110l); ;] pg+ “a (1.14)

becomes

2

a 181 (____B'V)B vaz
_ v . vv — _—

atp +V[p +0” 211,.)13h!“ u, H

In summation form

a a 51.5., a B +PV1Vz

— v.+— v-v. P+ 8---t-- : - BatP 1 axj[P 1 J{ 2P6] 1) 1)] 991{ kaTk]p—:-+ H

3. The internal energy equations

a by

513‘31V[‘-'(Pe+P)]=v-Mr~1VT11‘fija—v1j11mlvxBl2 (1.170)

  

becomes

"1' 11v): BIZ fl—ze"
a
'ane+V'[' (pe+P)]=--1-VVP+VkTVT+Tij:-;j+ H
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In summation form

a a 3P 6 _3_T

—pe+—lv,-<pe+p)1=v,-—+—[I<—ax
J

av- evz

+.,-——+J-:'- va312+—
at aJ a axJ big 116 H

4. The magnetic equations

 

bB

—=Vx(VxB)-VanxB (1.70)

as, a 3B _aa_j,

becomes

38 By

—=Vx(VxB)-Vx?1VxB+ ‘
at H

6B; 6 BBL 3B.- ]8 B_1_Vz

a—t' “ ‘67J[Bi"i ' 51' ”1 ”‘( axi TJ
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The continuity equation

bp 8
—+— v+

bt bxp x by

The momentum equations

P 2 2 2
a a B +8 +3 3

b_tp”1+3;."_PV1<"1*[P*'L2i—z]"”‘]au‘vav"W“2‘9“"“1
1 68x] 1[ 65.] 1[ 68.] pmz

= +— B — +— B — +— B +

ng Fo[ x 3X “0 9 by 110 z 32 H

 

 

2 2 2

b b b Bx+By+Br. b

-11 171111110945190919“? $999111]
b bB,J bB v v

=P99+‘L[Bx—B__‘J_]+ I_[Bu_]+l[az__9].j~p_9__z

Po bx Po by bz H

a a a J B2+B2+B2

Sfpvz+a2)—<—[pvzv-txz]+—gz[pv vJJ —1,J,J] bz szVz-I‘ P+——— ~99

L 211‘0

1[ sz] 1[ b8‘11:”

= B —— B— 82

sz 110 x 5X “0 1;—by)“

 

 
Bzz]HPVsz

The energy equation

3—pe+—tv.(pe+p)1 +-:—IV9(P9+D)I+:—ZIVZ(PG+D)I
bt

=Vx3£+V92£+Vz1a—P+L k1fl +:—[kT%I]+L[kTfl-]+

bx by bz bx bx by by bz bz

bvx bvx bvx bv bv,J bv bvz

1"“ bx “"9 by +sz bz +19“ bx HWEH‘” bz 1“ bx

 

2

bvz b_vz_ 11 [$338!] as _xzaa] ab,J szn pevz
+ __ _-_

1‘9 by 1“ b2 by bx bx b2 b2 by H
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The magnetic equations

bBa[ [ng bBMDaz[ [sz_ bBXJ] vaz

Buv-B,Jv —- Bv Bv + =
bt by Mnax by a x””1”“ bz H

as bB
+ 21.4

gal—37]]a—z{Bv‘BV” "[ by bz “'9

5 +3—Bz be _b_Bz +_a_ bB,J sz Bzvz

Bzxv-szv+n Bzvg-B9Vg+n—-— =

bt+b_x bz b—x +by bz by H

     

ng

at

 

“V

 

b

+bx[B”v“BxaaBW   
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Appendix C

Analytic Solutions to Test Problems

Some of the analytic solutions used in chapter 3 were developed by me specifically

for this research. None of these represent completely original work since they are

based on well known results or published works. These derivations are include in

the following section. References are included as appropriate.
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C.1 Piston Driven Shock

The solution of the piston driven shock is shown in figure 3.4. It consists of two fluid

regions separated by a shock. The shock moves at a constant speed and has zero

thickness. In the frame of reference moving with the shock, fluid moves into the

shock from the right with a constant speed of u2 and fluid leaves the shock toward the

left with a constant speed of uJ. Since the problem is steady state, all time

derivatives vanish in the equations. Thus the continuity equation

g¥+V-pv = 0 (1.8)

shows that pu must be conserved across the shock. Thus

p1u1=p2u2 (C. 1)

Similarly, the momentum equation

5619‘” V-(pvv+P;-1)=f (1.10)

with the idealization that viscosity and external forces are zero yields

p, u%+P,=pzu§+P2 (c2)

If the same technique and idealizations are applied to the total energy equation

g—JGPV2+PB)+V- [v(%pv2+pe+P )-v-:l_’, -kTV'r ]= v-f+ E—OIV x BI2

(1.2010)

one gets

u1[;-P1 u11TH 91+P1]=U2[%P2U2+P292+P2] (c3)

Equation (c.1) can be used in equation (0.3) to yield

P P
1 2 1 1 2 2

2 ‘ ' PI 2 2 2 Pz

These three equations may now be transformed, nonrelativistically, back to the

laboratory frame of reference—

P1(V1'Vs)=Pz(V2"Vs)

2 2

P1+P1(V1'Vs) =P2+P2(V1‘V2)

P P

1—(u1-v,)2+ej+—1 . 1(02-vs)2+ez+—2-
2 P1 2 P2
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In region 1, behind the shock, one knows vJ=vp. ln region 2, ahead of the shock one

knows v2=0. The values of p2 and 62 are those of the undisturbed gas and are

specified by the initial conditions. In addition to these three equations, one has the

equations of state

Pt-(rl)piei P2=(\r-l)pz

Therefore P1 and P2 are known in terms of p191 and p292; thus we have three

equations and three unknowns. Using the known values and eliminating the

pressures, one gets

P1Vp

P1'P2

 

91(Vp-Vs)=-F’2vs =9 vs= (C.4)

plop-192+ (y - 09181 = pzv§+ <1 — time:

We can use the first equation, (0.4), to eliminate vs from the other two equations

getting

 

  

  

P1P2

-1 e - v2 = -I 8(Y )P1 1 pp1_p2 (Y )P2 2

and

V§[P1+P2] e e e +V§[P1+P2] ( S)
-—

= = = —
u

1 2 P1'P2 Y2 1 2 ZY P1'P2 c

This can then be used to eliminate 81. Thus

(v-l)[P1+P2] 2 2 P1P2
-1 e + v -v = -l 9

Using the value of the speed of sound in the undisturbed fluid

c§=y<v -1)e2

one may solve this equation for the ratio of densities. Since the equation is

quadratic, there are two solutions. Discarding the negative, non-physical, solution

one gets
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1.2.33. fi.[m3§]

,..a. 4 1

pz 1 L113.

2 C3

The ratio of densities, which I have called at here, can then be plugged back into

equations (c.4) and (0.5) to yield

fl.-[1+f_"_l’§.]&t‘.
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0.2 Weak Shock Profile

The profile of a weak shock may be derived using a method given by Landau and

Lifshitz. They determined the variation of pressure within a shock (Landau & Lifshitz,

1959,§87)as

62v _ _ _v3 4 ]1< bT] av] 22}dp
3[—bp2—]S(D D1)(P D2)= §{[-3'11+C +27%; 1'5; pC P dx

where VEI/p , hng =0 , C252, and KEKT =0 in the symbols I am using. Substituting in

these symbols and values yields

2V 3

-[ b—:s](P'D1XDDz)= "‘V—Ea—dp

2 bp2 c3 dx

One can use pVY = constant for an adiabatic process to evaluate the derivative on the

right side of the equation:

[sz} _ y+21_\_/_

602 12 02

Using this and c2 = ypV, the equation simplifies to

 

 
 

   

'2652 1 Q

1+1 (D-Pi)(D-Pz) dx

Integrating

1+de [*X-chiz 1 tipdx JIM-20132 1

-x -x y+1 (D‘Df)(D‘Dz)dX pl 1+1 (p-Dlxp-pz)

yields

1

D'-(92+D1)
C -

2x= 6'2 4 tanh1 2

1+1 92-01 15032-91)
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Therefore, one gets the following variation of pressure

.. 1. 1. _ i]
p - 2(92+Dt) + 2(Dz p1)tanh[5

with

= 20C2 1 2C§2 l

\r+1 Dz’Pt 1,2-1 Pzez‘P1e1

6     

For a shock with this profile, over 90% of the pressure variation occurs with in a

distance of 5.
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Appendix D

Auxiliary Programs

I have written a number of programs to graph, analyze, or calculate data. In this

section I have included the source codes for these. The FORTRAN routines were

compiled and included in an object library. The Pascal programs were written on

and for the Macintosh computer.
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D.1 Graph6

program linegraph(input,output);

{This program uses the linegraph routines to read output from GMHD and draw a

graph for each of six variables. It has options of connecting the points with

line segments or using a cubic spline. The spline is slow and not needed for

n2 40.}

Uses MacIntf:

{This program uses the Macintosh interface}

type{global types}

parray= array[0..500] of integer;

glnarray= array[0..256] of real:

var{global variables}

thefile: text:

n,i,ni: integer:

z,rho,vx,vz,bx,bz,t: glnarray:

quit,done,

splineflag,

tickflag,

pointflag: Boolean:

theWindow: Windothr:

SKIP: CHAR:

data: array [l..80] of char:

procedure getn:{reads number of points from file}

begin

readln(thefile,n):

writeln('Found table with ',n,' entries.');

ni:=l:

while ((not eoln(theFile)) and (ni < 80)) do begin

read(theFile, data[ni]):

ni:=ni+l

end;{while}

readln(thefile):

end: {getn}

procedure getxy;{reads the points from file}

var

i,q: integer:

zz,rr,vvx,vvz,tt,bbx,bbz: real;

begin

readln(theFile);

for i:=0 to n do begin

readln(thefile,q,zz,rr,vvx,vvz,tt,bbx,bbz);

z[i]:=zz:

rho[i]:=rr;

vx[i]:=vvx;

vz[i]:=vvz;

t[i]:=tt:

bx[i]:=bbx:

bz[i]:=bbz:

end: {for}

end:{getxy}

procedure graph( x,yz glnarray:
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n: integer:

tflag,

pflag: boolean);{the actual graphing program}

const

hmin=60:

hmax=505:

numticks=8:

vmin=25:

vmax=225:

grit=3:

type

harray= array{hmin..hmax] of real;

var

h,vo: integer:

ypl,ypn: real:

xmax,xmin: real:

ymax,ymin: real:

y2: glnarray:

xh,v: harray:

xp,yp: parray:

graphrect: rect:

loglO: real:

q: char:

procedure spline(ypl,ypn: real:

var y2: glnarray):{determines the cubic spline}

{This procedure is based on Press et al.,l986}

var ilk: integer;

qun,sig,un: real;

u: glnarray:

begin {spline}

if(ypl>0.99e30) then begin

y2[l]:=0.0:

u[l]:=0.0

end {then}

else begin

y[2]:=-0.5:

u[l]:=(3.O/(x[2]-X[l]))*((Y[2]-Y[1])/(X[2]-X[l])'YP1)

end: {else}

for 1:: 2 to n-l do begin

sig==(x{i]-x{i-1])/(x{i+1]-x{i-1]):

p :=sig*y2[i-l]+2.0:

y2[i]:=(sig-l.0)/p:

Uli]:=(y{i+1]-y[i])/(x{i+1]-x{i])-(y[i]-y[i-l])/(x{i+l]-X[i]):

u[i]:=(6.0*u[i]/(x[i+1]-x[i-l])-sig*u[i-1])/p

end:{for}

if (ypn>0.99e30) then begin

qn := 0.0:

un := 0.0

end {then}

else begin

qn:= 0.5:

un:= (3.0/(xtn1-XIn-11))*(ypn-(y[n]-y[n-1])/(x[n]-x{n-1]))

end:{else}
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y2[n]:= (un-qn*u[n-l])/(qn*y2[n-l]+l.0):

for k:=n-l downto 1 do begin

y2[k]:= y2{k]*y2[k+l]+u[k}

end:{for}

end:{spline}

procedure splint( xa,ya,y2a: glnarray:

n. integer:

x: real:

var y: real);

var

klo,khi,k: integer:

a,b,h: real:

begin {splint}

klo:=l:

khi:=n:

while (khi-klo>l) do begin

k:=(khi+klo) div 2;

if(xa[k]>x) then khi:=k else kloz=k

end; {while}

h:=xa[khi]-xa[klo]:

if (h = 0.0) then begin

writeln(' Bad xa input'):

readln

end: {if}

a:=(xa[khi]-x)/h;

b:=(x-xa[klo])/h;

y:=a*ya[klo]+b*ya[khi]+((a*a*a-a)*y2a[klo]+(b*b*b-b)*y2a[khi])*(h*h)/6.0

end:{splint}

procedure splint2( xa,ya,y2a: glnarray:

n: integer:

x: real:

var y: real:

var klo,khi: integer):

var

a,b,h: real:

begin {splint2}

while (x>xa[khi]) do begin

khi:=khi+1:

kloz=klo+l

end; {while}

h:=xa[khi]-xa[klo]:

a:=(xa[khi]-x)/h;

b:=(x-xa[klo])/h;

y:=a*ya[klo]+b*ya[khi]+((a*a*a-a)*y2a[klo]+(b*b*b-b)*y2a[khi])*(h*h)/6.0

end:{splint2}

procedure scale( x: glnarray:

n: integer:

var max,min: real);{This procedure scales the data to fit}

var
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i: integer;

begin{sca1e}

max:=x[0]:

min:=x[0]:

for i:=1 to n do begin

if (x[i] > max) then max:=x[i]:

if (x[i] < min) then min:=x[i};

end:{for}

if (abs(max-min)<0.0005) then max:=min+1.0

end:{scale}

procedure calcxhspline:

var

delta: real:

h,i: integer:

begin{calcxhspline}

delta:=(xmax—xmin)/(hmax-hmin);

for h:=hmin to hmax do xh{h]:=xmin+delta*(h-hmin);

for i:=1 to n do xp[i]:=round(hmin+(x[i]-xmin)/delta);

end:{calcxhspline}

procedure calcxpyp:

var

deltax,

deltay: real:

i: integer:

begin{calcxpvp}

deltax:=(xmax-xmin)/(hmax—hmin);

deltay:=(vmax—vmin)/(ymax—ymin);

for i:=1 to n do begin

xp[i]:=round(hmin+(x[i]-xmin)/deltax);

yp[i]:=round(vmax -deltay*(y[i]-ymin))

end:{for}

end:{calcxpvp}

procedure calcvspline(y2: glnarray);

var

delta,yh: real:

h,i,klo,khi: integer:

begin{calcvspline}

khi:=2:

klo:=l:

delta:=(vmax-vmin)/(ymax-ymin);

h:=hmin;

while h<= hmax do begin

splint2(x,y,y2,n,xh[h],yh,klo,khi);

v[h]:=vmax -delta*(yh-ymin):

h:=h+grit

end:{while}

khi:=2:

klo:=1:

for i:= 1 to n do begin

splintZ(x,y,y2,n,x[i],yh,klo,khi);

yp[i]:=round(vmax -delta*(yh-ymin))

end:{for}
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end:{calcvspline}

Procedure addline:

var

h: integer:

begin

pensize(l,1);

penmode (PatOr) ,-

vo:=round(v[hmin]):

moveto(hmin,vo);

h:=hmin:

while h<=hmax do begin

lineto(h,round(v[h])):

h:=h+grit

end:{while}

moveto(0,0):

penNormal

end:{addline}

Procedure connect:

var

i: integer:

begin

pensize(l,l);

penmode(PatOr):

moveto(xp[l],yp[l]):

for i:=2 to n do lineto(xp[i],yp[i]);

moveto(0,0):

PenNormal

end:{connect}

function rounder(x: real): real;

var

d: integer:

q,

tens: real:

begin

d:=trunc(ln(x)/log10):

repeat

tens:=exp(d*log10):

q:=round(x/tens)*tens:

d:=d-l:

until (q <> 0.0):

rounder:=q

end:{rounder}

procedure tickmark:{calculate and place the tickmarks}

var

xinc,yinc,xtick,ytick: real;

deltay,deltax: real;

i,top,bot: integer;

vtick,htick: integer;

w,d: integer:

begin

deltay:=(vmax—vmin)/(ymax-ymin);

deltax:=(xmax-xmin)/(hmax-hmin);

xinc:=(xmax—xmin)/numticks;
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yinc:=(ymax—ymin)/numticks:

xinc:=rounder(xinc):

if xinc = 0.0 then xinc:=0.l;

yinc:=rounder(yinc):

if yinc = 0.0 then yinc := 0.1:

top:=trunc(ymax/yinc):

bot:=trunc(ymin/yinc+0.999);

w:=7: d:=2:

if yinc<0.01 then d:=4:

for i:=bot to top do begin

ytick:=i*yinc:

vtick:=round(vmax -deltay*(ytick—ymin));

moveto(hmin-8,vtick);

lineto(hmin-2,vtick):

moveto(10,vtick+4);

writeln(ytick:w:d)

end:{for}

top:=trunc(xmax/xinc);

bot:=trunc(xmin/xinc+0.999):

w:=7: d:=2:

if xinc<0.01 then d:=4:

for i:=bot to top do begin

xtick:=i*xinc:

htick:=round(hmin+(xtick—xmin)/deltax);

moveto(htick,vmax+8):

lineto(htick,vmax+2):

moveto(htick-25,vmax+20):

writeln(xtick:w:d)

end:{for}

moveto(0,0)

end: {tickmark}

procedure addpoints;{add the points as triangles}

var

i: integer:

begin

for i:= l to n do begin

moveto(xp[i},yp[i]):

lineto(xp[i],yp[i]-2):

lineto(xp[i]-2,yp[i]+2):

lineto(xp[i]+2,yp[i]+2):

lineto(XP[i]rYP[i]-2)

end:{for}

moveto(0,0)

end:{addpoints}

begin {graph}

moveto(0,10);

for i:=1 to ni do write( data[i]):

writeln:

log10:=ln(10.0);

scale(x,n,xmax,xmin):

scale(y,n,ymax,ymin):

SetRect(graphrect,hmin—5,vmin-5,hmax+3,vmax+5):

if splineflag then begin

spline(le50,le50,y2):

calcxhspline:
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calcvspline(y2);

addline

end{then}

else begin

calcxpyp:

connect:

end:{else}

FrameRect(graphrect):

if tflag then tickmark:

if pflag then addpoints:

readln(q):

if q:'.' then quit:=true

end: {graph}

procedure findnext:{finds the next table to graph}

var

one,s,t,p: char;

begin

repeat

readln(theFile,one,s,t,p):

if eof(theFile) then begin

quit:=true:

exit(findnext):

end:{if eof}

if one ='@' then begin

if s='F' then splineflag:=false else splineflag:=true:

if t=‘F' then tickflag:=false else tickflag:=true:

if p='T' then pointflag:=true else pointflag:=false:

end:{then}

until (one = '@') or quit

end:{findnext}

Procedure OpenFile;{opens a new file or quits if cancel button}

var

reply: SFreply:

typeList: SFTypeList;

where: point:

begin

typeList[0}:='TEXT';

where.h:=80:

where.v:=100:

initCursor:

SFGetFile(where,",NIL,l,TypeList,NIL,reply);

done:= not reply.good:

if reply.good

then

open(theFile,reply.fName);

end:{OpenFile}

begin{main}

theWindow:=FrontWindow;setWTitle(theWindow,'Linegraph');

MoveWindow(theWindow,1,35,true);

SizeWindow(theWindow,510,348,true);

done :=false:

openFile:

while not done do begin

quit:=false:

tickflag:=true:

pointflag:=false:

repeat
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page(output):

setWTitle(theWindow,'Searching File');

findnext:

if not quit then begin

getn:

if (n>256)then begin

writeln(’n larger than 256, using n=256'):

n:=256

end:{if n>256}

writeln('reading data from file');

getxy:

page(output):

HideCursor:

setWTitle(theWindow,'Density vs 2'):

graph(z,rho,n,tickflag,pointflag);

moveto(0,0):

page(output):

setWTitle(theWindow,'Vx vs 2');

graph(z,vx,n,tickflag,pointflag);

moveto(0,0):

page(output):

setWTitle(theWindow,'Vz vs 2'):

graph(z,vz,n,tickflag,pointflag):

moveto(0,0):

page(output):

setWTitle(theWindow,'Temperature vs 2');

graph(z,t,n,tickflag,pointflag);

moveto(0,0):

page(output):

setWTitle(theWindow,'Bx vs 2');

graph(z,bx,n,tickflag,pointflag);

moveto(0,0):

page(output):

setWTitle(theWindow,'Bz vs 2');

graph(z,bz,n,tickflag,pointflag):

moveto(0,0):

end:{if not quit}

until quit:

close(thefile):

openFile:

end:{while not done}

end.{main}

120



D.2 Contour

PROGRAM Contour:

{This program produces contour plots on the Macintosh using encoded data

send by subroutine MAKCON (in FORTRAN) from the mainframe.

full Macintosh interfacel}

CONST {menu stuff}

AppleID = 1000:

FileID = 1001:

EditID = 1002:

nextID = 1003:

VAR

done, doneWithFile, next : Boolean;

theEvt : eventRecord:

wRecord : windowRecord:

myWindow, TheWindow : windothr;

WindowRect, blankRect : Rect:

appleMenu, fileMenu, editMenu, nextMenu : MenuHandle;

thefile : text:

PROCEDURE ProcessMenu_in (CodeWOrd : longint);

forward:

PROCEDURE plot:

CONST

hmin

vmin

space = 0:

skip = 65:

nextcol = 66:

quit = 67:

VAR

c, t : char:

d, h, i, ni, ii : integer:

thru : boolean:

plotrect : rect:

5:

4
o

I

BEGIN

thru := false:

moveto(hmin, vmin);

h := hmin:

REPEAT

BEGIN

WHILE ((NOT thru) AND (NOT eoln(theFile)))

BEGIN

read(theFile, c);

d := ord(c) — 40:

CASE d OF

space :

skip :

move(0, 64);

nextcol -

BEGIN

h := h + l:

moveto(h, vmin)

END;{nextcol}

quit .

BEGIN

moveto(300, 10);
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ni := l:

readln(theFile):

FOR ii := 1 TO 4 DO

BEGIN

WHILE ((NOT eoln(theFile)) AND (ni < 35)) DO

BEGIN

read(theFile, t):

DrawChar(t):

ni := ni + 1

END;{while}

ni := 1:

readln(theFile):

moveto(300, 10 + 12 * ii):

END:{for}

thru := true:

END:

OTHERWISE

BEGIN {all valid moves}

move(0, d):

1ine(0, 0):

END;{otherwise}

END;{case d}

END;{while not eoln}

readln(thefile):

END:{until}

UNTIL (thru):

SetRect(plotRect, hmin - 3, vmin - 3, h + 3, vmin + 293);

FrameRect(plotRect):

END:{plot}

PROCEDURE miniloop:

VAR

WindowPointedTo : Windothr:

MouseLoc : Point:

WindoLoc : integer:

BEGIN

HiliteMenu(0);

REPEAT

IF GetNextEvent(everyEvent, theEvt) THEN

CASE theEvt.what OF

mousedown :

BEGIN

MouseLoc := theEvt.Where;

WindoLoc := FindWindow(MouseLoc, WindowPointedTo):

CASE WindoLoc OF

inMenuBar :

ProcessMenu;in(MenuSelect(MouseLoc));

inSysWindow :

SystemClick(theEvt, WindowPointedTo):

OTHERWISE

END;{case theEvt.what}

END:{mousedown}

mouseup :

updateEvt, activateEvt :

OTHERWISE

I
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END:{case what event}

{and of then}

UNTIL done OR doneWithFile OR next:

END:{miniloop}

PROCEDURE findnext:

VAR

one : char:

BEGIN

REPEAT

IF eof(theFile) THEN

DoneWithFile := true

ELSE

readln(theFile, one);

UNTIL (one = '~') OR DoneWithFile

END:{findnext}

PROCEDURE openplot:

VAR

reply : SFreply:

typeList : SFTypeList:

where : point:

BEGIN

EnableItem(nextMenu, O);

DisableItem(fileMenu, 3):

EnableItem<fileMenu, 4);

enableItem(NextMenu, 1):

DrawMenuBar:

initCursor:

where.h := 80:

where.v := 100:

typeListh] := 'TEXT';

SFGetFile(where, ", NIL, l, TypeList, NIL, reply);

IF reply.good THEN

BEGIN

doneWithFile := false:

open(theFile, reply.fName);

findNext:

WHILE NOT doneWithFile DO

BEGIN

plot:

next := false:

miniloop:

eraseRect(blankrect):

findNext:

END:{while}

close(theFile);

END:{then and if}

DisableItem(nextMenu, 0):

DisableItem(fileMenu, 4);

EnableItem(fileMenu, 3):

DrawMenuBar:

DrawMenuBar:

END:{openplot}

PROCEDURE Setup:

BEGIN
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Initgraf(@thePort);

Initfonts:

FlushEvents(everyEvent, 0):

SetEventMask(everyEvent):

InitCursor:

InitWindows:

SetRect(WindowRect, 1, 20, 510, 350);

setRect(blankRect, 1, 1, 509, 310);

myWindow := NewWindow(@wRecord, WindowRect, 'Contour Plot', false, 4,

pointer(-1), false, 0):

ShowWindow(myWindow);

SetPort(myWindow);

myWindow“.thize := 10:

SelectWindow(myWindow);

END:{Setup}

PROCEDURE SetupMenus:

VAR

MenuTopic : MenuHandle:

apple : char:

BEGIN

apple := '@':

apple := chr(AppleMark);

appleMenu := NewMenu(AppleID, apple); {get the apple desk accessories

menu}

AddResMenu(appleMenu, 'DRVR'); {adds all names into item list}

InsertMenu(appleMenu, 0); {put in list held by menu manager}

fileMenu := NewMenu(FileID, 'File'): {always need this for Quiting}

AppendMenu(FileMenu, 'Quit/Q'):

AppendMenu(fileMenu, '(-'):

AppendMenu(fileMenu, 'Open.../O:(Close ');

InsertMenu(fileMenu, 0):

editMenu := NewMenu(EditID, 'Edit'): {always need for editing Desk

Accessories}

AppendMenu(EditMenu, 'Undo/z');

Appendmenu(editMenu, '(—');

appendMenu(editMenu, 'Cut/x;Copy/C:Paste/V;Clear');

InsertMenu(editMenu, O):

nextMenu := newMenu(NextID, 'Next'):

AppendMenu(nextMenu, '(Next Plot');

InsertMenu(nextMenu, 0);

DrawMenuBar: {all done so show the menu bar}

END;

PROCEDURE ProcessMenu_in; {(CodeWord : longint)}

VAR

Menu_No : integer; {menu number that was selected}

Item;No : integer; {item in menu that was selected}

NameHolder : Str255: {name holder for desk accessory or font}

DNA : integer: {OpenDA will never return 0, so don't care}

BEGIN

IF CodeWord <> 0 THEN

BEGIN {go ahead and process the command}

Menu_No HiWord(CodeWord): {get the Hi word of...}

Item;no : LoWord(CodeWord): {get the L0 word of...}
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CASE Menu_No OF

AppleID :

BEGIN

GetItem(GetMHandle(AppleID), Item;No, NameHolder);

DNA := OpenDeskAcc(NameHolder);

END;

FileID :

BEGIN

CASE Item_No OF

1 :

BEGIN

Done := True: {quit}

doneWithFile := true:

END:{quit}

{ 2: ------- }

3 :

openplot:

doneWithFile := true; {close}

END:

END:

EditID :

BEGIN

IF NOT SystemEdit(Item_no — 1) THEN {if not for a desk

accessory}

CASE Item4No OF

1 :

BEGIN

END; {undo}

{ 2: line divider}

3 :

BEGIN

END; {cut}

4 :

BEGI

END; {copy}

5 :

BEGIN

END; {paste}

6 :

BEGIN

END; {clear}

END;

END:

NextID :

next := true:

END:

HiliteMenu(O): {unhilite after processing menu}

END:

END; {of ProcessMenu_in procedure}

PROCEDURE initThings:

BEGIN{initThings}

setupmenus:

END:{initThings}

PROCEDURE loop:

VAR
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WindowPointedTo : Windothr:

MouseLoc : Point:

WindoLoc : integer:

BEGIN

REPEAT

IF GetNextEvent(everyEvent, theEvt) THEN

CASE theEvt.what OF

mousedown :

BEGIN

MouseLoc := theEvt.Where:

WindoLoc := FindWindow(MouseLoc, WindowPointedTo);

CASE WindoLoc OF

inContent

IF WindowPointedTo <> FrontWindow THEN

SelectWindow(WindowPointedTo);

inDrag :

inGrow :

inGkoay :

done := TrackGkoay(WindowPointedTo, MouseLoc);

inMenuBar

ProcessMenu_in(MenuSelect(MouseLoc));

inSysWindow :

SystemClick(theEvt, WindowPointedTo);

OTHERWISE

END:{case theEvt.what}

END:{mousedown}

mouseup

updateEvt, activateEvt

OTHERWISE

END:{case what event}

{and of then}

UNTIL done:

END:{loop}

BEGIN{main program}

Setup:

initThings:

done := false:

loop:

END.{Main program}

END.
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D.3 Three-D

PROGRAM ThreeD:

{This program produces a projection of a three dimensional graph from

data encoded and sent by subroutine Threed (in FORTRAN) from the Mainframe

It supports the full Macintosh Interface and shares much of its

Macintosh skeleton with contour.pas}

CONST {menu stuff}

AppleID = 1000:

FileID = 1001:

EditID = 1002:

nextID = 1003:

VAR

done, doneWithFile, next : Boolean:

theEvt : eventRecord:

wRecord : windowRecord:

myWindow, TheWindow : windothr;

WindowRect, blankRect : Rect:

appleMenu, fileMenu, editMenu, nextMenu : MenuHandle;

pen : penState:

thefile : text:

PROCEDURE ProcessMenu_in (CodeWord : longint);

forward;

PROCEDURE plot:

CONST

numlines = 16:

dhdi = 16:

dhdj = 0;

dhdk = —16:

dvdi = 2:

dvdj = -2:

dvdk = 12;

h0 = 256:

v0 = 128:

VAR

d : char:

nx, nz, i, j, k : integer:

x, 2, h, v : integer:

dxdi, dzdk : integer:

f : ARRAY[0..63, 0..63] OF integer;

BEGIN

readln(theFile, nx, nz);

FOR x := 0 TO nx - 1 DO

BEGIN

FOR 2 := 0 TO nz - 1 DO

BEGIN

read(theFile, d);

flx, z} := ord(d) - 40;

END:{for z}

readln(thefile);

END:{for x}

dxdi := nx DIV numlines:

dzdk := nz DIV numlines;

FOR 1 := 0 TO numlines — 1 DO

BEGIN

x := i * dxdi;
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h := hO + dhdi * i +

v = v0 + dvdi * i +

moveto (h, v) ;

FOR 2 = 1 TO nz — 1

BEGIN

h °= hO + dhdi

v := v0 + dvdi

lineto(h, v);

END:{for z}

END:{for 1}

FOR k := 0 TO numlines — 1

BEGIN

z = k * dzdk;

h = hO + dhdk * k +

v °= v0 + dvdk * k +

moveto(h, v);

FOR x °= 1 TO nx - 1

BEGIN

h '= hO + dhdk

v = v0 + dvdk

lineto(h, v):

END:{for x}

END:{for k}

h := hO:

v := v0:

moveto(h, v):

getPenState(pen):

2:

:= 2;

setPenState(pen):

64

pen.anize.v :

pen.pnsize.h

line(64 * dhdj,

moveto(h, v):

line(l? * dhdi,

moveto(h, v):

line(17 * dhdk,

l7

pen.anize.v := 1:

pen.pnsize.h := 1:

setPenState(pen):

END:{Plot}

PROCEDURE miniloop:

VAR

WindowPointedTo

MouseLoc : Point:

WindoLoc : integer:

BEGIN

HiliteMenu(O):

REPEAT

* dvdj);

* dvdi);

dhdj * f[x, 0];

dvdj * f[x, 0]:

DO

(2 * dhdk) DIV dzdk + dhdj * f[x, z]:
* i +

* i + (z * dvdk) DIV dzdk + dvdj * f[x, 2]:

DO

dhdj * f[0, z];

dvdj * f[O, 2]:

DO

(x * dhdi) DIV dxdi + dhdj * f[x, z];* k +

* k + (x * dvdi) DIV dxdi + dvdj * f[x, z]:

{y axis}

{x axis}

17 * dvdk):{z axis}

: Windothr:

IF GetNextEvent(everyEvent, theEvt) THEN

CASE theEvt.what OF

mousedown :

BEGIN

MouseLoc :

WindoLoc :

theEvt.Where:

FindWindow(MouseLoc, WindowPointedTo);

CASE WindoLoc OF

inMenuBar :

ProcessMenu_in(MenuSelect(MouseLoc));

inSysWindow :

SystemClick(theEvt, WindowPointedTo):
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OTHERWISE

END:{case theEvt.what}

END:{mousedown}

mouseup :

updateEvt, activateEvt :

OTHERWISE

END:{case what event}

{and of then}

UNTIL done OR doneWithFile OR next:

END:{miniloop}

PROCEDURE findnext (VAR t : char);

VAR

one : char:

ni : integer:

Qstring : str255:

BEGIN

Qstring := 'Type s to skip, <ret> to plot';

REPEAT

IF eof(theFile) THEN

DoneWithFile := true

ELSE

readln(theFile, one);

UNTIL (one = '~') OR DoneWithFile;

moveto(lOO, 10):

hi := 1:

IF (NOT donewithfile) THEN

BEGIN

WHILE ((NOT eoln(theFile)) AND (ni < 72)) DO

BEGIN

read(theFile, t);

DrawChar(t):

ni := ni + 1

END:{while}

ni := 1:

readln(theFile);

moveto(lOO, 30):

drawstring(qstring);

read(t);

END:{if}

eraseRect(blankrect);

END:{findnext}

PROCEDURE openplot:

VAR

reply : SFreply:

typeList : SFTypeList:

where : point:

t : char:

BEGIN

EnableItem(nextMEnu, 0):

DisableItem(fileMenu, 3);

EnableItem(fileMenu, 4):

enableItem(NextMenu, 1):

DrawMenuBar:
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initCursor:

where.h := 80:

where.v := 100:

typeList[0] := 'TEXT';

SFGetFile(where, ", NIL, 1, TypeList, NIL, reply);

IF reply.good THEN

BEGIN

doneWithFile := false:

open(theFile, reply.fName):

findNext(t);

WHILE NOT doneWithFile DO

BEGIN

CASE t OF

's' :

OTHERWISE

BEGIN

plot:

next := false:

miniloop:

eraseRect(blankrect);

END;{Otherwise}

END:{case}

IF NOT doneWithFile THEN

findNext(t);

END:{while}

close(theFile);

END:{then and if}

DisableItem(nextMenu, 0):

DisableItem(fileMenu, 4):

EnableItem(fileMenu, 3):

DrawMenuBar:

DrawMenuBar:

END:{openplot}

PROCEDURE Setup:

BEGIN

Initgraf(@thePort);

Initfonts:

FlushEvents(everyEvent, 0);

SetEventMask(everyEvent):

InitCursor:

InitWindows:

SetRect(WindowRect, l, 20, 512, 350);

setRect(blankRect, 0, 0, 511, 340);

myWindow := NewWindow(@wRecord, WindowRect, 'Contour Plot',

pointer(—1), false, 0):

ShowWindow(myWindow);

SetPort(myWindow);

myWindow*.thize := 10:

SelectWindow(myWindow);

END:{Setup}

PROCEDURE SetupMenus:

VAR

MenuTopic : MenuHandle:

apple : Char:

BEGIN

apple := '@':
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apple := chr(AppleMark);

appleMenu := NewMenu(AppleID, apple): {get the apple desk accessories

menu}

AddResMenu(appleMenu, 'DRVR'); {adds all names into item list}

InsertMenu(appleMenu, 0): {put in list held by menu manager}

fileMenu := NewMenu(FileID, 'File'); {always need this for Quiting}

AppendMenu(FileMenu, 'Quit/Q'):

AppendMenu(fileMenu, '(-'):

AppendMenu(fileMenu, 'Open.../O:(Close '):

InsertMenu(fileMenu, 0):

editMenu := NewMenu(EditID, 'Edit'); {always need for editing Desk

Accessories}

AppendMenu(EditMenu, 'UndO/z');

Appendmenu(editMenu, '(-');

appendMenu<editMenu, 'Cut/x:COpy/C;Paste/V;Clear');

InsertMenu(editMenu, 0);

nextMenu := newMenu(NextID, 'Next'):

AppendMenu(nextMenu, '(Next Plot'):

InsertMenu(nextMenu, 0):

DrawMenuBar: {all done so show the menu bar}

END:

PROCEDURE ProcessMenu_in; {(CodeWord : longint)}

VAR

Menu_No : integer; {menu number that was selected}

Item;No : integer; {item in menu that was selected}

NameHolder : Str255; {name holder for desk accessory or font}

DNA : integer: {OpenDA will never return 0, so don't care}

BEGIN

IF CodeWord <> 0 THEN

BEGIN {go ahead and process the command}

Menu_NO := HiWOrd(COdeWord): {get the Hi word of...}

Item_no := LoWord(CodeWord): {get the Lo word of...}

CASE Menu;No OF

AppleID :

BEGIN

GetItem(GetMHandle(AppleID), Item_No, NameHolder);

DNA := OpenDeskAcc(NameHolder);

END,

FileID :

BEGIN

CASE Item;No OF

1 :

BEGIN

Done := True: {quit}

doneWithFile := true:

END:{quit}

1 2: -——----1

3 :

openplot:

4 :

doneWithFile := true; {close}

END:

END:

EditID :
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BEGIN

IF NOT SystemEdit(Item_no - 1) THEN {if not for a desk

accessory}

CASE Item_No OF

1 :

BEGIN

END; {undo}

{ 2: line divider}

3 :

BEGI

END; {cut}

4 :

BEGI

5 END: {copy}

BEGIN

END; {paste}

6 :

BEGIN

END; {clear}

END:

END:

NextID :

next := true:

END:

HiliteMenu(O): {unhilite after processing menu}

END:

END; {of ProcessMenu_in procedure}

PROCEDURE initThings:

BEGIN{initThings}

setupmenus:

END:{initThings}

PROCEDURE loop:

VAR

WindowPointedTo : Windothr:

MouseLoc : Point:

WindoLoc : integer:

BEGIN

REPEAT

IF GetNextEvent(everyEvent, theEvt) THEN

CASE theEvt.what OF

mousedown :

BEGIN

MouseLoc := theEvt.Where:

WindoLoc := FindWindow(MouseLoc, WindowPointedTo):

CASE WindoLoc OF

inContent

IF WindowPointedTo <> FrontWindow THEN

SelectWindow(WindowPointedTo);

inDrag :

inGrow :

iMmey:

done := TrackGOAway(WindowPointedTo, MouseLoc):

inMenuBar :

ProcessMenu_in(MenuSelect(MouseLoc));
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inSysWindow :

SystemClick(theEvt, WindowPointedTo):

OTHERWISE

END:{case theEvt.what}

END;{mousedown}

mouseup :

updateEvt, activateEvt

OTHERWISE

END:{case what event}

{and of then}

UNTIL done:

END;{loop}

BEGIN{main program}

Setup:

initThings:

done := false:

loop:

END.{Main program}

END.
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D.4 FFT

* THESE ROUTINES ARE THE PAST FOURIER TRANSFORM ROUTINES

* BASED ON PRESS ET AL

SUBROUTINE FOUR1(DATA,NN,ISIGN)

* THIS SUBROUTINE IS FROM PRESS ET AL

DOUBLE PRECISION WR,WI,WPR,WPI,WTEMP,THETA

REAL DATA(2*NN)

N=2*NN

J=1

DO 11 I=1,N,2

IF(J.GT.I)THEN

TEMPR=DATA(J)

TEMPI=DATA(J+1)

DATA (J) =DATA (I)

DATA(J+1)=DATA(I+1)

DATA(I)=TEMPR

DATA(I+1)=TEMPI

ENDIF

M=N/2

1 IF((M.GE.2).AND.(J.GT.M)) THEN

J=J€M

M=M/2

GOTO 1

ENDIF

J=J+M

11 CONTINUE

MMAX=2

2 IF(N.GT.MMAX) THEN

ISTEP=2*MMAX

THETA=6.28318530717959D0/(ISIGN*MMAX)

WPR=-2.DO*DSIN(0.5D0*THETA)**2

WPI=DSIN(THETA)

WR=1.D0

WI=0.D0

DO 13 M=1,MMAX,2

DO 12 I=M,N,ISTEP

J=I+MMAX

TEMPR=SNGL(WR)*DATA(J)-SNGL(WI)*DATA(J+1)

TEMPI=SNGL(WR)*DATA(J+1)+SNGL(WI)*DATA(J)

DATA(J)=DATA(I)-TEMPR

DATA(J+1)=DATA(I+1)-TEMPI

DATA (I) =DATA (I) +TEMPR

DATA(I+1)=DATA(I+1)+TEMPI

12 CONTINUE

WTEMP=WR

WR=WR*WPR-WI*WPI+WR

WI= WI*WPR+WTEMP*WPI+WI

13 CONTINUE

MMAX=ISTEP

GOTO 2

ENDIF

RETURN

END

SUBROUTINE TWOFFT(DATA1,DATA2,FFT1,FFT2,N)

* THIS ROUTINE WAS ADAPTED FROM PRESS ET AL

* MODIFIED T.ESPINOLA

REAL DATA1(N),DATA2(N)

COMPLEX FFT1(N+1),FFT2(N+1),H1,H2,C1,C2
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11

12

* THE

11

12

10

Cl=(0.5,0.0)

C2=(0.0,-0.5)

DO 11 J=1,N

FFT1(J)=CMPLX(DATA1(J),DATA2(J))

CONTINUE

CALL FOUR1(FFT1,N,1)

FFT1(N+1)=FFT1 (l)

N2=N+2

DO 12 J=1,N/2+1

H1=Cl*(FFT1(J)+CONJG(FFT1(N2-J)))

H2=C2*(FFT1(J)—CONJG(FFT1(N2-J)))

FFT1(J)=H1

FFT1(N2-J)=CONJG(H1)

FFT2 (J) =H2

FFT2(N2-J)=CONJG(H2)

CONTINUE

RETURN

END

REMAINING ROUTINES ARE BY T. ESPINOLA

SUBROUTINE FFTR(DATA1,DATA2,FFT1,N)

REAL DATA1(N),DATA2 (N)

COMPLEX FFT1(N+1) , H1, H2, C1, C2

C1=(0.5,0.0)

C2=(0.0,-0.5)

DO 11 J=1,N

FFT1(J)=CMPLX(DATA1(J),DATA2(J))

CONTINUE

CALL FOUR1(FFT1,N,l)

FFT1(N+1)=FFT1(1)

N2=N+2

DO 12 J=1,N/2+1

H1=C1*(FFT1(J)+CONJG(FFT1(N2—J)))

H2=C2* (FFTl (J) -CONJG(FFT1 (NZ-J) ) )

FFT1(J)=H1

FFTl (NZ-J) =H2

CONTINUE

RETURN

END

SUBROUTINE FFTIZ (DATAl , DATA2 , WORK, N)

COMPLEX DATAl (N/Z) , DATA2 (N/2) ,WORK(N+1) , I

I=(0.0,1.0)

=N/2

N2=N+2

DO 10 J:2,NN

WORK (J) =DATA1 (J) +DATA2 (J) *I

WORK (NZ-J) =CONJG (DATAl (J) )+I*CONJG (DATA2 (J) )

CONTINUE

WORK(1)=CMPLX(REAL(DATA1(1) ) ,REAL(DATA2 (1) ) )

WORK (NN+1) =CMPLX (AIMAG (DATA1 (1) ),AIMAG(DATA2(1) ) )

CALL FOURl(WORK,N,-1)

RETURN

END

SUBROUTINE FFTI (DATAl , DATA2 , WORK, N)

REAL DATAl (N) , DATA2 (N)

COMPLEX WORK (N+1)

CALL FFTI2(DATA1, DATA2 , WORK, N)

DO 10 J=1, N
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fi
-
X
-
fi
-
fl
-
l
-
fi
-
J
l
'

DATAl (J) =REAL (WORK (J) ) /N

DATA2 (J) =AIMAG (WORK (J) ) /N

10 CONTINUE

RETURN

END

SUBROUTINE FFT2 (DATAl , DATA2 , WORK, N, ISIGN )

THIS IS THE ROUTINE DIRECTLY CALLED BY GMHD

DATAl AND DATA2 ARE THE TWO ARRAYS TO BE TRANSFORMED

THE TRANSFORMATION IS STORED IN PLACE

WORK IS WORK SPACE AND MUST BE DIMENSIONED AT LEAST 4* (N+1)

N IS THE SIZE OF THE ARRAY AND MUST BE A POWER OF 2

ISIGN DETERMINES WHETHER IT IS A THE TRANSFORM OR AN INVERSE TRANSFORM

ISIGN =1 FOR TRANSFORM ISGN=-1 FOR INVERSE TRANSFORM

REAL DATAl (N) ,DATA2 (N) ,WORK (2*N-i-2, 2)

IF (ISIGN.EQ.1)THEN

CALL TWOFFT (DATA1,DATA2,WORK(1, 1) ,WORK(1,2) ,N)

DO 10 I=1,N

DATA1(I)=WORK(I, 1)

DATA2 (I)=WORK(I, 2)

10 CONTINUE

DATA1 (2) =WORK (N+1, 1)

DATA2 (2) =WORK (N+1, 2)

ELSE

CALL FFTI (DATAl , DATA2 , WORK, N)

ENDIF

RETURN

END
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D.5 Makcon

*
l
i
-
i
l
r
l
l
r
l
l
-

I
»

*

SUBROUTINE MakCon(F,Z,NX,NZ,NUMLIN,TITLE)

THESE ROUTINES MAKE A CONTOUR PLOT OF THE ARRAY F

THE CELLS ARE EVENLY SPACED IN THE X DIRECTION WHILE THE ARRAY

Z CONTAINS THE Z POSITION OF THE GRID POINTS

THE PLOTTING INFORMATION IS ENCODED AS CHARACTERS TO BE DOWNLOADED

TO THE MAC

IMPLICIT NONE

PASSED VARIABLES

INTEGER NX,NZ,NUMLIN

REAL F(NX,NZ),Z(NX,NZ)

CHARACTER*20 TITLE

LOCAL VARIABLES

INTEGER NY, NH, NAX, MAXA, NHMAX, I, J, NYY,MA.XAA

PARAMETER(NY=292,MAXA=1024,NHMAX=292)

REAL A(NY,0:33),FMIN,FMAX,ZMIN,ZMAX,DF,DZ

INTEGER FIRST(NY),LAST(NY)

COMMON /CONZZL/ NH, NYY, MAXAA, Dz, FMIN, ZMIN, DF

IF(NX.LT.8)THEN

PRINT *,‘NX MUST >= 8'

RETURN

ENDIF

NYY=NY

MAXAA=MAXA

CALL FINDRA(F,NX,NZ,FMIN,FMAX)

CALL FINDRA(Z,NX,NZ,ZMIN,ZMAX)

IF(FMIN.EQ.FMAX.OR.ZMIN.EQ.ZMAX)THEN

PRINT*,'Error in array passed to countour.‘

PRINT*,'Function or 2 has no variation.’

ELSE

PRINT *,CHAR(126),' Start of plot. ',TITLE

DF=REAL (MAXA) / {FMAX-FMIN)

DZ=(ZMAX-ZMIN)/NY

J:1

CALL GETCOL(FIRST,F,Z,NX,NZ,J)

NAX=NHMAX/NX

NH=1+(NX-1)*NAX

DO 10 J=2,NX

CALL GETCOL(LAST,F,Z,NX,NZ,J)

CALL FILCOL(A,FIRST,LAST,NAX,NUMLIN)

CALL OUTA(A,NAX)

DO 20 I=1,NY

FIRST(I)=LAST (I)

20 CONTINUE

10 CONTINUE

ENDIF

PRINT *,CHAR(107),'End Of plot.’

PRINT 1000,FMIN,FMAX,(fmax-fmin)/numlin

1000 FORMaT(1X,'Min = ',f9.4,/,1x,'max= ',f9.4,/,1x,'contours= ',f9.5)

RETURN

END

SUBROUTINE GETCOL(COL,F,Z,NX,NZ,J)

IMPLICIT NONE

GLOBAL VARIABLES

INTEGER NH,NY,MAXA

REAL DZ,FMIN,ZMIN,DF
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COMMON /CONZZL/NH,NY,MAXA,DZ,FMIN,ZMIN,DF

* PASSED VARIABLES

INTEGER NX,NZ,J

REAL F(NX,NZ),Z(NX,NZ)

INTEGER COL(NY)

* LOCAL VARIABLES

INTEGER K,L,KO,KK,K1

REAL DELTA,F0

* BEGIN GETCOL

K=1

L=1

* WHILE

1 IF(Z(J,L).GT.(ZMIN+K*DZ))THEN

COL(K)=-MAXA

K=K+1

GOTOl

ENDIF

K1=K

L=L+1

3 IF (L.LT.NZ)THEN

KO=K

DELTA=DZ*(F(J,L+l)-F(J,L))/(Z(J,L+1)-Z(J,L))

F0=F(J,L)-FMIN

2 IF(Z(J,L).GT.(ZMIN+K*DZ))THEN

COL(K)=(F0+(K-KO)*DELTA)*DF

K=K+1

GOTO 2

ENDIF

=L+1

GOTO 3

ENDIF

COL(K)=(F(J,NZ)-FMIN)*DF

DO 10 KK=K+1,NY

COL(KK)=-MAXA

10 CONTINUE

RETURN

END

SUBROUTINE FILCOL(A,FIRST,LAST,NAX,NUMLIN)

IMPLICIT NONE

* GLOBAL VARIABLES

INTEGER NH,NY,MAXA

REAL DZ,FMIN,ZMIN,DF

COMMON /CONZZL/NH,NY,MAXA,DZ,FMIN,ZMIN,DF

* PASSED VARIABLES

INTEGER A(NY, 0 : 33) ,FIRST (NY) ,LAST (NY) ,NAX,NUMLIN

* LOCAL VARIABLES

INTEGER I,K

REAL DELTA,DC

* BEGIN FILCOL

DO 10 K=1,NY

A(K,0)=FIRST(K)

A(K,NAX)=LAST(K)

DELTA=REAL(LAST(K)-FIRST(K))/NAX

Do 20 I= l,NAX-l

A(K,I)=FIRST(K)+DELTA*I

20 CONTINUE

10 CONTINUE

DC=REAL(NUMLIN)/REAL(MAXA)*.5
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DO 30 I=0,NAX

DO 30 K=1,NY

A(K,I)=(A(K,I)+ABS(A(K,I)))*DC

30 CONTINUE

RETURN

END

SUBROUTINE OUTA(A,NAX)

IMPLICIT NONE

* GLOBAL VARIABLES

INTEGER NH,NY,MAXA

REAL DZ,FMIN,ZMIN,DF

COMMON /CONZZL/NH,NY,MAXA,DZ,FMIN,ZMIN,DF

* PASSED VARIABLES

INTEGER.A(NY,0:33),NAX

* LOCAL VARIABLES

INTEGER NUMOUT,COUNT,K,I

CHARACTER*1 OUTIT(5000)

* BEGIN OUTA

NUMOUT=1

DO 10 I=0,NAX-l

OUTIT(NUMOUT)=CHAR(106)

NUMOUT=NUMOUT+1

K=1

l IF(K.LT.NY)THEN

COUNT=1

2 IF((COUNT.LE.64).AND.(K.LT.NY))THEN

IF( ( (A(K,I).EQ.A(K,I+1)) .OR. (A(K,I)*A(K,I+1).EQ.O))

$.AND. ((A(K,I).EQ.A(K+1,I)).OR.(A(K,I)*A(K+1,I).EQ.O)))THEN

COUNT=COUNT+1

ELSE

OUTIT(NUMOUT)=CHAR(40+COUNT)

NUMOUT=NUMOUT+1

COUNT=1

ENDIF

K=K+1

GOTO 2

ENDIF

IF(COUNT.GE.65)THEN

OUTIT(NUMOUT)=CHAR(40+COUNT)

NUMOUT=NUMOUT+1

ENDIF

GOTO 1

ENDIF

10 CONTINUE

WRITE(*,1000)(OUTIT(I),I=1,NUMOUT-1)

1000 FORMAT(1X,80A1)

RETURN

END

SUBROUTINE FINDRA(F,NX,NZ,EMIN,FMAX)

* PASSED VARIABLES

INTEGER NX,NZ

REAL F(NX,NZ),FMIN,FMAX

* LOCAL VARIABLES

INTEGER J,K

* BEGIN FINDRA

FMIN=F(1,1)

FMAX=F(1,1)
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10

DO 10 J=1,NX

DO 10 K=1,NZ

FMIN=AMIN1(FMIN, F (J, K) )

FMAX=AMAX1(FMAX, F (J, K) )

CONTINUE

RETURN

END
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D.6 Make3D

*
i
i
-
i
f
i
l
-

SUBROUTINE THREED(F,NX,NZ,TITLE)

THESE ROUTINES PRODUCE A 3D PROJECTION GRAPH OF THE DATA IN ARRAY F

IT DOES NOT ACCOUNT FOR THE Z POSITION OF THE GRID POINTS BUT PLOTS

THEM EQUALLY SPACED. THE PLOTTING INFORMATION IS ENCODED AS CHARACTERS

FOR DOWNLOADING TO THE MAC. THIS IS A BETA

IMPLICIT NONE

PASSED VARIABLES

INTEGER NX,NZ

REAL F(-1:NX,0:NZ-l)

CHARACTER*40 TITLE

LOCAL VARIABLES

2000

20

10

1000

100

REAL MAX,MIN,DF,DX,DZ,D,X,Z

INTEGER J,K,I,NH,NV,NL,KK

CHARACTER*1 A(0:63,0:63)

MAX=F(0,0)

MIN=F(0,0)

DO 5 J=0,NX-l

DO 5 K=0,NZ-1

MIN=AMIN1(MIN,F(J,K))

MAX=AMAX1 (MAX,F (J, K) )

CONTINUE

IF(MAX.EQ.MIN)THEN

PRINT *,‘NO VARIATION IN PLOT ’,TITLE

RETURN

ENDIF

DF=64/(MAX-MIN)

PRINT *,'~'

WRITE( *,2000)TITLE(1:30),MAX,MIN

FORMAT(1X,A30,' MAX=',F10.4,' MIN=',F10.4)

NH=64

NV=64

DX=FLOAT(NX-l)/(NH-l)

DZ=FLOAT(NZ-l)/(NV-l)

DO 10 K=O,NV-1

Z=K*DZ

KK=Z

DO 20 J=0,NH-1

X=J*DX

I=X

D=F(I,KK)+(F(I+1,KK)-F(I,KK))*(X-I)+

$ {F(I,KK+1)-F(I,KK))*(Z-IG<)

A(J,K)=CHAR(IFIX((D-MIN)*DF+40))

CONTINUE

CONTINUE

PRINT *,NH,NV

DO 100 K=0,NV-l

WRITE(*,1000)(A(J,K),J=0,NH-1)

FORMAT(1X,80A1)

CONTINUE

END
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Appendix E

The Program

The main program and its included subroutines and functions are given below. I have

included the Nassi-Shneidarman diagrams, where appropriate to illustrate their

structure.

Main Program

 

Call lnit

T-O

count-0

 

While T<Tmax

 

increment count

call BC for boundary conditions

gall Grid

If

Tviewso

    

    yes
  

call output

tview=tview+tprint

 

 

aka 2 small

call Calcnewr to get newr and newz
steps

call BC(newr,newz,t+At)

call Grid(n.ewr,newz,t+At)

call Calcnewr to get newr2

take 1 big call BC(r,z,t)

step call Grid(r,z,t)

call Calcnewr to get newr and z

 

repeatacheckdt(newr,newr2)

comparing newr and newr2

to see if At is small enough

if it is, set next At 
 

repeat until At small enough

 

set r and 2 using newr, newz,

newr2,newz2 to get 5th order

t=t+2At

tview=tview+2At  
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THIS

PROGRAM GMHD

IS THE MAIN PROGRAM FOR DOING GRAVITATIONAL MAGNETOHYDRODYMIC

SIMULATIONS. IT IS THE 2D VERSION USED PRIMARILY ON THE VAX

IT D

IT I

GLOB

0

\
J
O
A
U
I
D
W
N
H

OEs NOT CONTAIN ALL THE VECTORIZING OPTIMIZATION

5 ONLY SPARSELY COMMENTED BECAUSE IT Is DOWNLOADED AT 1200 BAUD

IMPLICIT NONE

AL VARIABLES

REAL F1D15,F16D15,0VER8PI,PI,FOURPI

INTEGER IFAX(13),INC,JUMP,NPTS,NVEC

REAL WORK(0:31,1:50,8),TRIGS(451)

INTEGER LM,LM2,LM3,LM4,NC,NL,NR,NX,XLO,XHI,ZLO,ZHI,SPLIT

REAL G,QH,GM1,VP,OM,LZ,RMO,FV,ZETAZ,ZETA1,ETAO,LX,LY,ERF

REAL TMAX,TPRINT,PFLAG,TVIEW

REAL MASS, ENERGY, MAsso , ENERGYO, DENERGY, DMAss, OLDM, OLDE

REAL DZDX(0:31,1:50),DZDL(0:31,1:50),DZDT(0:31,1:50)

COMPLEX DX(O:31)

INTEGER SYMFLAG

REAL C(0:31,l:50,8)

COMMON /FFT/WORK,SYMFLAG

/NUMBER/LM,LM2,LM3,LM4,NC,NL,NR,NX,XLO,XHI,ZLO,ZHI,SPLIT

/CONST/FlDlS,F16D15,0VER8PI,PI,FOURPI

/PARAM/G,QH,GM1,VP,OM,LZ,RMO,FV,ZETAZ,ZETA1,ETAO,LX,LY,ERF

/PRINTS/TMAX,TPRINT,PFLAG,TVIEW

/CHECK/MASS,ENERGY,MASSO,ENERGYO,DENERGY,DMASS,OLDM,OLDE

/GRID/DZDX,DZDL,DZDT,DX

/SOMMER/C

LOCAL VARIABLES

0

1

2

3

BEGI

THE

2

REAL R(O:3l,l:50,8),NEWR(O:31,1:50,8),QR(0:31,5,8),

Z(0:31,1:50),NEWZ(O:31,1:50),

NEWR2(0:31,1:50,8),NEW22(O:31,1:50),NEWT,T,

DT,DTX2,CURRENT,DT2

INTEGER J,L,M,COUNT

LOGICAL REPEAT,CHECKDT

N MAIN PROGRAM

CALL INIT(R,Z,DT)

T=0.0

COUNT=O

MAIN LOOP-- WHILE T<TMAX

IF(T.LE.(TMAX+.01))THEN

A DO-UNTIL LOOP WHICH REPEATS UNTIL THE ERROR IS SMALL ENOUGH

3 CONTINUE

COUNT=COUNT+1

CALL BC(R,Z,T)

CALL GRID(R,Z,T,DT)

IF(TVIEW.LE.1E-6) THEN

PRINT 1000,T,COUNT,T/COUNT

1000FORMAT(' T=',F9.5,' STEPS=',IS,' AVERAGE DT=',F9.7)

CALL OUTPUT(R,T,Z)

TVIEW=TVIEW+TPRINT

ENDIF

CALL CALCNEWR(R,NEWR,Z,NEWZ,T,DT)

=T+DT

CALL BC(NEWR,NEWZ,NEWT)

CALL GRID(NEWR,NEWZ,NEWT,DT)

CALL CALCNEWR(NEWR,NEWR2,NEWZ,NEWZZ,NEWT,DT)

DTX2=2.*DT

CALL BC(R,Z,T)

CALL GRID(R,Z,T,DT)

CALL CALCNEWR (R, NEWR, Z, NEWZ, T, DTX2)

REPEAT=CHECKDT(R,NEWR,NEWR2,T,DT)
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* END

* USE

10

20

IF(REPEAT)GOTO 3

OF DO UNTIL ERROR IS SMALL ENOUGH

THE EXTRA INFO TO FIND NEWR TO 5TH ORDER

DO 10 M=1,8

DO 10 J=XLO,XHI

DO 10 L=ZLO,ZHI

R(J,L,M)=NEWR2(J,L,M)

R(J,L,M)=F16D15*NEWR2(J,L,M)~F1D15*NEWR(J,L,M)

R(J,L,M)=NEWR2(J,L,M)+F1D15*(NEWR2(J,L,M)-NEWR(J,L,M))

CONTINUE

DO 20 J=XLO,XHI

DO 20 L=ZLO,ZHI

Z(J,L)=NEWZZ(J,L)

Z(J,L)=F16D15*NEWZZ(J,L)-F1D15*NEWZ(J,L)

Z(J,L)=NEWZ2(J,L)+F1D15*(NEW22(J,L)-NEWZ(J,L))

CONTINUE

T=T+DTX2

TVIEW=TVIEW-DTX2

GOTO 2

OF WHILE

ENDIF

PRINT *,‘REACHED MAX TIME OF ',TMAX

END
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C
a
l
c
N
e
w
R

 

Set A12 =At/2

A13 :At/3

 

Call Cachf'(f',Z,t)

 

For all cells

 

 

Set Ztemp=z+dzdt*At6

Newz=z+dzdt*At2

rtemp=r+drdt*At6

newr=r+drdt*At2

 

 

Call BC(newr,newz,t+At2)

Call Grid(newr,newz,t+At2)

Coll cochr(newr,newz,t+At2)

 

For all cells

 

 

Set Ztemp=ztemp+dzdtffAt3

Newz=z+dzdt*At2

rtemp:rtemp+drdt*At3

newr=r+drdtffAt2

 

 

Call BC(newr,newz,t+At2)

Call Grid(newr,newz,t+At2)

Call cachr(newr,newz,t+At2)

 

For all cells

 

 

Set Ztemp=ztemp+dzdtffAt3

Newz=z+dzdt*At

rtemp:rtemp+drdt*At3

newr=r+drdt*At

 

 

Call BC(newr,newz,t+At)

Call Grid(newr,newz,t+At)

Coll cochr(newr,new2,t+At)

 

For all cells

 

  Set Newz=ztemp+dzdtttAt6

newr=rtemp+drdt"‘At6
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*****************‘k*‘k‘k*****'A'***************‘k************************‘k

* THIS SUBROUTINE USES A FOURTH ORDER SCHEME TO FIND THE NEW

* VARIABLES.

********************************************************************

SUBROUTINE CALCNEWR(R,NEWR,Z,NEWZ,T,DT)

IMPLICIT NONE

* PASSED VARIABLES

OREAL R(0:31,1:50,8),NEWR(0:31,1:50,8),

1 Z(0:31,1:50),NEWZ(0:31,1:50),T,DT

* GLOBAL VARIABLES _

REAL G,QH,GM1,VP,OM,LZ,RMO,FV,ZETAZ,ZETA1,ETAO,LX,LY,ERF

INTEGER LM,LM2,LM3,LM4,NC,NL,NR,NX,XLO,XHI,ZLO,ZHI,SPLIT

REAL TMAX,TPRINT,PFLAG,TVIEW

REAL DZDX(0:31,1:50),DZDL(0:31,1:50),DZDT(0:31,1:50) .g

COMPLEX DX(0:31) '

0COMMON /NUMBER/LM,LM2,LM3,LM4,NC,NL,NR,NX,XLO,XHI,ZLO,ZHI,SPLIT

 

l /PARAM/G,QH,GM1,VP,OM,LZ,RMO,FV,ZETA2,ZETA1,ETAO,LX,LY,ERF

2 /PRINTS/TMAX,TPRINT,PFLAG,TVIEW

3 /GRID/DZDX, DZDL, DZDT, DX L

* LOCAL VARIABLES

OREAL DT2,DT3,DT6,DR(O:31,1:50, 8) ,RTEMP (0:31, 1:50, 8),

1 ZTEMP(0:31,1:50),NEWT

INTEGER J,L,M

1
(
-

BEGIN CALCNEWR

FIND THE DT'S NEEDED

DT2=.5*DT

DT3=DT/3.0

DT6=.5*DT3

1
(
-

CALL CALCDR(R,Z,DR,T,DT2)

* DR AT T

DO 10 J:XLO,XHI

DO 20 L=ZLO,ZHI

ZTEMP(J,L)=Z(J,L)+DT6*DZDT(J,L)

NEWZ(J,L)=Z(J,L)+DT2*DZDT(J,L)

20 CONTINUE

DO 30 M=1,8

DO 30 L=ZLO,ZHI

NEWR(J,L,M)=R(J,L,M)+DT2*DR(J,L,M)

RTEMP(J,L,M)=R(J,L,M)+DT6*DR(J,L,M)

30 CONTINUE

10 CONTINUE

NEWT=T+DT2

CALL BC(NEWR,NEWZ,NEWT)

CALL GRID(NEWR,NEWZ,NEWT,DT)

CALL CALCDR(NEWR,NEWZ,DR,NEWT,DT2)

* DR AT T+DT/2 FIRST TIME

DO 40 J=XLO,XHI

DO 50 L=ZLO,ZHI

ZTEMP(J,L)=ZTEMP(J,L)+DT3*DZDT(J,L)

50 NEWZ(J,L)=Z(J,L)+DT2*DZDT(J,L)

DO 60 M:1,8

DO 60 L=ZLO,ZHI

NEWR(J,L,M)=R(J,L,M)+DT2*DR(J,L,M)

RTEMP(J,L,M)=RTEMP(J,L,M)+DT3*DR(J,L,M)

6O CONTINUE
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4O CONTINUE

CALL BC(NEWR,NEWZ,NEWT)

CALL GRID(NEWR,NEWZ,NEWT,DT)

CALL CALCDR(NEWR,NEWZ,DR,NEWT,DT)

* DR AT T+DT/2 SECOND TIME

DO 70 J=XLO,XHI

DO 80 L=ZLO,ZHI

ZTEMP(J,L)=ZTEMP(J,L)+DT3*DZDT(J,L)

80 NEWZ(J,L)=Z(J,L)+DT*DZDT(J,L)

DO 90 M=1, 8

DO 90 L=ZLO,ZHI

NEWR(J,L,M)=R(J,L,M)+DT*DR(J,L,M)

RTEMP(J,L,M)=RTEMP(J,L,M)+DT3*DR(J,L,M)

90 CONTINUE

7O CONTINUE

NEWT=T+DT

CALL BC(NEWR,NEWZ,NEWT)

CALL GRID(NEWR,NEWZ,NEWT,DT)

CALL CALCDR(NEWR,NEWZ,DR,NEWT,DT)

* DR AT T+DT

 

DO 110 J=XLO,XHI

DO 120 L=ZLO,ZHI

120 NEWZ(J,L)=ZTEMP(J,L)+DT6*DZDT(J,L)

DO 130 M=1,8

DO 130 L=ZLO,ZHI

NEWR(J,L,M)=RTEMP(J,L,M)+DT6*DR(J,L,M)

130 CONTINUE

110 CONTINUE

C CALL SOMMER(R,NEWR,DT,Z,NEWZ)

CALL BC(NEWR,NEWZ,NEWT)

RETURN

END
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cachR

 

 

 

call calcVfl to get velogitigs gng fields

call diffVB to get derivatives 91' v and B

for all values of j (x direction)

 

 

‘ for all values of l (2 direction)

 

Set pressure: P=( Y-l) pe

F"4:(Bo)/2Ll 
 

 

call calcTij to get viscous stress tensor

 

for all values of l (2 direction)

 

calculate Fx

and advecZ 
 

 

 

for all values of l (2 direction)

 

calculate FZ using advecZ

and DR (source terms) 
  
 

 

for all cells and gas variables

 

Use ddl to find the z derivatives of F2

and ddx to find the x derivatives of FX

and combine with the source terms in DR

 
  
 

********************************************************************

* THIS SUBROUTINE CALCULATES THE DERIVATIVES TO BE USED IN CALCNEWR

********************************************************************

SUBROUTINE CALCDR(R,Z,DR,T,DT)

IMPLICIT NONE

* PASSED VARIABLES

REAL R(0:31,1:50,8),Z(0:31,1:50),DR(0:31,1:50,8),T,DT

* GLOBAL VARIABLES

INTEGER LM,LM2,LM3,LM4,NC,NL,NR,NX,XLO,XHI,ZLO,ZHI,SPLIT

REAL F1D15,F16D15,0VER8PI,PI,FOURPI

REAL G,QH,GM1,VP,OM,LZ,RMO,FV,ZETA2,ZETA1,ETAO,LX,LY,ERF

REAL TMAX,TPRINT,PFLAG,TVIEW

REAL DZDX(0:31,1:50),DZDL(O:31,1:50),DZDT(0:31,1:50)

REAL MASS,ENERGY,MASSO,ENERGYO,DENERGY,DMASS,OLDM,OLDE

COMPLEX DX(0:31)

INTEGER FXSYM(8)
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'k

'k

”k

'k

*

OCOMMON

/NUMBER/LM,LM2,LM3,LM4,NC,NL,NR,NX,XLO,XHI,ZLO,ZHI,SPLIT

/CONST/F1D15,F16D15,0VER8PI,PI,FOURPI

/PARAM/G,QH,GM1,VP,OM,LZ,RMO,FV,ZETAZ,ZETA1,ETAO,LX,LY,ERF

/PRINTS/TMAX,TPRINT,PFLAG,TVIEW

/CHECK/MASS,ENERGY,MASSO,ENERGYO,DENERGY,DMASS,OLDM,OLDE

/GRID/DZDX,DZDL,DZDT,DX

/SYMS/FXSYM\
l
O
N
U
'
l
u
b
U
J
N
H

LOCAL VARIABLES

INTEGER J,L,M

OREAL ETA(1:50),P(1:50),PM(1:50),

U(0:31,1:50),V(0:31,1:50),W(0:31,1:50),TXX(1:50),

TXY(1:50),TXZ(1:50),TYY(1:50),TYZ(1:50),TZZ(1:50),

DUDX(0:31,1:50),DWDX(0:31,1:50),ADVECZ(1:50),

DUDZ(O:31,1:50),DVDZ(0:31,1:50),DWDZ(0:31,1:50),

DVDX(0:31,1:50),BX(0:31,1:50),BY(0:31,1:50),

BZ(O:3l,1:50),DBXDX(0:31,1:50),DBYDX(O:31,1:50),

DBZDX(0:31,1:50),DBXDZ(0:31,1:50),DBYDZ(0:31,1:50),

DBZDZ(0:31,1:50),CURLB2(1:50),FX(0:31,1:50,8),

FZ(0:31,1:50,8)\
D
C
D
x
J
O
N
U
T
i
w
a
f
-
J

BEGIN CALCDR

GET THE VELOCITIES, B FIELDS, AND THEIR DERIVATIVES

CALL CALCVB(R,U,V,W,BX,BY,BZ)

OCALL DIFFVB(U,DUDX,DUDZ,V,DVDX,DVDZ,W,DWDX,DWDZ,

1 BX,DBXDX,DBXDZ,BY,DBYDX,DBYDZ,BZ,DBZDX,DBZDZ)

 

THE MAIN LOOP OVER J FOR CALCULATING FX,FZ,DR

DO 5 J=XLO,XHI

CALCULATE THE PRESSURES,ETA, AND THE CURL OF B SQUARED

DO 10 L=ZLO,ZHI

P(L)=GM1*R(J,L,5)/DZDL(J,L)

PM(L)=(BX(J,L)*BX(J,L)+BY(J,L)*BY(J,L)+BZ(J,L)*BZ(J,L))*OVER8PI

0 CURLB2(L)=DBYDZ(J,L)*DBYDZ(J,L)+DBYDX(J,L)*DBYDX(J,L)

1 +(DBXDZ(J,L)-DBZDX(J,L))*(DBXDZ(J,L)-DBZDX(J,L))

ETA(L)=ETAO

10 CONTINUE

CALCULATE THE VISCOUS STRESS TENSOR TIJ

OCALL CALCTIJ(R,J,TXX,TXY,TXZ,TYY,TYZ,TZZ,

1 U,DUDX,DUDZ,V,DVDX,DVDZ,W,DWDX,DWDZ)

 

BLOCK:CALCFX

CALCULATE FX AND ADVECZ

 

DO 20 L=ZLO,ZHI

FX(J,L,1)=R(J,L,2)

FX(J,L,2)=R(J,L,2)*U(J,L)+(P(L)+PM(L)-TXX(L))*DZDL(J,L)

FX(J,L,3)=R(J,L,3)*U(J,L)-TXY(L)*DZDL(J,L)

FX(J,L,4)=R(J,L,4)*U(J,L)-TXZ(L)*DZDL(J,L)

FX(J,L,5)=R(J,L,5)*U(J,L)

FX(J,L,6)=0.

FX(J,L,7)=(BY(J,L)*U(J,L)-BX(J,L)*V(J,L)-ETA(L)*DBYDX(J,L))

*DZDL(J,L)

FX(J,L,8)=(BZ(J,L)*U(J,L)-BX(J,L)*W(J,L)+

ETA(L)*(DBXDZ(J,L)-DBZDX(J,L)))*DZDL(J,L)

CALCULATE THE ADVECTION TERM

ADVECZ(L)=(W(J,L)-DZDT(J,L))/DZDL(J,L)

20 CONTINUE

H
O
l
—
‘
O
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* BLOCK: CALCFZ

* CALCULATE FZ, DR

*
 

DO 30 L=ZLO,ZHI

FZ(J,L,1)=ADVECZ(L)*R(J,L,1)-FX(J,L,1)*DZDX(J,L)

FZ(J,L,2)=ADVECZ(L)*R(J,L,2)-TXZ(L)-FX(J,L,2)*DZDX(J,L)

FZ(J,L,3)=ADVECZ(L)*R(J,L,3)-TYZ(L)-FX(J,L,3)*DZDX(J,L)

FZ (J, L, 4)=ADVECZ (L) *R(J, L, 4) +P (L) +PM (L) -TZZ (L)

$ -FX(J,L,4)*DZDX(J,L)

FZ(J,L,5)=ADVECZ(L)*R(J,L,5)-FX(J,L,5)*DZDX(J,L)

FZ(J,L,6)=BX(J,L)*W(J,L)-BZ(J,L)*U(J,L)+ETA(L)*

$ (DBZDX(J,L)-DBXDZ(J,L))-BX(J,L)*DZDT(J,L)-FX(J,L,6)*DZDX(J,L)

FZ(J,L,7)=BY(J,L)*W(J,L)-BZ(J,L)*V(J,L)-

$ ETA(L)*DBYDZ(J,L)-BY(J,L)*DZDT(J,L)

FZ(J,L,8)=-BZ(J,L)*DZDT(J,L)-FX(J,L,8)*DZDX(J,L)

* NOW DR

DR(J,L,1)=QH*R(J,L,4)

DR(J,L,2)=QH*R(J,L,4)*U(J,L)

+2.*(R(J,L,6)*DBXDX(J,L)+R(J,L,8)*DBXDZ(J,L))*OVER8PI

DR(J,L,3)=QH*R(J,L,4)*V(J,L)

+2.*(R(J,L,6)*DBYDX(J,L)+R(J,L,8)*DBYDZ(J,L))*OVER8PI

DR(J,L,4)=QH*R(J,L,4)*W(J,L)

+2.*(R(J,L,6)*DBZDX(J,L)+R(J,L,8)*DBZDZ(J,L))*OVER8PI

DR(J,L,5)=(-P(L)*(DUDX(J,L)+DWDZ(J,L))+

TXX(L)*DUDX(J,L)+TZZ(L)*DWDZ(J,L)+

TXY(L)*(DVDX(J,L))+TYZ(L)*(DVDZ(J,L))

+TXZ(L)*(DUDZ(J,L)))*DZDL(J,L)+QH*R(J,L,4)*R(J,L,5)/R(J,L,l)

+2.*ETA(L)*OVER8PI*CURLBZ(L)*DZDL(J,L)

DR(J,L,6)=0.

DR(J,L,7)=0.

DR(J,L,8)=O.

30 CONTINUE

* END OF LOOP

5 CONTINUE

m
m
m
m

U
)

{
D

'
0
'
)

*
 

*BLOCK: COMBINEFZ

* NOW COMBINE DR WITH THE DERIVATIVE OF F2 AND STORE IN DR

* USE V AND DVDZ AS A TEMP STORAGE FOR F2 AND DFZDZ SINCE

* FZ DOES NOT HAVE THE RIGHT SHAPE

*
 

DO 60 M=1,8

DO 40 J=XLO,XHI

DO 40 L=ZLO,ZHI

V(J,L)=FZ(J,L,M)

40 CONTINUE

CALL DDL(V,DVDZ)

DO 50 J=XLO,XHI

DO 50 L=ZLO,ZHI

DR(J,L,M)=DR(J,L,M)-DVDZ(J,L)

50 CONTINUE

60 CONTINUE

 

BLOCK:COMBINEFX

NOW COMBINE DR WITH X DERIVATIVE OF FX AND STORE IN DR

USE V AS TEMP STORAGE FOR FX AND DFXDX

S
l
-
I
r
fl
-
I
r
fl
-

 

DO 90 M=1,8

DO 70 J:XLO,XHI

DO 70 L=ZLO,ZHI

V(J,L)=FX(J,L,M)

150

 

‘1
!

 



70 CONTINUE

CALL DDX(FXSYM(M),V,DVDZ)

DO 80 J=XLO,XHI

DO 80 L=ZLO,ZHI

DR(J,L,M)=DR(J,L,M)-DVDZ(J,L)

80 CONTINUE

90 CONTINUE

 

RETURN

END

*********************************************************************

SUBROUTINE CALCVB(R,U,V,W,BX,BY,BZ)

IMPLICIT NONE

* PASSED VARIABLES

OREAL R(0:31,1:50,8),U(0:31,1:50),V(O:31,1:50),

1 W(0:31,1:50),BX(0:31,1:50),BY(0:31,1:50),BZ(0:3l,1:50)

* GLOBAL VARIABLES

INTEGER LM,LM2,LM3,LM4,NC,NL,NR,NX,XLO,XHI,ZLO,ZHI,SPLIT

REAL DZDX(0:31,1:50),DZDL(O:31,1:50),DZDT(0:31,1:50)

COMPLEX DX(0:31)

OCOMMON /NUMBER/LM,LM2,LM3,LM4,NC,NL,NR,NX,XLO,XHI,ZLO,ZHI,SPLIT

1 /GRID/DZDX,DZDL,DZDT,DX

* LOCAL VARIABLES

INTEGER J,L

* BEGIN CALCVB

DO 10 J=XLO,XHI

DO 10 L=ZLO,ZHI

U(JIL)=R(JILI2)/R(JILI1)

V(JIL)=R(JILI 3) /R(JILI1)

W(J,L)=R(J,L, 4)/R(J,L, 1)

BX(J,L)=R(J,L, 6) /DZDL(J,L)

BY(J,L)=R(J,L,7)/DZDL(J,L)

BZ (J,L)=R(J,L, 8) /DZDL(J,L)

10 CONTINUE

RETURN

END

*********************************************************************

OSUBROUTINE DIFFVB(U,DUDX,DUDZ,V,DVDX,DVDZ,W,DWDX,DWDZ,

1 BX,DBXDX,DBXDZ,BY,DBYDX,DBYDZ,BZ,DBZDX,DBZDZ)

IMPLICIT NONE

* PASSED VARIABLES

REAL U(0:31,1:50),DUDX(0:31,1:50),DUDZ(0:31,1:50),

V(O:31,1:50),DVDX(0:31,1:50),DVDZ(0:31,1:50),

W(0:31,1:50),DWDX(0:31,1:50),DWDZ(0:31,1:50),

BX(0:31,1:50),DBXDX(0:31,1:50),DBXDZ(0:31,1:50),

BY(0:31,1:50),DBYDX(0:31,1:50),DBYDZ(0:31,1:50),

BZ(0:31,1:50),DBZDX(0:31,1:50),DBZDZ(0:31,1:50)

* GLOBAL VARIABLES

INTEGER LM,LM2,LM3,LM4,NC,NL,NR,NX,XLO,XHI,ZLO,ZHI,SPLIT

REAL DZDX(0:31,1:50),DZDL(0:31,1:50),DZDT(0:31,1:50)

COMPLEX DX(0:31)

OCOMMON /NUMBER/LM,LM2,LM3,LM4,NC,NL,NR,NX,XLO,XHI,ZLO,ZHI,SPLIT

1 /GRID/DZDX,DZDL,DZDT,DX

* LOCAL VARIABLES

INTEGER J,L

U
1
b
C
Q
k
J
H
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* BEGIN DIFFVB

* CALCULATE X DERIVATIVES USING SPECTRAL METHODS

CALL DDX(-1,U,DUDX)

CALL DDX(1,V,DVDX)

CALL DDX(1,W,DWDX)

CALL DDX(1,BX,DBXDX)

CALL DDX(-1,BY,DBYDX)

CALL DDX(-1,BZ,DBZDX)

* CALCULATE DUDZ, DVDZ, DWDZ USING FINITE DIFFERENCE

CALL DDL(U,DUDZ)

CALL DDL(V,DVDZ)

CALL DDL(W,DWDZ)

CALL DDL(BX,DBXDZ)

CALL DDL(BY,DBYDZ)

CALL DDL(BZ,DBZDZ)

* CORRECT FOR MOVING GRID

DO 10 J=XLO,XHI

DO 10 L=ZLO,ZHI

DUDX(J,L)=DUDX(J,L)-DZDX(J,L)*DUDZ(J,L)

DVDX(J,L)=DVDX(J,L)-DZDX(J,L)*DVDZ(J,L)

DWDX(J,L)=DWDX(J,L)-DZDX(J,L)*DWDZ(J,L)

DBXDX(J,L)=DBXDX(J,L)-DZDX(J,L)*DBXDZ(J,L)

DBYDX(J,L)=DBYDX(J,L)-DZDX(J,L)*DBYDZ(J,L)

DBZDX(J,L)=DBZDX(J,L)-DZDX(J,L)*DBZDZ(J,L)

DUDZ(J,L)=DUDZ(J,L)/DZDL(J,L)

DVDZ(J,L)=DVDZ(J,L)/DZDL(J,L)

DWDZ(J,L)=DWDZ(J,L)/DZDL(J,L)

DBXDZ(J,L)=DBXDZ(J,L)/DZDL(J,L)

DBYDZ(J,L)=DBYDZ(J,L)/DZDL(J,L)

DBZDZ(J,L)=DBZDZ(J,L)/DZDL(J,L)

10 CONTINUE

RETURN

END

****3):****************************************************************

OSUBROUTINE CALCTIJ(R,J,TXX,TXY,TXZ,TYY,TYZ,TZZ,

1 U, DUDX, DUDZ, V, DVDX, DVDZ, W, DWDX, DWDZ)

IMPLICIT NONE

* PASSED VARIABLES

INTEGER J

OREAL R(0:31,1:50,8),TXX(1:50),TXY(1:50),TXZ(1:50),

1 TYY(1:50),TYZ(1:50),TZZ(1:50),

2 U(0:31,1:50),DUDX(0:31,1:50),DUDZ(0:31,1:50),

3 V(0:31,l:50),DVDX(0:31,1:50),DVDZ(0:31,1:50),

4 W(0:31,1:50),DWDX(0:31,1:50),DWDZ(O:31,1:50)

* GLOBAL VARIABLES

INTEGER LM,LM2,LM3,LM4,NC,NL,NR,NX,XLO,XHI,ZLO,ZHI,SPLIT

REAL DZDX(0:31,1:50),DZDL(0:31,1:50),DZDT(0:31,1:50)

COMPLEX DX(0:31)

REAL G,QH,GM1,VP,OM,LZ,RMO,FV,ZETAZ,ZETA1,ETAO,LX,LY,ERF

OCOMMON /NUMBER/LM,LM2,LM3,LM4,NC,NL,NR,NX,XLO,XHI,ZLO,ZHI,SPLIT

1 /GRID/DZDX,DZDL,DZDT,DX

2 /PARAM/G,QH,GM1,VP,OM,LZ,RMO,FV,ZETAZ,ZETA1,ETAO,LX,LY,ERF

* LOCAL VARIABLES

REAL DVKDXK(1:50)

* TO SAVE DIVISIONS, DVKDXK(L)=1/3 OF ACTUAL VALUE THIS CHANGES ZETAZ

* to 1/3 OF THE VALUE IN THE PROGRAM

INTEGER L
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* BEGIN CALCTIJ

DO 10 L=ZLO,ZHI

DVKDXK(L)=(DUDX(J,L)+DWDZ(J,L))/3.

10CONTINUE

* CALCULATE Txx, TXY, sz, TYY, TYZ, Tzz

DO 20 L=ZLO,ZHI

TXX(L)=ZETA1*(DUDX(J,L)-2.*DVKDXK(L))+ZETA2*DVKDXK(L)

TXY(L)=ZETA1*DVDX(J,L)

TXZ(L)=ZETA1*(DUDZ(J,L)+DWDX(J,L))

TYY(L)=DVKDXK(L)*(ZETA2-2.*ZETA1)

TYZ(L)=ZETA1*DVDZ(J,L)

TZZ(L)=ZETA1*(DWDZ(J,L)-2.*DVKDXK(L))+ZETA2*DVKDXK(L)

20CONTINUE

RETURN

END

*********************************************************************

* THIS SUBROUTINE FINDS THE Z DERIVATIVE OF THE ELEMENTS OF THE

* PASSED ARRAY. THE ARRAY MUST BE SHAPED (0:NR,1:NL)

*********************************************************************

SUBROUTINE DDL(F,DFDL)

IMPLICIT NONE

* PASSED VARIABLES

REAL F(0:3l,l:50),DFDL(0:31,1:50)

INTEGER SYM

* GLOBAL VARIABLES

INTEGER LM,LM2,LM3,LM4,NC,NL,NR,NX,XLO,XHI,ZLO,ZHI,SPLIT

COMMON /NUMBER/LM,LM2,LM3,LM4,NC,NL,NR,NX,XLO,XHI,ZLO,ZHI,SPLIT

LOCAL VARIABLES

INTEGER J,L,M

* BEGIN DDL USING FOURTH ORDER EVERYWHERE

DO 20 J:XLO,XHI

DO 10 L=3,LM2

C PRINT *,J,L,DFDL(J,L)

DFDL(J,L)=F(J,L-2)-8.*F(J,L-1)+8.*F(J,L+l)-F(J,L+2)

10 CONTINUE

O DFDL(J,1)=-25.*F(J,1)+48.*F(J,2)-36.*F(J,3)+

116.*F(J,4)-3.*F(J,5)

DFDL(J,2)=-3.*F(J,1)-10.*F(J,2)+18.*F(J,3)-6.*F(J,4)+F(J,5)

0 DFDL(J,LM)=-F(J,LM4)+6.*F(J,LM3)-18.*F(J,LM2)+10.*F(J,LM)

1 +3.*F(J,NL)

0 DFDL(J,NL)=3.*F(J,LM4)-16.*F(J,LM3)+36.*F(J,LM2)-

148.*F(J,LM)+25.*F(J,NL)

20 CONTINUE

120 CONTINUE

)
0
-

*********************************************************************

* THIS ROUTINE USES FINTIE DIFFERENCE TO CALCULATE THE X DERIVATIVES

* IT IS ONLY USED WHEN PERIODIC BOUNDARY CONDITIONS ARE INAPPROPRIATE

*********************************************************************

SUBROUTINE DDJ(F,DFDL)

IMPLICIT NONE

* PASSED VARIABLES
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REAL F(0:3l,1:50),DFDL(0:31,1:50)

INTEGER SYM

* GLOBAL VARIABLES

INTEGER LM,LM2,LM3,LM4,NC,NL,NR,NX,XLO,XHI,ZLO,ZHI,SPLIT

REAL G,QH,GM1,VP,OM,LZ,RMO,FV,ZETA2,ZETA1,ETAO,LX,LY,ERF

COMMON /NUMBER/LM,LM2,LM3,LM4,NC,NL,NR,NX,XLO,XHI,ZLO,ZHI,SPLIT

$ /PARAM/G,QH,GM1,VP,OM,LZ,RMO,FV,ZETAZ,ZETA1,ETAO,LX,LY,ERF

* LOCAL VARIABLES

INTEGER J, L,M, JM, JM2, JM3, JM4

REAL DXDJ

* BEGIN DDL USING FOURTH ORDER EVERYWHERE

JM:NR-l

JM2=NR-2

JM3=NR-3

JM4=NR—4

DXDJ=1.0/(12.0*LX)

DO 20 L=ZLO,ZHI

DO 10 J=2,JM2

DFDL(J,L)=F(J-2,L)-8.*F(J41,L)+8.*F(J+l,L)-F(J+2,L)

10 CONTINUE

O DFDL(0,L)=—25.*F(0,L)+48.*F(1,L)-36.*F(2,L)+

116.*F(3,L)-3.*F(4,L)

DFDL(1,L)=-3.*F(0,L)-10.*F(1,L)+18.*F(2,L)-6.*F(3,L)+F(4,L)

O DFDL(JM,L)=-F(JM4,L)+6.*F(JM3,L)-18.*F(JM2,L)+10.*F(JM,L)

1 +3.*F(NR,L)

O DFDL(NR,L)=3.*F(JM4,L)-16.*F(JM3,L)+36.*F(JM2,L)—

148.*F(JM,L)+25.*F(NR,L)

20 CONTINUE

120 CONTINUE

DO 200 J:0,NR

DO 200 L=ZLO,ZHI

DFDL(J,L)=DFDL(J,L)*DXDJ

200 CONTINUE

END

 

**********************************************************************

* THIS ROUTINE CALCULATES x DERIVATIVES BY SPECTRAL METHODS

**********************************************************************

SUBROUTINE DDX(SYM,A,DADX)

IMPLICIT NONE

* GLOBAL VARIABLES

COMPLEX DX(0:31)

REAL W(0:31,1:50,8),TRIGS(451)

INTEGER IFAX(13),INC,JUMP,NPTS,NVEC

INTEGER SYMFLAG

INTEGER LM,LM2,LM3,LM4,NC,NL,NR,NX,XLO,XHI,ZLO,ZHI,SPLIT

REAL DZDX(0:31,1:50),DZDL(0:31,1:50),DZDT(0:31,1:50)

OCOMMON /NUMBER/LM,LM2,LM3,LM4,NC,NL,NR,NX,XLO,XHI,ZLO,ZHI,SPLIT

1 /FFT/W,SYMFLAG

2 /GRID/DZDX,DZDL,DZDT,DX

* PASSED VARIABLES

COMPLEX DADX(0:NC,NL),A(0:NC,NL)

INTEGER SYM

* LOCAL VARIABLES

INTEGER J,L,M,L1,NX2,NR2

COMPLEX B(0:255),C(0:255),D(0:31,1:50)

GOTO (1,2,3,4, 1)SYMFLAG

* ONE D

3 DO 10 J=0,NC
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DO 10 L=1,NL

10 DADX(J,L)=0.0

GOTO 999

* NO SYMMETRY

1 Do 110 L=ZLO,ZHI,2

L1=L+1

DO 120 J=0,NC

B(J)=A(J,L)

C(J)=A(J,Ll)

120 CONTINUE

CALL FFT2(B,C,W,NX,1)

DO 130 J=0,NC

B(J)=B(J)*DX(J)

C(J)=C(J)*DX(J)

13o CONTINUE

CALL FFT2(B,C,W,NX,-1)

DO 140 J=0,NC

DADX(J,L)=B(J)

DADX(J,L1)=C(J)

140 CONTINUE

110 CONTINUE

- IF(SYMFLAG.EQ.5)THEN

CALL DDJ(A,D)

DO 150 L=ZLO,ZHI

DO 160 J=O,1

DADX(J,L)=D(J,L)

DADX (NR-J, L) =D (NR-J, L)

160 CONTINUE

150 CONTINUE

ENDIF

GOTO 999

*EVEN SYMMETRY IN X

2 NX2=2*NX

NR2=NX2-1

DO 210 L=ZLO,ZHI,2

L1=L+1

DO 220 J=0,NC

B(J)=A(J,L)

C(J)=A(J,Ll)

220 CONTINUE

CALL EXTEND(B,NR,NR2,SYM)

CALL EXTEND(C,NR,NR2,SYM)

CALL FFT2(B,C,W,NX2,1)

DO 230 J=XLO,XHI

B(J)=B(J)*DX(J)

C(J)=C(J)*DX(J)

230 CONTINUE

CALL FFT2(B,C,W,NX2,-1)

DO 240 J=0,NC

DADX(J,L)=B(J)

DADX(J,L1)=C(J)

240 CONTINUE

210 CONTINUE

GOTO 999

* USE FINITE DIFFERENCE IN X DIRECTION

4 CALL DDJ(A,DADX)

999 RETURN

END
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10

SUBROUTINE EXTEND(B,N1,N2,SYM)

IMPLICIT NONE

INTEGER N1,N2,SYM,J

REAL B(O:N2)

DO 10 J:O,Nl

B(N2-J)=B(J)*SYM

CONTINUE

RETURN

END
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*********************************************************************

* THIS SUBROUTINE OUTPUTS THE RESULTS

* PFLAG=1 CAUSES 1D IN Z TO BE OUTPUT

* 2 CAUSES 2D TABLE

*3 CAUSES 2D TABLE AND CONTOUR PLOT

*4 CAUSES CONTOUR PLOT ONLY

*5 CAUSE 1D IN X

*****t***************************************************************

 

SUBROUTINE OUTPUT(R,T,Z)

IMPLICIT NONE

* PASSED VARIABLES

REAL R(0:31,1:50,8),T,Z(0:31,1:50)

* GLOBAL VARIABLES

INTEGER LM,LM2,LM3,LM4,NC,NL,NR,NX,XLO,XHI,ZLO,ZHI,SPLIT

REAL G,QH,GM1,VP,OM,LZ,RMO,FV,ZETAZ,ZETA1,ETAO,LX,LY,ERF

REAL DZDX(0:31,1:50),DZDL(0:31,1:50),DZDT(0:31,1:50)

COMPLEX DX(0:31)

REAL TMAX,TPRINT,PFLAG,TVIEW

OCOMMON /NUMBER/LM,LM2,LM3,LM4,NC,NL,NR,NX,XLO,XHI,ZLO,ZHI,SPLIT

 

1 /PARAM/G,QH,GM1,VP,OM,LZ,RMO,FV,ZETAZ,ZETA1,ETAO,LX,LY,ERF

2 /GRID/DZDX,DZDL,DZDT,DX

3 /PRINTS/TMAX,TPRINT,PFLAG,TVIEW

* LOCAL VARIABLES

0 REAL D(O:31,l:50),VX(0:31,1:50),VY(0:31,1:50),VZ(0:31,1:50),

1 E(0:31,1:50),P(0:31,1:50),BX(O:31,1:50),BY(O:31,1:50),

2 BZ(0:31,1:50),V(O:31,1:50),A(0:3l,0:31),AZ(0:31,0:31)

INTEGER J,L,K,M,NX2,FLAG3D,Q

CHARACTER*4O TITLE

FLAG3D=2

IF(PFLAG.GE.2.)THEN

DO 10 J=0,NR

DO 10 L=1,NL

D(J,L)=R(J,L,1)/DZDL(J,L)

VX(J,L)=R(J,L,2)/R(J,L,l)

VY(JIL)=R(JILI3)/R(JILI1)

VZ(JIL)=R(JILI4)/R(JILI1)

V(J,L)=SQRT(VX(J,L)*VX(J,L)+VZ(J,L)*VZ(J,L))

B(J,L)=R(J,L, 5)/(0.9D0*R(J,L, 1))

C P(J,L)=R(J,L,5)/DZDL(J,L)

BX(J,L)=R(J,L,6)/DZDL(J,L)

BY(J,L)=R(J,L,7)/DZDL(J,L)

BZ(J,L)=R(J,L,8)/DZDL(J,L)

10 CONTINUE

ENDIF

IF(PFLAG.GE.2.AND.PFLAG.LE.3)THEN

DO 20 L=1,NL

 

WRITE(6,2000)L

2000 FORMAT(' > L=',I4)

WRITE(6,3000)'J','Z','DENSITY','VX','VY','VZ','TEMP',

$ 'BY','BZ'

3000 FORMAT(1X,A2,1X,9(A8,1X))

DO 30 J:XLO,XHI

WRITE(6,4000)J,Z (J,L) ,D(J,L) ,VX(J,L) ,VY(J,L) ,

$ VZlJ,L),E(J,L).BY(J,L),BZ(J.L)

4000 FORMAT(1X,I3,1X,F8.4,1X,9(F8.4,1X))

30 CONTINUE

20 CONTINUE

ENDIF

157  



0
0
0
0
0
0
0
0

1

2

4O

41

42

43

999

IF ((PFLAG.GE.3..AND.PFLAG.LT.5.).OR.(PFLAG.EQ.9))THEN

GOTO (1,2)FLAG3D

TITLE='DENSITY'

CALL MAKCON(D,Z,NX,NL,10,TITLE)

PRINT *,‘DENSITY AT T= ',T

PRINT*,' '

TITLE='VX'

CALL MAKCON(VX,Z,NX,NL,10,TITLE)

PRINT *,‘PLOT OF VX AT T= ',T

PRINT*,' '

TITLE='VZ'

CALL MAKCON(VZ,Z,NX,NL,10,TITLE)

PRINT *,‘VZ AT T= ',T

PRINT*,' '

PRINT *,‘3D PLOTS AT T= ',T

TITLE='PLOT OF ENERGY'

CALL MAKCON(E,Z,NX,NL,10,TITLE)

PRINT *,‘ENERGY DENSITY AT T= ',T

PRINT*,' '

TITLE='SPEED'

CALL MAKCON(V,Z,NX,NL,10,TITLE)

PRINT *,‘SPEED AT T= ',T

PRINT*,' '

GOTO 999

CONTINUE

TITLE='DENSITY'

CALL THREED(D,NX-2,NL,TITLE)

TITLE='TEMPERATURE'

CALL THREED(E,NX-2,NL,TITLE)

TITLE='SPEED'

CALL THREED(V,NX-2,NL,TITLE)

GOTO 999

CONTINUE

Q=0.4*NL—NC

DO 40 J: 0,NR

DO 40 K= 0,NR

AZ(J,K)=Z(J,K+Q)

DO 41 J= 0,NR

DO 41 K= 0,NR

A(J,K)=D(J,K+Q)

TITLE='DENSITY'

CALL MAKCON(A,AZ,NX,NX,10,TITLE)

PRINT *,‘PLOT OF DENSITY AT T= ',T

PRINT*,' '

DO 42 J"= 0,NR

DO 42 K= 0,NR

A(J.K) =E (J,K+Q)

TITLE='PLOT OF ENERGY'

CALL MAKCON(A,AZ,NX,NX,10,TITLE)

PRINT *,‘TEMPERATURE AT T= ',T

PRINT*,' '

DO 43 J= 0,NR

DO 43 K: 0,NR

A(JIK)=V(J,K+Q)

TITLE='SPEED'

CALL MAKCON(A,AZ,NX,NX,10,TITLE)

PRINT *,‘SPEED AT T= ',T

PRINT*,' '

CONTINUE

ENDIF

IF((PFLAG.EQ.1).OR.(PFLAG.EQ.3.5))CALL OUTZlD(R,Z,T)
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IF((PFLAG.EQ.5).OR.(PFLAG.EQ.9))CALL OUTX1D(R,Z,T)

IF(PFLAG.EQ.25.)THEN

DO 720 L=10, 30

WRITE(6,2000)L

WRITE(6,3000)'J','Z','DENSITY','VX','VY','VZ','TEMP',

s 'BY"'BZ'

DO 730 J:XLO,XHI

'WRITE(6,4000)J,Z(J,L),D(J,L),VX(J,L),VY(J,L),

$ VZ(J,L),E(J.L),BY(J,L),BZ(J,L)

730 CONTINUE

720 CONTINUE

ENDIF

RETURN

END
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***************************************************************

* THIS IS THE BOUNDARY CONDITION ROUTINE

***************************************************************

SUBROUTINE BC(R,Z,T)

IMPLICIT NONE

* PASSED VARIABLES

REAL R(0:31,1:50,8),Z(O:31,1:50),T

* GLOBAL VARIABLES

INTEGER LM,LM2,LM3,LM4,NC,NL,NR,NX,XLO,XHI,ZLO,ZHI,SPLIT

REAL DZDX(0:31,1:50),DZDL(0:31,1:50),DZDT(0:31,1:50)

COMPLEX DX(0:31)

REAL G,QH,GM1,VP,OM,LZ,RMO,FV,ZETAZ,ZETA1,ETAO,LX,LY,ERF

REAL BXO,BYO,BZO,E0,R0,VXO,VYO,VZO

REAL ALF,ALFX,ALFY,ALFZ,BETA,CFM,CSM,CT,CSURF,ME,MO

REAL WORK(0:31,1:50,8)

INTEGER SYMFLAG

OCOMMON /NUMBER/LM,LM2,LM3,LM4,NC,NL,NR,NX,XLO,XHI,ZLO,ZHI,SPLIT

1 /GRID/DZDX,DZDL,DZDT,DX

2 /PARAM/G,QH,GM1,VP,OM,LZ,RMO,FV,ZETAZ,ZETA1,ETAO,LX,LY,ERF

3 /ZEROES/BXO,BYO,BZO,E0,RO,VXO,VYO,VZO

4 /MAGNET/ALF,ALFX,ALFY,ALFZ,BETA,CFM,CSM,CT,CSURF,ME,MO

5 /FFT/WORK,SYMFLAG

* LOCAL VARIABLES

INTEGER J,L,M

REAL VPSTART,W,R1,E1,D,SIGN,A,U,MM,W0,UO

REAL XFACE,ZFACE,SN,CSN

CHARACTER*8 BCFLAG

******************************************************************

* BCFLAG DETERMINES WHICH BC ARE USED

******************************************************************

BCFLAG='PISTONZ'

IF(BCFLAG.EQ.'XPISLAB')THEN

DO 5 J:XLO,XHI

SN=DZDL(J,1)/DZDL(J,2)

CSN=DZDL(J,NL)/DZDL(J,LM)

DO 6 M:1,8

R(J,1,M)=R(J,2,M}*SN

R(J,NL,M)=R(J,LM,M)*CSN

6 CONTINUE

5 CONTINUE

GOTO 999

ENDIF

* BORING BC IN Z

DO 20 J:XLO,XHI

:R(J,1,l)=R(J,2,1)*DZDL(J,1)/DZDL(J,2)

R(J,NL,1)=R(J,LM, 1) *DZDL (J,NL) /DZDL (J,LM)

R(J11:2)=R(J:2:2)*R(J,1:1)/R{J:2:1)

R(JINL12)=R(JIIMI2) *R(JINLl1) /R(JII-Ml1)

R(Jlll4)=-R(JI214) *R(JI1I1) /R(JI2I 1)

R(J,N'L,4)='R(J,IM,4)*R(J,NL,1)/R(J,LM,1)

R(J, 1, 5)=R(J, 2, 5) *R(J,1,1) /R(J,2,1)

R(JINLI 5)=R(Jl LMI 5) *R(JINLI1) /R(JIIMI1)

20 CONTINUE

IF(T.LT.6.2831853/OM)THEN

FOR MAGNETOACOUSTIC WAVES

DO 40 L=1,NL

R(1,L,1)=RO*(1.+W/A)*DZDL(1,L)

R(l, L, 4) =-ALFZ*ALFX/ (A*A-ALFZ*ALFZ) *W*R (1, L, 1)

R(1,L,3)=0.0
0
0
0

$
0
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R(1,L,2)=W*R(1,L,1)

R(1,L, 5)=EO* (1.0+GMl*W/A) *R(1,L, 1)

R(1,L,8)=BZO*(1.O+A*W/(ATAFALFZ*ALFZ))*DZDL(1,L)

R(1,L,7)=0.

R(1,L,6)=BXO*DZDL(1,L)

4O CONTINUE

ELSE

XLO=0

XHI=NR

ENDIF

IF(BCFLAG.EQ.'PISTONZ')THEN

BC FOR Z PISTON

IF(SYMFLAG.GE.4)THEN

DO 14 L=1,NL

DO 12 M=1,8

R(0,L,M)=R(1,L,M)*DZDL(0,L)/DZDL(1,L)

2*R(l,L,M)-R(2,L,M)

R(NR,L,M)=R(NRr1,L,M)*DZDL(NR,L)/DZDL(NRr1,L)

2*R(NRF1,L,M)-R(NR-2,L,M)

12 CONTINUE

R(0,L,2)=0.5*(R(0,L,2)-R(NR,L,2))

R(NR,L,2)=-R(0,L,2)

14 CONTINUE

ENDIF

DO 10 J=XLO,XHI

R(J, 1, l)=R(J,2, 1) *DZDL (J, 1) /DZDL(J,2)

R(J,l,2)=R(J,2,2)*DZDL(J,1)/DZDL(J,2)

C R(J,1,2)=-0.05*R(J,1,1)

R(J, 1, 4)=VP*R(J, 1, 1)

C R(J,1,4)=2*R(J,1,l)*VP-R(J,2,4)*DZDL(J,1)/DZDL(J,2)

R(J,1,5)=R(J,2,5)*DZDL(J,1)/DZDL(J,2)

R(J, 1, 6)=R(J,2, 6) *DZDL(J, 1) /DZDL(J,2)

R(J,1,8)=R(J,2,8)*DZDL(J,1)/DZDL(J,2)

R(J,NL,4)=0.0

10 CONTINUE

GOTO 999

ENDIF

:1
-
0
0
0
0
0
0
0
0
0
0

0
0

 

IF(BCFLAG.EQ.'ZPISLAB')THEN

* BC FOR Z PISTON IN SLAB

DO 100 J=XLO,XHI

R(J,1,1)=R(J,2,1)*DZDL(J,1)/DZDL(J,2)

R(J,1,2)=R(J,2,2)*DZDL(J,1)/DZDL(J,2)

R(J,1,4)=0.0

C R(J,1,4)=2*R(J,1,1)*VP-R(J,2,4)*DZDL(J,1)/DZDL(J,2)

R(J,1,5)=R(J,2,5)*DZDL(J,1)/DZDL(J,2)

R(J,1,6)=R(J,2,6)*DZDL(J,1)/DZDL(J,2)

R(J,1,8)=R(J,2,8)*DZDL(J,1)/DZDL(J,2)

R(J,NL,4)=0.0

100 CONTINUE

DO 110 J=XLO,XHI

C SPLIT+1,NX-SPLIT-1

R(J,1,4)=VP*R(J,1,1)

110 CONTINUE

GOTO 999

ENDIF

FOR ALFVEN WAVE

DO 20 J=XLO,XHI

R(J, 1,1)=R(J, 2, 1) *DZDL(J, 1) /DZDL(J,2)

R(J,1,2)=R(J,1,1)*W

R(J,1,4)=0.

R(J,1,5)=R(J,2,5)*DZDL(J,l)/DZDL(J,2)
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C R(J,1,6)=(BXO-BZO*W/ALF)*DZDL(J,1)

C R(J,NL,4)=0.

C 20 CONTINUE* SURFACE WAVES IN THE X DIRECTION

IF(BCFLAG.EQ.'SURFACEX')THEN

IF (2 . 0*T*OM.GT. 6 .2831853) THEN

SN=0.0

CSN=0.0

XLO=1

XHI=NC

ELSE

SN=SIN(OM*T)

CSN=COS(OM*T)

XLO=0

XHI=NR

ENDIF

J=l

C ZFACE=0.5*(Z(J,SPLIT)+Z(J,SPLIT+1))

ZFACE=Z(J,SPLIT)

* THE FIELD-FREE SIDE OF THE INTERFACE

W0=ME*CSURF*VP/((1.0-CSURF**2)*OM)*SN

U0=VP*CSN

DO 200 L=1,SPLIT-1

W=W0*EXP(ME*(Z(J,L)-ZFACE))

=U0*EXP(ME*(Z(J,L)-ZFACE))

R(J,L,1)=RMO*(1.0+CSURF*W)*DZDL(J,L)

R(J,L,4)=R(J,L,1)*U

R(J,L,2)=R(J,L,1)*W

R(J,L,5)=(RMO*EO+RMO*CSURF*W/GM1)*DZDL(J,L)

R(J,L,6)=0.0

C (-MM*IW/OM)*BXO*DZDL(J,L)

R(J,L, 8)=0.0

C (BZO+BXO*W/CSURF)*DZDL(J,L)

200 CONTINUE

* ON THE INTERFACE

R(J,SPLIT,2)=0.0

R(J,SPLIT,4)=U0*R(J,SPLIT,1)

R(J,SPLIT,8)=(0.5*BXO*U0/CSURF)*DZDL(J,SPLIT)

* MAGNETIC SIDE OF INTERFACE

C W0=-CSURF*MO*VP/((1-CSURF**2)*OM)*SN

W0=-MO*CSURF*VP/((1.0-CSURF**2)*OM)*SN

DO 210 L=SPLIT+1,NL

=W0*EXP(-MO*(Z(J,L)-ZFACE))

U=U0*EXP(-MO*(Z(J,L)-ZFACE))

R(J,L,1)=RO*(1.0+CSURF*W)*DZDL(J,L)

R(J,L,4)=R(J,L,1)*U

R(J,L,2)=R(J,L,1)*W

R(J,L,5)=(R0*E0+R0*CSURF*W/GM1)*DZDL(J,L)

R(J,L,6)=BXO*(l.0-(1-CSURF**2)*W/CSURF)*DZDL(J,L)

R(J,L,8)=(-BXO*U/CSURF)*DZDL(J,L)

210 CONTINUE

GOTO 999

ENDIF

* SURFACE WAVES IN THE +Z DIRECTION

IF(BCFLAG.EQ.'SURFACEZ')THEN

IF(T*OM.GT.6.2831853)THEN

SN=0.0

CSN=1.0

ELSE

SN=SIN(OM*T)

CSN=COS(OM*T)

ENDIF

L=1
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XFACE=LX*SPLIT+0.5*LX

* THE FIELD-FREE SIDE OF THE INTERFACE

W0=ME*CSURF*VP/((1.0-CSURF**2)*OM)*SN

U0=VP*CSN

DO 300 J:0,SPLIT

W=W0*EXP(ME*(LX*J‘XFACE))

=UO*EXP(ME*(LX*J‘XFACE))

R(J,L,1)=RMO*(1.0-CSURF*W)*DZDL(J,L)

R(J,L,2)=R(J,L,1)*U

R(J,L,4)=R(J,L,1)*W

R(J,L,5)=(RMO*E0-RMO*CSURF*W/GM1)*DZDL(J,L)

R(J,L,6)=0.0

C (-MM*IW/OM)*BXO*DZDL(J,L)

R(J,L,8)=0.0

C (BZO+BXO*W/CSURF)*DZDL(J,L)

300 CONTINUE

* MAGNETIC SIDE OF INTERFACE

310

W0=-MO*CSURF*VP/((1.0-CSURF**2)*OM)*SN

DO 310 J=SPLIT+1,NR

W=W0*EXP(-MO*(LX*J‘XFACE))

U=U0*EXP(-MO*(LX*J-XFACE))

R(J,L,1)=R0*(1.0-CSURF*W)*DZDL(J,L)

R(J,L,2)=R(J,L,1)*U

R(J,L,4)=R(J,L,1)*W

R(J,L,5)=(R0*E0-R0*CSURF*W/GM1)*DZDL(J,L)

R(J,L,8)=BZO*(1.0-(1-CSURF**2)*W/CSURF)*DZDL(J,L)

R(J,L,6)=(-BZO*U/CSURF)*DZDL(J,L)

CONTINUE

GOTO 999

ENDIF

IF(BCFLAG.EQ.'JPISTON')THEN

* BC FOR Z PISTON

410

D0 410 L=1,NL

R(0,L,1)=R(1,L,1)*DZDL(O,L)/DZDL(1,L)

R(0,L, 4)=R(1,L, 4) *DZDL(O,L) /DZDL(1,L)

R(1,L,2)=-0.05*R(1,L,1)

R(0,L,2)=VP*R(0,L,1)

R(0,L,5)=R(1,L,5)*DZDL(0,L)/DZDL(1,L)

R(O, L, 6)=R(1,L, 6) *DZDL(O,L) /DZDL(1,L)

R(0,L,8)=R(1,L,8)*DZDL(O,L)/DZDL(1,L)

R(NR,L,2)=0.0

CONTINUE

GOTO 999

ENDIF

PERIODIC (IN Z) BC

100

D0 100 M=1,8

DO 100 J=XLO,XHI

R(J, 1,M)=R(J, LM3,M) *DZDL (J, 1) /DZDL(J, LM3)

R(J,2,M)=R(J,LM2,M)*DZDL(J,2)/DZDL(J,LM2)

R(J,LM,M)=R(J,3,M)*DZDL(J,LM)/DZDL(J,3)

R(J,NL,M)=R(J,4,M)*DZDL(J,NL)/DZDL(J,4)

CONTINUE

999 CONTINUE

THE END OF THE CASE STRUCTURE

RETURN

**********************‘k**‘k*********************‘k'k'k'k*************************

* THE ROUTINES TO SMOOTH THE X 1 CELL VARIATIONS
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****************************************************************************

SUBROUTINE SMOOTH(R)

IMPLICIT NONE

* PASSED VARIABLES

REAL R(0:31,1:50,8)

* GLOBAL VARIABLES

INTEGER LM,LM2,LM3,LM4,NC,NL,NR,NX,XLO,XHI,ZLO,ZHI,SPLIT

REAL DZDX(0:31,1:50),DZDL(0:31,1:50),DZDT(0:31,1:50)

COMPLEX DX(0:31)

OCOMMON /NUMBER/LM,LM2,LM3,LM4,NC,NL,NR,NX,XLO,XHI,ZLO,ZHI,SPLIT

1 /GRID/DZDX,DZDL,DZDT,DX

* LOCAL VARIABLES

REAL A(O:31,1:50)

INTEGER M, J, L

* BEGIN SMOOTH

DO 10 M;1,8

DO 20 J=XLO,XHI

DO 20 L=1,NL

A(J,L)=R(J,L,M)/DZDL(J,L)

20 CONTINUE

CALL SMOOTH1(A)

DO 30 J=XLO,XHI

DO 30 L=1,NL

R(J,L,M)=A(J,L)*DZDL(J,L)

30 CONTINUE

10 CONTINUE

RETURN

END

**********************************************************************

SUBROUTINE SMOOTH1(V)

IMPLICIT NONE

*GLOBAL VARIABLES

REAL WORK(0:31,1:50,8),TRIGS(451)

INTEGER IFAX(13),NPTS,INC,JUMP,NVEC

INTEGER SYMFLAG

INTEGER LM,LM2,LM3,LM4,NC,NL,NR,NX,XLO,XHI,ZLO,ZHI,SPLIT

COMMON /FFT/WORK,SYMFLAG

$ /NUMBER/LM,LM2,LM3,LM4,NC,NL,NR,NX,XLO,XHI,ZLO,ZHI,SPLIT

* PASSED VARIABLES

COMPLEX V(0:NC,NL)

* LOCAL VARIABLES

INTEGER.L,M,ISIGN,NVEC3

C CALL FFT99(V,WORK,TRIGS,IFAX,INC,JUMP,NPTS,NVEC3,ISIGN)

DO 50 L=1,NL

50 V(NC,L)=0.0

C CALL FFT99(V,WORK,TRIGS,IFAX,INC,JUMP,NPTS,NVEC3,ISIGN)

RETURN

END
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set dzmin=0

 

for all cells

 

 
 

 

  

dzdt:fv*vz

dzm1n=m1n(dzmin,z ”-1- 2L)

if dzmin<0

then else

print "points crossed” a

exceptional stop

 

use ddl to calculate dzdl

use ddx to calculate dzdx  
 

*****************************************************************

* THE GRID ROUTINE CONTROLS THE MOTION OF THE GRID.

* DZDL,DZDX, & DZDT ARE CALCULATED HERE

*****************************************************************

SUBROUTINE GRID(R,Z,T,DT)

IMPLICIT NONE

* PASSED VARIABLES

REAL R(0:31,1:50,8),Z(O:31,1:50),T,DT

* GLOBAL VARIABLES

INTEGER LM,LM2,LM3,LM4,NC,NL,NR,NX,XLO,XHI,ZLO,ZHI,SPLIT

REAL G,QH,GM1,VP,OM,LZ,RMO,FV,ZETAZ,ZETA1,ETAO,LX,LY,ERF

REAL TMAX,TPRINT,PFLAG,TVIEW

REAL DZDX(0:31,1:50),DZDL(0:31,1:50),DZDT(0:31,1:50)

COMPLEX DX(0:31)

OCOMMON /NUMBER/LM,LM2,LM3,LM4,NC,NL,NR,NX,XLO,XHI,ZLO,ZHI,SPLIT

1 /PARAM/G,QH,GM1,VP,OM,LZ,RMO,FV,ZETAZ,ZETA1,ETAO,LX,LY,ERF

2 /PRINTS/TMAX,TPRINT,PFLAG,TVIEW

3 /GRID/DZDX,DZDL,DZDT,DX

* LOCAL VARIABLES

INTEGER J,L,M

REAL DZl,DZMIN,A(0:31,1:50)

* BEGIN GRID

20

10

DZMIN=LZ

DO 10 J=XLO,XHI

DZDT(J,1)=R(J,1,4)/R(J,1,1)

DZDT(J,2)=FV*R(J,2,4)/R(J,2,1)

DZDT(J,LM)=FV*R(J,LM,4)/R(J,LM,1)

DZDT(J,NL)=1.*R(J,NL,4)/R(J,NL,1)

DO 20 L=3,LM2

DZDT(J,L)=FV*R(J,L,4)/R(J,L,1)

DZl=Z(J,L+1)-Z(J,L)

DZMIN=AMIN1(DZMIN,D21)

CONTINUE

CONTINUE

IF(DZMIN.LE.0.)THEN
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PRINT *,' POINTS CROSSED AT T=',T

CALL OUTPUT(R,T,Z)

STOP

ENDIF

CALL DDL(Z,A)

DO 30 J=XLO,XHI

DO 30 L=ZLO,ZHI

DZDL(J,L)=A(J,L)

30CONTINUE

CALL DDX(1,Z,A)

DO 40 J2XLO,XHI

DO 40 L=ZLO,ZHI

DZDX(J,L)=A(J,L)/DZDL(J,L)

40CONTINUE

IF(DT.LT.lE-7)THEN

PRINT *,‘DT TOO SMALL AT DT=',DT

CALL OUTPUT(R,T,Z)

STOP

ENDIF

RETURN

END

****-k1k******************************1k*******************************inki-*int-

SUBROUTINE OUTX1D(R,Z,TIME)

COMMON /NUMBER/LM,LM2,LM3,LM4,NC,NL,NR,NX,XLO,XHI,ZLO,ZHI,SPLIT

$ /CONST/F1D15,F16D15,0VER8PI,PI,FOURPI

$ /GRID/DZDX,DZDL,DZDT,DX

s /PRINTS/TMAX,TPRINT,PFLAG,TVIEW

$ /PARAM/G,QH,GM1,VP,OM,LZ,RMO,FV,ZETAZ,ZETA1,ETAO,LX,LY,ERF

REAL G,QH,GMl,VP,OM,LZ,RMO,FV,ZETAZ,ZETA1,ETAO,LX,LY,ERF

INTEGER I,J,V,VMAX,VAXIS,L,M,NX,NL,NR,NC,LM,LM2,LM3,LM4,

VD,VV,VT,XLO,XHI,ZLO,ZHI,SPLIT

REAL R(0:31,1:50,8),MIND,MAXD,DY,OVER8PI,DZDL(0:31,1:50),

DZDX(0:31,1:50),D(0:31),VX(O:31),T(0:31),MAXVZ,MINVZ,

MAXT,MINT,Z(O:31,1:50),DD,DVZ,DTT,DZDT(0:31,1:50),

TMAX,TPRINT,PFLAG,TVIEW,VY,VZ,BX,BY,BZ

COMPLEX DX(0:31)

m
m
m

{
D

PRINT *,' '

PRINT *,'@FTF'

PRINT *,NR,‘ NUMBER OF POINTS FOR PLOTTER'

WRITE(6,1000)TIME

1000 FORMAT(' TIME= ',F11.4,F10.5)

L=NL/2

WRITE(*,ZOOO)'J','X','DENSITY',’VX','VZ','TEMP','BX',

$ 'BZ','VY','BY'

WRITE(*,3100) ' 0 ',0.,1.,0.,0.,1.,0.,0.,0.,0.

3100 FORMAT(1X,A4,1X,9(F7.4,1X))

2000 FORMAT(1X,A4,1X,9(A7,1X))

DO 20 J=XLO,XHI

D(J)=R(J,L,1)/DZDL(J,L)

VX(J)=R(JILI2)/R(JILI1)

VY=R(J,L,3)/R(J,L,1)

VZ=R(J,L,4)/R(J,L,1)

T(J)=R(J,L,5)/R(J,L,1)/O.9DO

BX=R(J,L,6)/DZDL(J,L)

BY=R(J,L,7)/DZDL(J,L)

BZ=R(J,L,8)/DZDL(J,L)

WRITE(*,3000)J,J*LX,D(J),VX(J),VZ,T(J),BX,BZ,VY,BY

3000 FORMAT(lX,I4,1X,F8.4,1X,9(F7.4,1X))
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20 CONTINUE

RETURN

END

SUBROUTINE OUTZlD(R,Z,TIME)

COMMON /NUMBER/LM,LM2,LM3,LM4,NC,NL,NR,NX,XLO,XHI,ZLO,ZHI,SPLIT

$ /CONST/F1D15,F16D15,0VER8PI,PI,FOURPI

$ /GRID/DZDX,DZDL,DZDT,DX

$ /PRINTS/TMAX,TPRINT,PFLAG,TVIEW

$ /ZEROES/BXO,BYO,BZO,E0,R0,VXO,VYO,VZO

REAL BXO,BYO,BZO,EO,RO,VXO,VYO,VZO

CHARACTER*1,A(-l:132)

INTEGER I, J,V, VMAX, VAXIS,L,M, NX, NL,NR,NC, LM,LM2, LM3, LM4,

VD,VV,VT

REAL R(0:31,1:50,8),MIND,MAXD,DY,OVER8P1,DZDL(0:31,1:50),

DZDX(0:31,1:50),D(1:50),VZ(1:50),T(1:50),MAXVZ,MINVZ,

MAXT,MINT,Z(0:31,1:50),DD,DVZ,DTT,DZDT(0:31,1:50),VY,BY

TMAX,TPRINT,PFLAG,TVIEW

COMPLEX DX(0:31)

(
1
)
-
(
D
U
)

{
D

PRINT *,' '

PRINT *,'@FTF'

PRINT *,NL,’ NUMBER OF POINTS FOR PLOTTER'

WRITE(6,1000)TIME

1000 FORMAT(' TIME= ',F11.4,F10.5)

J=NC

WRITE(*,ZOOO)'L','Z','DENSITY','VX','VZ','TEMP',

$ IBXI,IBZ"!VYIIIBYI

WRITE(*,3100) '-0',0.,1.,0.,0.,l.,BX0,0.0

3100 FORMAT(1X,A4,2X,9(F7.4,1X),1A25)

2000 FORMAT(1X,A4,2X,9(A7,1X))

DO 20 L=1,NL

D(L)=R(J,L,1)/DZDL(J,L)

VX=R(J,L,2)/R(J,L,1)

VY=R(J,L,3)/R(J,L,1)

VZ(L)=R(J,L,4)/R(J,L,l)

T(L)=R(J,L,5)/R(J,L,1)/0.9D0

BX=R(J,L,6)/DZDL(J,L)

BY=R(J,L,7)/DZDL(J,L)

BZ=R(J,L,8)/DZDL(J,L)

WRITE(*,3000)L,Z(J,L),D(L),VX,VZ(L),T(L),BX,BZ,VY,BY

3000 FORMAT(1X,I4,2X,F8.4,1X,9(F7.4,1X))

20 CONTINUE

RETURN

END

LOGICAL FUNCTION CHECKDT(R,R1,R2,T,DT)

IMPLICIT NONE

* PASSED VARIABLES

REAL R(0:31,1:50,8),Rl(0:31,1:50,8),R2(O:31,1:50,8),T,DT

* GLOBAL VARIABLES

INTEGER LM,LM2,LM3,LM4,NC,NL,NR,NX,XLO,XHI,ZLO,ZHI,SPLIT

REAL FlD15,F16D15,0VER8PI,PI,FOURPI

REAL TMAX,TPRINT,PFLAG,TVIEW

OCOMMON /NUMBER/LM,LM2,LM3,LM4,NC,NL,NR,NX,XLO,XHI,ZLO,ZHI,SPLIT

1 /CONST/F1D15,F16D15,0VER8PI,PI,FOURPI

2 /PRINTS/TMAX,TPRINT,PFLAG,TVIEW

* LOCAL VARIABLES
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REAL EPD, EPE, EPV, DLIM, ELIM, VLIM, CRIT, DTMAX, DTVIEW, CURRENT

INTEGER J,L,M,MSFLAG

DATA DLIM,ELIM,VLIM,DTMAX/.00001,.00001,.00001,2.0/

EPD=0.

EPE=0.

EPV=0.

MSFLAG=O

DTVIEw=-DT+TVIEW*0.5

IF (DTVIEW.LE.0.0)THEN

DTVIEw=DTMAX

ENDIF

DO 10 J=1,NR-1

DO 10 L=2,LM2

EPD=AMAX1(EPD,ABS((R1(J,L,1)-R2(J,L,1))/R2(J,L,l)))

EPE=AMAX1(EPE,ABS((R1(J,L, 5)-R2 (J,L, 5) ) /R2 (J,L, 5) ))

EPv=AMAX1(EPv,ABS((R1(J,L,4)-R2(J,L,4))/R2(J,L,1)))

10 CONTINUE

CRIT=AMAX1(EPD/DLIM,EPE/ELIM,EPV/VLIM)

IF(CRIT.GE.1.)THEN

CHECKDT=.TRUE.

DT=.9*DT*(CRIT**(-0.25))

PRINT *,‘REPEATING STEP AT T=',T,' DT=',DT

ELSEIF(CRIT.GT.0.)THEN

CHECKDT=.FALSE.

CURRENT=T+2.*DT

DT=AMIN1(.8*DT*(CRIT**(-0.2)),DTMAx,DTVIEW)

IF(MSFLAG.NE.O)PRINT *,‘SETTING DT=',DT,' AT T=',CURRENT

ELSE

CHECKDT=.FALSE.

ENDIF

RETURN

END

'k***‘k****************************‘k‘k*********************************

* THIS SUBROUITNE CALCULATES THE WAVES SPEEDS

*‘k‘k'k*‘k‘k********‘A'*******‘k***'k*‘k‘k************************************'k

SUBROUTINE SOMMER(R,NEWR,DT,Z,NEWZ)

IMPLICIT NONE

* PASSED VARIABLES

REAL R(0:31,1:50,8),NEWR(0:31,1:50,8),NEWZ(0:31,1:50),DT

REAL Z(0:31,1:50)

* GLOBAL VARIABLES

INTEGER LM,LM2,LM3,LM4,NC,NL,NR,NX,XLO,XHI,ZLO,ZHI,SPLIT

REAL DZDX(0:31,1:50),DZDL(0:31,1:50),DZDT(0:31,1:50)

COMPLEX DX(0:31)

REAL G,QH,GM1,VP,OM,LZ,RMO,FV,ZETAZ,ZETA1,ETAO,LX,LY,ERF

REAL C(0:31,1:50,8)

OCOMMON /NUMBER/LM,LM2,LM3,LM4,NC,NL,NR,NX,XLO,XHI,ZLO,ZHI,SPLIT

1/GRID/DZDX,DZDL,DZDT,DX

2 /PARAM/G,QH,GM1,VP,OM,LZ,RMO,FV,ZETAZ,ZETA1,ETAO,LX,LY,ERF

3/SOMMER/C

* LOCAL VARIABLES

INTEGER J,L,M

REAL A(0:31,1:50),DADL(0:31,1:50),Q

* BEGIN SOMMER

DO 10 J:XLO,XHI

NEWR(J,NL,1)=R(J,LM,1)*DZDL(J,NL)/DZDL(J,LM)

10CONTINUE

DO 20 M=6,8

DO 20 J=XLO,XHI

0 C(J,LM,M)=AMIN1(LZ/DT,AMAX1(1.0,-(NEWR(J,LM,M)/DZDL(J,LM)-

1R(J:LM,M)/DZDL(J,LM))*(Z(J,NL)'Z(J,LM2))/
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2(R(J,NL,M)/DZDL(J,NL)-R(J,LM2,M)/DZDL(J,LM2)+lE-20)))

20CONTINUE

DO 30 M=2,5

DO 30 J=XLO,XHI

C(J,LM,M)=AMIN1(LZ/DT,AMAX1(1.0,-(NEWR(J,LM,M)/NEWR(J,LM,1)-

1R(JILMPM)/R(JILM11))/DT*(Z(JINL)-Z(JILM2))/

2(R(J,NL,M)/R(J,NL,1)-R(J,LM2,M)/R(J,LM2,1)+1E-20)))

30 CONTINUE

DO 40 M=6,8

DO 40 J=XLO,XHI

Q=C(J,LM:M)*DT/(Z{J:NL)'Z(J:LM))

NEWR(J,NL,M)=R(J,LM,M)*DZDL(J,NL)/DZDL(J,LM)*Q+(1.-Q)*R(J,NL,M)

40CONTINUE

DO 50 M=2,5

DO 60 J=XLO,XHI

Q=C(J:LMJM)*DT/(Z(J:NL)‘Z{J:LM))

NEWR(J}NLIM)=R(JILM4M)*R(J1NLpl)/R(JpLM11)*Q+(1--Q)*R(JINLrM)

60CONTINUE ‘

50 CONTINUE

RETURN

END

*********************************************************************

*ALL OF THE INITIALIZATION ROUTINES FOLLOW

**************************************************************

* THIS SUBROUTINE INITIALIZES THE PARAMETERS AND VARIABLES

********************************************************************

SUBROUTINE INIT(R,Z,DT)

IMPLICIT NONE

* PASSED VARIABLES

REAL R(0:31,1:50,8),Z(0:31,1:50),DT

* GLOBAL VARIABLES

REAL TMAX,TPRINT,PFLAG,TVIEW

REAL BXO,BYO,BZO,E0,R0,VXO,VYO,VZO

REAL G,QH,GM1,VP,OM,LZ,RMO,FV,ZETA2,ZETA1,ETAO,LX,LY,ERF

REAL F1D15,F16D15,0VER8PI,PI,FOURPI

REAL ALF,ALFX,ALFY,ALFZ,BETA,CFM,CSM,CT,CSURF,ME,MO

INTEGER LM,LM2,LM3,LM4,NC,NL,NR,NX,XLO,XHI,ZLO,ZHI,SPLIT

OCOMMON /NUMBER/LM,LM2,LM3,LM4,NC,NL,NR,NX,XLO,XHI,ZLO,ZHI,SPLIT

1 /ZEROES/BXO,BYO,BZO,E0,R0,VXO,VYO,VZO

2 /PARAM/G,QH,GM1,VP,OM,LZ,RMO,FV,ZETAZ,ZETA1,ETAO,LX,LY,ERF

3 /CONST/F1D15,F16D15,0VER8PI,PI,FOURPI

4 /MAGNET/ALF,ALFX,ALFY,ALFZ,BETA,CFM,CSM,CT,CSURF,ME,MO

* LOCAL VARIABLES

REAL T,RATIO,W,E1,R1,PMO,PM,S,QO,RADIUS

INTEGER J,L,MIDJ,MIDL,SPLIT2

CHARACTER*B INITFLAG

INITFLAG='Y TUBE'

WRITE(*,1001)INITFLAG

1001 FORMAT(‘l GMHDI INITIAL CONDITIONS= ',A8)

 

* SET PARAMETERS

CALL INITNUM

CALL INITZER

CALL INITPAR

CALL SETCON

IF((BXO+BYO+BZO.NE.0.0))CALL INITMAG

 

* SET UP INITIAL ATMOSPHERE

 

DO 10 J=0,NR
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10

R(J,L,1)=R0

R(J,L,2)=VXO

R(J,L,3)=VYO

R(J,L,4)=VZO

R(J,L,5)=EO

R(J,L,6)=BXO

R(J,L,7)=BYO

R(J,L,8)=BZO

CONTINUE

* SPECIAL INIT CONDITIONS

IF (INITFLAG.EQ.'Z TUBE')THEN

* Shock tube initial conditions

20

30

RATIO=0.02

PRINT *,‘SHOCK TUBE WITH INITIAL PRESSURE RATIO OF ',RATIO

SPLIT=NL*.5

J=NC

DO 30 J=XLO,XHI

DO 20 L=1,SPLIT

R(J,L,1)=R0*RATIO

R(J,L,5)=E0*RATIO

CONTINUE

R(J,SPLIT,1)=R0*.5*(RATIO+1)

R(J,SPLIT,5)=E0*.5*(RATIO+1)

CONTINUE

GOTO 999

ENDIF

(INITFLAG.EQ.'X FACE')THEN

* x magnetic interface

140

150

160

split=nl/2

PMO=(BXO*BXO+BYO*BYO+BZO*BZO)*OVERBPI

RMO=R0*(1+PMO/(GM1*EO))

DO 150 J=XLO,XHI

DO 140 L=1,SPLIT

R(J,L,6)=0.0

R(J,L,7)=0.0

CONTINUE

R(J,SPLIT,6)=0.5*(R(J,SPLIT-l,6)+R(J,SPLIT+1,6))

R(J,SPLIT,7)=O.5*(R(J,SPLIT-1,7)+R(J,SPLIT+1,7))

R(J,SPLIT,8)=0.5*(R(J,SPLIT-l,8)+R(J,SPLIT+1,8))

CONTINUE

DO 160 J=XLO,XHI

DO 160 L=1,SPLIT

PM;PMO-(R(J,L,6)**2+R(J,L,8)**2)*OVER8PI

R(J,L,1)=R0+PM/(GM1*E0)

R(J,L,5)=R(J,L,1)*E0

CONTINUE

GOTO 999

ENDIF

IF (INITFLAG.EQ.'Z FACE')THEN

* x magnetic interface

240

split=NC

PM=(BXO*BXO+BYO*BYO+BZO*BZO)*OVER8PI

RMO=RO*(1+PM/(GM1*E0))

DO 250 J=0,SPLIT

DO 240 L=1,NL

R(J,L,6)=0.0

R(J,L,7)=0.0

R(J,L,8)=0.0

R(J,L,5)=E0+R0*PM/GM1

R(J,L,1)=RMO

R(J,L,5)=E0*R(J,L,1)

CONTINUE
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250 CONTINUE

GOTO 999

ENDIF

IF (INITFLAG.EQ.'X SLAB')THEN

* x magnetic interface

split=NL

PMO=(BXO*BXO+BYO*BYO+BZO*BZO)*OVER8PI

RMO=RO*(1+PMO/(GM1*EO))

DO 350 J=XLO,XHI

DO 340 L=1,SPLIT

R(J,L,6)=0.0

R(J,L,7)=0.0

340 (CONTINUE

SPLIT2=NL-SPLIT+1

DO 345 L=SPLIT2,NL

R(J,L,6)=0.0

R(J,L,7)=0.0

345 CONTINUE

R(J,SPLIT,6)=0.5*(R(J,SPLIT-l,6)+R(J,SPLIT+1,6))

R(J,SPLITZ,6)=0.5*(R(J,SPLITZ-l,6)+R(J,SPLIT2+1,6))

350 CONTINUE

DO 360 J:XLO,XHI

DO 360 L=1,NL

PM:PMO-(R(J,L,6)**2+R(J,L,8)**2)*OVER8PI

R(J,L,1)=R0+PM/(GM1*E0)

R(J,L,5)=R(J,L,1)*E0

360 CONTINUE

* TO PRODUCE SHOCK IN X DIRECTION

DO 370 L=1,NL

DO 370 J=O,NC

R(J,L,2)=-VP*R(J,L,1)

R(NR-J,L,2)=VP*R(NR-J,L,1)

370 CONTINUE

GOTO 999

ENDIF

IF (INITFLAG.EQ.'Z SLAB')THEN

* x magnetic interface

split=NC—4

PMO=(BXO*BXO+BYO*BYO+BZO*BZO)*OVER8PI

RMO=R0*(1+PMO/(GM1*E0))

DO 450 L=1,NL

DO 440 J=O,SPLIT

R(J,L,8)=0.0

440 CONTINUE

SPLIT2=NX-SPLIT

DO 445 J=SPLIT2,NR

R(J,L,8)=0.0

445 CONTINUE

R(SPLIT2,L,8)=0.5*(R(SPLIT2-1,L,8)+R(SPLIT2+1,L,8))

R(SPLIT,L,8)=O.5*(R(SPLIT-1,L,8)+R(SPLIT+1,L,8))

450 CONTINUE

DO 460 J=XLO,XHI

DO 460 L=1,NL

PM=PMO-(R(J,L,6)**2+R(J,L,8)**2)*OVER8PI

R(J,L,1)=R0+PM/(GM1*E0)

R(J,L,5)=R(J,L,1)*E0

460 CONTINUE

GOTO 999

ENDIF

IF(INITFLAG.EQ.'TEST')THEN

* TO PRODUCE Z SHOCK

171



490

495

D0 495 J=XLO,XHI

DO 490 L=1,15

R(J,L,4)=VP*R(J,L,1)

DO 495 L=15,NL

R(J,L,4)=-VP*R(J,L,1)

GOTO 999

ENDIF

IF(INITFLAG.EQ.'Y TUBE')THEN

* A CYLINDRICAL FLUX TUBE EXTENDING IN THE Y DIRECTION

1000

S=0.50

RADIUS=4.0

MIDJ=NC

MIDL=NL*.4

PMO=(BXO*BXO+BYO*BYO+BZO*BZO)*OVER8PI

WRITE(*,1000)MIDJ,MIDL,RADIUS,S

FORMAT(' CENTER: ',I3,',',I3,' RADIUS= ',F6.3,

$ ' THICKNESS=', F7.4)

DO 570 L=1,NL

DO 560 J=XLO,XHI

*HYPERBOLIC TANGENT IN r

560

570

580

999

QO=SQRT(((JTMIDJ)*LX)**2+((L-MIDL)*LZ)**2)

R(J,L,7)=0.5*BYO*(1.0+TANH((RADIUS-QO)/S))

PRINT *,J,L,QO,R(J,L,7)

CONTINUE

CONTINUE

DO 580 J=XLO,XHI

DO 580 L=1,NL

PM:PMO-(R(J,L,6)**2+R(J,L,7)**2+R(J,L,8)**2)*OVER8PI

R(J,L,1)=R0+PM/(GM1*E0)

R(J,L, 5)=R(J,L,1) *EO

CONTINUE

GOTO 999

ENDIF

CONTINUE

CALL SETGRID(R,Z,DT)

CALL INITFFT(R)

RETURN

END

***fr************************‘k****************************

SUBROUTINE INITNUM

IMPLICIT NONE

* GLOBAL VARIABLES

INTEGER LM,LM2,LM3,LM4,NC,NL,NR,NX,XLO,XHI,ZLO,ZHI,SPLIT

INTEGER FXSYM(8)

OCOMMON /NUMBER/LM,LM2,LM3,LM4,NC,NL,NR,NX,XLO,XHI,ZLO,ZHI,SPLIT

1 /SYMS/FXSYM

NX=32

NC=(NX-2)/2

NR=NX-1

NL=50

PRINT *,‘NX= ',NX,’ = ',NL

LM=NL-1

LM2=NL-2

LM3=NL-3

LM4=NL-4

XLO=0

XHI=NR

ZLO=1

ZHI=NL

FXSYM(1)=-l
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FXSYM(2)=+1

FXSYM(3)=-1

FXSYM(4)=-1

FXSYM(S) =-1

FXSYM(6)=-l

FXSYM(7)=+1

FXSYM(8)=+1

RETURN

END

*************************************************************************

SUBROUTINE INITZER

IMPLICIT NONE

* GLOBAL VARIABLES

REAL BXO,BYO,BZO,EO,R0,VXO,VYO,VZO

COMMON /ZEROES/BXO,BYO,BZO,E0,R0,VXO,VYO,VZO

R0=1.0

VXO=0.0

VYO=0.0

VZO=0.0

E0=0.9

BXO=0.0

BYO=3.0

BZO=0.0

RETURN

END

*************************************************************************

SUBROUTINE INITPAR

IMPLICIT NONE

* GLOBAL VARIABLES

REAL G,QH,GM1,VP,OM,LZ,RMO,FV,ZETA2,ZETA1,ETAO,LX,LY,ERF

REAL on,BY0,Bz0,E0,Ro,vxo,VYo,vzo '

REAL TMAX,TPRINT,PFLAG,TVIEW

OCOMMON /PARAM/G,QH,GMl,VP,OM,LZ,RMO,FV,ZETAZ,ZETA1,ETAO,LX,LY,ERF

1 /ZEROES/BXO,BYO,BZO,E0,RO,VXO,VYO,VZO

2 /PRINTS/TMAX,TPRINT,PFLAG,TVIEW

GM1=2.0/3.0

G=0.0

QH=G*RO/(GM1*E0)

IF(G.EQ.0.)THEN

PRINT *,' No Gravity'

ELSE

PRINT *,'G= ',G,'SCALE HEIGHT= ',1./QH

ENDIF

C READ (*,*)VP

VP=0.1

OM=0.0

FV:1.0

WRITE(*,900)VP,OM,FV

900 FORMAT(1X,'VP= ',F10.S,' OM; ',F10.5,' FV: ',F10.5)

ZETA2=9*(.05+VP)

ZETAl=ZETA2/3

IF(ZETA1+ZETA2.EQ.0.)THEN

PRINT *, 'No Viscosity'

ELSE

WRITE(*,1000)ZETA1,ZETA2/3.

1000 FORMAT(1X,'Zeta1= ',F6.4,' Zeta2= ',F6.4)

ENDIF

ETAO=0.0
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IF(ETAO.EQ.0.)THEN

PRINT *,'Infinite Conductivity'

ELSE

PRINT *,'Eta=',ETAO

ENDIF

ERF=0.

LX=1.5

LY=1.0

LZ=1.0

PRINT *,'LX= ',LX,' LZ= ',LZ

TMAX=50.0

tprint=10.0

PFLAG=25.0

* REMEMBER TO CHANGE FLAG3D

PRINT *, ' = ' ,TMAX, ' TPRINT= ' ,TPRINT

C TVIEWfiTPRINT

C TVIEW=0.

TVIEW:30.

SETTING TVIEw=0.0 CAUSES THE INITIAL CONDITONS TO BE PRINTED

WHILE TVIEw=TPRINT CAUSES IT TO SKIP THE FIRST PRINT

*
*

RETURN

END

*************************************************************************

SUBROUTINE SETCON

IMPLICIT NONE

* GLOBAL VARIABLES

REAL F1D15,F16DlS,OVER8PI,PI,FOURPI

COMMON /CONST/F1D15,F16D15,0VER8PI,PI,FOURPI

PI=4.*ATAN(1.0)

FOURPI=4.*PI

OVER8PI=.125/PI

F16D15=16.D0/15.D0

F1D15=1.D0/15.D0

RETURN

END

*************************************************************************

SUBROUTINE INITMAG

IMPLICIT NONE

* GLOBAL VARIABLES

REAL ALF,ALFX,ALFY,ALFZ,BETA,CFM,CSM,CT,CSURF,ME,MO

REAL F1D15,F16D15,0VER8PI,PI,FOURPI

REAL BXO,BYO,BZO,E0,R0,VXO,VYO,VZO

REAL G,QH,GMl,VP,OM,LZ,RMO,FV,ZETAZ,ZETA1,ETAO,LX,LY,ERF

OCOMMON /MAGNET/ALF,ALFX,ALFY,ALFZ,BETA,CFM,CSM,CT,CSURF,ME,MO

1 /CONST/F1D15,F16D15,0VER8PI,PI,FOURPI

2 /ZEROES/BXO,BYO,BZO,E0,RO,VXO,VYO,VZO

3 /PARAM/G,QH,GM1,VP,OM,LZ,RMO,FV,ZETA2,ZETA1,ETAO,LX,LY,ERF

BETA=1E20

IF(BZO.NE.0..OR.BXO.NE.0..OR.BYO.NE.0.)

$ BETA=.6/((Bzo*Bzo+BYo*BYo+on*Bx0)*OVERBPI)

ALFZ=BZO/SQRT(FOURPI)

ALFY=BYO/SQRT(FOURPI)

ALFX=BXO/SQRT(FOURPI)

ALF=SQRT(ALFX*ALFX+ALFY*ALFY+ALFZ*ALFZ)

CSM=SQRT(.5*(l.+ALF*ALF-SQRT((1+ALF*ALF)**2-4.*ALFZ*ALFZ)))

CFM=SQRT(.5*(1.+ALF*ALF+SQRT((1+ALF*ALF)**2-4.*ALFZ*ALFZ)))

PRINT *,' BETA: ',BETA

PRINT *, ' ALFVEN VELOCITY (A,AX,AY,AZ)= ',ALF,ALFX,ALFY,ALFZ

174

 



PRINT *,' SLO MODE SPEED= ',CSM

PRINT *, ' FAST MODE SPEED= ',CFM

CSURF=SQRT((SQRT((ALF**2+2)**2+(GM1+1)**2*ALF**4+4*GM1*ALF**2)

$ -(ALF**2+2))/(0.5*(GM1+1)**2*ALF**2+2*GM1))

ME=SQRT(OM**2*(1/CSURF**2-1.0))

CT=SQRT(ALF**2/(1+ALF**2))

MO=OM/CSURF*SQRT((1-CSURF**2)*(ALF**2-CSURF**2)

$ /(1+ALF**2)/(CT**2-CSURF**2))

WRITE(*,1000)CSURF,MO,ME

1000 FORMAT(1X,'Csurf= ',f10.5,' Mo= ',F10.5,' Me= ',F10.5)

RETURN

END

*************************************************************************

* THIS ROUTINE INITIALIZES THE GRID AND CONVERTS

* R TO MOVING GRID

*************************************************************************

SUBROUTINE SETGRID(R,Z,DT)

IMPLICIT NONE

* PASSED VARIABLES

REAL T,R(O:3l,1:50,8),Z(0:31,1:50),DT

* GLOBAL VARIABLES

REAL G,QH,GM1,VP,OM,LZ,RMO,FV,ZETA2,ZETA1,ETAO,LX,LY,ERF

INTEGER LM,LM2,LM3,LM4,NC,NL,NR,NX,XLO,XHI,ZLO,ZHI,SPLIT

REAL TMAX,TPRINT,PFLAG,TVIEW

REAL F1D15,F16D15,0VER8PI,PI,FOURPI

REAL DZDX(0:31,1:50),DZDL(0:31,1:50),DZDT(0:31,1:50)

COMPLEX DX(0:31)

OCOMMON /NUMBER/LM,LM2,LM3,LM4,NC,NL,NR,NX,XLO,XHI,ZLO,ZHI,SPLIT

1 /PARAM/G,QH,GM1,VP,OM,LZ,RMO,FV,ZETA2,ZETA1,ETAO,LX,LY,ERF

2 /CONST/FlDlS,F16D15,0VER8PI,PI,FOURPI

3 /PRINTS/TMAX,TPRINT,PFLAG,TVIEW

4 /GRID/DZDX,DZDL,DZDT,DX

* LOCAL VARIABLES

COMPLEX II

INTEGER J,L,M

REAL A(0:31,1:50)

* CREATE DX FOR DERIVATIVES

10

30

20

50

60

II=(0.,1.)

IF(NX.GT.O)THEN

DO 10 J:0,NC

DX(J)=-2.*PI*II*J/(LX*NX)

CONTINUE

ENDIF

DT=0.01

DO 20 J=0,NR

DO 30 L=1,NL

Z(J,L)=LZ*(L-l)

CONTINUE

DO 50 J=O,NR

DO 50 L=1,NL

DZDT(J,L)=O.

CONTINUE

CALL DDL(Z,A)

60 J=0,NR

DO 60 L=1,NL

DZDL(J,L)=A(J,L)

CONTINUE
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MULTIPLY BY DZDL TO CHANGE GAS VARIABLES AS DESIRED

FOR DYNAMICAL ZONING

*
*

fi
4

 

DO 80 M=1,8

DO 80 J=0,NR

DO 80 L=1,NL

80 R(J,L,M)=R(J,L,M) *DZDL(J,L)

T=0.0

C CALL BC(R,Z,T)

RETURN

END

*************************************************************

* THIS SUBROUTINE SETS UP THE FFT PARAMETERS

*************************************************************

SUBROUTINE INITFFT(R)

IMPLICIT NONE

* PASSED VARIABLES

REAL R(0:31,1:50,8)

* GLOBAL VARIABLES

INTEGER LM,LM2,LM3,LM4,NC,NL,NR,NX,XLO,XHI,ZLO,ZHI,SPLIT

REAL WORK(0:31,1:50,8),TRIGS(451)

INTEGER IFAX(13),NPTS,INC,JUMP,NVEC

INTEGER SYMFLAG

COMMON /FFT/WORK, SYMFLAG

$ /NUMBER/LM, LMZ, LM3, LM4, NC, NL,NR, NX, XLO, XHI, ZLO, ZHI, SPLIT

SYMFLAG=1

PRINT *, 'SYMFLAG= ',SYMFLAG

IF ((NX.LT.4) .AND. (SYMFLAG.NE.3) )SYMFLAG=0

IF ((SYMFLAG.NE.O) .AND. (SYMFLAG.NE.3) )THEN

IF(NL.NE.(2*(NL/2)))THEN

PRINT *, 'NL must be even. '

STOP

ENDIF

ELSE

XHI=O

ENDIF

RETURN

END
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