

I
1
.
“

1
!
"

I
I
I

.
I

.
.

,
.
I

I
.

'
v

.
.
I

6
.
.
.
I
.
I
I

..
.
.
-

I
.

-
.
.
.
Y
.
.
.

.
‘
1
5
.

I
I
.
.
.

I
I
I
I
.
"
‘

I
I
.
L
I
I
-
.
.
.
.
.
l

I
i
k
I
‘
I
C
I
I
A

I

I
I

I
I

I
I
I

I
.

I
.

I
.

I
I
I
.
.
.
.

.
I
I

I
.

-

C
I

I
-

K
!

.
I
I
I

_
.
.

.
I
t

.
.
I
.

-
I

.
.

..

I
.
.
.
-
I
-
I
I
'
I
?
.
I
.
I
I
‘

.
I
.

I
,

I
.

I
_

I
.

I
I
V

§
.
:
0
0
.

.
I
.
.
I
»
o
’

.
.
.
.

I
I
I
I

.

I
I
k
'
I

1
I
I
I
.
.
I
U
I

I
.
I
.
.
u

I
"
.
.
.

I
I

o
.

.
.

h
.

I
2
|

.
I

I
I
]

.

I
I

I
.

I
I
I
.

I
I

.
.
.

.
I
-

.
I
'

.
.

I.
I
I
.
.
.

I
I
.
.
V
.
”
I
I
I
.
.
.
"
W
.

.
.

.
4
.
.
.
‘
I
I
I
I

V
I
I
I
.

.
.
.

.
.
.

I
.
.
.
?
I
.

,
.

.
.

.
.
I
I

I
2
1
.
.
.

.
l
.
.
I

.
.

.
.

.
0.

.
I

.
.

.
,
.

.
.

.
I
I
I

.
.
9
3
7
1
-
9
.

I
I

I
I
I
.
.
.
.
.
I
I
I
I
I

,
I
9
1
.
.
.
I
I
I
I
.

‘
9
.
.
.

.
-
.
.

.
.

.

.

I
I

I
I
.

L
-

.
.
I
.

L
A
I
I
I
I
M
I
I
I
.
.
.
H
I
I
.
I
I
I
N
I
I
H

.
.
.
.
I
s
.

7
.
,

I
C
I
.

.
I

I
I
-
.
o
l
I

I
I
I
I

\

I
.

I
I
I
I

I

.
I
.
I
I
I
‘

.
I

.
I
I
I
I
.
.

.
.
I
I
.
.
I

.
I

.
.
I

I
.
I

I
.

I
.

..
.
.
.
.
.
.
.
.
fl

.
.
1

I

.
I

I
I

.
I

.
I

I
.
.

.
.
I
I
I

.
I
I
I

I
.
I
o
l
v
.

.
.
.
-
I
I
.
.
-

.
<

.
.
I
I
.

.
I
I
I

I
I
!
-

.
.

.
.

.
.

I
.

I
I

I
.
.

.
.
.
I

I
.

_
I
I

.
.
I
I
I
.

O
H

I
I

I
I
.
I
I
I
J
I
.
I
I
.
I
I
I

.
_

K
—

I
.
I

I
I
.
v
.
.
‘
o
.

.
-
.
-
I
.

.
.

.
.
I
.

.
.
I
I

.I
.

I
I
.
.
.
I

l
I

.
.
.
r

I
9

.
.
.

.
.

.
I
I
.

.
.
I
.
.
.
I
.

.
I
I
I
.
I
f

I
.

l
.
.
.

.
.

.
I

I
.
.
.

I
I
I

.
.

I
.
.
.

I
I
I
“
I
.
.
I
I
I
A
l
l
.
.
.
4

I
I
.
I
.
I
I
.
I

I
I

.
I
.

.
I
.
.
.

’
.
9

I
.

.
I

.
I

.
.

.
.
.

.
'

.
.

.
I

I
I
I

I
.

I
.

I
I

.
.
I
1
I
.
.
.

.
.
I

.
.
.
.

I
I

I
.

I
.
.
.

I
.

O
I
I
I
I
I
.

I
I

I
I

.
.

.
.
.

.
.
(
.
.

.
_
I

I
I
.

I
I
I
I

I
I
.

I
.

I
I
.
.
.

I
I

I

.
I

I
.

.
.
.
-
.
.
.

.
I
.
.
.
\
’
.

I
I
I
‘
J

.
.
.

I

fi
x

-
.
.
.
-
.
.
.
-
.
.
.
.
.
.

.
.

I
.

.
.

.
.
M
I
I
.
.
-
I
’
.
I
.
.
I
J
.
I
I
.
I

.
.

.
I
I
.
\
I
.
.
.
.
.
.
.

I

.
.

.
.

.
I
t

.
I

I
.
-

.
o
n

.
I
.

-
.
I

I
.
I
.
I

I
k
i
.
.
.
6
o
.

..
.

.
.

.
I
o
l
e

.
I
I

L
I
I
-
I

I
.
.
V

I
I
.
-

I
I

I
,

I
I

I
I

I
-

.
I
I

.
I

.
o
9

.
.
.
~
.

4
.
.
“3

.
.
.

.
.
.
.

.
.
.

I
0

I
I
.

5
I
I
.

I
.
.
I

I
I

I
I

I
.

Q
«
I

fi
'
I
o
o
.
I
.
v
¢
..
I
-
‘

.
.
.

—

.
.
‘
a
g
l

~
I
.
I
.

I
o
r
u
I
I
I
I
.
.
.
I
.
.
.
I
.

I
.

I
I
I
.

.
.

.
.

I
:
-

.
L
.

I
.
.
I

.
.

I
.

I
I

.
.
H
_
I
I
I
I
I
I

.
.
«
-
.
I
I
.

M
A
I

.
.
.
.

.
I

I
.
.
.

.
.

I
I
-u
.
.
.
.
6
I
o
.
I
I
s
.
’
o

.
I

.
I
.
I

.
.
I

.
.
.

o
I
.

.
I

I
I
I
.

.
.

.

.
5
.
I
.
-

I
I

I
.
I
.
M
I
I
H
.
I
‘

I
.
.

“
I
I
.

.
o
7

.
-

.
I

I
I

.

.
.
.
.
I

b
.
I

I
.

I
I
V

.
I

.
.

.

M
I
I

I
.
-

.
I
I
_
I
.
I
4

I
I
.
.
.

I
.
.
.
I
I
.
.
.
.
.
n
I
R
M
I
I
.

I
.
.
.
-
I
J
I
I
V
U

.
.
.
.
.
.

I
.

.
.

.
.
.
.
i
f
.
.
.

.
I
.

0
.
0
.

I
I
I
.
I
.
.
I
.

.
I

T
I
K
I
V

I
I

I
,
0
.

I
I
I
.

I
"
.
I
I
I
-

I
.

v
.

I
.

I
N
.
.
.
I
I

I
.
.
.
:

0
0
.
1
-

.
.
.
I
-
0

.
.
r
‘
.
.
¥
I
I
I
n

.
.
.

I
I

.
.
.
.
I
.

.
.
V

I
A
”
.

.
I
.
.
.

I
I
.

I
.
‘
.
.
I
q
r
\
.
0
l
1
?
.
.

_.
I.

.

”
0
.
!

I
I

.
I
.
.
.

'
.
'

.
.
Q
I
I
”
.
.
.

.
.
I
.

.

:
I
P
.

I
~
.
I
V
I
I
a

.
4
0
.
,

I
.

I
.
.
~
r
.
.
.

.
I
’
I
D
I
.
.
.

.

I
I

.
0

I
I
O
I
I
I
“
.

.
I
I
.
I
I

1
.
.
.
.

.
.
I
.
‘

I
;

I
I
.

.
I
I
I
?
!

I
I
‘

I
I
.

.

“
I

I
g

1
.
.

G
I
‘
“

.
.
.
n
.
%

.
Q
h
I

I
«
I
I
.

I
.
.
_
I
‘
-

0
.
.
.
.
"

.
.

I
.

I
I
2
3
.
I
U
I
'
I
.

I
I
i
n
.

.
l
.

.
.
.
;

.
0
.
.
.
.
.
.
1
.
.
.

I
I
.
I
.

.
.

.
.

r
.
.
.

I
t
I
I
J
t
.
.
.

I
J
.

.
I
I
-
.
I
I
.
.

m
i
.

.
.
.
.
.
.
u
)
.
1
.
8

.
I
I
.

.
.

.
,
O
.
.
I
.

I
.
.
.
I
I
I
X
I
I

I
I
I
.

I
.
.

.
.
.

.
.

.
J

.
.
.
D
I
O
I
‘
h
S
L
I
P

I
H
I
b
l
e
o
h
o
|
I
w

.
u
.
l
h
v
~
u
I
I
I

.
I
.
r
I
I
.
.
u
h
.

4
4
.

.
.
1
I
I
.
.
.
M
I

O
I

.

4
.
.
.
.
.
-
.

.
.
.
-
.
3
.
.
.
»

.
.
I
v
:

.
1
4
.
.
.
.
3
.
.
.

.
.
.
-
.
.
.
.
.
.

.
.
.

._
a
.

.
.
N
z
.
.
.

.
.

..
.,

.
u
-
.
.
.
.
.
.
_
.
.
.
I
I
.
.
:

..
..
..

.
r

..
.
r

5
.
.
.
.
.
.
:
8

h
r 1
.

.
1

.
L.

..
.

.
I

.
.
0

I
I
I
-
I
t
“
.

I
I

I
.
.
.

I
I

,
.
.
.
v
.

.
.
I

I
I
I
-
I
n
.

.
.

I
.

I
.
.
.

.
I
.

r
0
.

.
.

.
.

a
I
I
-

I
I
.
1

.
I
"

I
.
.
.
.
I
‘
n
.
.
¢
.
.
.
I

.
”
“
0

1
.
.
"
I
I

.
.
I

I
I
I
I
:

.
fi

4
.
.
"

.
.
w
.

.
n
I
.
d
I
.
I
I
I
I
.
«
.
\

9
.

.
.
.
-
3
.
.

.
“
T
J
H
I
V
I
.
.
.
|
I
¢
I

.
.
l
-
I
.
.
.

I
I
-
.
.

.
.
.
.
.
.
I
. I
.
.
.

I
I
.

#
6
.
.
.
.

I
.
I
A
I
I
.
.
.
I
.
.
.
.
.

C
I
.

.
1
0
.
.
.
.
o
‘
.

.
.
I
I

.
I
1
.
.
.
.
.
I
.

.
.

I
5
”
.

I
n
.

2
S
I
N
.
.
.
’

I
.
X
X
I
I
!
I

I
;

3
.
.
.
.
.
.
I
u
I
n
u
.
“

I
I

I
.

.
.
I
.

.
.

I
.
.
‘
r
.

I
.
.
.

.
.
‘
I

I
t

a
I

.
I

I
4
“
.
1
;

I
o
w
n
.

a
-

.
.
I
I
I
I
c
‘
m
‘
I

.
I
I
?

.
I
I

.
I
.
.
.
:
—

I
.
.
.
”

I
.
I
.
I
I
.
I
\
-
I
.
.

.
I
.
.
.
.
.
I
o
I

"
.
.
.
v

I
I
A

I
I

o
.

I
.
.

..
.

.
.
.
.

I
.
.
.

.
.
.
I
.
.
I
t

I
I
.

.
.
.
I
'
.
.
.
.
.
.
I
I
.

.
I

.
9
-

I
.
I

.
.

I
l
fi

I
.
I

I
I
.
.
-

..
..
..
.
.
.
-
.
4
3
.
.
s
z

.
.
_
.
_

.-
.

-
.
.
.

.
.
.
.

.
.

.
.

.
.
I
I
I
.
.
.

-
.
.

I
C

.
I
.
.

n
o
I
.
.
~
.
.
.
.
.

I
n
.
I
J
.
.
V
.
.
.

.
.-

.
h
i
.
’
I
N
I
-

.
I

.
.
.
-
I
f

I
.
(
3
’
4
“
.
I

.
I

I
a
.

3
n
.
”

.
I
h
.
.
M
I
o
n
I

3
.
1
-
.

.
I

.
I

1
\

.
I
.
.
.

I

.
I

I
I

.
I

v

I
.

I
.

.
.
I
I
‘
.
.
.
I
I
.
.
.

I
.
.
.
.
.
I
.
I
.
.
I
.
I
.
.
I
.

.
-
.

I
t
.
.
.

.
I

.
I

I
I

I
.
.
.
I
I
I
,

.
.
.
.

I
.

I
.
o

-

I
.
.
I

I
I
I
I

I
I
I
I
”
.
.
. “
W
I
M
T
I
"
m
a
t
h
”
.
.
.
“
.
I
I
I
-
2

.
I

.
I
I
I

.
.
.
.

.

.
.
I
H
.
I
I
.
.
I
.
S
I
.
I
.
I
m
u
.

«
w
v
‘

.
u

.
I
.

.
0
:

I
.

I
!

5
.
.
.

V
I

A
I

P
I
!0
:
:
1

.
.
.
v
.
‘
.

I
.
I
Q
I
W
V
M
I
I

I
’
I
I
H
I
I
.
.
I
I

9
‘
.
.
I
I
d
i
o
t
.
.
.

I
I
.
.
.

I
,

I
I
.

.
.
.
I
4
.
I
.
I
.
I
V
I
.
.
V

I
I
I
I
s

I
.
.
I
I
.
.
'

.
.
I
I
I
I
C

S
l
o
t
/
‘
I
-
I
n
f

I
I
.

C
I
"

-
"
.

)
i
I
I
-
I

"
I
Q
'
T

.
I

I
.

.
.
.

.
Q
.

I

5
.
;

.
I

t
I
.
-
.
I
.
.
.
9
(
.

.
.

I
.
I.
.
.
I

.
.
.

.

.
;

.
.

.
.
.
.
.

L
u
r
.

.
.

.
.
.

.
I
I
I
I

.
.
.

.
7
1

I
I

.
.
.
‘
A
t
f
I
I
I
.
.
.

.
I
I

.
.

I
u

.
I
.

I
I
I

I
I
I

.
.
‘
I
‘
.

.
.
.
I
I
V
.

M
I
L
.

I
I
I
.

.
I
I
.
.
.
“

I
}
;
"
‘
I

.
-
I
«
I
I
I

I
.

.
I

.
.

.
.

.
.

I
o
I

I
I
I

.
.

.
I

0
.
.

I
‘

I
.
I

.
.
I
A
U

I
.

.
.

.
.
1
1
‘

.
.

.
.
I
;

I
I
I

.
.
.
.
.
.
I
I
t
n
u
o
I

”
I
A
”
I
I
I
“
.
.
.

.
u
o
R
J
J
I
v
fi
o
p
g
w

I
I
.
0
1
?
“
fi
l
l.
I£
1
I
J
I
.
”
5
»
.
t
h

I
-
J
I
A
”

.
1
“
.

.
.
.
.
I
I
.

I
I
I
.
I
I
.

“
.
-
.
I
I
.

.
H

.
.

.
I

A
I
.

I
I

I
“

.
3
.

.
I

I
.

I
.

1
-
.

.
I
I

.
.

I
I
I

I
0
.
3
.

W
i
f
1
u
o
k
fl
l
”

'
J
I
-
I
I
u
’
I
C
u
m
u
g

.
I
I
I

.
I

I
I
I
.

I
I
.

I
f
.

.
I

u
.

.
.

.
.
I
I
I
I

‘
0

.
.
.
-
I
.
I

i
t
.
.
.

1
3
‘
I
I

.
”
»
I
.
.

I
;

.
N

I
.

n
I

.

.
.

.
I

.
-

.
‘
\

I
I
I

.
I

.
.

.
.

.,
.
I
-
I
.

.
.
I

.
I
.
I
I
I
I
i
.
0
3
"
.
.
.
0
.
.
.

.
.
.
.
I
M
.
.
.
.
.
.
I
!
I
I
.
.
.

..
r.

.
.

“
I

.
I

I
.
I
.
I
.
I
1
I
U
O
D
‘
.
’
I
.
I
.
-
I
.

I
I
I

.
I
fl
é
.
L
I
I
-
m
.

.
.
.
.
.
.
.
.
.
.
.
.

..
n.
..
I
!
.
3
3
.
»

.
4
3
.
.
.
.

.
.

.
0
0
.
“
!

.
.

.
o
m
.
I
I
.
w
.

.
.
U
‘
W
I
‘
I
I
.
-
.

2
.
1
.
"
)
.
I
.
‘
.
.

.
I

I
5
.
.
.
)

.
.
.
I

.
.

I
I

6
‘

.
I

I
I
I
“
.

I
I
. .
.
.
:

n
.

“
v
.

I
.

I
I
.
.

.
V
.
.

”
I
I
I
.
.
.

..
..
II
. .
.
‘
I

.
.
.
-
.
.
.

.
.
.
.
.
“

I.
2
.
9
.
:
I
I
I
.
M
.
.
.
I
-
.
.

.
“
W
o
o
-
7
:
.

.
.

A
”

.
.
.
.
.
.

.
.
.
.
I
.
.
.

.
I
I
I

d
i
m
-
I
»
1
.
;

L
.

.
.
.
.
.
“
h
.
.
.
I
t
I
.
.
.
I
.
.

I
.
.
¢
~
I
I
‘
I
.
.
I

.
.
5
.
0I
I
I

r
.
.
.
.
I
-

.
.
I
I

I
I
I
.
I

I
t
.

I
.
I
3
.
.

.
I

.
l

.
I
l
i
a
.

u
3
?
:

I
.
’
.
I
I
F

«
I
I

.
u
.
.
.

II
.
.
.

.
P
u
b

..
..

.
m

.
.
.
\
.

I
I
.

“
P
o
-
9
.
0
.
.

I
I

I
I
I
-
I
.
.
.
t
h
o
“
!
-

I
I
.
-

.
I
.

“
.
1
.
.
.

~
I

9
.

.
3
.
.
.
?

.
.
.
r

.
.
.
I
.
.
.
“
N
-
V
V
u
.\
.
~
.
w
.
J
u

I
:
3
.
.
I

.
«
I

o
.

I

2

I

L'

’0‘

II

..
.

.
i
.

.
_

.
W
E
.
.
.

..
1
.
1
.
5
.
.
.
.

I

1
.
.

.

.
I
I
.

«
L
E
E
-
h
.
u
¢

I

I
I

I
.
.
l

.
.
I
n
m
I
.

I
I
D
I

I
.
W
I
.
‘
.
.
Q
I
I
H
I
.

I
0
0
.
0
.
6

.
.

.
.

.
I

.
.

I
.

I
‘
.

I
.
\
I

I
.
‘

I
.

.
I
I
I

.
.
.

.
.
I

I
n
.

I
I
.
.
.

.
r
o

I
.
I
I

I
l

.
.

.
.

.
I

I
.
J
.

“
.
1
1
.
“
.

.
.
“
s
’
a
.
u
\
-
O
.
.
.

.
I

.
I
I
I
I
.
.
.

5
|
)
;
a
n

.
'
4

.4 5&3:

'

O"...

I‘a‘;

-I-.I ’:

r“

I

3‘:
I

-'I

,I

I l

.
.

.
.

.
I
.

I
.
o

.
.

I
.
‘

.
.
.
.
.
.
.
v
t
l
.
.
I
I
I
.

.
I
.

V
.
.
.

I
u
O
I
I
I
I
I
V
:

.
I
.
0

V

V
I

\J

.l.'ot .'

v. r . ..~
,.3D’I» . I

A" ' 2 I

W;
\I I...

‘3.

I
.

I
.

.
.

.
.

.
.
.
P
I

‘
5
.
.
.

.
I

.
.

W
m
.
I

5
m
-

.
.
.
:
6
.
.
.
.
.
.
»
-

3
o

.
I

.

II.
I

.1

t‘
.— A

C

I

I‘. .

.fi

IC:

v-Ils

‘II

C

I

-v

at

9.1.

I D

.
I

.
.
v
5
1
.
2
.
.
.
.
I
f
?
I

.
.
.
.
I

I
V
.

.
.

v
1
.
.
.
.

.
.
.
.

._
I

.
.

.
.

.
.

I
I
I

I
I
.
-
.

O
.

.
u
.

\
.

*
‘
Z
.
.
I
.
&
O

.
.
.
!
o
u
“
.
.
0
.
fl

.
I
.

.
.

O
.
x
.

I
-
‘

"
V
.
‘

.
d

u
‘
.
3
"

.
.-

I
.

.
_
_

.
.

fl
.

.
.
.
.
.
.

.
4
3
.
I
:
.
I
.
I
W
M
.
I
I
.

.
.
.
-
a
n
“

”
I
I
{
I
n
}
.
.
.
.
.
.
.

.
u
.
_
.
.
...
U
“
.
fi
w
h
.
P
U
J
.
z
_
M
.
1
m
W
I
I
I
I
I
Q
¢
m
-
.
N
F
I
I

S
I

.
.
.
I
l
.
‘

I
I

b
0
.

I
V
}.
0
I
.

I
0
.
1
%
.
“
.

.
.
V
I
.
.
I
n
w
u
.

W
‘
.
.
.
I
.
.

O
I
-

I
.

I
.
I
o

.
6
0
.

.
.
.

o
.

\
.
I

I
I
I

.
3
3
3
"

I
I

..
1
.
.
I
I
I
.
.
.
I

I
”

I
.
.
.
1
‘

.
I
I

I
.

a
.

I
I

I
.
.
.
.
.

I
I

I
'

I
I
:

I
I
I

..
C
I
I
I

I
I
.

.
.
I
.

..
.
.
.
.
Y
.
.
I
.
I
I
I
.

.
.
.
.
I
n
m
I
O
.

I
.

.
.
I
I
.

4
.
.
.

I
.
I
I
I
D
I

.
.
I
.
.
.
_
.

”
K
n
i
t
.

I
”
.
.
.
”
i
t
“

I
I
I
L
I
I
M
I
I
I
I
-
1

-
«

.
.

I
I

-
I

.
0

I
I
.

I
.
I
I.
H
I
I
I

.
.
V
I
I
I
I
.
I
Q

.
.
.
.
I

.
.
I
I

.
I

.
.
I

I
I
I

.
u
.

a
.

I
.
<

-
I

I
I

I
I
.

0
I
1
.
.
.

I
.
3
.
0
.

‘
1

I
I
I
.

I
.
.
.

.
I

J
.
.
.

.
.

.
I

.
I
“

.
I
'
I
I
I

V
I
I
I
’
0
0
1
|
.
¢
’
I

I
.

I
.

s
V
a
I
T
I
I
I

.
.

.
I

U
.
‘

.

I
I

o
i

.
.

.
I

I
I

-
'

I
I
I

.
I

-
I

-
I

.
.
.

5
.

S
I
.
.
.

I
.

.
.

.
.
u

.
.
.

I
o
n

I
I
.
I

.
.
I

.
.
I
I

.
I

I
.

.

.
.
I

.
.
I
.

.
I
.
.
.
I
I

I
I

.
.

I
.

.
I

I
.
0
.
.
.
I
.
I

.
.
.
I

.
.
.
.
\
I
.
.
.
.
'
-
.
.
U
O
I
-
I
m
_

.
I

I
I
I

.
.
.

I
I
I
I
.

9
9
.
.
.
.
.
o
n
I
.

.
.

..
..

.
I
I
.
.
I
I
.
.
.
I.
.
.

.
.
I
.
I
.
C
.
.
:
.
I

N
I
.

.
$
0
1
3
.
“
.
.
J
r
u

H
I

I
.

I
.

I
3

.
,

I
.

O

I
I

I
.

.
.

.
I

I
I

I
.

.
.

.

i
“

.
I
‘
I
v
r
u
‘
l
f
L

I
I
I
.
.
.

.
I

.
.
.
h

.
.

4
.
.

.
.
I

I
I
I
I

.
_
.
I

.
I
.

.
I
I
I

(
I
:

I
I
I

I
I
.
I

I
I
.
-

.
I
t

I
'

Y
I
I

.
’

I
.

.
.
.
I

I
I

I

I
I
.

A
.
»

:
7
.
-

.
I
:
I
.
.
I
.
.
L
.
I

H
I
.

I
W
.
F
B
I
”
?

.
.
I

.
.
.

.
-
H
I
w
.
.
.
I
I
.
I
.
u

.
1
»
.

I
I

I
.

.
4
.

.
.
«
.

“
w
h
o
.
I
.
”
‘
5
I
.

.
.
.
r

.
I
N
C
-
5
.
.
.
.
.
.
I
I
:

I
”
.
.
.
.
.
.
“
1
9
.
.
.

I
I
.
2

s
o
.

I
.
.
.
I
I
I

.
.

.
.

.
.

..
.

.
.

I
I

4
.

.
I

“
.
.
.
-
1
.
}
.

I
t
.
.
.

-
.
I
I

S
i
n
k

I
.

a
.

..
.
.

.
I
.

.
I
.

I
I

I
.

.
.
.
.
.

.
I
.

f
.

.
.
.
N
I

c
$
.
.
u
.
I
1
.
~
.
n
.
I
D

I
I
I
-
N
V

..
.2
.

.
.
.
.
m

I
.
..

.m
l.
I
‘
fi
‘
.
.
-
A
H
I

.
.
.
.
n
c
I
.
.
I
.
I

.
.
fi
s
h

”
I
t

t
o
I

.
h
I
n
I
M
I
.

.
v
»
.
.
.
.
:
-

I
.
.
.
I
I
V
S
-
”
.
.
.
.
.
I
.
I
.

.
I

(
I
I

I
I
.

.
I
I

.
I

I
.

.
.
.
.
I
”
I
.

.
.
.

.
V
I

.
.
.
I
W
I
I

I
f
.

O
I

,
0
.

I
.

.
.

.
“
r
.

.

I
I
.
I
.

I
I
.

I
V
.
)
-

I
I

I
I
I
.
.
.
I

I
I
I
.

I
h
.
.
.
&
.
.
.
}
.
f

.
.
.
.
I
.
I
)
I
1
.
.
.

.
I
F
.
.
.

.

“
I
‘
m
-
I
v
.
.
.

I
I

.
1
.
fi
t
!
!
!

I
{
‘
0
'
_
I
b
e

.
.
I
.
1
.
5
.

.
.
I
I
.

.
.
‘
I
I
I

I
.
.
.

(
I
.
.
.

“
.
.
.
-
1
%
g
.

.
.
.
!
3

t
o
r
n
.
.
.

(
-

.
w
z
fl
u
h
fl
o
p
.
“
J
I
M
-
1
.
3
.
0

.
.

.
r
I
I
i
I
H
I
-

.
.
.
.
.
.
n
J
a
.
.
.
.
-
.
.
L
I
.
.
H
~
“
I
.

.
.
0
4

.

.
3
;
.
.
.

..
..

I
I
.

n
.

3
‘

.
I
.
.
.
I
I
I
.
I
I
I
I
.
”

I
o
I
.
“

.
.
.
-
.
.
.
.
.
r
.
u
£
t
.
.
.
.
.
.
.
r
.
a
.
3
.
n
.

..
..

.
.
.

5
.
3
.
8
.
.
.
.
.
.
.

.
.
.
;

.
.
.
.
.
.
I
i
.

..
..

..
x.

..
.
-

,
.

.
.
I
I
I
O
I
I

.
‘
.
.
I
.
I
“
I
v
“
;
p
r
r
I
I
I
I
I
§
v
I
I
l
‘
.
-
I
.
.

.
.
.
.
-

.
.

.
I

.
.

I
I
I
.

.
.
.
-
.
.
.
.
I
I
I
4
1

.
I
.

c
.

c
k

;
.

L
.

.
I
.
.

I
.
V
.

I
!
“

I
3
“
.

.
.
.
?

n
I
fi
l
m

i
I
5
5
”
.

4
‘

.
9
0
6
,
.
t

.
L
h
I
-
I
I

I
n

.
.
.
I
’
l
l
.

I
L
.

-
I
I
.

I
I
.
‘
I
I
I
a
t
;

.
.
.
.

.
.
M
I
’
1

V
I

a
I

.
Y
.

.
I

I
.

.
.

I
.

.
.
.
.

.
.

.
n
b

.
.
.
.

.
.
I
I

.
0
5
5
0
:
?
)

I
.

I

“.
..
.m
w.
..
..
.-
..
..
u.
..
..
..
..
._
..
2
4
.
.
.
..
§
.
m
.
.
.
m
y
m
m
fi
R
R
N
I
-
I
3
1
“
.
?
?
?

h
m
-

I
‘
I
I
I

I
I
W
I
I
<

‘
I
l

.
I
i
l
i
x
o
q
u
f
l
.
J
i
l
i
n
.

“
L
I
I
-
I
v
.0
2
.
.
.
"
.

I
.

I
I
I

t
I

I
0

n
o
.

I
.
I
I

V
‘
I
I

I
.
.
I
I
I
.
.
I

I
I
.

.
I
I
I
.
)

I
I
I

I
.
I
-
I

.
.
.
?

o
.
r

.
.
O
I
'
I
.
I
I

I
I
I
?

I
.
I

3
.
.

«
I

I
“
:

I
I
.

r’vw; "

. ’. .

I

Y

I

1

I

1

.
I

.
.

.
.
.

..
.

.
-
.
-
”
Q
I
I
I
.
9
.

I
I

.
.
‘
f
-

I
I
I

I
.
r
.

.
I

“I.

V

I

.

I

I

I
I

I

I

I

I

I

I

I

.

OJ

,1

'3

I
.

3:

g

I

I

I

l

I

0

I

I

I

I

I

'1.

.3

!

I-

"H

,5

I

V

7

O

I

I

.1'

I 9'01”;

0

I

3

I

- .

I

‘.

. n

.0'

.I I

I
O

O

I

I

‘i

‘I .

CI

-
.

.
I

.
I
I

I
a
.

.
I
L

.
.

n
.

J

.
I
I
I

.
I
.
.
.
.
I
I
I

.
.
I

.
I

.
.
I
I
.
.
.
-

.

O
:

.
.
.
.

.
.
.
.
.
.
I
‘
O
I
I
.

I
.

.
.
1

I
I
I
I

.
.
.

.
.
a
I
I
.

I
I
I

I
I
.

I
I
I
.

I
.

O
I
I
I
.

.
I
.
.
.
.
.

0
‘

I
I
I
.

I
.

I
.

t
r
.

0
.

I
I

I
I
.

I

I
I
.
9

.
.

.
I

.
-

I
”
H
.
0
0
3
”
.
.
4

o
.

I
I
I
.
.
.

.
.

.
.
.

I
:

I
I
.
.
.
\
I
I
.
.
.

\
.
.
I
I

.
z
V
I
I
o
o
u

.
I
.
’

I
I

.
.
-
.

I

I
.

I
6
.
.
.
!

.
.
.

.
I
.

.
I
.
I
.
I

I
I
I
I
I
I

I

l
.

I
.

D

..
..
..

I.
.
.

.
.
.
.
.
.

.
I
.
I

.
.
l
.

.
I

.
.
I

I
.

.
I
-
.
..
I
o
?
_
w
a

I
.
.
r
.

-

.
I
I

J
.

.
I

I
I
I
.

J
'
s
-
"
1
.
.
I
I

6
.

.
I
v

I
.

—
.
.
I
n
w
a

.

.
I

I
.
0
.

I
I
.
.
.
l

I
0

J
0
1
.
.
.

.
.
I

\
I
I
-

I
I
I
I

.
I
f
I

I
I

I
s
I
’

.
.
v
.

.
.

.
I

.
f

.
.

“
p
m
.

5
.
.

I
t
.
I
.

I
-

.
.

.
.

I
.
.

I
.
u

I
l
e
w
f
.
’
u

.
J
I
I
.
.
.
I
}

I
.
.
.
I
.
I
T
I

.
w
a
I

I
a

i
.
.
.

.

I
?

.
.
.

.
.
.
-
w
.

.
.
.

.
.
.
.
.
.
.

_
.

.
.
.
.
-

3
0
"
!

I
4
0
$
.
.
m

.
.
I
v
.

I
A
V
I
I
I
!

‘
I
N
?
”

M
u
n
-
4
.

I
I
.
I
I

_

#.
..
..
..
..
€u
.

I..
...

...
...
I
»
.
.
.

.
.

I
“

L
G
I
I
I

I
t
.
‘
1

k
.
.
.

.
-

.
.
.

I
.

I
h
.
.
.

I
I
I
.

.
I
I

I
I

o
.
P

.
I
V

I
I
I
-
I

I
.

.
I

.
’
H
.
.
§
.

I
.
.
.
-
I
I
I
.
.
.

I
I
I
.
-

I
a
I
O

.
I
I
.
I
I
I

I
I
.

I
.

I
n
”
.

“
.
3
1
.

M
i
l
.
"
.
¢
’

I
I
I
I
I
-

_

I
I
I
.

.
4
6
0
.

..
«
E
I
I
I
.
I

I

”
h
?

.
4
9
.
.
.
.
.
.

0
:
9
.

u
I
.

.
.
.
.
.
I
I
I
I
II
.
.
.
.
2
‘
3
"
“
.
.
.

.
.
.
.

.
n

I
.
.
.

.
v
I
f
.

I
I
I
.

I
I

.
1
.
I

I
I
I
I
.

IO
I
.
.
.

.
.

I
.
.
.

.
.
I
.
.

.
5
:
3
.
-

.
.
’

I
.

.
.
.
I
.

I
I
.
.
.

‘
I
?
.
.
I
§
.
~
W
N
.

.
h
u
I
t
fl
a
.
“
W
w
fl
p
n
c
h
u
r

.
.
I
I
I
I
I
I
I

.
.

I
.

S
r
v
i
3
&
3
t
h

.
3
I
I
.
.
.
I

.
.
.
‘
M
W
.

.
.
.
.

-
.
.
.
-
z
.
.
.

7
w
.
.
.

I
.
.
.
I
.
.
I
.
-
.
.

.
.
.
-
’
1
1
.
.

I
I
.
.
.

I
n
c
.
.
.
.
.
.
.
I
‘

'
3
0
:
.
.
.
(
I

I
I
.
I
I
.

V
.
.
.

..
.;
:
5

.
.
.
.
.
-
5

.
I
.

I
n
.

I
I
~
.
I
.
.
I
O

I
.

.
.
s

I

O
I
.

‘

.
.
.
.
.
u
l
h
m
n
.
.
.

.
6
.

.
.

.
.
-

.
.
.

.
.

I.
-

.
.

_
.
I

.
.
.

.
.

.
I
I

.
‘
I
I
“

M
.
“
-

.
I
n
n
é
o
n
fl
n
u
u
'
.
I
t

.
.

I
I
.
.
I
P
I
.
.

.
C

I
I
I
.

.
I

I
I
C
.
“
1
‘

I
I
.
I
.
~
_
I

P
I
,

.
I
I
I
I
I
I
-
v
2

.
f
I
.

.
I
.
.
.

.
I
“

.
a
n
I

.
.
.
.
.
I
.
I
.
.
I
I
.

I
.

I
I
'
I

.
.
I

I
I

I
.

I
.
-

.
.
.
.

t
h
a
t
.
.
.
»
-
.
M
I
.
.
9
I
.

I
2
.
.
.

.
.
.
I
!
.
h
.

I
.

I

.
.

.
I
.
.
.

_
.
I

.
.
.

.
_

”
I
“
,

0
’

I
.
I
.

I
I
.

I
.
.
.

.
.

.
.
.
.
.
}
.
.
I
N
I

.
.

.
I

.
.

.
.

3
.

“
1
.
.
.

I
I
I
.

“
.
.
.
m
e
I
I
I
I
.
.
.
r
o
u
fi
c
v
u
q
i

.
.I
’
M
-
m
.
.
.
.
.
}
“
.
I.
I
_
.
_
.

I
l
l
x
g
q
-
‘
O
b
d
“
i
f
.
I

I
2
"
.

“
N
i
p
/
_
I
.

.
w
g
l
m
.
‘

fl
.
-
.
5
5
h

.
0
6
3

.
.
q

I
.
.
s

O

0
.
.
.
:

I
I
I
I
I
.
I
.

.
I

L
I

.

I
I
I
-
1
I
7
3
‘
.
I
L
I
I
I
.
.
.
.

$
3
.
.

I
.

N
I
I
I
-
I
I
O
H
H

£
0

.
.

.

I
I
.

.
I

.
.
I
I

.
0
0
9

.
:
2

I
.

:
9
1
D

g
i
t
"
.
.
.

.
I
I
.
.
I
.
I
..
.
I
.
.
I
.
a
I
W
I
M
I
M
o
-
I
u

0
%
.
.
p

.
"
I
I
I
Q
'
.
I
"
.
.
~
f
¢
-
.
4
-
I
I
§
I
’
W
.

I
o
n

I
I

1
I
.
.
I
R
.
2

.
I
.
.
I
fi
!
s

.
I

I
I
n
I
-
I

“
n
o
t
v
fi
Z
W
.
.
.
’
K
.

.
.
I
.

I
I
n
.
.
.

.
.
I
P
H
I
” E
l
u
o

I
.
.
.

I
I
I
.
)
"
I

.
I
I

.
‘
(
I
Q
J

‘
9
‘
,

I
I

L
1
1
.

V
I
I
I
-
I
.

I
I
I
.
.
.

I
I
I
-
.
.
.

“(
..
.-
II
..
.
.
\
fl
a
w
"
.
.
.

..
..
.-
.
.
.
.

‘
c
'
I
-
O
I
I
I
.

I
I

.
.
2

I
a
I

I
I
.
‘

I
.
I
I
I
;

I
.
1

b
I
I
I
I
I
I
I
I
I
I
“

.
9
.
“
.

I
Q
.
.
.

I
.

‘
-

«
M
I
-
m
3
.
“

.
m
v
h
u
u
fl
fl
s
.
I
fl
w
I
V
I
—
fl
.
.
.
‘
“
w
h
o
“
,

This is to certify that the

dissertation entitled

PRINCIPLES AND APPLICATIONS FOR

SUPPORTING SIMILARITY QUERIES IN

NON-ORDERED-DISCRETE

AND CONTINUOUS DATA SPACES

presented by

GANG OIAN

has been accepted towards fulfillment

of the requirements for the

Ph.D. degree in Comuter Science

\

Major Professor’s Signature

8 — ll - 04

Date

MSU is an Affinnative Action/Equal Opportunity Institution

. LIBRARY

Michigan State

University

PLACE IN RETURN BOX to remove this checkout fromyour record.

To AVOID FINES return on or before date due.

MAY BE RECALLED with earlier due date if requested.

DATE DUE DATE DUE DATE DUE

NW(15 2555

6/01 c:lClRC/Da(90ue.p65cp. 15

PRINCIPLES AND APPLICATIONS FOR

SUPPORTING SIMILARITY QUERIES IN NON-ORDERED-DISCRETE

AND CONTINUOUS DATA SPACES

By

Gang Qian

A DISSERTATION

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Computer Science and Engineering

2004

ABSTRACT

PRINCIPLES AND APPLICATIONS FOR

SUPPORTING SIMILARITY QUERIES IN NON-ORDERED DISCRETE

AND CONTINUOUS DATA SPACES

By

Gang Qian

The problem of similarity queries has received much attention in recent years due

to its wide applications in many new and emerging areas. The objective of this thesis

is to develop and analyze novel algorithms to support similarity queries using the

vector model.

In the thesis, we first discuss supporting similarity queries in multidimensional

Non-ordered Discrete Data Spaces (NDDS), which are very important for application

areas such as Data Mining and Bioinformatics. Existing indexing methods

developed for Continuous Data Spaces (CDS) cannot be directly applied to an NDDS

due to a lack of some essential geometric concepts/properties. To solve this problem,

we established discrete geometrical concepts, which have similar counter parts in a

CDS. Based on these concepts, we have developed two novel indexing structures,

called the ND-tree and the NSF-tree. The ND-tree is the first index structure of its

kind, whose construction algorithms are designed based on the special properties of

the NDDS using a data-partitioning approach. The NSF-tree is also based on the

special properties of the NDDS but it uses space-partitioning techniques and new

strategies such as a partition of the actual data space instead of the whole space and

the application of more than one minimum bounding rectangles per node. Our

extensive studies Show that the performance of the ND-tree and the NSP-tree is

significantly better than those of the existing methods. The NSP-tree is shown to be

particularly efficient for large skewed datasets.

We have proposed the NDh-tree to support similarity queries in Hybrid Data

Spaces (HDS), which contain both continuous and non-ordered discrete dimensions.

As an extension of the ND-tree, the NDh-tree is developed based on geometrical

concepts defined for an HDS and is capable of handling continuous dimensions

efficiently. Our experimental results show that the NDh-tree is a promising indexing

structure for HDSs.

The thesis also addresses the problem of choosing a suitable distance measure for

similarity queries using the vector model. The standard criteria for selection of an

appropriate distance measure are yet to be found. But in this thesis, we have

provided a basis for comparing distance measures for similarity queries. We have

done this by introducing a theoretical model to analyze the relationship between two

commonly used distance measures, i.e., the Euclidean distance and the cosine angle

distance, in multidimensional data spaces. Similar methodology proposed for the

model can be used to analyze other distance measures such as the Manhattan distance.

We believe that this work provides the fundamental basis for understanding and

comparing distance measures for similarity queries.

To my wife, Binghua,

my parents, Xingsan and Yizhi,

and my daughter Hailan.

iv

ACKNOWLEGDEMENTS

First of all, I want to acknowledge my thesis advisor, Dr. Sakti Pramanik. Under

his excellent guidance, I have learnt to be a researcher with a lifelong interest in

academic area instead of an engineer at the beginning. He was always there when I

needed advise, but not intervening when he thought I could mange it. He also took

care of my financial support during my research and gave me a lot of help during my

graduate studies at the Michigan State University.

Dr. Qiang Zhu of the University of Michigan deserves a special acknowledgement.

This is not only for his great help in my learning as a Ph.D. student, but also for his

friendship and unconditional academic support. Many ideas presented in this thesis

were formed through discussions with Dr. Zhu and Dr. Pramanik.

I express my sincere gratitude to my thesis committee, Dr. Hira Koul, Dr. George

Stockman and Dr. Juyang Weng, who took the important job of reading the whole

thesis and made a number of useful comments, improving the work in many ways.

There are many other people whom I am indebted to for this thesis. I want to

thank them: Dr. Shamik Sural, Dr. James Cole, Dr. Jon Sticklen, Qiang Xue and others

who I surely might have forgotten to mention.

Lastly, I would like to thank my wife Binghua for her support and love during the

past few years. Her understanding and encouragement was very important for my

completion of this dissertation. My parents, Xingsan and Yizhi, receive my deepest

gratitude for their many years of support during my undergraduate and graduate

studies.

This work was partially supported by a grant from NSF: 1189910605.

vi

TABLE OF CONTENTS

LIST OF TABLES x

LIST OF FIGURES xi

Chapter 1: Introduction 1

1.1 Similarity Queries, Types and Applications ... 1

1.2 The Vector Model and Related Research Problems .. 3

1.2.1 Research problems for indexing large vector databases4

1.2.2 Research problems for distance measures ... 9

1.3 Overview of the Thesis ... 10

Chapter 2: Related Work 12

2.1 Multidimensional Indexing Methods .. 12

2.1.1 Typical DP index structures ... 14

2.1.2 Typical SP index structures ... 17

2.1.3 Hybrid approaches ... 20

2.2 Metric Trees ..22

2.3 String Indexing Methods...26

2.4 Existing Searching Techniques for Non-ordered Discrete Data 30

2.5 Research on Distance Measures ... 33

Chapter 3: The NDDS and the ND-fi‘ee 36

3.1 Motivations and Challenges ..36

3.2 Concepts and Notation .. 39

3.3 The ND-tree ..43

3.3.1 Tree structure ...43

3.3.2 Building the ND-tree ...45

3.3.3 Range query processing ...70

3.4 Handling NDDSS with Different Alphabets ... 71

3.5 Performance Evaluation Model ..74

3.6 Experimental Results .. 77

3.6.1 Performance of heuristics for ChooseLeaf and SplitNode77

3.6.2 Performance analysis of the ND-tree ... 80

vii

3.6.3 Verification of the normalization approach .. 86

3.6.4 Verification of the performance model .. 88

Chapter 4: The NSP-tree: A Space Partitioning Approach 91

4.1 Motivations and Challenges ..91

4.2 Preliminaries ...96

4.3 The NSF-tree ...97

4.3.1 The SP approach for NDDSS ...97

4.3.2 The NSF-Tree structure ... 102

4.3.3 Construction algorithms ... 106

4.3.4 Range query processing ... 122

4.4 Experimental Results .. 124

4.4.1 Effectiveness of tree building strategies .. 124

4.4.2 Performance analysis of the NSP-tree ... 127

4.5 Handling NDDSS with Different Alphabets ... 135

Chapter 5: Extending NDDSS into Hybrid Data Spaces - - 136

5.1 HDS Concepts... 137

5.2 The NDh-tree ... 141

5.3 Experimental Results .. 145

Chapter 6: Choosing A Distance Measure 151

6.1 Theoretical Analysis of NN Queries by EUD and CAD................................... 152

6.1.1 Notation and definitions... 152

6.1.2 Comparison of EUD and CAD .. 154

6.2 Experimental Results for NN and k-NN Queries .. 159

6.2.1 Comparison of experimental and theoretical results 159

6.2.2 Experimental results of k-NN queries .. 160

6.3 Discussion ... 163

Chapter 7: Conclusion 166

7.1 Supporting Similarity Queries in NDDSS and HDSs 166

7.2 Studies of Distance Measures in CD83 ... 170

APPENDIX A: A Histogram With Smooth Color Transition 172

1 Introduction .. 172

2 Histogram With Perceptually Smooth Color Transition 174

viii

3 Window-based Comparison of Feature Vectors ... 178

4 Experimental Results ... 180

5 Discussion .. 181

APPENDIX B: Combining Features -- - - - -- - 183

1 Introduction and Related Work .. 183

2 Experimental Results ... 184

3 Discussion .. 187

Appendix C: Derivation of Performance Model -- 188

Bibliography 194

ix

LIST OF TABLES

Table 1: Input parameters of the performance estimation model for ND-tree75

Table 2: Effect of heuristics for choosing insertion leaf node78

Table 3: Comparison between permutation and merge-and-sort approaches78

Table 4: Effect of heuristics for choosing best partition for rq = 379

Table 5: Comparison between naive and normalization approach (IAI: 2-30) 86

Table 6: Comparison between naive and normalization approach (IAI: 8-24) 86

Table 7: Comparison between naive and normalization approach (IAI: 14-18) 87

Table 8: Evaluation of linear (cost) Algorithm ComputeDMBRs 126

Table 9: Evaluation of heuristic to split on dimension with the largest stretch 127

Table 10: Comparison of space utilization between NSP-tree and ND-tree 131

Table 11: Comparing NDh-tree with ND-tree and R*-tree (d = 16, nd = 8) 148

Table 12: Comparing NDh-tree with ND-tree and R*-tree (d = 16, nd = 4) 148

Table 13: Comparing NDh-tree with ND-tree and R*-tree (d = 16, nd = 12) 149

Table 14: Summary of notation .. 153

Table 15: Expected NN rank of NNe by CAD at different dimensions 158

Table 16: Experimental results based on random data.. 161

Table 17: Experimental results based on normalized random data............................. 161

Table 18: Experimental results based on clustered data (50 clusters) 162

Table 19: Experimental results based on real image data (QBIC) 162

LIST OF FIGURES

Figure 1: An example of the ND-tree ...45

Figure 2: Entry list and partitions ... 56

Figure 3: A permutation of entries (1 S j S M+1) ... 57

Figure 4: Initial forest F..65

Figure 5: Final auxiliary tree T ... 65

Figure 6: Comparison between ND-tree and linear scan for genomic data 81

Figure 7: Space complexity of ND-tree .. 82

Figure 8: Comparison between ND-tree and M-tree for genomic data 83

Figure 9: Comparison between ND-tree and M-tree for binary data 83

Figure 10: Scalability of ND-tree on dimension ... 84

Figure 11: Scalability of ND-tree on alphabet size ... 85

Figure 12: Comparison between the ND-tree and the M-tree with normalization 88

Figure 13: Comparison between theoretical and experimental results for binary data 88

Figure 14: Comparison for varying dimensions ... 89

Figure 15: Comparison for varying alphabet sizes ... 89

Figure 16: Minimum bounding rectangles in CD8 vs. NDDS 101

Figure 17: The structure of an NSP-tree ... 105

Figure 18: Examples of the SHTs in Figure 17 ... 105

Figure 19: Change of SHT of Node 2 after splitting old Node 4 116

xi

Figure 20:

Figure 21:

Figure 22:

Figure 23:

Figure 24:

Figure 25:

Figure 26:

Figure 27:

Figure 28:

Figure 29:

Figure 30:

Figure 31:

Figure 32:

Figure 33:

Figure 34:

Figure 35:

Figure 36:

Figure 37:

Figure 38:

Figure 39:

Figure 40:

The NSF-tree after splitting old Node 4 and Node 2 117

The resulting SHTs corresponding to Figure 20 117

Benefit of two scans .. 121

Evaluation of interaction between DMBRS and fan-out 125

Comparison between the NSF-tree and the ND-tree (synthetic data) 129

Comparison between the NSP-tree and the ND-tree (synthetic data) 129

Comparison between the NSF-tree and the ND-tree (synthetic data) 130

Comparison between the NSP-tree and the ND-tree (synthetic data) 130

Comparison between the NSF-tree and the ND-tree (Connect-4 data) 132

Scalability on DB size (W = 4, d = 40, zipfl) ... 133

Scalabilities on dimension (W = 10, key# = 100,000, zipfl) 134

Scalabilities on alphabet size (d = 40, key# = 100,000, zipfl) 135

Comparison between NDh-tree and linear scan .. 146

Comparison between NDh-tree and M-tree .. 147

2-dimensional hyper-cone cone(P, (9) .. 154

NM. (Q) and the hyper-cone .. 154

sp(Q, r) and the hyper-cone ... 156

Theoretical and experimental results ... 160

Relationship between dimension and volume of a hyper-cone 164

Relationship between hyper-angle and volume of a hyper-cone 164

Relationship between dimension and hyper-angle between Q and NM, 165

xii

Figure 41: Variation of color perception with saturation .. 174

Figure 42: Representation of hue and gray values in the histogram 177

Figure 43: Recall/precision for our HSV histogram and a standard RGB histogram. 181

Figure 44: Recall/precision for different window width W .. 181

Figure 45: Recalls of different feature combining methods for various k-NN 185

Figure 46: Precisions of different feature combining methods for various k-NN 185

xiii

Chapter 1

Introduction

1.1 Similarity Queries, Types and Applications

The focus of this thesis is on the problem of similarity queries. A similarity

query returns objects in a database similar to a query object. It is different from

traditional database queries where objects satisfying a particular condition on some

particular attributes of the object are sought. For example, a typical traditional

database query can be “find all students whose age is greater than 20”, where the

condition “greater than 20” is specified on the attribute “age” of the student

database. On the other hand, a similarity query aims at the whole object rather

than individual attributes -- it compares objects themselves. For example, a typical

similarity query can be “get all genome sequences in the database, which are similar

to the given genome sequence”. To perform similarity queries, a certain measure of

similarity needs to be defined to quantitatively evaluate how similar two given

objects are. As we will discuss in detail later, there are a number of different ways

to define a similarity measure for a database of objects. It is still an open research

issue on how to choose a suitable similarity measure for a given

database/application. In this dissertation, the Hamming distance is one of the

similarity measures that we have used. For example, for a similarity query of

Hamming distance S 1 based on a query sequence “agtcactt”, one of the query

results could be the sequence “aatcactt”, which has at most one different character to

the query sequence.

Once a similarity measure is defined, there are two different types of similarity

queries that can be performed:

1) Nearest Neighbor (NN) query: Given a query object, find the object in the

database most similar to the query object. The query result is called the nearest

neighbor, because it is the closest database object to the query object based on the

given similarity measure. A generalization of the NN query is the k-NN query,

where the k most similar objects in the database are selected for a given query object;

2) Range query: For a given query object and a threshold value (range) of

similarity, find all objects in the database, which have a similarity value within the

given range with respect to the query object.

Both NN queries and range queries are widely applied in many new and

emerging application areas, such as Content-Based Image Retrieval [Niblack93,

Pentland94], Audio retrieval [Wold96], Time Series Databases [Faloutsos94],

Genome Sequence Databases [Altschul90], Content-based Reasoning in A1

[Riesbeck89], Data Mining [HanOl] and Information Retrieval [Baeza97].

Since almost all application areas of similarity queries involve a large amount of

data, the problem of similarity query needs to be carefully handled to achieve both

efficiency and effectiveness. For this purpose, the vector model, which

approximates each object in a database by a vector of values, is widely adopted to

support similarity queries. It is discussed in detail in the next section.

1.2 The Vector Model and Related Research Problems

The vector model is widely used to support similarity queries. Its main idea is

to represent each object in the database by a vector of values. To find objects

similar to a query object, the query object is also represented as a vector. For

example, in the application of content-based image retrieval, each image in the

database can be transformed into a vector based on its color, texture or shape

information. Note that each vector in the vector model is essentially an array of

values with a fixed length. Since such a vector can be deemed as a point in a

multidimensional data space, the distance value between the vectors of the database

objects and the vector of the query object can be calculated. The distance values

among objects give a natural measure of similarity. Objects in the database, whose

representing vectors are close to the query vector, are considered as similar objects to

the query object.

Note that not all applications have objects as natural vectors. A typical

example of such objects is multimedia data, such as images and video clips, which

are often stored in their native formats. Designing an effective feature generation

algorithm for this kind of data is often non-trivial and domain-Specific. Interested

readers are referred to [Aslandogan99] and [Rui99] for surveys of feature generation

in multimedia information retrieval.

Also note that there are other models proposed to support similarity queries, such

as the Boolean model and the probabilistic model [Baeza97]. However, among all

the models available, the vector model is the most popular and widely used. It is

also considered to be more effective than other models by a majority of researchers

[Baeza97].

The focus of our research is on supporting similarity queries using the vector

model. Since objects in a database are represented as vectors, similarity queries

that utilize the vector model need to search a database of vectors. The following

research problems arise in this context.

1.2.] Research problems for indexing large vector databases

As database size gets larger and larger, it is no longer efficient to use a simple

linear search to implement a similarity query, since each query needs to scan

through the whole database and the search time is linearly proportional to the

database size. Therefore, efficient indexing techniques are needed for large vector

databases. Note that to enhance the performance of the linear scan, parallel

architectures can be used where a database can be distributed to parallel devices.

This approach will improve the performance linearly. Similarly, we can also

enhance the performance of indexing techniques by using parallel architectures.

To be practical, an indexing technique must satisfy several requirements:

1) The index structure should be dynamic. Construction of an index structure

usually takes much longer than the time to query the database. When the database

changes, it is undesirable that the old index must be discarded and a new index

needs to be built from scratch again.

2) The index structure should be disk-based. The size of an index structure

always increases with the size of the corresponding database. If the index is

memory-based, it is possible that it could become too large to be held in the memory,

causing the index to fail.

3) The index structure must be effective: for one similarity query, only a few

disk blocks of the index structure should be accessed. It is a common practice to

evaluate the performance of an index structure by comparing its disk accesses for

one query to only 10% of the total disk blocks of the database [Weber98,

Chakrabarti99].

Due to the above requirements, it is a challenging task to develop an efficient

index structure for vector databases. For dozens of years, multidimensional

indexing methods for similarity queries have been a major research focus in the

database area. A number of disk-based index structures have been proposed, such

as the R-tree [Guttman84], the K-D-B tree [Robinson81] and the Hybrid tree

[Chakrabarti99]. The main idea of these multidimensional indexing methods is to

efficiently organize vectors into disk blocks using some bounding regions so that a

large proportion of these disk blocks can be pruned during a similarity search.

Therefore, all these techniques must employ some essential geometric concepts,

such as rectangles, spheres or subspaces, to organize the vectors indexed in the

structure. Since these geometric concepts are only available in Continuous Data

Spaces (CDS), where data values on each dimension are continuous and ordered

along an axis, existing multidimensional indexing methods cannot be applied for

many new and emerging application areas where discrete and non-ordered data

values are used.

Domains with non-ordered and discrete values, such as sex, complexion,

profession and many other user-defined enumerated types, are prevalent in database

applications. Values in these domains have no natural ordering among them. For

example, there is no semantic meaning to claim “professor is greater than engineer”

in the “profession” domain. There are many new and emerging applications using

vectors with values from non-ordered and discrete domains. Based on these

observations, we define a Non-ordered Discrete Data Space (NDDS) as the

Cartesian product of a number of non-ordered and discrete domains. A genome

sequence database, which consists of elements (letters) from a non-ordered discrete

domain (alphabet) {a, g, t, c}, is a typical example of such an application for an

NDDS. Genome sequences are broken into substrings (also called intervals or

words) of some fix-length d for similarity searches [Kent02]. For example, a

substring "aggcggtgatctgggccaatactga” of length 25 can be deemed as a vector in a

25-dimensional NDDS, where, for example, the 3rd character “g” in the string is a

value chosen from the alphabet {a, g, t, c} for the 3rd dimension. There is an

increasing demand for similarity searches on databases in NDDSS from application

areas such as Bioinformatics and Data Mining. To support efficient similarity

searches for large databases in NDDSS, such as the genome sequence databases,

efficient multidimensional index structures are needed.

One main focus of this thesis is to develop indexing techniques to support

efficient similarity queries in NDDSS. As a first step, we establish the idea of an

NDDS and define discrete geometrical concepts in an NDDS corresponding to those

in a CDS. Based on these concepts, properties of the NDDS with respect to

similarity queries are studied. Two novel indexing structures called the ND-tree

and the NSP-tree are then developed for NDDSS. The ND-tree is the first index

technique of its kind, whose construction algorithms are designed based on the

special properties of the NDDS using a data-partitioning approach. The NSF-tree

is also based on the special properties of the NDDS, but it uses space-partitioning

techniques and new Strategies such as the partition of the actual data space instead

of the whole space and the application of more than one Minimum Bounding

Rectangles (MBR) per node to enhance search efficiency. Our empirical studies

based on synthetic and real data show that the performances of the ND-tree and the

NSP-tree are significantly better than those of the existing methods. The NSP-tree

is shown to be particularly promising for large skewed datasets.

We have proposed the NDh-tree to support similarity queries in Hybrid Data

Spaces (HDS), which contain both continuous and non-ordered discrete dimensions.

. h . .

As an extensron of the ND-tree, the ND -tree 18 developed based on geometrical

concepts defined for an HDS. Those concepts use the idea of normalization to

make dimensions with different properties in an HDS comparable. Our

. h

experimental results show that the ND -tree IS a promrsrng Indexrng structure for

HDSs.

Note that Statistical methods have been widely used for multidimensional

datasets. In CDSs, it is a common practice to use statistical tools such as the

principal component analysis (PCA) [Jolliffe86] to catch the real dimensions of the

data space or further reduce them. PCA finds new dimensions (principal

components or PCs) as mutually orthogonal linear combinations of the original

dimensions, where the data lie. Since the dimensionality of true data is typically

significantly lower than the original dimension, the dimensionality of the data space

in the PCA subspace is reduced. Multidimensional indexing methods are then

applied on the transformed data space (PCA subspace) with fewer dimensions so

that query performance can be further improved. Due to the non-ordered nature of

an NDDS, there are difficulties to apply PCA for vectors from an NDDS, since

mean and covariance values cannot directly use PCA. There are ways to convert

non-ordered NDDS to a numeric representation, but it is not our intention to look

into this approach. However, the idea of dimension reduction will certainly benefit

index structures for NDDSS. In our development of the ND-tree and NSP-tree, it is

assumed that data preprocessing has been done and there is no correlation among

dimensions.

Besides preprocessing, statistical methods have also been extensively applied in

tree construction algorithms. For example, in [Weng03], techniques for

incrementally building decision trees are proposed, which are based on the

incremental computation of a tree structure of discriminating features. The method

not only catches the true dimension of data, but further the derived discriminating

features uses dynamically generated “class label” to disregard components that are

irrelevant to outputs. For example, input components that are pure noise are

automatically suppressed. In our ND-tree and NSF-tree, we have also widely

employed statically relevant information, such as the maximum span of all

dimensions, frequencies of entries with the same values in an overflow node and the

histogram of domains, for tree construction algorithms. Although it is not the

focus of this dissertation to explore all possible statistical information that can be

applied in an index structure for an NDDS, we believe that the query performance

of such an index structure can be improved further if properties of data being

indexed can be understood through statistical analysis.

1.2.2 Research problems for distance measures

A distance measure is an integral part of a vector model. It is important

because the distance values between vectors give the actual measure of similarity

among objects. There are a number of different distance measures applicable for a

CDS, such as the Euclidean distance and the Manhattan distance. For a given

query object, the query results on the same database by different distance measures

are often different. It is an open research problem on how to choose a suitable

distance measure to enhance the effectiveness and/or efficiency of a vector model.

Different research works have been done in this area. For example, [Smith97,

HampapurOl] proposed to compare distance measures based on precision and recall,

while in [Hafner95], researchers have proposed to choose a distance measure based

on its computational overhead.

We believe that understanding the relationship among distance measures can

help us to choose a proper distance measure to increase the effectiveness of

similarity queries based on the vector model. In this thesis, we propose a

theoretical model, which utilizes geometrical properties of different objects, such as

hyper-spheres and hyper-cones, for analysis of distance measures in

multidimensional data spaces. We have used the model for two commonly used

distance measures, namely, the Euclidean distance and the cosine angle distance and

shows that as dimension gets higher, the nearest neighbor query results by the

cosine angle distance become quite similar to those retrieved by the Euclidean

distance. The model could be easily extended to analyze other distance measures,

such as the Manhattan distance. As an application, we propose to use the cosine

angle distance for feature combining in content-based image retrieval and the results

are documented in Appendix B.

1.3 Overview of the Thesis

The thesis is organized as follows: Chapter 1 gives a general introduction of the

thesis; Chapter 2 discusses all the related work in detail, including multidimensional

indexing methods, metrics trees, string indexing methods, existing searching

techniques for non-ordered discrete data and various studies of distance measures;

Chapters 3 - 5 present our research for indexing NDDSS and HDSs; Chapter 3

introduces the concepts of an NDDS and the ND-tee technique, including a

performance estimation model for the ND-tree; Chapter 4 presents the NSF-tree,

which is a space-partitioning-based index structure designed to index NDDSS;

. h

Chapter 5 Introduces the ND -tree, an extensron of the ND-tree to support srmrlanty

10

queries in hybrid data spaces, which have both continuous and non-ordered discrete

dimensions. Chapter 6 presents our research on distance measures, including the

theoretical model and the experimental comparison of the Euclidean distance and

the cosine angle distance under various conditions. Chapter 7 provides a summary

of the contribution of this dissertation and future work.

Besides the main part of the thesis listed above, we have also provided three

appendices. Appendix A presents our research for color feature (vector) generation

in the area of Content-based Image Retrieval (CBIR). Appendix B presents our

experimental results for feature combining using the cosine angle distance in CBIR.

Appendix C provides a detailed proof of the performance estimation model of the

ND-tree.

ll

Chapter 2

Related Work

In this chapter, we introduce previous research work, which is related to our

dissertation. Five categories of work are discussed, including multidimensional

indexing methods, metric trees, string indexing methods, existing searching

techniques for non-ordered discrete data and studies of distance measures. The

first four categories are related to our research in indexing non-ordered discrete and

hybrid data spaces for similarity queries and the last category is relevant to our

study on distance measure comparisons in Continuous Data Spaces (CDS) for

similarity queries.

2.1 Multidimensional Indexing Methods

There is an increasing demand for multidimensional indexing methods to

support efficient similarity queries. Developing index structures and algorithms

have been an active research topic during the past few decades. A number of

multidimensional index trees were proposed for indexing vectors from CDSS. The

majority of these structures are disk-based, which aim to support large vector

databases. Since these methods try to optimize disk access patterns, they are also

called multidimensional access methods. Although there are indexing methods

that are designed for small memory-based databases, such as the KD-tree

12

[Bentley75] and the quad tree [Samet84], we will not discuss them in detail in this

chapter since our focus in this dissertation is on large databases. Notice that tree

structures have been widely applied in many different areas. The decision tree, for

example, is widely used in the application of classification. We will not discuss

them in this dissertation, since our focus is on exploiting disk access characteristics

to develop indexing methods for dynamic datasets. Interested readers are referred

to [Murthy98] and [HwangOO].

Multidimensional indexing methods can be divided into two categories:

data-partitioning-based (DP) methods and space-partitioning-based (SP) methods,

based on strategies for data organization in the tree structure. DP index structures

split an overflow tree node by grouping its entries (data) into two disjoint sets X1

and X2 for two new tree nodes. Although different trees may have different criteria

on how to group entries together, the new nodes must meet the minimum (disk)

space utilization requirement, which is given as a parameter. The minimum

bounding regions for X1 and X2 may be overlapped in a DP structure. On the other

hand, SP methods split an overflow node by splitting the subspace represented by

the overflow node. The resulting subspaces are represented by the two new nodes

created by splitting. The indexed vectors are then placed in the new nodes based

on which subspace they belong to. It is clear that an SP method can guarantee an

overlap-free split. However the nodes in such a tree usually do not guarantee the

minimum space utilization.

l3

2.1.1 Typical DP index structures

The R-tree [Guttman84] is a typical DP method. Many later multidimensional

indexing methods are designed based on the tree construction algorithms of the

R—tree. An R-tree uses hierarchical minimum bounding rectangles (MBRS) to

organize the vectors indexed. Each node of an R-tree resides on a disk block and

is represented by an MBR in its parent node. Vectors are stored in the leaf nodes.

A non-leaf node holds entries for each of its child, which contains an MBR and a

point to that child. The R-tree has a balanced tree structure. The insertion

algorithm of the R-tree starts from the root. At each level, it chooses the child,

whose MBR needs the least enlargement to accommodate the new vector. Once

the leaf level is reached, the new vector is inserted into the leaf and the MBRs along

the insertion path are adjusted accordingly. If the leaf chosen does not have

enough space to accommodate the new vector, it will be split into two new nodes

and its entries will be redistributed into the new nodes. The R-tree was proposed

with several different algorithms for splitting. The quadratic algorithm chooses the

distribution that minimizes the areas of the MBRs of the two new nodes. The

less-expensive linear cost algorithm tries to achieve the same purpose with some

heuristics. Performing a range query using the R-tree is relatively straightforward.

If the query range intersects the MBR of a node, the node needs to be accessed.

Starting from the root, the nodes are recursively traversed until the leaves are

reached. In [Roussopoulos95], an efficient branch and bound algorithm for nearest

neighbor (NN) queries was proposed for the R-tree.

l4

The R*-tree [Beckmann90] improved the algorithms and heuristics proposed in

the original R-tree through a careful study of the R-tree’s behavior. One

contribution of the R*-tree is that it identifies that overlap among MBRS in the tree

structure could significantly reduce the query performance. Therefore, the R*-tree

extensively employs overlap-reduction heuristics in its tree construction algorithms.

Another contribution of the R*-tree is that it uses the idea of the quadratic (square)

shaped MBRS to improve the tree performance. In summary, the R*-tree differs

from the R-tree mainly in its insertion algorithms. It has the same structure as that

of the R-tree and its deletion and searching algorithms are unchanged. The query

performance of the R*-tree was shown to be superior to that of the R-tree.

The X-tree [Berchtold96] further extended the idea of overlap reduction used by

the R*-tree. It maintains a history of splits that occur during the tree construction.

An overlap-free splitting algorithm based on the splitting history is applied for

overflow nodes. Studies showed that in high dimensional spaces, overlap is

sometime inevitable when the space utilization requirement needs to be fulfilled.

In that case, the X-tree postpones node splitting by introducing the concept of super

nodes, i.e., a tree node that occupies more than one disk block. The X-tree was

reported to have a better performance than that of the R*-tree for similarity queries.

Despite tree construction algorithms, the searching algorithms of the X-tree is very

similar to those of the R*-tree.

The SS-tree [White96] uses bounding spheres instead of MBRS to organize

indexed vectors. For maintenance purpose, the spheres used by the SS-tree are not

15

minimum bounding. Instead, the centroid of all bounded vectors are used as the

center of the bounding sphere and the radius is set to be the distance from the center

to the farthest vector. During insertion, the SS-tree chooses the child node whose

centroid is closest to the new vector without considering the overlap. When

overflow occurs, the split algorithm of the SS-tree first determines a split dimension

by choosing the one with the largest variance. The split point on that dimension is

determined by choosing a distribution, which minimize the sum of the variance on

each side. The advantage of using a bounding sphere is that the storage space

needed is reduced by half compared to that of the bounding rectangles in the R-tree.

As a result, the fan-out of the SS-tree is increased. The problem of the SS-tree is

that it is difficult to generate low-overlap splits for overflow nodes based on

bounding spheres. Therefore, studies showed that the performance of the SS-tree

for similarity queries is worse than that of the X-tree.

The SR-tree [Katayarna97] goes one step further than the SS-tree. It uses the

intersection region between the MBR and the bounding sphere to organize its data.

Therefore, the SR-tree can be deemed as a combination of the SS-tree and the

R*-tree. Because both MBRS and bounding spheres are used, the fan-out of a node

in an SR-tree is smaller than those of the R*-tree and the SS-tree. On the other

hand, the intersection region solves the overlap problem caused by using bounding

spheres alone. The authors of the SR-tree reported that the SR-tree outperforms

the R*-tree and SS-tree. However, no known comparison between the SR-tree and

the X-tree has been conducted.

16

2.1.2 Typical SP index structures

The K-D-B tree [Robinson81] is an earlier SP index structure. It originated

from the memory—based KD-tree [Bentley75], but combined properties from the

B-tree to become a disk-based index structure. As a typical SP method, the K-D-B

tree partitions the data space into disjoint subspaces and each tree node represents a

subspace resulted from splitting. The subspaces are organized in a hierarchical

manner so that the subspace represented by a parent node covers all subspaces

represented by its children. The nodes at the same level of the K-D-B tree are

mutually disjoint and their union is the whole data space. The K-D-B tree has a

balanced tree structure. However, it does not have guaranteed minimum space

utilization. Since the whole data space is partitioned into subspaces, choosing a

proper leaf for a new vector is quite straightforward. The algorithm only needs to

find the leaf representing the subspace to which the new vector belongs. When a

leaf overflows, the K-D-B tree will decide a split dimension and a Split point on the

split dimension to partition the subspace into two subspaces. The split of a leaf

may cause its parent to overflow and splitting may propagate up to the root. A

split point chosen for a high-level overflow node may intersect lower level tree

nodes. To guarantee no overlap among subspaces, the K-D-B tree employs a

“forced split” strategy which forces all intersecting nodes at lower levels of the tree

to split according to the same split point at the higher level. The searching

procedure for the K-D-B tree is straightforward. All nodes that intersect the

searching range are checked. The process starts at the root and searches

l7

recursively to the leaves. The search performance of the K-D-B tree is negatively

affected by the disadvantage of using subspaces to organize the data points, since

subspaces are usually large. Compared to those MBRS used by DP index

structures, subspaces in the K-D-B tree often contain large empty spaces, where no

vectors are indexed. Since a larger subspace has a higher probability to intersect a

query range, the corresponding tree node is more likely to be accessed during a

similarity query and hence degrade the search performance of the tree.

‘ The hB-tree [Lomet90] is another SP index structure derived from the KD-tree.

One special feature of the hB-tree is that the shape of the subspaces represented by

its node is not rectangular -- it can be rectangles from which other rectangles have

been removed (holey bricks). This is achieved by splitting an overflow node based

on multiple dimensions, which corresponds to the excision of a convex region from

the subspace represented by the overflow node. The entries belonging to that

convex region are then distributed to a new node. With this technique, the forced

split of the K-D-B tree is avoided, since it can guarantee the split does not intersect

any low-level node. The algorithms for similarity queries of the hB-tree are

similar to other SP indexing methods. Like the K-D-B tree, the overlap-free

partitioning of the data space yields better performance, while large empty spaces in

the subspaces represented by the tree nodes reduced the performance. In addition,

although the existence of holes in subspaces decreases the volume of the subspace,

for similarity queries, the probability that the subspace intersects the query range is

not reduced by much.

18

The LSDh-tree [Henrich98] is also an SP indexing method adapted from the

KD-tree. In contrast to the K-D-B tree whose description of the subspaces

includes the intervals of all dimensions, the LSDh-tree is coded in such a way that

only the split dimension and the split point need to be stored in each node. While

space requirement of a K-D-B tree entry grows linearly with increasing dimension,

. . h . h

It IS almost constant for the LSD -tree. This advantage of the LSD -tree leads to a

large fan-out of its tree nodes. The splitting algorithm of the LSDh-tree is also

different from those of the traditional SP methods that use a fixed binary

. . . . h
partitioning approach. In Its “data dependant” strategy, the LSD -tree chooses the

split point where there are an equal number of entries on each side of the split. In

. , . . . ,, h . .
Its ‘drstrrbutron dependent strategy, the LSD -tree always partitions the space at a

fixed split point that is determined by an assumed data distribution. Either way,

the LSD -tree chooses the splrt dimensron and the split point such that It 13 adapted

to the data distribution, resulting in subspaces of various Sizes. As we mentioned

previously, one common problem for traditional SP index structures is that their

subspaces often contain large empty area, which causes the degradation of their

query performance. To overcome this drawback, the LSDh-tree employs

additional MBRS in its tree structure. However, a direct application of MBRS in its

tree structure may consume too much storage spaces in a tree node, which

eliminates the benefits of a large fan-out. The LSDh-tree uses a concept called

“Coded Actual Data Regions (CADR)” to solve the problem. The CADR is a

19

rectangle, which conservatively approximates the actual MBR of the entries stored

in a node. To save space in the description of the CADR, the data space is divided

into a grid of 22d cells. Only 2-z-d bits are needed to describe a CADR. The

parameter z is chosen by users. Once a CADR is created for each node, similarity

queries using the LSDh-tree can be easily conducted -- only those nodes whose

CADR intersects the query range need to be accessed.

2.1.3 Hybrid approaches

From the previous discussion, we can see that both DP and SP approaches have

their own advantages and disadvantages. DP methods guarantee a minimum disk

utilization requirement of their tree nodes. They also use MBRS, which lead to

better query performance. SP methods guarantee overlap-free split of overflow

tree nodes. Their tree nodes can also have a better fan-out due to a small storage

requirement for its entry description. It is desirable to have an indexing structure

that combines the benefits of both the DP and the SP methods. Actually, those

indexing methods introduced in previous sections already incorporated

characteristics from the other category. For example, the insertion algorithm of the

R*-tree prefers a child with minimum overlap enlargement to accommodate the new

vector. The splitting algorithm of the X-tree even tries to guarantee an

overlap-free split. On the other side, the LSDh-tree employs additional

approximated MBRS to enhance its performance for similarity queries. In this

subsection, we introduce the Hybrid tree, which is a typical index structure that

combines DP and SP methods.

20

The Hybrid tree [Chakrabarti99] tries to utilize the benefits of both the DP and

SP methods, while eliminating their problems. The Hybrid tree guarantees a lower

bound on disk utilization while trying to split an overflow node using an SP

approach. Similar to the K—D-B tree, the Hybrid tree always splits on a single

dimension. To avoid the forced split in the K-D-B tree, the Hybrid tree relaxes the

constraints in an SP method where subspaces must be disjoint. The overlap among

subspaces is allowed only when forced splits on low-level nodes are unavoidable for

overlap-free splits. The Hybrid tree always splits on one dimension and represents

each split with one split dimension and two split points where the additional split

point is to describe the overlap if it occurs. It allows the Hybrid tree to have a high

fan-out similar to that of the LSDh-tree. The splitting algorithm of the Hybrid tree

partitions the subspace of a leaf node by choosing the split dimension with the

largest span. It then chooses the split point as close to the middle of the dimension

as possible. The authors proved that the split would be optimal under uniform data

distribution. Since the Hybrid tree partitions the data space and uses subspaces to

represent each node, it has the same problem of large empty subspaces as those in

SP methods. It hence employs the same CADR approach as that of the LSDh-tree.

The authors of the Hybrid tree showed that the query performance of the Hybrid tree

is better than those of the hB-tree and the SR-tree.

We believe that combining the benefits of DP and SP methods is a necessary

step to develop an efficient indexing structure for multidimensional data spaces.

21

We have extensively applied this idea in our designing of the ND-tree and the

NSP-tree for indexing non-ordered discrete data spaces.

2.2 Metric ’h‘ees

In applications where objects in a database do not form a vector space, there

may still exist a notion of similarity among those objects, which can be a metric

distance. The objects can hence be considered as residing in a metric space. To

use a similarity measure as a metric distance, it must satisfy four properties: 1)

positiveness: the distance value must be no less than zero; 2) symmetry: the distance

value between objects x, y and y, x should be the same; 3) reflexivity: the distance

value between the same objects should be zero; and 4) triangle inequality: the

distance value between objects x, z should be no greater than the sum of the distance

values between objects x, y and between objects y, z. Apparently, some of the

widely used distance measures in vector spaces such as the Euclidean distance are

metric distances. Therefore, a vector space could be deemed as a special case of

the metric space. However, metric spaces are more general than vector spaces,

since the only information available in a vector space is the distances among

objects.

To support efficient similarity queries in a metric space, a number of metric

trees have been introduced in recent years. Most of these trees are static and

memory—based. A common characteristic of these trees is that they only need to

consider relative distances among objects to organize and partition the metric space

22

and apply the triangle inequality property of distances to prune the space for

similarity searching. In this section, we will introduce some of the widely

referenced metric trees even though they are mostly memory-based structures. We

will also introduce the M-tree, which is the only existing disk-based dynamic metric

tree.

The Vantage-Point Tree (VPT) was first proposed in [Uhlmann91] where the

concept of “metric trees” was proposed. More complete work on VPT was

conducted in [Yianilos93, Chiueh94]. The VPT is a binary tree built through a

recursive process. Starting from the root, at each level, some object p (pivot) is

selected as the root of the current subtree. The median M of the set of all distances

between p and the remaining objects in the subtree is taken. Objects whose

distance to p is less than M go to the left child, while those whose distance to p is

greater than M go to the right child. The algorithm for similarity queries on VPT is

relatively easy. Given a query object Q and a range r, the distance dist between q

and the pivot p is computed. If dist - r S M, the left subtree is searched and if dist

+ r 2 M, the right subtree is searched. It is possible that the algorithm searches

both subtrees. The authors reported that for similarity queries with a small range,

the search time of the VPT is logarithmic with respect to the number of objects

indexed. The authors also indicated that choosing an object far from the rest of the

objects would result in a better performance.

The m-ary VPT (MVPT) [Brin95, Bozkaya97] is an extension of the VPT by

using the m-l uniform percentiles instead of just the median. Choosing multiple

23

pivots instead of one per node was also suggested. The authors showed that the

MVPT was slightly better than the VPT, while a larger improvement was obtained

by using more than one pivot per node.

The Generalized-Hyperplane Tree (GHT) [Uhlmann91] is also a binary tree that

uses two pivot objects at each level of the tree. The GHT is built recursively as

follows. At each node, two pivots p1 and p; are selected. The objects closer to p;

than to p; are put into the left subtree and those closer to p; are put into the right

subtree. For a similarity query with a query object Q and a range r, the distances

dist] between q and the pivot p1 and distz between q and the pivot p; are computed.

If distl — r S distz + r, the left subtree is searched and if distz — r S distl + r, the right

subtree is searched. Similar to the VPT, it is possible for the algorithm to search

both subtrees. The authors in [Uhlmann91] argued that the GHT could perform

better than the VPT in high dimensions. A variant of the GHT called the

Geometric Near Neighbor Access Tree (GNAT) was proposed in [Brin95]. The

main difference is that the GNAT is an m-ary tree that uses m pivots at each level of

the tree.

The M-tree [Ciaccia97] is the only disk—based metric tree that provides the

dynamic property and a good performance of disk I/O’s. The structure of the

M-tree is balanced and is similar to that of the GNAT, since it chooses a set of

pivots at each node and the elements closer to each pivot are organized into a

subtree rooted at that pivot. Each pivot also stores its covering radius, which is the

maximum distance from the pivot to any other objects in the subtree. As a

24

dynamic index structure, the insertion algorithm of the M-tree is different from

those of the other (static) metric trees. A new object is inserted into the subtree

where its covering radius needs least expansion. Ties are broken by choosing the

subtree with the pivot closest to the new object. If the accommodation of the new

object causes the leaf to overflow, splitting will occur and propagate upward as in

the R-tree. The authors of the M-tree proposed several criteria to choose a new

pivot and split the overflow node. The best results were obtained by minimizing

the maximum of the two covering radii obtained. For a similarity query with a

query object Q and a range r, the distance dist between Q and each pivot in the node

is calculated. If dist — r is less than the covering radius of the pivot, the search

algorithm of the M-tree enters the corresponding subtree represented by the pivot.

The authors showed that the M-tree performed better than the R*-tree. But they

did not provide details on the dataset they used.

In summary, the metric trees are proposed for metric spaces, which are more

general than vector spaces. Therefore, these techniques could be applied to

support similarity searches in continuous or discrete vector spaces. However,

most of such trees are static and require costly reorganizations to prevent

performance degradation in case of insertions and deletions. If applied to a vector

space, these techniques are very generic. They only assume the knowledge of

relative distances among objects and do not effectively utilize the special

characteristics, such as occurrences and distributions of dimension values, of objects

25

in a Specific data space. Hence, even for dynamic indexing techniques of this type,

such as the M-tree, their retrieval performance is not optimized for vector spaces.

2.3 String Indexing Methods

String indexing method is an active research topic in the information retrieval

area. To support efficient searches in string databases, a number of string index

structures were proposed. They can be divided into two categories: trie-based

structures, such as the suffix tree [Weiner73, McCreight76] and the suffix arrays

[Gonnet92, Manber93], and B-tree-based structures, such as the Prefix B-tree

[Bayer77] and the String B-tree [Ferragina99]. In this section, we introduce some

of the widely used string index structures in both categories.

A suffix tree [Weiner73, McCreight76] is a trie data structure built over all

suffices of a string database. Tries, or digital search trees [Knuth73], are multiway

trees that store sets of strings and are able to retrieve any string in time proportional

to its length (independent of database size). Every edge of the trie is labeled with a

letter from the alphabet. To improve space utilization, a suffix tree compacts its

trie structure such that each edge is labeled by a substring. This involves

compressing unary paths, i.e., paths where each node has just one child. The

siblings are ordered according to their first characters, which are distinct. There is

no node having only one child except the root in a suffix tree. By appending an

end-marker, the leaves have a one-to-one correspondence to the string suffices so

that each leaf stores a distinct suffix. Suffix trees also utilize some node-to-node

26

pointers, called suffix links, which are crucial for the efficiency of the searching

operations. The suffix link from a node storing a nonempty string, say aY with a

letter a, leads to the node storing Y. Prefix and substring searches can be easily

conducted on a suffix tree. However, suffix trees are not practical for large string

databases due to its high space complexity.

Suffix arrays [Gonnet92, Manber93] are essentially compressed suffix trees. If

the leaves of a suffix tree are traversed in a left-to—right order, all the suffices of the

database are retrieved in lexicographical order. A suffix array is simply an array

containing all the pointers to the text suffices listed in lexicographical order. Since

only one pointer per suffix is stored in a suffix array, the space requirement is very

small compared to that of the suffix tree. Suffix arrays are designed to allow

binary searches done by comparing the contents of each pointer. However, if the

suffix is large, the binary search can perform poorly because of the number of

random disk accesses. To address this problem, the use of supra-indices over the

suffix array was proposed. A simple supra-index can be just a sampling of one out

of k suffix array entries, where for each sample the first I suffix letters are stored in

the supra-index. This supra-index is then used as a first step of the search to

reduce disk accesses. The authors also suggested different sample intervals and

sample lengths under different conditions. The algorithm for prefix and suffix

searches using the suffix array is relatively straightforward. It starts with two

“boundary patterns” P1 and P2 and looks for any suffix S such that P; S S < P2.

Both patterns are binary searched in the suffix array and all the strings between P,

27

and P2 are the answers. The time complexity of a suffix array for prefix and

substring searches is logarithmic with respect to the database size.

The Prefix B-tree [Bayer77] is a disk-based string index structure. It is a

B-tree variation whose leaves contain all indexed strings and whose non-leaf nodes

contain some substrings for distinguishing each child of the node. Unlike

traditional B-trees that index numerical numbers of fixed sizes, the Prefix B-tree

deals with strings of arbitrary lengths. Therefore, it is not always possible to

accommodate a set of strings into one tree node whose size is limited to one disk

block. The Prefix B-tree solves the problem by representing the indexed strings

using their logical pointers and employing so-called separators to implement the

entries in its non-leaf nodes. The separators are prefixes that satisfy the following

property: let x and y be any two keys that x < y. There is a unique prefix y’ of y

such that 1) y' is a separator where x < y’ S y; 2) no other separator between x and y

is shorter than y'. Based on the property, the shortest separators are chosen by the

Prefix B-tree to save as much space in a node as possible. The authors of the

Prefix B-tree proposed two strategies to keep the separators short. The first one

uses the shortest unique prefix of a string as its separator, but it may fail because the

length of the separator can be proportional to the length the keys and it will result in

a lot of duplication information. The second strategy uses a compression scheme

to store the separators in non-leaf nodes such that if a separator begins with the

same n characters as its immediate predecessor, its first n characters are replaced by

an integer n. This approach can save some space but it still cannot prevent a key

28

from having a lot of characters starting from position n+1. The algorithms of the

Prefix B-tree for prefix and substring searches are almost the same as those of the

B-tree. However, due to the problem of strings with variable lengths, the

performance of the Prefix B-tree is very good only for bounded-length strings,

usually no longer than 255 characters.

The String B-tree [Ferragina99] is another disk—based B-tree variation for string

indexing. One major motivation of the String B-tree is to address the problem of

variable-length strings encountered by the Prefix B-tree. In a String B-tree, each

indexed string is represented with their logical pointer. A Patricia trie [Morrison68]

is incorporated into the non-leaf nodes of the String B-tree to describe the separators

stored in that node. The special property of the Patricia trie supports searches that

compare only one actual separator in the node, which means that at most two disk

I/O’s are needed for accessing each non-leaf node. Therefore, the String B-tree

manages to provide the same theoretical worst-case performance as regular B-trees

for unbounded-length strings. However, in practice, the Prefix B-tree is often used

for its better performance as most strings indexed are of bounded length.

In summary, string indexing methods, particularly memory-based trie structures

are very efficient in supporting exact, prefix and suffix searches. However, they

were not designed for similarity queries.

29

2.4 Existing Searching Techniques for Non-ordered

Discrete Data

Domains with non-ordered discrete values, such as sex and profession, are

prevalent in database applications. One widely used indexing method for

non-ordered discrete data is the bitmap index structure [ElmasriOl]. A bitmap is

simply an array of bits. A bitmap index on an attribute A with non-ordered discrete

domain ND consists one bitmap for each value in ND. Each bitmap has as many

hits as the number of objects in the database. The i-th bit of the bit map for value v

in ND is set to 1 if the i-th object in the database has value v for its attribute A. All

other bits of the bitmap are set to 0. The bitmap indices are generally small

compared to the actual database size. For example, imagine a student database of

50,000 records with a bitmap index on the attribute “class level”. If there are five

class levels (freshman, sophomore, junior, senior and graduate), there will be five

bitmaps, each containing 50,000 bits (6.25K) for a total index size of 31.25K.

Bitmap indices are very useful for traditional database queries where multiple

attributes are involved in one selection, Since comparison, join and aggregation

operations are reduced to bit arithmetic, which substantially reduces the processing

time. However, it is difficult to use the bitmap index structure for similarity

queries, since it only provides exact matching on attributes.

Bioinformatics applications often need to conduct similarity queries on large

databases with non-ordered discrete domains. Due to the absence of efficient

30

index structures, popular searching tools, such as the BLAST [Altschul90,

Altschul97], usually employ on-line searching algorithms, which are essentially a

linear scan. Several indexing techniques for genome sequence databases have

recently been suggested in the literature [Orcutt84, Califano93, Fondrat95, Chen97a,

Kent02, WilliamsOZ]. They have shown that indexing is an effective way to

improve search performance for large genome sequence databases. However, most

genome sequence data indexing techniques that have been reported to date are based

on indexing strategies, such as hashing [Califano93, Fondrat95] and inverted files

[WilliamsOZ], which cannot be efficiently used for similarity searches. The BLAT

[Kent02], for example, builds an index of fixed-length non-overlap substrings for

the Human Genome database, which supports only exact queries. To conduct a

range query based on Hamming distance, the BLAT scans the index repeatedly for

all possible substrings that match the query within the given Hamming distance.

Due to the exponentially increasing complexity, the BLAT cannot support similarity

queries with a larger range. In summary, these techniques focus more on

biological criteria rather than developing effective index structures.

Recently, an indexing technique designed for similarity searches on sets, called

the signature tree (SC-tree) was proposed in [MamoulisO3]. The SG-tree aims at

the problem of supporting similar queries on sets, whose values are from a

non-ordered discrete domain. Each set indexed in the SG-tree is represented as a

bitmap, called the signature, which is essentially a vector with values of 0’s and 1’s.

The SG-tree is constructed based on discrete geometrical concepts of signatures,

31

which are different from those defined in CDSs. For example, the area in an

SG-tree is defined as the number of 1’s in a signature. The overlap of two

signatures is defined as the signature resulting from the bit-wise AND of the two

signatures. The construction algorithms of the SG-tree are very similar to those of

the R-tree. The Hamming distance is used for similarity queries and the authors

have shown that the SG-tree significantly outperforms other hash-based indexing

methods for set queries. Although independently proposed, some ideas of our

ND-tree are quite similar to those of the SG-tree in that both trees are

multidimensional indexing methods for non-ordered discrete data and their

construction algorithms are both based on discrete geometrical concepts that are

different from those defined in CD83. However, the ND-tree also has significant

differences from the SG-tree. Firstly, the ND-tree is designed to support similarity

queries in an NDDS, which is the Cartesian product of a number of non-ordered

discrete domains, while the SG-tree searches for sets from a single domain.

Secondly, the ND-tree is capable of handling vectors with different values/letters,

while the vectors indexed by the SG-tree are limited to binary data. Thirdly, as we

will see in Chapter 3, the definitions of the discrete geometrical concepts for the

ND-tree are based on the idea of an NDDS, which are totally different from those

defined for the SG-tree.

32

2.5 Research on Distance Measures

A distance measure is an integral part of a vector model. It provides a measure

of similarity among objects. There are a number of different distance measures

applicable for a CDS, such as the Euclidean distance, the cosine angle distance and

the Manhattan distance. Different research has been done on how to choose a

proper distance measure for an application. In this section, we discuss existing

work on comparison of distance measures.

One way of comparing distance measures is to study their retrieval performance

in terms of precision and recall in a particular application area, such as

content-based image retrieval [Smith97] or video COpy detection [HampapurOl].

In [Smith97], the authors evaluated the performance of several different distance

measures, including the Euclidean distance and the Mahalanobis distance, by

conducting image retrieval experiments. For each image query, the relevant set

was established first. The evaluation is based on recall and precision that are

defined as follows. Recall is the fraction of the relevant images retrieved by one

similarity query. Precision is the fraction of the retrieved images, which is relevant.

It is obvious that an effective distance measure should have both good recall and

precision for a similarity query. The authors concluded that the

non-quadratic—form distance measures, such as the Euclidean distance, perform as

well as the quadratic form distance measures, such as Mahalanobis distance. In

[HampapurOl], the authors examined the use of several image distance measures in

33

the context of video copy detection and compared their performances based on

recall and precision.

One concern in choosing a particular distance measure is the impact of

computational overhead on system performance. When the dimension of feature

vectors is large, some distance measures may consume more computing resources

than others. Researchers have proposed simplified approximate distance measures

as a filter rather than applying a complex distance measure to the whole database.

Such a distance measure should satisfy the following requirements: 1) the distance

measure is cheaper to use to filter a large fraction of the database without any misses;

and 2) the computation of the expensive distance measure can be limited to the

small set of objects retrieved by filtering. In [Hafner95], for example, the authors

proposed the average color distance, which is based on the average of a color

histogram. Given a d-dimensional (d-bins) color histogram, the average on its

three color components will result in a vector with only three dimensions. The

authors showed that image queries using such a distance could be much faster than

those using a naive linear scan on the database with a complex distance measure.

Some researchers argued that a proper distance measure should be chosen based

on the additive noise distribution. The authors of [SebeOO] have proposed that

from a maximum likelihood perspective, the use of the Euclidean distance measure

is only justified when the additive noise distribution is Gaussian. When the noise

distribution is exponential, the Manhattan distance should be applied. Through

empirical studies, they found that in computer vision applications, such as motion

34

tracking and stereo matching, the noise distribution is often not Gaussian.

Therefore, instead of the Euclidean distance, the Cauchy metric [Sebe98] is

proposed for such an application.

To the best of our knowledge, although a lot of efforts have been made to

compare and study different distance measures, enhancing the effectiveness of

similarity queries by using a proper distance measure is still an open research

problem. In this thesis, we try to approach the problem from a different angle.

We believe that understanding the relationship among distance measures can help us

to choose a proper distance measure to increase the effectiveness of similarity

queries based on the vector model. Our research establishes a theoretical model

for analysis of distance measures in multidimensional data spaces. We have used

the model for two commonly used distance measures, namely, the Euclidean

distance and the cosine angle distance and shows that as dimension gets higher, they

becomes quite similar.

35

Chapter 3

The NDDS and the ND-Tree

In this chapter, we formalize our definitions of discrete geometrical concepts in

a Non-ordered Discrete Data Space (NDDS). We then present the ND-tree, which

is a novel indexing method developed based on these discrete geometrical concepts

and designed specially for the NDDS.

3.1 Motivations and Challenges

Domains with non-ordered discrete values are prevalent in database applications,

such as sex, complexion, profession and user-defined enumerated types. We

define a Non-ordered Discrete Data Space (NDDS) as the Cartesian product of a

number of such domains. There is an increasing demand for similarity searches on

databases in NDDSS. The databases that require searching information in an

NDDS are usually very large (e.g., the well-known genome sequence database,

GenBank, contains over 24 GB genomic data). To support efficient similarity

searches in such databases, efficient indexing techniques are needed.

As discussed in Chapters 1 and 2, a number of multidimensional indexing

methods have been proposed for Continuous Data Spaces (CDS), where data values

in each dimension are continuous and can be ordered along an axis. These

techniques include two categories: data-partitioning-based methods, such as the

36

R-tree [Guttman84], and space-partitioning-based methods such as the K-D-B tree

[Robinson81]. However, all the above techniques rely on a crucial property of a

CDS; that is, the data values in each dimension can be ordered and labeled on an

axis. Some essential geometric concepts such as rectangle, sphere, area of a region,

left corner, etc. are no longer valid in an NDDS, where data values in each

dimension cannot even be labeled on an (ordered) axis. Hence the above

techniques cannot be directly applied to an NDDS.

If the domain/alphabet for every dimension in an NDDS is the same, a vector in

such space can be considered as a string over the alphabet. In this case, traditional

string indexing methods, such as the Tries [Knuth73], the Prefix B-tree [Bayer77]

and the String B-tree [Ferragina99], may be utilized. However, most of these

string indexing methods, such as the Prefix B-trees and the String B-trees, were

designed for exact searches rather than similarity searches. Tries do support

similarity searches, but its memory-based feature makes it difficult to apply to large

databases. Moreover, if the alphabets for different dimensions in an NDDS are

different, vectors in such a space can no longer be considered as strings over an

alphabet. The string indexing methods are inapplicable in such a case.

A number of so-called metric trees have been introduced in recent years

[Uhlmann91, Yianilos93, Chiueh94, Brin95, Bozkaya97, Ciaccia97]. As we have

discussed in Chapter 2, these trees only consider relative distances among objects to

organize and partition the search space and apply the triangle inequality property of

distances to prune the search space. These techniques, in fact, could be applied to

37

support similarity searches in an NDDS. However, most of such trees are static

and require costly reorganizations to prevent performance degradation in case of

insertions and deletions [Uhlmann91, Yianilos93, Chiueh94, Brin95, Bozkaya97].

On the other hand, these techniques are very generic with respect to the underlying

data spaces. They only assume the knowledge of relative distances among objects

and do not effectively utilize the special characteristics, such as occurrences and

distributions of dimension values, of objects in a specific data space. Hence, even

for dynamic indexing techniques of this type, such as the M-tree [Ciaccia97], their

retrieval performance is not optimized. Problems may occur when they are applied

to a real application in an NDDS [Chen97a, Chen97b]. As the authors pointed out,

it is very difficult to select split points for an index tree in a general metric space.

To support efficient similarity searches in an NDDS, we propose a new indexing

technique, called the ND-tree. The key idea is to extend the essential geometric

concepts (e.g., minimum bounding rectangle and area of a region) as well as some

effective indexing strategies (e.g., node splitting heuristics in R*-tree) in CD85 to

NDDSS. There are several technical challenges for developing an indexing method

for an NDDS. They are due to: 1) no ordering of values on each dimension in an

NDDS; 2) non-applicability of continuous distance measures such as the Euclidean

distance and the Manhattan distance to an NDDS; 3) high probability of vectors to

have the same value on a particular dimension in an NDDS; and 4) the limited

choices of split points on each dimension. The ND-tree is developed in such a way

that these difficulties are properly addressed. Our extensive experiments

38

demonstrate that the ND-tree can support efficient searches in high dimensional

NDDSS.

The rest of this chapter is organized as follows. Section 3.2 introduces the

essential concepts and notation in an NDDS for the ND-tree. Section 3.3 discusses

the details of the ND-tree including the tree structure and its associated algorithms.

Section 3.4 discusses handling NDDSS with different alphabets using the ND-tree.

Section 3.5 introduces the performance estimation model of the ND-tree. Section

3.6 presents our experimental results.

3.2 Concepts and Notation

In this section, we present the concepts in an NDDS that will be used in the

following discussions.

Definition 1: (Alphabet, letter)

A domain with a finite number of non-ordered and discrete values will be called an

alphabet in this dissertation. We call each value in an alphabet a letter. Based on

the definition, there is no natural ordering among letters in an alphabet. I

Definition 2: (NDDS, area/size ofan NDDS)

Let Ai (1 S i S d) be an alphabet. A d-dimensional non-ordered discrete data space

(NDDS) 9d is defined as the Cartesian product of d alphabets:

9d = A1 XAZ x...XAd. A,- is called the alphabet for the i-th dimension of 9d-

The area (or size) of space 9d is defined as: area(£2d) 2| A1 |* | A2 |*...* | Ad I,

39

where I Ai l is the size of alphabet Ai. In fact, area(Qd) indicates the total number

of vectors in the space. I

Notice that, in general, alphabets Ai’s may be different for different dimensions.

We first consider NDDSS with the same alphabet for all the dimensions. In Section

3.4, we generalize it by allowing various alphabets for different dimensions.

Definition 3: (Vector, discrete rectangle, edge length, area)

Let ai E Ai (1 S i S d). The tuple a = (a1, a2, ad) (or simply “a1a2...ad”) is

called a vector in 52d. Let S,- g Ai (1 S i S d). A discrete rectangle R in Qd is

defined as the Cartesian product: R 2 51x52 x...de . S,- is called the i-th

component set of R. The length of the edge on the i-th dimension of R is length(R,

i) = I S; l. The area of R is defined as: area(R) =I 51 I*I52 I*...*ISd I. Note

that a vector can be considered as a special discrete rectangle when l S,- | = 1 for all 1

SiSd. I

Definition 4: (Overlap oftwo discrete rectangles)

Let R=SIXSZX...XSd and R'=Si><S’2><...><S;1 be two discrete rectangles

in 9d. The overlap R n R' of R and R' is the Cartesian product:

RmR'z (sl nSi)x(Sz ns’2)x...x(sd n53).

Clearly, we have area(RnR') =I 51 (151 I *ISZ flS'Z I*---*I5d 0521 I. IfR

= R m R' (i.e., S,- ; Si' for 1 S i S d), R is said to be contained in (or covered by) R'.

40

Definition 5: (Discrete minimum bounding rectangle (DMBR))

Given a set of discrete rectangles {R=SIXSZX...XSd, R’=SIXS'2><...><S;1,

...}, the Discrete Minimum Bounding Rectangle (DMBR) of (R, R ', ...}, is defined

as the Cartesian product:

DMBR = (SI USi U...)X(Sz US’Z u...)x...x(Sd OSQ u....)

From the definition, it is clear that DMBR covers all rectangle (R, R', ...}. I

To perform similarity queries in NDDSS, a measure of similarity needs to be

defined. Unfortunately, those widely used continuous distance measures such as

the Euclidean distance cannot be applied to an NDDS. One might think that a

simple solution to this problem is to map the letters in the alphabet for each

dimension to a set of (ordered) numerical values, and then apply the Euclidean

distance. For example, one could map “a”, “g”, “t” and “c” in the alphabet for a

genome sequence database to numerical values 1, 2, 3 and 4, respectively.

However, this approach would change the semantics of the letters in the alphabet.

For example, the above mapping for the genomic bases (letters) would make the

distance between “a” and “g” closer than that between “a” and “c”, which is not the

original semantics of the genomic bases. Hence, unless it is for exact match, such

a transformation approach is not a proper solution.

One suitable distance measure for NDDSS is the Hamming distance. That is,

the distance between two vectors in an NDDS is the number of dimensions on

which the corresponding components of the vectors are different. Using the

Hamming distance, the (minimum) distance between two discrete rectangles can be

41

defined.

Definition 6: (Minimum distance between two discrete rectangles)

Given two discrete rectangles R=Slezx...de and R'=SIXS§><...><SZI.

the (minimum) distance between R and R' is defined as the number of overlapping S,-

and S,-' ’s, which is given by equation (1).

d

(1mm, R') = Z f(s,-,s,’-), (1)

i =1

0 nan$¢¢
where S-,Sf =

“I I) {1 otherwise

Note that, since a vector is considered as a special rectangle, equation (1) can

also be used to measure the (minimum) distance between a vector and a rectangle.

When both arguments are vectors, equation (1) boils down to the Hamming

distance.

Using the above distance measure, a range query range(aq, rq) in an NDDS can

be defined as: {a I dist(a ,a) S rq }, where aq and rq are the given query

vector and search distance (range), respectively. An exact query is a special case

of a range query when rq = 0.

Let us use an example to illustrate the concepts of an NDDS.

Example 1

Consider a genome sequence database. Assume that the sequences in the database

are broken into overlapping intervals of length 25 for similarity searches. As we

42

mentioned before, each interval can be considered as a vector in a 25-dimensional

NDDS £225. The alphabets for all dimensions in 5225 are the same, i.e., A,- = A = {a,

g, t, c} (1 S i S 25). The space size: area(st) = 425 = 1.126 * 10's.

R = {a, t, c} x {g, t} x x {t, c} and R'= {g, t, c} x {a, c} X X {c} are two

discrete rectangles in 925, with areas 3 * 2 * * 2 and 3 * 2 * * 1, respectively.

The overlap ofR and R'is: R m R' = {t, c} x (I) x x {c}. The distance between R

and R'is: O + l + + 0.

Given vector (2': “aggcggtgatctgggccaatactga” in 5225, range query range(a, 2)

retrieves all vectors that differ from aon at most 2 dimensions from the database. I

3.3 The ND-tree

The ND-tree is designed for NDDSs. It is inspired by some popular

multidimensional indexing techniques including the R-tree and its variants (the

R*-tree in particular). Hence it has some similarities to the R-tree and the R*-tree.

The distinctive feature of the ND-tree is that it is based on the NDDS concepts such

as discrete rectangles and their areas and overlaps defined in Section 3.2.

Furthermore, its development has taken some special characteristics of NDDSs into

consideration, as we will see.

3.3.1 Tree structure

Assume that the keys to be indexed for a database are the vectors in an NDDS

Qd over an alphabet A. A leaf node in an ND-tree contains an array of entries of

the form (op, key), Where key is a vector in flat and op is a pointer to the object

43

represented by key in the database. A non-leaf node in an ND-tree contains an

array of entries of the form (cp, dmbr), where cp is a pointer to a child node in the

tree and dmbr is the DMBR of all DMBRS of its child nodes. The DMBR of a

non-leaf node is recursively defined as follows: if a letter appears in the component

set for a particular dimension of the DMBR of one of the child nodes, it also appears

in the component set for the corresponding dimension of the DMBR of the current

(parent) node.

Let M and m (2 S m S IM / 2I) be the maximum number and the minimum

number of entries allowed in each node of an ND-tree, respectively. Note that,

since the spaces required for an entry in a leaf node and an entry in a non-leaf node

are usually different while the space allocated to each node (i.e., block size) is

assumed to be the same, in practice, the maximum number M1 (the minimum

number m) for a leaf node is different from the maximum number Mn (the

minimum number m") for a non-leaf node. To simplify the description of the tree

construction algorithms, we use the same M (m) for both leaf and non-leaf nodes.

However, our discussions are still valid if M (m) is assumed to be M; (m) when a

leaf node is considered and Mn (mn) when a non-leaf node is considered.

An ND-tree is a balanced tree satisfying the following conditions:

(1) The root has at least two children unless it is a leaf, and it has at most M

children;

(2) Every non-leaf node has between m and M children unless it is the root;

(3) Every leaf node contains between m and M entries unless it is the root.

44

(4) All leaves appear at the same level.

Figure 1 shows an example of the ND—tree for a genome sequence database.

Level 1 (root): {ag}><{acgt}x {tc }X{acgt}x...

Level 2; {ag}x{gc}x... {ag}x{at}x... {t}x{cgt}x... {c}x{acg}x...

/ \ \. \

Len/3130630; “at...” “ga...” “tc...” “rt...”

Figure 1: An example of the ND-tree

3.3.2 Building the ND-tree

To build an ND—tree, algorithms to insert/delete/update an object (vector in 9d)

into/from/in the tree are needed. A deletion is basically the reverse of an insertion.

Our discussion is focused on the insertion issues and its related algorithms. A

deletion algorithm similar to that of the R-tree is adopted for the ND-tree. The

update operation is implemented by a deletion followed by an insertion.

3.3.2.1 Insertion procedure

The task of Algorithm Insertion is to insert a new vector ainto a given ND-tree.

It determines the most suitable leaf node for accommodating a by invoking

Algorithm ChooseLeaf. If the chosen leaf node overflows after accommodating a,

Algorithm SplitNode is invoked to split it into two new nodes. The Split

propagates up the ND-tree if the split of the current node causes the parent node to

overflow. If the root overflows, a new root is created to accommodate the two

nodes resulting from the split of the old root. The DMBRs of all affected nodes are

45

adjusted in a bottom-up fashion accordingly.

As a dynamic indexing method, the two Algorithms Choosewa and SplitNode

invoked in the above insertion procedure are very important. The strategies used

in these algorithms determine the data organization in the tree and are crucial to the

performance of the tree. The details of these algorithms will be discussed in the

following subsections.

The main insertion procedure is given as follows:

Algorithm Insertion:

Input: (1) vector ato be inserted; (2) root node T of an ND-tree.

Output: the ND-tree containing vector 0;

Method:

1. invoke Algorithm ChooseLeaf on T to select a leaf node LN to accommodate a;

2. create an entry for ain LN;

3. let N = LN;

4. while N overflows do

5. invoke Algorithm SplitNode on N to generate two new nodes N1 and N2;

6. if N is not the root node then

7. replace N with N1 and add N2 in N ’3 parent node P;

8. adjust the DMBRS of the entries for N1 and N2 in P accordingly;

9. if P overflows then let N = P;

10. else break;

11. end if;

46

12. else generate a new root T with two children N1 and N2;

13. break;

14. end if;

15. end while;

16. let N = LN;

17. repeat

18. adjust the DMBR of the entry for N in N’s parent node P;

19. let N = P;

20. until N = T;

21. return T.

3.3.2.2 Choosing leaf node

The purpose of Algorithm ChooseLeaf is to find an appropriate leaf node to

accommodate a new vector. It starts from the root node and follows a path to the

identified leaf node. At each non-leaf node, it has to decide which child node to

follow. We have applied several heuristics for choosing a child node in order to

obtain a tree with good performance.

Let E, E2, Ep be the entries in the current non-leaf node N, where m S p S M.

The overlap of an entry Ek (1 S k S p) with other entries is defined as:

P

0verlap(Ek .DMBR) = Zarea(Ek .DMBR n Ei.DMBR),1S k _<_ p

i =l,i¢k

One major problem in high dimensional indexing methods for CD55 is that as

47

the number of dimensions becomes larger, the amount of overlap among the

bounding regions in the tree structure increases significantly, leading to a dramatic

degradation of the retrieval performance of the tree [Berchtold96, LiOl]. Our

experiments have shown that NDDSs also have a similar problem. Hence we give

the highest priority to the following heuristic:

IHI: Choose a child node corresponding to the entry with the least enlargement

of overlap(Ek.DMBR) after the insertion.

Unlike multidimensional index trees in CD85, possible values for the overlap of

an entry in the ND-tree (for an NDDS) are limited, which implies that ties may

occur frequently. Therefore, other heuristics should be applied to resolve ties.

Based on our experiments, we have found that the following heuristics, which are

used in some existing multidimensional indexing techniques [Beckmann90], are

also effective in improving the performance of an ND-tree:

1H2: Choose a child node corresponding to the entry Ek with the least

enlargement of area(EkDMBR) after the insertion.

1H3: Choose a child node corresponding to the entry Ek with the minimum

area(EkDMBR).

At each non-leaf node, Algorithm ChooseLeaf first applies heuristic [H] to

determine a child node to follow. If there is a tie, heuristic 1H2 is applied. If

there is still a tie, heuristic 1H3 is used. If the above three heuristics are not

sufficient to break a tie, a child is chosen randomly.

Using the above heuristics, we have:

48

Algorithm ChooseLeaf:

Input: (1) a new vector ato be inserted; (2) root node T of an ND-tree.

Output: leaf node N chosen for accommodating a.

Method:

1. let N = T;

2. while N is not a leaf node do

3. let S. be the set of child nodes ofN determined by 1H,;

4. if S; = 1 then

5. let N be the unique child node in S 1;

6. else if S2 = l where S2 ; Sl determined by 1H2 then

7. let N be the unique child node in S2;

8. else if 53 = 1 where 53 ; S2 determined by 1H3 then

9. let N be the unique child node in 53;

10. else let N be any child node in S3;

11. end if;

12. end while;

13. return N.

3.3.2.3 Splitting overflow node

Let N be an overflow node with a set of M+1 entries ES = {E., E2, EM“ I.

A partition P ofN is a pair of entry sets P = {E51, E52} such that: 1) E51 U E52 = ES;

2) E51 0 E52 2 (I); and 3) m S lES.l S M, m S IES2I S M. Let ESLDMBR and

49

ES2.DMBR be the DMBRS for the DMBRS of the entries in E51 and E52,

respectively. If area(ESl.DMBR n ES2.DMBR) = 0, P is said to be overlap-free.

Algorithm SplitNode takes an overflow node N as the input and splits it into two

new nodes N1 and N2 whose entry sets are from a partition defined above. Since

there are usually many possible partitions for a given overflow node, a good

partition that leads to an efficient ND-tree should be chosen for splitting the

overflow node. To obtain such a good partition, Algorithm SplitNode invokes two

other algorithms: ChoosePartitionSet and ChooseBestPartition. Algorithm

ChoosePartitionSet determines a set of candidate partitions to consider, while

Algorithm ChooseBestPartition chooses an optimal partition from the candidates

based on several heuristics. The details of these two algorithms are given in the

following subsections.

The splitting procedure is described as follows:

Algorithm SplitNode:

Input: overflow node N of an ND-tree.

Output: two new nodes Nr and N2.

Method:

1. invoke Algorithm ChoosePartitionSet on N to find a set A of candidate

partitions for N;

2. invoke Algorithm ChooseBestPartition to choose a best partition BP from A;

3. generate two new nodes N1 and N2 that contains the two entry sets of BP,

respectively;

50

4. calculate the DMBRS of N1 and N2;

5. return N, and N2.

3.3.2.4 Choosing candidate partitions

To find a good partition for splitting an overflow node N, we need to consider a

set of candidate partitions. One exhaustive way to generate all candidate partitions

is as follows. For each permutation of the M+1 entries in N, first j (m S j S M-m+1)

entries are put in the first entry set of a partition Pj, and the remaining entries are put

in the second entry set of Pj. Even for a small M, say 50, this approach would have

to consider 51! z 1.6’5‘1066 permutations of the entries in N. Although this

approach is guaranteed to find an optimal partition, it is not feasible in practice.

We notice that the size of alphabet A for an NDDS is usually small. For

example, [AI = 4 for a genome sequence database. Let I 1, l2, [IAI be the letters of

alphabet A. A permutation of A is an ordered list of letters in A: <l,-l, 1,-2, ..., liIAI>

where lik e A and 1 S k S IAI. For example, for A = {a, g, t, c} in a genome

sequence database, <g, c, a, t> and <t, a, c, g> are two permutations of A. Since W

= 4, there are only 4! = 24 permutations of A. Based on this observation, we have

developed the following more efficient algorithm for generating candidate

partitions.

Algorithm ChoosePartitionSet I:

Input: overflow node N of an ND-tree for an NDDS 9d over alphabet A.

51

Output: a set A of candidate partitions.

Method:

1. let A = (I);

2. for dimension D = 1 to d do

3. for each permutation ,6: <11, 12, IIAI > ofA do

4. set up an array of buckets (lists): bucket[l 4 * [AI];

/* bucket[(i-l)*4+1], ..., bucket[(i-1)*4+4] are for letter Ii (1 S i S IAI) */

5. for each entry E in N do

6. let li be the foremost letter in ,6 that the D-th component set SD of the

DMBR of E has;

7. if SD contains only I; then

8. put E into bucket[(i-1)*4+l];

9. else if SD contains only l,- and 1,-4.1 then

10. put E into bucket[(i-1)*4+4];

11. else if SD contains both l,- and 12+, together with at least one other letter

then

12. put E into bucket[(i-1)*4+3];

13. else put E into bucket[(i-l)*4+2];

/* SD has l,- and at least one non- li+1 letter */

14. end if;

15. end for;

52

16. sort entries within each bucket alphabetically by ,6 based on their D-th

component sets;

17. concatenate bucket[l], ..., bucket[4*IAI] into one list PN: <E1, E2, ...,

EM+I>§

18. forj = m to M-m+l do

19. generate a partition P from PN with entry sets:

ES} = I E], ..., Ej I and E52: I E12“, ..., EM.“ I;

20. ICIA=AU{P};

21. end for;

22. end for;

23. end for;

24. return A.

I

For each dimension (step 2), Algorithm ChoosePartitionSet I determines one

ordering of entries in the overflow node (steps 4 - 17) for each permutation of

alphabet A (step 3). Each ordering of entries generates M-2m+2 candidate

partitions (steps 18 - 21). Hence a total number of d*(M-2m+2)*(IA|!) candidates

partitions are considered by the algorithm. Since IAI is usually small, this

algorithm is much more efficient than the exhaustive approach. In fact, only half

of all permutations of alphabet A need to be considered since a permutation and its

reverse will yield the same set of candidate partitions by the algorithm. Using this

fact, the efficiency of the algorithm can be further improved.

53

Given a dimension D, to determine the ordering of entries in the overflow node

based on a permutation ,6 of A, we employ a bucket ordering technique (steps 4 - 17).

The goal is to choose an ordering of entries that has a better chance to generate good

partitions (e.g., small overlap). Greedy strategies are adopted here to achieve this

goal. Essentially, the algorithm groups the entries according to their foremost

(based on permutation ,8) letters in their D-th component sets. The entries in a

group sharing a foremost letter l,- are placed before the entries in a group sharing a

foremost letter lj if i < j. In this way, if the split point of a partition is at the

boundary of two groups, it is guaranteed that the D-th component sets of entries in

the second entry set E52 of the partition do not have the foremost letters in the D-th

component sets of entries in the first entry set E51. Furthermore, each group is

divided into four subgroups (buckets) according to the rules implemented by steps 7

- 14. The greedy strategy used here is to 1) put entries from the current group that

contain the foremost letter of the next group as close to the next group as possible,

and 2) put entries from the current group that contain only its foremost letter close

to the previous group. In this way, a partition with the split point at the boundary

of two buckets in a group is locally optimized with respect to the current as well as

its neighboring groups. The alphabetical ordering (based on the given permutation)

is then used to sort entries in each bucket based on their D-th component sets

(non-trivial only if there are distinct component sets). Note that the last and the

second last groups have at most one and two non-empty subgroups (buckets),

respectively. Considering all permutations for a dimension increases the chance to

54

obtain a good partition of entries based on that dimension, while examining all

dimensions increases the chance to obtain a good partition of entries across multiple

dimensions.

For the comparison purpose, we also tested the approach that uses the

alphabetical ordering to sort all entries directly and found that it usually also yields a

satisfactory performance. However, there are cases in which the bucket ordering is

more effective.

Example 2

Consider an ND-tree for a genome sequence database in the 25-dimensional NDDS

with alphabet A = {a, g, t, c}. The maximum and minimum numbers of entries

allowed in a tree node are 10 and 3, respectively. Assume that, for a given

overflow node N with 11 entries E1, E2, E1., Algorithm ChoosePartitionSet I is

checking the 5th dimension (step 2) at the current time. The 5th component sets of

the DMBRs of the 11 entries are listed as follows, respectively:

{I}. {801.16}. {aCMCL lagc}, {tl.{at}.la}.{Cl, {a}

The total number of permutations of alphabet A is IAI! = 24. As mentioned

before, only half of all the permutations need to be considered. Assume that the

algorithm is checking one of the 12 permutations, say <c, a, t, g> (step 3). The

non-empty buckets obtained from steps 4 - 16 are:

bucket[l] = IE3, E5, E10}, bucket[2] = {E2}, bucket[3] = {E6}, bucket[4] = {E4},

bucket[S] = IE9, Eii }, bucket[8] = {E3}, bucket[9] 2 {E1, E7}, unlisted bucket = (I).

Thus the entry list obtained from step 17 is shown in Figure 2.

55

Figure 2: Entry list and partitions

Based on the entry list, steps 18 - 21 generate candidate partitions P1 - P6 whose

split points are also illustrated in Figure 2. For example, partition P2 consists of

ES] = {E3, E5, E10, E2} and E52 = {E6, E4, E9, E”, E3, E1, E7}. These partitions

comprise part of result set A returned by Algorithm ChoosePartitionSet 1. Note

that if we replace the 5th component set {at} of E3 with {t}, P6 would be an

overlap-free partition. I

Note that Algorithm ChoosePartitionSet I not only is efficient but also

possesses a nice optimality property, which is stated as follows:

Promsition 1: If there exists at least one optimal partition that is overlap—free for

the overflow node, Algorithm ChoosePartitionSet I willfind such a partition.

Proof. Based on the assumption, there exists an overlap-free partition PN = {ES1,

E52}. Let ES;.DMBR = S“ X 512 X X 51d and ES2.DMBR = S21 X 522 X X 52d-

Since area(ES1.DMBR n ES2.DMBR) = 0, there exists a dimension D (1 S D S d)

such that SID n 520 = (I). Since Algorithm ChoosePartitionSet 1 examines every

dimension, dimension D will be checked. Without loss of generality, assume 51D

u 520 = A, where A is the alphabet for the underlying NDDS.

56

D-th dimension of the DMBRs —1

E1.DMBR:><{l“,...}x

Part 1 EZDMBRx {Ill , }x

EjDMBR:x {(15, }x

EjHDMBR:><{I.Zl, }><

Part2

EM+l DMBR:x {122’ }x V
Figure 3: A permutation of entries (1 S j S M+l)

Consider the following permutation of A: PA = <1”, ..., 115, I2 1, ..., 12? where 11,-

E 510(1 S i S s), lgj E 520 (1 Sj S t), and s + t = IAI. Enumerate all entries of the

overflow node based on PA in the way described in steps 4 - 17 of Algorithm

ChoosePartitionSet I. We have the entry list EL = <E1, E2, EM+2> shown in

Figure 3. Since 51D n 520 = (I), all entries in Part 1 do not contain letters in 520 on

the D-th dimension, and all entries in Part 2 do not contain letters in S11) on the D-th

dimension. In fact, Part 1 = ES} and Part 2 = E52, which yields the partition PN.

Since the algorithm examines all permutations of A, such a partition will be put into

the set of candidate partitions. I

In fact, Algorithm ChoosePartitionSet I considers all partitions that split the

overflow node on (any) one dimension, which increases the possibility to yield an

overlap-free partition. Proposition 1 states that the algorithm can guarantee to

generate an overlap-free partition if there exists one. The criterion to split data on

one dimension has been proven to be effective in other indexing methods such as

57

the R*-tree [Beckmann90] and the Hybrid tree [Chakrabarti99]. Algorithm

ChoosePartitionSet I incorporates this criterion via permutations, which is based

on a special characteristic of an NDDS (i.e., the small size of the alphabet).

It is possible that alphabet A for some NDDS is large. In this case, the number

of possible permutations of A may be too large to be used in Algorithm

ChoosePartitionSet I. We have, therefore, developed another algorithm to

efficiently generate candidate partitions in such a case. The key idea is to use

some strategies to intelligently determine one ordering of entries in the overflow

node for each dimension rather than consider IAI! orderings determined by all

permutations ofA for each dimension. This algorithm is described as follows:

Algorithm: ChoosePartitionSet 11:

Input: overflow node N of an ND-tree for an NDDS Qd over alphabet A.

Output: a set A of candidate partitions

Method:

1. let A = (I);

2. for dimension D = l to d do

3. auxiliary tree T = build_aux_tree(N, D);

4. D-th component sets list C5 = sort_csets(T);

5. replace each component set in CS with its associated entries to get entry list

PN;

6. forj = m to M—m+1 do

7. generate a partition P from PN with entry sets:

58

E51 = {E}, E1} and E52 = {Ejtl’ EM+II§

8. laA=AUIPh

9. end for;

10. end for;

11. return A.

For each dimension (step 2), Algorithm ChoosePartitionSet 11 first builds an

auxiliary tree by invoking function build_aux_tree() (step 3) and then uses the tree

to sort the D-th component sets of the entries by invoking function sort_csets() (step

4). The order of each entry is determined by its D-th component set in the sorted

list CS (step 5). Using the resulting entry list, the algorithm generates M-2m+2

candidate partitions. Hence the total number of candidate partitions considered by

the algorithm is d - (M-2m+2).

The algorithm also possesses the nice optimality property; that is, it generates an

overlapcfree partition if there exists one. This property is achieved by building an

auxiliary tree in function build_aux_tree(). Each node T in an auxiliary tree has

three data fields: T.sets (i.e., the group (set) of the D-th component sets represented

by the subtree rooted at T), T.freq (i.e., the total frequency of sets in T.sets, where

the frequency of a (D-th component) set is defined as the number of entries having

the set), and T.letters (i.e., the set of letters appearing in any set in T.sets). The

D-th component set groups represented by the subtrees at the same level are disjoint

in the sense that a component set in one group do not share a letter with any set in

59

another group. Hence, if a root T has subtrees Tl, 7",, (n > 1) and T.sets =

T.sets U U Tn.sets, then we find the disjoint groups Tl.sets, Tn.sets of all

D-th component sets. By placing the entries with the component sets in the same

group together, an overlap-free partition can be obtained by using a split point at the

boundary of two groups. The auxiliary tree is obtained by repeatedly merging the

component sets that directly or indirectly intersect with each other, as described as

follows:

Function auxiliary_tree = build_aux_tree(N, D)

1. find set L of letters appearing in at least one D-th component set;

2. initialize forest F with single-node trees, one tree T for each I e L and set

T.letters = {l }, T.sets = (I), Tfreq = 0;

3. sort all D-th component sets by size in ascending order and break ties by

frequency in descending order into set list 5L;

4. for each set S in SL do

5. if there is only one tree T in F such that T.letters n 5 :2: (I) then

6. let T.letters = T.letters U 5, T.sets = T.sets U {S}, Tfreq = T.freq +

frequency of S;

7. else let TI, ..., Tn (n > 1) be trees in those Tiletters r) S at (I) (1 S i S n);

8. create a new root T with each T,- as a subtree;

9. let T.letters = (Uf’leiletters) U S, T.sets = (U111 Tisets) U {S}, Tfreq =

(XI-1:1 Tifreq) +frequency of S;

60

10. replace T1, Tn by Tin F;

11. end if;

12. end for;

13. ithas 2 or more trees Tl, ..., Tn (n > 1) then

14. create a new root T with each T,- as a subtree;

15. let T.letters = U?=1Ti.letters, T.sets = U111 Ti.sets, T.freq = 221:1 Tifreq;

16. else let Tbe the unique tree in F;

17. end if;

18. return T.

Using the auxiliary tree generated by function build_aux_tree(), Algorithm

ChoosePartitionSet II invokes function sort_csets() to determine the ordering of all

D-th component sets.

To do that, starting from the root node T, sort_csets() first determines the

ordering of the component set groups represented by all subtrees of T and put them

into a list ml with each group as an element. The ordering decision is based on the

frequencies of the groups/subtrees. The principle is to put the groups with smaller

frequencies in the middle of ml to increase the chance to obtain more diverse

candidate partitions. For example, assume that the auxiliary tree identifies 4

disjoint groups G}, 6.; of all component sets with frequencies 2, 6, 6, 2,

respectively, and the minimum space requirement for the ND-tree is m = 3. If list

61

< 62, G2, G3, G4> is used, we can obtain only one overlap-free partition (with the

split point at the boundary of G2 and G3). If list < G2, G], G4, G3 > is used, we can

have three overlap-free partitions (with split points at the boundaries of G2 and GI,

G] and G4, and G4 and G3, respectively).

There may be some component sets in T.sets that are not represented by any of

its subtrees (since they may contain letters in more than one subtree). Such a

component set is called a crossing set. If current list ml has n elements (after

removing empty group elements if any), there are n+1 possible positions for a

crossing set e. After e is put at one of the positions, there are n gaps/boundaries

between two consecutive elements in the list. For each partition with a split point

at such a boundary, we can calculate the number of common letters (i.e., intersection

on the D-th dimension) shared between the left component sets and the right

component sets. We place e at a position with the minimal sum of the sizes of

above D-th intersections at the n boundaries.

Each group element in ml is represented by a subtree. To determine the

ordering among the component sets in the group, the above procedure is recursively

applied to the subtree until the height of a subtree is 1. In that case, the

corresponding (component set) group element in ml is directly replaced by the

component set (if any) in the group. Once the component sets within every group

element in ml are determined, the ordering among all component sets is obtained.

Function set_list = sort_csets(T)

1. if the height of tree Tis 1 then

62

2. if T.sets ¢ (I) then

3. put the sets in T.sets into list set_list;

4. else set set_list to null;

5. end if;

6. else set lists L; = L2 = (I);

7. let weight; = weight2 = 0;

8. while there is an unconsidered subtree of T do

9. get such subtree T' with highest frequency;

10. if weight; S weight2 then

11. let weight; = weight; + T'freq;

12. add T'.sets to the end of L;;

13. else let weight2 = weight2 + T'freq;

14. add T'.sets to the beginning of L2;

15. end if;

16. end while;

17. concatenate L; and b2 into ml;

18. let S be the set of crossing sets in T.sets;

19. for each set e in 5 do

20. insert e into a position in ml with the minimal sum of the sizes of all D-th

intersections;

21. end for;

22. for each subtree T' of T, do

63

23. set_list' = sort_csets(T');

24. replace group T’.sets in ml with set_list’;

25. end for;

26. set_list = ml;

27. end if;

28. return set_list.

Since the above merge-and-sort procedure allows Algorithm

ChoosePartitionSet II to make an intelligent choice of candidate partitions, our

experiments demonstrate that the performance of an ND-tree obtained from this

algorithm is comparable to that of an ND-tree obtained from Algorithm

ChoosePartitionSet 1.

Example 3

Consider an ND-tree with alphabet A = la, b, c, d, e, f} for a 20-dimensional NDDS.

The maximum and minimum numbers of entries allowed in a tree node are 10 and 3,

respectively. Assume that, for a given overflow node N with 11 entries E;, E2,

E; ;, Algorithm ChoosePartitionSet II is checking the 3rd dimension (step 2) at the

current time. The 3rd component sets of the DMBRs of the 11 entries are listed as

follows, respectively:

{C}, {Ode}. {1)}. {ac}. if}, {6}, {Cf}, {d6}. {6’}. {Cf}, {a}

The initial forest F generated at step 2 of function build_aux_treeo is illustrated

in Figure 4.

F: (D Q) G) O
T T2 T3 T4 T5

l.letters: {a}, 1.freq: 0, 1.sets: fl

2.letters: {b}, 2.freq: 0, 2.sets: .6

T
l 6

6.letters: {f}, 6.freq: 0, 6.sets: .0'

Figure 4: Initial forest F

The auxiliary tree T obtained by function build_aux_tree is illustrated in Figure

5. Note that non-leaf node of T is numbered according to its order of merging.

l.letters: {a}, 1.freq: 1, 1.sets: {{0}}

2.letters: {b}, 2.freq: 1, 2.sets: {{b}}

3.letters: {c}, 3.freq: 1, 3.sets: {{c}}

4.letters: {d}, 4.freq: 0, 4.sets: .0'

5.letters: {e}, 5.freq: 2, 5.sets: {{c}}

6.letters: If}, 6.freq: 1, 6.sets: {{f}}

7.letters: {cf}, 7freq: 4, 7.sets: {{c},{f},{cf}}

8.letters: {ae}, 8.freq: 4, 8.sets: {{a},{e},{ae}}

9.letters: {ade}, 9.freq: 6 9.sets: {{a},{e},{ae},{de},{ade}}

10.letters: {abcdef}, 10.freq: 11, 10.sets: all sets that appears

Figure 5: Final auxiliary tree T

Using auxiliary tree T, recursive function sort_csets() is invoked to sort the

component sets. List ml in function sort_csets() evolves as follows:

<{ {a}, {6}» {06}. {d6}, {adel H {b} }.l {c}, If}, {Cf} }>;

< {618}, fade}, {e}. {06}, {a}.{ {b} 1.1 {c}, if}, WI }>;

65

<{de},{ade},{e},{ae},{a},{bl,{{Chi/1,1011}>;

< {(16}, fade}. {6}. {06}. {a}, lb}, {C}, {Cf}. Ul >;

Based on the set list returned by function sort_csets(), step 5 in Algorithm

ChoosePartitionSet 11 produces the following sorted entry list PN:

< E;;, E2, E6, E9, E;, E;;, E3, E;, E2, E;;,, E5 >.

Based on PN, Algorithm ChoosePartitionSet 11 generates candidate partitions

in the same way as Example 2, which comprise part of result set A returned by

Algorithm ChoosePartitionSet 11. Note that the two partitions with split points at

the boundary between E;; and E3 and the boundary between E3 and E; are

overlap-free partitions. I

3.3.2.5 Choosing the best partition

Once a set of candidate partitions are generated, we need to select the best one

from them based on some heuristics. As mentioned before, due to the limited size

of an NDDS, many ties may occur for one heuristic. Hence multiple heuristics are

required. After evaluating heuristics in some popular indexing methods (such as

the R*—tree, the X-tree and the Hybrid tree), we have identified the following

effective heuristics for choosing a partition (i.e., a split) of an overflow node of an

ND-tree in an NDDS:

SH;: Choose a partition that generates a minimum overlap of the DMBRS of the

two new nodes after splitting (“minimize overlap”).

5H2: Choose a partition that splits on the dimension where the edge length of the

DMBR of the overflow node is the largest (“maximize span”).

66

5H3: Choose a partition that has the closest edge lengths of the DMBRS of the

two new nodes on the split dimension after splitting (“center split”).

5H4: Choose a partition that minimizes the total area of the DMBRS of the two

new nodes after splitting (“minimize area”).

From our experiments, we observed that heuristic SH; is the most effective one

in an NDDS, but many ties may occur as expected. Heuristics 5H2 and 5H3 can

effectively resolve ties in such cases. Heuristic SR; is also effective. However, it

is expensive to use since it has to examine all dimensions of a DMBR. In contrast,

heuristics SH; — 5H3 can be met without examining all dimensions. For example,

SH; is met as long as one dimension is found to have no overlap between the

corresponding component sets of the new DMBRs; and 5H2 is met as long as the

split dimension is found to have the maximum edge length IAI for the current DMBR.

Hence the first three heuristics are suggested to be used in Algorithm

ChooseBestPartition to choose the best partition for an ND-tree. More

specifically, ChooseBestPartition applies 5H; first. If there is a tie, it applies 5H2.

If there is still a tie, 5H3 is used.

Algorithm ChooseBestPartition:

Input: set A of candidate partitions for overflow node N of an ND-tree in an NDDS

over alphabet A.

Output: chosen partition BP of the overflow node N.

Method:

1. let BP = {ES;, E52} be any partition in A with split dimension D;

67

5.

6.

let BP_overlap = area(ES;.DMBR fl ES2.DMBR);

let BP_span = length(BP.DMBR, D);

let BP_balance = abs(length(ES;.DMBR, D) - length(ES2.DMBR, D));

letA=A- { BP };

while A is not empty and not (BP_overlap = 0 and BP_span = W and

BP_balance = 0) do

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

let CP = { E5;, E52 } be any partition in A with split dimension D;

let CP_overlap = area(ES;.DMBR n ES2.DMBR);

let CP_span = length(BP.DMBR, D);

let CP_balance = abs(length(ES;.DMBR, D) - length(ES2.DMBR, D));

letA=A- { CP };

if CP_overlap < BP_overlap then

let BP = CP;

let BP_overlap = CP_overlap;

let BP_span = CP_span;

let BP_balance = CP_balance;

else if CP_overlap = BP_overlap then

if CP_span < BP_span then

let BP = CP;

let BP_span = CP_span;

let BP_balance = CP_balance;

else if CP_span = BP_span then

68

23. if CP_balance < BP_balance then

24. let BP = CP;

25. let BP_balance = CP_balance;

26. end if;

27. end if;

28. end if;

29. end while;

30. return BP.

I

As mentioned before, the computation of area(E5;.DMBR n ES2.DMBR) at

steps 2 and 8 stops once the overlap on one dimension is found to be zero. The

second condition at step 6 is also used to improve the algorithm performance; that is,

if the current best partition meets all three heuristics, no need to check other

partitions.

3.3.2.6 Deletion procedure

The deletion algorithm of the ND-tree is similar to that of the R-tree

[Guttman84]. In other words, if the removal of an entry does not cause any

underflow of its original node, the entry is simply removed from the tree.

Otherwise, the underflow node will be removed from the tree and all its children are

reinserted. The affected DMBRs of the deletion operation are adjusted

accordingly.

69

3.3.3 Range query processing

After an ND-tree is created for a database in an NDDS, a range query range(aq,

rq) can be efficiently evaluated using the tree. The main idea is to start from the

root node and prune away those nodes whose DMBRs are out of the query range

until the leaf nodes containing the desired vectors are found.

The search algorithm is given as follows:

Algorithm RangeQuery:

Input: (1) range query range(aq, rq); (2) an ND-tree with root node N for the

underlying database.

Output: set VS of vectors within the query range.

Method:

1. let VS = (I);

2. push N into a stack NStack of nodes;

3. while NStack at (I) do

4. let CN = pop(NStack);

5. if CN is a leaf node then

6. for each vector v in CN do

7. if dist(aq, v) S rq then

8. let VS=VSU{v};

9. end if;

10. end for;

11. else

70

12. for each entry E in CN do

13. if dist(aq, E.DMBR) S rq then

14. push each child node pointed to by E into NStack;

15. end if;

16. end for;

17. end if;

18. end while;

19. return V5.

3.4 Handling NDDSs with Different Alphabets

Our previous discussion on the ND—tree is focused on indexing NDDS with a

single alphabet for all dimensions. In this section, we discuss how to index an

NDDS with various alphabets on different dimensions using the ND-tree. We

compared a normalization approach with a naive approach that uses the original tree

construction algorithms. We found that ND-trees built through normalization have

a much better query performance than those using the original algorithms. This is

because after normalization, the edges on different dimensions of the DMBRs in an

ND-tree are more comparable, resulting in more quadratic shaped bounding

rectangles. The detailed algorithms are discussed as follows.

Let 52d = A1 X A2 X...XAd be an NDDS, where alphabets A,- (l S i S d) may

be different from each other. If alphabet sizes are equal to each other (IA;I = IA2I =

71

= IAdI), no change is needed for the ND-tree building algorithms except that the

corresponding alphabet A,- should be considered when we process the i-th

component of an entry. However, if IAil at [All for some i i j, a new issue arises --

that is, how to properly calculate the corresponding geometrical measures such as

length, area and overlap. These measures are important, since those optimizing

heuristics employed by the ND-tree reply on them to function properly.

A straightforward way to handle NDDSS with different alphabet sizes is to apply

those geometrical measures directly in the ND-tree without any change. For

example, for a discrete rectangle R = 51 X 52 x...X 5d in 9d, where 5,- g A,- (1 Si

S d), the definition of the area of R is area(R) =I51I*I52I*---*I5d I, as

discussed in Section 3.2. However, as the alphabet sizes are different, the above

area definition may cause problems. For example, assume alphabet lA;I = 50,

alphabet IA2I = 5 and dimension d = 2. There are two DMBRs, R = 5; X 52 and R’

= S;’ X 52’, where 5; g A; with I5;| = 3, S;’ g A; with IS;’I = l, 52 g A2 with l52l = 1,

and 52’ ; A2 with IS2’I = 3. The area of R is 3*123, which is the same as the area of

R’ (1*3 =3). If R and R’ are children of the same parent, they will yield a tie under

the heuristic to minimize the area of the DMBR of an entry when a new vector is

being inserted (see Chapter 3). Notice that: 1) 52 contains 20% of the letters in

alphabet A2, while 52’ contains 60% of the letters in alphabet A2; and 2) S; and S;’

contain about the same percentage (6% vs. 2%, respectively) of letters in alphabet

A;. R should be more favorable than R’ since 52 of R has a better pruning power

for a similarity search than that of 52’ in R’. Therefore, a letter from alphabet A;

72

should not receive the same weight as a letter in alphabet A2 due to the different

alphabet sizes. Hence the current area definition may not allow us to make a fair

comparison among DMBRs during the ND-tree construction. Other concepts such

as the edge length and the overlap have the same problem as the area when alphabet

Sizes are different. For example, the heuristic 5H2 (“maximize span”) defined in

Section 3.3 may favor partitions that split on dimensions with larger alphabet sizes

if the definition of the edge length is used directly. In summary, the naive

approach may lead to biases among different dimensions if alphabet sizes are

different.

We solve this problem by normalizing the length measure of each component

set of a DMBR with the alphabet size on the corresponding dimension. The area

and overlap are then calculated based on the normalized length values as follows.

Definition 7: (Edge length, area ofa discrete rectangle)

Let R: 51x52x...x5d be a discrete rectangle in an NDDS

Qd = A1 XA2 X...XAd. The length of the edge on the i-th dimension Of R is

defined as length(R, i) = IS,-| / IAil. The area of R is defined as:

area(R)=ISlI/IA1I*I52I/IA2I*...*ISd I/IAd I. I

Definition 8: (Area ofthe overlap oftwo discrete rectangles)

Let R=51X52X...X5d and R'=SiXS'2X...x521 be two discrete rectangles

in an NDDS 9d =A1XA2X...XAd. The area ofoverlapRflR'ofRandR’is:

area(RnR’)=Is;nsi|/|A; |*|s2nsj2|/|A2|*...*|sd ms;1|/|Ad I: u

73

Using the normalization approach, length measures on different dimensions of

an NDDS become comparable —— leading to a fair comparison among different

dimensions during the ND-tree construction. The construction algorithms of the

ND-tree can then be directly applied for NDDSS with different alphabet sizes. The

only difference is that the normalized geometrical measures defined in Definitions 7

and 8 are used.

As we will see from experimental results in Section 3.6, the normalization

approach are generally better than the straightforward one. The degree of

improvement depends on the difference among the alphabet sizes. It is observed

that the more the difference (variance of alphabet sizes), the better the normalization

approach is.

3.5 Performance Evaluation Model

To analyze the performance of the ND-tree, we conducted both empirical and

theoretical studies. The results of the empirical study will be reported in Section

3.6. In this section, we present a theoretical model for estimating the performance

of the ND-tree. With this model, we can predict the performance behavior of the

ND-tree for different input parameter values.

Let Qd be a given NDDS, T be an ND-tree built for a set V of vectors in 82d, and

Q be a similarity (range) query to search for qualified vectors from V. For

simplicity, we assume that: 1) vectors in V are uniformly distributed in 52d (i.e.,

random data); 2) there is no correlation among different dimensions in 9d; and 3)

74

the same alphabet A is assumed for all the dimensions in £221. The input parameters

for the performance estimation model are given in Table 1.

Table 1: Input parameters of the performance estimation model for ND-tree

IAI Size of alphabet A

d Number of dimensions of Qd

IVI Total number of vectors indexed in the ND-tree T

M, Size of a leaf node of T (maximum number of vectors allowed)

Mn Size of a non-leaf node of T (maximum number of non-leaf entries allowed)

 h Hamming distance used for query Q

Proposition 2: For given parameters IAI, d, IVI, M1, Mn and h listed in Table 1, the

expected total number of disk l/O's forming an ND-tree T to perform similarity

query Q on a set Vof vectors in space at! can be estimated as:

H—l

10=1+ 202,422), (2)

i=0

where

l'ogzli-‘llt - -_
"i =< 2 "- 1ft —0 ’

Ilogz _‘i

‘2 ” iflSiSH

H =I108b "OI,

b=2LIOg2Mn ,

75

(39d; .(B;)di ifh=0

P = h /_ I _ _ 9

'~" gagcgmae k-(l—Bi)"-(B{)"i+" 11°(1‘Bi)hkl+Pi,h—l ithI
k=0 ’ '

dfzd—df’,

d,-'=I_(log2 n,)modd},

Bf =sf/AI,

' s,- if(log2n,-)/d<l

s; :I—FOS—SIZT otherwise ,

1

.2I ‘1 I

B§’=s{/|AI,

1':______SH

SI IlogzniI’

2 d

IAI

Si = 2172,)»

j=1

. 1/(|A|)Wi‘l if j=l

T.,.=I . . _ j-1 k IAIWI . . . ,

’1 CIAI' 1W1 -Z(Cj-—k)-Ti,k) IAIW' rf2SJSIAI

(k=1 lAI

and Wi=IIVI/"iI .

Proof. See Appendix C. I

As we will see in Section 3.6, experimental results agree well with theoretical

estimates obtained from this model.

76

3.6 Experimental Results

To determine effective heuristics for building an ND-tree and evaluate its

performance for various NDDSS, we conducted extensive experiments using real

data (bacteria genome sequences extracted from the GenBank of National Center for

Biotechnology Information) and synthetic data (generated with the uniform

distribution). The experimental programs were implemented with Matlab 6.0 on a

PC with PIII 667 MHz CPU and 516 MB memory. Query performance was

measured in terms of disk I/O’s.

3.6.1 Performance of heuristics for ChooseLeaf and SplitNode

One set of experiments was conducted to determine effective heuristics for

building an efficient ND-tree. Typical experimental results are reported in Tables 2

- 4. A 25-dimensional genome sequence dataset was used in these experiments.

The performance data shown in the tables is based on the average number (to) of

disk I/O’s for executing 100 random test queries. rq denotes the Hamming

distance range for the test queries. key# indicates the number of database vectors

indexed by the ND-tree.

Table 2 shows the performance comparison among the following three versions

of algorithms for choosing a leaf node for insertion, based on different combinations

of heuristics in the order given to break ties:

1) Version Va: using IH;, IH2 and 1H3;

2) Version Vb: using IH2 and 1H3;

77

3) Version V,: using IH2.

Table 2: Effect of heuristics for choosing insertion leaf node

q=l fizz q=3

key# i0 i0 i0 i0 i0 i0 i0 i0 to

V, V, V, V, V2, V, V, V;, V,

13927 14 18 22 48 57 68 115 129 148

29957 17 32 52 67 108 160 183 254 342

45088 18 47 80 75 161 241 215 383 515

56963 21 54 103 86 191 308 252 458 652

59961 21 56 108 87 198 323 258 475 685

From the table, we can see that all the heuristics are effective. In particular,

heuristic IH; can significantly improve query performance (see the performance

difference between Va (with IH;) and V], (without IH;)).

increase of overlap in an ND-tree may greatly degrade the performance.

should keep the overlap in an ND-tree as small as possible.

In other words, the

larger the database size, the more improved is the query performance.

Hence we

It is also noted that the

Table 3: Comparison between permutation and merge-and-sort approaches

q=l q=2 q=3

key# i0 i0 i0 i0 i0 i0

permu. m&s permu. m&s permu. m&s

29957 16 16 63 63 171 172

45088 18 18 73 73 209 208

56963 20 21 82 83 240 242

59961 21 21 84 85 247 250

68717 21 22 88 89 264 266

77341 21 22 90 90 271 274

Table 3 shows the performance comparison between Algorithm

ChoosePartitionSet I (permutation approach) and Algorithm ChoosePartitionSet

78

ll (merge-and-sort approach) to choose candidate partitions for splitting an overflow

node. From the table, we can see that the performance of the permutation

approach is slightly better than that of the merge-and-sort approach since the former

takes more partitions into consideration. However, the performance of the latter is

not that much inferior and, hence, can be used for an NDDS with a large alphabet

size.

Table 4: Effect of heuristics for choosing best partition for rq = 3

i0 i0 i0 i0 i0

k

MI V; v2 V3 v. v,

13927 181 116 119 119 105

29957 315 194 185 182 171

45088 401 243 224 217 209

56963 46 l 276 254 245 240

59961 477 288 260 255 247

Table 4 shows the performance comparison among the following five versions

of algorithms for choosing the best partition for Algorithm SplitNode based on

different combinations of heuristics with their correspondent ordering to break ties:

1) Version V;: using SH;;

2) Version V2: using SH; and SH.;;

3) Version V3: using SH; and 5H2;

4) Version V4: using SH;, 5H2 and 5H3;

5) Version V5: using SH;, 5H2, 5H3 and SH.;.

Since the overlap in an ND-tree may greatly degrade the performance, as seen

from the previous experiments, heuristic SH; (“minimize overlap”) is applied in all

79

the versions. The results for r,I = 3 are reported here. From the table we can see

that heuristics 5H2 - 5H4 are all effective in optimizing performance. Although

version V5 is most effective, it may not be feasible in practice since heuristic 5H4

has a lot of overhead as we mentioned in Section 3.3.2.5. Hence the most practical

version is V4, which is not only very effective but also efficient.

3.6.2 Performance analysis of the ND-tree

We also conducted another set of experiments to evaluate the overall

performance of the ND-tree for datasets in different NDDSs. Both genome

sequence data and synthetic data were used in the experiments. The effects of

various dimension and alphabet sizes of an NDDS on the performance of an

ND-tree were examined. As before, query performance is measured based on the

average number of I/O’s for executing 100 random test queries for each case. The

disk block size is assumed to be 4096 bytes. The minimum utilization percentage

of a disk block is set to 30%.

To save space for the ND-tree index, we employed a compression scheme where a

bitmap technique is used to compress non-leaf nodes and a binary coding is used to

compress leaf nodes.

3.6.2.1 Performance comparison with linear scan

To perform range queries on a database in an NDDS, a straightforward method

is to employ the linear scan. We compared the performance of our ND-tree with

that of the linear scan. To give a fair comparison, we assume that the linear scan is

well tuned with data being placed on disk sequentially without fragments, which

80

boosts its performance by a factor of 10. In other words, the performance of the

linear scan for executing a query is assumed to be only 10% of the number of disk

I/O’s for scanning all the disk blocks of the data file. This benchmark was also

used in [Weber98, Chakrabarti99]. We will refer to this benchmark as the 10%

linear scan in the following discussion.

 1 200

-+- 10% linear

-e— ND—tree (query range=1)

1000~ + ND-tree (query range=2)

-.A.— ND—tree (query range=3)

n
u
m
b
e
r

o
f
I
/
O
s

h
0
'
)

(
D

O
O

O

9
°

9

8 9

o 5 1o 15

number of indexed vectors x105

Figure 6: Comparison between ND-tree and linear scan for genomic data

Figure 6 shows the performance comparison of the two search methods for the

bacteria genomic dataset in an NDDS with 25 dimensions. From the figure, we

can see that the performance of the ND-tree is usually better than the 10% linear

scan. For a range query with a large rq, the ND-tree may not outperform the 10%

linear scan for a small database, which is normal since no indexing method works

better than the linear scan when the query selectivity is low (i.e., yielding a large

result set) for a small database. As the database size becomes larger, the ND-tree

is more and more efficient than the 10% linear scan as shown in the figure. In fact,

81

the ND-tree scales well with the size of the database (e.g., the ND-tree, on the

average, is about 4.7 times more efficient than the 10% linear scan for a genomic

dataset with 1,340,634 vectors).

Figure 7 shows the space complexity of the ND-tree. From the figure, we can

see that the size of the tree is about twice the size of the dataset.

x104

--I— data set .

-!l!- ND—tree

7

6

5.

s
p
a
c
e
c
o
m
p
l
e
x
i
t
y

(
i
n
K
B
y
t
e
s
)

o s 110 15

number of indexed vectors x105

Figure 7: Space complexity of ND-tree

3.6.2.2 Performance comparison with M-tree

As mentioned previously, the M-tree, a dynamic metric tree proposed recently

[Ciaccia97], can also be used to perform range queries in an NDDS. We

implemented the generalized hyperplane version of the mM__RAD_2 of the M-tree,

which was reported to have the best performance [Ciaccia97]. We have compared

it with our ND-tree.

82

3500

-B— M-tree (query range=1)

3000, -e— ND—tree (query range=1)

-x- M-tree (query range=2)

I + ND—tree (query range=2)

"?- M—tree (query range=3)

-A— ND—tree (query range=3)
E O

n
u
m
b
e
r

o
f
l
/
O
s

8 §

number of indexed vectors 2105

Figure 8: Comparison between ND—tree and M-tree for genomic data

1 200

-B- M-tree (query range=1)

-e- ND—tree (query range=1)

1000H + M-tree (query range=2)

+ ND-tree (query range=2)

'V‘ M-tree (query range=3)

—A— ND—tree (query range=3) 800 r

600 .

400L

n
u
m
b
e
r

o
f
l
/
O
s

200 r

o "—1 2 _ 3 4 5

number of indexed vectors 2105

Figure 9: Comparison between ND-tree and M—tree for binary data

Figures 8 and 9 show the performance comparisons between the ND-tree and the

M-tree for range queries on a 25-dimensiona1 genome sequence dataset as well as a

20-dimensional binary dataset with alphabet: {0, 1}. From the figures, we can see

83

that the ND-tree always outperforms the M-tree -- the ND-tree, on the average, is

11.21 and 5.6 times more efficient than the M-tree for the genome sequence data

and the binary data, respectively, in the experiments. Furthermore, the larger the

dataset, the more is the improvement in performance achieved by the ND-tree. As

pointed out earlier, the ND-tree is more efficient, primarily because it makes use of

more geometric information of an NDDS for optimization. However, although the

M-tree demonstrated poor performance for range queries in NDDSs, it was designed

for a more general purpose and can be applied to more applications.

3.6.2.3 Scalability of the ND-tree for Dimensions and Alphabet Sizes

To analyze the scalability of the ND-tree for different dimensions and alphabet

sizes, we conducted experiments using synthetic datasets with various parameter

values for an NDDS.

130 l- -I- 10% linear .

+ NDtree (query range = 2)

160 I alphabet size: 10 d

8 140 # of indexed vectors: 100,000 .

2

u—

E 120 , -

8
E 100 ~ 2

3

t:

80 r .

60 I" .4

40 r r l r

20 4o 60 80 100 120

number of dimensions

Figure 10: Scalability of ND-tree on dimension

84

120

+ 10% linear

110 I + ND-tree (query range = 2) .

100 F # of dimensions: 40 _

m # of indexed vectors: 100,000

g 90 . “ x -

“5
h 80 I' 1

(D

.o

E 70- -
3

c

(sol .

50 L
.

400 5 10 15 20 25 30 35

alphabet size

Figure 11: Scalability of ND-tree on alphabet Size

Figures 10 and 11 show experimental results for varying dimensions and

alphabet sizes. From the figures, we see that the ND-tree scales well with both

dimension and alphabet size. For a fixed alphabet size and dataset size, increasing

the number of dimensions for an NDDS slightly reduce the performance of the

ND-tree for range queries. This is due to the effectiveness of the overlap-reducing

heuristics used in our tree construction. However, the performance of the 10%

linear scan degrades significantly since a larger dimension implies larger vectors

and hence more disk blocks. For a fixed dimension and dataset size, increasing the

alphabet size for an NDDS affects the performance of both the ND-tree and the 10%

linear scan. For the ND-tree, as the alphabet size increases, the number of entries

in each node of the tree decreases, which causes the performance to degrade. On

the other hand, since a larger alphabet size provides more choices for the tree

building algorithms, a better tree can be constructed. As a result, the performance

85

of the ND-tree demonstrates an up and then down curve in Figure 14. As the

alphabet size becomes large, the ND-tree is very efficient since the positive force

In contrast, the performance of the 10% linear scandominates the performance.

degrades non-linearly as the alphabet size increases.

3.6.3 Verification of the normalization approach

To evaluate the effectiveness of the normalization approach, we conducted

experiments using synthetic datasets with different alphabet sizes on each

dimension.

Table 5: Comparison between naive and normalization approach (IAI: 2-30)

r, S 1 rq S 2 r, S 3

key# naive norm. naive norm. naive norm.

io i0 i0 i0 i0 i0

20000 18.5 13.0 81.3 45.6 225.0 119.1

40000 22.1 16.2 112.8 65.7 358.5 188.0

60000 27.0 19.8 145.3 83.1 501.3 254.8

80000 28.3 20.8 158.5 91.8 570.4 289.7

100000 29.7 21.5 175.7 97.5 670.0 323.6
Table 6: Comparison between naive and normalization approach (IAI: 8-24)

rq <=1 rq <=2 rq <=3

key# naive norm. naive norm. naive norm.

i0 i0 i0 i0 i0 i0

20000 16.7 13.7 69.0 49.0 186.1 126.9

40000 19.4 16.5 92.4 68.0 285.1 193.4

60000 22.8 20.2 107.9 85.5 358.0 264.0

80000 24.1 21.4 118.0 94.1 404.0 295.8

100000 24.9 21.8 127.9 99.6 451.2 330.7

86

Table 7: Comparison between naive and normalization approach (IAI: l4-l8)

rq <=l rq <=2 rq <=3

key# naive norm. naive norm. naive norm.

i0 i0 i0 i0 io i0

20000 14.8 14.4 53.3 52.0 136.0 134.1

40000 17.2 17.4 70.3 70.4 197.9 197.8

60000 20.5 20.9 86.6 89.2 268.6 273.2

80000 21.7 22.0 95 .9 96.6 302.9 302.4

100000 22.4 22.4 103.6 103.1 346.1 338.4

Tables 5 - 7 show the comparison between the naive and normalization approach

using 10-dimensional datasets of alphabet sizes with different ranges. Each dataset

is generated such that an alphabet size is randomly picked from a given range for

each dimension. For example, the dataset used for Table 5 has alphabet sizes

ranging from 2 to 30, while the dataset used for Table 7 has alphabet sizes ranging

from 14 to 18. From the tables, we can see that the normalization approach

generally outperforms the naive approach. It is also observed that the larger the

difference among alphabet sizes, the better the normalization approach performs.

For example, for range queries with Hamming distance 3, the normalization

approach is about 51.7% faster than the naive approach for the dataset with 100,000

vectors presented in Table 5, while the normalization approach is only 2.2% faster

for the same database size in Table 7.

Figure 12 shows the comparison between the ND-tree and the M-tree with the

normalization approach. The lO-dimensional dataset used has alphabet sizes

ranging from 2 to 30. In the figure, we can see that the ND-tree significantly

outperforms the M-tree for different query ranges.

87

3000 I , i A

-B- ND—tree (rq=1)

-e- M-tree(rq=1)

2500* -x— ND—tree (rq=2)

+ M-tree(rq=2)

467- ND—tree (rq=3)

I -A— M-tree (rq=3)

N O O O

1500

n
u
m
b
e
r

o
f
I
I
O
s

_
L

O O O

500 ~

number of vectors x 105

Figure 12: Comparison between the ND-tree and the M-tree with normalization

3.6.4 Verification of the performance model

400

-B- theoretical (query range=1)

350, -e- experimental (query range=1)

+ theoretical (query range=2)

300_ + experimental (query range=2)

4? theoretical (query range=3)

250 —A— experimental (query range=3) .

200r ‘

150: .

n
u
m
b
e
r

o
f
I
/
O
s

100» «

50»

number of indexed vectors x105

Figure 13: Comparison between theoretical and experimental results for binary data

88

200

—+- theoreticaljresults I I T

+ experimental results

150 _ query range = 2 j

a) alphabet size: 10

9 it of indexed vectors: 100,000

%
a 100 r I I i 1

.o

E

3

c

50 t .

0 r r r r r r

0 20 40 60 80 100 120

number of dimensions

Figure 14: Comparison for varying dimensions

200 a

-x-— theoretical results

+ experimental results

150 I query range = 2

of dimensions: 40

a)

Q # of indexed vectors: 100,000

I

O 100

(T)
.o

E

3

c ,,

50 (- /
.,

0 1 r r r r r

0 5 10 15 20 25 30 35

alphabet size

Figure 15: Comparison for varying alphabet Sizes

We verified our theoretical performance estimation model using the

experimental data. Figure 13 shows the comparison between the theoretical and

experimental results for the 20—dimensional binary dataset. Figures 14 and 15

89

show the comparison between the theoretical and experimental results for varying

dimensions and alphabet sizes. From the figures, we can see that the predicted

numbers of disk I/O's from the theoretical model are very close to those from the

experimental results, which corroborates the correctness of the model.

90

Chapter 4

The NSP-tree: A Space Partitioning

Approach

As we mentioned in Chapter 3, it is a known problem that overlap could cause

performance degradation for indexing methods for a Continuous Data Space (CDS).

Our study of the ND-tree shows that in a Non-ordered Discrete Data Space (NDDS),

this overlap problem is even worse because of the limited number of letters on each

dimension of an NDDS. To further explore the problem of overlap in an NDDS,

we have developed the NSP—tree, which employs a space-partitioning technique to

ensure no overlap at each level in the tree.

Our experiments demonstrate that the NSP-tree is quite robust in supporting

efficient similarity queries in NDDSs. We have compared the NSP-tree with the

ND-tree and the linear scan using different NDDSS. It is found that the NSP-tree

significantly outperforms the linear scan. Its performance is also better than that of

the ND-tree for skewed datasets. In this chapter, we will discuss the NSP-tree in

detail.

4.1 Motivations and Challenges

Multidimensional indexing schemes for CDSs (i.e., Spaces of domains with

ordered continuous values) can be divided into two categories:

91

data-partitioning-based (DP) methods and space-partitioning-based (SP) methods.

DP index structures such as the R*-tree [Beckmann90], the SS-tree [White96], and

the SR-tree [Katayama97] split an overflow node by grouping its indexed vectors

(data) into two sets X; and X2 for two new tree nodes such that the new nodes meet

the rrrinimum (disk) space utilization requirement. However the minimum

bounding regions (spaces) for X; and X2 may overlap. On the other hand, SP

methods like the K-D-B tree [Robinson8l], the hB-tree [Lomet90], and the

LSDh-tree [Henrich98] split an overflow node by partitioning its corresponding data

space into two non-overlapping subspaces for two new tree nodes. The indexed

vectors are then placed in the new nodes based on the subspace they belong to.

However, the nodes in such a tree usually do not guarantee the minimum space

utilization.

The ND-tree presented in Chapter 3 is essentially a DP method. Research has

shown that for a DP method in a CDS, as the dimension of the space becomes larger,

the amount of overlap among the bounding regions in the index tree increases

significantly, resulting in a dramatic degradation of query performance

[Berchtold96]. As found in [Qian03], overlap also causes performance

degradation in an NDDS. In fact, the situation in an NDDS is even worse, since

the alphabet size for each dimension is limited, which causes the percentage of

overlap to grow very fast as the number of data objects shared by two regions

increases. Although the ND-tree employs several strategies to minimize the

overlap in the tree, as a DP method, overlap may still occur. For example, it may

92

be forced to allow a large overlap to guarantee the minimum space utilization when

dealing with skewed data. The performance of the ND-tree can be poor in such a

case.

To further explore the problem of overlap and enhance the performance of

indexing technique, we propose an SP indexing method, called the NSF-tree, to

index vectors in an NDDS. One advantage of an SP method is that it guarantees an

overlap-free index tree, leading to efficient query processing. However, the

non-ordered and discrete nature of an NDDS raises a number of challenges for

developing an efficient SP method for the NDDS.

First, we cannot split an NDDS based on a single split point on a dimension as

we do for a CDS. Splitting a CDS is relatively easy since a split point p on a

dimension can divide the values on the dimension into two sets Ix I x S p} and {x I x

> p} based on their ordering. However, a single value (letter) in a non-ordered

discrete domain (alphabet) cannot determine a partition of the domain (alphabet) on

a dimension. On the other hand, this characteristic of an NDDS gives us a

flexibility to group the letters of the alphabet based on their distribution in the

indexed vectors to balance the tree so that the (disk) space utilization and the search

performance of the tree can be improved. The NSP-tree fully utilizes this

characteristic via its tree building heuristics.

Secondly, it is difficult to determine the suitable side (splitting group) of a Split

to place the letters that have not appeared on the split dimension in any indexed

vector. For the existing letters, the strategy mentioned previously can be applied to

93

place the corresponding vectors into subspaces based on their distribution to balance

the tree. However, no information is available to properly place those absent

letters in the subspaces. To deal with this challenge, the NSF-tree only partitions

the current space, namely, the space occupied by the present indexed vectors, rather

than the whole (static) data space. As more vectors are inserted into the tree, the

current space and its partition in the tree are dynamically adjusted.

Thirdly, it is unclear how to balance the pruning power and the fan-out of a node

in an index tree for an NDDS to maximize the search performance. Using the

subspaces from a space partition, an SP method can prune a subtree whose subspace

is not within the search range of a query. However, the subspace for a subtree

often contains large dead spaces (i.e., containing no indexed vectors). To enhance

the search performance of an SP method in a CDS, people have suggested adding an

auxiliary bounding box for each node of an index tree to achieve some additional

pruning power (by reducing the dead space) [Henrich98, Chakrabarti99]. Note

that, although the idea to use a bounding box for a node is similar to that in the DP

methods, the bounding boxes here are auxiliary in the sense that they are attached to

the corresponding subspaces, which are determined first. Hence, such index trees

are still considered as SP methods according to the conventional classification

[Henrich98, Chakrabarti99]. Since some storage space is needed for the auxiliary

bounding boxes, the fan-out of the node will be reduced (to fit in a given space

capacity of a node). As we know, query performance can be improved by

increasing the pruning power and the fan—out of each tree node. However, since

94

increasing both factors is impossible, balancing the two factors is required to

achieve the best performance. Unfortunately, the well-known technique that uses

grids to control the balance between these two factors for CDSs is not applicable for

an NDDS due to the non-ordering problem. To solve the problem, we study a new

approach to controlling the balance between the two factors by allowing several

(child) tree nodes to share one auxiliary bounding box or letting one (child) node to

have several auxiliary bounding boxes. Our empirical study shows that using a

proper number (e.g., two) of bounding boxes for each node can significantly

improve the performance of an index tree in an NDDS. Our NSP-tree incorporates

this strategy into its tree structure.

In summary, the NSP-tree is an SP-based indexing method specially designed

for NDDSs. Although it has some similarity to the SP methods in CD83, it is

adapted to utilize the special properties of the NDDS, which is reflected in its

unique tree structure, building heuristics and construction algorithms. Our

experimental results demonStrate that the NSP-tree outperforms the ND-tree in

terms of search performance for skewed datasets. The degree of improvement

increases as the dataset becomes more skewed (resulting in more overlap in the

ND-tree). Our NSP-tree also has reasonable space utilization.

The rest of this chapter is organized as follows. Section 4.2 describes the

relevant concepts and terms. Section 4.3 presents the structure and construction

algorithms of the NSF-tree. Section 4.4 shows experimental results. Section 4.5

gives a brief discussion on handling NDDSS with different alphabet sizes using the

95

NSP-tree.

4.2 Preliminaries

To introduce an indexing method for an NDDS, some essential geometrical

concepts for an NDDS are required. Definitions 1-6 given in Section 3.2 are used

for the NSF-tree. To apply the space-partitioning method, more concepts are

defined in this section.

Definition 9: (Subspace)

A subspace 9d' of S2,) is defined as a discrete rectangle: 52") = AI X A'2 x...x AZ; ,

where Ai’ _C_ A,- is called the i-th dimension domain of the subspace and A,-’ is called

the stretch of the subspace on the i-th dimension. I

Definition 10: (Current space)

(X)
Let X = { a;, a2, ...} be a set of vectors in S2,}. Let A,- be the set of letters

appearing on the i-th dimension in a vector in X. The current space of vectors in X

is defined as 92X) = AIX) X Aéx) x...x Aflx). Clearly, 92X) is a subspace of

Qd. I

Definition 11: (Space split, split dimension, dimension split arrangement,

partition)

For a given space (or subspace) Q'd = A1 X A'zx...XA;1, a space split of Qd’ on

the i-th dimension consists of two subspaces Q'dl 2 AI xA’2 x...x Aflx...XA;1

I 2 _ I I ’2 I ll I2 _ I

and 9d -A1XA2><...XAi x...xAd , where A,- UAi —A,- and

96

Afl mAfz =¢. The i-th dimension is called the split dimension, and the pair

A;l /Af2 is called the dimension split (arrangement) of the space split. Note that

one order is chosen for the pair. A21 and A;2 are called the left side/subset and

the right side/subset of the dimension split arrangement, respectively. A partition

of a space (subspace) is a set of disjoint subspaces obtained from a sequence of

space splits. I

4.3 The NSP-tree

The NSP-tree is an SP-based indexing technique. Its development is based on

the discrete geometrical concepts presented in Sections 3.2 and 4.2 and utilizes the

special properties of an NDDS to achieve high search performance and, at the same

time, maximizes space utilization. The following subsections will discuss the

details of the NSF-tree.

4.3.1 The SP approach for NDDSs

The basic idea of an SP method is to build an index tree in which each node

represents a subspace of a given data space. The whole data space is represented

by the root node. The (sub)space represented by each node is recursively

partitioned into disjoint smaller subspaces represented by its child nodes at the next

level. A vector is placed in the index tree based on the subspace it belongs to.

Providing overlap-free subspaces for the tree nodes at the same level leads to a high

search performance. However, an SP-based index tree cannot guarantee minimum

(disk) space utilization for a tree node since some nodes may contain only a few

97

indexed vectors due to the distribution of indexed vectors in the data space. Efforts

need to be made to choose a space partition that has a better space utilization when

constructing an SP—based index tree.

For an SP—based index tree, splitting a space is typically achieved by

determining a dimension split. To determine a dimension split for an NDDS,

instead of using a split point on the dimension as in a CDS, we have to explicitly

designate the membership of each letter on the dimension in one of the two subsets

of the split. To take advantage of the non-ordered property of an NDDS, we

designate the membership of each letter from the split dimension domain in a split

according to their distribution in the indexed vectors so that the numbers of indexed

vectors in the two subspaces are as balanced as possible. This strategy will

improve both the search performance and the space utilization since the chance in

which one tree node overflows while its sibling(s) has only a few indexed vectors

(i.e., its node space is not fully utilized) can be reduced, resulting in a more compact

(balanced) index tree.

For a CDS, the whole domain of a dimension (thus the whole data space) can be

split by using a single split point on the dimension. Even for a value on the split

dimension that has not appeared in any indexed vector, it is placed in one side of the

split based on its ordering position relative to the split point. However, this

approach cannot be applied to an NDDS. This is because we do not have any

information about where to place the absent letters. For example, consider the

following alphabet of a split dimension for an NDDS: A = { a, b, c, d, e, f, g}, where

98

no ordering exists among the letters. Assume that letters a, b, c and d have been

used in some indexed vectors, while letters e, f and g have never occurred in any

indexed vector. To split the dimension domain A, the first four letters can be

placed in the two split subsets based on their distribution in the indexed vectors, so

that the two resulting subspaces (hence the corresponding tree nodes) are balanced

in terms of the number of the indexed vectors. However, how to place letters e, f

and g is a problem since it is unclear how many vectors will have them on the

considered dimension. One simple way is to randomly place them in the two split

subsets, which may lead to very unbalanced subspaces in the future. Alternatively,

the letters can be placed based on a prediction model for their future distribution,

which faces the challenge to develop an accurate predication model. To solve the

problem, we adopt another approach: partitioning the current data space (as defined

in Section 4.2) rather than the whole data space. Since using the current space

cannot only balance the subspaces (leading to a more compact tree) but also make

the subspaces smaller (leading to a better pruning power), this approach can

improve both the search performance and the space utilization of the index tree,

compared to the approach to partitioning the whole data space. When a vector

with some new letters is inserted into the index tree, the current space and its

subspaces can be easily adjusted during the insertion procedure.

When the subspace represented by a node in an SP-based index tree contains a

large dead space, search performance will suffer greatly. To enhance the search

performance of an SP method in a CDS, people have suggested adding an auxiliary

99

bounding box for each node of an index tree to achieve some extra pruning power

(by reducing the dead space) [Seeger90, Henrich98, Chakrabarti99]. Since adding

the bounding boxes will inevitably reduce the fan-out of a node, it is necessary to

balance these two factors to achieve the best performance.

An effective and commonly-applied strategy [Henrich98] to balance the

pruning power and the fan-out of a node for an SP. index tree in a CDS is to divide

the data space into grids and use the smallest set (box) of grids that covers the

minimum bounding box of the vectors in the node as the auxiliary bounding box for

the node. The finer the grids, the better the auxiliary bounding box approximates

the true minimum bounding box (i.e., more tight), resulting in a better pruning

power. However, finer grids require more space (bits) for representing an auxiliary

bounding box in a tree node, resulting in a smaller fan-out. On the other hand,

coarser grids lead to less pruning power and larger fan-out. Hence the balance

between these two factors is controllable in an SP index tree for a CDS.

Unfortunately, this grid-based approach to balancing the two factors is not

applicable for an NDDS. The difficulty is that grids cannot be made for an NDDS

since there is no ordering among the letters in each dimension. To overcome the

problem, we have studied the following new approaches to balancing the pruning

power and the fan-out of each node in an index tree for an NDDS.

To reduce the representation space required by auxiliary bounding boxes in a

tree node (thus increase the fan-out), we can let several children in the node share

one auxiliary bounding box rather than each child having a separate one as

100

suggested in the literature. However, our empirical study shows that increasing the

fan-out by reducing the number of auxiliary bounding boxes (i.e., the pruning power)

of a tree node does not improve search performance of an index tree for an NDDS.

One reason for this phenomenon is that reducing the number of auxiliary bounding

boxes in a tree node decreases the pruning power of the node dramatically in an

NDDS, which nullifies the benefit from increasing the fan-out. The strong pruning

power of a DMBR in an NDDS can be explained by the special non-ordered

property of an NDDS. This is illustrated by an example in Figure 16. Note that

the axes of the NDDS in Figure 16(b) are depicted without arrows to reflect the

non-ordered property.

CDS NDDS

p,(x,.y;) Y P1010215”)

%[220‘ , Y2) oP2(12(X),12(y))

> I

(a) X (b) X

Figure 16: Minimum bounding rectangles in CDS vs. NDDS

If a node in an index tree for a CDS contains two vectors P; and P2, its

minimum bounding rectangle (NIBR) is represented as the larger rectangle in Figure

16(a). It includes a large dead space (i.e., roughly the shaded rectangle), which

inevitably reduces its pruning power. On the other hand, the DMBR for P; and P2

in Figure 16(b) is the Cartesian product {1;(x), [200} X {1;(y), 120)}, which contains a

very small “dead space” {a,“), 12‘”), (12“), If”) }. A DMBR in an NDDS has the

ability to exclude the vectors that share no letter with any indexed vector on a

101

dimension (due to the non-ordered property), resulting in a strong pruning power.

However, comparing DMBRs for an NDDS among themselves, the dead space of a

DMBR grows very fast as the number of indexed vectors increases (due to the large

number of possible combinations of their dimension letters), which could lead to a

dramatic degradation of the pruning power. Therefore, sharing a DMBR among

several nodes in an index tree for an NDDS can dramatically decrease the pruning

power.

Inspired by the above observation, we consider the other direction, that is, to

further increase the pruning power (at the cost of reducing the fan-out) of a node for

an index tree in an NDDS. This is achieved by adding multiple bounding boxes

for each node instead of having only one for each node as suggested in the literature.

However, as more DMBRs are added for a node, the improvement of the pruning

power decreases. At some point, the fan-out becomes a dominant factor. Our

empirical study shows that adding two DMBRs for each node in an index tree for an

NDDS usually results in the best performance. For simplicity, in the following

discussion of our NSF-tree, we consider only two DMBRs for each tree node. In

general, the discussion can be extended to m (>1) DMBRs per node.

Besides the above unique strategies, some useful heuristics and strategies from

some popular SP and DP indexing techniques for CDSs are also extended and

applied in our NSF-tree.

4.3.2 The NSP-Tree structure

The NSP-tree has a disk-based balanced tree structure. A leaf node of the

102

NSP-tree contains an array of entries of the form (key, op), where key is a vector in a

given NDDS 52d and op is a pointer to the indexed object identified by key in the

database. A non-leaf node in an NSP-tree contains the SP information, the pointers

to its child nodes and their associated auxiliary bounding boxes (i.e., DMBRS).

Let Q be the current data space. Each node in the NSF-tree represents a

subspace from a partition of £2, with the root node representing 52. The subspace

represented by a non-leaf node is divided into smaller subspaces for the child nodes

via a sequence of (space) splits. The SP information in a non-leaf node N is

represented by an auxiliary tree called the Split History Tree (SHT). The SHT is

an unbalanced binary tree. Each node of the SHT represents a split that has

occurred in N. The order of all the splits that have occurred in N is represented by

the hierarchy of the SHT, i.e., a parent node in the SHT represents a split that has

occurred earlier than all the splits represented by its children. Each SHT tree node

has four fields:

1) sp_dim: the split dimension;

2) sp_pos: the dimension split arrangement, which is a pair of disjoint subsets

(sp_pos.left / sp_pos.right) of the letters on the split dimension;

3) l_pntr and r_pntr: pointers to an SHT child node (internal pointer) or a child

node of N in the NSP-tree (external pointer). l_pntr points to the left side of the

split, while r_pntr points to the right side.

Note that, from the definition, each SHT node SN also represents a subspace of

the data space resulted from the splits represented by the SHT nodes from the root to

103

SN (the root represents the subspace for N in the NSF-tree). All the children of N

that are under SN in the SHT should be within that subspace. Using the SHT, the

subspace for each child of N is determined. The pointers from N to all its children

are, in fact, those external pointers of the SHT for N.

As mentioned before, an auxiliary bounding box is the DMBR of a set X of

indexed vectors. Traditionally, only one bounding box is added for each child

node of a non-leaf node N in an SP index tree to obtain extra pruning power. To

balance the pruning power and the fan-out of N, we could allow k (>1) children of N

to share one DMBR (i.e., bounding all their indexed vectors) to increase the fan-out,

or let one child of N have m (>1) DMBRs (i.e., bounding m subsets of indexed

vectors in the child (subtree)) to increase the pruning power. Our empirical study

shows that adding two DMBRs for each node in an index tree for NDDSs usually

performs the best. For simplicity, in the following discussion of our NSF-tree, we

consider only two DMBRs for each tree node. In general, the discussion can be

extended to m (>1) DMBRS per node.

Figure 17 illustrates the structure of an NSP-tree. In the figure, a tree node is

represented as a rectangle labeled with a number. Leaf nodes (e.g., node 4) are at

level 3, while non-leaf nodes reside at upper levels. Each non-leaf node contains

an SHT. There are two DMBRS for each child. DMBRl-j represents the j—th (l S j

S 2) DMBR for the i-th (1 S i S M) child at each node, where M is the fan-out of the

node, which is determined by the (disk) space capacity of the node.

104

DMBRll DMBR” More

Level 1 (TOOI) 1 SHTI DMBR” DMBRZZ DMBRs...

 '\ /

DMBR DIVIBR
11 3 SHT 11 More

LCVCIZ 2 SHT2 DMBR” 3 DIVIBRIZ children...

key‘ key, More

Incl/e] 3 (leaf) 4 0p] opz entries ..-

More leaves

Figure 17: The structure of an NSP-tree

SHTl SHT2

z” ” a

@215 , o,
/

Wm r’rodeki

O SHT node I::I NSF-tree node

E.sp_dim: 2; Esp_pos: {a,tI/{g} E’.sp_dim: 7; E’.sp_pos: {g,c}/{a,t}

F.sp__dim: 6; F.sp_pos: {g,t}/{a,c} F’.sp_dim: 3; F’.sp_pos: {a,t}/{g,c}

Figure 18: Examples of the SHTs in Figure 17

Figure 18 gives two example SHTs corresponding to SHT; and SHT2 in Figure

17, respectively. Each SHT node is represented as a circle labeled with a character.

A solid pointer in the figure represents an internal pointer that points to an SHT

child node, while a dotted pointer is an external pointer that points to a child of the

relevant non-leaf node (containing the SHT) of the NSF-tree. Note that the

NSP-tree nodes i, j and k shown in Figure 18 represent those NSP-tree nodes that

exist but are not illustrated in the tree structure shown in Figure 17.

Example 4

Assume that the vectors indexed by the NSP-tree in Figure 17 are from a genome

105

sequence database with 7 dimensions and alphabet A = {a, g, t, c}. The current

data space is X =A; x A2 x x A7, where A; = {a, g}, A2 = {a, g, t}, A4 = {g, t, c},

A5 = {t, c} and A3 = A6 = A7 = A. The subspace corresponding to Node 4 in Figure

17 can be expressed as:

Q4=A;X{a,t}XA3xA4XA5XA6x{g,c}, (3)

which is derived from the two splits represented by SHT nodes SHT;.E and SHT2.E’.

Note that SHT;.E also illustrates the split of a current space of the NDDS. Since

letter c is not present on the 2nd dimension of the current dataset indexed in the

NSP-tree, the spatial position of c is not decided at the present time. Therefore,

SHT;.E.sp_pos does not include c. I

4.3.3 Construction algorithms

We will only discuss the insertion issues and its related algorithms for the

NSF-tree. A simple deletion algorithm similar to that of the K-D-B tree

[Robinson81] is currently adopted for the NSF-tree, and updating is implemented as a

deletion followed by an insertion.

4.3.3.1 Insertion procedure

The task of the insertion procedure is to insert a new vector 0: into the NSP-tree.

It first invokes Algorithm ChooseLeaf to determine the subspace where abelongs

to and find the leaf that corresponds to that subspace. If the chosen leaf overflows

after accommodating a, Algorithm SplitSpace is invoked to split the subspace into

two new subspaces represented by two new leaves. If the split of one node causes

the overflow of its parent, the split propagates up the NSF-tree. Algorithm

106

SplitProc is invoked to split an overflow (leaf or non-leaf) node into two new nodes.

If the root overflows, a new root is created to accommodate the two nodes resulting

from the split of the old root. As mentioned before, based on our empirical study,

two DMBRS are used for each node in the NSF-tree. The DMBRs are adjusted in

a bottom-up fashion, which is done by Algorithm ComputeDMBRs.

As a dynamic indexing method, these algorithms are crucial to the performance

of the NSP-tree, since they determine the data organization in the tree. The details

and strategies for these algorithms are described in the following subsections.

4.3.3.2 Choose insertion leaf node

The purpose of Algorithm ChooseLeaf is to find the leaf node corresponding to

the subspace where the new vector at belongs. It starts from the root node and

follows a path to the identified leaf node. At each non-leaf node, it has to decide

which child node to follow by using the SP information stored in the SHT of the

non-leaf node. One major difference between Algorithm ChooseLeaf of the

NSP-tree and those of the SP indexing methods in CD88 is that, in the latter, there

always exists a leaf that corresponds to the subspace where a new vector belongs,

because the SP in the CDS is for the whole data space, i.e., the union of all the

subspaces represented by all the leaves in the tree is the whole CDS. On the other

hand, it is possible that Algorithm ChooseLeaf cannot find any subspace that (1

belongs to in the current NSP-tree because some letters of a on some dimensions

may be absent from the current dataset indexed in the tree. Therefore, Algorithm

107

ChooseLeaf must use some strategy to extend one existing subspace to

accommodate the new vector aso that the presence of the new letters is captured in

the current space. To improve space utilization in the NSP-tree, a heuristic to

balance the tree structure is used in Algorithm ChooseLeaf when a subspace

extension is needed.

Algorithm ChooseLeaf:

Input: (1) a new vector 0*, (2) root node N.

Output: leaf node N chosen for accommodating a

Method:

1. while N is not a leaf node do

2. SHT_node = the root of N.SHT;

3. repeat

4. i = 5HT_node.sp_dim, a,- = the i-th component of a;

5. if a; e SHT_node.sp_pos. left or right then

6. SHT_pntr = SHT_node.l_pntr or r_pntr, accordingly;

7. else

8. if the number of children of N under the left subtree of SHT_node S that

of the right then

9. SHT_node.sp_pos.left = SHT_node.sp_pos.left U a1;

10. 5HT_pntr= SHT_node.l_pntr;

11. else

108

12. SHT_node.sp_pos.right = SHT_node.sp_pos. right U 05,-;

13. SHT_pntr = SHT_node.r_pntr;

14. end if;

15. end if;

16. if SHT_pntr is an internal pointer then

17. SHT_node = the SHT node SHT_pntr points to;

18. else

19. SHT_node = null;

20. N = the NSP-tree node that SHT_pntr points to;

21. end if;

22. until SHT_node is null;

23. end while;

24. return N.

I

Steps 5 - 6 in the above algorithm handle the situation where vector abelongs to

an existing subspace of the current NSP-tree (for the current data space). Steps 8 -

l4 apply to the situation where there is no subspace in the current NSF-tree to which

a belongs. When choosing a subspace for extension, we adopt the following

heuristic: choose the subspace with fewer children in the current NSF-tree for

extension. In this way, we can keep the tree structure more balanced, and

consequently achieve better space utilization as well as better search performance.

109

4.3.3.3 Split procedure

In the NSP-tree, the split procedure for an overflow leaf node is different from

that for an overflow non-leaf node. Each leaf of an NSP-tree represents a subspace

of the current data space in an NDDS. The kernel of splitting a leaf node is to split

the subspace represented by the node, which is handled by Algorithm SplitSpace as

follows.

Algorithm SplitSpace:

Input: subspace 9N represented by overflow leaf node N.

Output: (1) split dimension dim; (2) split arrangement pos.

Method:

1. max_str = max{stretches of all dimensions in ON I;

2. dim_set = the set of dimensions with max_str stretch;

3. best_bal = 0;

4. for each dimension d in dim_set do

5. create a histogram of frequencies of the d—th components (letters) of the

vectors in N;

6. sort the letters on their frequencies in descending order into list L;;;

7. set lists L;, L2 to empty, weight; = weight2 = O;

8. for each letter I in L0 do

9. if weight; S weight2 then

10. weight; = weight; + lfrequency;

110

ll. addlto the end ofL;;

12. else weight2 = weight2 + lfrequency;

13. add l to the beginning of L2;

14. end if;

15. end for;

16. concatenate L; and L2 into L3;

17. forj = 2 to max_str do

18. 14,3,1 = {letters in L3 whose position <j};

19. l_set2 = {letters in L3 whose position 2j};

20. f; = sum of frequencies of letters in l_setl;

21. f2 = sum of frequencies of letters in l—S€l2;

22. cur_bal = (f; Sf2) ? (f; /f2) : (f2 /f1);

23. if cur_bal > best_bal then best_bal = cur_bal;

24. dim = d, pos.left = _setl, pos. right = l_Setz;

25. end if;

26. end for;

27. end for;

28. return dim, pos.

The algorithm first determines on which dimension to split the subspace of the

overflow leaf (steps 1 - 2). One strategy often used in SP methods for CD53 is to

choose the split dimension in a round-robin fashion. However, this technique is

111

not suitable for an NDDS. As said, the SP in the NSP-tree is for the current data

space rather than the whole space. It is possible that the stretch of the current

space on one dimension is much larger than that on another dimension. Inspired

by a useful strategy (“maximum span”) to split an MBR of an index tree node

[Chakrabarti99, Qian03], we adopt the following heuristic to choose a dimension to

split the subspace of a leaf node: choose the dimension with the largest stretch as the

split dimension to split the subspace. This heuristic will yield cubic-shaped

subspaces, which can dramatically improve the query performance. Our

experimental results show that this heuristic is very effective for an NDDS. If

there are several dimensions with the largest stretch, they are all considered as

candidate split dimensions.

Among the candidate split dimensions, the algorithm selects the one that leads to

the best subspace split so that the index tree is as balanced as possible to enhance its

search performance and space utilization. The non-ordered property of an NDDS

allows the letters on a dimension to be grouped in any way that is needed. The

following heuristic is adopted by Algorithm SplitSpace to determine a good split:

choose the split dimension and the dimension split arrangement such that the

numbers of indexed vectors contained in the two subspaces resulting from the split

are as balanced as possible. To implement this heuristic, a histogram-based

technique is employed. The basic idea is to create a histogram of frequencies of

the letters appearing in the indexed vectors on the split dimension in the given

subspace (step 5). A greedy method is then applied to sort the letters on the

112

dimension so that those with higher frequencies are placed closer toward two ends

of a sorted list (Steps 6 - 16). Finally, the sorted list is used to find the most

balanced subspace split (determined by the chosen split dimension and dimension

split arrangement) in steps 17 — 26.

Example 5

Let us consider the situation described in Example 4. Assume that the maximum

number of children allowed in a leaf node is 9. Currently, leaf node 4 in Figure 17

overflows. Algorithm SplitSpace is applied to split the subspace 94 represented

by Node 4, which is given in equation (3) in Example 4. Assume Node 4 contains

the following 10 vectors:

,9 ‘6 9’ ‘6 ’9 ‘6

“attgctg , gaccctg”, “atagtcc , gagtctc , aattcgc”,

’ 5‘ 9’ (t 9’ ‘6 9’ 6‘

“gtcccgc’ , atggtgc , gattccg , gattcac , aaactag”.

Since the 3rd and 6th dimensions of S24 have the largest stretch value 4, we have

dim_set = {3, 6} at step 2 in Algorithm SplitSpace. The histogram of frequencies

of the letters on the 3rd dimension generated by step 5 based on the vectors listed

above is: afreq = 2, g.freq = 2, t.freq = 4, and c.freq = 2. Based on the histogram,

the outcome of steps 6 - 16 is: L; = <t, c, g, a>. The best_bal obtained by steps 17

- 26 for the 3rd dimension is 4 / 6 = 0.67 with dim = 3 and pos = It} / {c, g, a}.

Similarly, the histogram on the 6th dimension is: a.freq = 2, g.freq = 3, t.freq = 3,

and c.freq = 2. The corresponding outcome of steps 6 - 16 for the 6th dimension is:

L3 = <g, a, c, t>. A better dimension split with best_bal = 5 / 5 = 1 is obtained by

steps 17 - 26 for the 6th dimension with dim = 6 and pos = {g, a} / {c, t}. It

113

divides £24 into two smaller subspaces containing 5 vectors each. I

Once the split of the subspace of an overflow leaf node is determined, the node

is split accordingly. The Split of a leaf node may cause its parent node to overflow

and be split. The split of a non-leaf node is basically to distribute part of the SHT

(i.e., some of its children) to a new node resulted from the split. Once an overflow

node is split into two, the SHT in its parent needs to be modified to reflect the

changes. If the root is split, a new root is created to store the SP information.

The procedure of splitting a (leaf or non-leaf) node is described by the following

algorithm.

Algorithm SplitProc:

Input: an NSP-tree with an overflow node N.

Output: the modified NSF—tree.

Method:

1. ifN is a leaf then

2. let .QN be the subspace represented by N;

9
°

[dim, pos] = SplitSpace (N, 82”);

4. else SHT_RN = the root of N.SHT;

5. dim = SHT_RN.sp_dim, pos = SHT_RN.sp_pos;

6. end if;

7. create a new node NN;

8. distribute the children of N, which belong to the right subset of pos, into NN;

114

9. if N is a non-leaf node then SHT = N.SHT;

lO. N.SHT = the left subtree of SHT;

ll. NN.SHT = the right subtree of SHT;

12. end if;

13. if N is the root then create a new root RN;

l4. create a new SHT root SHT_NN for RN.5HT;

15. else let PN be the parent of N;

16. let SHT_N be the node in PN.SHT that points to N;

17. let SHT_Nx_pntr be the pointer that points to N;

18. create a new SHT node SHT_NN;

19. SHT_N.x_pntr = SHT_NN;

20. end if;

21. set sp_dim, sp_pos, l_pntr and r_pntr Of SHT_NN to be dim, pos, N and NN,

respectively;

22. return the modified NSP-tree.

Example 6

Let us consider the situation after Example 5. After the subspace £24 represented

by Node 4 (N) in Figure 17 is split by Algorithm SplitSpace at step 3 in Algorithm

SplitProc, a new leaf NN is created. Based on the split, vectors “attgctg”,

“gaccctg , atagtcc , gagtctc” and “gattccg” in N are distributed into NN at step 8.

Since N is a leaf, steps 15 - 21 will be executed to modify the SHT (SHT2 in Figures

115

l7 and 18) in the parent node ofN (Node 2 in Figure 17). The change of SHT2 is

illustrated in Figure 19, where Node n-l pointed to by the new SHT node SHT2.G' is

the new leaf (NN) in the NSP-tree. The split information is recorded in SHT2.G’.

old SHT2 new SHT2

, O O
L’

Node4 / a \ (:> [I 3‘ a \\

L’ VL’ \L \r.3:

Node j Node k Node 4 Node n-l Node j Node k

C) SHT node NSP tree node

E’.sp_dim: 7; E’.sp_pos: {g,c}/{a,t}

F’ .sp_dim: 3; F’ .sp_pos: {a,t}/{g,c}

G’.sp_dim: 6; G’.sp_pos: {g,a}/{t,c}

E’.sp_dim: 7; E’.sp_pos: {g,c}/{a,t}

F’ .sp_dim: 3; F’.sp_pos: {a,t}/{g,c}

Figure 19: Change of SHT of Node 2 after splitting old Node 4

Assume that the maximum number of children allowed in a non-leaf node is 4.

After the split of Node 4, its parent node (Node 2 in Figure 17) also overflows and

needs to be split by Algorithm SplitProc. Figure 20 illustrates the NSF-tree after

the split of Node 4 and Node 2 in Figure 17. In Figure 20, Node n is the new

non—leaf node created when Node 2 splits. Figure 21 shows the resulting SHTs

after Node 2 splits. Note that since Node 2 is a non-leaf node, its split only deals

with reorganizing the SP information stored in it. There is no split of subspace

involved. A split of the leaf node is processed similarly by Algorithm SplitProc.

The major difference is that the subspace represented by the overflow leaf node

needs to be split first.

116

DMBR“ DMBRZI M0,,

' DMBR12 DMBRn Incas".

Level 1 (root) 1 SHT

L (2 2 D R“ 3 DMBR“ DMBRII
eve SHT2 D R12 SHT3 D R12 n SHTn D R12

key. keyz More ’ key, More
. - . M l

Level 3 (leaf) 4 opl 0p2 crimes “1 opl entries ore eaves

Figure 20: The NSP-tree after splitting old Node 4 and Node 2

SHTl SHT2 SHTn

m a a

O SHT node [:1 NSF tree node

E.split_dim: 2; E.split_pos: I a,t}/{ g} E.split_dim: 6; E”.split_dim: 3:

F.split_dim: 6; E.split_pos: I g,t}/{a,c} E.split_pos: E”.split_pos:

G.split_dim: 7; G.split_pos: {g,c}/{a,t} {g,a}/{t,c} {a,t}/{g,c}

Figure 21: The resulting SHTs corresponding to Figure 20

4.3.3.4 Re-split strategy

To further improve the performance of the NSP-tree, we also employ a re-split

strategy inspired by [Henrich96]. The main idea is that, when a leaf node N

overflows and there exists another leaf node SN that share a former split with N, the

two subspaces represented by N and SN are merged and re—split by using Algorithm

SplitSpace. The following heuristic is used to determine if the new split obtained

from the re-split is adopted: if the split obtained from the re-split uses a split

117

dimension with a larger stretch or uses a split dimension with the same stretch but is

more balanced than the original split between N and SN, ’the original split is

replaced by the new split. If the new split is not adopted, N will go through the

normal split procedure (Algorithm SplitProc). One benefit of the re-split strategy

is that the (disk) space utilization as well as the search performance of the NSP—tree

can be improved by avoiding unnecessary leaf splits. More importantly, the

NSP-tree gets another chance to optimize its tree structure. The detailed

description of the re-split algorithm is omitted here.

4.3.3.5 Adjust DMBRS

When a new vector is inserted into an NSF-tree, if the vector is not contained in

the current DMBRs of the relevant nodes or causes some nodes to split, the DMBRS

of relevant nodes need to be adjusted. The general process to adjust a DMBR for

the NSP—tree during the insertion and split procedures is similar to that for an index

tree with MBRS for a CDS. However, since the NSP-tree has a unique feature,

namely, using two (multiple) DMBRs per node, how to compute/adjust the two

DMBRs for a tree node in an NSF-tree needs to be discussed.

For the set Y of vectors in a given leaf node, in principle, any two DMBRs for

(two subsets of) Y can be used, since two DMBRs always have less dead space (i.e.,

more pruning power) than one DMBR. However, to achieve the best search

performance, it is desirable to use two DMBRS that reduce the dead space as much

as possible. Note that the objective to obtain two DMBRs for Y is different from

that for splitting the corresponding leaf node using an SP method (such as Algorithm

118

SplitSpace). The goal of the latter is to obtain two disjoint and balanced subsets of

Y, while the former attempts to minimize the dead space although the two DMBRS

may overlap and/or be unbalanced. On the other hand, the issue of obtaining two

DMBRs here is similar to that of splitting an MBR in a DP method for a CDS.

Hence the well-known quadratic (cost) split algorithm in the R-tree [Guttman84]

could be extended and applied here to obtain two DMBRs for a leaf node of the

NSF-tree. However, although such a quadratic algorithm can obtain two DMBRs

with a small dead space, the algorithm is too expensive. To overcome this problem,

we have developed a new faster linear (cost) algorithm (Algorithm

ComputeDMBRs) for the NSF-tree to obtain two DMBRs for each node in an

NSF-tree. Our experiments have demonstrated that the effectiveness of this linear

method is close to that of the quadratic method.

Algorithm ComputeDMBRs:

Input: (1) node N for 2 DMBRs; (2) parent node PN of N.

Output: DMBR; and DMBR2 of N.

Method:

1. ifN is a leaf then

2. let c; be the first vector (key) in N;

3. let C2 be the farthest vector from c; in N;

4. let c3 be the farthest vector from c2 in N;

5. if dist(c;, C2) 2 dist(C2, C3) then

6- gmn=lcil.gm2={62l;

119

7. else

8. grpi=162128IP2=IC3l;

9. end if;

10. let DR; be the DMBR of vectors in grp; and DR2 be the DMBR of vectors in

SW2;

11. area; = area(DR;), area2 = area(DR2);

12. for each vector c ofN not in gtp; or grp2 do

13. t_grp;=grp;U{c},t_grpz=g'P2UIC};

14. let t_DR;, t_DR2 be the DMBR of vectors in t_grp;, t_grp2, respectively;

15. t_area; = area(t_DR;), t_area2 = area(t_DR2);

l6. area_inc; = t_area; - area;, area_inc2 = t_area2 — area2;

17. if area_inc; < area_inC2 or (area_inc; == area_inC2 and t_area; S t_area2)

then

18. grp; = t_grp;; DR; = t_DR;; area; = t_area;;

19. else

20. grp2 = t_grp2; DR2 = t_DR2; area2 = t_area2;

21. end if;

22. end for;

23. else let grp;, grp2 be the children of N under the left and right subtrees of N.SHT

(the root), respectively;

24. let DR;, DR2 be the DMBR of children in grp;, grp2, respectively;

25. end if;

120

26. return DR; as DMBR;, DR2 as DMBR2.

I

Steps 2 - 22 of this algorithm compute two DMBRs for a leaf node N. It first

finds a pair of vectors in N that are far from each other as seeds (ties are broken by

randomly choosing one at steps 3 and 4) to grow the DMBRS (steps 2 - 9). Two

scans over the vectors in N are applied to get two pairs of candidate seeds (steps 2 -

4). This strategy is to prevent choosing a poor seed pair in the situation illustrated

in Figure 22(a) where c; happens to reside at the “center” of all the other vectors in

N. Figure 22(b) shows that using two scans, the two seeds (C2, C3) obtained are

much farther away. A better pair is chosen at steps 5 - 9. After two seeds are

chosen, the rest of the vectors in N are grouped with either one of the two seeds

(steps 12 - 22). The criterion is to put the vector into the group with a less area

increase. Ties are broken by choosing the group with a smaller area.

(a) (b)

Figure 22: Benefit of two scans

Steps 23 - 24 of Algorithm ComputeDMBRs compute two DMBRS for a

non-leaf node N. AS we know, the root of the SHT of N splits the subspace of N

into two subspaces. The strategy of the algorithm is to merge the DMBRs of

children in their respective subspaces into two DMBRS for N. Note that the way to

compute two DMBRS for a non-leaf node is not unique. For example, one

121

alternative method is to merge two DMBRS that are closest to each other repeatedly

until two final DMBRs are obtained. However, this method requires checking the

distance between all pairs of DMBRs for each merge, which incurs much overhead.

The strategy used in Algorithm ComputeDMBRs is very efficient and proven to be

effective in practice.

Note that, although we present Algorithm ComputeDMBRs for an NSP-tree

with two DMBRS per node, it can be easily extended to handle an index tree with

m-DMBRs for any m. For example, to obtain m (>2) DMBRs for a leaf node, after

two or more DMBRs are obtained, the largest DMBR can be replaced by two

DMBRS for its vectors obtained following steps 2 - 22. This procedure can be

repeated until m DMBRs are obtained for the given node. The strategy to compute

two DMBRs for a non-leaf node in the algorithm can also be extended to handle a

general m (22) DMBRs.

4.3.4 Range query processing

Once an NSF-tree is built for a database in an NDDS, a range query range(aq,

rq) can be efficiently evaluated using the tree. The main idea is to start from the

root node and prune away those nodes whose DMBRS are out of the query range,

until the leaf nodes containing the desired vectors are found.

The search algorithm is given as follows:

Algorithm RangeQuery:

Input: (1) range query range(aq, rq); (2) an NSP-tree with root N.

Output: A set VS of vectors within the query range.

122

Method:

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

VS = (I);

push N into a node stack NStack;

while NStack at (I)

CN = pop(NStack);

if CN is a leaf node then

for each vector v in CN do

if dist(a'q, v) S rq then

V5 = V5 U { v};

end if;

end for;

else

for each child C of CN do

if dist(aq, C.DMBR;) S rq or dist(a,,, C.DMBR2) S rq then

push C into NStack;

end if;

end for;

end if;

end while;

return VS.

In step 13, if both DMBRs of the node N are out of the query range, N is pruned.

123

4.4 Experimental Results

To evaluate the effectiveness of the strategies used for building the NSF-tree and

the efficiency of the resulting NSP—tree, we conducted extensive experiments for

synthetic and real data with different alphabet sizes, dimensions, and levels of

skewness. The programs were implemented in Matlab 6.0 on a PC with a Pentium

III 850MHz CPU and 512 MB memory. As a disk—based indexing method, query

performance was measured by average disk l/O’s of 100 random test queries for

each case. The synthetic datasets were generated based on the well-known Zipf

distribution [Zipf49] with its parameter values ranging from O (zipfl) -- uniform) to 3

(zipf3 -- very skewed). Each dimension of the datasets uses the same Zipf

parameter.

In the tables and figures presented in this section, the following notation is used:

i0 denotes the average number of disk I/O’s, ut denotes the average (disk) space

utilization, rq denotes the query range for the Hamming distance, key# denotes the

total number of vectors indexed, IAI denotes the alphabet size and d denotes the

dimension for an NDDS.

4.4.1 Effectiveness of tree building strategies

A set of experiments was conducted to evaluate the effectiveness of the

strategies used for building the NSP-tree. To determine a proper structure for the

NSP-tree in NDDSs, the interaction between the pruning power of auxiliary

DMBRs and the fan-out of a tree node needs to be studied. We have evaluated

124

various tree structures with l DMBR shared by multiple sibling nodes, multiple

DMBRs applied to one node, and node without any DMBR in different NDDSs.

-a- zipfO .

—e— zipf1

+ zipf2

+ zipf3

n
u
m
b
e
r
o
f
N
O
S

6030 0.5 1 1.5 2 2.5 3 3.5 4

+3 M L-V- Fan-out I

E:
(5

LL 0 ‘E ‘ V

o 0.5 1 1:5 2 2.5 f 3.5 4

number of DMBRs per node

Figure 23: Evaluation of interaction between DMBRs and fan-out

(IAI = 10, d = 40, key# = 100,000, rq = 3)

Figure 23 shows a set of experimental results for datasets with various levels of

skewness (zipfl) ~ zipf3). Both the disk I/O’s and the fan-outs for various tree

structures are presented. The x-axis indicates the number of DMBRs per node,

where 0 means that no DMBR is used in the tree structure and 1/2 means that l

DMBR is shared by 2 sibling nodes. Note that, for x-values Z 1, only integers are

meaningful. From the figure, we can see that, when a small number of DMBRs are

applied to a node, the query performance of the index tree improves dramatically,

even though its fan-out decreases rapidly. These results show that it is reasonable

to use DMBRs in an index tree for an NDDS at the cost of reducing the fan-out.

125

However, as more and more DMBRs are added to a node, the improvement of the

query performance becomes smaller since further reduction that can be achieved on

the dead space becomes smaller. After a certain point, the effect of decreasing the

fan-out becomes dominant, resulting in a degradation of the tree performance. Our

experiments showed that the interaction between the pruning power of the DMBRs

and the fan—out usually reaches a balance when 2 DMBRs per node are used. Such

a trend was observed from a variety of datasets. Hence, the tree structure with 2

DMBRs per node was used for the NSF-tree. However, as mentioned before, the

discussion can be easily adapted to handle a tree with any number of DMBRs per

node.

Table 8: Evaluation of linear (cost) Algorithm ComputeDMBRs

(IAI=10,d=40,rq=3)

zipfl) zipfl zipf2 zipfl

key# va V), v(va vb vc va vb vc va vb vc

i0 i0 i0 i0 i0 i0 i0 i0 i0 i0 i0 i0

20000 36 38 139 36 38 87 47 49 75 167 176 207

100000 112 118 350 123 127 225 145 151 200 522 549 649

Table 8 shows the effectiveness of the linear (cost) Algorithm ComputeDMBRs.

In the table, va represents a version of the NSF-tree with 2 DMBRs per node

maintained by the quadratic algorithm adapted from [Guttman84]; vb represents a

version with 2 DMBRs per node maintained by the linear Algorithm

ComputeDMBRs designed for the NSP-tree; vc represents a (conventional) version

with 1 DMBR per node. From the table, we can see that the performance of

Algorithm ComputeDMBRs is quite close to that of the quadratic algorithm. In

126

fact, the performance improvement by vb over vc is about 41.0% on average, very

close to that by Va over vc, which is about 43.8%. Since Algorithm

ComputeDMBRs is much faster than the quadratic algorithm, it is used in the

NSF-tree.

Table 9: Evaluation of heuristic to split on dimension with the largest stretch

(IAI =10, d: 40, zipf1)

m=1 q=2 q=3

key# v0 v, v0 v1 v0 v1

i0 i0 i0 i0 i0 i0

20000 11.9 8.7 33.8 24.3 87.3 56.6

40000 13.8 10.0 44.3 32.1 127.0 81.3

60000 15.4 12.7 58.9 38.5 169.8 99.6

80000 16.7 13.1 64.6 42.2 195.6 115.7

100000 17.0 13.6 71.6 45.7 224.8 126.8

Table 9 shows the effect of the heuristic used in Algorithm SplitSpace, which

chooses the dimension with the largest stretch as the split dimension. In the table,

v0 represents a version of space split without using the heuristic while V; is the

version using it. From Table 9, we can see that the performance gain by applying

the heuristic is quite significant (improved by 31.4% on average). As the query

range and the size of the database increase, the benefit of the heuristic also increases

(e.g., the number of I/O’s is almost reduced by half with rq = 3 and key# = 100k).

Experimental results from other datasets show similar trends in performance.

4.4.2 Performance analysis of the NSP-tree

We also conducted experiments to evaluate the performance of the NSP-tree by

comparing it with that of the ND-tree, which is the only existing indexing technique

127

specially designed for NDDSs. We have shown that the ND-tree outperforms the

linear scan and the M-tree [Ciaccia97] for similarity searches in NDDSs since the

latter two are too generic and do not take the characteristics of an NDDS into

consideration. We implemented both the ND-tree and the NSP-tree using the same

experimental setup and compared their performance using different types of datasets.

We have also studied the scalabilities of the NSP-tree for database size, alphabet

size, and dimension.

4.4.2.1 Performance Comparison with the ND-tree

Figures 24 - 27 show the comparison of the query performance between the

NSP-tree and the ND-tree using synthetic data of different skewness. From the

figures, we can see that, for random (uniform) data, i.e., zipfl), the performance of

the NSP-tree is comparable to that of the ND—tree. As the skewness of a dataset

increases, the performance of the NSP-tree becomes increasingly better. When the

dataset is very skewed (e.g., zipf3), the NSP-tree performs much better than the

ND-tree. Furthermore, the larger the dataset, the more is the performance

improvement achieved by the NSP-tree. The experimental results show the

advantage of the NSF-tree as an SP method. As the skewness of the dataset

increases, the overlap within the ND-tree structure increases due to its DP nature,

leading to degradation in query performance.

128

500

-B— NSP(rq=1)

-e— ND(rq=1)

-x— NSP(rq=2)

400‘ + ND(rq=2)

‘V‘ NSP(rq=3)

-e.- ND(rq=3)

 n
u
m
b
e
r

o
f
|
/
O
s

number of vectors x104

Figure 24: Comparison between the NSP-tree and the ND-tree (synthetic data)

(IAI = 4, d = 40, zipj0)

400

-B- NSP(rq=1)

-e- ND(rq=1)

+ NSP(rq=2)

+ ND (rq=2)

30°" -v- NSP(rq=3)
-A- ND(rq=3)

n
u
m
b
e
r

o
f
l
/
O
s

8 O

.
1
5
q
u

6 e 10

number of vectors x104

Figure 25: Comparison between the NSP-tree and the ND-tree (synthetic data)

(IAI = 4, d = 40, zipf1)

129

—B— NSP(rq=1)

-e- ND(rq=1)

500” + NSP (rq=2)

+ ND(rq=2)

‘6“ NSP(rq=3)

-A- ND(rq=3)

400

n
u
m
b
e
r

o
f
I
/
O
s

 U

G

8 A
l
l
'
l
t
‘

0

A

number of vectors x 10

Figure 26: Comparison between the NSP-tree and the ND-tree (synthetic data)

(IAI = 4. d = 40, Zipfl)

2000

-B— NSP(rq=1) 'A

-e- ND(rq=1) ..W'"

--x-- NSP (rq=2) M"

"at-- ND (rq=2) "A

-----A ND (rq=3) ”

o

a"
a.0

1500 ~

n
u
m
b
e
r

o
f
l
/
O
s

number of vectors x10

Figure 27: Comparison between the NSP-tree and the ND-tree (synthetic data)

(IAI = 4, d = 40, zipf3)

130

Table 10: Comparison of space utilization between NSP-tree and ND-tree

(|A|=4,d=40,rq=3)

zipfO zipf1 zipfl zipf3

key# NSP ND NSP ND NSP ND NSP ND

ut (%) ut (%) ut (%) ut (%) ut (%) ut (%) ut (%) ut (%)

20000 77.6 75.9 72.3 68.7 67.7 66.9 51.6 75.3

40000 77.6 75.3 72.9 68.4 67.4 68.0 51.3 74.6

60000 59.8 62.3 67.9 68.9 67.9 68.7 51.1 75.3

80000 77.5 75.9 71.9 68.2 67.6 69.0 51.1 74.9
 100000 74.8 70.1 70.2 68.8 67.5 68.9 51.2 75.4

Table 10 shows the comparison of the space utilization between the NSP-tree

and the ND-tree using the same data. When the dataset is less skewed, the space

utilization of the NSP-tree is quite good. Although, as an SP method, the NSP-tree

does not guarantee a minimum space utilization, the experimental results show that

the heuristics applied in the NSP-tree, which utilize the non-ordered property of the

NDDS, are very effective in balancing the tree structure. Even for very skewed

data (zipf3), the space utilization of the NSP-tree is still reasonable although it is

worse than that of the ND-tree. On the other hand, even though the ND-tree

maintains good space utilization for skewed data, its query performance makes it

less preferable in such a case.

Figure 28 shows the comparison of the query performance between the NSP-tree

and the ND-tree using a real-world dataset, i.e., the Connect-4 Opening Dataset,

from the UCI Machine Learning Repository [UCI98]. This is a 42-dimensional

skewed dataset with an alphabet size of 3. From the figure, we can also see that

the NSP-tree outperforms the ND-tree.

131

200

...A... NDL(rq=3)

"-11!" NSP(rq=3)

-E}- ND (rq=2)

_ --x-- NSP(rq=2)

a) 150 -e- ND(rq=1)

-|- NSP(rq=1)

2
«5

IIIIIA.....................A......

I— 100- J

8 ,A"
E ".....-

3 r
. .. _5

C [5,*,............E---------B........

50 _ ,. ‘3.”fl.
l

“a"-2

--------a" a cté—‘é
W : : :

01 2 3 4 5 6

number of indexed vectors x 10‘1

Figure 28: Comparison between the NSP-tree and the ND-tree (Connect-4 data)

(IAI =3, d = 42)

4.4.2.2 Scalability Analysis of the NSP-tree

In this set of experiments, we used the linear scan as a reference to analyze the

scalabilities of the NSP-tree for various database sizes, alphabet sizes and

dimensions. The linear scan is a direct way to perform range queries on a database

in an NDDS. To be fair, we still assume that the performance of the linear scan for

executing a query is only 10% of the number of disk I/O’s for scanning all the disk

blocks of the data file. We will refer to this benchmark as the 10% linear scan in

the following discussion.

Figure 29 shows the scalability of the NSP-tree with regard to the database size.

From the figure, we can see that as the size of the database increases, the number of

disk I/O’s required for the NSP-tree to perform a range query increases very slowly.

On the other hand, the performance of the 10% linear scan degrades linearly. As

132

we know, no indexing method works better than the linear scan for large range

queries on very small databases due to the overhead. This is also true for the

NSP-tree. However, as the database size becomes larger, the NSP-tree is

increasingly more efficient than the 10% linear scan (e.g., the NSP-tree, on the

average, is about 6 times more efficient than the 10% linear scan for the dataset with

800,000 vectors).

1 600

-B- NSP-tree(rq=1)

-6- NSP-tree(rq=2)

'9'- NSP-tree(rq=3)

—l— 10% linear 1200

800 -

n
u
m
b
e
r

o
f
|
/
O
s

400 >

i

015.. :1. . a .5. 1

1 2 3 4 6

number of indexed vectors x10

I

\

J"
 E

]
0

E
3
0

[
J
O

u
p
0

”
i
n
o

E

Figure 29: Scalability on DB size (IAI = 4, d = 40, zipf1)

Figures 30 and 31 show the scalability of the NSP-tree with regards to

dimension and alphabet size. From the figures, we see that the NSP-tree scales

well for both dimension and alphabet size. For a fixed alphabet size, increasing the

number of dimensions for an NDDS does not affect much the performance of the

NSP-tree for range queries. On the other hand, the performance of the 10% linear

scan degrades linearly as the dimension increases, since a larger dimension implies

larger vectors and hence a larger database size. For a fixed dimension, increasing

133

the alphabet size for an NDDS does not affect the performance of the NSP-tree

much either. As the alphabet size increases, the space capacity of each node of the

tree decreases, which causes the performance to degrade. On the other hand, since

a larger alphabet size provides more choices for splitting subspaces, a better tree

structure can be obtained, resulting in a quite stable performance as shown in Figure

31. The performance of the 10% linear scan is constant since the database size

does not change. However, its performance is much worse than that of the

NSP-tree.

 350

—11— 10% Iihear

NSP-tree r =2

300 '9' (q) .

250 r
.

200 ~
-

150- <

n
u
m
b
e
r

o
f
l
/
O
s

100‘
.

50,. ..

0 21) 4b 60 3b 160 1&0

number of dimensions

Figure 30: Scalabilities on dimension (IAI = 10, key# = 100,000, zipf1)

134

250

—i—-' 10% linear

-e- NSP-tree (rq=2)

200 t

(D

O

2 150 -
t...

O

E l 1 1 1

E 1 00 1- V I l r

:1

C

C
50 ~ ~

0 1 L 1 l

10 20 30 40 50

alphabet size

Figure 31: Scalabilities on alphabet size (d = 40, key# = 100,000, zipf1)

4.5 Handling NDDSs with Different Alphabets

The normalization approach used by the ND-tree to handle NDDSs with

different alphabet sizes can be easily applied to the NSP-tree, since subspaces in the

NSP-tree are essentially discrete rectangles. To avoid duplication, the detailed

algorithms for the NSP-tree with normalization are not discussed. The idea of

normalization is further explored in our research on indexing hybrid data spaces,

which contain both continuous and non-ordered discrete dimensions.

135

Chapter 5

Extending NDDSs into Hybrid Data

Spaces

A natural extension of an NDDS or a CDS is a Hybrid Data Space (HDS), which

consists of both continuous and non-ordered discrete dimensions. A record in a

typical relational database table can be deemed as a vector in such a data space. In

. . h . . .

this chapter, we introduce the ND -tree, an extensron of the ND-tree technique With

the ability to handle continuous dimensions to support efficient similarity queries in

HDSs. The NDh-tree approach is based on geometrical concepts defined for an

HDS. Those concepts employ a similar normalization idea to that of the NDDS,

through which continuous and non-ordered discrete dimensions become comparable

to each other, allowing the NDh-tree to utilize the efficient tree optimization

heuristics employed by the ND-tree. Our experimental results show that indexing

on HDSs usually leads to more efficient similarity queries than indexing on

continuous or non-ordered discrete dimensions alone.

This chapter is organized as follows. Section 5.1 introduces the basic concepts

of an HDS and a similarity measure, which is an extension of the Hamming distance.

h . . .

We present the ND -tree construction and query algorithms With a focus on the

extension of the ND—tree in Section 5.2. The experimental results are presented

136

and discussed in Section 5.3.

5.1 HDS Concepts

In this section, we present various geometrical concepts in an HDS that will be

used in subsequent sections.

Definition 12: (Hybrid data space/HDS)

Let D,- (l S i S d) be a domain. D,- can be either non-ordered discrete or continuous.

If D,- is non-ordered and discrete, it corresponds to an alphabet A;. If D,- is a

continuous domain, we assume it is normalized to be within the range [0, 1] without

losing generality [Berchtold97, Weber98]. A d—dimensional hybrid data space

(HDS) 9d is defined as the Cartesian product of d such domains:

Qd=Dlxsz...de. I

Definition 13: (Vector, hybrid rectangle, edge length, area)

Let a,- E D,- (1 S i S d). The tuple a: (a1, a2, ..., ad) is called a vector in Qd. Let

S,- g D,- (l S i S d). Note that if D,- is a non-ordered discrete domain, 5',- is a set such

that S,- g A,- = Di. If D,- is a continuous domain, S,- is a range [mirth maxi] such that:

1) min,- S maxi; 2) 0 S mini; and 3) max,- S 1. A hybrid rectangle R in 52d is defined

as the Cartesian product: R = S1 X 52 x...x Sd , where S,- is called the i-th

component of R. The length of the edge on the i-th dimension of R is defined as:

137

. | S ,- | / | A, | Dimension i is non - ordered discrete

length(R,t) = , (4)

max,- — min,- D1mensron 1 rs continuous

d

The area ofR is defined as: area(R) = Hlength(R,i). I

i=1

Note that the edge length is normalized for each non-ordered discrete dimension,

while continuous dimensions are assumed to be normalized already as mentioned in

Definition 12.

Definition 14: (Overlap oftwo hybrid rectangles)

Let R = 51x52 x...de and R' = Si xSé x...xSZI be two hybrid rectangles in

52d. The overlap R n R' of R and R' is the Cartesian product:

RnR'= (51 nsi)x(52 ms’2)x...x(sd 0521). HR = R n R' (i.e., s,- c; 5,! for]

S i S d), R is said to be contained in (or covered by) R '. I

Definition 15: (Hybrid minimum bounding rectangle (HMBR))

Given a set of hybrid rectangles {R = 51x52 x...de , R'= SixS'zx...xS£1,

...}, the hybrid minimum bounding rectangle (HMBR) of {R, R ', ...}, is defined as

the Cartesian product: (SI USf U...)X(52 US'2 u...)x...><(Sd USE; U....) From

the definition, it is clear that an HMBR covers all hybrid rectangles {R, R’, ...} in

the set. I

To perform similarity queries in HDSs, a measure of similarity needs to be

defined. Unfortunately, both continuous distance measures such as the Euclidean

distance and discrete distance measures such as the Hamming distance cannot be

138

directly applied to an HDS. Actually, there is no well-known distance measure for

HDSs. There could be many different ways to define a distance measure for an

HDS. We believe that finding a proper distance measure for an HDS ultimately

depends on the actual application to which the distance is applied. In this thesis,

we propose an extended Hamming distance measure for HDSs, which is defined as

follows.

Definition 16: (Extended Hamming distance)

Given two vectors a: (a1, a2, ..., ad) and o." = (al', az', ..., ad') in an HDS 9d, the

extended Hamming distance between aand a” is given by the following equation:

(I

EHD(a,a’) = Zf(a,-,a;), (5)

i =1

0 if dimension i is non - ordered discrete and a- = a'- or
1 l

where f(a,- , af) = dimension i is continous and la, — afl S t

1 otherwise

In equation (5), the variable t is a threshold value, which indicates whether two

continuous values in the same dimension should be considered the same or not. In

our experiments, we used a threshold value 0.01. Note that the construction of the

h . .

ND -tree does not depend on any particular distance measure. The extended

Hamming distance in equation (5) is used for the purpose of testing the indexing

technique only. It is not meant to be the best or most suitable distance measure for

HDSs. As previously mentioned, there could be many different ways to define a

139

distance measure for an HDS. Nevertheless, the extended Hamming distance

provides a reasonable similarity measure for HDSs due to its simplicity and origin

from the Hamming distance. Based on the extended Hamming distance, the

(minimum) distance between two hybrid rectangles can be defined as follows.

Definition 17: (Minimum distance between two hybrid rectangles)

Given two hybrid rectangles R = 51x52 x...de and R' = SixS'ZX...xS;1, the

(minimum) distance between R and R’ is given by equation (6).

d

dist(R,R') = Z f(s,-,s,’-), (6)

i=1

0 if (S,- n S,’ at ¢) or (dimension iis continuous and

where f(S,-,Sf) = (Imaxi-mini'l S t or |mini-max,'-| S t))

1 otherwise

Note that in equation (6), the threshold value t is used again for continuous

dimensions -- if the difference of the corresponding ranges of R and R’ on the

continuous dimension i is within t, they are considered the same.

Using the extended Hamming distance, a range query range(aq, rq) in an HDS

can be defined as: { a I dist(aq,a) S rq }, where aq and rq are the given query

vector and search distance (range), respectively. An exact query is a special case

of a range query when rq = 0.

140

5.2 The NDh-tree

. . . . h

In thrs section, we introduce our extensron of the ND-tree, namely, the ND -tree,

to index HDSs. The focus of our description is on the extended part of the ND-tree,

Wthh deals wrth continuous dimensrons. The structure of the ND -tree rs srrmlar

to that of the ND-tree; the only difference is that each entry in a non-leaf node of an

NDh-tree contains a hybrid minimum bounding rectangle (HMBR) of all HMBRs of

its child nodes, not the discrete MBR (DMBR) in the original ND-tree. The

construction algorithms of the NDh-tree also do not change much from those of the

ND-tree. They are discussed in the following paragraphs. Those algorithms that

are almost the same as those of the ND-tree are described at a high level and not

repeated in detail here.

The insertion procedure of the NDh-tree, Algorithm Insertion, is the same as

that of the ND-tree. It determines the most suitable leaf node for accommodating

the new vector at by invoking Algorithm ChooseLeaf. If the chosen leaf node

overflows after accommodating a, Algorithm SplitNode is invoked to split it into

two new nodes. The split propagates up the NDh-tree if the split of the current

node causes the parent node to overflow. If the root overflows, a new root is

created to accommodate the two nodes resulting from the split of the old root. The

HMBRs of all affected nodes are adjusted in a bottom-up fashion accordingly.

The task of Algorithm ChooseLeaf is to find an appropriate leaf node to

accommodate the new vector during insertion. It starts from the root node and

141

follows a path to the identified leaf node. At each non-leaf node, it applies several

heuristics to decide which child node to follow. The same heuristics (IH; - 1H3) as

those of the ND-tree are used. The difference is that geometrical concepts defined

for HDSs, such as the overlap and the area of HMBRs (Definitions 13-15), are used

in these heuristics by the NDh-tree.

Algorithm SplitNode takes an overflow node N as the input and splits it into two

new nodes N1 and N2 based on a partition of the entries in N. Since there are many

possible partitions for a given overflow node, a good partition that leads to a better

tree structure should be chosen for splitting the overflow node. To obtain such a

good partition, Algorithm SplitNode invokes two other algorithms:

ChoosePartitionSet and ChooseBestPartition. The former determines a set of

candidate partitions to consider, while the latter chooses an optimal partition from

the candidates based on several heuristics.

To find a good partition for splitting an overflow node N, we need to consider a

set of candidate partitions. As mentioned in our discussion of the ND-tree, the

exhaustive way to generate all candidate partitions for an overflow node is not

feasible in practice due to the huge number of candidates it will produce. To yield

a smaller yet promising set of candidate partitions, Algorithm ChoosePartitionSet

of the NDh-tree employs a similar strategy to that of the ND-tree. It scans through

all the dimensions of an HDS and, on each dimension it decides a set of candidate

partitions based on some heuristics. The union of all the candidate partitions from

each dimension makes up the final candidate partition set. Unlike the ND-tree, the

142

NDh-tree needs to deal with both non-ordered discrete and continuous dimensions.

It achieves this through two loops. The first loop of Algorithm

ChoosePartitionSet processes non-ordered discrete dimensions. This part is the

same as that of the ND-tree. Depending on the alphabet size on each non-ordered

discrete dimension, either the permutation approach or the merge-and-sort approach

is applied. The second loop of Algorithm ChoosePartitionSet processes

continuous dimensions. Since values in a continuous dimension are ordered, the

entries can be sorted directly based on their corresponding values on that dimension.

A sorting strategy similar to that of the R*-tree [Beckmann90] is applied.

Algorithm ChoosePartitionSet is presented as follows.

Algorithm ChoosePartitionSet:

Input: overflow node N of an NDh-tree for an HDS Qd.

Output: a set A of candidate partitions.

Method:

1. let A = (I);

2. for each non-ordered discrete dimension D do

3. sort all the entries in N to a list PN using either the permutation or the

merge-and-sort approach depending on the corresponding alphabet size 1.4DI;

4. for i = m to M-m+1 do

5. generate a partition P from PN with entry sets:

ES] = {E}, ..., Ei} and E52 = {E,'+1, ..., EM+]};

143

6. letA=AU{P};

7. end for;

8. end for;

9. for each continuous dimension D do

10. sort all the entries in N to a list PN1 based on their corresponding mini;

11. repeat Steps 4 - 7 for PN,;

12. sort all the entries in N to a list PNz based on their corresponding max;

13. repeat Steps 4 - 7 for PN;;

14. end for;

15. return A.

I

In Algorithm ChoosePartitionSet, Steps 2 - 8 are the first loop that deals with

non-ordered discrete dimensions and Steps 9 - 14 are the second loop that processes

continuous dimensions. Note that each continuous dimension of an entry has a min

and max value, which are used for sorting at steps 10 and 12. For a leaf node, we

have min equals max, which is a floating-point value of a vector indexed in the leaf.

For a non-leaf node, min and max is a component of the HMBR of the

corresponding entry in the overflow node N.

Based on the set of candidate partitions generated by Algorithm

ChoosePartitionSet, Algorithm ChooseBestPartition selects the best one from

them. The same series of heuristics as those of the ND-tree are used by Algorithm

0 0 h u ' ' r n u - '

ChooseBestPartitron of the ND -tree. They are mlnlleC overlap , maxrmrze

144

span” and “center split”. Similar to Algorithm ChooseLeaf, the difference of

Algorithm ChooseBestPartition of the NDh-tree to that of the ND-tree is that it

employs geometrical concepts defined for HDSs, such as the overlap and the area of

HMBRs (Definitions 13-15).

The algorithm for range queries of the NDh-tree is relative straightforward. It

starts from the root node and prune away the nodes whose HMBRs are out of the

query range until the leaf nodes containing the desired vectors are found.

5.3 Experimental Results

h

To evaluate the performance of our ND -tree for srrmlarrty queries, we have

conducted experiments using datasets with different proportions of non-ordered

discrete and continuous dimensions. Applicable techniques such as the linear scan

and the M-tree were used for performance comparison. Moreover, we have also

compared the performance of the NDh-tree with those of the R*-tree and the

ND-tree.

The NDh-tree was programmed in Matlab 6.0 on a PC with a Pentium III

850MHz CPU and 512 MB memory. Query performance was measured by

average disk I/O’s of 100 random test queries using the extended Hamming distance

defined in Definition 16. The following notation is used in the tables: io denotes

the average number of disk I/O’s, rq denotes the query range for the extended

Hamming distance, d denotes the number of dimensions, nd denotes the number of

145

non-ordered discrete dimensions and key# denotes the total number of vectors

indexed.

Figure 32 shows the comparison between the NDh-tree and the 10% linear scan

using a l6-dimensional dataset with 8 non-ordered discrete (IA|=10) and 8

continuous dimensions. From the figure, we can see that the behavior of the

NDh-tree is very similar to that of the ND-tree. For queries with smaller ranges,

the performance of the NDh-tree is always better than that of the 10% linear scan.

For larger ranges, as the database size gets larger, the performance of the NDh-tree

h . .

also becomes better. It shows that the ND -tree scales well With the database srze.

1200 r 1 . .

-l- 10% linear

‘9- NDh-tree (mery range=1) ..

1000 L + NDh-tree (query range=2) .

-A- NDh-tree (query range=3)

8 800» .

2

“6

a 600'
i A t

'0
3.

s = .
c 400L ‘- i"

I. e.

200» A

0 ::::::: s = e s : D

0 2 4 6 8 10

number of indexed vectors x 105

Figure 32: Comparison between NDh-tree and linear scan

Figure 33 shows the comparison between the NDh-tree and the M-tree for

. h

drfferent query ranges. We can see that the ND -tree always outperforms the

M-tree for different query ranges and database sizes.

146

7000

-A— M-tree(rq=3)

+ NDh-tree (rq=3)

-B- M-tree(rq=2)

-x— NDh—tree (rq=2)

5000* -e- M-tree(rq=1)

-l- NDh-tree (rq=1)

6000 i

n
u
m
b
e
r

o
f
I
I
O
s

0ofs l 1.|5 g

number of indexed vectors x 105

Figure 33: Comparison between NDh-tree and M-tree

Besides indexing a whole HDS, one possible solution for supporting similarity

queries in an HDS is to index part of the dimensions using existing indexing

methods, such as the R*-tree or the ND-tree. We have compared the performance

of the NDh-tree with that of the ND-tree, which indexes only the non-ordered

discrete dimensions of an HDS. Similarly, we have also conducted comparisons

with the R*-tree, which indexes only the continuous dimensions of an HDS. Note

that based on the extended Hamming distance, query results from the ND-tree and

R*-tree are a superset of the actual query results in the HDS.

Tables 11 - 13 show the comparison among the NDh-tree, the ND-tree and the

R*-tree. The experimental results presented in Table 11 use a 16-dimensional

dataset with 8 non-ordered discrete dimensions. From Table 11, we can see that

the NDh-tree performs comparably to the ND-tree for query range 1. For larger

147

query ranges, the NDh-tree significantly outperforms both the ND-tree and the

. h .

R*-tree. As database srze gets larger, the advantage of the ND -tree rs even larger.

Table 11: Comparing NDh-tree with ND-tree and R*-tree (d = 16, nd = 8)

NDh-tree ND-tree R*-tree

key#

5S1 qS2 5S3 qSl qSZ QS3 qSl 5S2 5S3

to to to to to to to to to

50000 16.5 63.9 172.5 16.3 69.3 202.9 19.5 77.0 211.6

100000 20.4 81.9 238.3 19.2 95.3 314.3 24.2 110.2 336.3

200000 23.7 101.5 318.3 22.4 127.9 480.2 31.4 154.4 521.5

300000 24.5 110.4 362.4 24.6 151.0 605.6 34.3 181.8 661.2

400000 26.8 125.3 423.2 25.3 162.3 679.8 37.3 206.5 779.3

Table 12: Comparing NDh-tree with ND-tree and R*-tree (d = 16, nd = 4)

NDh-tree ND-tree R*-tree

key#

rqS rqS2 rqS3 rqSl rqS2 rqS3 rqSl rqS2 rqS3

1 i0 i0 i0 i0 i0 i0 i0 i0 i0

50000 16.4 64.6 179.3 25.2 167.4 576.8 17.3 68.8 189.0

100000 20.5 83.3 247.0 30.9 250.1 1023.0 22.4 89.6 263.0

200000 23.7 104.3 336.2 37.0 364.3 1816.8 25.7 113.2 362.8

300000 26.4 121.9 406.7 42.1 432.8 2304.6 28.5 132.1 445.0

400000 27.2 129.3 447.5 46.4 530.6 3193.2 30.4 148.2 519.3

A l6-dimensiona1 dataset with 12 continuous dimensions is used for Table 12.

Table 13 is based on a dataset with the same dimension, which contains 12

non-ordered discrete dimensions. Both Table 12 and Table 13 show that the

NDh-tree are usually better than the ND-tree and the R*-tree for similarity queries.

As the proportion of the non-ordered discrete and continuous dimensions changes in

the dataset, the performance of the NDh-tree is quite stable. In Table 12, the

148

R*-tree performs much better than the ND-tree, since a dataset with more

continuous dimensions is used. However, the performance of the R*-tree is still

worse than that of the NDh-tree. When a database with more non-ordered discrete

dimensions is used, the performance of the R*-tree degrades rapidly. On the other

hand, the performance of the ND-tree in Table 13 is quite comparable to that of the

h . . h

ND -tree for smaller databases. But as the database srze increases, the ND -tree

eventually outperforms the ND-tree. For example, when the database size is

800,000, the NDh-tree is 11.4% faster than the ND-tree for a query range of 3.

Table 13: Comparing NDh-tree with ND-tree and R*-tree (d = 16, nd = 12)

NDh-tree ND-tree R*-tree

key#

rqS rqS2 rqS3 rqSl rqS2 rqS3 rqSl rqS2 rqS3

1 i0 i0 i0 i0 i0 i0 i0 i0 i0

50000 14.7 52.8 136.1 14.0 51.0 135.1 26.4 130.5 363.3

100000 16.6 66.4 188.3 16.0 64.0 185.0 34.3 204.5 663.3

200000 18.6 82.1 253.4 18.0 79.0 248.0 44.5 313.8 1185.3

300000 20.3 98.2 327.7 20.0 95.6 323.8 51.7 403.7 1669.2

400000 20.6 99.9 334.5 20.0 96.0 326.0 57.9 482.7 2114.5

500000 23.9 112.6 379.9 21.6 108.5 378.2 63.1 553.7 2545.1

600000 24.4 120.7 431.4 22.9 125.5 472.8 67.5 619.9 2970.1

700000 24.5 120.9 432.8 23.0 126.0 476.0 70.7 675.1 3346.4

800000 24.5 121.0 433.9 23.1 127.2 483.5 73.9 731.3 3726.1

The superiority of the NDh-tree over both the ND-tree and the R*-tree indicates

that indexing on more dimensions usually results in better performance for

similarity queries. However, when the database size is relatively small and one

type of dimensions (either non-ordered discrete or continuous dimensions) is

149

dominant in an HDS, the approach to indexing only one type of the dimensions with

existing techniques is also competitive.

Note that our experimental results are all based on the extended Hamming

distance. We have also tried other distance measures such as the weighted

Manhattan distance in our experiments. Although there are small differences, the

overall trend of the performance of the NDh-tree is very similar.

150

Chapter 6

Choosing A Distance Measure

A distance measure is an integral part of a vector model. In this chapter, we

compare two commonly used distance measures in Continuous Data Spaces (CDS),

namely, the Euclidean distance (EUD) and the cosine angle distance (CAD), for

nearest neighbor (NN) queries. From theoretical analysis and experimental results,

we found that for high dimensional data spaces, the NN query results based on EUD

are similar to those based on CAD. We propose a multidimensional geometrical

model to analyze how similar these two distance measures are under the assumption

of uniform data distribution. We find that the first NN retrieved by EUD is also

ranked high by CAD when dimension is high. Our experimental results have

corroborated the correctness of our model. We have also compared EUD and CAD

experimentally using normalized datasets and clustered datasets. Our conclusions

are that:

1) In high dimensional data spaces, the NN query results by EUD and CAD are

quite similar.

2) For clustered data, the NN query results by EUD and CAD are more similar.

3) When vectors are normalized by its size, the NN query results by EUD and

CAD are also more similar.

As an application, we propose to use CAD to combine features that are

151

semantically different (e.g. color and texture) in the area of content-based image

retrieval. The details are put into Appendix B for interested readers.

The rest of this chapter is organized as follows. Section 6.1 presents the

theoretical analysis of NN queries by EUD and CAD using a geometrical model in

high dimensions. Section 6.2 presents experimental results for comparing EUD

and CAD. Section 6.3 gives a discussion of this work.

6.1 Theoretical Analysis of NN Queries by EUD and CAD

The similarity between EUD and CAD for NN queries can be measured by the

average rank of the NN of EUD (represented as NNe) in CAD. The two distance

measures are considered similar if NNe is also ranked high by CAD. The

theoretical analysis compares EUD and CAD using a multidimensional geometrical

model. A similar model has been used in [Berchtold97] for the derivation of the

cost model of high dimensional NN queries. Without losing generality, our

analysis is based on a d-dimensional unit hyper-cube data space. We assume that

data points/vectors are uniformly distributed within the space and there is no

dependence between dimensions.

6.1.1 Notation and definitions

Table 14 is a summary of notation that we have used in the following

discussions. Explanation of some of the notation listed in Table 14 is given as

follows:

152

Table 14: Summary of notation

d Number of dimensions

52 d-dimensional unit hyper-cube data space

P / P Data point / vector in S2

0 Origin of Q

N Size of the dataset

sp(C, r) d-dimensional hyper-sphere with center C and radius r

ssp(C, r) Surface of a hyper-sphere with center C and radius r

IP12 P2|e EUD between points P. and P2

angle(Pl, P2) Hyper-angle between points P1 and P2 with respect to 0

cone(P, 6) Hyper-cone with vertex 0, axis P and hyper-angle 6

NNe(Q) NN to a query point Q by EUD

vol(R) (Hyper-) volume of a hyper-region R

1) The d—dimensional unit data space can be deemed as the Cartesian product

[0,l]d. It also implies that every data point (vector) P in Q has no negative

component.

2) The value angle(P1, P2) is defined as follows:

angle(P1, P2) = cos-
1 ii-I‘z

- _ - - (7)

\/(P1'Pr)(P2 4’2)

Since angle(Pl, P2) is defined based on CAD between P1 and P2 and has a better

geometrical meaning than CAD, we use angle(P., P2) in place of CAD in the

following discussion.

3) A hyper-cone cone(P, 6) for a given point P and a hyper-angle dis defined as

follows:

The vertex of cone(P, 6) is the origin 0 of the unit space S2. Let P be a point in

153

(2 that is not 0. Every point P ' of cone(P, 9) satisfies angle(P', P) S 6. Figure 34

shows a 2-dimensional hyper-cone cone(P, @, which is the Quadrangle OABC.

1”

1 h.” ~u...n.,_._,,, -<

0 1

Figure 34: 2-dimensional hyper-cone cone(P, 6)

4) A hyper-region is a close geometrical object such as a hyper-sphere or a

hyper-cone.

6.1.2 Comparison of EUD and CAD

/\y

0 1

Figure 35: NN,, (Q) and the hyper-cone

154

We first illustrate our approach to compare EUD and CAD using a

2-dimensional space. Figure 35 shows a 2—dimensional unit space 52, where Q is a

query point and NN,,(Q) is the nearest neighbor (i.e., the first nearest neighbor) of Q

by EUD. Let AOAB be the hyper-cone cone(Q, angle(Q, NNe(Q))) with the

property that angle(Q, A) (ZQOA) equals angle(Q, B) (ZQOB). Note that ZQOA

and [Q08 correspond to the CAD between query Q and NNe(Q). It is clear that

the rank of NN,,(Q) in the NN query of Q by CAD is given by the number of data

points within Hyper-cone AOAB. The same observation can be extended to

high-dimensional data spaces where the rank of NN,,(Q) in the NN query of Q by

CAD is determined by the number of data points within the hyper-cone cone(Q,

angle(Q, NNe(Q)))-

Under the assumption of uniform data distribution and based on the unit space $2,

the probability of a point existing in cone(Q, angle(Q, NNe(Q))) is equal to the

volume vol(cone(Q, angle(Q, NNe (Q)))). Therefore, the expected number of data

points within the hyper-cone is equal to the product of the size (N) of the dataset and

the (hyper-)volume of the hyper-cone cone(Q, angle(Q, NNe (Q))).

The volume of a hyper-cone cone(Q, 6) is computed by integrating a piecewise

function defined over data space Q as follows:

1 ’f l ,P S6

vol(corze(Q.9))= I [{0 l mung .e(Q))dP (8)

P652 0 erwrse

A good approximation of equation (8) can be obtained by the Monte-Carlo

155

method [Kalos86].

To estimate the expected number of data points within the hyper-cone cone(Q,

angle(Q, NNe(Q))), we first calculate its expected volume by the following steps:

1) Suppose that the EUD (IQ, NNe(Q)|e) between query point Q and NNe(Q) is r,

the expected value of vol(cone(Q, angle(Q, NNe (Q)))) equals the average volume of

all hyper-cones given by Q and points that are on the surface (ssp(Q, r)) of the

hyper-sphere sp(Q, r). The situation is illustrated in a 2-dimensional data space in

Figure 36, where Q is the query point, P is one of the points that are on ssp(Q, r),

and AAOB is the corresponding hyper-cone.

/\y

A?

0 1

Figure 36: sp(Q, r) and the hyper-cone

Thus for any given Q and r, based on the uniform distribution assumption, the

expected volume satisfies the following function:

v(Q, r) = P6 (ssp(Q, 009) vol (cone(Q,angle(Q,P)))dP . (9)

2) For a given query Q, the expected volume of cone(Q, angle(Q, NNe(Q))) can

156

be obtained by integrating equation (9) over all possible values of r as follows:

v(Q) = j: V(Q.r)pr(Q.r)dr

= [0 (1P6WWW)vol(cone(Q.angIe(Q.P»>dP>- pr<Q.r)dr

(10)

In equation (10), the function p,(Q, r) is the density function of r for a given query

point Q. Note that r is the EUD between Q and NNe(Q). Following

[Berchtold97], for a given query point Q, the distribution function of r, P,(Q, r), is:

mar) =1—(1—vol<sp(Q.r>nsz»N. (11)

Note that N in equation (11) represents the size of the dataset. The corresponding

density function p,(Q, r) can be derived as follows:

a a _

Pr (Q, r) = $1"; (QJ) = Evol(sp(Q, r)n$2) - N -(1 —vol(sp(Q, r) 09))N 1.

(12)

3) From equation (10), for a given query Q, we can calculate the expected

number of points in cone(Q, angle(Q, NNe (Q))) as N-v(Q). Thus the overall

expected number of points in cone, i.e., the expected rank of NNe of NN query by

CAD, can be computed by averaging over all possible Q in S2. Based on equations

(10) and (12), under the assumption of uniform data distribution, we obtain the

following equation for a given N:

157

expected rank of NNe of NN query by CAD = N .J‘QE S2 v(Q)dQ

= N 'lQeszqo v(Q,r)- pr(Q. r)dr)dQ

_ 2 _ °°
— N 195qu (lPe(ssp(Q,r)n9) vol (cone(Q,angle(Q,P)))dP)

.31 vol(sp(Q, r) n 82) - (1 — vol(sp(Q, r) n 9))N -l dr)dQ
r

(13)

Table 15: Expected NN rank of NM, by CAD at different dimensions

d 2 4 16 32 64 128

rank

157

13.5

4.3

2.5

2.6

3.1

4.3

Using equation (13), we have calculated the expected rank of NM. of NN query

by CAD at different dimensions using N = 50,000. As shown in Table 15,

expected rank of NM, by CAD increases drastically from dimension 2 to dimension

4, which shows that NN query results between EUD and CAD become similar even

at lower dimensions. Note that as dimension gets even higher, EUD and CAD

eventually become less similar again. However, the rate of decrease of similarity

is very slow. Within a certain range of high dimensions, the claim of the similarity

between EUD and CAD is reasonable. Our experimental results have corroborated

the results of our theoretical analysis. The phenomenon of the changing ranks of

NM, is further discussed in detail in Section 6.3. In the following section, we show

through empirically study that for clustered or normalized vectors, the NN query

results of EUD and CAD are more similar.

158

6.2 Experimental Results for NN and k-NN Queries

This section is divided into three subsections. The first subsection shows that

the experimental results corroborate the results of our theoretical analysis. The

second subsection shows the similarity between EUD and CAD with a different

measure, i.e., the percentage of the same results (intersection) in the result sets of k

nearest neighbor (k-NN) queries by EUD and CAD. The datasets used in this

subsection include normalized as well as un-normalized data, uniformly distributed

data, clustered data, and real image data.

6.2.1 Comparison of experimental and theoretical results

The experiments are conducted using a dataset of 50,000 randomly generated

vectors. The average rank of NNe of NN query by CAD is computed based on 30

query points selected randomly from the dataset. Dimensions used in the

comparison are 2, 4, 8, 16, 32, 64, and 128. Figure 37 shows the comparison of

experimental results with the theoretical results. Allowing for some statistical

precision error, Figure 37 shows that the results of theoretical analysis matches very

well with those of the experiments. When dimension is low, the difference

between EUD and CAD are very large. But when dimension gets higher, they

become very similar. EUD and CAD become less similar again as dimension

increases further. However, the rate of decrease of similarity is very slow.

159

-e— experimental results

160% . I . + Theoretical resultsl

140‘
1

120-

100*

80

60-

p
o
s
i
t
i
o
n
o
f
N
N
e

40-

20*

0 I a I [Q J 0

o 20 40 0 sh 160 120

number of dimensions

Figure 37: Theoretical and experimental results

6.2.2 Experimental results of k-NN queries

K—NN queries are often used in real world applications. Thus, for different

datasets, such as real world data, we have done experiments to measure the

similarity between EUD and CAD using the percentage of the same results

(intersection) in the EUD answer set and CAD answer set (k-NN). Results of 10,

20, 100, 500, and 1000 NN queries are presented. If not specifically mentioned,

experimental results presented in the following tables are obtained using datasets of

50,000 data points and 30 query points picked randomly from their corresponding

datasets.

Table 16 shows experimental results based on random data. As dimension gets

higher than 8, more than 50 percent of the 10 NN query results of EUD and CAD

are the same. The percentage of the intersection is even greater for larger k-NN

queries from 20 NN to 1000 NN. Note that EUD and CAD eventually become less

160

similar as dimension gets even higher (2128). However, the rate of decrease of

similarity is very slow.

Table 16: Experimental results based on random data

k-NN 10 20 100 500 1000

%

d = 2 11 7.83 7.2 14.3 19.7

4 31 28.5 37.7 48.8 54.2

8 55 57 61.6 67.2 69.8

16 68 68 68.3 69.8 70.6

32 69.3 67.8 68.2 70.9 72.9

64 64.7 63.7 64.6 68.1 69.4

128 . 54.7 56.3 59 63.4 65.4

Table 17: Experimental results based on normalized random data

k-NN 10 I 20 l 100 l 500 l 1000

%

d = 2 100 100 100 99.9 99.7

4 95.7 95.5 96.3 96.1 96.1

8 96.3 95.2 95 95.2 95.1

16 91.3 94.8 94.4 93.6 93.6

32 90.3 92.8 91 91.4 91.7

64 89.7 88.2 89.7 90.2 90.7

128 87.3 88 86.9 89.4 89.9
Table 17 shows experimental results based on normalized random data.

Normalization is an important process when vector model is applied for similarity

queries. Its purpose is to normalize each component in a vector to be in the same

range so that individual component gets the same weight when distance measures

are applied. Depending on application, there are different methods for vector

normalization such as those described in [Baeza97, Ortega97]. In our experiment,

vectors are normalized by their size, i.e., for each vector v = < e1, e2, ed >, its

161

corresponding normalized vector is v’ = < el', e2', ..., ed’ > where:

, 6;

6i :7—

212.18}

and 1 S i S d. Table 17 shows that, after normalization, the EUD and CAD become

(14)

very similar even for lower dimensions.

Table 18: Experimental results based on clustered data (50 clusters)

k-NN 10 I 20 I 100 I 500 I 1000

%

d: 2 15.7 15 16.2 21 27.7

4 93 85 69.2 80.6 84.4

8 86 87 79.3 89.4 92.7

16 91 91 89.1 97.4 99.1

32 93 97.2 89.9 98.4 100

64 92.3 90.8 93.9 99.2 100

128 91 90.7 98.2 99.7 100
Table 18 shows experimental results based on clustered data with 50 clusters.

Even for dimension as low as 4, the k-NN query results by EUD and CAD are very

similar. We have also done experiments using datasets with different number of

clusters. The results are similar to that of Table 18.

Table 19: Experimental results based on real image data (QBIC)

k-NN 10 I 20 I 100 500 I 1000

%

 d=64 78.7 I 76.7 I 78.0 I 78.1 I 78.1

Table 19 shows experimental results based on real image data. The image

dataset is generated from an image database of more than 30,000 color images. It

contains 64-dimensional QBIC [Niblack93] color feature vectors. We can see

162

from Table 19 that, for real data, the EUD and CAD are also very similar.

6.3 Discussion

The vector model is used for an approximate generalization of the real world

objects. The definition of “similar” is often subjective and depends on the way

feature vectors are generated. Based on the above theoretical analysis and

experimental results, we consider EUD and CAD very similar when applied to NN

queries in high-dimensional data spaces. Our theoretical model explains this

phenomenon based on the volume of the hyper-cone defined by a query point and its

corresponding nearest neighbor from EUD (called the hyper-cone of NNe in the

following discussion). As dimension gets higher, the volume of the hyper-cone

becomes smaller rapidly so that the ranking of NNe by CAD become quite high.

However, as dimension gets even higher, the similarity between EUD and CAD

drops again, which means the volume of the hyper-cone grows large again.

Through further studies, we explain the phenomenon based on the following

observations:

1) For a hyper-cone with a fixed hyper-angle, as dimension gets higher, the

volume of the hyper-cone decreases monotonically. However, the speed of the

decrease of the volume reduces, as dimension gets higher (see Figure 38).

2) For a fixed dimension, as the hyper-angle of a hyper-cone gets larger, the

volume of the hyper-cone increases monotonically. For higher dimensions, the

volume increase gets faster as the hyper-angle gets larger (see Figure 39).

163

3) The hyper-angle of the hyper-cone of NNe increases monotonically as

dimension gets higher (see Figure 40).

0.8 I J

-B- 28.4 degree

—e— 32.9 degree ~

‘9" 36.9 degree

0.6 ~ -A- 40.5 degree r

0 l ‘

E

3 0.4 » -

o

>

0.2 » -

0 l - . 1

0 40 80 120

Dimension

Figure 38: Relationship between dimension and volume of a hyper-cone

 08

-B- (1:2

. -9- (1:4

-V- d=8

+ d=16

-O- d=32

‘ —1— d=64

-*- d=128

0.61

V
d
u
m
e

Figure 39: Relationship between hyper-angle and volume of a hyper-cone

164

o 50 . . 100 150

DimenSIon

Figure 40: Relationship between dimension and hyper-angle between Q and NN,.

Based on these three observations, we conclude that the changing volume of the

hyper—cone of NNe is the result of the effects of two factors: dimension and

hyper-angle. As dimension gets higher, the volume of the hyper-cone of NNe

drops quickly at the beginning. At the same time, the hyper-angle of the

hyper-cone of NNe keeps increasing, as dimension gets higher. It leads to the

increase of the volume of the hyper—cone of NNe again as dimensions gets even

higher. However, the rate of the volume increase of the hyper-cone of NNe is very

slow. Within a certain range of high dimensions, it is reasonable to claim that

EUD and CAD are similar. As an application of our analysis, we used a simple

CAD-based method for combining features in CBIR. Interested readers are

referred to Appendix B for details.

165

Chapter 7

Conclusion

Similarity queries are becoming increasingly important as more and more

applications require search results with more semantic meanings. The goal of this

dissertation is to develop principles and algorithms to support efficient and effective

similarity queries using the vector model.

7.1 Supporting Similarity Queries in NDDSs and HDSs

The primary research focus is on developing efficient indexing methods for

non-ordered discrete data spaces (NDDSs). There is an increasing demand for

supporting efficient similarity searches in NDDSs from application areas such as

Data Mining and Bioinformatics. Unfortunately, existing indexing methods either

cannot be directly applied to an NDDS (e.g., the R-tree, the K-D-B-tree and the

Hybrid tree) due to lack of essential geometric concepts/properties or have

suboptimal performance (e.g., the metric trees) due to their generic nature. We

have proposed two novel dynamic indexing methods, i.e., the ND-tree and the

NSP-tree, to address these challenges.

The ND-tree is the first index tree of its kind, which is designed specially for the

NDDS. It is inspired by several popular multidimensional indexing methods in

Continuous Data Spaces (CDS), including the R*-tree, the X-tree and the Hybrid

166

tree. However, the ND-tree is based on some essential geometric

concepts/properties that we extend from a CDS to an NDDS. DeveIOpment of the

ND-tree takes into consideration characteristics, such as limited alphabet sizes and

data distributions, of an NDDS. As a result, special strategies such as the

permutation and the merge-and-sort approaches to generating candidate partitions

for an overflow node, the multiple heuristics to break frequently occurring ties, the

efficient implementation of some heuristics, and the space compression scheme for

tree nodes are incorporated into the ND-tree construction. In particular, it has been

shown that both the permutation and the merge-and-sort approaches can guarantee

the generation of an optimal overlap-free partition if there exists one.

A set of heuristics that are effective for indexing an NDDS are identified and

integrated into the tree construction algorithms. This has been done after a careful

evaluation of the heuristics in existing multidimensional indexing methods via

extensive experiments. For example, minimizing overlap (enlargement) is found

to be the most effective heuristic to achieve an efficient ND-tree, which is similar to

the case for index trees in a CDS. On the other hand, minimizing area is found to

be an expensive heuristic for an NDDS although it is also effective.

To index NDDSs with different alphabet sizes, we proposed a normalization

approach using the ND-tree. By normalizing each dimension with its

corresponding alphabet size, the heuristics applied in the tree construction

algorithms become more fair and accurate, leading to an optimized tree structure

and a better query performance. Our experimental results show that the

167

normalization approach is much better than the naive approach. The ND-tree

using the normalization approach also performs much better than the M-tree on the

same dataset with different alphabet sizes.

Our extensive experiments on synthetic and genomic sequence data have

demonstrated that:

1) The ND-tree significantly outperforms the linear scan for executing range

queries in an NDDS. In fact, the larger the dataset, the more is the improvement in

performance.

2) The ND-tree significantly outperforms the M-tree for executing range queries

in an NDDS. In fact, the larger the dataset, the more is the improvement in

performance.

3) The ND-tree scales well with the alphabet size and the dimension for an

NDDS.

We have also developed a performance estimation model to predict the

performance behavior of the ND-tree for random data. It can be used to estimate

the performance of an ND-tree for various input parameters. Experiments have

demonstrated that this model is quite accurate.

Similar to the situation in CDSs, our study based on the ND-tree shows that the

occurrence of overlap among bounding regions in an index structure for NDDSs can

cause degradation of query performance. To further explore the problem, we

proposed the NSP-tree, a space-partitioning-based indexing structure. Unlike the

ND-tree, which is based on the data-partitioning (DP) approach, the NSP-tree is

168

based on the space-partitioning (SP) approach, which guarantees no overlap in the

tree structure. The NSP-tree is inspired by several popular SP-based indexing

techniques for CD58 including the K-D-B tree and the LSDh-tree. However, to

tackle the new challenges for developing an SP-based index tree for NDDSs, a

number of unique strategies have been incorporated into the NSP-tree construction

algorithms, such as SP on the current data space instead of the whole space, adding

multiple auxiliary DMBRs to each node, employing a linear scheme to determine

effective DMBRs, and utilizing a histogram-based technique to generate a balanced

split for an overflow leaf. In addition, some useful strategies from existing

indexing techniques for CDSs, such as splitting a subspace on the dimension with

the largest stretch and re-splitting an overflow leaf with its sibling, are extended and

applied to the NSP-tree construction based on an evaluation of their effectiveness in

NDDSs.

The experimental results for a variety of datasets have demonstrated the high

efficiency of the NSP-tree. The NSP-tree significantly outperforms the direct

method -- linear scan for executing range queries in NDDSs. It also outperforms

the ND-tree for executing range queries on skewed datasets. The NSP-tree scales

well with database size, alphabet size and dimension for NDDSs. The (disk) space

utilization of the NSP-tree is also quite good. In summary, our study shows that

the NSP-tree is a robust indexing method for supporting efficient similarity searches

in NDDSs.

We have also introduced the NDh-tree to support similarity queries in Hybrid

169

Data Spaces (HDS), which contain both continuous and non-ordered discrete

. . h . .

dimensrons. The development of the ND -tree rs based on the geometrical

concepts defined for an HDS. These concepts utilize the idea of normalization so

that dimensions with different properties in an HDS become comparable. The

. . h . .

construction algorithms of the ND -tree are essentially an extensron of those of the

ND-tree with the capability of handling continuous dimensions. Our experimental

results show that the NDh-tree significantly outperforms both the linear scan and the

M-tree. It also outperforms the ND-tree and the R*-tree with the latter two

indexing only on non-ordered discrete and continuous dimensions, respectively.

. h . .
Like the ND-tree, the ND -tree scale very well With database srze.

Although the ND-tree, the NSP-tree and the NDh—tree show great potential in

indexing NDDSs and HDSs, our work is just the beginning of the research to

support similarity searches in both data spaces. In future work, we plan to extend

the indexing technique to support more query types such as the nearest neighbor

queries.

7.2 Studies of Distance Measures in CDSs

To support efficient similarity queries using the vector model, an appropriate

distance measure has to be selected. There are a number of different distance

measures proposed for CDSs, such as the Euclidean distance, the cosine angle

distance and the Manhattan distance. It is an open research problem on how to

170

choose a suitable distance measure for similarity queries. We believe that

understanding the relationship among distance measures can help us to choose a

proper distance measure. Our research establishes a theoretical model for analysis

of the behavior of distance measures for similarity queries in multidimensional data

spaces. We have used the model for two commonly used distance measures,

namely, the Euclidean distance (EUD) and the cosine angle distance (CAD) and

show that, as dimension gets higher, the nearest neighbor query results from EUD

become quite similar to those from CAD. The similarity drops a little as

dimension gets even higher, but overall, their behaviors for nearest neighbor queries

in high dimensions are still quite similar. Through our experimental analysis, we

also show that EUD and CAD are more similar for normalized data and clustered

data. As an application, we use a simple CAD-based method for combining

features in content-based image retrieval.

In future work, we plan to extend our geometrical model to analyze other

distance measures, such as the Manhattan distance.

171

APPENDIXA

A Histogram With Smooth Color

Transition

1 Introduction

Content-based Image Retrieval (CBIR) is an important research topic covering a

large number of research domains such as image processing, computer vision, and

human computer interaction. Our focus of this research is on image retrieval in the

context of very large databases. We have felt that the color feature based approach

is the most suitable for such an application since color matching generates the

strongest perception of similarity to a common user.

In the histogram-based approach for color feature generation, a histogram

corresponding to a query image is compared to the histograms of all the images

stored in the database using a standard distance measure. Some of the measures

used are Manhattan and Euclidean distance [Niblack93]. We use a novel

histogram generation technique based on the Hue, Saturation, Value (HSV, also

called the Hue, Saturation, Intensity — HSI) color space where a perceptually smooth

transition of color is maintained in the feature vector. This enables us to use a

window-based comparison of histograms so that similar colors can be matched

between a query and the target images.

172

A standard way of generating a color histogram is to concatenate the higher

order two bits for each of the Red (R), Green (G) and Blue (B) values in the RGB

color space [StockmanOl]. Smith and Chang [Smith96] have used a color set

approach to extract spatially localized color information and provided for efficient

indexing of the color regions. In their method, the large single color regions are

extracted first, followed by multiple color regions. They utilize binary color sets to

represent the color content. Ortega et a1 [Ortega98] have used the HS co-ordinates

to form a two-dimensional histogram. The H and S dimensions are divided into N

and M bins, respectively, for a total of N * M bins. Each bin contains the

percentage of pixels in the image that have corresponding H and S colors for that

bin. They use the intersection similarity, which captures the amount of overlap

between the two histograms. Our approach to histogram generation from the HSV

space is different from these methods as we have a one-dimensional histogram that

uses the hue and intensity values only based on the saturation of each pixel. A

perceptually smooth transition of colors is retained in the generated histogram that

can be used for a window-based comparison of feature vectors for similar image

searches.

We explain the histogram generation approach from the HSV color space in

Section 2. The sliding window-based image searching is presented in Section 3.

We present experimental results in section 4 and give a discussion in section 5.

173

2 Histogram With Perceptually Smooth Color Transition

We propose a new histogram generation technique from the HSV color space

where each pixel contributes either its hue (H) or its intensity value (V) based on its

saturation (S). The color RGB space is first mapped to the HSV space

[StockmanOl]. A three dimensional representation of the HSV space may be

considered as a hexacone, where the central vertical axis represents the intensity.

Hue is defined by an angle in the range [0, 27:] relative to the Red axis with pure red

at angle 0, pure green at 27:/3, pure blue at 4111/3 and pure red again at 2n.

Saturation is the depth or purity of the color and is measured as a distance from the

central axis with value between 1, at the outer surface for a completely saturated

color, and 0 at the center, which represents a completely unsaturated color.

IEEEEEEE ==_EEEEEED

IIIEEEEE

Figure 41: Variation of color perception with saturation

(Images in this dissertation are presented in color)

It is observed that, for S = 0, as one moves higher along the intensity axis, one

goes from Black to White through various shades of gray. On the other hand, for a

given intensity and hue, if the saturation is changed from 0 through 1, the perceived

color changes from a shade of gray to the most pure form of the color represented

by its hue. Looked from a different angle, any color in the HSV space can be

transformed to a shade of gray by sufficiently lowering the saturation. The value

174

of intensity determines the particular gray shade where this transformation

converges. In Figure 41, we show the perceived color transition for saturation

changes from 1 to 0 (left to right) for three different hue values: Red (H = 0), Green

(H = 21t/3) and Blue (H = 41113) at the same intensity level. It is seen that when

saturation is near 0, all the three colors look alike and as we increase the saturation

towards 1, they tend to get separated and are perceived as the colors represented by

their hues. Thus, for low values of saturation, a color may be approximated by a

gray value depending on its intensity level. For higher saturation, the color may be

approximated by its hue. The saturation threshold that determines this transition is

once again dependent on the intensity. For low intensities, even for a high

saturation, a color is close to the gray value and vice versa. This nature of the HSV

space is central to our method of histogram generation. We use the following

threshold function to determine if a pixel could be represented by its hue or its

intensity in the color histogram.

th(V)=l.0—(0.8/255)-V (15)

In equation (15), we see that for V = 0, th(V) = 1.0, meaning that all the colors

are black whatever be the hue and saturation, as expected. On the other hand, with

increasing values of the intensity, saturation threshold that separates hue dominance

from intensity dominance goes down. From Figure 41, we see that saturation gives

an idea about the depth of color and human eye is less sensitive to such a variation

as compared to color or intensity variation. We, therefore, use the saturation value

of a pixel to determine whether the hue or the intensity is more pertinent to human

175

visual perception of the color of that pixel and ignore the actual value of the

saturation. The proposed color histogram is a vector consisting of a number of

quantized hue and intensity values only. When the application domain is a

similarity search for images in a very large database, it makes more sense since it is

necessary to access similar images faster rather than an exact match of all the colors.

We extract a color histogram as the feature vector from each image having two

parts: 1) a representation of the hue value between 0 and 21: quantized after a

transformation and 2) a quantized set of gray values. The number of components

in the feature vector generated based on hue is given by:

N}, =I21t-MULT _ FCTRI (16)

In equation (16), MULT__FCTR is the multiplying factor that determines the

quantization level for the hues. We typically choose a value of 8. The number of

components representing gray values is:

N, = IImax /DIV _ FCTRI (17)

In equation (17), [max is the maximum value of the intensity, usually 255, and

DIV_FCTR is the dividing factor that determines the number of quantized gray

levels. We, typically, choose DIV_FCTR = 16. Thus, the total number of

components in the complete histogram is:

N = Nh + Nv (18)

The quantized values of hue may be considered circular since hue ranges from 0

176

to 27:, both the end points being red. The circular nature of the hue values as well

as the uniform transition of color in the histogram forms the basis of a

window-based comparison of feature vectors in image retrieval. The feature vector

may be conceptually represented as a sigma shaped vector or as a combination of

two independent vectors as shown in Figure 42.

Figure 42: Representation of hue and gray values in the histogram

The algorithm for generating the color histogram (Hist) is given as follows:

Algorithm: Generate Color Histogram:

1. for each pixel in the image do

2. read the RGB value and convert RGB to HSV;

U
)

ifS > 1 - 0.8V/ 255 then Hist[Round(H - MULT_FCTR)]++;

4. else Hist[Ceil(21t - MULT_FCTR) + Round(V/ DIV_FCTR)]++;

5. end if;

6. end for;

I

We normalize the histogram and extract the feature vectors from all the available

images and store them in the database. A window-based comparison of feature

vectors for image retrieval is explained in the next section.

177

3 Window-based Comparison of Feature Vectors

When color histograms are extracted from two similar images, often two

neighboring but not exactly the same components in the histograms may have high

values. This is because of the fact that two colors that appear close to human eye

may have slight difference in shade and map to two neighboring components in the

histograms. When a standard measure is used to order such feature vectors, the

result may show a high distance value. The specialization property inherent in the

process of histogram generation suppresses the generalization capability required by

an application like image retrieval. Reducing the quantization level does not solve

the problem since 1) it tends to add neighboring pixel counts from one end of the

feature vector and 2) a lower quantization level, and hence a less number of

components, reduces the separability of colors. To overcome this drawback, we

compare two histograms through averaging windows instead of comparing the

vector components directly. Conventional histograms generated from RGB color

space fail to provide the requisite perceptual gradation of colors as required by such

a comparison. The histogram generation method proposed by us retains this

property in the generated feature vector.

Since we derive both color and gray level features using the HSV space, there

are two independent color continuums in the histograms, one from Red —> Green —>

Blue —9 Red and the other from Black —> Gray ——> White as shown in Figure 42.

At the time of determining the distance between the query vector and each target

178

vector, instead of directly considering the feature values, we consider the value of

the feature averaged over a window of components placed on the current feature.

The smoothing operation is done considering a weight given to the different

components in a window. For the j-th component (0 S j S N}, + Nv - 1), with a

window size of 2W+1, the average value is calculated as follows:

Algorithm: Calculate Average:

1. Av(]) = 0;

2. fork=-NtoNdo

3. ifj < N}, then

4. wk = 2-Ikl;

5. ifj+k<0thenAv(/)=Av(1)+wk- Hist[i+k+N;,];

6. else Av(j) = Av(i) + wk- Hist[(j + k) mod N;,];

7. end if;

8. else

9. ifj+k>Nhandj+k<Nh+Nvthen

10. AVG) = Av(]) + wk - HistU + k];

11. end if;

12. end if;

13. end for;

14./112(1) = Av(j) / (2N+1);

179

In Algorithm Calculate Average, wk is a weight factor, where components

closer to j in the window are given more weight. From the algorithm, it is seen

that for the leftmost components, the average is computed considering the rightmost

end of the components representing hue. Similarly, for the rightmost hue

components, we consider the leftmost hue components as the neighbor for

windowing. Thus, the continuity of hue from 0 to 21: is retained in the

window-based comparison. For the components representing gray values, sliding

window moves from the leftmost gray value (i.e., Black) to the rightmost gray value

(i.e., White) only, without a circular relationship and without a neighboring

relationship with the hue components.

4 Experimental Results

We have developed an interface using Java applet that displays an initial set of

random images from a database of about 14,500 images. Figure 43 show the recall

and precision of image retrieval using a standard RGB histogram and the new

histogram with different values of window width. From the figure, it is seen that

our CBIR system using the new histogram performs much better than a

conventional histogram based system.

180

1.2 -

1 .

C

a 0.8 -

'3 —B— HSV Recall

g 0'6 ‘ +RGB Recall

3 0,4 t +HSV Precision
0

a: —)(— nee Precision

0.2 .

o I I U r I

2 5 10 20 4O

Nearest Nelghbors

Figure 43: Recall/precision for our HSV histogram and a standard RGB histogram

In Figure 44, we show the variation in recall and precision with different values

of the window width parameter. It is observed that application of a window with

suitable width improves the result set. However, for a very large window width,

different distinct colors tend to get added up and hence the query results are not

improved anymore.

1.2 -

1 .1

C

£3 0.8 «

t3 -a—w:s Recall

§ 0'5 ‘ +W=o Recall

§ 0.4 « +W=5 Preclslon

“ 0 2 -)(—W=0 Preclslon

o I V I Y 1

2 5 10 20 4o

Nearest Neighbors

Figure 44: Recall/precision for different window width W

5 Discussion

We have studied some of the important properties of the HSV color space. A

181

novel histogram that has perceptually smooth transition of colors was proposed for

the purpose of fast retrieval of similar images from very large databases. Our

approach makes use of the Saturation value of a pixel to determine if the Hue or the

Intensity of the pixel is more close to human perception of color that pixel

represents. This enables us to perform a window-based comparison of vectors for

the retrieval of similar images, which further enhances the performance of the

histogram-based approach. While it is well established that color itself cannot

retain semantic information beyond a certain degree, we have shown that retrieval

results can be much improved by choosing a better histogram.

182

APPENDIX B

Combining Features

1 Introduction and Related Work

As mentioned in Chapter 6, we have applied the Cosine Angle Distance (CAD)

for combining features that are semantically different (e.g. color and texture) in

Content-based Image Retrieval (CBIR). Since the Euclidean distance (EUD) is

often used as a distance measure for individual features in CBIR, inter-feature

normalization is needed for similarity queries to combine EUD values of different

scales from different features into an over-all score for an image.

Based on the property that NN query results of EUD and cosine angle distance

(CAD) are similar in high dimensional spaces, we propose to use CAD instead of

EUD for individual features. As CAD values are naturally normalized by norm,

there is no need for further inter-feature normalization. Thus, the distance value

from different features can be summed up directly as the final score for an image in

the database. Our experimental results show that our proposal works not only no

worse than other commonly used methods with respect to recall and precision, but

also has the advantage of simplicity.

There are a number of methods proposed for combining features in CBIR.

They can be divided into two categories: rank-based methods [Liu96, Jeong99] and

distance-value-based [Ortega97, Petrakis97]. Rank-based methods are also called

183

“voting methods” in [Nastar98]. In rank-based methods, the ranks of an image for

different features are calculated first, and then these ranks are summed to derive the

final rank of the image. Distance-value-based methods use the distance value of

individual features directly. Since distance values from different features have

different scales, inter-feature normalization is necessary for computing the final

score of an image. One simple method in this category is to divide all distance

values of a feature by the maximum distance value [Petrakis97]. Another widely

used method for combining features are based on the assumption that distance

values have a Gaussian distribution [Ortega97]. Some discussion and comparisons

of methods for combining features can be found in [lain96, Ortega97,

Comaniciu99].

Using CAD as a normalized distance measure was mentioned in [Duda73], but

no analysis or experimental results were presented in the context of vector models

or CBIR. We have done experiments to compare the CAD-based method we

proposed with two widely used methods, namely, rank-based method by EUD and

distance-value-based method with Gaussian assumption. The experimental results

for combining multiple features are presented in the next section.

2 Experimental Results

We have shown in Chapter 6 that when dimension is high which is usually the

case for a CBIR application, EUD and CAD are similar. EUD is widely used in

CBIR. However, CAD has the unique property that the distance value is inherently

184

normalized for a given feature. This makes combining semantically different

features as easy as summing up the CAD values from different features. Hence,

we propose to use CAD instead of EUD for CBIR where multiple features are

combined to create a single distance value.

 1

-B- Rahk Euclideah

0.9. -6- Gaussian

—x— Angle

0.8 -

0.7 ~

0.6 »

R
e
c
a
l
l

0.5 -

0.4 ~

 0.3 r
0'20 20 40 60 80 100

number of NN

Figure 45: Recalls of different feature combining methods for various k-NN

0.45

38- Rank Euclidean

—e— Gaussian

0.4L —x— Angle

0.35 r

0.3 ~

0.25 ~

P
r
e
c
i
s
i
o
n

0.2 ~

 0.15r l

o 20 4o 60 80 100
0.1 ‘ '

number of NN

Figure 46: Precisions of different feature combining methods for various k-NN

185

We used a database of 6344 color images of animals and natural scenes. Two

image features, color and texture, are used for image retrieval. The color feature is

a 64-dimensional vector generated by QBIC [Niblack93]. The texture feature is a

24-dimensional vector generated using the algorithms proposed in [Manjunath96].

18 images of animals are chosen from the database as the query images due to their

clear semantic meaning. The answer set of each query image is decided solely by

its semantic content, e.g., if the query image is a tiger, the answer image should also

contain a tiger. Note that the purpose of this experiment is not to capture all

possible semantics of the query image (e. g. tigers), but to show the effectiveness of

the CAD-based method. The size of the answer set (relevant set) of each query

image ranges from 4 to 40. We use recall and precision to measure the

performance of each combining method.

Figure 45 and Figure 46 show the average recalls and precisions of 10, 20, 50

and 100 NN query results. In Figures 45 and 46, “Rank Euclidean” is the

rank—based method using ranks of individual features by EUD. “Gaussian” is the

distance-value—based method using Gaussian assumption [Ortega97]. For

“Gaussian”, EUD values computed for individual features are normalized using the

following equation:

d'=i—_m+l (19)

60‘ 2

In equation (19), d and d' are the original and normalized distance value,

respectively. m and 0' are the mean and standard deviation of pair-wise distances

over all images in the database. Any value greater than one is considered as one in

186

the experiments as described in [Ortega97]. “Angle” is the distance-value-based

method we proposed, which uses CAD directly for feature combining. From the

figures, we see that based on precision and recall, the performances of different

combining methods are similar, though “Rank Euclidean” is a little behind.

3 Discussion

As mentioned in [Jain96], rank-based method may not be very effective for

feature combining, since it does not directly use the distance value between the

query and the retrieved image. The rank of retrieved images may give a false

sense of similarity when actually the distance value may be very large. On the

other hand, distance—value-based method using Gaussian assumption may not be

effective if the distance distribution pattern among images in the database is not

Gaussian. Another problem of this scheme is that it requires the mean and

variance of pair-wise distance values of the whole database. If the database is

large and changes dynamically, the cost to maintain such value may be expensive.

Thus we believe our simple CAD-based method for combining features is better

compared to the two methods mentioned above. Moreover, it will not affect the

results much to replace EUD by CAD as we have shown in Chapter 6. Besides the

benefit of simplicity, the CAD-based method also has another special property as

proposed in [Qian02], that is, the CAD favors (retrieves) vectors with relatively

larger component values.

187

Appendix C

Derivation of Performance Model

In this appendix, we present the derivation of the performance estimation model

of the ND-tree given in Proposition 2 (Chapter 3). In the following discussion, if a

node N of an ND-tree is at levelj (l Sj S H+1), we also say N is at layer (H —j+l),

where H is the height of the tree. In other words, the leaf nodes are at layer 0, the

parent nodes of the leaves are at layer 1, and the root node is at layer H. We

use the same notation as defined in Table 1.

Based on the uniform distribution assumption and the ND-tree building

heuristics, an ND-tree grows in the following way. Before a leaf node splits due to

overflowing, all leaf nodes contain about the same number of indexed vectors.

They are getting filled up at about the same pace. During this period (before any

leaf node overflows), we say that the leaf nodes are in the accumulating stage.

When one leaf node overflows and splits (into two), the other leaf nodes will also

start to overflow and split one by one in quick succession until all leaf nodes have

split. We say the leaf nodes are in the splitting transition in this period.

Comparing to the accumulating stage, the splitting transition is relatively short.

Each new leaf node is about half full right after the splitting transition. The

ND-tree grows by repeating the above process.

Let n be the number of leaf nodes in an ND-tree. From the above observation,

188

we have:

lei—i...lgltll
When n equals the right end, the leaf nodes of the ND-tree are in the accumulating

stage. Otherwise, the tree is in the splitting transition. Since the splitting

transition is relatively short, we can consider the accumulating stage only for our

performance estimation model. Hence the following equation is used to estimate

the number of leaf nodes in the ND-tree:

l982 l—VL
Ml

n0 = 2 . (20)

A similar analysis can be applied to the parent nodes of the leaves (i.e., nodes at

layer 1). In other words, when the parent nodes are in the accumulating stage, their

legit—:11
n1: 2 . (21)

number can be estimated as:

Since the splitting transition is relatively short, equation (21) can be used to estimate

the number of non-leaf nodes of the ND-tree at layer 1. In general, the number of

non-leaf nodes of the ND-tree at layer i can be estimated as follows:

110912211
"i=2 ,(lSiSH), (22)

where H =Ilogb "01 and b = 2l—logz M"J.

189

From equations (20)-(22), the expected number of vectors indexed in a node

(subtree) at layer i of the ND-tree is:

Wr=ILV—l] (OSiSH) (23)
l . . — — -

"1

During the growth of an ND-tree, some dimensions are chosen to be split and

there could also exist other dimensions that have not been split yet. We call such

dimensions as unsplit dimensions and the edges on those unsplit dimensions of a

DMBR are called unsplit edges. Under the assumptions of the uniform distribution

and the independence among dimensions, the expected length of any unsplit edge of

the DMBR of a node of the ND-tree is about the same. Note that we still consider

the dominant accumulating stage. The probability for the length of an unsplit edge

of a DMBR at layer i to be 1 is:

T,-,1=|rc1|/(|A|)Wi =1/(IA|)W""1. (24)

Based on equation (24), the probability for the edge length to be j (2 Sj S IAI) can be

computed as:

. j-1 “’1'

Ti,,-=Clj,|- jW" —Z<C§ -L|T)-Tl,k> (JAI)“"'. (295140 (25)

“-1 CIAI

Hence the expected length of each edge of the DMBR of a node at layer i can be

computed as:

190

IAI

si=Zj-T,~,j. (26)

i=1

In particular, SH is the expected length of each edge (since no split) of the DMBR of

the root node of the ND-tree.

Based on the uniform distribution assumption and heuristics 5H2 (“maximize

span”) and 5H3 (“center split”) of the ND-tree, we can assume that a sequence of n

node splits will split on the 1st dimension, the 2nd dimension, the last (d-th)

dimension, and then back to the 1st dimension, ..., until n splits are done. Each

split will divide the component set of a DMBR on the relevant dimension into two

equal-sized component subsets.

To obtain ni (0 S i S H) nodes at layer i of the ND-tree (in the accumulating

stage), the expected total number of splits needed on all dimensions is log; n;

(starting from splitting the root node). Let

d; = L(log2 ni)modd], (27)

d; = d - d; , (28)

The DMBR of a node N at layer i has the following expected edge length:

s; = ———S” (29)

[logz "1]

2 d

on d,” dimensions. It has the following expected edge length:

191

r

s,- if (logz ni)ld<1

SH

Siam

.2 d

on d; dimensions. Note that the first case in equation (30) represents the situation

otherwise (30)

when the d; dimensions of the DMBR have not been split yet so that equation (26)

can be applied.

For node N, the probability for a component of a query vector aq to be covered

by the corresponding component set of the DMBR of N is given as:

B; = s;/|A|, (31)

or

B; = s;/|A|, (32)

depending on the relevant dimension. Hence the probability for a node N at layer i

to be accessed by range query range(aq, 0) for Hamming distance 0 can be

calculated as:

Pro = (80‘1" ~(B,-')d" (33)

Using equation (33), the probability for node N to be accessed by range query

range(aq, h) for Hamming distance h (h 2 1) can be evaluated recursively as:

l,h_ Z[d" d7 (i) (_ I) '(r) '(1) 1+ l,h-l

k=0 1 l

(34)

Therefore, the expected total number of disk l/O's for using the ND-tree to

192

perform range query range(aq, h) for Hamming distance h can be estimated as:

H-l

10=l+ 202,- -P,-,,,). (35)

i=0

193

Bibliography

[Altschul90] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. A

basic local alignment search tool. In J. Molecular Biology, 215(3): 403-—410, 1990.

[Altschul97] S. F. Altschul, T. Madden, A. Schaffer, J. Zhang, Z. Zhang, W. Miller,

and D. Lipman. Gapped BLAST and PSI-BLAST: a new generation of protein

database search programs, In Nucleic Acids Research, 25(17):3389--3402, 1997.

[Aslandogan99] Y.A. Aslandogan, C.T. Yu. Techniques and systems for image and

video retrieval, In IEEE TKDE, 11(1):56-63, 1999.

[Baeza97] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval,

Addison Wesley, 1997.

[Bayer77] R. Bayer and K. Unterauer. Prefix B-trees. In Proc. ofACM TODS, 2(1):

11-26, 1977.

[Bentley75] J. L. Bentley. Multidimensional binary search trees used for associative

searching. In CACM, l8(9):509--517, 1975.

[Berchtold96] S. Berchtold, D. A. Keim and H.-P. Kriegel. The X-tree: an index

structure for high-dimensional data. In Proc. of VLDB, pp. 28--39, 1996.

[Berchtold97] S. Berchtold, C. Bohm, D. A. Keim, and H. P. Kriegel. A cost model

for nearest neighbor search in high-dimensional data space. In Proc. ofACM PODS,

pp. 78--86. 1997.

[Beckmann90] N. Beckmann, H.P. Kriegel, R. Schneider and B. Seeger. The

R*-tree: an efficient and robust access method for points and rectangles. In Proc. of

ACM SIGMOD, pp. 322-331, 1990.

[Bozkaya97] T. Bozkaya and M. Ozsoyoglu. Distance-based indexing for

high-dimensional metric spaces. In Proc. ofACM SIGMOD, pp. 357--368, 1997.

[Brin95] S. Brin. Near neighbor search in large metric spaces. In Proc. of VLDB, pp.

574--584, 1995.

194

[Califano93] A. Califano and l. Rigoutsos. FLASH: a fast look-up algorithm for

string homology. In Proc. ofIEEE CVPR, pp. 353--359, 1993.

[Chakrabarti99] K. Chakrabarti and S. Mehrotra. The Hybrid Tree: an index

structure for high dimensional feature spaces. In Proc. ofIEEE ICDE, pp. 440-447,

1999.

[Chen97a] W. Chen and K. Aberer. Efficient querying on genomic databases by

using metric space indexing techniques (extended abstract). In Proc. ofInt’l

Workshop on DEXA, pp. 148--152, 1997.

[Chen97b] W. Chen and K. Aberer. Efficient querying on genomic databases by

using metric space indexing technology. In GMD Technical Report, No. 1056, pp.

l--13, German National Research Center for Information Technology, 1997.

[Chiueh94] T. Chiueh. Content-based image indexing. In Proc. of VLDB, pp.

582--593, 1994.

[Ciaccia97] P. Ciaccia, M. Patella and P. Zezula. M-tree: an efficient access method

for similarity search in metric spaces. In Proc. of VLDB, pp. 426-435, 1997.

[Comaniciu99] D. Comaniciu, P. Meer, and D. Foran. Image guided decision

support system for pathology. 1n Machine Vision and Applications, 11(4): 213--224,

1999.

[Duda73] R. Duda and P. Hart. Pattern Classification and Scene Analysis, John

Wiley & Sons, 1973.

[ElmasriOl] R. Elmasri and S. Navathe. Fundamentals ofDatabase Systems,

Addison-Wesley, 2001.

[Faloutsos94] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast

subsequence matching in time-series databases. In Proc. ofACM SIGMOD, pp.

419-429, 1994.

[Ferragina99] P. Ferragina and R. Grossi. The String B-tree: a new data structure for

string search in external memory and its applications. In J. ACM, 46(2): 236--280,

1999.

195

[Fondrat95] C. Fondrat and P. Dessen. A rapid access motif database (RAMdb) with

a search algorithm for the retrieval patterns in nucleic acids or protein databanks. In

Computer Applications Biosciences, 11(3): 273--279, 1995.

[Gonnet92] G. H. Gonnet, R. A. Baeza-Yates and T. Snider. Information Retrieval:

Data Structures and Algorithms, Prentice Hall, 1992.

[Guttman84] A. Guttman. R-trees: a dynamic index structure for spatial searching.

In Proc. ofACM SIGMOD, PP- 47--57, 1984.

[Hafner95] J. Hafner, H. Sawney, W. Equitz, M. Flickner, and W. Niblack. Efficient

color histogram indexing for quadratic form distance functions. In IEEE

Transactions on PAM], 17(7): 729-—736, 1995.

[HampapurOl] A. Hampapur and R. Bolle. Comparison of distance measures for

video copy detection. In Proc. ofInternational Conference on Multimedia and

Expo, 2001.

[HanOl] J. Han and M. Kamber. Data Mining: Concepts and Techniques, Morgan

Kaufmann, 2001.

[Henrich96] A. Henrich. Improving the performance of multi-dimensional access

structures based on k-d-trees. In Proc. ofIEEE ICDE, pp. 68--75, 1996.

[Henrich98] A. Henrich. The LSDh-tree: an access structure for feature vectors. In

Proc. ofIEEE ICDE, PP. 362--369, 1998.

[Hwang00] W.-S. Hwang and J. Weng. Hierarchical discriminant regression. In

IEEE Transactions on PAM], 22(11): 1277--1293, 2000.

[Jain96] A. K. Jain and A. Vailaya. Image retrieval using color and shape. Pattern

Recognition, 29(8): 1233--1244, 1996.

[Jeong99] S. Jeong, K. Kim, B. Chun, J. Lee and Y. J. Bae. An effective method for

combining multiple features of image retrieval. In Proc. ofthe IEEE Region 10

Conference, pp. 982--985, 1999.

[Jolliffe86] I. T. Jolliffe. Principal Component Analysis, Springer Verlag, 1986.

196

[Kalos86] M. H. Kalos and P. Whitlock. Monte Carlo Methods, John Wiley & Sons,

1986.

[Katayama97] N. Katayama and S. Satoh. The SR-tree: an index structure for

high-dimensional nearest neighbor queries. In Proc. ofACM SIGMOD, pp.

369--380, 1997.

[Kent02] W. J. Kent. BLAT -- the BLAST-like alignment tool. In Genome research,

12: 656--664, 2002.

[Knuth73] D. E. Knuth. Sorting and searching. In The Art of Computer

Programming, vol. 3, Addison-Wesley, 1973.

[LiOl] J. Li. Efficient similarity search based on data distribution properties in high

dimension. In Ph.D. Dissertation, Michigan State University, 2001.

[Liu96] F. Liu and R. Picard. Periodicity, directionality, and randomness: Wold

features for image modeling and retrieval. In IEEE Transactions on PAM], 18(7):

722--733, 1996.

[Lomet90] D. Lomet and B. Salzberg. The hB-tree: A multiattribute indexing

method with good guaranteed performance. In ACM Trans. on Database Systems,

15(4): 625--658. 1990.

[Mamoulis03] N. Mamoulis, D. W. Cheung and W. Lian. Similarity search in sets

and categorical data using the signature tree. In Proc. ofIEEE ICDE, pp. 75--86,

2003.

[Manber93] U. Manber and G. Myers. Suffix arrays: A new method for on-line

string searches. In SIAM J. Computing, 22(5):935--948, 1993.

[Manjunath96] B. S. Manjunath and W. Y. Ma. Texture features for browsing and

retrieval of large image data. In IEEE Transactions on PAM], 18(8): 837--842,

1996.

[McCreight76] E. M. McCreight. A space-economical suffix tree construction

algorithm. In J. ACM. 23(2):262—-272, 1976.

[Morrison68] D. R. Morrison. PATRICIA: Practical algorithm to retrieve

information coded in alphanumeric. In J. ACM, 15(4):514--534, 1968.

197

[Murthy98] S. K. Murthy. Automatic construction of decision trees from data: a

multi-disciplinary survey. In Data Mining and Knowledge Discovery, 2(4):345--389,

1998.

[Nastar98] C. Nastar, M. Mitschke and C. Meilhac. Efficient query refinement for

image retrieval. In Proc. ofIEEE CVPR, pp. 547--552, 1998.

[Niblack93] W. Niblack, R. Barber, W. Equitz, M. Flickner, E. Glasman, D.

Pektovic, P. Yanker, C. Faloutsos, and G. Taubin. The QBIC project: Querying

images by content using color, texture, and shape. In Proc. ofSPIE Storage and

Retrievalfor Image and Video Databases, pp. 173--181, 1993.

[Orcutt84] B. C. Orcutt and W. C. Barker. Searching the protein database. In

Bulletin ofMath. Biology, 46: 545--552, 1984.

[Ortega97] M. Ortega, Y. Rui, K. Chakrabarti, S. Mehrotra, and T. Huang.

Supporting similarity queries in MARS. In Proc. ofACM Multimedia, pp. 403--413,

1997.

[Ortega98] M. Ortega, Y. Rui, K. Chakrabarti, K. Porekaew, S.Mehrotra and

T.S.Huang. Supporting ranked Boolean similarity queries in MARS. In IEEE

TKDE, 10(6):905-925, 1998.

[Pentland94] A. Pentland, R. Picard and S. Sclaroff. Photobook: tools for

content-based manipulation of image databases. In Proc. ofSPIE: Storage and

Retrieval ofImage and Video Databases I], 2185: 34--47, 1994.

[Petrakis97] E. Petrakis and C. Faloutsos. Similarity searching in medical image

databases. In IEEE TKDE, 9(3): 435-447, 1997.

[Qian02] G. Qian, S. Sural, and S. Pramanik. A comparative analysis of two

distance measures in color image databases. In Proc. ofIEEE Int. Conf. on Image

Processing, pp. 401--404, 2002.

[Qian03] G. Qian, Q. Zhu, Q. Xue and S. Pramanik. The ND—Tree: a dynamic

indexing technique for multidimensional non-ordered discrete data spaces. In Proc.

of VLDB, pp. 620--631, 2003.

[Riesbeck89] C. K. Riesbeck and R. C. Schank. Inside Case-Based Reasoning,

Lawrence Erlbaum Associates, Hillsdale, 1989.

198

[Robinson81] J. T. Robinson. The K-D-B-Tree: a search structure for large

multidimensional dynamic indexes. In Proc. ofACM SIGMOD, pp. 10--18, 1981.

[Roussopoulos95] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neighbor

queries. In Proc. ofACM SIGMOD, pp. 71--79, 1995.

[Rui99] Y. Rui, T. S. Huang and S. Chang, Image retrieval: current techniques,

promising directions, and open issues. In J. Visual Communication and Image

Representation, 10:39-62, 1999.

[Samet84] H. Samet. The quadtree and related hierarchical data structures. In ACM

Computing Surveys, l6(2):l87--260, 1984.

[Sebe98] N. Sebe, M. Lew and D. Huijsmans. Which ranking metric is optimal?

with applications in image retrieval and stereo matching. In Proc. ofIEEE ICPR, pp.

265--271, 1998.

[Sebe00] N. Sebe, M. Lew and D. Huijsmans. Toward improved ranking metrics. In

IEEE Trans. on PAM], 22(10): 1132--1143, 2000.

[Seeger90] B. Seeger and H.-P. Kriegel. The buddy-tree: an efficient and robust

access method for spatial data base systems. In Proc. of VLDB, pp. 590--601, 1990.

[Smith96] J. Smith and S.-F. Chang. VisualSeek: A fully automated content-based

image query system. In Proc. ofACM Multimedia, Boston, MA, 1996.

[Smith97] J. Smith. Integrated spatial and feature image systems: retrieval, analysis

and compression. Ph.D. Dissertation, Columbia University, 1997.

[StockmanOl] G. Stockman and L. Shapiro. Computer Vision, Prentice Hall, 2001.

[Sura102a] S. Sural, G. Qian and S.Pramanik. A histogram with perceptually smooth

color transition for image retrieval. In Proc. of CVPRIP, pp. 664-667, Durham,

2002.

[SuralOZb] S. Sural, G. Qian, and S. Pramanik. Segmentation and histogram

generation using the HSV color space for content-based image retrieval. In Proc. of

IEEE ICIP, pp. 589-592, Rochester, 2002.

199

[UCI98] UCI machine learning repository.

http://www.ics.uci.edu/~mlearn/MLRepository.html.

[Uhlmann91] J. K. Uhlmann. Satisfying general proximity/similarity queries with

metric trees. In Inf. Proc. Lett., 40(4): 175-—179, 1991.

[Weber98] R. Weber, H.-J. Schek and S. Blott. A quantitative analysis and

performance study for similarity-search methods in high-dimensional spaces. In

Proc. of VLDB, pp. 357--367, 1998.

[Weiner73] P. Weiner. Linear pattern matching algorithms. In Proc. ofIEEE

Symposium on Switching and Automata Theory, pp. l--11, 1973.

[Weng03] J. Weng and W. Hwang. Online Image Classification Using II-IDR. In

International Journal on Document Analysis and Recognition, 5(2-3): l 18-- 125,

2003.

[White96] D. White and R. Jain. Similarity indexing with the SS-tree. In Proc. of

IEEE ICDE, pp. 516--523, 1996.

[Williams02] H. E. Williams and J. Zobel. Indexing and retrieval for genomic

databases. In IEEE Trans. on Knowl. and Data Eng, 14(1): 63--78, 2002.

[Wold96] E. Wold, T. Blum, D. Keislar, and J. Wheaton. Content-based

classification, search and retrieval of audio. In IEEE Multimedia, 3(3):27--36, Fall

1996.

[Yianilos93] P.N. Yianilos. Data structures and algorithms for nearest neighbor

search in general metric spaces. In Proc. ofACM-SIAM SODA, pp. 31 l--32l, 1993.

[Zipf49] G. K. Zipf. Human Behavior and the Principle ofLeast Effort,

Addison-Wesley, Reading, MA, 1949.

200

293 02504 3518

