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ABSTRACT

GENERALIZED METHOD OF MOMENTS: A NOVEL
DISCRETIZATION TECHNIQUE FOR INTEGRAL EQUATIONS

By

Naveen V. Nair

Integral equation formulations to solve electromagnetic scattering and radiation prob-

lems have existed for over a century. The method of moments (MoM) technique to

solve these integral equations has been in active use for over 40 years and has become

one of the cornerstones of electromagnetic analysis. It has been successfully employed

in a wide variety of problems ranging from scattering and antenna analysis to elec-

tromagnetic compatibility analysis to photonics. In MoM, the unknown quantity

(currents or fields) is represented using a set of basis functions. This representation,

together with Galerkin testing, results in a set of equations that may then be solved

to obtain the coefficients of expansion. The basis functions are typically constructed

on a tessellation of the geometry and its choice is critical to the accuracy of the fi-

nal solution. As a result, considerable energy has been expended in the design and

construction of optimal basis functions. The most common of these functions in use

today are the Rao-Wilton-Glisson (RWG) functions that have become the de-facto

standard and have also spawned a set of higher order complete and singular variants.

However, their near-ubiquitous popularity and success notwithstanding, they come

with certain important limitations.

The chief among these is the intimate marriage between the underlying triangu-

lation of the geometry and the basis function. While this coupling maintains con-

tinuity of the normal component of these functions across triangle boundaries and

makes them very easy to implement, this also implies an inherent restriction on the

kind of basis function spaces that can be employed. This thesis aims to address this

issue and provides a novel framework for the discretization of integral equations that



demonstrates several significant advantages.

In this work, we will describe a new umbrella framework for the discretization

of integral equations called the Generalized Method of Moments (GMM). We will

show that within this framework it is possible to choose from a very wide variety

of functions to form the basis space. While the choice of basis functions can be

completely arbitrary, the thesis will describe in detail one particular scheme that

utilizes a surface quasi-Helmholtz decomposition and provides a mechanism for the use

of any available knowledge of the physics of the problem. The thesis will describe the

theoretical framework required for the design of this scheme and develop error bounds

for the approximation of the unknown quantities using the proposed basis functions.

Following that, we will delve into the implementation of the GMM starting from

commonly available triangular tessellations, carefully identifying and solving several

key issues along the way.

The GMM, developed here, will be applied to a plethora of examples, validated

against analytical solutions and compared against the standard RWG discretizations.

It will further be shown that the use of the quasi-Helmholtz decomposition will result

in a scheme that is well conditioned over a wide range of frequencies. We will then

extend the GMM to both the analysis of scattering from dielectric bodies using the

PMCHWT and Müller operators and to the analysis of transient scattering from

conducting objects. Several results will be presented in either case that demonstrate

the advantage of the proposed method.
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x̂. The bistatic RCS (φ = 0) is compared for GMM using polynomial
basis functions against GMM using polynomials mixed with plane wave
basis functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.5 RCS comparison for scattering from a dielectric arrow (2.0λ0×3.0λ0×
λ0). Electric field is incident along −ẑ and polarized along x̂. The
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Chapter 1

Introduction

The preface to a collection of seminal papers on computational electromagnetics,

compiled in 1973, says “Computer electromagnetics is a relatively new and rapidly

growing field” [1]. Today, almost four decades later, computational electromagnetics

is a field that is still growing equally rapidly. The growth of computational electro-

magnetics has provided the community with simulation tools that solve a wide array

of problems ranging from electrical to electronic to computer to optical. For most of

the initial part of this growth, computational tools were largely used to complement,

and not supplant, experiments. The design of most electromagnetics structures such

as antennas, gratings etc. were reliant on the designers’ intuitive understanding of

the underlying physics. This, in turn, implied that non-intuitive designs were auto-

matically precluded. However in the last two decades, computational techniques have

grown by leaps and bounds in terms of speed and accuracy, and the simulation of

complicated, realistic structures is well within reach. Today, therefore, computational

techniques are a viable alternative to experiments in a wide variety of applications.

The idea of using computational techniques for the solution of partial differen-

tial equations historically comes from the field of fluid dynamics [2–5] where the most

problems, even for reasonably “canonical” geometries, are analytically intractable ow-
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ing to the inherent non linearity of the Navier Stokes equations. Maxwell’s equations,

by contrast, are linear and therefore, permit a wide class of analytical and asymptotic

approaches. However, the solution of realistic electromagntic problems on complex

geometries and the rapid advancements in computing power strongly motivates the

use of computational techniques. The spate of techniques that exist today in com-

putational electromagnetics generally fall into two categories: differential equation

based and integral equation based. In the next two sections, we will visit the salient

features of both these methods.

1.1 Differential Equation Methods

Differential equation based methods [6–8] have the advantage of a simpler formulation

since they directly discretize the PDE. As a result, they lend themselves easily to the-

oretical analysis viz-a-viz existence of solutions, stability and convergence and there is

a plethora of work that has been devoted to these studies [7,9–17]. Differential equa-

tion based techniques also yield matrix systems that have O(Ns) entries, where Ns is

the number of degrees of freedom. The direct discretization of the PDE also implies,

however, that boundary conditions need to be explicitly enforced in the numerical

scheme. Extensive work has been done on the incorporation of boundary conditions

including the radiation boundary condition [18] which has seen considerable math-

ematical work. Differential equation methods have seen an explosion in application

specific research with the development of hierarchical basis functions [8, 19], discon-

tinuous Galerkin methods [20] and vector generalized finite elements [21], and domain

decomposition methods [22] among others.
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1.2 Integral Equation Methods for Electromagnet-

ics

Integral equation methods [23–30] offer more advantages than differential equation

based methods for scattering problems primarily because the number of unknowns is

reduced significantly, for surface scattering problems. This does come at the expense

of a theoretically more involved formulation due to which these methods have eluded

complete theoretical analysis for a very long time. While several recent efforts have

been made to fully understand the theoretical nature of integral equations [31–37],

several questions about the existence, uniqueness and convergence of solutions remain

open. The second problem is the full matrix that needs to be solved as a result of

the numerical discretization of the integral equation, which yields a matrix system of

size 0(N2
s ); correspondingly leading to higher demands on computational complexity

O(N3
s ), and memory.

Recently however, the state of art of integral equation (IE) based methods has

received a shot in the arm with the development of fast methods [38–40] which reduced

the computational complexity and memory scaling from O(N2
s ) to O(Nslog

α(Ns)),

where 0 ≤ α ≤ 2. Steady advances in this technology (a woefully incomplete list being

Refs. [38,39,41–47]) has made the analysis of radiation and scattering from electrically

large structures possible; see [48] for a more comprehensive list of applications and

recent advances. In a similar manner, the development of the plane wave time domain

method (a time domain analogue of the fast multiple method) has enabled transient

analysis of electrically large and complex geometries [49–58]. This method reduces

the computational complexity from O(NtN
2
s ) to O(NtNs logα Ns), where Nt is the

number of temporal degrees of freedom.

While electromagnetic problems have been analysed using integral equations since

1897 when Poklington analysed wave propagation along wires, the most commonly
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used numerical technique for the “discretization” of integral equations is the method

of moments (MoM), proposed for electromagnetics by Harrington [24]. This technique

starts out by expanding the unknown quantity in a set of basis functions and testing

the resulting integral equation using a space of testing functions. While it is possible

to define “whole domain” basis functions for some canonical problems; most realistic

problems are solved using a simplicial tessellation of the geometry. The basis functions

are then defined local to each patch of this tessellation. It can be shown that the

acuraccy of the integral equation scheme relies heavily on definition of the basis

functions. As a result, there has been a significant amount of work that has gone into

the design of appropriate basis functions. In the rest of this chapter, we will focus on

the design of these basis functions as this is the main theme of the dissertation.

1.3 Basis Functions for Electromagnetic Integral

Equations

Historically, the design of basis functions, and indeed the solution of the integral

equation itself has been motivated by the design of the tessellation for the geome-

try. The first method utilized for the solution to scattering problems using integral

equations was to model the surface with a wire mesh, called a wire-grid model. This

method with its ease of implementation and ability to solve a rather large variety

of scattering problems, remained popular in the community for almost two decades

starting with [59]. However the method is inherently inaccurate in the model for the

computation of near field quantities and input impedance. Furthermore, the method

also suffered from ill conditioned matrices, numerical resonances [60] and other theo-

retical issues [61]. Surface patch modelling, developed as an alternative to wire-grid

modelling was seen to preform better on all these grounds and therefore, much of

the research gravitated towards developing basis functions for surface patch models.

4



The first set of surface patch models started with both planar [62] and non-planar

quadrilaterals [63] for the magnetic field integral equations (MFIE). This was followed

by planar rectangular patches for the electric field equations by [64]. Sinusoidal ba-

sis functions were then extended to surface patches from their wire-grid equivalents

for the electric field integral equation (EFIE) [65]. This was followed by what was

probably the first attempt to model surfaces using triangular patches [66]. While the

approach in [66] modeled square plates, the authors astutely pointed out the ability

of triangular patches to model arbitrary surfaces and their work was also one of the

first to model the entire integral equation using an equivalent of the Galerkin scheme

in use today. Planar triangular patches along with the MFIE and phase variation into

the definition of the basis function for the MFIE was first introduced by [67, 68]. In

what was the first work that directly implemented surface patch models for arbitrary

surfaces, the authors used non planar triangular patches to model the MFIE [69]. The

subsequent development of a special set of basis functions for triangles by Rao and

Glisson for arbitrary triangulations, analogous to roof-top functions for rectangular

patches [70] was a critical contribution to the research. The authors in [70] followed up

this work with what is arguably the most influential paper in the method of moments

research where they developed the Rao-Wilton-Glisson (RWG) functions to model

vector surface currents on non-planar triangulations of arbitrary surfaces [71]. These

basis functions also support an important property called divergence conformance.

This means that the divergence of the basis functions do not have any discontinuities

across internal patch boundaries. It must be mentioned that a curl conforming equiv-

alent of these basis functions were also independently introduced by Nedelec [72] et

al. and implemented by Bossavit et al. [11], Barton et al. [14] and others and the

divergence conforming functions were also independently introduced by Raviart and

Thomas [73].
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1.4 Higher order basis functions

While we will revisit the RWG functions in great detail elsewhere in this thesis, suffice

it to say that it has become the de-facto standard for the method of moment analy-

sis of electromagnetic integral equations. Several higher orders and singular variants

have been proposed in literature [74,75] and the RWG method has become the corner

stone for all frequency and time domain integral equation analysis over the past three

decades. However, while higher order basis functions have been in use for a few years,

the ability to include arbitrary functions in the basis space or to switch from one basis

function to another is still limited. This is a direct consequence of the historically

close relationship between the basis function and the underlying tessellation. Both

the original RWG and its higher order/singular variants have been designed to sat-

isfy continuity properties across internal boundaries of the tessellation. It is widely

accepted that any basis function designed to model continuous quantities, must sat-

isfy some constraints on continuity across patches. As a result, the incorporation of

different classes of functions in the basis space is only possible within a framework

that ensures continuity [76–78].

The ability to include arbitrary functions may be critical when some information is

known about the physics of the problem, and it is desirable to include this behavior in

the definition of the basis functions. For example, [79–81] incorporate Meixner series

based functions in the basis space to model singular currents near edges. However,

if the marriage with the tessellation could be removed, it would be possible to mix

arbitrary classes of basis functions within the same geometric region. Unfortunately,

all existing methods are specific to the underlying tessellation. Indeed, inclusion of

a completely arbitrary basis function space might not even be possible within the

framework of current basis function definitions.

Along these lines, a question has recently been posed whether the explicit enforce-
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ment of continuity should be required [82, 83]. Indeed [82] makes arguments that, in

two dimensions, the use of a moderately high order complete basis function set elimi-

nates the need for explicit enforcement of continuity conditions. Likewise, it has been

demonstrated in two dimensions, that the continuity constraints can be replaced by

a partition of unity function to maintain the h and p convergence [84].

The problems of enlarging functions spaces has been addressed in the finite element

community. Melenk et al. [76] developed the scalar GFEM as an umbrella framework

for a class of mesh-based and mesh-less methods that allowed for the inclusion of a

larger class of basis functions. He demonstrated that the global errors were bounded

by the local errors in approximation. The scheme was extended to vector finite

elements for electromagnetics by Lu et al. [77]. The GFEM uses a product of a

partition of unity function and a higher order approximation function to define basis

functions on overlapping domains. However, extension of this method to integral

equations is not trivial and will form the central focus of this thesis. In GFEM,

overlapping patches are defined by combining canonical patches. However, unlike in

the GFEM framework, the patches for surface integral equations need to conform to an

arbitrary scatterer surface and can not be expected to map on to canonical geometries.

This, in turn, makes the definition of vector basis functions on these non-canonical

surfaces challenging. The structure of these patches may lead to functions that are

piece-wise differentiable (for piecewise continuous patches). Therefore, computation

of matrix elements involves evaluating singular and hyper singular integrals that need

to be carefully handled. Furthermore, one needs to define vector basis functions on

these surfaces to represent currents. This poses additional challenges.

In this dissertation, we will describe the design and implementation of a new

umbrella framework for the discretization of integral equations called the Generalized

Method of Moments. We will show that within this framework it is possible to choose

from a very wide variety of functions to form the basis space. While the choice of
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basis functions can be completely arbitrary, the thesis will describe in detail one

particular scheme that utilizes a surface quasi-Helmholtz decomposition and provides

a mechanism for the use of any available knowledge of the physics of the problem. The

thesis will describe the theoretical framework required for the design of this scheme

and develop error bounds for the approximation of the unknown quantities using the

proposed basis functions. Following that, we will delve into the implementation of the

GMM starting from commonly available triangular tessellations, carefully identifying

and solving several key issues along the way.

The GMM will be applied to a plethora of examples, validated against analytical

solutions and compared against the standard RWG discretizations. It will further

be shown that the use of the proposed basis functions will result in a scheme that

is well conditioned over a wide range of frequencies. We will also provide a host

of examples showcasing the advantages of the GMM scheme, including its ability to

incorporate multiple types and orders of basis functions and its ability to handle non

conformal meshes. We will then extend the GMM to both the analysis of scattering

from dielectric bodies using the PMCHWT and Müller operators and to the analysis

of transient scattering from conducting objects. Several results will be presented in

both cases that demonstrate the advantage of the proposed method over traditional

RWG based discretization.

The remainder of this thesis will be organized as follows. Chapter 2 will lay out

the mathematical preliminaries required for the rest of this thesis. We will start from

the Maxwell’s equations and derive an integral formulation for the solution of elec-

tromagnetic scattering from surfaces. We will specialize the derivation to conducting

structures in preparation for Chapter 3 where we describe the method of moments

technique for the discretization of integral equations and describe the Rao Wilton

Glisson basis functions that are most commonly in use today. In Chapter 4 we will

describe the GMM in detail. This chapter will first describe the theoretical founda-
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tions of this work and then proceed to discuss its implementation details. It will also

present a variety of results to validate the technique and demonstrate its advantages.

The following chapter will discuss the extension of the GMM to the analysis of scat-

tering from dielectric bodies. The formulation will be discussed followed by specifics

of the implementation and results. Chapter 6 will describe the GMM applied to the

analysis of transient scattering. This chapter will start with the definition of the time

domain integral equations and proceed to describe the standard temporal discretiza-

tion techniques. This will be followed by the application details of the GMM to time

domain integral equations and a gamut of results describing the advantages of the

new technique. Finally Chapter 7 will provide a summary and describe possibilities

for future work.
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Chapter 2

Mathematical Preliminaries

In this chapter, we will present the mathematical preliminaries from which the rest of

this thesis will follow. The equations and derivations presented herein can be found

in a number of references including [29,85,86].

2.1 Maxwell’s Equations

To lay the foundation for the integral equations for electromagnetics, we start from

the Maxwell’s equations in their point form. Consider a linear, isotropic, homoge-

neous region in space having relative permittivity εr and relative permeability µr.

Electromagnetic fields E(r, t), H(r, t) and corresponding flux densities D(r, t) and

B(r, t) in this region satisfy Maxwell’s equations:

∇× E(r, t) = −∂B(r, t)

∂t
−M(r, t) (2.1a)

∇×H(r, t) =
∂D(r, t)

∂t
+ J (r, t) (2.1b)

∇ · D(r, t) = %(r, t) (2.1c)

∇ · B(r, t) = %m(r, t), (2.1d)
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where J (r, t) and %(r, t) are the electric current and charge density and M(r, t) and

%m(r, t) are their (fictitious) magnetic equivalents. Further, the current and charge

satisfy the continuity equations given by

∇ · J (r, t) +
∂%(r, t)

∂t
= 0 (2.2a)

∇ ·M(r, t) +
∂%m(r, t)

∂t
= 0 (2.2b)

In addition, the constitutive relations

D(r, t) = ε0εr(r, t) ∗t E(r, t) (2.3a)

and

B(r, t) = µ0µr(r, t) ∗t H(r, t), (2.3b)

where ∗t indicates a convolution in time defined as a(t) ∗t b(t) =
∞∫
0
dτ a(t − τ)b(τ),

relate the flux densities to the corresponding fields. The assumptions of linearity

allow for the application of the principle of superposition and thereby, allows for the

application of the Fourier transform. Equivalently, if we assume that all the time

dependent quantities are time harmonic of the form A(r, t)
.
= Re

[
A(r)ejωt

]
, where

ω is the frequency in radians per second (and A represents any of the vectors above),

we obtain the familiar time harmonic form of equations (2.1a)-(2.1d) given by

∇× E(r) = −jωµ0µr(r)H−M(r) (2.4a)

∇×H(r) = jωε0εr(r)E(r) + J(r) (2.4b)

ε0∇ · εr(r)E(r) = ρ(r) (2.4c)

µ0∇ · µr(r)H(r) = ρm(r), (2.4d)
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and the equations of continuity transform to

∇ · J(r) + jωρ(r) = 0 (2.5a)

and

∇ ·M(r) + jωρm(r) = 0. (2.5b)

For simplicity, we have used the same symbols for εr and µr in frequency and time

domain. At the interface between two media 1 and 2 with material parameters µ1(2)

and ε1(2), the fields satisfy the boundary conditions given by

n̂(r)× (E1(r)− E2(r)) = −Ms (2.6a)

n̂(r)× (H1(r)−H2(r)) = Js (2.6b)

n̂(r) · (ε1(r)E1(r)− ε2(r)E2(r)) = −ρs (2.6c)

and

n̂(r) · (µ1(r)H1(r)− µ2(r)H2(r)) = −ρm,s, (2.6d)

where n̂ is the normal to the material boundary from medium 2 to 1.

To derive the vector wave equations for electric field, we take a curl of (2.4a) and

substitute from (2.4b) to obtain

∇×
{

1

µ(r)
∇× E(r)

}
− ω2ε(r)E(r) = −jωJ(r)−∇×

{
1

µ(r)
M(r)

}
(2.7)

where µ(r)
.
= µ0µr(r) and ε(r)

.
= ε0εr(r). A similar equation can be derived for the

magnetic field:

∇×
{

1

ε(r)
∇×H(r)

}
− ω2µ(r)H(r) = −jωM(r) +∇×

{
1

ε(r)
J(r)

}
. (2.8)
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An important simplification is obtained upon assuming that the material is homoge-

neous, which results in

∇×∇× E(r)− k2(r)E(r) = −jωµJ(r)−∇×M(r) (2.9)

where k
.
= ω2εµ, and

∇×∇×H(r)− k2H(r) = −jωεM(r) +∇× J(r). (2.10)

2.2 Vector and Scalar Potentials

While it is possible to solve the above equations to obtain the fields for a given source

distribution, it is often easier to proceed by defining a set of auxiliary potentials.

To this end, first consider Maxwell’s equations in a medium free of magnetic sources

(ρm(r) = 0 and M(r) = 0). Since ∇ ·B(r) = 0 under this assumption, we can define

the magnetic vector potential, A(r) such that B(r) = ∇×A(r). Combining this with

(2.4a), we obtain the following equations

B(r) = ∇×A(r) (2.11)

∇× (E(r) + jωA(r)) = 0. (2.12)

Equation (2.12) implies that E(r + jωA(r can be written as a gradient of a scalar

Φe, called the electric scalar potential, as

E(r) + jωA(r) = −∇Φe(r). (2.13)
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To obtain a unique solution for the field from these potentials, we need an additional

constraint. One such constraint is the Lorentz gague, given by

∇ ·A + jωµεΦe = 0. (2.14)

Substituting the definition of A into (2.4b) and assuming, again, a homogeneous

medium, we obtain

1

µ
∇×∇×A(r) = jωε[−jωA(r)−∇Φe(r)] + J(r) (2.15a)

= jωε[−jωA(r) + 1
jωµε∇∇ ·A(r)] + J(r) (2.15b)

= ω2εA(r) + 1
µ∇∇ ·A(r) + J(r) (2.15c)

leading to

∇2A(r) + k2A(r) = −µJ(r). (2.15d)

Substitution of the Lorentz gauge directly into (2.13) will result in an equation for

Φe as

∇2Φe(r) + k2Φe(r) = −ρ(r)

ε
. (2.16)

Either by inspection, or by completing a similar derivation for a medium free of electric

sources (but containing magnetic sources) result in the definition of the electric vector

potential F(r) and the magnetic scalar potential Φm(r) and the following related

equations.

D(r) = −∇× F(r) (2.17)

H(r) = −jωεF(r)−∇Φm(r) (2.18)

∇2F(r) + k2F(r) = −εM(r) (2.19)

∇2Φm(r) + k2Φm(r) = −ρm(r)

µ
(2.20)
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By superposition, in a medium having both magnetic and electric sources, the field

equations in terms of the potentials can be written as

E(r) = −jωA(r)−∇Φe(r)− 1

ε
∇× F(r) (2.21)

H(r) =
1

µ
∇×A(r)− jωF(r)−∇Φm(r) (2.22)

In Cartesian coordinates, the splitting of the vector Laplacian into its components

motivates the analysis of (2.15d) and (2.16) (or equivalently, (2.19) and (2.20)) using

scalar wave equations of the form

(∇2 + k2)ψ(r) = f(r), (2.23)

where ψ denotes each component of the field and f denotes the corresponding source

component. As with any partial differential equation, obtaining a unique solution to

the above equation requires boundary conditions.

For scattering problems, which will form the bulk of the problems that we deal

with in this thesis, we solve the above equation subject to the Sommerfield radiation

boundary condition. For scalar waves this condition is given by

lim
|r|→∞

|r|
(
∂ψ(r)

∂|r|
+ jkψ(r)

)
= 0. (2.24)

In order to solve the above partial differential equation, one can define a Green’s

function for the differential equation and its boundary condition, given by

g(|r|) =
e−jk|r|

4π|r|
. (2.25)
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The solution to (2.23) is given by

ψ(r) = g(|r|) ∗s f(|r′|), (2.26)

where ∗s denotes the spatial convolution defined by a(r)∗s b(r)
.
=
∫
Ω
dr′ a(r−r′)b(r′).

Using the Green’s function, the electric and magnetic potentials can be now written

as

A(r) = µg(|r|) ∗s J(r), (2.27)

F(r) = εg(|r|) ∗s M(r), (2.28)

Φe(r) =
1

ε
g(|r|) ∗s ρe, (2.29)

Φm(r) =
1

µ
g(|r|) ∗s ρm. (2.30)

2.3 Integral Equation Representation of Solutions

The above preamble sets the stage for the derivation of the electric and magnetic field

integral equations for the fields. We follow the derivation of [29], which in turn is

derived from [87] and [88] but extended to non-smooth surfaces. We start with the

vector Green’s identity for any two vector functions P(r) and Q(r) with continuous

first and second derivatives.

∫
V
dr (Q(r) · ∇ ×∇×P(r)−P(r) · ∇ ×∇×Q(r))

=

∫
∂V

dr n̂(r) · (P(r)×∇×Q(r)−Q(r)×∇×P(r)) . (2.31)

Assume that the volume V is represented by D+ and its inner boundary by Ω and

the outer boundary by Ω0. Let the volume bounded by the inner boundary be D−.
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n̂s

Ω0

D+

n̂s
Ω

D−

Figure 2.1: General representation for a domain D+ = V with inner and outer
boundaries

Since Q(r) is arbitrary, we choose an arbitrary pilot vector â and define

Q(r)
.
= âg(R) = â

e−jkR

4πR
, (2.32)

where R
.
= |r− r′| and r and r′ are the observation and source locations respectively.

Further, choice of P(r)
.
= E(r) results, after some detailed vector manipulation [87]
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in

∫
D+

dr′
{
jωµJ(r′)g(R) + M(r′)×∇g(R)− ρ(r′)

ε
∇g

}
= (2.33)∫

Ω+Ω0
dr′

{
jωµ

[
n̂(r′)×H(r′)

]
g(R)− (n̂(r′)× E(r′))g(R)−

[
n̂(r′) · E(r′)

]
∇g(R)

}
(2.34)

For simplicity we will assume at this point that the observation location r does not

lie on Ω0 and that Ω is smooth. The case where these assumptions fail happen can

be dealt with explicitly and the reader is referred to [29] for an excellent description.

However, under this assumption, (2.34) reduces to

TE(r) =

∫
D+

dr′
{
jωµJ(r′)g(R) + M(r′)×∇′g(R)− ρ

ε
∇′g(R)

}
−
∫
−

Ω+Ω0
dr′

{
jωµ

[
n̂′(r′)×H(r′)

]
g(R)

−n̂′(r′)× E(r′)×∇′g(R)

−
[
n̂′(r′) · E(r′)

]
∇′g(R)

}
, (2.35)

where primed coordinates relate to the quantities (and operations) defined on the

source position r′ and
∫
− indicates that the integral is performed by excluding the

principal value contribution from the singularity r = r′. T is a parameter such that

T
.
= 2 if r ∈ Ω and T

.
= 1 otherwise. By observation (and applying the duality of
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Maxwell’s equations) a similar equation for H(r) can be written as

TH(r) =

∫
D+

dr′
{
−jωεM(r′)g(R) + J(r′)×∇′g(R) +

ρm
µ
∇′g(R)

}
+

∫
−

Ω+Ω0
dr′

{
jωε[n̂′(r′)× E(r′)]g(R)

+n̂′(r′)×H(r′)×∇′g(R)

+
[
n̂′(r′) ·H(r′)

]
∇′g(R)

}
. (2.36)

Further, allowing Ω0 to move out to ∞, it can be seen that the integral over Ω0

vanishes as a result of the radiation boundary conditions resulting in

TE(r) = Ei(r)+

∫
D+

dr′
{
jωµJ(r′)g(R) + M(r′)×∇′g(R)− ρ

ε
∇′g(R)

}
−
∫
−

Ω
dr′

{
jωµ[n̂′(r′)×H(r′)]g(R)

−n̂′(r′)× E(r′)×∇′g(R)

−[n̂′(r′) · E(r′)]∇′g(R)

}
, (2.37a)

and

TH(r) = Hi(r)+

∫
D+

dr′
{
−jωεM(r′)g(R) + J(r′)×∇′g(R) +

ρm
µ
∇′g(R)

}
+

∫
−

Ω
dr′

{
jωε[n̂′(r′)× E(r′)]g(R)

+n̂′(r′)×H(r′)×∇′g(R)

+[n̂′(r′) ·H(r′)]∇′g(R)

}
, (2.37b)

where we have denoted all the fields outside ∂V0 by Ei and Hi and will call them

the incident fields resulting from sources at or beyond infinity.

These equations are called, respectively, the electric and magnetic field integral

equations (EFIE,MFIE). We will now specialize these equations to the first case that
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will be studied in the next chapter. For the rest of the thesis beyond chapter 4, we

will revisit this formulation and specialize it to other cases as necessary.

2.4 EFIE and MFIE for PEC structures

Consider a perfect electrically conducting body occupying a domain D− ⊂ R3 in free

space. Let Ω denote the bounding surface of D− and let the outward pointing unit

vector normal at any point r on Ω be denoted by n̂(r). Assume that a time harmonic

field {Ei(r), Hi(r)} is incident on this body. This field induces currents on the surface

Ω, that radiate scattered fields {Es(r), Hs(r)}. Thus, the total electric and magnetic

fields in all of D+ = R3/D−, denoted by E(r) and H(r), can be decomposed into

the incident and scattered fields by

E(r) : R3 → C3 = Ei(r) + Es(r) (2.38a)

and

H(r) : R3 → C3 = Hi(r) + Hs(r) (2.38b)

n̂s

Ω

D−

{Ei(r), Hi(r)}

{Es(r), Hs(r)}

Figure 2.2: General description of a scattering problem
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Since the domain D− is a perfect electric conductor, further simplifications can

be effected to the equations (2.37a) and (2.37b) above. We can specialize equations

(2.6a) and (2.6d) and the equation of continuity to the case of H− = E− = 0 and

H+ = H , E+ = E where the subscript − and + denotes quantities in D− and D+,

respectively. We then, obtain for any r on the surface Ω,

n̂(r)× E(r) = 0, (2.39a)

n̂(r) ·H(r) = 0, (2.39b)

n̂(r)×H(r) = J(r), (2.39c)

n̂(r) · E(r) =
j

ωε
∇ · J(r), (2.39d)

where J is the surface current on Ω. Substituting into (2.37a) and (2.37b) and ap-

plying the boundary conditions on the tangential components of the fields, on the

surface (Ω) to arrive at

n̂(r)× (Ei(r) + Es(r)) = 0

∣∣∣∣
r∈Ω

(2.40a)

and

n̂(r)× (Hi(r) + Hs(r)) = 0

∣∣∣∣
r∈Ω

, (2.40b)

gives us

n̂(r)× Ei(r) = n̂(r)×
∫

Ω
dr′

(
jωµJ(r′)g(R) + [

j

ωε
∇′ · J(r′)]∇′g(R)

)
, (2.41a)

and

J(r) = T n̂(r)×Hi(r) + T

∫
−

Ω
dr′ J(r′)×∇′g(R). (2.41b)

Further simplification using vector identities and the observations that ∇′g(R) =
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−∇g(R) and n̂ · J = 0, along with setting T = 2 (since r ∈ Ω) will lead to

n̂(r)× Ei(r)) = n̂(r)×
∫

Ω
dr′

(
jωµg(R)J(r′) +

j

ωε
∇∇g(R) · J(r′)

)
, (2.42a)

and

n̂(r)×Hi(r) =
J(r)

2
− n̂(r)×

∫
−

Ω
dr′ J(r′)×∇g(R). (2.42b)

which are the surface EFIE and MFIE for PEC bodies.
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Chapter 3

Numerical Solution of Integral

Equations

The integral equations that were developed in chapter 2 are the so-called “surface”

integral equations since the field quantities in all space are expressed in terms of their

values (or the values of some equivalent quantities) on the surface of the scatterer.

These integral equations cannot be analytically solved except for canonical scatterer

geometries. This motivates the development of numerical solution techniques to these

equations.

3.1 Method of moments solution for integral equa-

tions

The method of moments (MoM), developed for electromagnetic problems in the semi-

nal work by Harrington [24] proposes an elegant technique for the solutions to integral

equations. Consider an equation of the form

E(r) = L ◦ {J(r)}, (3.1)
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on a domain Ω, where L represents either of the integral equations in (2.42a) or

(2.42b). The MoM solution to this equation is sought in two steps. The first is to

obtain a finite dimension approximation to the unknown J(r) using a set of basis

functions ji(r), namely

J(r) ≈ JN (r)
.
=

N∑
i=1

aiji(r). (3.2)

Using this, and recognizing the linearity of the integral operator, (3.1) can now be

re-written as

E(r) =
N∑
i=1

aiL ◦ {ji(r)}. (3.3)

To complete the process of discretization of this equation, the equation is enforced

using a set of testing functions {tj(r)}Nj=1 to obtain

∫
Ω
dr E(r)tj(r) =

∫
Ω
dr tj(r)

∑
i

aiL ◦ {ji(r)}. (3.4)

This procedure transforms the integral equation into an equivalent matrix equation

of the form

e = Z a (3.5a)

where the elements of the RHS vector e and “impedance matrix” Z are given by

ej =

∫
Ω
dr E(r)tj(r)

Zj,i =

∫
Ω
dr tj(r)L ◦ {ji(r)}

(3.5b)

and a = {a1, a2, · · · } is the vector of basis function coefficients. Significant work has

gone into the proof of the validity of the method of moments, especially in the special

case where the function spaces that {ji} and {tj} are identical (referred to as the
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Ritz-Galerkin procedure) [12, 13]. While the issue of the choice of functions spaces

for {ji} and {tj} are important, and indeed critical; we will defer that discussion to

a later stage. At this point, we will assume that Ω is smooth enough and therefore,

that {ji} and {tj} can be picked from the standard L2 spaces.

3.2 Approximation errors

The method of moments procedure described above introduces errors in the solution

of the integral equation. The primary source of error is the approximation of the

function. This approximation error, εa is defined as follows.

Definition 1.

εa
.
= J− JN = J−

N∑
i=1

aiji(r) (3.6)

Theorem 3.2.1. For any linear and bounded integral operator L, ∃ a constant C

such that

∣∣∣∣∫
Ω
dr tj(r)L ◦ {JN (r)} −

∫
Ω
dr tj(r)L ◦ {J(r)}

∣∣∣∣ ≤ Cεa (3.7)

Proof. By linearity of the integral operator, we have

∣∣∣∣∫
Ω
dr tj(r)L ◦ {JN (r)} −

∫
Ω
dr tj(r)L ◦ {J(r)}

∣∣∣∣ =

∣∣∣∣∫
Ω
dr tj(r)L ◦ {JN (r)− J(r)}

∣∣∣∣
(3.8)

Using Cauchy Schwartz inequality we have:

∣∣∣∣∫
Ω
dr tj(r)L ◦ {JN (r)− J(r)}

∣∣∣∣ = ‖tj(r)‖2‖L ◦ {JN (r)− J(r)}‖2. (3.9a)

Since tj(r) ∈ L2(Ω), we have

‖tj(r)‖2 ≤ C2, (3.9b)
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and finally by the boundedness of the integral operator, we have

‖L ◦ {JN (r)− J(r)}‖2 ≤ C1‖JN (r)− J(r)‖2 (3.9c)

Combining the two results, we have,

∣∣∣∣∫
Ω
dr tj(r)L ◦ {JN (r)− J(r)}

∣∣∣∣ ≤ C‖
(
JN (r)− J(r)

)
‖2 = Cεa. (3.9d)

The above result motivates the need for the accurate representation of the currents

in terms of the basis functions. In the MoM community, there have been a wide variety

of basis functions that were proposed for the solution of integral equations [59, 62,

63, 66, 69–71, 74]. While global basis functions can provide excellent approximation

qualities on canonical geometries; for most practical problems, the best that can

be hoped for, is a good local approximation to the currents. To this end, all basis

function schemes typically start out by subdividing the geometry using a simplicial

tessellation.

The ease and generality of triangular tessellations led to a basis function scheme

called the Rao-Wilton-Glisson (RWG) basis functions [71] that have become the de-

facto standard for the MoM solution to integral equations in electromagnetics. The

number of applications that use these functions today are innumerable. These func-

tions have since been extended to the analysis of dielectric objects [89] , layered

media [90,91], transient scattering [92] and many other applications. Though the ini-

tial work was specific to first order basis functions, since then both higher order [74]

and singular [81] variants that have been developed.

The RWG basis functions are designed on each interior edge of the underlying

mesh. Fig. 3.1 shows two triangles sharing a common edge. On this edge, a basis
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function is defined such that it vanishes everywhere on the surface except within the

two triangles attached to the edge. Points inside each triangle is designated by a

position vector ρ± associated with the free vertex T±n . The vector basis function on

these triangles can be defined as

fn(r) =



ln
2A+
n
ρ+
n r ∈ T+

n

ln
2A−n

ρ−n r ∈ T−n

0 otherwise

(3.10)

where ln is the length of the edge and A±n is the area of the triangle T±n . The basis

function fn satisfies the following useful properties.

1. The normal component of the basis function vanishes on all boundaries except

the common boundary

2. The normal component of the basis function on the common edge is continuous

and, for each interior basis function, cancels the corresponding contribution

from the second triangle supported by the edge.

3. The surface divergence of the basis function is given by

∇ ·s ·fn(r) =



ln
2A+
n

r ∈ T+
n

− ln
2A−n

r ∈ T−n

0 otherwise

(3.11)

The RWG basis functions have become the cornerstone for the method of moment

analysis over the past three decades. However, their intimate relationship with the

underlying tessellation, while providing some unique advantages, also has some im-
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ρ̄−

ρ̄+

2A+
n

ln

2A−n
ln

T− T+

Figure 3.1: A schematic showing the definition of the RWG basis functions on an
edge shared by two triangles
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portant drawbacks, the amelioration of which will be the central focus of this thesis.
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Chapter 4

The Generalized Method of

Moments

The standard RWG-MoM scheme as described in chapter 3 utilizes a set of basis

functions defined on a tessellation of the geometry. The RWG functions, as described

in [71] were designed for a triangular tessellation of the geometry and the function

spaces offer several advantages that are very useful in their implementation; (i) they

are divergence conforming, (ii) the normal component vanishes on the interior edges

of the geometry and (iii) the normal component is continuous across the edge. These

basis functions have become the cornerstone of most MoM methods for electromag-

netic integral equations. However, notwithstanding the significant advantages of both

triangular tessellations themselves and RWG functions, the intimate relationship be-

tween the basis function and tessellation comes with some significant disadvantages.

The chief problem with having a basis function specification closely tied to the

discretization of the geometry is that it severely limits the size of the function space

from which basis functions can be chosen. It is worth mention that more than two

decades after the introduction of the RWG functions there are very few higher order

variants in active use today [19]. In fact all higher order and singular variations of
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the RWG [74, 81] are constructed by multiplying suitably chosen polynomials with

first order RWG functions. This is a direct consequence of the construction of the

RWG functions and implies that the close relationship between tessellation and basis

functions is carried over to higher orders as well. Not only is the inclusion of arbitrary

functions in the basis space is almost completely precluded by the construction of a

basis function so tailored to the tessellation; even the use of mixed orders of basis

functions requires careful consideration to maintain order continuity across interior

boundaries [81]. This is especially critical in situations where some knowledge is

available about the local behavior of the current.

Consider for illustration purposes, scattering from a PEC cube. Fig. 4.1 shows

the distribution of currents when illuminated by an electric field, polarized along x̂

and incident along −ẑ. What is clear from the figure is that the currents are smooth

on each face of the cube and the variations are limited to the edges. This would

suggest the use of lower order basis functions or larger size patches on the faces of

the cube which would serve to both reduce computational complexity and increase

accuracy. However, this procedure of mixing basis functions is extremely non-trivial

in the case of RWG basis functions.

While the simple case of a cube serves for illustration, this need for mixing basis

functions becomes magnified in the case of realistic, multi-scale, problems. In existing

basis function frameworks for MoM, it is difficult to mix different orders and impos-

sible to mix different types of functions. Both these features deal with enlarging the

possible functions that can be used for approximating the currents; a feature that

would be beneficial in reducing the computational cost and increasing accuracy. For

instance, in a geometrically complex object that is electrically large, the current be-

haves differently in different regions. Near regions of geometric complexity, it may be

better to use either high density meshes with low order polynomials or vice-versa in

areas of low geometric complexity. Near an edge singularity, one needs to capture the
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Figure 4.1: Currents on a PEC cube showing the singular nature of the currents
near the edges and the smooth currents towards the center. For interpretation of the
references to color in this and all other figures, the reader is referred to the electronic
version of this dissertation.

singular behavior of the fields. In smooth regions, the phase of the current may be

better captured using plane-wave type functions. The ability to mix approximation

spaces become important when it is necessary to capture fields with high fidelity.

Next, given the complexity of creating a tessellation for complex objects, this task

is typically partitioned to multiple sub-domains. More often than not, this results

in meshes that are non-conformal. The ability to include these class of meshes with

minimal effort is valuable to the accurate analysis of scattering from such geometries

and is another feature missing in the state-of-art of the basis functions today.

Finally, in many realistic geometries, often the smallest geometrical feature dic-

tates the tessellation and thereby the basis function space that is used to discretize

the equation. This in turn leads to the “low-frequency problem” where the resulting

matrix equation is very badly conditioned. There have been several attempts to solve

this problem in literature where either special basis functions, called loop and star

functions, are constructed specifically for low frequency problems using linear combi-

nations of RWG functions [93, 94], or a different, well conditioned, integral equation

is derived using mathematical properties of the Calderon operator [31, 95]. However
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both the above approaches are very involved. The former approach of designing loop

and star functions require scaling the basis functions depending on the frequency and

will not work for truly multi-scale problems, where a large range of discretization

scales (ranging from 10−5λ to 10−1λ) are involved. Further the loop-star scheme

cannot be used for multiply connected domains [96]. The latter approach is applicable

to multi-scale problems but involve the careful construction of intermediary function

spaces to handle the Calderón projector [97]. .

These shortcomings of the traditional RWG based discretization technique is the

chief motivation for the development of the Generalized Method of Moments. In the

remainder of this chapter, we will describe a mechanism for the construction of an

“umbrella” framework that allows for the inclusion of a wide variety of basis functions.

This framework will allow us to decouple the discretization of the geometry from the

definition of the basis function. Starting from this decoupling we will describe a

scheme that allows the easy mixing of various classes of functions in the basis space.

The scheme described herein will allow for the trivial transition from one order of

basis function to another. We will further describe a choice of basis functions that

alleviates the ill-conditioning problem at low frequencies.

In order to remove the usually close knit relationship between the basis functions

and the tessellation of the geometry, the GMM methodology follows a sequence of

steps in the design of basis functions for the solution of (2.42a) and (2.42b). In the

rest of this chapter, we will discuss each of these steps in detail.

4.1 Partition of Unity functions and Overlapping

Patches

The GMM procedure starts by replacing the regular tessellation of the geometry

with a set of overlapping patches as shown in Fig. 4.2. These patches provide for a
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Ωk

Ωj

Ωi

Figure 4.2: Construction of GMM patches (Ωi) shown as shaded region.

mechanism of modelling the surface of the geometry but at the same time, via the

nature of their overlap, allow for the mixing of different types of functions.

Definition 2. Open Cover Let Ω ∈ R3 be an open set. Define an open cover of the

domain Ω, {Ωi} such that
⋃
iΩi = Ω that satisfies a point-wise overlap condition

∃M ∈ N 3 ∀r ∈ Ω card
{
i|r ∈ Ωi

}
≤M

Once these patches are defined, we require a scheme to provide for the smooth

transition from one basis function to the next. This is effected through the use of a

partition of unity function. Mathematically, we provide the following definition.

Definition 3. Partition of Unity

Let
{
ψi
}

be a Lipschitz partition of unity subordinate to the cover
{

Ωi
}

satisfying

the following conditions:

(i) supp
(
ψi
)
⊂ Ωi for all i;

(ii)
∑
i ψi ≡ 1 on Ω;

(iii) ||ψi||L∞(R3)
≤ C∞; and

(iv) ||∇ψi||L∞(R3)
≤ Cd =

C∇
diam(Ωi)

.
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Here C∞ and C∇ are two constants. Then
{
ψi
}

is called an
(
M,C∞, C∇

)
partition

of unity subordinate to
{

Ωi
}

. The partition of unity is said to be of degree k if

ψi ∈ Ck(Rd). The covering sets Ωi are called patches and they take the place of the

tessellation typically used in standard MoM.

Thus in the GMM framework, the standard tessellation is replaced by (i) a set of

overlapping patches that cover the domain Ω and (ii) a partition of unity subordinate

to this cover. Once this is achieved, we can define basis functions on these partitions

of unity and corresponding Galerkin testing yields a linear system of equations.

This concept of overlapping domains and corresponding PU functions is shown in

Fig. 4.3a. Generalization to higher dimensions can be effected using tensor products

as shown in Fig. 4.3b. Higher order extensions of these functions can be trivially

defined [98]. Thus, by definition, the PU functions and overlapping domains ensures

continuity across patch boundaries.

Once these patches and the partition of unity is defined, basis functions are defined

on these patches as a product of the partition of unity and an approximation function

in each patch. Due to the fact that the continuity is enforced using the partition of

unity, the approximation function can be chosen completely arbitrarily.

4.2 Definition of Basis Functions

Vector basis functions in each patch Ωi are defined as a product of the PU function

ψi(r) and an appropriate approximation function of order m, νmi (r). For a GMM

discretization, the approximation JN to the current J can then be written as

Definition 4. GMM Basis Functions and Approximation Spaces

J ≈ JN =
N∑
i=1

ji
.
=

N∑
i=1

∑
m

ai,mψiν
m
i . (4.1)
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(a) 1-D

Figure 4.3: Examples of linear PU functions in (a) one and (b) two dimensions
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(b) 2-D

Figure 4.3 Continued: Examples of linear PU functions in (a) one and (b) two di-
mensions

Then the local approximating space in each patch Ωi is given by

Vi = spanm
{
ψiν

m
i
}
. (4.2)

Note that within each patch Ωi, there is no restriction on the set of functions νmi .

This set can be any mix of functions such as simple higher order complete polynomials,

functions that best approximate the local physics, etc. The construction of a scalar

basis function using a product of a two-dimensional linear PU function (shown in Fig.

4.3b) and a tensor product of higher order polynomials (in Fig. 4.4a) is shown in Fig.

4.4. For ease of presentation, the summation over m will be implicitly assumed and

the corresponding indices will be dropped in the rest of this work.

With this definition of the basis function, we can now state an important theorem

about the approximation errors introduced by the GMM scheme.
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(a) ψi(x)

Figure 4.4: Construction of scalar GMM basis functions. (a) the GMM approximation
function and (b) the product of the approximation function and the partition of unity
function.
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(b) ji(x) = φi(x)ψi(x)

Figure 4.4 Continued: Construction of scalar GMM basis functions. (a) the GMM
approximation function and (b) the product of the approximation function and the
partition of unity function.
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Theorem 4.2.1. For the quantities, M , C∞ and C∇ as defined above, let J ∈

H1/2(Ω) [37] be a function to be approximated. Assume that on each patch Ωi ∩ Ω,

J can be approximated by a function ji ∈ Vi such that

max
i

{
‖J− ji‖L2(Ωi∩Ω)

}
≤ ε1

max
i

{
‖∇ · {J− ji}‖L2(Ωi∩Ω)

}
≤ ε2

max
i

{
‖∇ × {J− ji}‖L2(Ωi∩Ω)

}
≤ ε3

then the following holds for JN as defined in (4.1).

‖J− JN‖L2(Ω)
≤
√
MC∞ε1 (4.3)

‖∇ · (J− JN )‖
L2(Ω)

≤
√

2M
(

(Cdε1)2 + (C∞ε2)2
)1/2

(4.4)

‖∇ × (J− JN )‖
L2(Ω)

≤
√

2M
(

(Cdε1)2 + (C∞ε3)2
)1/2

(4.5)

Proof. The proof is presented here for (4.4) and (4.5) and that for (4.3) follows triv-

ially. Using the basis function definition in equation (4.1), it can be shown that

∇× {J− JN} = ∇× {J−
∑
i

ψiνi}

= ∇× {
∑
i

ψi(J− νi)}

=
∑
i

(∇× {ψi(J− νi)})

=
∑
i

(∇ψi × {J− νi}+ ψi∇× {J− νi}) (4.6)

where the summation over the order m is assumed. To prove (4.4), note that the

identity in equation (4.6) holds identically for the divergence operator as well. Given

40



equation (4.6) above, it can be easily verified that

‖∇ × {J− JN}‖
2
L2(Ω)

= ‖
∑
i

(∇ψi × {J− νi}

+ ψi∇× {J− νi})‖
2
L2(Ω)

≤ 2‖
∑
i

(
∇ψi × {J− νi}

)
‖2
L2(Ω)

+ 2‖
∑
i

(
ψi∇× {J− νi}

)
‖2
L2(Ω)

≤ 2‖
∑
i

(
∇ψi × {J− νi}

)
‖2
L2(Ωi∩Ω)

+ 2‖
∑
i

(
ψi∇× {J− νi}

)
‖2
L2(Ωi∩Ω)

≤ 2M2Cd
2‖{J− νi}‖

2
L2(Ωi∩Ω)

+ 2M2C2∞‖∇× {J− νi}‖
2
L2(Ωi∩Ω)

≤ 2M2
[
(Cdε1)2 + (C∞ε3)2

]
(4.7)

Theorem 4.2.1 essentially states that the total error in the approximation to the

current is bounded above by the local error in the approximation. This result is

powerful in the sense that it allows for a direct way to control the approximation

error, by careful choice of approximation function.

As is evident from the above discussion, the GMM provides a framework to include

different approximation functions without explicitly requiring continuity constraints.

The order of the PU function determines the order of continuity between patches [99].

Thus, the global approximation inherits the smoothness of the PU function. An ad-

vantage offered by the GMM framework is the freedom of choice in the approximation

function. By disassociating the definition of the approximation function from the un-

derlying tessellation, GMM allows for the mixing of multiple types and orders of
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functions. While the approximation function can be chosen practically arbitrarily, we

describe a mechanism to choose functions that are suited to approximating surface

vector functions.

4.3 Design of the Vector Approximating Function

To define appropriate approximation functions νmi for the vector bases, we start with

a surface Helmholtz decomposition of the current. For any vector field J(r) defined

on the surface Ω, there exists two scalars fields φ(r) and ζ(r) such that

J(r) = ∇sφ(r) +∇s × n̂(r)ζ(r). (4.8)

Assume that we have an approximation νmi to the local behavior of the current J(r)

on patch i.

Definition 5. Assume the knowledge of a local approximation, νi to J such that on

patch i

• maxi

{∥∥νi − J
∥∥
L2(Ω∪Ωi)

}
≤ ε1

• maxi

{∥∥∇s · νi −∇s · J∥∥L2(Ω∪Ωi)

}
≤ ε2

• maxi

{∥∥∇s × νi −∇s × J
∥∥
L2(Ω∪Ωi)

}
≤ ε3

Then, define two scalar functions φi(r) and ζi(r) such that

ν
m,c
i = ∇sφmi (r)

ν
m,d
i = n̂i(r)×∇sζmi (r)

(4.9)
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and consistent with (4.1) define the approximation to the current as

JN =
N∑
i=1

∑
q={c,d}

∑
m

ai,q,mψiν
m,q
i . (4.10)

Again, we allow for summation over order for each approximation function m.

Given the Definition 5 above and the definition of M , C∞ and Cd in Definitions

(2) and (3), the following result is a direct consequence of Theorem (4.2.1)

Result 4.3.1. For the local errors defined in (5) above the global errors in the ap-

proximation are bounded as follows

• ‖J− JN‖L2(Ω)
≤
√
MC∞ε1

• ‖∇ · (J− JN )‖
L2(Ω)

≤
√

2M
(

(Cdε1)2 + (C∞ε2)2
)1/2

• ‖∇ × (J− JN )‖
L2(Ω)

≤
√

2M
(

(Cdε1)2 + (C∞ε3)2
)1/2

Fig. 4.5a and 4.5b show the basis functions constructed using third order Legendre

polynomials for φmi (r) and ζmi (r). These are obtained by multiplying the curl-free

and divergence-free components of the approximation functions with the correspond-

ing PU function for the patch. Note, however, that the local approximation is only

quasi-curl and divergence free.

It is evident from the above exposition that there is no restriction on the functions

φmi and ζmi . Indeed, if the local asymptotic behavior is known it can be readily

incorporated into the approximation function space. Specifically, assuming that the

local behavior of current (j(r) ≈ νi(r)) supports at least one derivative, a possible

way to compute the functions φi(r) and ζi(r) is given by the following lemma.

Lemma 4.3.1. Consider a vector function νi(r) defined on Ωi. Let φi and ζi be
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(a) ψiν
m=3,q=c
i

Figure 4.5: Vector GMM basis functions based on the quasi-surface Helmhotlz de-
composition basis functions. (a) The quasi curl-free basis functions and (b) the quasi-
divergence free basis functions. Both functions are of order p = 3.
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(b) ψiν
m=3,q=d
i

Figure 4.5 Continued: Vector GMM basis functions based on the quasi-surface
Helmhotlz decomposition basis functions. (a) The quasi curl-free basis functions
and (b) the quasi-divergence free basis functions. Both functions are of order p = 3.
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solutions to

∇2φi(r) = ∇ · νi(r) (4.11)

∇2ζi(r) = n̂(r) · ∇ × νi(r) (4.12)

then

νi = ∇sφi(r) +∇s ×
[
n̂i(r)ζi(r)

]
. (4.13)

Scharstein [100] provides the proof of the above result along with some detailed

insight into the physical implications of equations (4.11) and (4.12). We have previ-

ously shown for a class of surfaces, that once appropriate approximation and basis

functions are defined the error propagated through the discretized integral operator

is bounded above by the local error in approximation [101]. This section provides a

mechanism to choose an approximation that minimizes this error using all available

knowledge of the local behavior of the function. In the next section, we will examine

the effect of this approximation error on propagation through the integral equation.

4.4 Error Bounds for the Discrete Integral Oper-

ators

For completeness, we state the following standard theorem from integral operator

theory. The proof can be obtained from [28].

Theorem 4.4.1. Any integral operator with a weakly singular kernel is compact and

therefore bounded.

From this theorem and the definition of the EFIE and MFIE operators in (2.42a)

and (2.42b), the following lemma immediately follows.

46



Lemma 4.4.2. The MFIE operator defined by

n̂(r)×Hs(r) = K ◦ {J(r)} .= 1

4π
n̂(r)×

∫
Ω
dr′∇g(R)× J(r′) (4.14)

where g(R) =
exp−jκR

R and R
.
= |r−r′|, is bounded. The EFIE operator, as defined

by

Es(r) = T ◦ {J(r)} .= −
jkη0
4π

∫
Ω
dr′g(R)J(r′)−

jη0
4πk

∫
Ω
dr′∇∇g(R) · J(r′) (4.15)

is not necessarily bounded.

In what follows, we will consider the MFIE and EFIE in sequence. The following

theorem holds directly for the MFIE.

Theorem 4.4.3. For any linear and bounded operator K : H
1/2
div

(Ω) → H
1/2
div

(Ω)

with kernel GM (r, r′) := n̂(r) × ∇g(R) and functions J,JN ∈ H
1/2
div

(Ω) and t ∈

H
1/2
div

(Ω) ∃ a constant CM such that

∣∣∣∣∫
Ω

(
K ◦ {JN (r′)}

)
ti(r)dr−

∫
Ω

(
K ◦ {J(r′)}

)
t(r)dr

∣∣∣∣ ≤ CM
∥∥J− JN

∥∥
2 (4.16)

Proof. The proof for the above follows from the Cauchy Schwartz inequality and the

observation that ‖u‖(1/2),div ≤ ‖u‖2 ∀u ∈ H
1/2
div

.

∣∣∣∣∫
Ω

(∫
Ω
GM (r, r′)× JN (r′)dr′

)
t(r)dr−

∫
Ω

(∫
Ω
GM (r, r′)× J(r′)dr′

)
t(r)dr

∣∣∣∣
=

∣∣∣∣∫
Ω

(∫
Ω
GM (r, r′)×

(
JN (r′)− J(r′)

)
dr′
)

t(r)dr

∣∣∣∣
(4.17)
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Applying Cauchy Schwartz inequality we obtain

∣∣∣∣∫
Ω

(∫
Ω
GM (r, r′)×

(
JN (r′)− J(r′)

)
dr′
)

t(r)dr

∣∣∣∣
≤
∥∥∥∥∫

Ω
GM (r, r′)×

(
JN (r′)− J(r′)

)
dr′
∥∥∥∥

2

∫
Ω
‖t(r)‖2 dr (4.18)

Since, t(r) ∈ H1/2
div

(Ω) we have that

∫
Ω
‖t(r)‖2 dx ≤ C <∞ (4.19)

Further we have from the definition of boundedness, that

∥∥∥∥∫
Ω
GM (r, r′)×

(
JN (r′)− J(r′)

)
dr′
∥∥∥∥

2
≤ C1

∥∥∥(JN (r′)− J(r′)
)∥∥∥

2
(4.20)

Combining equations (4.19) and (4.20) we have that

∣∣∣∣∫
Ω

(∫
Ω
K ◦

{
Jn(r′)− J(r′)

)
dr′
}

t(r)dr

∣∣∣∣ ≤ CM
∥∥(JN − J

)∥∥
2 (4.21)

where CM := CC1.

These theorems demonstrate that, in each patch, the error in approximation

bounds the error propagated through the integral operator. Note that the theorems

hold only for compact operators. It is not directly applicable to unbounded operators

such as the EFIE. However, this can be overcome by casting the EFIE solution in a

Galerkin testing framework. First, the bilinear form of the EFIE as follows

Definition 6. For the EFIE operator, T given by

T ◦ {J(r)} .= −
jkη0
4π

∫
Ω
dr′g(R)J(r′) +

jη0
4πk

∫
Ω
dr′∇g(R)∇′s · J(r′)
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Let BE be the bilinear form defined by

BE(J, t) =< t, T ◦ {J} > (4.22)

Assuming that the domain Ω is smooth enough to permit the local basis functions

to support at least one derivative, it can be shown that

BE(J, t) =

∫
Ω
T ◦ {J(r)} · t(r)d(r)

= −
jkη0
4π

∫
Ω
dr t(r) ·

∫
Ω
dr′g(R)J(r′) +

jη0
4πk

∫
Ω
dr t(r) ·

∫
Ω
dr′∇g(R)∇′s · J(r′)

= −
jkη0
4π

∫
Ω

∫
Ω

t(r) · g(R)J(r′)dr′dr−
jη0
4πk

∫
Ω

∫
Ω
∇ · t(r)g(R)∇s · J(r′)dr′dr

(4.23)

Definition 7. The above equations give the following splitting of the Galerkin tested

EFIE operator

< t, T ◦ {J} > .
= < t, Tc ◦ {J} > + < tc, Tq ◦ {Jc} >
.
= −

ikη0
4π

< t, Gk(r, r′) ◦ {J} > −
iη0
4πk

< ∇ · t, Gk(r, r′) ◦ ∇ · J >(4.24)

It can be shown, using Theorem 4.4.1, that the operators Tc(r, r′) and Tq(r, r′)

with kernel Gk(r, r′) .
= g(R) are compact and therefore, bounded. Therefore, Theo-

rem 4.4.3 is directly applicable to the first term in equation (4.24). Further a scalar

specialization of 4.4.3 can be applied to the second term in equation (4.24)

Theorem 4.4.4. For any linear and bounded operator Tq : H1/2(Ω) → H1/2(Ω)

with kernel g(R) and (scalar) functions J, JN ∈ H
1/2(Ω) and t ∈ H1/2(Ω) ∃ a
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constant CE such that

∣∣∣∣∫
Ω

(
Tq ◦ {JN (r′)}

)
ti(r)dr−

∫
Ω

(
Tq ◦ {J(r′)}

)
t(r)dr

∣∣∣∣ ≤ CE
∥∥j− jN

∥∥
2 (4.25)

Combining Theorems 4.2.1 and 4.4.3 (or equivalently, 4.4.4), we have the following

results for both the EFIE and the MFIE.

Result 4.4.1. For local approximating functions JN that are at least C1 (locally),

the approximation error on each patch bounds the error propagated through the inte-

gral equation. If we assume the existence of a convergent inverse for the discretized

equation, then the error in the solution will also be bounded by this error.

The local continuity assumption used in the result above is not restrictive since

all it implies is that the domain needs to be partitioned such that each patch does

not contain local singularities. In practice, this can be easily achieved by matching

patch boundaries with any geometric singularities. One can then define functions

JN ∈ H
1/2
div

as a set of functions that are piece-wise C1. Thus, finally the above

result along with the observation that if J,JN ∈ H
1/2
div

, then
∥∥J− JN

∥∥
2 ≤ C < ∞

makes it possible to obtain L2 bounded errors by choosing basis functions from the

trace space. The above theorems provide the foundation for the development of the

GMM and can be extended to any space of functions as long as the partition of unity

framework is maintained. This freedom of choice is the inherent advantage of the

GMM scheme as opposed to the standard MoM scheme where the basis functions are

tightly coupled to the discretization. For example, it can be shown that the scalar

higher order polynomial functions can be easily cast in this framework and error

bounds can be derived.
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4.5 Benefits of the GMM framework

The GMM method described in the previous subsections comprises of two compo-

nents; (i) defining overlapping domains and partitions of unity on these domains

and (ii) defining approximations functions in the partitions of unity. The definition

of basis functions provides a mathematically rigorous framework for designing local

approximation spaces. From an intuitive perspective, we have always used the PU

functions whenever the basis function space has comprised of pulses or hat func-

tions for the analysis of scalar problems. Likewise, basis functions that are commonly

used in the computational electromagnetics community (eg. Rao-Wilton-Glisson [71],

Buffa-Christiansen [102], characteristic basis [103] or Graglia-Wilton-Peterson [74])

can all be interpreted as a product of a partition of unity function and higher order

approximating functions (with the correct definition of the PU domain). In most

cases, the PU function is implicitly assumed and is typically a pulse function. When

it is a pulse function, one has to worry about means to achieve conformal behavior

between neighboring elements. As in GFEM [99], the use of basis functions that

explicitly comprise of a product of an overlapping partition of unity and approximat-

ing functions removes the need for such boundary treatment between different sub

domains, and dramatically increases the number of functions that can be used for ap-

proximation. For instance, one can use a third order approximation in a domain next

to one where a first order is being used, without explicitly enforcing any condition.

Or for that matter, mixture of polynomial and non-polynomial basis functions. Use

of the these definitions of basis will be demonstrated in the Section 4.9. In the next

Section, we present specifics of the implementation of the general GMM scheme for

arbitrary 3D scatterers.
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Ωk

Ωj

Ωi

Figure 4.6: Construction of GMM patches (Ωi) shown as shaded region. The patches
are constructed as a set of triangles joined at a node.

4.6 Implementation of the GMM

The first need is to define the domain of support of each of these basis functions. This

is done by partitioning the domain Ω into subdomains/patches Ωi that overlap and

completely cover the domain. This construction of overlapping patches is illustrated in

Fig. 4.6. Formally, ∪
Npat
i Ωi = Ω, where Npat is the number of patches/subdomains.

Note, that at this point, a patch can be defined either within a meshless or a meshed

framework. The key requirement is that one have a surface description for each patch

Ωi. At this time, for a wide range of problems such a description is most easily

available as a surface tessellation. As a result, the rest of the development will focus

on developing the GMM scheme and basis functions within a meshed framework.

Parenthetically, we do observe that extending this to a meshless framework is not

very difficult. As, objects are typically represented using a triangulation of their

surfaces, that shall be our starting point.

4.7 Construction of Overlapping Patches

To define a set of overlapping patches starting from a triangular mesh, we designate

each node as the “center” of a patch, defined as the union of all triangles that share

52



the node.

Definition 8. Overlapping Patches

Consider a set of nodes NL =
∑L
i=1{Ni} and a corresponding triangulation ∆N =∑N

n=1 {∆n} of a domain Ω. Let {Nnj=1−3} be the set of nodes associated with

triangle ∆n. For each node Ni, denote a corresponding patch Ωi defined by a set of

triangles; Ωi = {∆n : ∆n ∈ ∆N,Ni ∈ Nnj}. The GMM covering is defined as the

set of these (overlapping) patches {Ωi}. The overlap between any two patches Ωp and

Ωq is another set of triangles ∆p,q
.
= Ωp ∩ Ωq

This definition of GMM patches from a union of polygonal shapes can also be

seamlessly translated to higher order geometries defined on triangulations described

in [74]. In the remainder of this section, ∆n will be used to represent both flat

and equivalent higher order triangulations of the surface. The above patch design

also allows for integration on the triangles described by the original tessellations and

therefore, allows the use of available integration rules.

The next step is a consistent definition for basis functions on these patches. Note

that these patches are no longer coplanar and do not correspond to any canonical

geometry (unlike triangles, quads, etc.). This necessitates the careful definition of

functions on Ωi so as to maintain continuity. To this end, we first state the following

lemma for continuous portions of the surface.

Lemma 4.7.1. Consider a patch Ωi. Let the surface Ω ∩ Ωi be at least C1(R3)

smooth. Let the location of Ni be denoted by ri. Let the surface normal at any point

r ⊂ {Ω ∩ Ωi} be denoted by n̂(r)(consistent with the previous definitions). Then

by the definition of continuous surfaces, we have ∀ δi ≥ 0 ∃ Bi,ε ∈ R3 such that

∀ r ∈ {Bi,ε ∩ Ωi}
∥∥n(r)− n(ri)

∥∥
2 ≤ δi where Bi,ε is a ball of radius ε centered at

Ni

With this preamble, we can now define a patch normal and projection plane for
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each patch.

Definition 9. Patch Normal and Projection Plane

Consider a patch Ωi composed of m triangles Ωi =
⋃m
k=1{∆k}. Define an average

normal for the patch, n̂i as n̂i,ε = 1/m
∑m
k=1 n̂(rk), where rm are points chosen on

each of the triangles that make the patch such that rm ⊂ Ωi∩∆k and
∥∥rk − ri

∥∥
2 ≤ ε.

The projection plane for patch Ωi, Pi is defined as the plane passing through ri and

normal to n̂i.

For purposes of illustration, Fig. 4.7 shows the construction of one patch and

its corresponding projection plane.Observe that the patch normal n̂i coincides with

the true surface normal at ri if the triangulations are smooth (and necessarily higher

order), if not, the differences between the patch normal n̂i and the normals of the

individual member triangles provide an intuitive measure of the “sharp-ness” of the

surface at ri. This information can be used as a criteria for the design of approxi-

mation functions. If the surface is discontinuous, it is partitioned into areas that are

piecewise continuous and then the above procedure is applied to each portion.

Once the normal and the projection planes are defined for each patch, the basis

functions are defined on the projection of the entire patch on the plane using a local

coordinate system on the projection plane.

Definition 10. Local Coordinate System

Let Γi be the projection of a patch Ωi on Pi. For the rest of the discussion, primed

coordinates denote the projection of the corresponding global coordinate on Pi (note

that, by construction, ri = r′i). Two local projection vectors are generated for each

patch ûp,i(r
′) and v̂p,i(r

′) as ûp
.
= up/

∥∥up∥∥2 where up = r′−r′i such that
∥∥up∥∥2 ≥∥∥∥r′ − r′i

∥∥∥
2
∀r ∈ Γi and v̂p = n̂i × ûp.

With this preamble, it is now possible to define a mapping from regular x, y, z

coordinate space into the u, v coordinate space defined on the projection Γi as follows:
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(a) Definition of GMM Patch Ωi

n̂

(b) Construction of Projection Plane
Γi

Figure 4.7: Construction of (a) GMM Patches (Ωi) shown as shaded region and (b)
Projection Planes (Γi) from standard triangulations. The patches are constructed as
a set of triangles joined at a node.
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• ∀r ∈ Ωi ∃ r′ ∈ Γi,

• define u = r′ · ûp and v = r′ · v̂p, and

• then the local coordinates u and v are given by uûp and vv̂p.

Approximation and basis functions are now constructed by defining functions on

the corresponding planar coordinates. One consequence of the choice of the coordinate

system is that the projection coordinates span an area that contains, but is not limited

to, Γi. This is possible as functions defined on these patches are eventually multiplied

by a PU function that goes to zero at patch boundaries.

Given the definitions above, it is important to ensure that functions that are

continuous in the projection domain are so in the real space as well. The following

theorem (stated without proof) prescribes the necessary conditions.

Theorem 4.7.2. Given a surface description Ωi(r) that is at least C1(R3) smooth,

consider any function F (u(r), v(r)) defined on the projection Γi. Then, if F ∈

Cm(Γi) then F ∈ Cm(Ωi) for any m.

The proof follows from the definition of partial derivatives. While a corresponding

result does not hold for piecewise continuous triangulations, we have observed, in

practice, that it is possible to construct functions that are continuous across the

interior edges of the patch. This fact is shown in Fig. 4.8 where a set of polynomial

functions are defined on a flat projection plane, in Fig 4.8a, and then transformed to

a non-flat, piecewise linear, triangulation in Fig. 4.8b. It is apparent from the figures

that there are no discontinuities introduced due to the projection.

4.8 Computation of Matrix Elements

Next, the discrete versions of the EFIE and the MFIE are constructed using Galerkin

testing. From the definition of the discretized EFIE and the MFIE in the previous
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(a)

(b)

Figure 4.8: Basis functions defined on (a) the projection plane and (b) the true
geometry (surface of a tessellated sphere). The figure (b) shows that there is no
discontinuities introduced by the projection.
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chapter, it can be verified that the computation of the matrix elements involves the

evaluation of the following three types of integrals; viz.

I1 =

∫
Ωi

drf̃ni (r) ·
∫

Ωj
dr′gq(R)fkj (r′) (4.26a)

I2 =

∫
Ωi

drf̃ni (r) ·
∫

Ωj
dr′∇gq(R)× fkj (r′) (4.26b)

I3 =

∫
Ωi

drf̃ni (r) ·
∫

Ωj
dr′∇∇gq(R) · fkj (r′) (4.26c)

where f̃ni (br) can stand for either fni (r) or n̂(r)× fni (r). There is extensive literature

on evaluating both the singular and hypersingular integral that occur in Eqns. (4.26a)

and (4.26b) [104–106]. The methods that we have used follow those presented in these

papers. In what follows, we shall deal with terms of the form (4.26c). The evaluation

of (4.26c) is more involved. Assume that Ωi(j) is the union of a set of triangles

denoted by ∪∆i(j). Then (4.26c) can be rewritten in either of the following two

forms:

∫
Ωi

dr t(r) ·
∫

Ωj
dr′ ∇∇gq(R) · j(r′) =∫

∪∆i
dr t(r) ·

∫
∪∆j

dr′ ∇∇gq(R) · j(r′)

= −
∫
∪∆i

dr ∇s · t(r)

∫
∪∆j

dr′ ∇sgq(R) · j(r′)

+

∫
∪∂∆i

dr m̂i(r) · t(r)

∫
∪∆j

dr′ ∇sgq(R) · j(r′) (4.27a)
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or

= −
∫
∪∆i

dr ∇s · t(r)

∫
∪∆j

dr′ gq(R)∇′s · j(r′)

+

∫
∪∂∆i

dr m̂i(r) · t(r)

∫
∪∆j

dr′ gq(R)∇′s · j(r′) (4.27b)

−
∫
∪∂∆i

dr m̂i(r) · t(r)

∫
∪∂′∆j

dr′ gq(R)m̂j(r′) · j(r′)

+

∫
∪∆i

dr ∇s · t(r)

∫
∪∂′∆j

dr′ gq(R)m̂j(r′) · j(r′)

where m̂i and m̂j are the unit normals to each boundary ∂∆i and ∂′∆j of ∆i and

∆j , respectively. The divergence operator (∇(′)) can be reduced to the corresponding

surface divergence operator (∇(′)
s ) because j(r)(t(r)) are surface functions. In typical

RWG settings, the normals m̂i = −m̂j and so, very conveniently, the last three terms

in (4.27b) drop out. This leaves an integrable singularity using the above mentioned

techniques for the magnetic vector potential.

However, in GMM the set of triangles forming a patch are not co-planar. This

means that the normal mi(j) is not continuous within a patch and so, we need to

compute all the terms on the right-hand side of the expansion in (4.27b). On the

outer boundary of the patch though, the integral will vanish as a result of the PU

function and thus only interior triangle edges need to be considered. (4.27a) involves

integrals that are an order of singularity higher than (4.27b). However, as r → r′

(gq is singular), (4.27b) can no longer be used since (1/R) is not integrable on a line

when r → r′. As a result, in the GMM implementation, this is handled depending

on the location of r and r′.
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r and r′ lie on the same triangle

In this case, we employ a singularity subtraction technique which takes into account

the measure provided by both the source and testing integral, in order to mollify the

second order singularity. This technique was first proposed by [107] and computes

the double integrals in (4.27a) together rather than first computing the source and

then the testing integral as is usually done in practice.

r and r′ lie on triangles that share an edge

In this case, the integral is not singular but the 1/R3 term needs to be handled

carefully. This case is evaluated using (4.27a). The first term in the expansion can

be computed for near singular (but non-singular) terms using a slight modification of

the method described in [104] to integrate terms of the type 1
R2 .

r and r′ are not in neighbouring triangles but are close (|r− r′| ≤ 0.15λ)

Here we use (4.27b) to evaluate the integral since the line-line singularity is no longer

a concern.

r and r′ are sufficiently separated from each other

In this case, the (now) regular integral can be evaluated using either of the two

expressions in (4.27a) or (4.27b), using standard numerical quadrature.

A transformation for the near singular integration of ∇g(R)j(r′) for r→ r′

Consider the evaluation of the following integral for r→ r′ but r 6= r′:

∫ ′
∆

dr′∇g(R)j(r′) (4.28)
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We modify the steps outlined in [104] for the evaluation of

∫ ′
∆

dr′g(R)j(r′) (4.29)

In [104], the authors split the triangle into three parts around the projection of r on

to the tangent plane and use a geometric transformation to transform the integral to

the following form

3∑
i=1

∫ hi

0
dyi

∫
xi(yi)

dxi j(r′(xi, yi))e
ikR 1√

(x2
i + y2

i + z2)
(4.30)

where z is the height of the r above the equivalent tangent plane of the triangle ∆′,

hi and xi are the height and the base length of each sub triangle. [104] further uses

an sinh−1 transformation to transfer the singularity of 1

√
x2 + y2 + z2 from the

integrand to the limits of the integral. It can be shown that a similar transfer of singu-

larity can be achieved for 1 |r− r′|2 = 1 x2
i + y2

i + z2 using a tan−1 transformation.

The rest of the steps remain identical.

4.8.1 r and r′ are not in neighbouring triangles but are close

(|r− r′| ≤ 0.15λ)

Here we use (4.27b) to evaluate the integral due to the (now) better behaved nature

of the singularity.

4.8.2 r and r′ are sufficiently separated from each other

In this case, the singularity is no longer a concern and the integral can be evaluated

using either of the two expressions above.
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4.8.3 Integration with acceleration techniques

At this point, we simply note that once the basis functions are defined and the

appropriate integration rules chosen, integration with the wideband fast multipole

method (FMM) is straightforward [38,48,108].

4.9 Numerical Experiments

Next, via a series of numerical experiments, we will demonstrate that the GMM

discretization framework proposed here (i) provides excellent approximation of the

unknown currents and its derivatives and (ii) accurate results for scattering from

several topologically different objects, (iii) demonstrate the viability of this method

to accurately analyze scattering from objects using a mixture of basis functions, (iv)

demonstrate analysis from objects meshed with non-conformal meshes and (v) low

frequency stability the choice of basis. Where necessary, results have been obtained

using a GMM code augmented by FMM.

4.10 Quality of Approximation

The first goal is to test whether multiple functions can be seamlessly mixed together

within the GMM approximation space. This will be verified by a series of numerical

experiments described next. It is assumed that the current in a domain Ω satisfies

some prescribed functional dependence, say J(r) = f(r). The coefficients of these

basis functions

JN (r) =
∑
i

aiji(r) =
N∑
i=1

∑
q=d,c

∑
m

ai,mψiν
m
i,q(r) (4.31)
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are computed by solving a discrete system

¯̄Zā = b̄ (4.32)

where Zi,j =< ji, jj > and bi =< ji,J > The approximation error defined as

ε(r) =

∣∣∣f(r)−
∑N
i=1 aiji

∣∣∣
|f(r)|

(4.33)

is computed by oversampling the currents on the geometry. Similar errors are com-

puted for both the curl and the divergence of the current using the coefficients {ai}.

For each test described next, the approximation was computed on a square domain

of side 1.0m using overlapping patches, each of size h = 0.2m. Fig. 4.9a-4.9b show

the convergence of the maximum approximation error with approximation order p for

each of the tests.

4.10.1 Approximation of Polynomial Functions

It was earlier argued that the GMM scheme permits the mixing basis functions of

various types. For this to be effective, it is important that the higher order functions

do not corrupt the approximation of smooth functions. Fig. 4.9a shows the conver-

gence of the approximation error for two functions (i) a constant f(r) = x̂ and (ii) a

polynomial f(r) = x̂y3 + ŷx3. As expected, the error is consistently less than 10−12

for the constant function. Similarly, it is very interesting to note here that once the

order of the approximation reaches the order of the polynomial function (p = 3), the

error in the GMM scheme drops to machine precision.
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(a) f(r) = x̂ (m = 0) and f(r) = x̂y3 + ŷx3 (m = 3)

Figure 4.9: Quality of approximation of (a) polynomial function and (b) sinusoidal
functions.

4.10.2 Approximation of sinusoidal functions

Fig. 4.9b shows the convergence graphs for f(r) = x̂ sin(x) sin(y) and f(r) = x̂ exp(−jk·

r). The figures show the convergence curve for both the approximation in the current

and its curl and divergence. As seen in the figures, the error in both ∇ · J and ∇× J

is the same and of order (p− 1), as expected.

4.10.3 Approximation of non-smooth and near-singular func-

tions

The true power of the partition of unity comes into play when the functions are

discontinuous across the patch boundaries. To demonstrate this, consider a function

that is first order discontinuous on a line that does not coincide with the patch
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(b) f(r) = x̂ sin(x) sin(y) and f(r) = x̂ exp(−jk · r)

Figure 4.9 Continued: Quality of approximation of (a) polynomial function and (b)
sinusoidal functions.
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(a) Error without PU

Figure 4.10: Quality of approximation of discontinuous function: (a) without using a
partition of unity; and (b) with a partition of unity.

boundary described by

f(r) =


x̂ ∀ x ≤ x0

x̂x/x0 ∀ x ≥ x0

. (4.34)

Fig. 4.10a shows the approximation error obtained by using two separate functions

in each patch without overlapping patches or a partition of unity. As can be clearly

seen, the error in the function propagates through the patch because the discontinuity

does not coincide with the patch boundary. Fig. 4.10b on the other hand, shows the

same function approximated by overlapping patches and a partition of unity. As

the figures clearly show, the error is significantly better in the GMM basis function

framework.

Next, we examine the efficacy of using a GMM framework in approximating cur-
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(b) Error with PU

Figure 4.10 Continued: Quality of approximation of discontinuous function: (a) with-
out using a PU and (b) with a PU.
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rents near a one dimensional edge upto a distance 1m from the tip; see [79, 80] and

references therein for details of some of the basis functions in current use. Fig. 4.11

demonstrates the error convergence as a function of the number of unknowns for

three different types of basis functions that are detailed next. Typically, the current

perpendicular to the edge is modeled using leading order terms from a Meixner series

expansion (as 1/
√
d where d is the distance from the edge). In [79], this dependence

is incorporated by changing the basis function in the patch near the edge. Specifi-

cally, in [79] the domain is partitioned into segments of size h; in the patch nearest

the edge, the basis function is chosen to be the leading term of the Meixner series,

and in all other patches it is either a pulse or a hat function. In figure 4.11, we

examine the error convergence, as a function of the number of unknowns, for the

approximation to the current near a one dimensional edge. Fig. 4.11 shows three

error curves, the first is obtained using the basis functions in [79]. In this case, the

basis function in the first patch is 1/
√
d where d is the distance from the edge/tip.

Starting from the second patch onwards hat functions are used as basis. This result

establishes a baseline for comparison of convergence. The second curve is obtained

using basis functions that are a combination both singular functions and higher order

polynomials. Specifically, patches comprise of two adjacent segments. On patches

that lie within a perpendicular distance of 0.1m of the edge, it is assumed that basis

functions are a superposition of singular functions of the form 1/
√
d where d is the

distance from the origin and polynomials that are complete to order p = 2. As is

evident from fig. 4.11, this class of basis functions provides better approximating

properties. The third curve in fig. 4.11 demonstrates the convergence obtained by

using a partition of unity function. As before, patches are defined to comprise of two

adjacent segments. For all patches whose perpendicular distance is less than 0.1m

from the edge, basis functions comprise of a linear combination of singular functions

(1/
√
d) and polynomials complete to p = 1, both of which multiplied by a linear
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PU function. For all patches that are further from this point, the basis function is a

product of a linear PU function and a polynomial of order p = 1. The use of a lower

order polynomial ensures that the order of the basis function is p = 2. As is evident,

the approximation provided by this scheme is considerably better than the previous

case. In large part, this result is due to better continuity properties offered by the

PU function; proofs for convergence of approximation to scalar and vector functions

have been provided in [76,77].

As can be seen from all the examples presented in this Section, for a series of

discretizations, the PU-based approximation consistently performs well. To a large

extent, this is a consequence of the GMM framework which decouples the traditional

link between tessellation and the basis function definition. In other words, it is pos-

sible to define dramatically different basis functions in the same patch (or adjacent

patches) without worrying about auxiliary conditions to maintain continuity. Conti-

nuity of these functions is provided by the partition of unity function. As a result,

the quality of approximation is better. In the next Section, we further explore the

capabilities of this representation by applying it to compute electromagnetic scatter-

ing

4.11 Scattering Results

In this section, we compare the radar cross-section from a variety of PEC objects.

Unless otherwise noted, in all examples that follow, the incident field is assumed to

be x̂ polarized and propagating along the −ẑ direction. The object is discretized

using a triangulation such that the average edge length is 0.1λ and GMM patches

are constructed using the scheme outlined in this paper. Since the GMM patches

are of arbitrary shape, we define the side of the smallest enclosing cube for each

GMM patch as an equivalent “edge length” (h). In the following examples, h varies
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Figure 4.11: Comparison of approximation error with and without PU.

from 0.1λ to 0.4λ, where λ is the wavelength of the incident field. Unless specified

otherwise, the GMM approximation functions, φmi and ζmi , were constructed using

Legendre polynomial functions complete to order p. Finally, note that the underlying

triangulation used is the same for both GMM and RWG or its higher order variant.

In what follows, we have used the notation “higher order RWG” to denote basis

functions develop by Graglia, Wilton and Peterson [74].

4.11.1 Analytical Validation and p-convergence

Fig. 4.12a compares the RCS of a PEC sphere obtained using GMM against analytical

solutions evaluated using a Mie-series representation. The number of GMM unknowns

(NGMM ) used is 200, 776 and 3080 for spheres of radii 0.2λ, 0.6λ and 1.0λ respec-

tively. As is evident, the agreement between the two is excellent. Fig. 4.12b compares

the convergence of the error as a function of the polynomial order of the basis function
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used, for both the GMM and higher order RWG [74]. The comparison is performed

for backscattered data obtained from two scatterers (i) a sphere of diameter 1.0λ and

(ii) a NASA almond that fits in a box of dimensions 0.4λ×1.15λ×3λ. The number of

unknowns for the sphere is as follows: NGMM = 964, 2604 and 5208 for p = 1, 2, 3,

respectively. The number of higher order RWG unknowns are NRWG = 4230, 9072,

15552 at p = 1, 2 and 3, respectively. For the almond, NGMM = 948, 4656 and

7560 at p = 2, 3 and 4, respectively and NRWG = 3800, 7980 and 13680 at p = 2, 3

and 4, respectively. In all cases, the incident field was x̂ polarized and incident along

ẑ. The axis of the almond was oriented along x̂. The convergence is evaluated for

the error between the numerical and analytical solution for the sphere and for the

relative error between successive steps in the case of the almond. In each case, the

approximation functions used for GMM were p-order complete polynomials in each

of the local projection co-ordinate spaces. Correspondingly the basis functions used

for higher order RWG were of the type suggested in [74] and are complete to order

p. The exponential nature of the convergence is clearly evident from the figure. It is

interesting to note that the convergence rate for the GMM scheme seems consistently

better than that for RWG for both the geometries.

4.11.2 Comparison with standard RWG

In this section, the RCS obtained due to scattering from a variety of geometries is

computed using the GMM basis functions and compared against that obtained using

RWG basis functions. In all cases, first order complete polynomials were used to

construct basis functions for the GMM. Similarly first order RWG functions were

used for the RWG scheme.

Fig. 4.13a shows the RCS from a square PEC plate of side λ discretized using 248

effective GMM unknowns (NGMM ) and 228 RWG unknowns (NRWG); and an open

cavity of dimensions λ× λ× λ (NGMM = 402, NRWG = 1746). The incident field
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(a) Comparison with analytical solution for PEC sphere of various
radii

Figure 4.12: Validation studies: Scattering from PEC spheres of different radii. Fig.
(a) shows the RCS comparison and figure (b) shows the convergence of solutions with
basis order p.
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(b) Convergence with polynomial order (Sphere and NASA Al-
mond)

Figure 4.12 Continued: Validation studies: Scattering from PEC spheres of different
radii. Fig. (a) shows the RCS comparison and figure (b) shows the convergence of
solutions with basis order p.
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is x̂ polarized and propagates along ẑ. The RCS is computed by an EFIE formulation

discretized using both the GMM and a standard RWG. It is evident that the GMM

result agrees very well with the standard RWG formulation.

Fig. 4.13b compares the RCS obtained due to scattering from a sphere of radius

1.0λ (NGMM = 1736, NRWG = 4320), an EMC benchmark cone-sphere of height

2.6λ and radius 0.5λ (NGMM = 1792, NRWG = 1656) and a NASA almond that fits

in a box of dimensions 0.4λ× 1.15λ× 3λ (1:3:9) (NGMM = 1528, NRWG = 2800).

The cone-sphere and the almond are both oriented with their long axis along x̂. In

each case, the incident field is x̂ polarized and propagates along the ẑ direction. Both

the GMM and the MoM results are computed using a CFIE. While the sphere and

cone-sphere results are obtained using polynomials of order p = 1, the almond results

are obtained for both p = 1 and p = 2. As is evident from the figures, the agreement

between the GMM and MoM is excellent.

4.11.3 Comparison with measured data

Finally, we consider scattering from a PEC cube of side 0.7λ. The cube was discretized

using NGMM = 320 and NRWG = 1500 unknowns. Measured data has been

reported for scattering from this structure in [109]. Again, electric field polarized

along x̂ is assumed in the ẑ direction. Fig. 4.14 shows the comparison of RCS

obtained by GMM and RWG against that obtained from experimental measurement.

Again, there is excellent agreement between all three RCS data sets. These numerical

experiments demonstrate the ability of the GMM technique to accurately use first and

higher order polynomial basis functions to compute scattering cross-sections from a

wide variety of geometries.
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(a) Plate (λ× λ) and Open cavity (λ× λ× λ) (using EFIE)

Figure 4.13: Validation studies: scattering from (a) a PEC plate and an open cavity.
Plot of bistatic RCS (φ = 0). Fig. (b) bistatic scattering RCS from a NASA thin
almond and a PEC conesphere. The RCS is compared at φ = 0 for the almond and
θ = π/2 for the conesphere. Inset figures show the surface current on the almond and
the conesphere.

75



(b) Sphere (λ), Conesphere (2.6λ × 0.5λ) and NASA Almond
(1:3:9) (using CFIE)

Figure 4.13 Continued: Validation studies: scattering from (a) a PEC plate and an
open cavity. Plot of bistatic RCS (φ = 0). Fig. (b) bistatic scattering RCS from a
NASA thin almond and a PEC conesphere. The RCS is compared at φ = 0 for the
almond and θ = π/2 for the conesphere. Inset figures show the surface current on the
almond and the conesphere.
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Figure 4.14: RCS comparison for a PEC box (0.7λ). The figure compares RCS due
to scattering of a −x̂ directed plane wave polarized along −ŷ. The bistatic RCS is
compared at φ = 0 against that obtained using an RWG discretization and against
measured data.
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4.12 Flexibility of the GMM scheme

The results presented thus far demonstrate the approximation quality of GMM ba-

sis functions, the convergence characteristics and applicability to calculating scat-

tered fields from a variety of topologically different objects. In addition, the GMM

scheme also provides the flexibility to mix different types of orders and types of

basis functions, and use non-conformal meshes with minimal change to the overall

computational structure. The examples presented in this section demonstrate these

advantages. In all cases analyzed in this section, the incident field is polarized along

the x̂ direction and the field is incident along the −ẑ direction.

4.12.1 Mixing orders of basis functions

First, consider a PEC box of dimensions λ × 4λ × λ that is oriented along the hatx

direction. This box is meshed at 0.1λ everywhere to obtain an initial triangulation.

GMM patches and basis functions complete to order p = 1 are constructed to ob-

tain the RCS due to illumination by a ẑ directed incident electric field polarized

along Êx. Next, the same geometry is discretized using an edge length 0.25λ for

0.75λ ≤ x ≤ 2.25λ and of edge length 0.1λ elsewhere. Basis functions of order p = 2

are used in the larger patches while basis functions of order p = 1 are used in the

small patches. RCS computed using this configuration is then compared against that

obtained earlier using a denser (almost) uniform discretization in figure 4.15a. As

is evident, the agreement is excellent. While the agreement between the two RCS

data sets demonstrates the ability of the technique to mix different orders of basis

functions, the ease with which this mixing can be effected within the GMM scheme

is equally important. In our implementation, types and orders of basis functions to

be used in a patch are specified by an input flag. This level of flexibility in choice of

basis functions is unique to the GMM scheme.
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Fig. 4.15b demonstrates two RCS obtained due to scattering from a PEC almond

that fits in a box of size 0.3λ × λ × 3.2λ. The first RCS is obtained using basis

functions of order p = 1 everywhere and then second is obtained using basis functions

of order p = 2 in all patches within 0.2λ of the tip and p = 1 everywhere else. Again,

the agreement of between the two RCS data is excellent and demonstrates the ability

of the GMM technique to mix different basis functions.

Finally, figure 4.15c shows RCS due to scattering from a PEC box of size 3λ ×

6λ × 3λ; meshed at three levels of discretization as shown in the inset figure. The

discretizations are at 0.1λ, 0.2λand0.25λ. The RCS is computed using polynomials

of orders p = 1, 2, 3 in each discretization range. This RCS is compared against one

obtained using RWG basis functions on a uniform discretization of 0.1λ; and as can

be seen from the figure, both results agree very well with each other.

4.12.2 Mixing types of basis functions

The GMM scheme not only permits mixture of different orders of polynomial basis

functions, but enables mixtures of different types of basis functions. As was mentioned

earlier, the surface Helmholtz decomposition based system using scalar polynomial

functions is only one possible way to define basis functions. In the following example,

we demonstrate that these functions can be effortlessly combined with functions of

the form ĉeik·r where ĉ is a pilot vector and k is the propagation vector.

Consider scattering from a PEC box of size λ × 0.5λ × 0.5λ. Three sets of RCS

data are compared in figure 4.16. One is obtained using GMM based polynomial basis

functions of order p = 1 everywhere. The other two use a combination of polynomials

of order p = 1 and plane-wave basis as described next. The plane wave basis functions

used are defined as follows: νmi for patch Ωi is defined as ν
m,1
i = ûeikm·(r−ri) and

ν
m,2
i = v̂eikm·(r−ri) where û and v̂ are the local coordinate vectors, ri is the center

of patch i, and km is defined as (k · û) cos(mπ/(M + 1))û + (k · v̂) cos(mπ/(M +
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(a) PEC box (λ × 4λ × λ): GMM mixed order (p =
{1, 2}) vs. standard GMM p = 1.

(b) NASA Almond (1:3:9): GMM mixed order (p =
{1, 2}) vs. standard GMM p = 1.

Figure 4.15: RCS comparison for regular GMM and mixed order GMM: (a) compari-
son of bistatic RCS (φ = 0) for a PEC box. Fig. (b) shows the comparison of bistatic
RCS (φ = 0) for a PEC thin almond. In each case, the incident field is directed along
−ẑ and polarized along x̂ and bistatic RCS is evaluated at φ = 0.
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(c) PEC Box 3λ× 6λ× 3λ GMM mixed order (p = {1, 2, 3}) vs.
RWG p = 1.

Figure 4.15 Continued: RCS comparison for regular GMM and mixed order GMM:
Fig. (c)comparison of bistatic RCS (φ = 0) for a PEC box using three different orders
of basis functions. The incident field is directed along −ẑ and polarized along x̂ and
bistatic RCS is evaluated at φ = 0.
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Figure 4.16: RCS obtained due to scattering of a x̂ polarized plane wave directed
along −ẑ from a PEC box (λ× 0.5λ× 0.5λ) directed along x̂ obtained using regular
GMM and mixed basis GMM with polynomials and plane waves.

1))v̂ ∀ m ∈ {0 . . .M}. The three cases that are compared are as follows: (i) only

polynomials, (ii) plane waves (M = 1) in all patches for 0.4λ ≤ x̂ ≤ 0.6λ and

polynomials elsewhere and finally (iii) using plane waves (M = 2) in patches 0.4λ ≤

x̂ ≤ 0.6λ and polynomials elsewhere. A plane wave electric field polarized along x̂− ŷ

is assumed incident along x̂ + ŷ and the RCS is observed for all θ at φ = 0. It is

observed that as the number of plane wave is increased, the RCS obtained rapidly

approaches that obtained using purely polynomials. This example illustrates that

idea that not only can one used non-polynomial basis functions with ease within the

GMM scheme but also use a combination of polynomial and non-polynomial basis

functions.
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4.12.3 Use of non-conformal meshes

Finally, another advantage of the GMM arises from the initial motivation to separate

the basis function definition from the tessellation of the geometry. Since, unlike the

RWG, the GMM is not reliant on the tessellation; the GMM can be used with non-

conformal meshes. It is common in practice to have different vendors mesh different

areas of a geometry and this results in sets of meshes that need to be explicitly

“stitched together” at the boundaries. There has been a considerable interest in

the design of techniques that can handle non-conformal meshes [110]. However, a

consequence of the design of the GMM scheme is that it can implicitly handle these

kinds of meshes without any change to the framework or the implementation. Here

we present one example illustrating this ability. Fig. 4.17a shows a λ×λ plate that is

discretized at two slightly different scales; one at 0.1λ and the other at 0.15λ. These

two halves are put together and a GMM covering is defined on this “non-conformal”

tessellation. Fig. 4.17b shows the RCS obtained using the GMM scheme compared

with the RCS obtained using a regular RWG discretization using a conformal meshing

at 0.1λ of this plate.

4.13 Condition Number of the System

One of the consequences of using GMM is that the resultant discrete system appears

to have a constant condition number over a wide range of frequencies. We have

examined the condition number of the system over a wide range of frequencies for a

variety of geometries. In each case, we use a constant mesh size that corresponds to

an average edge length of 0.1λ at the highest frequency. This is used to construct

the GMM patches (h varies from about 0.1λ to 0.4λ). The frequency is continuously

reduced from 300MHz to 3Hz. The condition numbers of the impedance matrix

obtained using regular RWG, GMM and loop-star basis functions are compared.
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(a) PEC plate (λ × λ) discretized using two non-
conformal meshes

(b) RCS comparison with standard RWG (on confor-
mal mesh)

Figure 4.17: Backscatter RCS comparison for scattering from a non conformally
meshed PEC plate (shown in figure (a)) RCS obtained by using the GMM discretiza-
tion on a non conformal mesh compared against that obtained by discretizing on a
(standard) conformal mesh for a PEC plate.
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Figure 4.18: EFIE Condition number comparisons for PEC sphere (0.2), square plate
(1m) and cube(1m) using GMM, RWG and loop star basis.

Fig. 4.18 shows the condition numbers for three geometries (i) PEC plate (size

1m× 1m, NGMM = 248, NRWG = 228) (ii) PEC cube (side 1m, NGMM = 320,

NRWG = 1500) and a sphere (0.2m diameter, NGMM = 384, NMoM = 480). As

expected, the regular MoM discretization is ill-conditioned at low frequencies. The

loop-star scheme and the GMM scheme results in discrete systems with a constant

condition number across a range of frequencies. It is evident from the figures that

the condition number of the GMM scheme stays constant and is always less than or

equal to the condition number of the loop-star scheme.

The above results demonstrated condition number for discretization using linear

basis functions. Fig. 4.19 shows the condition numbers obtained on discretizing

using higher order basis functions for a 0.2m diameter PEC sphere and PEC strip of

dimensions 1m × 0.2m. The approximation functions used are third order complete
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Figure 4.19: EFIE Condition number comparisons for PEC sphere (0.2m) and strip
(1m× 0.2m) using higher order (p = 3) complete GMM and RWG basis.

and the condition numbers are compared against those obtained using a higher order

RWG scheme using higher order RWG basis functions of the same order. Again, it

is evident that the RWG condition number increases exponentially with frequency,

whereas the GMM condition number remains constant.

The purpose of a low frequency stable system is the ability to handle meshes

involving a large range of discretization sizes. To test the efficacy of the GMM scheme

on such structures, we compare the GMM scheme with a standard RWG scheme on

two geometries using multi-scale discretizations. Fig. 4.20 shows the variation of the

condition number with frequency of the impedance matrix generated for a square

PEC plate (side 1m) and a thin almond of aspect ratio 1:3:9, both discretized non-

uniformly. The ratio of the largest to smallest edge length used is 1:4 for the plate

and 1:10 for the almond. The condition number is compared with both an RWG and
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Figure 4.20: EFIE Condition number comparisons for non-uniformly discretized
square plate (1m) and thin almond(1 : 3 : 9) using GMM and RWG and loop star
basis. The plate is discretized at average edge length ranging from 0.1λ to 0.025λ
and the almond is discretized from 0.1λ to 0.02λ.

a loop star scheme as the frequency is reduced. As can be clearly seen the condition

number of the MoM scheme grows exponentially whereas the GMM condition number

varies very slowly with frequency.

Finally, Fig. 4.21 shows the RCS for a square PEC plate (of side 1m) obtained

using the GMM and loop star basis functions. The figure shows the RCS at three

different frequencies (30MHz, 30kHz and 3kHz). The excellent agreement at all

three frequencies demonstrate the low frequency accuracy of the proposed GMM

scheme.

The variety of examples presented above demonstrate the ability of the GMM

scheme coupled with the quasi-helmholtz basis functions to construct a well condi-

tioned discretization scheme for the EFIE at low frequencies. While the full rationale

87



Figure 4.21: Comparison of RCS (GMM vs. loop star) at 30MHz, 30kHz and 3kHz
for constant h for a Plate: side 1m. The RCS is compared against that obtained
using Loop Star basis functions.
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for this behavior is still under investigation; the quasi-Helmtholtz nature of the basis

functions is expected to be the major contributing factor to the well conditioned na-

ture of the scheme. As an illustration of this idea; in figure 4.22 we study condition

numbers for a PEC box of sides 0.5m × 0.5m × 0.1m where we use just one of the

two types of basis functions in each patch (we use the quasi-divergence free basis

function). The RCS obtained by using just the quasi-divergence free basis function

is compared against the RCS obtained using the complete GMM basis set, to ensure

that the currents are represented adequately. The comparison of RCS is shown inset

in the figure.

The condition numbers don’t seem to maintain the near-constant nature that is

seen when the complete basis set is used. This points, indirectly, to the importance

of the role played by the quasi-Helmholtz nature of the basis functions. However,

it should be pointed out that the GMM framework is crucial to the implementation

of a locally quasi-Helmholtz basis function set and therefore; is critical to the well

conditioned nature of the discretized integral equation.

Another key feature of the quasi-surface Helmholtz decomposition implemented

in the GMM framework is that the decomposition is local to each patch. As a result,

this technique is directly applicable to multiply connected domains; as opposed to the

loop star system [93] which uses a global Helmholtz decomposition. A problem with

a global Helmholtz decomposition can be viewed as a result of the Hodge decomposi-

tions of the surface fields. This means that the loop start technique is not applicable

to multiply connected domains. In contrast, the GMM scheme is directly applicable

to multiply connected domains such as a toroid.

To illustrate this, figure 4.23 below compares the scattering from a toroidal scat-

terer computed using the GMM discretization compared to that obtained using a

standard RWG discretization. The incident field direction and polarization is shown

inset in the figure. The excellent comparison of the RCS demonstrates the ability
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Figure 4.22: Condition number vs. frequency for a PEC box: The figures show
the condition numbers using the regular GMM basis set and using just the quasi-
divergence free basis functions from the GMM basis set. In each case; the RCS is
computed to good accuracy as shown inset.
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Figure 4.23: Bistatic RCS (φ = 0) comparison for a dielectric toroid (outer radius
0.75λ0 and inner radius 0.5λ0, εr = 4.0). This result demonstrates the advantage of
using an local quasi-surface Helmholtz decomposition basis function set. The inset
shows direction and polarization of the incident field along with an image of the
surface current density on the toroid.

of the GMM framework using the quasi-surface Helmholtz basis functions to handle

multiply connected domains.

4.14 Summary

In this work we have presented a framework for the discretization of electromagnetic

integral equations that (i) provides considerable freedom over the choice of basis

functions and (ii) eliminates the traditional coupling of the basis function and the

discretization. Consequently, this provides a general structure wherein different basis

functions can be seamlessly integrated to best approximate the currents locally. More

importantly, it implies that it is not necessary to have basis functions that satisfy
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specific continuity requirements. As this is a departure from standard basis functions

defined on tessellations, we have devised a methodology to use existing meshes to

define basis functions and their domains of support. Results presented demonstrate

the excellent approximation properties of the method as well as far field RCS data

from three dimensional objects. Several results have been presented to showcase

several of the advantages of the GMM scheme. The results show that the scheme is

low frequency stable, can handle mixture of types and orders of basis functions and

that the mechanism is able to handle non conformal meshes.

In the next two chapters; we will extend the GMM discretization scheme to the

solution of scattering from dielectric bodies and to the analysis of transient scattering

respectively.
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Chapter 5

Application of the Generalized

Method of Moments for Dielectric

Bodies

So far, we have restricted our study to scattering from bodies that are perfectly

conducting. We will now show how the GMM technique can be extended to the

analysis of penetrable scatterers. We will start from the general integral equations

developed in chapter 2. We restate the problem and equations slightly differently

here, in a form that allows us to specialize to penetrable bodies.

5.1 Problem Statement

Consider a penetrable body that occupies a domain D and is bounded by a surface Ω.

Let D+ and D− denote regions that are exterior and interior to Ω; henceforth, the

subscript q = ± will be used to denote all quantities associated with these regions.

If no subscript is used, then it is assumed that the quantity is associated with region

D+. Let the surface Ω be sufficiently smooth so that it is possible to define a unique
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normal n̂±(r) that points into regions D±, respectively. It follows that n̂+(r) =

−n̂−(r) = n̂(r) ∀r ∈ Ω. Further, assume that the object is homogeneous, has

permittivity and permeability {ε−, µ−}, respectively, and resides in an unbounded

homogeneous background with constitutive parameters {ε+, µ+}. Sources residing

within Dq produce incident electromagnetic fields {Eiq(r),Hi
q(r)}, and the interaction

of these field with Ω produces scattered field {Esq(r),Hs
q(r)}. The total fields in any

region, {Etotq (r),Htot
q (r)}, comprise of the incident and scattered fields

Etotq (r) = Eiq(r) + Esq(r)

Htot
q (r) = Hi

q(r) + Hs
q(r)

(5.1)

The scattered fields within region Dq are produced by equivalent sources that reside

on the surface Ω and are defined as

Mq(r) = −n̂q × Etotq (r)

Jq(r) = n̂q ×Htot
q (r)

(5.2)

From these definition and the continuity of the tangential components of the fields, it

follows that J+(r) = −J−(r) and M+(r) = −M−(r). These currents can be used

to define magnetic and electric vector potentials

Aq(r) = µq

∫
Ω
dr′gq(R)Jq(r′) (5.3a)

Fq(r) = εq

∫
Ω
dr′gq(R)Mq(r′) (5.3b)

where κq is the wavenumber in region q, R = |R| = |r−r′|, and gq(R) =
exp[−jκqR]

4πR

is homogeneous Green’s function with parameters equal to that of region q. These
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potentials can in turn be related to the scattered fields via

Esq(r)
{
Jq,Mq

}
= −jω

(
I +

1

κ2
q
∇∇

)
·Aq(r)− 1

εq
∇× Fq(r) (5.4a)

Hs
q(r)

{
Jq,Mq

}
=

1

µq
∇×Aq(r)− jω

(
I +

1

κ2
q
∇∇

)
· F(r) (5.4b)

In these equations, I is used to denote the idempotent. It is well known that knowl-

edge of the equivalent currents is sufficient to express the total fields everywhere via

(5.1) and (5.4). Given four equations (two in each region) that can be formulated

using these currents, different combinations of these have been developed to solve for

the two currents [23]. Of these, the most often used sets are the PMCHWT [26] and

the Müller equations [23,111]. The former is a Fredholm first kind integral equation,

whereas the second is a Fredholm second kind equation. In what follows, we will

present a succinct derivation of both these equations for completeness.

The PMCHWT set of equations is derived by imposing the continuity of each field

across Ω. That is, imposing n̂(r)×Etot+ (br) = n̂(r)×Etot− (r) and n̂(r)×Htot
+ (br) =

n̂(r)×Htot
− (r) results in

n̂(r)×
[
Einc+ (r)− Einc− (r)

]
= n̂(r)×

[
Es−(r)

{
J−,M−

}
− Es+(r)

{
J+,M+

}]
= −n̂(r)×

[
Es−(r)

{
J+,M+

}
+ Es+(r)

{
J+,M+

}]
= −n̂(r)×

[
Es−(r) + Es+(r)

] {
J+,M+

}
(5.5a)

n̂(r)×
[
Hinc

+ (r)−Hinc
− (r)

]
= n̂(r)×

[
Hs
−(r)

{
J−,M−

}
−Hs

+(r)
{
J+,M+

}]
= −n̂(r)×

[
Hs
−(r)

{
J+,M+

}
+ Hs

+(r)
{
J+,M+

}]
= −n̂(r)×

[
Hs
−(r) + Hs

+(r)
] {

J+,M+
}

(5.5b)
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On the other hand, the Müller equations are obtained using a linear combination of the

currents in the two regions and the total fields. In other words, a linear combination

of the magnetic currents in the two regions together with the total fields yields

− n̂(r)×
[
Einc+ (r+) + αEinc− (r−)

]
= (1 + α)M+ + n̂(r)×

[
Es+(r+)

{
J+,M+

}
+ αEs−(r−)

{
J−,M−

}]
= (1 + α)M+ + n̂(r)×

[
Es+(r+)− αEs−(r−)

] {
J+,M+

} (5.6a)

Similar operations on the electric current yields

− n̂(r)×
[
Hinc

+ (r+) + βHinc
− (r−)

]
= −(1 + β)J+ + n̂(r)×

[
Hs

+(r+)
{
J+,M+

}
+ βHs

−(r−)
{
J−,M−

}]
= −(1 + β)J+ + n̂(r)×

[
Hs

+(r+)− βHs
−(r−)

] {
J+,M+

} (5.6b)

where r+ and r− denote points that are just above and just below r for all r ∈ Ω.

In these equation, α and β are constants. In our implementation, we use α = ε−/ε+

and β = µ−/µ+ as suggested by Müller. To solve these equations numerically, one

typically represents the currents in terms of spatial basis functions. That is, J+(r) =∑Ns
i=1 Jifi(r) and M− =

∑Ns
i=1Mifi(r), where Ji,Mi are unknown coefficients, fi(r)

are basis functions, and Ns is the total number of spatial degrees of freedom for a

current. Using Galerkin testing with the same space of basis functions yields a matrix

equation that may then be solved for the unknown coefficients. Traditionally, RWG-

basis functions have been used to represent the spatial variation of the currents and

the fields [89,112].
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5.2 GMM Discretization of the PMCHWT and

Müller Integral Equations

The PMCHWT formulation involves the discretization of the L±|t and the K±|t

operators (where |t denotes the tangential component of the functional). While the

former can be discretized in a manner identical to that done for conducting bodies in

chapter 4, the K± operator needs to be handled slightly differently. For self triangles,

the integral in the PEC MFIE can be computed for flat patches as as just the principal

value component due to the fact that n̂× ji(r)×∇g±(R) = 0, when r 6= r′. However

for the PMCHWT, the tangential component of ji(r)×∇g±(R) is 0.

5.2.1 Müller Operator

The discretization of the Müller operator involves the computation of the following

bilinear forms.

< tj, n̂× L± ◦ ji >
.
= tj · n̂× L± · ji = n̂× tj · L± · ji (5.7a)

and

tj · n̂×K± · ji (5.7b)

As shown in equations (5.7a) and (5.7b), the bilinear form arising from the K operator

is identical to the case of the PEC in chapter 4 and that arising from the L operator

can be effected by testing the operator using n̂ × tj (as opposed to tj . Thus the

only modification required to implement the GMM is the evaluation of n̂ × ji and

∇ · n̂ × ji. To perform these operations, we revisit our basis functions described in

chapter 4. The basis function set is formed of two functions given by

jmi,d(r)
.
= ψi∇sφ

m
i (r) (5.8a)
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and

jmi,c(r)
.
= ψin̂×∇sζ

m
i (r). (5.8b)

To compute n̂× these basis functions, if we assume that φmi (r) is chosen to be the

same as ζmi (r), we observe that n̂× ji,d = ji,c. From an algorithmic view point, this

means that if we have a subroutine that computes ji,c, we can recycle that to compute

n̂× ji,d. Also, n̂× ji,c requires the computation of n̂× ψin̂×∇s· = −ψi∇s· which

is algorithmically identical to the computation of jmi,d. Thus the changes required

to implement the GMM for dielectric bodies can be trivially effected using the same

code as used for the PEC case.

5.3 Implementation Results

Next, we will present a series of results that serve to demonstrate several features of

the GMM framework. We begin by presenting results that validate the application of

the GMM framework to the solve both the PMCHWT and Müller equations. Here, the

data obtained is compared either against analytical data or those obtained using RWG

basis functions. Following this set, we will present results that (i) demonstrate hp-

convergence, (ii) show well conditioned behavior for the PMCHWT formulation, (iii)

demonstrate ability to handle non-conformal meshes with relative ease, (iv) ability

to easily mix different order/types of basis function within a single simulation, and

finally (v) ability to handle multiply connected domains. In all the cases considered

herein, we will compare bistatic radar scattering cross-section data. It will be assumed

that the scatterer geometry is discretized using triangular patches whose average edge

length is approximately a tenth of the wavelength in the medium (or 0.1λ−). Further,

unless otherwise specified, the same mesh is used to obtain results for both GMM and

RWG basis functions. Also, λ0 will be used to denote the wavelength of the incident

field in free space.
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5.3.1 Validation of GMM PMCHWT and Müller Solvers

Next, we validate GMM based PMCHWT and Müller integral equation solvers. Un-

less otherwise mentioned, the permittivity and permeability of the dielectric object is

assumed to be ε−
.
= εrε0 = 4.0ε0 and µ− = µ0, where ε0 and µ0 are the permittiv-

ity and permeability of free-space, respectively. Further, it is assumed that all objects

considered herein are immersed in free-space, i.e., ε+ = ε0 and µ+ = µ0. In each

case, the object under study is discretized using triangular patches of an average edge

length 0.1λ−. GMM patches and basis functions are constructed starting from this

triangulation. The RCS obtained is compared against analytical data (for spheres)

or against a traditional RWG scheme constructed on the original tessellation.

First, Figure 5.1a compares the RCS data for three dielectric spheres obtained

using the GMM and RWG based codes, as well as that obtained using Mie series [26].

The radii of the spheres are 0.1λ0, 0.3λ0 and 0.5λ0 respectively. The incident field is

polarized along x̂ and propagates along −ẑ. The GMM discretization for the spheres

result in NGMM = {400, 776, 9416} total (J and M) unknowns, respectively. The

order of basis function p is chosen to be one. The number of unknowns when using

RWG basis are NRWG = {596, 1152, 12004}, respectively. The bistatic RCS (at

φ = 0) obtained from the GMM, RWG based solvers for PMCHWT and Müller

equations are compared in Figures 5.1a against analytical data. As is evident, the

three sets of data agree very well with each other, demonstrating that the low order

GMM performs as well RWG.

Next, we consider an x̂ polarized plane wave, traveling in the −ẑ direction that

is incident on a dielectric cube of side length λ0, where λ0 is the wavelength in free

space. The object was discretized using triangular patches, and the corresponding

number of the GMM and RWG unknowns for this mesh are NGMM = 2404 and

NRWG = 3600. The GMM discretization is applied to both the PMCHWT and the
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Müller equations. As is evident from the RCS data at the φ = 0 plane shown in

Figure 5.1b, the two sets of results agree very well with each other.

Next, we consider scattering of a plane wave from two non-canonical geometries–

a NASA almond and a conesphere. The NASA almond fits in a box of dimension

0.4λ0×1.15λ0×3λ0. The incident field is polarized along x̂ direction, and propagates

along the −ẑ direction. The number of GMM and RWG basis are NGMM = 3056

and NRGW = 5600, respectively. Figure 5.2a compares the RCS data obtained in

the φ = 0 plane using PMCHWT and Müller integral equations that are solved using

GMM and RWG basis functions. It is evident the agreement between the four RCS

data is excellent.

Finally, Figure 5.2b the compares the RCS data obtained for a dielectric cone

sphere of maximum radius 0.5λ0 and cone height 2.6λ0. As before, data is obtained

using both PMCHWT and Müller integral equations, using both GMM and RWG

basis functions. In this test, the incident field is polarized along −ŷ, propagates

along x̂ and bistatic RCS is observed at θ = π/2. The number of total unknowns

is NGMM = 2900 and NRWG = 3312 respectively. As can be seen in each of the

above cases, the agreement between the RCS is excellent. All these results provide a

measure of confidence on the GMM

5.3.2 Salient features of the GMM scheme

Thus far, we have demonstrated that GMM based discretization of both the PM-

CHWT and Müller equation produces accurate results. In what follows, we shall

present data that highlight some of the features of is approach, and contrast it with

what can be done using RWG basis functions.
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(a) Spheres

Figure 5.1: RCS obtained using GMM basis functions used to discretize the PM-
CHWT amd Müller equations for the solution of scattering from (a) dielectric spheres
(radii 0.1λ0,0.3λ0 and 0.5λ0 and εr = 4.0) and (b) a cube (side λ0, εr = 4.0) due
to plane wave incidence. The bistatic RCS (at φ = 0) are compared against that
obtained using an RWG discretization and analytical results (for spheres).
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(b) Cube

Figure 5.1 Continued: RCS obtained using GMM basis functions used to discretize
the PMCHWT amd Müller equations for the solution of scattering from (a) dielectric
spheres (radii 0.1λ0,0.3λ0 and 0.5λ0 and εr = 4.0) and (b) a cube (side λ0, εr = 4.0)
due to plane wave incidence. The bistatic RCS (at φ = 0) are compared against that
obtained using an RWG discretization and analytical results (for spheres).
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(a) Almond (0.4λ0 × 1.2λ0 × 3.0λ0)

Figure 5.2: RCS obtained using GMM basis functions due to scattering from (a)
NASA thin almond of εr = 4.0 that fits in a box of size 0.4λ0× 1.2λ0× 3.0λ0 due to
a plane wave incident along −ẑ and polarized along x̂ and (b) a cone-sphere of radius
0.5λ0, cone height 2.6λ0 and εr = 4.0, due to a plane wave polarized along −ŷ and
incident along x̂. Bistatic RCS is computed at φ = 0 for the almond and at θ = π/2
for the conesphere and used to validate the GMM scheme against RWG.
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(b) Cone-sphere (0.5λ0, 2.6λ0)

Figure 5.2 Continued: RCS obtained using GMM basis functions due to scattering
from (a) NASA thin almond of εr = 4.0 that fits in a box of size 0.4λ0×1.2λ0×3.0λ0
due to a plane wave incident along −ẑ and polarized along x̂ and (b) a cone-sphere
of radius 0.5λ0, cone height 2.6λ0 and εr = 4.0, due to a plane wave polarized along
−ŷ and incident along x̂. Bistatic RCS is computed at φ = 0 for the almond and at
θ = π/2 for the conesphere and used to validate the GMM scheme against RWG.
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Mixtures of Basis functions

As was alluded to earlier, the GMM framework permits mixtures of basis functions

within the simulation domain. This implies that one can use a set of basis function

in a sub-domain and use an entirely different set in neighboring sub-domains without

invoking any special condition regarding continuity of different orders. This is possible

as patches overlap with each other and continuity is built into the basis functions.

This property is extremely useful when analyzing complex structures where h-, p- or

hp-adaptivity is required or if known asymptotic solutions are to be built into the

approximation space. In what follows, we shall explore these features of the GMM

framework. Note, it should be emphasized that the use of different basis functions

with different patches is as simple as choosing a flag associated with a node in the

input file that describes geometry. This is so as each node is associated with a patch

and this flag can describe the function that is to be used in the patch.

Mixed Order Bases: The first class of numerical tests will be carried out using

mixtures of basis functions of different orders. Figure 5.3 compares the RCS obtained

due to scattering from the almond and box using two different orders of GMM basis

functions. In both cases, the incident wave is x̂ polarized and travels in the −ẑ

direction. The relative permittivity of both scatterers is εr = 4, and the RCS data is

obtained in the φ = 0 plane.

Figure 5.3a compares the RCS data for an almond obtained using p = 1 every-

where on the scatterer with that obtained using p = 1 or p = 2 in different regions.

Specifically, basis functions on all patches that fall within 0.2λ− of the tip were of

order p = 2 and all others were of order p = 1. As is evident from Figure 5.3a, the

two sets of data agree very well with each other.

Next, Figure 5.3b compares the RCS data obtained for scattering from a thin

dielectric box of size 0.2λ0 × 0.2λ0 × 4λ0 with varying h and p with a reference
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(a) Almond (0.4λ0 × 1.2λ0 × 3.0λ0)

Figure 5.3: RCS comparison of standard GMM vs. Mixed-order GMM (a) NASA
almond discretized with GMM basis functions complete to order p = 4 near edges
and p = 1 elsewhere. (b) Dielectric box using p = 1 near edges and p = 2 in larger
patches near center. The bistatic RCS is computed at φ = 0 and the incident field is
polarized along x̂ and incident along −ẑ.

data, obtained using GMM basis functions in a dense mesh with NGMM = 1552

unknowns, and p = 1. As illustrated in the inset, the box was discretized using the

following rule: h = 0.1λ− within h = 0.25λ− of any edge and 0.2λ− elsewhere. For

patches with h = 0.1λ− the order of basis function was p = 1, and for h = 0.25λ−

the order was p = 2. This resulted in a system with NGMM = 440 unknowns. As is

evident from Figure 5.3b that the two sets of results agree very well with each other.

Mixed Types of Bases: The next example demonstrates the use of a mixture of

types of basis functions. Figure 5.4 compares the RCS obtained from a dielectric

box of dimensions 5.0λ0 × 2.0λ0 × 0.5λ0 and εr = 2.0. This box is first meshed
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(b) Box 0.2λ0 × 0.2λ0 × 4λ0

Figure 5.3 Continued: RCS comparison of standard GMM vs. Mixed-order GMM (a)
NASA almond discretized with GMM basis functions complete to order p = 4 near
edges and p = 1 elsewhere. (b) Dielectric box using p = 1 near edges and p = 2 in
larger patches near center. The bistatic RCS is computed at φ = 0 and the incident
field is polarized along x̂ and incident along −ẑ.
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uniformly using a triangulation of average edge length 0.1λ−. GMM basis functions

are constructed on this tessellation and the RCS is computed by solving the Müller

integral equation; using NGMM = 21680 unknowns. The box is then re-meshed

using two sets of elements, of average edge length 0.1λ− near the edges and 1.0λ−

at the center; as shown in the inset figure. GMM basis functions are constructed

using polynomials as approximation functions in the smaller patches, using the quasi-

surface Helmholtz technique described in Section 4.3 and plane wave approximation

functions of the form νmi (r)
.
= û cos(θm) exp−jω√µ−ε−cos(θm)k̂ · (r− ri); where

û is a pilot vector along the surface of the patch, k̂ is the incident field direction, ri is

the patch center and θm is an order parameter between 0 and 2π; in the larger patches.

These functions are used to discretize the Müller equations with NGMM = 12350

unknowns; and the RCS’s are compared.

The RCS obtained using the regular GMM and the mixed order GMM is demon-

strated in Figure 5.4. It is evident from the figure that the RCS agrees very well.

This demonstrates the efficacy of the GMM scheme in mixing different types of basis

functions; a capability that is not available in any of the basis function frameworks

currently in use for the discretization of electromagnetic integral equations.

hp-adaptivity: In this section, we utilize the flexibility of the GMM framework to

study the hp− convergence of the RCS due to scattering from a dielectric arrow. The

arrow has dimensions 2.0λ0× 3.0λ0×λ0 and εr = 2.0. RCS data is obtained for the

arrow discretized at λ−/40 to provide a baseline for comparison. The RCS data is

then computed using the GMM basis functions constructed on this tessellation with

NGMM = 64, 048 unknowns. The incident field is polarized along −ẑ and incident

along x̂. This RCS is then compared against the following different discretizations

in Figure 5.5. First, the arrow is meshed using elements with an average edge-length

of λ−/10 and approximation functions complete to order p = 1 are used everywhere
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Figure 5.4: RCS comparison of standard GMM vs. Mixed-Basis GMM (5.0λ0 ×
2.0λ0×0.5λ0). Electric field is incident along −ẑ and polarized along x̂. The bistatic
RCS (φ = 0) is compared for GMM using polynomial basis functions against GMM
using polynomials mixed with plane wave basis functions.
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Figure 5.5: RCS comparison for scattering from a dielectric arrow (2.0λ0×3.0λ0×λ0).
Electric field is incident along −ẑ and polarized along x̂. The bistatic RCS (φ = 0) is
compared for four different combinations of h and polynomial order of basis function
p.

(NGMM = 8960). In the second test, the mesh is refined to an average edge length

of λ−/20 near the tips and basis functions of order p = 1 are applied near the

tip and basis functions of order p = 2 everywhere. This case is shown as hp − 1

(NGMM = 12, 048) in Figure 5.5. Finally, the mesh is refined further, in two levels,

with λ−/20 at the tip, λ−/10 in the smooth areas and λ−/15 in the transition region.

In this case, basis functions of order p = 1 are used in the patches of size λ−/10 and

p = 2 everywhere else. This case is shown as hp− 2 (NGMM = 22, 860). As can be

seen the RCS demonstrates the hp-convergence of the method.
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Non Conformal meshes

One advantage of disassociating the definition of the basis function from the underly-

ing tessellation of the geometry is that it allows for the use of non conformal meshes.

It is common, in the case of practical geometries, to have different vendors mesh dif-

ferent parts of a geometry. This results in sets of meshes that need to be explicitly

“stitched together” at the boundaries. This motivates the design of techniques that

can handle non-conformal meshes [110]. However, a consequence of the design of

the GMM scheme is that it can implicitly handle these kinds of meshes without any

change to the framework or the implementation.

Here, we present one example illustrating this ability. We consider scattering from

a dielectric box (εr = 4.0) of dimensions 2.0λ0 × 0.2λ0 × 0.5λ0. Two halves of the

box are meshed at slightly different discretization rates to obtain a non conformal

mesh. The coarser mesh is 0.125λ− while the finer is 0.1λ−. The RCS is computed

due to scattering of a x̂ polarized plane wave incident along ẑ and is observed along

φ = 0. The RCS obtained due to scattering from a discretization constructed on

this non conformal mesh is compared against that is obtained by constructing a fully

conformal mesh on the geometry. The number of unknowns is NGMM = 5600 for

the non conformal mesh and NGMM = 6004 for the conformal mesh. The agreement

of the RCS data, shown in Figure 5.6, demonstrates the ability of the GMM scheme

to seamlessly handle non conformal meshes.

5.3.3 Low frequency stability and multiply connected scat-

terers

It is well known that the condition number of the discrete integral equation is inti-

mately related to the discretization size. A rule of thumb for linear basis functions

is that the characteristic dimension h vary approximately as λmin/10. This means
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(a) Non conformal mesh for a box

(b) RCS comparison

Figure 5.6: RCS comparison for scattering from a non conformally meshed dielectric
box. Bistatic RCS (φ = 0) obtained by discretizing the Müller integral equation on a
non conformal mesh (shown inset) compared against that obtained by discretizing on
a (standard) conformal mesh for a thin dielectric (εr = 4.0) box (2.0λ0×0.2λ0×0.5λ0)
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that the size of discretization is governed by both the frequency and the dielectric

constant. Further, the size of discretization is often governed by the need to accu-

rately capture geometric features and, as a result, may be quite small. Next, the

two equations that are used in this paper, the PMCHWT and the Müller fall under

the category of Fredholm first and second kind, respectively. It can be proven that

the eigenvalue of the former spread further apart as the frequency becomes higher,

with the smallest accumulating around zero and the largest tending to infinity. In

contrast, the eigenvalues of the Müller cluster around a non-zero value [113]. As a

result, discrete system that arise from the PMCHWT tend to be ill-conditioned when

the wavelength is large compared to the feature size. In other words, they suffer from

low-frequency breakdown. The common remedy to solve this problem has been the

development of loop-star or loop-tree basis functions, that separate the basis functions

into an solenoidal and non-solenoidal components [93]. This decomposition confers

low-frequency stability to the discrete PMCHWT equations, however, unless these

decompositions are augmented, it is not possible to use them for analysis of multiply

connected objects. As the GMM basis functions are neither purely solenoidal nor

non-solenoidal, and the basis functions are purely local to a patch. They have been

shown excellent approximation properties of the function, its divergence and curl. In

what follows, we will demonstrate that they yield well conditioned systems that can

be used for analysis of multiply connected objects.

We compare the condition number of systems resulting from the discretization of

PMCHWT equations using GMM and RWG basis for three different scatterers; (i) a

sphere of radius 0.1m, (ii) a cube of side 1m and (iii) a thin NASA almond that fits in

a box of size 0.4m× 1.15m× 3m. The relative permittivity of each body is εr = 4.0.

Figure 5.8 demonstrates the condition number of the impedance matrix obtained

using the GMM basis functions and using RWG functions over a range of frequencies,

starting from 30Hz to 30MHz. In each case, the object is discretized at 0.1λ− at
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the highest operating frequency. The number of GMM and RWG unknowns are

NGMM = {400, 2404, 3056} and NRWG = {596, 7200, 5600} for the sphere, cube

and almond, respectively. As is immediately apparent from Figure 5.8, the condition

number of systems discretized using RWG basis grows exponentially as the frequency

decreases whereas those discretized using GMM are relatively constant in across a six

decade change in frequency.

(a) Sphere (0.1m)

Figure 5.7: Condition number comparisons. All objects are discretized at 0.1λm at
30MHz and the operating frequency is swept from 30MHz to 30Hz and condition
number of the impedance matrix obtained on GMM discretization is compared against
that obtained using a standard RWG discretizaion. (a) Sphere (radius 0.1m, εr = 4.0)
and (b) Cube (side 1m and εr = 4.0).

Next, we illustrate that these basis functions can be used to analyze scattering

from multiply connected objects unlike loop-star or loop-tree functions [96]. Figure

5.9 below compares the scattering from a toroidal scatterer of outer radius 0.75λ0,
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(b) Cube (1m)

Figure 5.7 Continued: Condition number comparisons. All objects are discretized
at 0.1λm at 30MHz and the operating frequency is swept from 30MHz to 30Hz
and condition number of the impedance matrix obtained on GMM discretization is
compared against that obtained using a standard RWG discretizaion. (a) Sphere
(radius 0.1m, εr = 4.0) and (b) Cube (side 1m and εr = 4.0).
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Figure 5.8: Condition number comparisons. All objects are discretized at 0.1λm at
30MHz and the operating frequency is swept from 30MHz to 30Hz and condition
number of the impedance matrix obtained on GMM discretization is compared against
that obtained using a standard RWG discretizaion. (c) NASA thin almond (side
0.4m× 1.2m× 3.0m and εr = 4.0)

inner radius 0.5λ0 and of relative permittivity 4.0 computed using the GMM dis-

cretization of the Müller equation (NGMM = 3406) compared to that obtained

using a standard RWG discretization (NRWG = 7800). The incident field direction

(−ẑ) and polarization (x̂) is shown inset in the figure. The excellent comparison of

the RCS demonstrates the ability of the GMM framework using the quasi-surface

Helmholtz basis functions to handle multiply connected domains.
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(a) Surface current on dielectric toroid

(b) RCS comparison for dieletric toroid

Figure 5.9: Bistatic RCS (φ = 0) comparison for a dielectric toroid (outer radius
0.75λ0 and inner radius 0.5λ0, εr = 4.0). Figure 5.9(a) shows direction and polar-
ization of the incident field along with an image of the surface current density on the
toroid.
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Chapter 6

Analysis of transient scattering

using the Generalized Method of

Moments

In this chapter, we extend the GMM technique to the solution of transient scattering

from perfectly conducting bodies. We will proceed by deriving the time domain EFIE

and MFIE. While these equations can be derived from first principles, in this work

we will restrict to a simpler derivation starting from the frequency domain equations

using the Fourier transforms.

6.1 The Fourier transform pair

The temporal Fourier transform pair that we will use for the derivation of the TD-

EFIE and TD-MFIE are given by

F(r, ω)
.
= F{F(r, t)} =

∫ ∞
−∞

dt F(r, t)e−jωt (6.1a)
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and

F(r, t) = F−1{F(r, ω)} .= 1

2π

∫ ∞
−∞

dt F(r, ω)ejωt. (6.1b)

We will freely use the following identities without proof:

F

{
∂

∂t
F(r, t)

}
= jωF(r, ω), (6.2a)

F {δ(t− τ)} = e−jωτ , (6.2b)

which directly lead to

F−1

{
e−jkR

4πR

}
= F−1

{
e−jωR/c

4πR

}
=
δ(t− R

c )

4πR
(6.2c)

and

F−1 {F(r, ω)G(r, ω)} = F(r, t) ∗t G(r, t), (6.2d)

where ∗t denotes convolution in time defined as

F(r, t) ∗t G(r, t) =

∫ ∞
−∞

dτF(r, τ)G(r, t− τ). (6.2e)

6.2 Time Domain EFIE and MFIE

For the sake of completeness, we restate our scattering problem in a transient frame-

work here. Consider a perfectly electric conducting body occupying a domain D− ⊂

R3 in free space (µ0, ε0). Let Ω denote the bounding surface of D− and let the out-

ward pointing unit vector normal at any point r on Ω be denoted by n̂(r). Assume

that a field {Ei(r, t), Hi(r, t)} is incident on this body. This field induces currents,

J (r, t), on the surface Ω, that radiate scattered fields {Es(r, t), Hs(r, t)}. Thus, the

total electric and magnetic fields in all of D+ = R3/D−, denoted by E(r, t) and
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H(r, t), can be decomposed into the incident and scattered fields by

E(r, t) : R3 × R+ → R3 = Ei(r, t) + Es(r, t) (6.3a)

and

H(r, t) : R3 × R+ → R3 = Hi(r, t) +Hs(r, t). (6.3b)

n̂s

Ω

D−

{E i(r, t), Hi(r, t)}

{Es(r, t), Hs(r, t)}

Figure 6.1: General description of a scattering problem

Applying the Fourier transform to equations (2.11) and (2.12), we obtain their

time domain equivalents as

Hs(r, t) =
1

µ0
∇×A(r, t) (6.4a)

and

Es(r, t) + ∂tA(r, t) = −∇φe(r, t) (6.4b)

Coupling (6.4a) and (6.4b) with the Lorentz gauge given by

∇ · A(r, t) + µ0ε0
∂φe(r, t)

∂t
= 0 (6.5)
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, we obtain

Es(r, t) = −∂tA(r, t) +
1

µ0ε0

∫ t

−∞
du ∇∇ · A(r, u). (6.6)

This provides us a relationship between the magnetic vector potential and the fields.

The magnetic vector potential can be related to the induced current J (r, t) by the

Fourier transform of equation (2.27) as

A(r, t) = µ0

∫
Ω
dr′J (r′, t) ∗t

δ(t− τ)

4πR
. (6.7)

where τ = t − R/c and R = |R| = |r − r′| and using (6.7) in (6.6) and (6.4a). We

assume that all the integrals contain finite energy and that we can switch the order

of integration to obtain the following equations for the scattered fields generated by

J (r, t):

Es(r, t) = −µ0∂t

∫
Ω
dr′ J (r′, τ)

4πR
+

1

ε0

∫
Ω
dr′ ∇∇ ·

∫ τ

−∞
dt
J (r′, t)

4πR
(6.8a)

and

Hs(r, t) = ∇×
∫

Ω
dr′J (r′, τ)

4πR
. (6.8b)

Equation (6.8b) can be, after some manipulation, reduced to

Hs(r, t) =
1

4π

∫
Ω
dr′

[
1

cR
∂tJ (r′, τ) +

1

R2
J (r′, τ)

]
×R. (6.8c)

Applying the PEC boundary conditions from chapter 2 and proceeding very similar to

the derivation of the frequency domain EFIE and MFIE, we obtain the time domain

versions of the EFIE and the MFIE as

n̂×n̂×Ei(r, t) = n̂×n̂×
{
µ0
4π
∂t

∫
Ω
dr′ J (r′, τ)− 1

4πε0

∫
Ω
dr′ ∇∇ ·

∫ τ

−∞
dt J (r′, t)

}
(6.9a)
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and

n̂×Hi(r, t) = −n̂×
{

1

4π

∫
Ω
dr′

[
1

cR
∂tJ (r′, τ) +

1

R2
J (r′, τ)

]
×R

}
(6.9b)

Finally, to avoid the integration involved in (6.9a), we use the time derivative of

these equations to obtain the time domain EFIE (TD-EFIE) the time domain MFIE

(TD-MFIE) as

n̂× n̂× ∂tE
i(r, t) = n̂× n̂×

{
µ0
4π

∫
Ω
dr′ ∂2

t J (r′, τ)− 1

4πε0

∫
Ω
dr′ ∇∇ · J (r′, τ)

}
(6.10a)

and

n̂× ∂tH
i(r, t) = −n̂×

{
1

4π

∫
Ω
dr′

[
1

cR
∂2
t J (r′, τ) +

1

R2
∂tJ (r′, τ)

]
×R

}
(6.10b)

The standard marching on in time (MOT) [92, 114–116] solution to the above

system of equations expands the unknown current in a set of spatio-temporal basis

functions as J(r, t) =
∑Ns
n=1

∑Nt
j=1 In,jjn(r)Tj(t). The spatial basis functions jn(r)

typically chosen are RWG functions. However, the temporal basis functions Tj(t)

need to be carefully chosen. In the next section, we will visit this topic in some

detail.

6.3 The Marching on in Time (MOT) scheme

To solve the TD-EFIE and TD-MFIE above, we will proceed similar to the frequency

domain case. The spatio-temporal current J (r, t) is discretized using a set of basis

functions that are assumed to be a product of Ns spatial vector basis functions

(eventually the GMM basis functions) and Nt scalar shifted temporal functions (of
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the form Tj(t)
.
= T (t− jδt), that partition the time into segments of size ∆t.

J (r, t) ≈
Ns∑
i=1

Nt∑
j=1

Ij,nT (t− j∆t)jn(r). (6.11)

Substituting (6.11) into the TD-EFIE/TD-MFIE and performing point testing (δ(t−

i∆t)) in time and Galerkin testing (jm(r)) in space results in a set of Nt, order-Ns

matrix equations of the form

Nt∑
j=1

Zi−j Ij = Vi, (6.12)

where

Ij =
[
Ij,n

]
, (6.13a)

Vi =


∫

Ω
dr
[
n̂× n̂× ∂tEi(r, i∆t)

]
· jm(r)∫

Ω
dr
[
n̂× ∂tHi(r, i∆t)

]
· jm(r)

(6.13b)

and

Zi−j =



∫
Ω
dr jn(r) ·

[
n̂× n̂×

{
µ0
4π

∫
Ω
dr′ jn(r′)∂2

t T ((i− j)∆t)

− 1

4πε0

∫
Ω
dr′ ∇∇ · jn(r′)T ((i− j)∆n)

}]
−
∫

Ω
dr jn(r) · n̂×

{
1

4π

∫
Ω
dr′

[
1

cR
jn(r′)∂2

t T ((i− j)∆t)

+
1

R2
jn(r′)∂tT ((i− j)∆t)

]
×R

}
(6.13c)

The most critical observation about the (6.13c) is that, if the temporal basis functions

have finite support, that is ∃ k, l · ⊃−−· T (t) = 0 ∀ t ≤ −(l + 1)∆t, t ≥ (k + 1)∆t,

then if Rmax is the maximum spatial extent of the scatterer (Rmax ≈ diam(Ω)), we
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have that

Zi−j = 0 ∀ (i− j) < −l and (i− j) > k +
Rmax
c∆t

. (6.14)

Further, if we assume that the temporal basis functions are causal, that is T (τ) =

0∀τ ≤ −∆t, we have that Zi−j = 0 ∀ i < j − 1. This is called the “marching

criterion”, in that if this criterion is satisfied, the matrix equation (6.12) can be

re-written as a marching scheme, given by

Z0Ii = Vi −
i−1∑

j=i−km
Zi−jIj (6.15a)

where km is given by

km =
Rmax
c∆t

+ k (6.15b)

This naturally leads to a marching solution of the TDIE whereby the unknowns solved

for in (a finite number of) prior time steps leads to the solution at the current time

step.

6.4 Temporal basis functions

Given the marching scheme above, it is desirable to choose basis functions Tj(t) that

(i) have short temporal support, (ii) do not look forward in time, and (iii) provide

good interpolation properties.

The most commonly used function in the literature are piecewise continuous func-

tions of order p given by

T (t) = fl(t)gp−l(t) for −∆t+ l∆t ≤ t ≤ l∆t ; l = 0 . . . p (6.16a)
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where

fl(t) =


1 l = 0

k∏
i=1

t− i∆t
−i∆t

l 6= 0

(6.16b)

and

gp−l(t) =

p−l∏
i=1

t+ i∆t

i∆t
(6.16c)

Clearly, these functions satisfy (i)-(iii) and have been in active use for a very long

time [52, 92, 114]. A plot of these functions are shown in figure 6.2a below. Another

temporal basis function that has been used is the Approximate Prolate Spheroidal

Wave Function (APSWF) given by

T (t) =
sin(sω0t)

sω0t

sin

[
a

√(
t

N∆t

)2
− 1

]

sinh(a)

√(
t

N∆t

)2
− 1

(6.17)

where ω0 is the highest end of the frequency band of interest, s is an oversampling

factor, N ∈ Z is the APSWF width parameter and a = πN(s−1)/s. These functions,

shown in figure 6.2b can be shown to be band limited (to ωmax = (2s − 1)ω0), but

are non causal, (the function value at a time instant depends on future values of

time) [117]. This problem of the APSWF is solved by an extrapolation procedure that

maps the forward part of the function using a least-squares approach, albeit at the

expense of band-limitedness [116]. Either of these two approaches has an interesting

consequence. Upon examination of equation (6.13c), it is clear that the solution of

either TDIE requires the computation of at least one derivative of the temporal basis

function. However, it can be shown that neither the Lagrange polynomials or the

extrapolated APSWF functions used support more than one derivative. This has

been reported to result in inaccuracies in the solution and instabilities in the marching
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scheme. Some recent efforts to solve this effort attempt to use separable polynomial

approximations to the Green’s function to construct solutions [118,119].

6.5 GMM for transient scattering

Traditionally the spatial basis functions used for the discretization of the TDIE are

the RWG functions. These functions have been carried over to time domain integral

equations (TDIE) from their frequency domain counterparts and have been shown to

be highly effective in a variety of problems. However, the drawbacks that are suffered

by the RWG functions in frequency domain are prevalent in the analysis of TDIE

(a) Lagrange Polynomial Basis Functions

Figure 6.2: Temporal basis functions for solution of the TDIE. (a) shows the Lagrange
polynomial basis functions which are not band limited as opposed to (b) approximate
prolate spheroidal functions that are band limited but require extrapolation to main-
tain causality.
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(b) APS Functions

Figure 6.2 Continued: Temporal basis functions for solution of the TDIE. (a) shows
the Lagrange polynomial basis functions which are not band limited as opposed to
(b) approximate prolate spheroidal functions that are band limited but require ex-
trapolation to maintain causality.
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as well. While the close marriage between the basis function construction and the

tessellation helps to satisfies continuity constraints across the interior edges of the tes-

sellation, this nature of construction is inherently restrictive. As has been discussed

before, even the use of mixed orders of polynomial basis functions is significantly

involved and usually requires the careful design of patches and “transition” areas. In

the frequency domain, the GMM was designed as an umbrella framework to include

arbitrary functions in the basis space. We also demonstrated that the basis functions

proposed result in a matrix system with stable condition numbers to very low frequen-

cies. Here we extend the GMM scheme to the discretization of the TD-MFIE. We will

describe a scheme for the extension of the GMM to time domain using products of

GMM functions (for spatial basis functions) and interpolatory polynomials (for tem-

poral basis functions). In the remainder of this chapter, we will first show that these

basis functions provide accurate scattering results over a wide variety of geometries.

Further, we will demonstrate several of the advantages of the GMM scheme including

(i) its ability to arbitrarily mix basis functions across the geometry: using different

basis functions in different areas of the tessellation can be trivially achieved under

the GMM framework by simply changing an input flag. We will present results that

show that the low frequency nature of the GMM discretized TD-MFIE is much more

stable than the standard RWG-TD-MFIE.

The actual implementation of the GMM to the MOT scheme described above

is straightforward. We retain the Lagrange polynomial interpolation in time and

the point matching temporal testing scheme. The spatial basis functions can be

replaced with the GMM functions exactly as done in the frequency domain case.The

spatial integrals are now evaluated with a “Green’s kernel” of 1/R as opposed to the

oscillatory Green’s kernel used for the frequency domain implementation.
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6.6 Numerical Experiments

This section will illustrate a variety of numerical experiments that illustrate the

validity and utility of the GMM discretization scheme. We will assume that the

incident electric field is a Gaussian modulated plane wave of the form Ei(r, t) =

p̂cos(2πf0τ) exp
[
−(τ − tp)2/2σ2

]
, where σ = 6/2πfbw and τ = t − k̂ · r/c. p̂ and

k̂ denote the polarization and the direction of propagation of the plane wave respec-

tively. The center frequency f0 and bandwidth fbw describe the frequency character-

istics of the signal. Examination of the incident field shows that the energy content

is almost −160dB down at f0 + fω in comparison to the energy at f0. The scattered

far field is computed from this signal and its Fourier transform is computed. The

backscatter RCS is then extracted as the ratio of the frequency spectrum of the far

field to that of the incident field. This allows us to evaluate the GMM discretization

of the TD-MFIE against both other time domain methods (such as RWG-MOT) and

frequency domain methods (by comparing RCS). The GMM basis functions are con-

structed starting from a triangular spatial discretization with an average edgelength

of 0.1λm, where λm is the lowest wavelength in the frequency bandwidth.

6.6.1 Validation

First we validate the GMM discretization scheme against both experiments and

against the traditional RWG discretization. In this section, we will provide a plethora

of results comparing the GMM-discretized TDIE compared with the standard RWG

based TDIE. Figure 6.3a shows the backscatter RCS obtained from two PEC spheres,

of radii 0.2m and 1.0m. The GMM discretizations result in NGMM = 388 and

NGMM = 200 unknowns respectively. The RCS is compared to the that obtained

from an MOT solver using RWG basis functions, resulting in NRWG = 576 and

NRWG = 192 unknowns respectively. The center frequency f0 = 30MHz and band-
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width is fbw = 15MHz. As is clear from the figures, there is excellent match between

the backscatter RCS results.

Figure 6.3b compares the backscatter RCS for a NASA almond that fits in a box

of dimensions 0.3m × 1.15m × 3m. The direction of propagation k̂ = −ẑ and the

polarization p̂ = x̂ of the incident wave is shown inset in the figure, along with a

time-snapshot of the surface current. Again f0 = 1e8 and the bandwidth extends

to a low frequency end of 100Hz. The large bandwidth allows for the examination

of the low frequency behavior of the GMM scheme. The number of unknowns are

NGMM = 1528 and NRWG = 1656 respectively. The agreement between the RCS

shown provides further confidence in the GMM discretization scheme.

Next, figure 6.4a compares the backscatter RCS obtained from a thin PEC box of

size 20m × 1m × 20m using the GMM discretization NGMM = 1780 to that using

standard RWG NRWG = 2640. The incident electric field is polarized along ŷ and

incident along x̂, on the thin edge of the box. The center frequency of the incident

field f0 = 15MHz and extends at the low frequency end to 100Hz. The agreement of

the RCS in figure 6.4a further validates the GMM scheme. Finally, in figure 6.4b the

backscatter RCS obtained from a PEC cube of side 0.7m, as a function of the incident

wavelength, is compared against that obtained using both the RWG basis functions

and experimental data reported in [109]. The direction of propagation k̂ = −ŷ and

polarization p̂ = x̂ of the incident field is again reported inset in the figure along with

a snapshot of the magnitude of surface current on the cube. Again, the agreement

of the RCS to experiment and the RWG scheme validates the GMM scheme for the

discretization of time domain integral equations.

6.6.2 Low frequency stability

The well conditioned nature of the GMM scheme at low frequencies is expected to

result in low frequency stability in time. As a first step to investigating this property,
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(a) PEC Sphere

Figure 6.3: Backscatter RCS comparison for (a) two spheres of radii 0.2m and 0.5m
and (b) a thin NASA almond (0.3m×1.15m×3m) compared against RWG discretiza-
tion. The inset figure shows snapshots of the magnitude of the current density on the
almond.

we observe the backscatter RCS of the GMM scheme for very wideband incident fields.

The same scattering problem is solved using both the GMM and RWG discretizations

and the RCS observed in both cases is compared to a frequency domain scheme (using

RWG basis functions) at a number of frequency points all the way down to the end of

the frequency band of the input signal. Figure 6.5a compares the backscatter RCS for

the thin box considered above (20m× 1m× 20m, NGMM = 1780, NRWG = 2640).

The incident field direction, polarization, center frequency and bandwidth are the

same as the example in figure 6.4a above. As is clear from the figure, the RCS

computed using the GMM discretization agrees with the frequency domain RCS down

to very low frequencies. However, the RCS computed using the RWG scheme departs
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(b) NASA Almond

Figure 6.3 Continued: Backscatter RCS comparison for (a) two spheres of radii 0.2m
and 0.5m and (b) a thin NASA almond (0.3m×1.15m×3m) compared against RWG
discretization. The inset figure shows snapshots of the magnitude of the current
density on the almond.
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(a) Comparison against RWG

Figure 6.4: Backscatter RCS comparison for (a) a thin box of size 20m× 1m× 20m
compared against RWG discretization and (b) a PEC cube of side 0.7m compared
against both RWG and experimental result. The inset figures show snapshots of the
magnitude of the current density on the scatterer.

from the frequency domain RCS at lower frequencies. While this needs to be further

investigated for the EFIE, this nevertheless does point to the low frequency stability

of the GMM discretization.

In figure 6.5b, we illustrate the utility of using a local surface Helmholtz decom-

position. The use of a global Helmholtz decomposition, such as in the loop-star

scheme [93], would preclude the application to multiply connected domains, such

as the toroid shown inset in figure 6.5b. However, being based on a local surface

Helmholtz decomposition, the GMM scheme is directly applicable to multiply con-

nected domains. Figure 6.5b compares the backscatter RCS due to the scattering

of a −ẑ directed plane wave polarized along x̂ from a PEC toroid of outer radius
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(b) Comparison against experiment

Figure 6.4 Continued: Backscatter RCS comparison for (a) a thin box of size
20m × 1m × 20m compared against RWG discretization and (b) a PEC cube of
side 0.7m compared against both RWG and experimental result. The inset figures
show snapshots of the magnitude of the current density on the scatterer.
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0.75m and inner radius 0.5m, discretized using 1503 GMM and 3900 RWG unknowns

respectively. The center frequency of the incident field f0 = 300MHz and the band-

width is fbw = 150MHz. The agreement of the RCS demonstrates the validity of

using the GMM scheme for multiply connected domains.

(a) Thin box at very low frequencies

Figure 6.5: Backscatter RCS comparison for (a) thin box (20m × 1m × 20m) and
(b) a toroid (outer radius 0.75m and inner radius 0.5m). The inset figures show a
snapshot of the magnitude of the current density and direction of propagation and
incidence.

6.6.3 Mixtures of basis functions

Here, we present examples to illustrate the capability of the GMM scheme to mix

basis functions in time domain. To this end, we first use the GMM discretization

to generate the backscatter RCS due to scattering from a PEC box of dimensions

1.0m × 4.0m × 1.0m aligned with the long axis along x̂, discretized uniformly at
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(b) Multiply connected domains

Figure 6.5 Continued: Backscatter RCS comparison for (a) thin box (20m×1m×20m)
and (b) a toroid (outer radius 0.75m and inner radius 0.5m). The inset figures show
a snapshot of the magnitude of the current density and direction of propagation and
incidence.
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0.2λm at the highest frequency. Following this, the box is re-meshed with an average

edge length of 0.2λm, 0.2m from the two narrow ends, and 0.4λm elsewhere. Then

the GMM discretization is applied to the new mesh using basis functions of order

p = 1 near the edge and p = 2 elsewhere. Figure 6.6a shows the excellent agreement

between the RCS obtained from these two cases. The x̂ polarized incident field is

incident along −ẑ and f0 = 60MHz and fbw = 30MHz.

In figure 6.6b the backscatter RCS due to scattering of a x̂ polarized Gaussian

modulated plane wave incident along −ẑ with center frequency 300MHz and band-

width 299.9MHz on the above thin NASA almond (0.3m×1.15m×3m) aligned along

the x̂ axis. The almond is discretized with an average edge length of 0.1m. First the

RCS is computed using GMM basis functions of order p = 1 everywhere. Following

this, GMM basis functions complete to order p = 2 are used in all patches within

0.2m of the tip. Again, the RCS match each other very well.

Finally in figure 6.6c we mix three orders of basis functions. The inset in figure

6.6c shows a PEC box of dimension 3m × 3m × 6m aligned along the x̂ axis. An

x̂-polarized incident field of center frequency 200MHz and bandwidth 100MHz is

incident on this box along −ẑ. The backscatter RCS scattered by the box is computed

using, first a uniform discretization of (average edge length) h = 0.1m everywhere and

basis functions of order p = 1 everywhere. This is followed by discretizing the box

using h = 0.1m near the corners, h = 0.2m near the edges and h = 0.25m elsewhere.

The RCS is then computed using p = 1 in patches of size h = 0.1m, p = 2 where

h = 0.2m and p = 3 where h = 0.25m. The two RCS are computed in figure 6.6c.

The RCS, again, show excellent agreement.

The obvious advantage of this scheme is the ability to reduce the number of

unknowns (the spatial unknown count dropped from 776 to 226 in the case of the

box in figure 6.6a and from 11000 to 2800 in figure 6.6c ). However, notwithstanding

this gain in computational time, we would like to stress the ease of implementing the
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mixture of orders of basis functions in the GMM scheme. Indeed, in the code, this

change is effected simply by changing an input flag. This ability to trivially mix basis

functions is unique to the GMM scheme.

6.6.4 Non conformal meshes

As before, one of the important advantages of disassociating the definition of the

basis function from the underlying tessellation of the geometry is the ability to use

non conformal meshes. This was investigated in some detail in earlier chapters. Here

we consider scattering from a PEC box of dimensions 2.0m × 0.2m × 0.5m. Two

(a) PEC box (1m× 4m× 1m)

Figure 6.6: Backscatter RCS comparison of standard GMM vs. Mixed-order GMM
(a) Box using p = 1 near edges and p = 2 in larger patches near center (b) NASA
almond discretized with GMM basis functions complete to order p = 2 near edges
and p = 1 elsewhere and (c) dielectric box using p = 1 near edges, p = 3 near the
center and p = 2 in the transition region.
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(b) NASA thin almond

Figure 6.6 Continued: Backscatter RCS comparison of standard GMM vs. Mixed-
order GMM (a) Box using p = 1 near edges and p = 2 in larger patches near center
(b) NASA almond discretized with GMM basis functions complete to order p = 2
near edges and p = 1 elsewhere and (c) dielectric box using p = 1 near edges, p = 3
near the center and p = 2 in the transition region.
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(c) Three orders of basis functions

Figure 6.6 Continued: Backscatter RCS comparison of standard GMM vs. Mixed-
order GMM (a) Box using p = 1 near edges and p = 2 in larger patches near center
(b) NASA almond discretized with GMM basis functions complete to order p = 2
near edges and p = 1 elsewhere and (c) dielectric box using p = 1 near edges, p = 3
near the center and p = 2 in the transition region.
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halves of the box are meshed at slightly different discretization rates to obtain a

non conformal mesh. The backscattered RCS is computed due to scattering of a x̂

polarized plane wave incident along ẑ. The RCS obtained due to scattering from a

discretization constructed on this non conformal mesh is compared against that is

obtained by constructing a fully conformal mesh on the geometry. The agreement

of the RCS shown in figure 6.7 demonstrates the ability of the GMM scheme to

seamlessly handle non conformal meshes.
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(a) Non conformal mesh for a box

(b) Backscatter RCS comparison

Figure 6.7: Backscatter RCS comparison for scattering from a non conformally
meshed PEC box. RCS obtained by using the GMM discretization on a non conformal
mesh (shown inset) compared against that obtained by discretizing on a (standard)
conformal mesh for a thin box
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Chapter 7

Conclusions and Future Work

This thesis introduces a novel umbrella framework for the solution of integral equa-

tions through the method of moments. The technique expands the basis function

spaces that can be used to construct MoM solutions. The GMM framework encom-

passes a wide variety of schemes, such as meshless methods, Nystrom schemes, point

cloud techniques as well as standard RWG based models. We have introduced a

mechanism for the near complete decoupling of the basis function definition from the

underlying tessellation, in stark contrast to the existing methods, where the basis

function is usually designed to take advantage of an existing tessellation. The stan-

dard tessellation is replaced by an overlapping tessellation and a partition of unity

function. The implicit continuity imposed by the partition of unity function allows for

the above decoupling that then facilitates the use of a wide variety of approximation

functions. The use of such functions in a traditional RWG scheme requires extremely

careful manipulations.

In addition to the GMM framework, this thesis also proposes a local Helmhotlz

decomposition based basis function scheme has resulted in a well conditioned system

over a wide range of frequencies. This has important implications in the design

of solution schemes for complex geometries involving a wide range of discretization
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scales. Results have been presented that demonstrate the accuracy and advantages

of the technique presented here.

The final two chapters of the thesis also describe the application of the GMM

discretization scheme to the analysis of scattering from dielectric bodies and to time

domain scattering. The advantages of the GMM technique are shown in terms of

the well conditioned nature of the matrix systems in the discretization of the PM-

CHWT system and the low frequency stability of the discretized time domain integral

equations.

The chief contributions of this work are detailed below.

• An umbrella framework for the discretization of electromagnetic integral equa-

tions. A theoretical foundation has been laid for the development of Partition

of Unity based basis functions and their error bounds have been rigorously de-

rived for smooth geometries. A mechanism has been described for the possible

decoupling of the geometry description and the basis function definition.

• A novel basis function design has been proposed which relies on a local Helmholtz

decomposition and a mechanism has been described for its implementation using

a variety of approximation functions.

• A detailed implementation structure has been provided for the GMM starting

from commonly available meshes where a prescription has been provided for

– The construction of patches

– The definition of functions on these patches

– Design of a partition of unity function

– Design of approximation function

– Removal of extra degrees of freedom and

– Evaluation of the matrix elements.
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• The technique has been applied to a wide variety of examples both validating

the technique and demonstrating its prowess.

• An important consequence of the basis function definition in terms of well con-

ditioned nature of the matrix system has been demonstrated for a very wide

variety of geometries and formulations. Specifically, the system has been shown

to result in (i) well conditioned matrix systems for PEC and dielectric objects

over more than 6 decades of frequencies and (ii) low frequency stable discretiza-

tions in time domain.

• The technique has been extended to the discretization of the PMCHWT and

Müller integral equations for the analysis of scattering from homogeneous di-

electric bodies.

• The GMM has been applied to the analysis of transient scattering from PEC

objects and the ability of the technique to result in a stable system at very low

frequencies where the standard discretization breaks down has been demon-

strated through several examples.

7.1 Future Work

The work that has been reported in this thesis opens the door for a variety of future

research directions. We identify some of them in the remainder of this chapter.

7.1.1 Mathematical proof for the well conditioned nature of

the GMM

The GMM discretized integral equations have been shown to be well conditioned

over an extensive range of geometries and frequency scales. In particular, it was
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demonstrated that for both PEC and dielectric objects, the numerical system has

a near-constant condition number over more than 6 decades of frequency (or corre-

spondingly length scales). This has very important consequences in the analysis of

multi-scale objects. In addition to well conditioned matrix systems, the ability to

trivially integrate multiple basis functions in the basis space will also enable the anal-

ysis of realistic geometries. This well conditioned nature of the discretized equations

have also been translated to time domain where the GMM discretization has been

shown to result in low frequency stable systems. Again, this result has important

and far reaching consequences in the analysis of transient scattering. The immediate

future work in this direction is to develop a rigorous set of proofs for the low fre-

quency stability of the GMM discretization and potential bounds on the condition

number of the matrix system. This can start by examining the projections of the

basis functions on the eigen values of canonical structures and estimating condition

numbers. Further proofs of the well conditioned nature can be obtained by examining

the function spaces spanned by the basis functions involved in the GMM. A study of

this nature will provide solid footing on which to design basis functions for realistic

and challenging problems involving very large scales of discretization.

7.1.2 Generalized higher order patch construction

The GMM technique developed here has been implemented for flat triangulations.

However extension to smoother geometry descriptions is extremely straightforward

and will form the first of future efforts. Higher order patches are typically defined on

a tangent triangle using shifted Sylvester polynomials [74]. To extend the GMM to

such patch definitions using the structure described in this thesis is relatively easy.

The patches can be constructed starting from nodes, with the collection of “higher

order” triangles sharing that node forming a patch. The rest of the implementation

structure will remain essentially unchanged with the sole exception of the construction
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of matrix elements. Numerical integration on the curved triangles will have to now

account for the curvature. Similarly the analytical integration routines will need to

be redesigned. However, interesting questions arise if higher order patches are not

constructed using such a combination of triangles. Another possible design is to

construct a surface such that it coincides with the original surface at a finite set of

points but maintains a continuous surface normal. This has the advantage of both

having a smooth surface description and, at the same time, allowing for continuity of

the normal component and thereby avoiding the need for the evaluation of singular

integrals on the line as described in 4. The use of higher order patches have been

shown to lead to significant gains in accuracy.

7.1.3 Further development of the transient GMM

The application of the GMM basis functions described in this work to the discretiza-

tion of the time domain integral equations leaves a lot of interesting issues to be

resolved. The main among these are the convergence properties of the inverse of the

time domain operator. Further, the well conditioned nature of the discretized fre-

quency domain operator leads to the expectation that the GMM discretization of the

time domain integral equation will lead to a stable discrete system. This has been

shown in several numerical examples in this thesis and a rigorous mathematical proof

is a natural follow-up. Finally, the advantages of using a GMM-type discretization

based on a partition of unity framework from both a stability and accuracy point of

view can be explored.

7.1.4 Application to multi-scale geometries

The well conditioned nature of the GMM at low frequencies motivates its application

to multi-scale geometries. In addition to the use of the fast multipole method that
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has already been applied to the GMM, the accelerated Cartesian expansions can also

be implemented trivially within a GMM framework making it an excellent choice

for the solution of scattering problems from highly multi-scale geometries. Further,

straightforward parallelization of the GMM framework will enable the analysis of

extremely large and realistic structures.

7.1.5 Domain Decomposition

The ability to include arbitrary functions in the basis function space of the GMM

scheme can be exploited in a domain decomposition framework. Domain decompo-

sition techniques have existed in literature for a while now and involve separating

the domain of interest into smaller regions each of which are analyzed separately.

The idea of domain decomposition is popular in constructing differential equation

based solvers, and has been present in integral equation solvers for a while although

it has only recently been used for analyzing mixed scale problems. This technique

can be extended to integral equations and can be very useful for solving highly multi

scale problems. The GMM framework is excellently suited to domain decomposition

problems. The freedom of choice of basis functions allows a flexibility to use ba-

sis functions best suited for each sub domain and the partition of unity framework

provides a natural mechanism for the interaction of these domains.

7.1.6 Application to other integral equations

Finally, the GMM mechanism has been developed in this work for electromagnetic

integral equations. Their extension to the solution of integral equation formulations

of acoustic scattering problem is expected to be straightforward and will become an

area of active future research.
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