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Abstract

THREE ESSAYS ON UNBALANCED PANEL DATA MODELS

By

Do Won Kwak

This dissertation consists of three chapters on panel data models. The first chapter exam-

ines unconditional logit and conditional logit, and pooled correlated random effect (CRE)

logit approaches in binary panel data models with highly dependent data. Simulation results

show that, first, the conditional logit method is not robust to violation of the conditional

independence (CI) assumption. The magnitude of bias for the model coefficient is greater

for the data with smaller time dimensions and higher serial correlations. Second, we find

no significant finite sample biases for average partial effects (APEs) and associated rejection

frequency of CRE logit in the presence of high serial correlation under correct specification

of unobserved heterogeneity. Finally, we quantify two sources of bias into the part due to

unobserved heterogeneity and the part due to serial correlation by using unconditional logit

and conditional logit methods. Finite sample biases by both sources are important in bi-

nary panel models with highly persistent outcome and correlated individual fixed effects.

As an empirical example, we apply conditional logit and pooled CRE logit to the Survey

of Income and Program Participation (SIPP) data where welfare participation exhibits high

persistence. The results imply that it is important to account for both state dependence and

unobserved heterogeneity simultaneously.



The second chapter introduces two formal tests of the missing completely at random

(MCAR) assumption in unbalanced panel data. In a Monte Carlo (MC) simulation, we pro-

vide the evidence of the substantial powers of tests. Inverse probability weighted (IPW) es-

timator and multiple imputation-based (MI) estimator under the missing at random (MAR)

assumption are studied as methods for missing data when the MCAR assumption is vio-

lated. We suggest combining MI and IPW methods such that the MI method is applied to

non-monotone missing data and the IPW method is applied to monotone missing data se-

quentially. Proposed tests and the MI-IPW method for missing data are applied to estimate

the effect of class size reduction (CSR) on student scores for grades in K-3 using Project

STAR. The result of empirical application shows the violation of the MCAR assumption and

the MI-IPW estimates for the effects of CSR on student achievement scores in grades K-3

are about 4.5 to 6 percent while unweighted estimates are about 6 to 7.5 percent.

In the last chapter, we extend the robust inference method with heterogenous variance and

autocorrelation in Hansen (2007) to unbalanced panel data with large time dimension. With

the homogeneity assumption and random attrition, we derive the robust inference result

using weighted least squares (WLS) for unbalanced panel data. We show that, our inference

method with WLS in unbalanced panel data provides conservative t-test results in Bakirov

and Szekely (2006) in the presence of attrition or heteroskedastic variance. We study the size

and the power of a proposed inference method in unbalanced panel data using the Monte

Carlo simulation. A MC simulation reveals that a proposed WLS method reduces the size

distortion and improves power over the methods of Ibragimov and Muller (2009) and Hansen

(2007).
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Chapter 1

The robustness of conditional logit

estimator in a binary panel data

model

1.1 Introduction

Standard maximum likelihood estimators are usually inconsistent in binary panel data mod-

els with individual fixed effects when individual fixed effects are unspecified with a large

number in the cross-section (N) and a fixed number of time (T). The problem arises since

there are so many nuisance parameters (individual fixed effects) to estimate while the time

dimension is fixed.1 Fixed-T identification difficulty for micro panel can be overcome by using

1 This situation is called incidental parameters problem. The references on the incidental
parameters problem include Neyman and Scott [1948], Lancaster [2000] and Arellano and
Hahn [2007]. Individual fixed effects is also called as unobserved heterogeneity hereafter.

1



the conditional logit approach if the logistic distributional assumption is true.2 Chamberlain

[2010] showed that conditional logit delivers
√
n consistent estimation of the parameter of

interest if individual-and-period specific errors are independent over time and logistic, and

covariates are unbounded. However, these conditions for
√
n consistency of conditional logit

can be very restrictive in micro panel data applications. In particular, the independence

assumption is restrictive in the applications with highly persistent response variables such

as married women’s labor force participation (Chay and Hyslop [2001]), married women’s

welfare participation (Chay and Hyslop [2001]), the incidence of external debt crises in devel-

oping countries (Hajivassiliou and McFadden [1998]) and habitual smoking behavior (Collado

and Browning [2007]). Moreover, as fixed-T consistency results for model coefficients can not

be extended to APEs, it becomes a serious limitation in the applications where researchers

are interested in the effect of a policy on outcome. As we do not make any distributional

assumption on heterogeneity (i.e. individual fixed effects), it is difficult to figure out what to

plug in for unobserved heterogeneity when calculating the APEs. However, the conditional

logit approach is useful for the estimations of log odd ratio and relative effects between

covariates.

In this paper, we study the robustness of fixed-T consistency results for the conditional

logit estimator to the violation of conditional independence assumption using a Monte Carlo

(MC) experiment. Specifically, we introduce data generating processes (DGPs) which are

2 These types of conditional methods are not available in general non-linear models and
can not be extended to APEs estimation since they do not make any distributional assump-
tion on unobserved heterogeneity. For general non-linear models, a recent literature focuses
rather on approximately unbiased estimator than on the estimators with no bias at all. Arel-
lano and Hahn [2007], Hahn and Newey [2004], Arellano [2003], Fernandez-Val [2009] and
others provide bias correction methods for non-linear fixed effects panel data model. An
extensive review is provided in Arellano and Hahn [2007].

2



designed to satisfy ideal conditions for the conditional logit estimator except the conditional

independence (CI) assumption to focus on the effects by the violation of CI assumption.

For simplicity, the violation of CI in DGPs is induced by correlated logistic errors of AR(1)

using a copula. We introduce a copula in simulation since it allows the separation of the

dependence structure over time from the marginal distribution for each time period. Thus,

by specifying marginal distribution of outcome for each time period and using a copula to

specify the dependence structure of marginal distributions of outcomes over time, we specify

joint non-normal (logistic) distribution for outcomes over time. In a MC experiment, using

DGPs with correlated logistic errors, we examine the performance of conditional logit, CRE

logit with pooled MLE, and unconditional logit methods.3 Finally, we quantify finite sample

bias due to unobserved heterogeneity and due to true state dependence using unconditional

logit and conditional logit estimators. Simulation with highly persistent binary panel data is

important for the conditional logit estimator as well as for approximately unbiased estimators

with bias correction since these methods require the conditional independence assumption

but the effect of violation has not been studied much.

When interpreting the simulations results, we focus on finite sample bias for coefficients β

and APEs in (1.1) while in DGPs, the focus is on the generation of correlated errors uit
T
t=1

which are drawn from T-multivariate logistic distribution with serial correlation of AR(1).

3 Correlated random effect logit approach is based on parametric specification of the dis-
tribution for unobserved heterogeneity as in Chamberlain [1980]. In the simulation and appli-
cation, we use parametric specification for unobserved heterogeneity as follows. D(ci|xi) ∼
logistic(ψ+ xiξ, σ

2
a). Unconditional logit approach is based on logit model with MLE where

it estimate unobserved heterogeneity(ci) as parameters. For the properties of unconditional
logit see Arellano and Hahn [2007] and Andersen [1973]. For the case of T=2, Abrevaya
[1997] shows the bias of unconditional MLE is 100 %.
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yit = 1[xitβ + ci + uit ≥ 0], i = 1, 2, ..., n, and t = 1, 2, ..., T (1.1)

where n is large, T is fixed and T ≥2, xit is continuous or binary, ci is correlated unobserved

heterogeneity (with xit) and uit is idiosyncratic error.

In simulation, the conditional logit estimator for β in (1.1) shows finite sample bias when

the CI assumption is violated by serial correlation among errors. Finite sample bias is

greater for the high ρ(serial correlation coefficient) and small T (the size of time dimension).

The size distortion of inference (the bias of rejection frequency) with conditional logit is

very severe for the data with ρ ≥.4 and it increases with n (the size of the cross-section).

CRE logit with pooled MLE for APEs and the associated rejection frequency shows no

finite sample bias regardless of the magnitude of ρ. Unconditional logit exhibits the bias

due to both (inconsistent estimation of) unobserved heterogeneity and serial correlation.

For unconditional logit estimator β with DGPs of ρ ≤.4, more bias is due to unobserved

heterogeneity than due to serial correlation. For the unconditional logit estimator for APEs,

more bias is due to unobserved heterogeneity than to serial correlation for DGPs with ρ ≤.6.

We analyze married women’s welfare participation using the conditional logit model with

MLE and CRE logit model with pooled MLE for β and APEs with the data of 8 waves

for 1,934 married women, taken from Chay and Hyslop [2001]. Married women’s welfare

participation shows substantial serial persistence. This persistence could be due either to

certain individual characteristics or due to true state dependence.4 The estimation results

4 In our example of welfare participation, true state dependence implies ”narcotic” effect
in Chay and Hyslop [2001]. Once a person starts to depend on welfare, participation itself
change the person’s mental attitude and behavior so that leads the person to rely more on
welfare.
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and a comparison of the estimates imply that much of the serial persistence of welfare

participation is explained by unobserved heterogeneity (54%) but true state dependence

(46%) is also an important source for serial persistence. Therefore, the empirical example

shows that proper control of true state dependence as well as unobserved heterogeneity is

very important in the model specifications of married women’s welfare participation.

The rest of the chapter is organized as follows. In section 2, we explicitly explain the

model and ideal assumptions for the conditional logit method and section 3 describes the

procedure of DGPs using copula to satisfy ideal conditions for the conditional logit model

except CI. Section 4 shows finite sample simulation results for conditional logit, CRE logit,

and unconditional logit methods. Section 5 provides an empirical application pertaining to

married women’s welfare participation and section 6 contains a brief summary of the results

and the conclusion.

1.2 Model

The conditional logit estimator allows to estimate β in (1.1) without making any assumption

on unobserved heterogeneity since the logit transformation allows to separate the estimation

of β from unobserved heterogeneity. (Andersen [1973], Chamberlain [1984] and Wooldridge

[2010]) However, this comes with imposing CI assumption, which is not necessary for other

competing estimators such as CRE logit with pooled MLE. In this section, we introduce

conditional logit model and conditions for its ideal performance.
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1.2.1 Ideal conditions for conditional logit estimator

Assumption 1 Our baseline model has latent variable representation.

yit = 1[xitβ + ci + uit ≥ 0]

y∗it = xitβ + ci + uit

where i = 1, 2, ...n, t = 1, 2, ..., T

ci ∼ logistic (ψ + xiξ,
π2

6
)

xit is continuous and uit ∼ logistic(0, π
2

6 )

Assumption 2 Conditional strict exogeneity (SE)

E(yit|xi, ci) = E(yit|xit, ci) for each t

P (yit = 1|xi, ci) = P (yit = 1|xit, ci) for each t

Assumption 3 (Functional form marginal distribution) Conditional mean of binary re-

sponse yit is specified as

E(yit|xit, ci) = P (yit = 1|xit, ci) = Λ(xitβ + ci) for each t = 1, 2, 3, ...T

where Λ(xitβ + ci) =
exp(xitβ + ci)

1 + exp(xitβ + ci)
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(i.e.) conditional marginal distribution of each yit is logistic distribution.

Assumption 4 Conditional Independence (CI)

D(yi1,yi2, ......, yiT |xi, ci) =
T∏
t=1

D(yit|xit, ci)

Assumption 5 Other regularity conditions for the consistency of β such as convex support

of β, and continuity and differentiability of objective function. We also assume random

sampling over cross-section.

Theorem We assume, under assumptions 1-5, conditional logit estimator for β is a consis-

tent estimator.

Proof See appendix.

The proof in appendix shows that the transformation using the sum of response variables

as sufficient statistics eliminates unobserved heterogeneity. Obtained β̂c−logit estimator is

a consistent and
√
n-asymptotically normal. Chamberlain [2010] also shows that the only

binary panel model that provides fixed-T
√
n consistent estimators for β is logit model.

Remark 1 Proof explicitly shows that CI assumption is required to apply conditional MLE

for β. CI can be easily violated when response variables show state dependence.

1.3 DGP for correlated logistic errors

This section introduces the details of data generating processes(DGPs) in simulation for

studying the robustness of conditional logit to the violation of CI assumption. The key is to
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generate variables that satisfy ideal conditions for conditional logit except CI.

1.3.1 Correlated errors from multivariate logistic distribution

We introduce dependence among errors using a copula and logistic distribution. In general,

specifying variables from multivariate logistic distribution can be very complicated as we have

to define joint distribution. However, using copula, we can draw variables from multivariate

logistic distribution by only specifying marginal distribution for each variable and copula

which specify intended dependence among marginal distribution of each variable separately.

Copula

Copula is a function which links univariate marginal CDFs to their multivariate CDF with

intended dependence among marginal distributions. Copula is useful for our purpose since

any T -dimensional joint distribution function can be decomposed into its T marginal distri-

butions and a copula function which completely describes the dependence structure among

marginal distributions. For instance, in DGP, we use a copula to generate errors from a

multivariate logistic distribution for which each marginal error has standard logistic distri-

bution with intended dependence among marginal distribution of errors. We specify only

conditional marginal distribution of zit for each time and use a Gaussian copula to specify

dependence among CDFs of zi1, zi2, ..., ziT . We choose a Gaussian copula since most statis-

tical packages allow users to randomly draw a set of variables from joint normal distribution

with user-specified pair-wise covariance. Therefore, we specify the marginal distribution for

each zit and Gaussian copula for dependence among CDFs of zi1, zi2, ..., ziT as in (1.2).
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Φ(z1, z2, ....., zT ) = C(Φ1(z1), ...,Φt(zt), ...,ΦT (zT ); ρ) (1.2)

where Φ(·) is joint normal, Φt(·) is univariate normal of marginal distribution of each t, and

C(·, ρ) is copula function where ρ governs dependence among marginal distributions.

Then, we transform normal marginal to logistic marginal at each period as in (1.3) and

the dependence of multivariate normal by a Gaussian copula is inherited to the dependence

among logistic marginal CDFs since copula is invariant to increasing transformation. Thus,

after transforming of marginal distribution, we obtain (1.4).

Φt(zt) →︸︷︷︸
transformation of marginal CDF

Ft(ut) (1.3)

F (u1, u2, ....., uT ) = C(F1(u1), ..., Ft(ut), ..., FT (uT ); ρ) (1.4)

where F (·) is joint logistic distribution and Ft(·) is univariate logistic marginal distribution.

Joint logistic density is derived using multivariate gaussian copula in the appendix.

Because of this invariance property of copula, dependence structure on zit
T
t=1 is maintained

in ui
T
t=1 after increasing transformation. Generated ui

T
t=1 follows joint logistic distribution

with correlation parameters ρ as in (1.2). Joint logistic density of f(u1, u2, ....., uT ) and its

derivation is provided in appendix.

Extension: Generate correlated variables from non-normal distribution Depen-

dent variables generation using Gaussian copula can be extended to other non-normal multi-

variate distribution. For the method to work, the only requirement is to obtain the intended
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marginal distribution from increasing transformation of the normal distribution. For in-

stance, in our DGPs, each normal marginal CDF is transformed to logistic marginal CDF by

increasing transformation and the Gaussian copula specifies the dependence structure among

the marginal distributions. Dependence structure is maintained after increasing transforming

by invariance property of copula.

Generation of a random vector from T -joint logistic distribution with depen-

dence structure of AR(1) correlation

Consider a random vector z = (z1, z2, ......, zT )′ which is from T -variate multivariate normal

distribution with AR(1) covariance matrix Cov(z) of (1.5) and zt ∼ N(0, 1) ∀ t. 5

Cov(z) =



1 ρ · · · · · · ρT−1

ρ 1 · · · · · · ...

...
...

. . . · · · ρ2

ρT−2 ρT−3 · · · 1 ρ

ρT−1 ρT−2 · · · · · · 1


(1.5)

Using gaussian copula in (1.6), we can express T -variate joint normal distribution as

follows. Let Φ be a joint normal CDF for z = (z1, z2, ......, zT ) with marginal CDF Φt for

each zt, then, by Sklar’s theorem in Sklar [1959], there exists unique copula C that connect

each marginal CDF Φ1(z1),Φ2(z2), ....,ΦT (zT ) ∈ RT with dependence structure of (1.5)

5 We choose pairwise correlation of in (1.5) for simplicity. We have corr(Z)=cov(Z) since
zt is standard normal ∀t. The main advantage of using copula is the flexibility of model
marginal distribution and dependence among marginal distribution separately. Moreover,
the specification of dependence relationship among marginal CDFs is not limited to 2nd
moment or linear relationship but is allowed to nonlinear and tail dependence. However, in
the simulation, our focus is serial correlation among errors so that we use copula with only
linear relationship specification for simplicity.
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such that equation (1.6) is satisfied.

Φ(z1, z2, ...., zT ) = C(Φ1(z1), ....,ΦT (zT );Cov(z)) (1.6)

where Φt is normal CDF ∀t = 1, ..., T .

The transformation from a normal marginal distribution to a logistic marginal distribu-

tion is performed by ut = F−1
t (Φ(zt)) = ln(

Φ(zt)
1−Φ(zt)

) where Ft(·) is logistic CDF. We can

rewrite (1.6) as the equation (1.7) for a copula C and u = (u1, u2, ...., uT ) ∈ RT , such that

F (u1, u2, ...., uT ) = C(Ft(u1), ...., Ft(uT ); ρ), where F is joint logistic CDF. (1.7)

Because of the invariance dependence property of copula for increasing transformation of

marginal distribution, {uit}, t = 1, 2, ..., T , the dependent structure of z in (1.6) is maintained

for u in (1.7) with the same C. 6 Lee [1979] also showed similar relationship between normal

and logistic distribution for bivariate case.

1.4 Monte Carlo experiment

We generate data based on two model specifications. First one is where the model has only

one covariate with unbounded support and individual fixed effects are correlated with the

covariate. Second model has two covariates of unbounded continuous covariate and binary

covariate and has individual fixed effects which are correlated with the binary covariate. In

both models, we generated dependent errors from joint logistic distribution using Gaussian

6 Linear dependence, (for instance, pairwise correlation), that we use here can not be
maintained after transformation of marginal distribution from normal to logistic but general
dependence measures such as Kendal’s rank correlation are maintained under monotonic
transformation such as from normal to logistic. ( Schweizer and Sklar [1983] and Trivedi and
Zimmer [2007])
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copula. We perform simulation with binary covariate since conditional logit models with

MLE requires covariates to have unbounded supports for
√
n consistency result in Chamber-

lain [2010]. Thus, simulation with binary covariate provides information about how bounded

support of covariate affects the property of conditional logit estimator.

1.4.1 The procedures of Data Generation Process: a continuous

covariate

We generate data {yit, xit, ci, uit} for t = 1, 2, .., T and i = 1, 2, ..., n based on model (1.1).

We follow Heckman [1981], Green [2004] and Fernandez-Val [2009] for the design of the DGPs

in this section. 7 We draw four items with 2,000 replications. The correlation across time-

dimension is induced through error components u using a copula as illustrated in previous

section 1.3.1. We generate four items as follow:

1. xit ∼ iid N(0, 1). We generate an univariate covariate from identical and independent

standard normal distribution.

2. Unobserved heterogeneity:

D(ci|xi) ∼
xi1 + xi2 + .....+ xik√

2k
+

ai√
2

where ai ∼ logistic(0,
π2

3
) and k = [

T

2
].(1.8)

3. We generate each uit such that it has standard logistic marginal distribution (i.e.

uit ∼ log istic(0, π
2

3 )), Cov(uit, uis) = ρ|t−s| for t 6= s, and (u1, u2, ...., uT ) is drawn

from joint logistic distribution by using the procedure in section 1.3.1.

7 Devroye [1986] and Johnson [1987] contain extensive methods of generating multivariate
random variables and vectors from non-normal distribution.
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4. We generate yit as follow.

yit = 1[xitβ + ci + uit ≥ 0] where β = 1 and using xit, ci, uit as in1, 2, 3. (1.9)

Generation of {xit}Tt=1 and ci is straightforward and generation of {yit}Tt=1 is also straight-

forward once we have {uit}Tt=1. We use a copula in generating errors, (ui1, ui2, ...., uiT ) from

T -variate logistic distribution while each uit has a univariate logistic distribution and de-

pendence structure among (ui1, ui2, ...., uiT ) is inherited from dependence structure of joint

normal distribution for (z1, z2, ......, zT ).

Generation of correlated logistic errors, u

Let z = (z1, z2, ......, zT )′ is variables drawn from T -variate multivariate normal distribution

with dependent structure of AR(1) serial correlation. We obtain (u1, u2, ...., uT ) by the

increasing transformation of marginal distributions, ut = F−1
t (Φt(zt)) where Ft is logistic

CDF and Φt is standard normal CDF.

u = (u1, u2, ...., uT ) is generated from the following algorithm:

(Step 1) Draw z1, z2, ...., zT from T -variate normal distribution with dependence structure

of cov(z) in (1.5).

(Step 2) Obtain each marginal CDF et = Φt(zt) where Φt(·) is standard normal CDF, and

∀t = 1, ..., T .

(Step 3) Transform zt to ut based on following formula. ut = F−1
t (et) = F−1

t (Φt(zt))

where Ft(·) ∼ logistic(0, π
2

3 ), (i.e. ut = ln(
et

1−et
) = ln(

Φt(zt)
1−Φt(zt)

))

(Step 4) Repeat steps of (1), (2), and (3) for all i = 1, 2, ..., n.
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Table 1.1. Basic Descriptive Statistics for the Generated Errors

u1 u2 u3 u4 u5 u6 u7 u8

ρ = 0.1 -.07(1.9) .07(1.7) .12(1.8) .02(1.9) -.04(1.8) -0.05(1.9) .02(1.9) .08(1.9)

ρ = 0.25 -.03(1.8) .03(1.8) .08(1.9) .03(1.9) -.02(1.8) -0.03(1.8) .06(1.9) .11(1.8)

ρ = 0.5 -.03(1.8) .01(1.8) .06(1.9) .04(1.9) .01(1.9) -0.02(1.8) .04(1.9) .11(1.9)

ρ = 0.75 -.02(1.8) -.01(1.8) .02(1.9) .02(1.8) .01(1.9) -0.01(1.9) .03(1.9) .07(1.9)

ρ = 0.9 -.02(1.8) -.01(1.8) .02(1.9) .02(1.8) .01(1.9) -0.01(1.9) .03(1.9) .07(1.9)

Table 1.2. Pairwise correlation of the generated errors for ρ = 0.1

u1 u2 u3 u4 u5 u6 u7 u8

u1 1

u2 0.09 1

u3 0.06 0.13 1

u4 0.02 0.01 0.11 1

u5 0.03 0.01 -0.02 0.11 1

u6 0.03 0.06 0.01 0.02 0.11 1

u7 0.02 -0.05 0.01 0.05 0.01 0.09 1

u8 0.02 -0.002 0.02 0.07 0.04 0.02 0.08 1

Basic Statistics for correlated logistic errors Table 1.1 reports the MC point es-

timates of 2,000 replications for the mean and the standard deviation of generated errors

from multivariate logistic distribution with n=100 and T=8. The estimates for standard

deviations are reported in parenthesis. Table 1.2, 1.3, and 1.4 report pairwise correlations

among generated errors for n=100, T=8 and ρ for 0.1, 0.5 and 0.9, respectively. Tables of

basic statistics verify that pairwise correlations of z are maintained to the pairwise correla-

tions among u. Statistics for uit such as mean and standard deviation is equal to mean and

standard deviation of a variable from standard logistic distribution.
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Table 1.3. Pairwise correlation of the generated errors for ρ = 0.5

u1 u2 u3 u4 u5 u6 u7 u8

u1 1

u2 0.51 1

u3 0.30 0.54 1

u4 0.14 0.28 0.52 1

u5 0.07 0.09 0.26 0.48 1

u6 -0.01 0.04 0.13 0.26 0.50 1

u7 0.02 0.03 0.08 0.14 0.23 0.52 1

u8 0.05 0.06 0.12 0.10 0.12 0.22 0.50 1

Table 1.4. Pairwise correlation of the generated errors for ρ = 0.9

u1 u2 u3 u4 u5 u6 u7 u8

u1 1

u2 0.90 1

u3 0.80 0.90 1

u4 0.72 0.80 0.90 1

u5 0.67 0.74 0.81 0.90 1

u6 0.59 0.66 0.73 0.82 0.91 1

u7 0.53 0.59 0.65 0.73 0.81 0.89 1

u8 0.48 0.54 0.59 0.67 0.74 0.81 0.91 1
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1.4.2 The bias and size distortion for coefficient: a continuous

covariate

All the results presented in this section are based on 2,000 replications and the robust

standard error of sandwich form that allows weakly dependent serial correlation. We vary

three components T , n, and ρ in the DGPs since it is important to examine how conditional

logit estimator for β behaves in finite sample as T , n, and ρ change. We are particularly

interested in typical micro panel such as small T , large n with high persistence(ρ > 0.4).

Throughout the tables in this section, we report the mean of the MC point estimate for β

(Mean), the standard deviation of the MC point estimate for β (SD), the mean of the MC

point estimate of the robust standard error for β (SE), the rejection frequency (1(pval <

0.05)), and 95-percent coverage rate for the rejection frequency.

Conditional logit for β

Figure 1.2 summarizes the estimation results for unconditional logit and conditional logit

estimators for coefficient β. As the second panel of figure 1.2 shows, for ρ=0, conditional logit

estimator for β shows no bias and rejection frequency in hypothesis test with conditional

logit estimator for β shows no size distortion regardless of n and T . For ρ=0.2, the bias

of conditional logit estimator of β is less than 10% for T ≥4. The rejection frequency

reveals that a simulation with ρ=0.2 leads to over-rejection by 100% for n = 400. The

size distortion increases with n. For ρ=0.4, the bias of conditional logit estimator for β

is greater than 10% for ∀T ≤ 8. The rejection frequency reveals that a simulation with
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Figure 1.1. Bias for β with continuous covariate

(Note) x-axis: time dimension, y-axis: estimated β. True β is 1. Each color of solid line

represents serial correlation coefficient, ρ - blue (0), brown (.2), green (.4), purple (.6), and

teal-blue (.8). We use n = 200 as benchmark since the bias does not change much as we

increases n over 200. The left panel of first row shows the estimates for unconditional logit

estimator and the right panel of first row shows the estimates for conditional logit

estimator. The left panel of second row shows the estimates from both of conditional

(dashed line) and unconditional (solid line) estimators together. More results on simulation

with various n, T, ρ are reported in Appendix. “For interpretation of the references to color

in this and all other figures, the reader is referred to the electronic version of this

dissertation.”
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Figure 1.2. Bias of unconditional and conditional logit for β with continuous covariate

(Note) x-axis: time dimension, y-axis: estimated β and legend represent number of

cross-section units - true (teal), blue (100), red (200), green (400) and purple (600) - by

solid line for unconditional logit estimates and by dashed line for conditional logit

estimates. ρ represents serial correlation coefficient. Each panel of figure represents

estimated β for each ρ. Figures in the first row report estimated β for ρ =0 and ρ=.2.

Figures in the second row report estimated β for ρ =.4 and ρ=.6.
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ρ=0.4 leads to over-rejection by 700% for n = 400. For ρ=0.6, the bias of conditional logit

estimator of β is greater than 20% for ∀T ≤ 8. The rejection frequency with nominal level

0.05 approaches 0.95 and beyond as n increases over 400 with ∀T ≥ 4. Finally, for ρ=0.8,

the bias of conditional logit estimator for β is greater than 50% for ∀T ≤ 8. The rejection

frequency with nominal level 0.05 approaches 1 as n increases over 200 with ∀T ≥ 3. Table

1.7 shows the magnitude of bias in % as ρ changes using unconditional logit estimates in

MC experiment.

Figure 1.1 shows that the increase in T leads to the smaller bias for coefficient estimates

but the increase in n does not change the magnitude of finite sample bias for coefficient β

especially for T ≥ 3. Overall, the magnitude of finite sample bias for coefficient β is greater

with the higher value of ρ and the smaller T but is invariant to n. The size distortion becomes

more severe as n increases and ρ increases while the change in T (∀T ≥ 3) does not change

the rejection frequency much. Regardless of the lengths of T and n, the size distortion

in inference is quite severe for ρ >0.2. In sum, simulation reveals that conditional logit

estimator with correlated logistic errors provides biased coefficient estimates and rejection

frequency in inference and, therefore, is not robust to the violation of CI assumption by

serial correlation especially for ρ >0.2.

Unconditional logit for β: Decomposition of Bias

Left panel in the first row of figure 1.1 shows finite sample bias of unconditional logit for

β. The bias for β is greater for smaller T and higher value of ρ while finite sample bias

does not change much as n changes in figure 1.2. Furthermore, in table 1.5 and 1.6, using
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unconditional logit estimator for β, simulation shows the decomposition of bias into the part

due to unobserved heterogeneity(ci) and the part due to serial correlation(ρ) for n = 100

and n = 200, respectively.

Bias for β Finite sample bias for unconditional logit is greater with smaller T and larger

ρ. For instance, when there is no serial correlation, ρ = 0, the magnitude of bias for

unconditional logit is greater than 100 % with T=2 and ∀n ≤ 600 while the magnitude of

bias for unconditional logit is about 20 % with T=8 and ∀n ≤ 600. Even for T as large as 8,

finite sample bias of unconditional logit estimator is about 17 % with no serial correlation

and finite sample bias for unconditional logit increases up to about 20 %, 30 %, 45 % and

90 % as ρ increases up to .2, .4, .6, and .8 respectively.

Decomposition of bias For ρ ≤0.4, finite sample bias due to ci(unobserved heterogeneity)

dominates the bias due to ρ (serial correlation among errors) ∀n, T . For T ≥5, the bias and

the decomposition of bias does not change much as n changes. For instance, in table 1.6,

for the case of n=200 and T=8, finite sample bias due to unobserved heterogeneity is about

18 % while finite sample bias due to serial correlation is about 4 %, 13 %, 29 % and 73

% for ρ=.2, .4, .6 and .8 respectively. As ρ increases finite sample biases by both sources

are substantial so that it is important to control both unobserved heterogeneity and serial

correlation properly. Sometimes, we can control only one source of bias and, in this case,

the choice of allowing serial dependence on response variable(D(yi|xi, ci)) or of allowing no

restriction on D(ci|xi) should be depending on whether researchers have more information
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Table 1.5. Decomposition of bias for β for n = 100

ci ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8

t=2 146 42 113 286 624

t=3 75 19 51 112 478

t=4 48 12 33 73 186

t=5 36 9 24 54 136

t=6 28 7 19 43 108

t=7 23 5 15 35 90

t=8 20 5 13 29 76

(Note) % of bias are reported in the cells. ci represents the proportion of bias due to

unobserved heterogeneity. ρ represents serial correlation coefficient for errors. Abrevaya

[1997] shows that unconditional logit MLE for β has probability limit 2β. Thus, 46 % of

bias is due to finite sample bias which has nothing to do with unobserved heterogeneity.

With no serial correlation of error, we obtain β̂c−logit=1.23 and β̂unc−logit=2.46.

on D(yi|xi, ci) or D(ci|xi).8 For instance, for the case where there exists high persistence

of response variables even after conditioning on covariates, pooled methods that allowing

serial dependence with parametric assumption on D(ci|xi) probably more appropriate than

those methods that impose no restriction on D(ci|xi) and require conditional independence

assumption on outcome D(yi|xi, ci).

1.4.3 The bias for APEs and rejection frequency: a continuous

covariate

Since conditional logit approach avoids specifying individual fixed effects, APEs cannot be

obtained for conditional logit estimator. In the estimation of APE for β in (1.1), we study the

APEs for CRE logit with pooled MLE under correct specification for D(ci|xi) and we also

compare these estimates with APEs for fixed effects(FE), LPM, and unconditional logit with

8 It is like determining which functional forms assumption either D(yi|xi, ci) or D(ci|xi)
is causing less distortion in statistical analysis.
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Table 1.6. Decomposition of bias for β for n = 200

ci ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8

t=2 119 31 80 175 493

t=3 67 17 45 99 238

t=4 45 11 30 68 168

t=5 33 8 23 51 128

t=6 26 6 18 41 100

t=7 22 5 14 33 84

t=8 18 4 13 29 73

(Note) % of bias are reported in the cells. ci represents the proportion of bias due to

unobserved heterogeneity. ρ represents serial correlation coefficient for errors. 19 % of bias

is due to finite sample bias which has nothing to do with unobserved heterogeneity. With

no serial correlation of error, we obtain β̂c−logit=1.095 and β̂unc−logit=2.19.

Table 1.7. The bias for β due to serial correlation using conditional logit for n = 200

ci ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8

t=2 0 25 50 97 269

t=3 0 14 28 57 129

t=4 0 9 21 44 101

t=5 0 8 18 36 84

t=6 0 6 15 31 72

t=7 0 6 13 27 64

t=8 0 5 11 24 57

(Note) % of bias are reported in the cells. ci represents the proportion of bias due to finite

sample estimation error for unobserved heterogeneity. ρ represents serial correlation

coefficient for errors.
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MLE.9 The APEs of CRE pooled-MLE and LPM with FE does not impose independence over

time while unconditional logit does not impose any restriction on unobserved heterogeneity.

Thus, unconditional logit is inconsistent estimator due to both unobserved heterogeneity and

serial correlation. Figure 1.3 summarizes MC estimates of APEs for CRE logit with pooled

MLE, unconditional logit with MLE and FE LPM. With correct specification of unobserved

heterogeneity for CRE logit, only unconditional logit for APEs shows substantial bias. Finite

sample bias for APEs of unconditional logit is positively correlated with the magnitude of

serial correlation.

CRE logit with pooled MLE: APEs

Left panel of the second row in figure 1.3 summarizes the APEs for CRE logit with pooled

MLE. The results with n=200 are reported as benchmark.10LPM and CRE logit with pooled

MLE show no finite sample bias for APEs and associated rejection frequency. The correct

coverage rate of rejection frequency of hypothesis test on APEs of β is obtained regardless

of serial correlation (ρ) and the size of time dimension(T ).11Finite sample bias is less than

6%(= .165−.156
.165 ) ∀T and ∀ρ and is less than 2% for most T and ρ. In short, CRE logit

with pooled MLE provides reliable estimates for APEs of β and shows no size distortion in

inference under correct specification of unobserved heterogeneity.12

9 Unconditional logit is logit model where individual fixed effects are estimated as param-
eters. CRE logit with pooled MLE is logit model with parametric assumption for unobserved
heterogeneity as in DGPs of previous section. Pooled estimation is based on the assumption
of wrong model.

10 More results with various n and T are reported in appendix.
11 The results do not change much as n changes. See appendix for details.
12 The correct specification of unobserved heterogeneity is implicitly assumed in DGPs

since ci is generated to satisfy CRE logit model.
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Figure 1.3. Bias of unconditional logit and CRE-logit estimators for APEs

(Note) x-axis: time dimension, y-axis: estimated β. In figures of first row, solid lines report

APEs for unconditional logit and dashed lines report APEs for conditional logit. Color

represent estimates with different number of cross-section units from n=100 to n=600.

Figures in first row, left panel reports APEs with ρ=0 and right panel reports APEs with

ρ=.6. For figures in second row, left panel report APEs for CRE logit with n=200 and

various ρ - blue (true), red (0), greed (.2), purple (.4), teal (.6), and orange (.8) and right

panel report APEs for unconditional logit with n=200 and various ρ - blue (0), red (.2),

greed (.4), purple (.6), and teal (.8).
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Unconditional logit with pooled MLE: APEs

Unconditional logit with MLE shows substantial finite sample bias for APEs and shows

substantial size distortion in inference. Table 1.9 reports the estimates of β for unconditional

logit. Finite sample bias for APEs is greater for smaller T and greater value of ρ. Even for

ρ=0, finite sample bias is greater than 15 % ∀T . The bias for APEs is greater than 17 %, 42

%, 96 % and 204 % with ρ=.2, .4, .6 and .8, respectively, ∀T . The bias in rejection frequency

is greater for smaller T and greater value of ρ but does not depend on n.13

The bias decomposition for APEs using unconditional logit Table 1.8 reveals that

the decomposition of the bias for APEs into the part due to unobserved heterogeneity (ci)

and the part due to serial correlation (ρ) for n=200. The bias by ci dominates the bias by

serial correlation with ρ ≤0.6. This implies that, compared to the bias for β, the relative

influence to the bias from ci is greater for APEs. % of bias due to serial correlation decreases

as T increases for T ≥ 4.

In sum, first, serial correlation does not affect APEs for LPM and CRE logit with pooled

MLE with correct specification of individual effects. Second, both estimates of LPM and

CRE logit with pooled MLE under correct specification of individual effects show no signif-

icant finite sample bias for APEs and rejection frequency regardless of n, T and ρ. Third,

the estimates of APEs for unconditional logit show substantial bias and its magnitude is

positively correlated to serial correlation and negatively correlated to the magnitude of time

dimension (T ).

13 See appendix for the results of the bias for rejection frequency.
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Table 1.8. Decomposition of bias into two parts using unconditional logit for n = 200

ci, ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8

t=2 114 9 17 24 17

t=3 67 10 21 37 52

t=4 44 6 16 32 55

t=5 30 5 13 25 48

t=6 22 4 10 21 41

t=7 17 3 7 16 34

t=8 15 2 6 14 30

(Note) % of bias of unconditional logit APEs are reported in the cells. ci represents the

proportion of bias due to finite sample estimation error for unobserved heterogeneity. ρ

represents serial correlation coefficient for errors. n = 200 case was reported as benchmark

since very small difference of bias decomposition occurs as we change n. % of bias due to ci

is obtained from
APEunc,ρ=0−APETrue

APETrue
and % of bias due to serial correlation (ρ) is

obtained from
APEunc,ρ>0−APEunc,ρ=0

APEunc,ρ>0
.

Table 1.9. The bias of unconditional logit n = 200

true ci, ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8

t=2 .163 .349 .363 .378 .388 .277

t=3 .163 .273 .289 .308 .334 .258

t=4 .164 .236 .246 .262 .288 .326

t=5 .165 .214 .222 .235 .255 .294

t=6 .165 .201 .208 .218 .235 .269

t=7 .166 .194 .199 .206 .220 .251

t=8 .164 .188 .192 .198 .211 .237

(Note) The bias are reported in the cells. n = 200 case was reported as benchmark since

very small difference of bias decomposition occurs as we change n.
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1.4.4 DGP: A model with both binary and continuous covariates

We generate data {yit, xit, Dit, ci, uit} for t = 1, 2, .., T and i = 1, 2, ..., n based on

model (1.10) with 1,000 replications.

yit = 1[xitβ +Ditδ + ci + uit ≥ 0] (1.10)

We draw the following five items as below. The correlation across time is induced through

error components u as in section 1.3.1.

1. xit ∼ iid N(0, 1). We generate an univariate covariate from identical and independent

standard normal distribution.

2. Dit = 1(dit − .5 ≥ 0) where dit ∼ iidUnif(0, 1)

3. Unobserved heterogeneity:

D(ci|xi) ∼
Di1 +Di2 + .....+Dik√

2k
+

ai√
π2
3

(1.11)

where ai ∼ logistic(0,
π2

3
) and [k =

T

2
].

4. We generate each uit such that it has standard logistic marginal distribution (i.e.

uit ∼ log istic(0, π
2

3 )), Cov(uit, uis) = ρ|t−s| for t 6= s, and joint distribution of

(u1, u2, ...., uT ) is logistic.

5. We generate yit

yit = 1[xitβ +Ditδ + ci + uit ≥ 0] (1.12)
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Figure 1.4. Bias of unconditional and conditional logit estimators for β with binary covariate

(Note) x-axis: time dimension, y-axis: The estimates for β are reported for n = 100. The

color of line represents serial correlation coefficient - orange (true), blue (0), red (.2), green

(.4), purple (.6), teal-blue (.8). The left panel of first row shows the estimates for

unconditional logit estimator and the right panel of first row shows the estimates for

conditional logit estimator. The left panel of second row shows the estimates for both

conditional (dashed line) and unconditional (solid line) estimators together.

using xit, Dit, ci, uit as in 1,2,3,4, β=.2 and δ =1.

1.4.5 The bias and size distortion for δ: binary covariate

Conditional logit for δ

As figure 1.4 shows, in the MC experiment with binary covariate, we reach the same conclu-

sion as in the MC experiment with a continuous covariate. Smaller T and greater value of ρ
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Table 1.10. Decomposition of bias into two parts n = 100

ci ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8

t=2 157 48 212 486 14343

t=3 65 18 47 104 450

t=4 41 10 28 63 162

t=5 29 8 21 47 116

t=6 26 6 15 36 92

t=7 20 6 15 32 80

t=8 18 4 11 25 68

(Note) % of bias are reported in the cells.

leads to greater magnitude of finite sample bias for coefficient estimate, δ, but the change in

n does not affect the bias much. The size distortion becomes more severe as n and ρ increase

while the change in ∀T ≥ 3 does not have much effect on the rejection frequency. Regardless

of the values of T and n, the size distortion is quite severe for ρ >0.2. Conditional logit

estimator for δ and rejection frequency are biased and, therefore, are not robust to violation

of CI assumption for ρ >0.2, ∀n, T .

Unconditional logit for δ: Decomposition of Bias

We obtain the same conclusion as DGP with a continuous covariate although the magnitude

of bias is greater with a binary covariate especially for T ≤ 4. The bias of unconditional

logit for δ is greater for data with smaller T and higher value of ρ while the bias does not

change much as n changes as shown in figure 1.4. Table 1.10 shows that, for ρ ≤0.4, the bias

due to ci(unobserved heterogeneity) dominates the bias due to ρ (serial correlation among

errors) ∀T .
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1.4.6 The bias for APEs and rejection frequency: binary covariate

In the estimation of APEs for β in (1.12), we study the APEs for CRE logit with pooled MLE

and compare these estimates with APEs for LPM and unconditional logit with MLE. Figure

1.5 summarizes MC estimates for APEs of CRE logit with pooled MLE, unconditional logit

with MLE and LPM.

As the left panel in the second row of figure 1.5 shows, LPM and CRE logit with pooled

MLE exhibit no substantial finite sample bias of APEs for δ regardless of serial correlation

(the magnitude of ρ) and size of T . The rejection frequency also shows no significant size

distortion regardless of the magnitude of serial correlation (ρ) and size of T .14In short, CRE

logit with pooled MLE provides reliable finite sample estimates for APEs of δ and a valid

inference under correct specification of unobserved heterogeneity.

The bias decomposition for APE: binary covariate

Unconditional logit with MLE shows substantial bias for APEs and rejection frequency. The

right panel in the second row of figure 1.5 shows the bias of APE of δ for unconditional logit.

The bias for APE is greater for smaller T and larger value of ρ. Even for ρ=0, the magnitude

of bias for APE of δ is greater than 24 % ∀T . The bias increases with the magnitude of ρ

for all T . The bias for rejection frequency is greater for smaller T and larger value of ρ.15

14 The results are reported in appendix.
15 See appendix for further results of the bias for rejection frequency.
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Figure 1.5. Unconditional logit and CRE-logit estimates of APEs for binary covariate

(Note) x-axis: time dimension, y-axis: APEs for β with n = 100 are reported. ρ represents

serial correlation coefficient. Figures in first row report APEs with ρ=0 (left) and ρ=.6

(right) respectively. The colors of solid line represent various APE estimators; blue (true),

red (LPM), green (unconditional logit), and purple (CRE logit). As we see, purple

completely cover blue. The left panel of second row shows the estimates for CRE logit

estimator and the right panel of second row shows the estimates for unconditional logit

estimators with various serial correlation coefficient; blue (0), red (.2), green (.4), purple

(.6) and teal-blue (.8).
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Table 1.11. Decomposition of bias using unconditional logit for n = 100

ci ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8

t=2 164 27 65 140 255

t=3 87 14 37 73 197

t=4 55 7 23 48 104

t=5 41 7 18 38 82

t=6 33 4 13 28 65

t=7 27 5 12 26 59

t=8 25 4 10 22 51

(Note) % of bias of unconditional logit APEs are reported in the cells. ci represents the

proportion of bias due to finite sample estimation error for unobserved heterogeneity. ρ

represents serial correlation coefficient for errors. n = 100 case was reported as benchmark

since very small difference of bias decomposition occurs as we change n. % of bias due to ci

is obtained from
APEunc,ρ=0−APETrue

APETrue
and % of bias due to serial correlation (ρ) is

obtained from
APEunc,ρ>0−APEunc,ρ=0

APEunc,ρ>0
.

1.5 Panel data models for married women’s welfare

participation

In this section, we illustrate the application of conditional logit for β and CRE logit with

pooled MLE for APEs using the Survey of Income and Program Participation (SIPP) data

on the welfare participation of married women from Chay and Hyslop [2001].16As welfare

participation of married women exhibits substantial serial persistence over time, we apply

CRE logit with pooled MLE to obtain APEs of marital status and the number of children

on welfare participation.

Welfare participation data are from 1990 panel of the SIPP which contains eight waves

at four month intervals covering a 32-month period. The data set contains 1,934 married

16 Pooled MLE with CRE logit model does not assume that the full conditional density
of y give x, c is correctly specified but it is very useful since full conditional density of y give
x, c is likely to be very complicated and pooled MLE does not restrict on serial dependence.
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women over 8 periods. The sample contains women who are 18-65 years old and either

receive AFDC payments during or before the sample period or whose average total family

income during the sample period is below the family-specific average poverty level.17Welfare

participation status shows clear serial correlation over time. For instance, out of 1,934

married women, 1,076 married women never participate in welfare program and 364 married

women participate in welfare program for all sample periods. Basic statistics for variables

which is used in estimation are provided in table 1.12.

We start estimation with static model of (1.13) for simplicity. We control unobserved

heterogeneity with chamberlain device while we do not control for true state dependence

explicitly.

participationit = 1[zitβ + ft + ci + uit ≥ 0], i = 1, 2, ..., n, and t = 1, 2, ..., T (1.13)

where zit includes black race dummy, years of education, family poverty level status, age/10,

age2/100, marital status and number of children age less than 18. And ft is period fixed

effects.

17In summer 1993, the Nation had 36 million mothers 15 to 44 years old; 3.8 million
of them (10 percent) were receiving AFDC (Aid to Families with Dependent Children)
payments to help with the rearing of 9.7 million children. An additional 0.5 million women
over 45 years old and 0.3 million fathers living with their dependent children also received
AFDC.
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Table 1.12. Basic statistics

Obs Mean S.D Min Max

AFDC 15,472 .302 .459 0 1

married 15,472 .291 .454 0 1

kids 15,472 1.849 1.479 0 10

Black 15,472 .310 .463 0 1

Educ 15,472 11.260 2.700 0 18

Poverty 15,472 1026.426 352.849 519.755 2377.113

age/10 15,472 3.405 1.149 1.6 6.3

age2/100 15,472 12.917 8.864 2.56 39.69
Note: There is no missing data. 15,472 = 8×1,934

1.5.1 Static panel data model for married women’s welfare par-

ticipation

Table 1.13 shows that allowing unobserved heterogeneity to be correlated with marital status

and number of children has important effects on estimated APEs. LPM provides estimated

coefficients of -0.27 and 0.05 on marital status and number of children, respectively, with

both coefficients being statistically significant. Each child is estimated to increase the welfare

participation probability by about 0.05 while being married is estimated to reduce the welfare

participation probability by about 0.27. If we use logit and assume unobserved heterogeneity

is independent of explanatory variables, the estimated APEs are a little bit higher for both

marital status and number of children. When we use CRE logit model with pooled MLE

which controls for unobserved heterogeneity, we obtain APEs that are very similar to the

estimates by LPM. Moreover, the coefficients on the time averages of time-varying covariates

are statistically significant and practically large. All these results imply that accounting for

unobserved heterogeneity correctly is very important. CRE logit model with full MLE reveals

the same conclusion as with partial MLE. Using GEE with logit link and correlated random

34



effect provides very similar estimates to the estimates for CRE logit model with full MLE.

Finally, column (6) contains the estimates from conditional logit. Unfortunately, the

coefficient magnitudes are difficult to interpret because of scaling factor. The ratio of co-

efficients using conditional logit is −2.80
0.76 = (−3.69), which is quite different from the one,

−1.76
0.34 = (−5.18), from CRE logit model with Pooled MLE. Moreover, if we do not con-

trol for unobserved heterogeneity, the ratio of coefficient for RE logit with Pooled MLE

is −2.28
0.54 = (−4.22). The discrepancy for the ratio of coefficients between CRE logit and

RE logit which does not control unobserved heterogeneity is possibly caused by either mis-

specification for the distribution of unobserved heterogeneity or uncontrolled unobserved

heterogeneity. Moreover, the discrepancy for the ratio of coefficients between CRE logit and

conditional logit is possibly caused by either misspecification for the distribution of unob-

served heterogeneity or serial correlation. Therefore, for instance, if we assume distribution

of unobserved heterogeneity is correct with Chamberlain’s device, then we can infer that the

discrepancy is originated from the bias by serial correlation for conditional logit and the bias

by unobserved heterogeneity for RE logit. Moreover, in this case, because CRE logit with

pooled MLE in column (3) allows arbitrary weak dependence, it seems sensible to rely on

the estimates of CRE logit with pooled MLE under the assumptions that marital status and

number of children variables are strictly exogenous conditional on unobserved heterogeneity

and the assumption which unobserved heterogeneity can be specified by the time averages

of time-varying covariates. However, without correct specification on D(ci|xi), no procedure

strictly dominates the other. In particular, the choice among these procedures should be

based on whether we are more confident for the correct specification about D(yi|xi, ci) or

D(ci|xi).
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Table 1.14 shows results for probit model using the same estimation methods as in table

1.13. Although standard errors are smaller for probit model, we can draw the identical

conclusion as using logit model.
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Table 1.13. Logit estimation for married women’s welfare participation

(1) (2) (3) (4) (5) (6)

Model Linear logit CRE logit CRE logit CRE logit FE logit

FE pooled MLE pooled MLE GEE Full MLE MLE

Estimation coef coef APE coef APE coef APE coef APE coef

married -.2707 -2.276 -.3704 -1.757 -.2851 -1.591 -.2613 -3.305 -.2293 -2.802

(.0278) (.152) (.0211) (.196) (.0308) (.185) (.0298) (.248) (.0122) (.242)

kids .0524 .539 .0877 .343 .0557 .294 .0483 .724 .0671 .761

(.0098) (.056) (.0086) (.060) (.0096) (.054) (.0088) (.091) (.0084) (.104)

married -.613 -.723 -1.762

(.231) (.230) (.349)

kids .231 .242 .547

(.062) (.061) (.111)
1√

1+σ̂2
.242

log likelihood -7571.91 -7552.25 -4028.83 -1412.62

number of women 1934 1934 1934 1934 1934 494

*Note: Cluster robust standard errors are reported in parentheses below all coefficients and APEs. All model include a full set

of period dummy variables, time constant variables years of education, black race dummy variable, age/10, and age2/100

which are not reported.
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Table 1.14. Probit estimation for married women’s welfare participation

(1) (2) (3) (4) (5) (6)

Model Linear probit CRE probit CRE probit CRE probit FE logit

FE pooled MLE pooled MLE GEE Full MLE MLE

Estimation coef coef APE coef APE coef APE coef APE coef

married -.2707 -1.251 -.3490 -.951 -.2644 -.906 -.2525 -1.870 -.2078 -2.802

(.0278) (.078) (.0189) (.103) (.0281) (.105) (.0289) (.134) (.0124) (.242)

kids .0524 .309 .0861 .198 .0550 .177 .0492 .400 .0590 .761

(.0098) (.033) (.0086) (.035) (.0097) (.032) (.0091) (.052) (.0078) (.104)

married -.354 -1.304 -.726

(.126) (.134) (.217)

kids .132 .404 .290

(.036) (.037) (.071)
1√

1+σ̂2
.349

log likelihood -7600.63 -7580.68 -3976.44 -1412.62

sample 1934 1934 1934 1934 1934 494

*Note: Cluster robust standard errors are reported in parentheses below all coefficients and APEs. All model include a full set

of period dummy variables, time constant variables years of education, black race dummy variable, age/10, and age2/100

which are not reported.



1.5.2 Dynamic Unobserved effects logit models under strict exo-

geneity

Instead of controlling serial correlation by the models with pooled MLE methods, we prob-

ably control serial dependence among yi by using a dynamic model with full MLE. Chay

and Hyslop [2001] emphasizes the importance of introducing dynamic models to seriously

consider both unobserved heterogeneity and true state dependence in welfare analysis. Ex-

plicitly distinguishing spurious sate dependence by individual permanent characteristics and

true state dependence is possible only with dynamic models. Our treatment for dynamic

model follows Wooldridge [2005] and Wooldridge [2010].

Suppose we date our observations starting at t = 0, so that yi0 is the first observation on

outcome, y. For t = 1,...,T, we are interested in dynamic model of (1.14).

E(yit|yi,t−1, ..., yi0, zi, ci) = G[ρyit−1 + zitβ + ci + uit ≥ 0] (1.14)

where zit is a vector of contemporaneous explanatory variables, and G can be the probit or

logit function. There are several important points about this model. First, zit is assumed to

satisfy a strict exogeneity assumption (conditional on ci). Second, the probability of success

at time t is allowed to depend on the outcome in t− 1 as well as unobserved heterogeneity,

ci.

Following Chay and Hyslop [2001], we focus the specification of dynamic model to in-

vestigate following two points. First, we are interested in hypothesis test with the null,

H0 : ρ=0. ρ 6=0 implies the existence of state dependence after controlling for the un-

observed heterogeneity, ci. This provides information about the decomposition of welfare
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participation persistence to state true dependence and unobserved heterogeneity. Second,

the estimation for ρ and the marginal effects of marital status and number of children on

welfare participation. We start with the specification of dynamic model of (1.15).

f(y1, y2, ....yT |y0, z, c, θ) =
T∏
t=1

f(yt|yt−1, ...., y0, zt, c, θ) (1.15)

We condition on yi0 as well to solve the initial conditions problem. Furthermore, we

propose a D(ci|y0, zi) as in (1.17) to obtain f(y1, y2, ...., yT |y0, zi) using (1.16). Given a

density h(c|y0, z, δ), we have

f(y1, y2, ....yT |y0, z, c, θ) =

∫ ∞
∞

f(y1, y2, ....yT |y0, z, c, θ)h(c|y0, z, δ)dc (1.16)

where G is standard normal CDF for probit model and

h(c|y0, z, δ) is Normal(ψ + ς0yi0 + ziξ, σ
2
a) (1.17)

where z include AFDCt−1, number of children, marital status, and family poverty level.

We can rewrite our estimation equation as in (1.18) using chamberlain device.

yit = 1[ψ + ρyit−1 + zitβ + ς0yi0 + ziξ + ai + uit ≥ 0] (1.18)

Pooled MLE does not consistently estimate the scaled coefficients or the APEs in estimat-

ing dynamic model. This is because while P (yit = 1|zi, yit−1, ...., yi0, ai)=Φ(ψ + ρyit−1 +

zitβ+ ς0yi0 +ziξ+ai) is true, P (yit = 1|zi, yit−1, ...., yi0)=Φ(ψa+ρayit−1 +zitβa+ ς0ayi0 +

ziξa) does not hold true unless ai is identically zero. Therefore, only random effect pro-

bit consistently estimate the scaled coefficients and the APEs. For comparison purpose we
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also report CRE probit with pooled MLE and RE probit with MLE which does not control

unobserved heterogeneity in table 1.15.

The column (4) in table 1.15 for dynamic model provides that CRE probit with MLE for

ρ̂ which is 1.290(s.e=.072) and is statistically different from zero even after controlling for

unobserved heterogeneity. This is strong evidence for the existence of true state dependence.

The computation of APE for AFDCt−1 is based on averaging Φ(ψ̂a+ρ̂a+zitβ̂a+ ˆς0ayi0+ziξ̂a)

- Φ(ψ̂a + zitβ̂a + ˆς0ayi0 + ziξ̂a) across all i and t.18 CRE probit with full MLE for the

APE of AFDCt−1 is provided in the model (4) of table 1.15 and is about .175. In other

words, averaged across all women and all time periods, the probability of participating in

welfare at time t is about .175 higher if the women was in welfare at time t− 1 than if she

was not. This estimate controls for unobserved heterogeneity, number of children, marital

status, family poverty level and women’s education, race, age, age2. The column (2) of

table 1.15 reports the APEs for random effect probit with MLE which does not control

unobserved heterogeneity. Estimated APE for state dependence is .384 which is higher than

random effects estimates for which heterogeneity is controlled for. This implies that much

of observed serial dependence in welfare participation could be attributed to unobserved

heterogeneity. ( .384−.175
.384 = .544) About 54 % of observed serial dependence of welfare

participation is due to heterogeneity while about 46 % of observed serial dependence is due to

state dependence. In other words, simple dynamic RE probit model that ignore unobserved

heterogeneity exaggerate true state dependence by 54 %. In sum, the analysis with dynamic

model implies that both sources of persistent welfare participation are important since the

18 Original coefficients are scaled by 1√
1+σ̂2

=1, where σ̂2=.00000045 in the calculation

of all APEs.
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difference between the estimates clearly shows that welfare participation is depending on

individual permanent characteristics as well as ”narcotic” effects of welfare program.
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Table 1.15. Probit estimation of dynamic model for married women’s welfare participation

(1) (2) (3) (4) (5)

Model Linear RE probit CRE probit CRE probit FE logit

FE Full MLE pooled MLE Full MLE MLE

Estimation Method coef coef APE coef APE coef APE coef

AFDC1 .3703 2.028 .3840 1.290 .1343 1.290 .1747 1.643

(.0163) (.073) (.0058) (.063) (.0085) (.062) * (.097)

married -.1922 -.988 -.1076 -1.595 -.1545 -1.595 -.1545 -2.506

(.0230) (.094) (.0057) (.143) (.0115) (.136) * (.303)

kids .0350 .211 .0220 .280 .0180 .280 .0178 .670

(.0075) (.037) (.0024) (.059) (.0034) (.051) * (.129)
1√

1+σ̂2
.734 .999

unobs heterogeneity controlled not controlled controlled controlled controlled

log likelihood -2624.13 -1658.99 -1658.99 -936.45

sample 1934 1934 1934 1934 441
Note: Cluster robust standard errors are reported in parentheses below all coefficients and APEs. All models include a full set

of period dummy variables, time constant variables years of education, black race dummy variable, age/10, age2/100, initial

period value for AFDC and married and kids variables for all periods which are not reported.



1.6 Conclusion

This paper examines the robustness of the conditional logit estimator to the violation of the

CI assumption using correlated logistic errors in a binary panel data model with correlated

individual fixed effects. Simulation results show that the conditional logit method is not

robust to violation of the CI assumption. The magnitude of bias for coefficient is greater for

the data with a smaller time dimension (T ) and a higher serial correlation coefficient. (ρ)

Under correct specification of unobserved heterogeneity, CRE logit with pooled MLE pro-

vides reliable estimates for APEs with no significant finite sample bias. Simulation for the

rejection frequency of the hypothesis test shows evidence that CRE logit provides a reliable

test in the presence of high serial correlation. Finite sample bias due to both unobserved

heterogeneity and serial correlation is substantial. An empirical example of welfare partici-

pation which exhibits high persistence shows that both sources of bias are important. The

decomposition shows that bias due to uncontrolled unobserved heterogeneity is about 54%

and that due to serial correlation is about 46%. This implies the importance of accounting

for both state dependence and unobserved heterogeneity.
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Chapter 2

The MI-IPW method in an

unbalanced panel data model: An

empirical application on the effect of

class size reduction on SAT scores for

students in grades K-3

2.1 Introduction

Randomized experiments have become more popular in evaluating the impact of social pro-

grams recently. Angrist and Pischke [2009] reflects this trend by arguing that the causal

inference for the effect of a program can be best answered by a randomized experiment.
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However, perfect implementation of a randomized trial is extremely rare. In most experi-

ments, experimental violations occur typically through noncompliance and attrition and can

invalidate any statistical conclusions drawn from them. The possible bias from noncompli-

ance can be addressed by the IV method using initial treatments as IV for actual treatments.

However, standard methods for missing data, which include complete-case analysis, simple

imputation and last-observation-carried-forward analysis, are not appropriate for a valid in-

ference without assuming missing completely at random (MCAR). 1 Unfortunately, in most

empirical applications, the MCAR assumption is unrealistic and the violation inevitably

leads to biased estimates, incorrect standard errors and invalid inferences for unweighted

complete-case analysis.2

In this chapter, we focus on the marginal treatment effect (MTE) of a program in a

random experiment with ideal design at the beginning but subsequent missing data at the

implementation stage. The purpose of this article is twofold. First, we provide robust

Hausman tests of the missing completely at random (MCAR) assumption in an unbalanced

linear panel data model for least-square (LS), fixed-effects (FE) and first-differencing (FD)

estimators for which the rejections of tests imply invalid statistical analysis. Proposed Wald

statistics for robust Hausman tests are based on comparing two consistent estimators under

the null and it is robust in the sense that estimators used in the construction of the Wald

statistics do not assume conditions for the estimators to be efficient.3 The idea of the test

1 MCAR and missing at random (MAR) assumption is in the sense defined by Rubin
[1976] and Little and Rubin [2002]. The MCAR implies that the probability of missing is
independent of both observed and unobserved variables. MAR implies that, conditional on
observed data, the probability of missing does not depend on the unobserved data.

2 Data is complete in the panel data for a particular period if a cross-section unit has
observations for outcome and all covariates at that period.

3 Original Hausman tests(Hausman [1978]) which compare random effect estimator and

46



is that, under the null, the difference in the estimates of two consistent estimators should

be entirely due to sampling errors. This is an extension of a robust Hausman test of a

balanced panel in [Wooldridge, 2010, p.321-334] to unbalanced panel data. We also conduct

a Monte Carlo experiment of regression based variable addition tests for fixed-effects and

first-differencing estimators to test the MCAR assumption.

Second, we introduce practical methods with valid statistical analyses for handling missing

data under the missing at random (MAR) assumption which include the inverse probabil-

ity weighted (IPW) method (Horvitz and Thompson [1952] and Robins et al. [1994]), the

likelihood-based maximum likelihood (ML) method (Rubin [1987] and Little and Rubin

[2002]) and the multiple imputation (MI) method ( Buuren et al. [1999] and Schafer and

Graham [2002]). Many microeconomic applications, that typically use the linear models in-

volve various types of high-dimensional covariates which include continuous and categorical

variables of various types (binary, count, fraction and so forth). Moreover, data can be miss-

ing for all covariates and outcome. Therefore, the likelihood based ML and the MI methods

are not appropriate for unbalanced panel data with these types of missing variables since

the ML and the MI methods require modeling the joint distribution of missing variables

and the correct specification of a model for joint distribution would be extremely difficult,

if not impossible. In many applications, although joint normality is assumed, we have very

little information on the joint distribution of missing variables. On the other hand, the IPW

method with missing outcome and covariates does not need to specify a fully parametric

model for joint distribution of missing variables since probability weights can be modeled by

a univariate normal (probit) or a logistic (logit) distribution.

fixed effect estimator assume efficiency for random effect estimator.
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Meanwhile, the IPW method under MAR is criticized mainly due to the following three

concerns. First, the IPW method is generally less efficient than the MI method with cor-

rect specification for missing variables since the IPW method only uses complete-case data

while the MI method uses information in covariates and outcome even from incomplete case

samples. (Clayton et al. [1999]) Therefore, for instance, if a linear regression model has high-

dimensional covariates and only one variable in the covariates has missing data, then the loss

of efficiency for the IPW method should be significant. However, for monotone missing data

(i.e. attrition), there is no loss of information due to this factor since data missing occurs

in outcome and all covariates simultaneously for a cross-section unit.4 The second concern

is that IPW estimates can be very unstable if the estimated probability weights are close to

zero for certain subpopulation units(Little and Rubin [2002]). However, we can verify the rel-

evance of this criticism by probing the estimates with actual data in the application. Finally,

the IPW estimates can be sensitive to the model specification for the probability of selection

(or missing). We provide an example of using an economic theory in the specification of

the selection process and the MAR assumption. Particularly, in the empirical example, we

extend Becker [1993]’s model of parent’s school choice between public and private schools

to specify the selection process that satisfies the MAR assumption. For simplicity, we use

4 Recently, Robins and Rotnitzky [1995] and Scharfstein et al. [1999] propose an AIPW
(i.e. doubly robust) estimator which allows to construct a theoretically efficient version of
IPW so that the extension of IPW to AIPW estimator can overcome inefficiency problem
at least asymptotically. An estimator is called doubly robust if it is consistent when either
a model for conditional expectation(imputation model for missing variables) or a model
for probability of selection is correctly specified. An AIPW estimator can attain efficiency
in the sense that its variance can reach semi-parametric efficiency bound among the class

of estimators that use
∑n
i=1

∑T
t=1 sit · momentit(Observedit, θ) = 0. More discussion for

efficiency properties of AIPW estimators is provided in Bickel et al. [1998], Tsiatis [2006],
Robins et al. [1994], and section in 2.4.1.
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the logit or the probit models for the distribution of probability of selection.5 Unfortunately,

it is very hard to test how inaccurate the approximation of the specification for predictors

and the logit or the probit models for probability of selection are in practice so we conduct

a Monte Carlo simulation to provide evidence on the sensitivity of the IPW estimator to

selection model misspecification.

We explicitly categorize unbalanced panel data into four types based on missing patterns.

The four data types are the following: (i) complete case data, (ii) individual units leave

the sample but re-enter the sample later (type-I missing data), (iii) individual units are in

the sample but some variables are missing (type-II missing data), and (iv) attrition (type-

III missing data). For type-I missing data, we drop the observations and do not use in the

estimations while we assume these types of data missing are completely random or negligibly

small. For type-II missing data, we apply multiple imputations based on the missing variable

types. Finally, we propose a method which applies MI and IPW sequentially. Specifically,

after multiple imputations of type-II missing variables, we treat type-II missing data as if

they are complete case data. We then combine imputed type-II missing data with complete

case data and hen apply the IPW method.

Tests of MCAR and the estimations with unweighted, IPW and MI-IPW methods under

the MAR are conducted to gauge the effect of class size reduction (CSR) on SAT scores

for students in K-3 grades using Tennessee’s Project STAR. We employ Tennessee’s Project

STAR to evaluate the MI-IPW method in the application since it is a randomized experi-

5 Nonparametric estimation of the probability of selection is also available from Hirano
et al. [2003] but it suffers from the curse of dimensionality in practical applications.(Hall and
Presnell [1999]).
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ment with significant numbers of noncompliance and attrition.6 For instance, 13% of 11,601

students switched from treatment groups to the control group or vice versa (i.e. 13% of the

sample are defiers) and about 45% of the students either entered the program after kinder-

garten or left before the program ended and about 5% of the participating students had

missing variables during in the STAR program. Moreover, potential differential attrition

across treatment and control groups appears in basic statistics which show that a larger

fraction of students left the sample in regular and regular-with-aide classes than from small

classes for all grades from K to 3. As reported in Table 2.27, the difference in the average

scores between students who stayed and drop-out students is greater in small classes than

the difference in regular and regular-with-aide classes for both first and second grades al-

though the differences are small. This implies that a relatively greater proportion of better

performing students left the program from regular and regular-with-aide classes than from

small classes. This is informal evidence of differential drop-out rates of students across dif-

ferent types of classes and suggests possible overestimation in the effect of CSR on SAT

scores. Therefore, the MCAR assumption is possibly violated and a standard estimation

with complete-case is probably inappropriate.7

Our application of proposed tests and estimations with Project STAR data proceed as

follows. First, we apply formal tests of differential attrition across class types which lead

to violation of the MCAR assumption. We test the MCAR assumption using Hausman-

type tests and regression based variable addition tests using FD and FE estimators. In

6 Tennessee’s Project STAR is a longitudinal data with a single cohort of 11,601 students
for grades in K-3. Missing data information for STAR is reported in table 2.26.

7 Further details of findings with unweighted estimation with complete-case are provided
in Word et al. [1990] and Krueger [1999].
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the application with Project STAR, both Hausman-type tests and regression-based variable

addition tests reject the MCAR and IPW and MI-IPW methods under MAR are proposed to

overcome the endogeneity problem by violation of MCAR. Meanwhile, we cannot directly test

with the null of weak exogeneity for a pooled LS estimator. This is because, for sit = 0 (see

(2.2) for definition), we do not have observations for either outcome or for some covariates

so we cannot estimate E(uit|sit,xit) directly. (see (2.1) for the definitions of variables).

Second, we use LS, reduced-form(IV)8 and first-differencing estimators with IPW and MI-

IPW methods in a linear unbalanced panel data model to estimate the effect of CSR on SAT

score for grades K-3 using Tennessee’s project STAR data. Specifically, we apply the IPW

method using the logit (or probit) model for which all observed past covariates and outcome

are adopted as predictors for probability of selection which is based on Becker [1993]’s school

choice model. In the application, the estimated probability weights are strictly greater than

0.2 so that we can avoid a criticism of instability for the IPW method from the probability

weights being too close to zero. Multiple imputations of chained equation estimates are also

obtained and compared to IPW estimates. The estimates for the effect of CSR on SAT

scores are about 4 to 6.5 percent for IPW and MI-IPW while unweighted estimates for the

return of CSR are 5 to 7.5 percent. Unweighted estimators of complete-case overestimate

the effect by about 1 to 2 percentage points. Direction of bias analysis for pooled estimators

also suggests that unweighted estimators with complete-case reveal upward bias under an

assumption of positive correlation between E(sit|xit) and E(sit+1|xit).

The rest of chapter is organized as follows. In section 2, we provide pooled LS, FE and FD

8 Reduced-form estimation (IV hearafter) implies LS estimation where initial assignment
of treatments is used as covariates instead of actual treatments as in Krueger [1999].
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estimators in an unbalanced linear panel data model. Section 3 introduces robust Hausman-

type tests and variable addition tests to test the MCAR assumption and to show the power

of the tests. In section 4, we describe IPW and MI-IPW methods under MAR to deal with

missing data and to perform robust analysis for the IPW method to the misspecification of

selection model using Monte Carlo(MC) simulation. Section 5 illustrates the tests of the

MCAR and the estimations of IPW and MI-IPW methods under MAR using project STAR

in the analysis of the effect of CSR on SAT score for students in grades K-3. Section 6

provides a method with which to calculate the direction of bias when the MAR assumption

is violated. Section 7 contains concluding remarks.

2.2 Linear panel data model with missing and noncom-

pliance

We are mainly interested in the estimation of marginal treatment effect (MTE hearafter) of

a program in linear unbalanced panel data model. In particular, we focus on three popular

estimators, in linear panel data models, which include pooled LS, FE and FD estimators.

2.2.1 Model

We introduce selection indictor (2.2) to express explicitly the conditions of consistency and

MCAR for LS, FE and FD estimators.

yit = dit · β + x1itδ + x2iγ + ft + ci + uit for , i = 1, 2, .., N and t = 1, 2, .., T (2.1)
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sit =


1 if all of yit,xit are observed

0 otherwise

 (2.2)

where yit is an outcome, dit is a vector of indicators for treatments, x1it is a vector of

time varying covariates, x2i is a vector of time constant covariates, ft is time effect, ci is

unobserved heterogeneity and uit is idiosyncratic error. Let xit = (dit,x1it,x2i, ft), θ =

(β′, δ′, γ′, 1)′ and vit = ci + uit. Then we can rewrite (2.1) as (2.3).

yit = xit · θ + vit for , i = 1, 2, .., n and t = 1, 2, .., T (2.3)

We can express pooled LS, FE and FD estimators with selection indicator as (2.4), (2.5)

and (2.6) respectively and explicitly state conditions for MCAR.

θ̂pls = (
N∑
i=1

T∑
t=1

sitx
′
itxit)

−1
N∑
i=1

T∑
t=1

sitx
′
ityit (2.4)

θ̂FE = (
N∑
i=1

T∑
t=1

sit
..
x
′
it
..
xit)
−1

N∑
i=1

T∑
t=1

sit
..
x
′
it
..
yit (2.5)

where
..
xit = xit − xi , xi = 1

Ti

T∑
t=1

sitxit and Ti =
T∑
t=1

sit.

θ̂FD = (
N∑
i=1

T∑
t=2

sFDit ∆x′it∆xit)
−1

N∑
i=1

T∑
t=2

sFDit ∆x′it∆yit (2.6)

where ∆xit = xit − xit−1 for t = 2, 3, .., T and sFDit = min{sit, sit−1}.

Conditions for consistency with missing data

Pooled Least Squares For a pooled least squares(PLS) estimator, we essentially need

rank condition (2.7) and exogeneity condition (2.8) to obtain a consistent estimator.

rankE(sitx
′
itxit) = dim(θ) , t = 1, 2, ..., T (2.7)

E(sitx
′
itvit) = 0 , t = 1, 2, ..., T (2.8)
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Fixed effects Rank condition and exogeneity condition for fixed-effects estimator are (2.9)

and (2.10), respectively.

rankE(sit
..
x
′
it
..
xit) = dim(θ) , t = 1, 2, ..., T (2.9)

E(sit
..
x
′
it
..
uit) = 0 , t = 1, 2, ..., T (2.10)

First differencing Rank condition and exogeneity condition for first differencing estimator

are (2.11) and (2.12), respectively.

rankE(sFDit ∆x′it∆xit) = dim(θ) , t = 2, ..., T (2.11)

E(sFDit ∆x′it∆uit) = 0 , t = 2, ..., T (2.12)

Exogeneity assumption Strict exogeneity of (2.13) is sufficient for the exogeneity con-

ditions of FE and FD estimators in (2.10) and (2.12) while weak exogeneity of (2.15) is

sufficient for pooled estimator.

E(uit|si,xi) = 0, for t = 1, 2, ..., T (2.13)

where si = (si1, si2, ...., siT ) and xi = (xi1,xi2, ....,xiT ) (2.14)

E(uit|sit,xit) = 0 and E(ci|sit,xit) = 0, for t = 1, 2, ..., T (2.15)

Pooled estimator does not need strict exogeneity while it requires no correlation between

selection and unobserved heterogeneity.
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2.2.2 Tests of missing completely at random

If missing completely at random (MCAR) is satisfied, all three estimators should be consis-

tent with random experiment.9 We suggest a Hausman-type test using null hypothesis of

strict exogeneity and E(ci|sit,xit) = 0 in section 2.2.1.

MCAR MCAR in random experiment implies both weak and strict exogeneity while vio-

lation of either weak or strict exogeneity leads to violation of MCAR. Moreover, with proper

rank conditions, MCAR assumption is sufficient for all of pooled LS, FE and FD estimators

to be consistent while violation of either weak or strict exogeneity leads unweighted pooled

LS or FD and FE estimators to be inconsistent respectively.

Null I: strict exogeneity Consider a case in which the violation of strict exogeneity is

the only source of bias. Under strict exogeneity, both FE and FD estimators are consistent

and the difference of FE and FD estimates should be entirely due to sampling error. We

extend a robust Hausman test which compares FE and FD estimators in balanced panel data

as in [Wooldridge, 2010, p.324-325] to unbalanced panel data model by constructing a Wald

statistic based on
√
n(β̂FE − β̂FD). The rejection of null hypothesis implies the violation of

strict exogeneity (Cov(uit,sidi) 6= 0) and both FE and FD estimators are inconsistent. In

short, MCAR is violated and wnweighted FE and FD estimators are inconsistent.

Singularity Since we can not obtain the estimates for FE and FD coefficient of time

constant covariates, the set of parameters that we can use to construct a Wald statistic

9 See Wooldridge [2009] for more discussion of equivalence of three estimators under the
null.
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should exclude the coefficients from time constant variables. Thus, in typical applications,

the indicators for the treatments of a program should vary over time to apply our method

of comparing two consistent estimators under the null.

Null II: no correlation between selection and unobserved heterogeneity We pro-

pose a subsequent test for the case when we can not reject the null of strict exogeneity. We

assume strict exogeneity hold both under the null and the alternative. Therefore, under

the null, all conditions for the consistency of pooled, FE and FD estimators are satisfied

while, under the alternative, E(ci|sit,xit) = 0 is not satisfied. Still both fixed effect and

first differencing estimators provide consistent estimators both under the null and the alter-

native while pooled estimator is consistent only under the null.10Thus, we can test the null

hypothesis of MCAR by using differential correlation between selection and unobserved het-

erogeneity across treatments and control as alternative. We construct a Wald statistic based

on
√
n(β̂pls−β̂FE) to perform a test of MCAR. The rejection of the null implies the violation

of E(ci|sit,xit) = 0 (conditional on xit Cov(ci,sitxit) 6= 0) and this leads pooled estimator to

be inconsistent because of Cov(ci,sitxit)6= 0. Under ideal conditions and E(ci|sit,xit) 6= 0,

MCAR is violated and unweighted pooled estimator is inconsistent while, with FE and FD

transformed linear models, MCAR assumption holds and unweighted FE and FD estimators

are consistent.

10Strict exogeneity assumption is maintained both under the null and under the alterna-
tive. We also assume that rank conditions are satisfied for all estimators we consider in this
section.
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2.2.3 Implications from the rejection of tests

The rejection of strict exogeneity implies that both unweighted FE and FD estimators with

complete-case are inconsistent. The failure of rejection of strict exogeneity and the success

of rejection for Cov(ci,sit|xit)= 0 leads unweighted pooled estimator with complete-case to

be inconsistent while we can not reject the null that unweighted FE and FD estimators with

complete case are consistent.11

The rejection of both tests implies missing indicator is probably correlated with both time-

varying and time-constant unobserved variables even conditional on observed variables(ci

and ui are correlated with sitxit) so that MCAR is violated and unweighted FE and FD

estimators with complete case are invalid. Therefore, we need to control for missing data

to produce a valid statistical analysis. Either FD or FE transformations are not enough to

obtain a valid inference since the correlation between ui and sixi is not zero.

2.3 Formal tests of MCAR

In this section, we introduce a test statistic used in performing robust Hausman tests for

MCAR assumption and investigate the power of the test via Monte Carlo experiment.

11 Under the null of these two Hausman-type tests, all other conditions for consistency
including rank condition and other regularity conditions are assumed to be satisfied.
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2.3.1 Hausman-type test I - Comparison of θ̂pls and θ̂FE using

E(ci,sitxit)= 0 as null

A test statistic is constructed to perform a Hausman-type test for the null of no correlation

between unobserved heterogeneity and missing data. First, we stack two estimators θ̂pls and

θ̂FE . We denote stacked estimator as θ̂a = (θ̂′pols, θ̂
′
FE)′ and denote restriction matrix as R

of k × 2k.

√
nθ̂a =


1
n

n∑
i=1

T∑
t=1

sitx
′
itxit 0

0 1
n

n∑
i=1

T∑
t=1

sit
..
x
′
it
..
xit


−1

2k×2k


1√
n

n∑
i=1

T∑
t=1

sitx
′
ityit

1√
n

n∑
i=1

T∑
t=1

sit
..
x
′
it
..
yit


2k×1

and R = [Ik| − Ik].

We write the null hypothesis as (2.16) and this implies that under the null both pooled

LS and FE estimators are consistent.

H0 : Rθa = 0

Rθa =



1 0 · · · · · · 0 −1 0 · · · · · · 0

0 1 0 · · · 0 0 −1 0 · · · 0

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

0 0 · · · 0 1 0 0 · · · 0 −1


k×2k



θ1,ls

...

θk,ls

θ1,FE

...

θk,FE


2k×1

(2.16)
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=



θ1,ls − θ1,FE

θ2,ls − θ2,FE

...

...

...

θk,ls − θk,FE


k×1

= 0

Using the null H0 : Rθa = 0 12and consistency conditions in (2.2.1), we construct a Wald

statistic which converges asymptotically to a chi-squared distribution with degree of freedom

equal to number of restrictions, k in (2.16).

Assumptions

1. Conditional strict exogeneity : E(uit|xi, si) = 0, ∀t

2. no correlation between unobserved heterogeneity and missing data: E(ci|xit, sit) = 0.

3. Rank conditions: E(
∑T
t=1 s

FE
it

..
x
′
it
..
xit) and E(

∑T
t=1 sitx

′
itxit) have full rank

p lim
1

n

n∑
i=1

T∑
t=1

sitx
′
itxit = E(

T∑
t=1

sitx
′
itxit)

p lim
1

n

n∑
i=1

T∑
t=1

sit
..
x
′
it
..
xit = E(

T∑
t=1

sit
..
x
′
it
..
xit)

4. Conditions for applying CLT to following two objects, 1√
n

n∑
i=1

T∑
t=1

sitx
′
ituit and

1√
n

n∑
i=1

T∑
t=1

sit
..
x
′
it
..
uit.

12 This is equivalent to H0 : θj,PLS = θj,FE ∀j = 1, 2, ...k

59



A Wald Statistic for a robust Hausman test

Proposition 2 Under assumption 1,2,3,and 4, for the test with null hypothesis of H0 :

Rθa = 0, we can define a Wald type statistic Wa which converges to χ2
k distribution.

Wa = [R
√
n(θ̂a)]′[Rv̂ar(

√
nθ̂a)R′]−1R

√
n(θ̂a) ∼ χ2

k

where

Rθ̂a =



1 0 · · · · · · 0 −1 0 · · · · · · 0

0 1 0 · · · 0 0 −1 0 · · · 0

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

0 0 · · · 0 1 0 0 · · · 0 −1


k×2k



θ̂1,PLS

...

θ̂k,PLS

θ̂1,FE

...

θ̂k,FE


2k×1

=



θ̂1,PLS − θ̂1,FE

θ̂2,PLS − θ̂2,FE

...

...

...

θ̂k,PLS − θ̂k,FE


k×1

Proof. See appendix.

2.3.2 Monte Carlo experiment I

We investigate the power of the test using Monte Carlo simulation. We generate a selection

process which reduces full sample to either 75 or 50 percent of full sample. Generated
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selection process induces a differential correlation between unobserved heterogeneity and

selection across treatment and control. Thus, this particular selection process preserves

asymptotic consistent results for FE and FD estimators. We focus on how the power of test

changes as the fraction of complete-case data to full data changes to 75 and 50 percents.

Data generating process

Data generation process is based on following outcome and selection process.

The model for DGP

yit = dit · α + xit · β + ci + uit, for i = 1, 2, .., n and t = 1, 2, 3, 4

where dit a binary variable and xit is continuous variable.

si1 = 1; sit = 1(dit · γ +
wi√

2
+
eit
2
> a), where γ = 1 for i = 1, 2, .., n and t = 2, 3, 4

Variables generation

1. d?it = Φ(
hit+vi√

2
) where Φ(·) is standard normal CDF. dit = 1 if d?it > 0.7. α = 1,

hit ∼ iidN(0, 1) and vi ∼ iidN(0, 1).

2. xit ∼ iidN(0, 1), β = 0.2

3. uit ∼ iidN(0, 1)

4. ci ∼
√

3wi
2 +

ai
2 , wi ∼ iidN(0, 1) and ai ∼ iidN(0, 1)

5. s?it = Φ(ditγ +
wi√

2
+

eit
2 ) where γ=1 . sit = 1 if s?it > a,

where a determines the proportion of missing data.
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Table 2.1. Hausman-type test I: Null and Alternative (cov(sitdit, ci) 6= 0)

Null Alternative

Pooled LS Consistent Inconsistent

FE estimator Consistent Consistent

Table 2.2. Hausman-type test I: Null and Alternative (cov(sitdit, ci) 6= 0)

Null Alternative

RE estimator Consistent and Efficient Inconsistent

FE estimator Consistent Consistent

With this data generating process, the bias of pooled LS estimator for α is originated from

wi which causes a differential correlation between sit and ci across dit while, for FE estimator,

FE transformation eliminate ci and FE estimator for α is consistent. This particular selection

process leads to general missing.

The size and power of the Hausman-type I test is based on the estimators with character-

istics in 2.1 under the null and alternative.

As DGP satisfy the conditions for Random effects (RE) estimator to be ideal under the

null we can also carry out Hausman type-I test by stacking RE and FE estimators. For

this case, the size and power of the Hausman-type I test is based on the estimators with

characteristics in 2.2 under the null and alternative.

Simulation results

MC simulations are performed with 1,000 replications with T=4 and various n from 100 to

5,000 and cluster robust standard error is used in all simulations. We choose the size of T=4

to mimic the actual sample size of Tennessee’s Project STAR in the application.

In DGP, a determines the missing proportion of data. Therefore, a=0 implies no missing
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data so it is a balanced panel while a=0.5 implies 50 percent of data is missing and only

25 percent of data is complete case. Third column and fourth column in tables 2.3 and 2.4

represent the means of pooled LS and FE estimates for α̂ respectively. P-value column shows

that the mean of p-value for Wald statistic, Wa for Hausman-type test I. 1(P < .05) column

shows the mean of the rejection of null at the nominal level 0.05. Finally, 95-CI column

represents, the coverage for 1(P < .05).

Both in table 2.3 and table 2.4, the power of test increases with cross-sectional size, n,

for all a > 0. For example, for the data of same size as Project STAR data for which n=

6,800 in each grade and a=0.5(missing fraction of data), the power of test is 1 in both 2.3

and 2.4. Overall, if n is greater than 5,000, the power of test is 1 regardless of the value for

a(fraction of non-complete data to full data) in the simulation. In short, the power of robust

Hausman-type test using the difference between pooled LS and FE is quite reliable to test

MCAR for n > 5, 000. As we see in tables 2.3 and 2.4, under alternative DGPs, both bias

and standard error is smaller for RE estimator than those for pooled estimator.

In both 2.3 and 2.4, the panel with a=0 shows the results for balanced panel data and it

reports no size distortion for all n and the coverage rate of rejection frequency contains true

nominal level, 0.05, for all n.
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Table 2.3. Pooled LS and FE estimates for α and p-value for Wa

a = 0 True α Pooled FE p-value r ≡ 1(P<.05) 95-CI

n = 100 1 1.003 1.002 0.502 0.054 (0.040,0.068)

n = 500 1 1.003 1.002 0.510 0.062 (0.047,0.076)

n = 1, 000 1 0.996 0.998 0.496 0.047 (0.034,0.060)

n = 2, 000 1 0.999 1.001 0.490 0.047 (0.034,0.060)

n = 5, 000 1 0.998 1.000 0.510 0.048 (0.035,0.061)

a = 0.25 True α Pooled FE p-value r ≡ 1(P<.05) 95-CI

n = 100 1 0.810 1.000 0.374 0.155 (0.132,0.177)

n = 500 1 0.812 1.000 0.132 0.533 (0.502,0.564)

n = 1, 000 1 0.804 0.997 0.033 0.846 (0.823,0.868)

n = 2, 000 1 0.810 1.001 0.002 0.990 (0.984,0.996)

n = 5, 000 1 0.807 0.999 0.000 1 (1,1)

a = 0.5 True α Pooled FE p-value r ≡ 1(P<.05) 95-CI

n = 100 1 0.758 1.002 0.348 0.182 (0.158,0.206)

n = 500 1 0.754 1.000 0.089 0.664 (0.635,0.693)

n = 1, 000 1 0.747 0.999 0.014 0.936 (0.920,0.951)

n = 2, 000 1 0.751 0.999 0.001 0.995 (0.991,0.999)

n = 5, 000 1 0.750 1.000 0.000 1 (1,1)

*Note: 1(P<.05) is the rejection rate for the null of H0:α=1 with nominal value 0.05.; a is
the ratio of missing sample to full sample.; Cluster robust standard error has been used in

all estimations.; p-value is the mean of p-value for Wa, r is rejection rate, and CI-95 is
coverage for r.
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Table 2.4. RE and FE estimates for α and p-value for Wa

a = 0 True α Pooled FE p-value r ≡ 1(P<.05) 95-CI

n = 100 1 .999 .999 0.512 0.051 (0.037,0.065)

n = 500 1 1.000 1.000 0.495 0.055 (0.040,0.069)

n = 1, 000 1 1.000 1.001 0.497 0.050 (0.036,0.064)

n = 2, 000 1 1.001 1.002 0.507 0.054 (0.040,0.068)

n = 5, 000 1 1.000 1.000 0.496 0.045 (0.032,0.058)

a = 0.25 True α Pooled FE p-value r ≡ 1(P<.05) 95-CI

n = 100 1 0.960 1.000 0.397 0.141 (0.119,0.163)

n = 500 1 0.962 1.001 0.166 0.489 (0.458,0.520)

n = 1, 000 1 0.958 0.998 0.055 0.768 (0.742,0.794)

n = 2, 000 1 0.962 1.001 0.007 0.965 (0.954,0.976)

n = 5, 000 1 0.960 1.000 0.000 1 (1,1)

a = 0.5 True α Pooled FE p-value r ≡ 1(P<.05) 95-CI

n = 100 1 0.973 1.005 0.433 0.119 (0.099,0.139)

n = 500 1 0.968 1.000 0.225 0.325 (0.296,0.354)

n = 1, 000 1 0.967 1.001 0.105 0.616 (0.586,0.646)

n = 2, 000 1 0.965 0.999 0.026 0.879 (0.859,0.899)

n = 5, 000 1 0.967 1.001 0.000 1 (1,1)

*Note: 1(P<.05) is the rejection rate for the null of H0:α=1 with nominal value 0.05.; a is
the ratio of missing sample to full sample.; Cluster robust standard error has been used in

all estimations.; p-value is the mean of p-value for Wa, r is rejection rate, and CI-95 is
coverage for r.
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2.3.3 Hausman-type test II - Comparison of θ̂FE and θ̂FD, Null:

strict exogeneity

A test statistic for a Hausman-type test of strict exogeneity is derived. We stack two

unbiased estimators θ̂FE , θ̂FD under strict exogeneity and denote stacked estimator as

θ̂b = (θ̂′FE , θ̂
′
FD)′ and restriction matrix as R of k × 2k.

√
nθ̂b =


1
n

n∑
i=1

T∑
t=1

sit
..
x
′
it
..
xit 0

0 1
n

n∑
i=1

T∑
t=2

sFDit ∆x′it∆xit


−1 

1√
n

n∑
i=1

T∑
t=1

sit
..
x
′
it
..
yit

1√
n

n∑
i=1

T∑
t=2

sFDit ∆x′it∆yit


Using the null H0 : Rθb = 0 and the assumptions for consistency in (2.2.1), we can

construct a Wald statistic which converges asymptotically to a chi-squared distribution with

following assumptions.

Assumptions

1. Conditional strict exogeneity : E(uit|xi, si) = 0, ∀t

2. Rank conditions: E(
∑T
t=1 sit

..
x
′
it
..
xit) and E(

∑T
t=2 s

FD
it ∆x′it∆xit) have full rank

p lim
1

n

n∑
i=1

T∑
t=1

sit
..
x
′
it
..
xit = E(

T∑
t=1

sit
..
x
′
it
..
xit)

p lim
1

n

n∑
i=1

T∑
t=2

sFDit ∆x′it∆xit = E(
T∑
t=2

sFDit ∆x′it∆xit)

3. Conditions for applying CLT to following two objects, 1√
n

n∑
i=1

T∑
t=1

sit
..
x
′
it
..
uit and

1√
n

n∑
i=1

T∑
t=2

sFDit ∆x′it∆uit.
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Proposition 3 Under assumption 1,2,and 3, for the test with null hypothesis of H0 : Rθb =

0, we can derive a Wald type statistic Wb that converges to χ2
k distribution.

Wb = [R
√
n(θ̂b)]

′[Rv̂ar(
√
nθ̂b)R

′]−1R
√
n(θ̂b) ∼ χ2

k

Proof. See appendix. It can be obtained in similar manner as Hausman type I test.

Singularity A test using FE and FD estimators can only include the coefficients for time

varying covariates.13

2.3.4 Monte Carlo experiment: Test of MCAR using strict exo-

geneity assumption

We investigate the power of test for DGPs with selection processes which reduce full sample

to either 75, 50 or 25 percent of full sample and induce a differential correlation between

selection and idiosyncratic errors across dit(treatment and control). Thus, these selection

processes violate strict exogeneity assumption. We focus on how the power of test changes

as we increase the missing proportion of data from 25 percent to 75 percent.

Data generating process

Data generation is based on following outcome and selection process.

The model for DGP

yit = dit · α + xit · β + ft + ci + uit (2.17)

13 See Wooldridge [2010] for more discussion.
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where i = 1, 2, .., n and t = 1, 2, 3, 4

si1 = 1; sit = 1 if Φ(
vit + wi + eit√

3
> cutoff) and sit = 0 otherwise (2.18)

Variables generation

1. d?it = Φ(
hit+vi√

2
) where Φ(·) is standard normal CDF. dit = 1 if d?it > 0.5. and

dit = 0 otherwise. α = 1, hit ∼ iidN(0, 1) and vi ∼ iidN(0, 1).

2.  uit

eit

 ∼ BN


 0

0

 ,
 1 ρ

ρ 1




where BN is bivariate normal and ρ=0.7 in the simulation.

3. xit ∼ iidN(0, 1), β = −0.2

4. ft ∼ uniform(−1, 1)

5. ci ∼
√

3wi
2 +

vi
2 , wi ∼ iidN(0, 1) and vi ∼ iidN(0, 1)

6. s?it = Φ(
hit+wi+eit√

3
). sit = 1 if s?it > a and sit = 0 otherwise ,

where a determines proportion of missing data since s?it is normal CDF.

Both FE and FD estimators for α are not valid by a differential correlation between sit and

uit across dit since sitdit is correlated with uit and the source of differential correlation hit

is time-varying. The differential correlation remains even after FE and FD transformations

so that both FE and FD estimators are not reliable for unbalanced panel data with a >0.
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Simulation results

Table 2.5 reports the size and power of Hausman-type II tests. Simulation performed with

1,000 replications with data set size of n ranges from 100 to 5,000 and T=4.

First, from the a=0 panel, we see in column r ≡ 1(P<.05) that there is no size distortion

and the coverage rate of rejection frequency contains true nominal level 0.05 for all n from

100 to 5,000. Second, the power of test increases with the proportion of missing data, a,

and cross-sectional sample size, n. Third, for Project STAR data of a=0.5 and n=6,000,

the power of test is about 0.6. Therefore, it is quite possible that we may not be able to

reject strict exogeneity assumption even if selection and time-varying unobserved variables

are correlated since finite sample power is strictly less than 1.

2.3.5 Variable addition test of strict exogeneity

Wooldridge [2009] proposed a simple regression based test of strict exogeneity for FE and

FD estimators in an unbalanced panel data. This test simply adds selection indicator of

sit+1 as an additional regressor in the linear regression model for FD and FE estimations.

Then the t-statistics for the coefficient, λ on sit+1 in (2.19) and (2.20) can be used in t-tests

of null hypothesis of H0 : λ = 0. This is because the strict exogeneity implies any function

of si = {si1, si2, ....siT } should not be correlated with ui = (ui1, ui2, ...uiT ) conditional on

xi. The rejection of test implies the violation of strict exogeneity and violation of strict

exogeneity is sufficient for violation of MCAR assumption so that both unweighted FE and

FD estimators are invalid.
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Table 2.5. FD and FE estimates for α and p-value for Wb

a = 0 True α FD FE p-value r ≡ 1(P<.05) 95-CI

n = 100 1 0.994 1.002 0.492 0.061 (0.046,0.076)

n = 500 1 1.001 1.002 0.504 0.045 (0.032,0.058)

n = 1, 000 1 0.998 0.998 0.513 0.047 (0.034,0.060)

n = 2, 000 1 0.999 0.999 0.499 0.044 (0.031,0.057)

n = 5, 000 1 1.001 1.000 0.507 0.054 (0.040,0.068)

a = 0.25 True α FD FE p-value r ≡ 1(P<.05) 95-CI

n = 100 1 0.831 0.849 0.487 0.078 (0.061,0.095)

n = 500 1 0.834 0.854 0.469 0.061 (0.046,0.076)

n = 1, 000 1 0.829 0.849 0.456 0.082 (0.065,0.099)

n = 2, 000 1 0.831 0.850 0.418 0.121 (0.101,0.141)

n = 5, 000 1 0.830 0.850 0.311 0.263 (0.236,0.290)

a = 0.5 True α FD FE p-value r ≡ 1(P<.05) 95-CI

n = 100 1 0.749 0.802 0.457 0.087 (0.070,0.104)

n = 500 1 0.743 0.803 0.388 0.167 (0.144,0.190)

n = 1, 000 1 0.752 0.802 0.361 0.205 (0.180,0.230)

n = 2, 000 1 0.753 0.808 0.259 0.352 (0.322,0.382)

n = 5, 000 1 0.751 0.807 0.162 0.599 (0.569,0.629)

a = 0.75 True α FD FE p-value r ≡ 1(P<.05) 95-CI

n = 100 1 0.725 0.879 0.409 0.126 (0.105,0.147)

n = 500 1 0.717 0.869 0.296 0.320 (0.291,0.349)

n = 1, 000 1 0.708 0.869 0.218 0.495 (0.464,0.526)

n = 2, 000 1 0.711 0.869 0.159 0.611 (0.581,0.641)

n = 5, 000 1 0.712 0.866 0.106 0.752 (0.725,0.779)

*Note: 1(P < .05) column shows the mean of the rejection of null at the nominal level
0.05.; a is the ratio of missing sample to full sample.; Cluster robust standard error has
been used in all estimations.; p-value is the mean of p-value for Wb. FD column and FE
column represents the mean of FD and FE estimates for α̂ respectively. Finally, 95-CI

column represents, the coverage for 1(P < .05).
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..
yit = λ · ..sit+1 +

..
x
′
itθ + ft +

..
uit , for sit = 1 (2.19)

∆yit = λ ·∆sit+1 + ∆x′itθ + ∆ft + ∆uit , for sFDit = 1 (2.20)

Although we can not directly test weak exogeneity by variable addition test for pooled

estimator in (2.21) since we can not observed all xit, yit for individual i when sit =0, we can

obtain indirect evidence from variable addition test in the pooled LS based on the assumption

of non-zero serial correlation of selection indicator. If we further assume that E(sit|xit) and

E(sit+1|xit) is correlated, we can t-statistic on λ in (2.21) to test weak exogeneity and

MCAR.

yit = λ · sit+1 + x′itθ + ft + ci + uit , for sit = 1 (2.21)

Data generating process

We use the same DGP processes as in section 2.3.4 where we study the power of Hausman-

type test for strict exogeneity. We only change the model of (2.17) from 2.3.4 to (2.19) and

(2.20) for FE and FD estimators. In these DGPs, the selection and unobserved heterogeneity

or time-varying idiosyncratic errors are differentially correlated across dit so that both FD

and FE transformations cannot eliminate the correlation and both FD and FE estimators

are not valid.

The power of variable addition test for strict exogeneity assumption

Table 2.6 reports the estimates for λ̂ in (2.19) and (2.20) for FE and FD estimators. In all

simulations, the number of replication is 1,000 with the data set of T=4 and n from 100
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to 5,000 and the cluster standard error are used in all estimations. Selection indicators are

generated to produce the fraction of missing data to full data to be ranged from a=0.1 to

a=0.75.

For pooled LS estimator, the power of the test for the null, H0 : λ = 0 in (2.21) is 1 for

all a >0 and n ≥500 but this is not a direct test of MCAR for the pooled LS estimator.

However, if we assume further non-zero correlation between E(sit|xit) and E(sit+1|xit), this

test become valid test of weak exogeneity and MCAR.

For both FE and FD estimators, the power of test increases with n and a. For instance,

for the case of a=0.5, the power of test increases from 0.07 to 0.26 for FE estimation while

the power of test increases from 0.07 to 0.67 for FD estimation. Still, the power of test is

significantly lower than 1 for the data with the actual size of the Project STAR. The power

of variable addition tests is greater for FD estimator than FE estimator with the same n

and a.

Compared to a robust Hausman-type test at the last column in table (2.6)which uses strict

exogeneity, the power of variable addition test is greater for when a ≤ 0.5 while the power

of variable addition test is lower when a=0.75.
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Table 2.6. Test of strict exogeneity variable addition test and Hausman test for Wb

LS FD FE Hausman

a = 0.1 t-stat 1(P<.05) 95-CI t-stat 1(P<.05) 95-CI t-stat 1(P<.05) 95-CI 1(P<.05)

n = 100 3.40 0.92 (0.90,0.94) -0.13 0.08 (0.06,0.09) -0.07 0.07 (0.05, 0.08)

n = 500 7.30 1 (1,1) -0.33 0.05 (0.04,0.06) -0.18 0.05 (0.04,0.06)

n = 1, 000 10.35 1 (1,1) -0.48 0.07 (0.05,0.09) -0.23 0.06 (0.04,0.07)

n = 2, 000 14.54 1 (1,1) -0.63 0.10 (0.08,0.11) -0.39 0.07 (0.06, 0.09)

n = 5, 000 23.04 1 (1,1) -1.06 0.18 (0.16,0.21) -0.59 0.07 (0.06, 0.09)

a = 0.25 t-stat 1(P<.05) 95-CI t-stat 1(P<.05) 95-CI t-stat 1(P<.05) 95-CI 1(P<.05)

n = 100 3.66 0.96 (0.95,0.97) -0.23 0.07 (0.05,0.08) -0.12 0.06 (0.04,0.07) 0.08

n = 500 8.14 1 (1,1) -0.66 0.10 (0.08,0.12) -0.44 0.07 (0.05,0.09) 0.06

n = 1, 000 11.58 1 (1,1) -0.84 0.15 (0.13,0.17) -0.47 0.08 (0.07,0.10) 0.08

n = 2, 000 16.35 1 (1,1) -1.18 0.22 (0.20,0.25) -0.67 0.10 (0.08,0.11) 0.12

n = 5, 000 25.91 1 (1,1) -1.85 0.45 (0.42,0.48) -1.08 0.19 (0.16,0.21) 0.26

a = 0.5 t-stat 1(P<.05) 95-CI t-stat 1(P<.05) 95-CI t-stat 1(P<.05) 95-CI 1(P<.05)

n = 100 3.52 0.93 (0.92,0.95) -0.32 0.07 (0.06,0.09) -0.20 0.07 (0.06,0.09) 0.09

n = 500 7.94 1 (1,1) -0.79 0.12 (0.10,0.14) -0.46 0.07 (0.06,0.09) 0.17

n = 1, 000 11.21 1 (1,1) -1.05 0.19 (0.16,0.21) -0.60 0.09 (0.07,0.11) 0.21

n = 2, 000 15.97 1 (1,1) -1.50 0.31 (0.28,0.34) -0.86 0.15 (0.13,0.18) 0.35

n = 5, 000 25.19 1 (1,1) -2.37 0.67 (0.64,0.70) -1.31 0.26 (0.23,0.29) 0.60

a = 0.75 t-stat 1(P<.05) 95-CI t-stat 1(P<.05) 95-CI t-stat 1(P<.05) 95-CI 1(P<.05)

n = 100 3.04 0.85 (0.83,0.87) -0.31 0.10 (0.08,0.12) -0.18 0.09 (0.07,0.11) 0.13

n = 500 6.84 1 (1,1) -0.64 0.11 (0.09,0.12) -0.36 0.06 (0.04,0.07) 0.32

n = 1, 000 9.62 1 (1,1) -0.87 0.14 (0.12,0.16) -0.46 0.09 (0.07,0.11) 0.50

n = 2, 000 13.59 1 (1,1) -1.27 0.25 (0.23,0.28) -0.70 0.11 (0.09,0.13) 0.61

n = 5, 000 21.43 1 (1,1) -2.04 0.52 (0.49,0.55) -1.12 0.19 (0.16,0.21) 0.75

*Note: 1(P<.05) is the rejection rate of the null of H0:α=1. a is the ratio of missing sample to full sample.



2.4 Estimations with MAR assumption: IPW and MI-

IPW methods

We introduce the methods under MAR to deal with missing data when MCAR is violated.

MAR assumes that the variables that explain selection (or missing) process are either in-

cluded in outcome model, as covariates or past outcomes, or they are observed as auxiliary

variables.

p(sit = 1|yit, zit) = p(sit = 1|zit) = p(zit) ≡ Git (2.22)

where t = 1, 2, 3 and zit is all observed variables at t.

Therefore, under MAR assumption of (2.22), individuals who have the same past outcome

and covariates have the same conditional probability of selection (or missing) status. In

particular, we focus on two of most popular methods to deal with missing data under MAR

assumption which are IPW and MI methods.14

In this section, we first introduce the idea of the justification for IPW and MI-IPW meth-

ods. Then, we examine finite sample properties for IPW and MI-IPW methods via Monte

Carlo simulation. We consider two DGPs: (i) outcome and selection models are correctly

specified in first DGP and (ii) outcome model is correctly specified but selection model is

misspecified. Simulation with misspecified selection model provides information on the ro-

bustness property of IPW estimators for MTE to the violation of MAR where the violation

14 Unfortunately, it is not possible to test MAR assumption since it is never possible to
know that all appropriate observed variables have been included as predictors in probability
of selection model. Therefore, we suggest a method based on an economic theory for the
specification of selection process where the justification of valid MAR is economic theory for
the selection process.
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of MAR is induced by the selection model misspecification.

2.4.1 IPW method

We first consider IPW method (or efficient version of AIPW method) in Scharfstein et al.

[1999], Wooldridge [2007] and Tsiatis [2006]. These methods are based on the idea that,

complete-case data which are weighted by valid probability of selection can create pseudo-

data that mimic a random sample from the population of interest. Therefore standard

estimation method applied to inverse probability weighted complete-case provides a consis-

tent estimator. Correctly specified probability of selection model leads to the satisfaction of

MAR assumption so that IPW estimator is consistent.

Consistency for IPW estimator

We consider a linear model with selection process as in (2.23) and (2.24) and we are primarily

interested in MTE for dit, α.

yit = dit · α + x1it · β + f1t + c1i + uit (2.23)

where for i = 1, 2, .., n, t = 1, 2, 3, 4, dit is treatment status indicator and x1it is time-varying

continuous covariates.

We exclusively focus on the missing pattern of monotone drop-out (i.e. attrition) in the

modeling of selection process for IPW estimator.15

pi1 = 1; pit = 1 if Φ(zit · γ + f2t + c2i + eit > a) (2.24)

15 We consider both monotone and non-monotone missing in the modeling of selection
process for MI-IPW estimator.
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and pit = 0 otherwise for i = 1, 2, .., n and t = 2, 3, 4. Then the objective function is provided

in (2.25) for the case of balanced panel data model.

n∑
i=1

4∑
t=1

mit(Wit, θ) = 0 where mit = x′itvit (2.25)

where vit = ci + uit, xit = (dit,x1it, ft) and Wit = (yit,xit).

As we introduce missing data, we can rewrite the objective function (2.25) for unbalanced

panel data with complete-case as the following estimating equation of (2.26).

n∑
i=1

4∑
t=1

sit ·mit(Wit, θ) = 0 (2.26)

The estimating equation for IPW estimator with complete-case in unbalanced panel data

is provided in (2.27).
n∑
i=1

4∑
t=1

sit
pit
·mit(Wit, θ) = 0 (2.27)

We suppose p̂it is obtained and converges to E(sit|Wit) in (2.28). Then, under MAR

assumption, we can extend the consistency result of unweighted pooled LS estimator in

balanced panel data to IPW-pooled IPW estimator of (2.28) in unbalanced panel data.

β̂PLS = (
n∑
i=1

T∑
t=1

sitx
′
itxit

p̂(zit)
)−1(

n∑
i=1

T∑
t=1

sitx
′
ityit

p̂(zit)
) (2.28)

where p̂it is estimated with either probit or logit model in the application.

Recall first that the crucial exogeneity condition for Pooled LS estimator to be consistent

in balanced panel is given in (2.29).

E(
T∑
t=1

x′it(ci + uit)) = 0 (2.29)

We show the exogeneity condition of (2.29) for IPW-pooled LS estimator as below. We

start from (2.30).
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E(
T∑
t=1

sitx
′
it(ci + uit)) (2.30)

Using law of iterated expectation and MAR, we can rewrite (2.30) as the following.

E(
T∑
t=1

sitx
′
it(ci + uit)) = E(

T∑
t=1

E(sit|yit, zit)x′it(ci + uit))

= E(
T∑
t=1

P (sit = 1|yit, zit)x′it(ci + uit)) = E(
T∑
t=1

p(sit = 1|zit)x′it(ci + uit))

= E(
T∑
t=1

p(zit)x
′
it(ci + uit))

Thus, provided that p̂(zit) is the consistent estimate for the correctly specified p(zit),

we obtain consistent IPW-Pooled LS estimator if conditional strict exogeneity of (2.31) is

satisfied.

E(
T∑
t=1

sitx
′
it(ci + uit)

p(zit)
) = E(

T∑
t=1

E(sit|yit, zit)
x′it(ci + uit)

p(zit)
) = E(

T∑
t=1

p(zit)
x′it(ci + uit)

p(zit)
)

= E(
T∑
t=1

x′it(ci + uit)) = 0 (2.31)

As shown in (2.31), MAR assumption for selection process is critical for the validity of

IPW method.

An example of using MAR for IPW Estimator

We consider the estimation of MTE for CSR on student achievement with project STAR

data in illustrating the use of MAR assumption for the probability of selection.

We consider IPW-Pooled LS estimator for missing data.

β̂PLS = (
n∑
i=1

T∑
t=1

sitx
′
itxit

p̂(zit)
)−1(

n∑
i=1

T∑
t=1

sitx
′
ityit

p̂(zit)
)
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Specification for the probability of selection We estimate p(sit = 1|zit) using binary

logit and probit with maximum likelihood model for Git(zit, γ0).

Git(zit, γ) ≡ p(sit = 1|zit) = p(zit), t = 2, 3, 4

zit = (xit−1, yit−1), or zit = (xit−1,...,x1, yit−1, .., yi1)

where zit is observed at t

(i) xit−1 : class types (initial small, initial aide, cumulative years in small class, cumula-

tive years in small class) , student characteristics (gender, race, free lunch status), teacher

characteristics (race, experiences, highest degree dummy), class characteristics (fraction of

classmates with kindergarten attendance, fraction of classmates with free lunch, fraction of

female classmates , fraction of minority classmates) (ii) yit−1 : previous year SAT percentile

score

We use logit binary response models for probability of selection

πit = p(sit = 1|zit, sit−1 = 1) = P (zitγ + εit > 0) = Λ(zitγ), sit−1 = 1.

where Λ(zitγ) =
exp(zitγ)

1 + exp(zitγ)

For the case of using logit model for selection probability, we can use conditional expectation

argument sequentially to estimate selection probability as follows.

Gi1 = 1, Gi2 = πi2, Gi3 = πi3 · πi2, Gi4 = πi4 · πi3 · πi2

Ĝi1 = 1, Ĝi2 = Λ(si1 · zi2γ̂), Ĝi3 = Λ(si1 · zi2γ̂) · Λ(si2 · zi3γ̂)

Ĝi4 = Λ(si1 · zi2γ̂) · Λ(si2 · zi3γ̂) · Λ(si3 · zi4γ̂)
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Once we obtain γ̂ from logit estimation, we can construct weights for inverse probability

weighted (IPW) pooled LS estimator as in (2.32).

β̂PLS = (
n∑
i=1

T∑
t=1

sitx
′
itxit

Ĝit
)−1(

n∑
i=1

T∑
t=1

sitx
′
ityit

Ĝit
) (2.32)

Idea behind the consistency of IPW estimator

Under MAR, those cross-section units that have the same predictors values (past outcome,

covariates and auxiliary variables) should have the same probability of selection (missing).

Thus, remaining cross-section units with predictors of low(high) probability of selection get

high weights and play the role of as many cross-section units who leave sample and had the

same predictors values. Using valid probability weights eliminates bias due to differential

attrition across treatment and control. For instance, in the study of the MTE for CSR on

SAT score, if those students who left sample and might have perform well if they remained

in sample without treatment were exclusively in regular class, ignoring missing distorts MTE

of small class since students in regular class misrepresent population. IPW method recovers

random sample property of balanced panel since remaining students with the same predictors

in probability of selection model as students who left sample play the role of themselves and

missing students by receiving more weights.

2.4.2 AIPW estimator

The objective function of (2.33) provide an AIPW(Augmented IPW) estimator which is

consistent and optimally efficient if data are MAR and conditional expectation is correctly
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specified.
n∑
i=1

4∑
t=1

[
sit
pit
·mit(Wit, θ) + (1− sit

pit
)E(mit|It−1)] = 0 (2.33)

where It−1 is all information available at t− 1.

IPW estimator is consistent if probability of selection is correctly specified but is generally

inefficient. While an AIPW estimator can be efficient and is consistent if either a model

specification for probability of selection or a model specification for conditional expectation.

(i.e. joint distribution of missing variable) An efficient AIPW estimator can be constructed

with appropriate model for conditional expectation in (2.33).16

Unfortunately, we do not have much information for parametric specification of the model

on conditional expectation, E[sit · mit(Wit, θ)] = 0, to use in a practical application since

it basically requires a correct specification for joint distribution of missing variables and,

therefore, in the implementation, we focus on either the consistency of IPW estimator which

only requires correct specification for probability of selection or MI-IPW estimator for which

MI is based on MICE for E[sit · mit(Wit, θ)] = 0. In the application of MI, imputation is

16AIPW is doubly robust and an estimator is called doubly robust if it is consistent when
either a model for conditional expectation or a model for selection is correctly specified.
Moreover, AIPW estimator is efficient as it delivers semi-parametric efficiency bound among
the class of estimators that use

∑n
i=1

∑4
t=1 sit · mit(Wit, θ) = 0. For more discussion on

AIPW estimators is provided in Tsiatis [2006] and Robins et al. [1994]. Recently, we
observed theoretical development of AIPW estimator(doubly robust(DR) estimator) which
combines IPW method with imputation method as in equation (2.33). For instance, the
first-term in objective function (2.33) is the same as IPW use for identification of α with
complete-case and second-term in (2.33) is the same objective function as in imputation
model.17 Theoretical attractiveness of DR estimator such as robustness and efficiency has
been studied in great details in Carpenter et al. [2006], Tsiatis [2006], Robins and Rotnitzky
[1995], and Wooldridge [2007]. However, up to our knowledge, there is no simulation study to
evaluate the usefulness of theoretical properties of IPW or DR estimators for the regression
model with high-dimensional missing covariates of various forms including binary, count,
ordinal and fraction. Most of simulation studies has only one missing continuous variable in
the model and uses joint multivariate normal distribution for conditional expectation term in
the simulations.(Bang and Robins [2005], Carpenter et al. [2006] and Graham et al. [2008]).
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applied only to cross-section units who are remained in the sample with missing variables

but not to cross-section units who leave sample once but come back to sample later.

2.4.3 Multiple imputation

We consider imputation based method to deal with missing data as in Rubin [1987], Bu-

uren et al. [1999] and Ragnuthan et al. [2001]. Although multiple imputation has become

increasingly popular in epidemiology, psychology, statistics and other social sciences, up to

our knowledge, there has been no MI method appropriately designed for multiple treat-

ments and missing occurs for outcome and all of covariates with various types. However,

high-dimensional covariates with general missing or attrition is quite common in economic

applications and the necessity of correct specification for the joint distribution of all missing

covariates and outcome makes MI method unattractive in practice. For instance, in the

application with Project STAR data, missing occurs in outcome and covariates including

class size, free lunch status dummy, teacher’s years of experience, teacher’s master degree

dummy, teacher’s race dummy, fraction of female classmates, fraction of minority classmates

and so forth. Therefore, we restrict the use of imputation based method to within sample

individuals who have missing variables so that we do not apply imputation for the units who

are not in the sample so outcome and all covariates are missing. In most application, for the

cross-section units in the sample with missing variables, it is very rare that the number of

missing variables is more than three so the burden of approximation is reduced significantly

compared to imputing all variables for cross-section units who leave sample. In implementa-

tion, we apply a MI method using specification of a logistic distribution for binary variables
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and normal distribution for all other continuous variables.

Among many MI methods used in practice, we implement fully conditional approach of

multiple imputation in Royston [2004] and Royston [2005], using Stata ice command. 18

Set-up for MICE Estimator

Conditional predictive distribution is estimated from the observed data under MAR. Missing

variable are multiply imputed for within sample units. In implementation, we adopt a

univariate conditional models in a Gibbs sampler type approach in Buuren et al. [1999].

We model each variable separately conditional on others observed variables. Sequences of

missing variables imputation follow from most sample to least sample in terms of number of

sample.

yit = (yO, yM ), yO : observed , yM : missing (2.34)

xit = (xO,xM ), xO : observed ,xM : missing (2.35)

We need to model all variables with missing data as in (2.36) and (2.37).

f(yM,it|WO,it−1) , ∀t (2.36)

f(xM,it|WO,it−1) , ∀t (2.37)

where WO,it−1 is all observed variables at t− 1.

18 There are currently two widely used methods of model-based imputation: multiple
imputation based on multivariate normal distribution for missing variables and multiple
imputation by chained equation(MICE) in Buuren et al. [1999]. We implement a MI method
as comparison purpose to IPW method since it is readily available to most of statistical
packages such as Stata, SAS, and R.
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We conduct multiple imputation by chained equations method in Stata implementation

of Royston [2005] and type in below command.

ice y d x ‘auxiliary’ using temp.dta, m(10) cmd(d:logit)

where m(10) implies that ice produces 10 imputed data sets.

2.4.4 MI-IPW method

In unbalanced panel data, we suggest MI-IPW method for which implementation is based

on the following. First, we sort data for each cross-section unit at each time into four

category: complete case, monotone(attrition), non-monotone-I, and non-monotone-II. Non-

monotone-I missing is for cross-section unit which is in sample but has missing variables

while non-monotone-II missing is cross-section unit who leave sample but re-enter sample

later. We assume MCAR for cross-section unit with missing patterns of non-monotone-II

so that we ignore these types of data and still obtain valid statistical analysis. Second,

we impute missing variables for non-monotone-I unit using the imputation methods in 2.4.3.

Third, by treating imputed non-monotone-I units as complete case, we combine complete case

and imputed non-monotone-I data and apply IPW. We obtain MTE α̂j and its covariance

matrix V̂j . Finally, we iterate the second and third procedures multiple(M) times. By

extending Rubin’s formula(Rubin [1987]) for MI method to MI-IPW method, we obtain

MI-IPW estimator for coefficient and variance matrix as in (2.38).

α̂ =
1

M

M∑
j=1

αj , V̂ =
1

M

M∑
j=1

V̂j +
M + 1

M
B (2.38)

where B = 1
M−1

∑M
j=1(αj − α)(αj − α)′
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As probability weight in IPW method eliminates bias due to differential missing while MI

for missing variables enhances the efficiency. Both IPW and MI method use MAR assumption

in the specification of probability of selection (missing) and missing variables.

2.5 Monte Carlo experiment

We adopt data generating processes (DGPs) with monotone missing data(i.e. missing by

attrition) so that data missing occurs simultaneously for outcome and all covariates for a

cross-section unit. The covariates in outcome model include both discrete and continuous

variables. We are primarily interested in obtaining consistent MTE using IPW method.

2.5.1 DGP I: Correct specification of both outcome and proba-

bility of selection models

We start with a DGP I which satisfies the correct specifications for both outcome and

selection models. Conditional on auxiliary variables c2it, selection is not correlated with

unobserved errors in outcome equation so that MAR is satisfied for DGP I.

Model for data generating process We use a linear model with single treatment and

single covariate for DGP. We generate data with n from 100 to 5,000 and t is 4 to mimic the

actual size of Project STAR data.

yit = dit · α + xit · β + c1i + uit

where i = 1, 2, ..., n, dit is a binary variable and xit is continuous variable.

si1 = 1; sit = 1 if fi + c2it + εit > a and sit−1 = 1, for i = 1, 2, .., n and t = 2, 3, 4
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where a is the cut-off value that determines the fraction of missing sample to full sample

and a=0, -1, -2 are chosen and corresponding fraction of missing data to full data is 75, 50,

and 25 percent, respectively.

Variables generation for DGP I

1. dit = 1 if fi + qit > 0 and dit = 0 otherwise, where fi ∼ iidU(0, 1) , qit ∼ iidN(0, 1)

and α =1

2. xit ∼ iidU(0, 1), β = −0.2

3. c1i = 0

4. uit = rit + vit where rit ∼ iidU(0, 1) and

vi1

vi2

vi3

vi4


∼MVN





0

0

0

0


,





1 ρ ρ ρ

ρ 1 ρ ρ

ρ ρ 1 ρ

ρ ρ ρ 1






where MVN is multivariate normal and ρ=0.7 in the simulation.

5. si1 = 1 and sit = 1 if sit−1 = 1 and fi + c2it + εit > a where εit ∼ iidN(0, 1), and

c2it = rit + qit.

Selection process and the potential source of bias The correlation among selection,

treatment and unobserved errors are induced to be strictly positive in DGP. First, for a

balanced data, dit is not correlated with unobserved errors so that balanced panel unweighted

estimators are consistent. The correlation between selection and treatment is induced by
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fi and qit while the correlation between selection and unobserved errors are induced by

rit. Therefore, there is strictly positive differential correlation between selection and errors

across dit. Therefore, all pooled LS, FE and FD estimators should show finite sample bias.

However, under MAR(i.e. conditional on c2it = rit+qit and fi), the selection is not correlated

with unobserved errors so both pooled LS and FD estimators with correct specification of

probability of selection should not show bias more than sampling error.

Estimation of probability weight for IPW method Estimation of probability weight

is based on (2.39) and (2.40). In Stata, we estimate p̂it for t = 2, 3, 4 using a command (probit

sit fi c2it if sit−1 =1 or logit sit fi c2it if sit−1 =1)

πi1 = 1; pit(sit = 1|zit, sit−1 = 1) = πit = Φ(zit · γ + eit > 0) (2.39)

where eit is standard normal for i = 1, 2, .., n and t = 2, 3, 4.

pit = πit · πit−1 . . . πi2,∀i and for t = 2, 3, 4 (2.40)

p̂it for t = 2, 3, 4 using a command in Stata as follows:

probit s f c2 if s_t-1=1

In this DGP, probit model with predictors, fi and c2it, provides the correct specification

for probability of selection.

Imputation of missing variables using MICE In Stata, we impute missing variables

for y, d, x using following specifications.
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Table 2.7. Specification of models for missing variables

variable distributional assumption command prediction equation

yMit Normal regress dOit xOit cO2it fOi
dMit Logistic logit yOit xOit cO2it fOi
xMit Normal regress yOit dOit cO2it fOi

M represents missing variable and O represent observed variable. In implementation, we
type in a Stata command as follows (Royston [2005]): ice y d x c2 f using temp.dta, m(10)

cmd(d: logit).

Simulation result: Correctly specified outcome and selection models

Table 2.8 reports unweighted estimates for pooled LS, FE and FD with DGP I. It shows

that unweighted estimates are all biased since MCAR is violated. The biases of unweighted

estimators do not depend on n but the biases for unweighted estimators decrease as a (missing

fraction from full data) falls. Interestingly, all unweighted estimators underestimate the

marginal treatment effect (MTE). The magnitude of biases among unweighted pooled LS ,

FE and FD estimators are not much different from each other.

Table 2.9 shows that IPW estimates for pooled LS and FD obtained using data from DGP

I. As theory predicts, both IPW-pooled LS and IPW-FD estimators show no significant finite

sample bias as the mean of MC point estimates converges to true value 1 as n increases for

all a. For the inference with IPW LS estimator, the rejection frequency converges to true

nominal level 0.05 as n increases and the coverage rate of rejection frequency contains 0.05

for all n and a ≤0.5. On the other hand, IPW-FD estimates are getting close to true MTE

as n increases while the rejection frequency does not converges to 0.05 and the coverage rate

of rejection frequency does not contain 0.05 for all n and a. There is over-rejection in the

inference of IPW-FD estimator even for n=5,000 and all a. For example, the mean of MC
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rejection frequency is .09 at the nominal level of .05.

Table 2.10 reports MI estimates for pooled LS, FE and FD with DGP I. The mean of

MC point estimate for MTE of pooled LS is quite close to true value 1 while rejection rate

coverage fails to contain 0.05 for all a and n. The means of MC point estimates for MTE

and associated rejection frequency of FD are all biased. MI estimates for LS, FE and FD

provide incorrect standard errors in finite sample.
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Table 2.8. DGP I: MTE estimates for unweighted estimators

Unweighted LS FE FD

number of n missing fraction Mean(α̂) SD(α̂) Mean(α̂) SD(α̂) Mean(α̂) SD(α̂)

200 0.75 0.968 .152 .951 .142 .952 .155

200 0.5 0.974 .111 .968 .082 .967 .093

200 0.25 0.987 .090 .986 .065 .987 .073

500 0.75 0.963 .099 .951 .086 .951 .095

500 0.5 0.974 .071 .969 .053 .970 .059

500 0.25 0.985 .058 .984 .040 .984 .046

1,000 0.75 0.963 .071 .951 .062 .951 .068

1,000 0.5 0.974 .048 .968 .037 .967 .042

1,000 0.25 0.988 .041 .985 .028 .985 .033

5,000 0.75 0.961 .031 .951 .026 .951 .029

5,000 0.5 0.974 .022 .969 .016 .969 .018

5,000 0.25 0.987 .018 .985 .013 .985 .015

*Note: Missing fraction is the fraction of missing sample to full sample.
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Table 2.9. DGP I: MTE estimates for IPW estimators

IPW LS FD

n % missing Mean(α̂) SD(α̂) r coverage of r Mean(α̂) SD(α̂) r coverage of r

200 0.75 1.001 .246 .086 (.074,.099) .986 .238 .143 (.128,.159)

200 0.5 .997 .142 .060 (.050,.070) .993 .125 .090 (.077,.103)

200 0.25 1.001 .096 .050 (.040,.060) 1.000 .081 .090 (.077,.103)

500 0.75 .996 .179 .080 (.067,.091) .985 .169 .122 (.107,.136)

500 0.5 1.001 .091 .047 (.037,.056) .998 .079 .087 (.075,.099)

500 0.25 .998 .061 .049 (.040,.058) .997 .050 .086 (.074,.098)

1,000 0.75 .997 .137 .078 (.066,.089) .986 .127 .106 (.092,.119)

1,000 0.5 1.001 .065 .047 (.037,.056) .996 .057 .096 (.083,.109)

1,000 0.25 1.000 .043 .049 (.039,.058) .998 .036 .086 (.074,.098)

5,000 0.75 .994 .070 .055 (.045,.064) .992 .065 .087 (.074,.099)

5,000 0.5 1.001 .030 .048 (.038,.057) .997 .026 .082 (.070,.094)

5,000 0.25 1.001 .019 .046 (.036,.055) .999 .016 .092 (.079,.105)

*Note: r ≡ 1(p < .05) is the rejection rate for the null of H0:α=1 with nominal value 0.05.; Cluster robust standard error has
been used in all estimations.
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Table 2.10. DGP I: MTE for estimators with multiple imputations

MI LS FE FD

n % missing Mean(α̂) SD(α̂) Mean(α̂) SD(α̂) r coverage of r Mean(α̂) SD(α̂) r coverage of r

200 0.75 1.006 .168 .980 .161 .551 (.529,.573) .947 .157 .089 (.077,.102)

200 0.5 1.007 .112 .994 .093 .261 (.242,.280) .973 .091 .065 (.054,.076)

200 0.25 1.002 .094 .996 .068 .128 (.113,.142) .984 .074 .064 (.053,.074)

500 0.75 1.013 .106 .988 .101 .563 (.541,.585) .951 .097 .093 (.080,.106)

500 0.5 1.003 .071 .991 .059 .277 (.257,.297) .968 .058 .093 (.080,.106)

500 0.25 1.004 .059 .999 .042 .108 (.095,.122) .986 .046 .065 (.054,.076)

1,000 0.75 1.011 .074 .987 .071 .559 (.537,.581) .952 .066 .110 (.096,.124)

1,000 0.5 1.006 .051 .994 .042 .274 (.255,.294) .970 .041 .107 (.094,.121)

1,000 0.25 1.000 .040 .998 .029 .096 (.083,.108) .985 .033 .082 (.070,.094)

*Note: r ≡ 1(p < .05) is the rejection rate for the null of H0:α=1 with nominal value 0.05.; Cluster robust standard error has
been used in all estimations.



2.5.2 DGP II: The correct probability of selection model with

endogenous treatment effect

Consider the same data generating process as DGP I except ci1 = fi + ai so that, even

for a balanced panel data, the treatment, dit, is correlated with unobserved heterogeneity.

However, FE or FD transformation eliminates the source of bias in balanced panel data. In

unbalanced panel data, unweighted pooled LS, FE and FD estimators are biased due to the

correlations between selection and the treatment and between selection and time-varying

errors. However, under MAR for probability of selection, IPW-FD estimator can eliminate

the source of differential correlation between selection and unobserved heterogeneity across

dit. Once MAR assumption holds and the probability of selection is correctly specified,

IPW-FD estimator should not show any bias more than finite sample error in simulation.

Simulation results

In table 2.11, unweighted pooled LS, FE and FD estimators show finite sample bias for the

data with all n and a > 0. Unweighted Pooled LS estimator overestimates MTE while FE

and FD estimators underestimate MTE for all n and a. The biases do not depend on n for

all unweighted pooled LS, FE and FD estimators while the biases decrease as a (the fraction

of missing sample to full sample) decreases.

Table 2.12 reports that IPW LS is biased and overestimates MTE. Compared to un-

weighted LS, IPW LS estimates has much larger variance but somewhat smaller bias. The

bias for IPW LS estimator does not depend on n and a and the size distortion is prohibitively

large for all n and a. On the other hand, IPW FD estimates are very close to true marginal
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effect 1 while rejection frequency shows some evidence of over-rejection. Although the size

distortion decreases as n increases, over-rejection problem remain even for n=5,000 and all

a. The size distortion for IPW FD estimator does not disappear even for n=20,000.

Table 2.13 shows pooled LS FE and FD with MI . MC estimates show finite sample bias

for all n and a. Pooled LS estimator with MI overestimates the marginal treatment effect

while MI FD estimators underestimate the marginal treatment effect for all n and a. The

biases do not depend on n for both MI LS and MI FD estimators while the biases decrease

as a (fraction of missing sample to full sample) decreases. The mean of MC point estimates

for MI FE estimator shows that the bias is quite small for all n and a ≤0.5 while the size

distortion is large and is negatively correlated to a.
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Table 2.11. DGP II: MTE for unweighted estimators

Unweighted LS FE FD

number of n missing fraction Mean(α̂) SD(α̂) Mean(α̂) SD(α̂) Mean(α̂) SD(α̂)

200 0.75 1.144 .171 .949 .140 .949 .154

200 0.5 1.142 .122 .968 .083 .968 .094

200 0.25 1.136 .098 .985 .064 .985 .064

500 0.75 1.150 .110 .952 .088 .952 .098

500 0.5 1.145 .077 .969 .051 .969 .058

500 0.25 1.138 .060 .985 .040 .984 .046

1,000 0.75 1.148 .075 .951 .059 .952 .065

1,000 0.5 1.143 .054 .970 .037 .970 .041

1,000 0.25 1.137 .043 .985 .028 .985 .031

5,000 0.75 1.148 .034 .952 .027 .952 .030

5,000 0.5 1.144 .024 .969 .016 .969 .018

5,000 0.25 1.138 .020 .985 .013 .985 .014

*Note: Missing fraction is the fraction of missing sample to full sample. Sensitivity analysis is conducted for unweighted LS,
FE and FD estimators.
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Table 2.12. DGP II: MTE estimates for IPW estimators

IPW LS FD

n % missing Mean(α̂) SD(α̂) r coverage of r Mean(α̂) SD(α̂) r coverage of r

200 0.75 1.129 .272 .151 (.136,.167) .983 .235 .154 (.139,.171)

200 0.5 1.131 .150 .181 (.164,.198) .993 .118 .098 (.084,.110)

200 0.25 1.132 .104 .261 (.242,.280) .997 .080 .094 (.081,.106)

500 0.75 1.131 .196 .175 (.158,.191) .987 .170 .129 (.114,.143)

500 0.5 1.134 .077 .344 (.323,.365) .995 .079 .090 (.077,.103)

500 0.25 1.133 .063 .542 (.520,.564) .997 .050 .091 (.078,.104)

1,000 0.75 1.136 .147 .253 (.233,.272) .992 .127 .085 (.072,.097)

1,000 0.5 1.132 .072 .538 (.516,.560) .998 .058 .084 (.071,.096)

1,000 0.25 1.133 .046 .831 (.815,.847) .998 .035 .083 (.070,.095)

5,000 0.75 1.136 .074 .620 (.598,.641) .991 .064 .085 (.073,.097)

5,000 0.5 1.133 .033 .972 (.965,.979) .997 .026 .073 (.062,.084)

5,000 0.25 1.134 .021 .999 (.997,1) .999 .015 .076 (.064,.088)

*Note: r ≡ 1(p < .05) is the rejection rate for the null of H0:α=1 with nominal value 0.05.; Cluster robust standard error has
been used in all estimations.
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Table 2.13. DGP II: MTE estimates for estimators with multiple imputations

MI LS FE FD

n % missing Mean(α̂) SD(α̂) Mean(α̂) SD(α̂) r coverage of r Mean(α̂) SD(α̂) r coverage of r

200 0.75 1.141 .176 .982 .163 .547 (.525,.569) .950 .154 .073 (.062,.085)

200 0.5 1.142 .121 .993 .096 .270 (.251,.290) .968 .094 .075 (.064,.087)

200 0.25 1.139 .100 .998 .067 .107 (.094,.121) .985 .072 .056 (.046,.066)

500 0.75 1.145 .111 .989 .107 .578 (.557,.600) .953 .097 .087 (.075,.100)

500 0.5 1.141 .076 .994 .060 .259 (.239,.278) .970 .059 .084 (.072,.096)

500 0.25 1.136 .060 .997 .041 .100 (.087,.113) .985 .046 .057 (.047,.067)

1,000 0.75 1.143 .078 .986 .073 .572 (.550,.594) .949 .066 .117 (.102,.131)

1,000 0.5 1.137 .053 .991 .043 .289 (.269,.309) .968 .040 .114 (.100,.128)

1,000 0.25 1.136 .045 .997 .030 .099 (.087,.113) .984 .032 .080 (.068,.092)

*Note: r ≡ 1(p < .05) is the rejection rate for the null of H0:α=1 with nominal value 0.05.; Cluster robust standard error has
been used in all estimations.



2.5.3 The robustness of IPW estimator to misspecification of the

probability of selection

This section provides the simulation results for the sensitivity of probability of selection

model misspecification. One of main criticism for IPW method is its instability of estimates

to the misspecification of the probability of selection. We test the sensitivity of IPW es-

timator to the misspecification of probability of selection model using a DGP in which an

omitted variable induces misspecification of probability of selection. For instance, in STAR

empirical analysis, it is possible that we possibly omit some important family characteristics

in the selection model.

DGP with selection model misspecification We use a linear model with a treatment

and a covariate. We generate data with n from 100 to 5,000 and t=4 to mimic the actual

size of Project STAR data.

yit = dit · α + xit · β + c1i + uit, for i = 1, 2, .., n and t = 1, 2, 3, 4

where dit a binary variable and xit is continuous variable.

Variable generation conducted as follows.

1. dit = 1 if fi + qit > 0 and dit = 0 otherwise, where fi ∼ iidU(0, 1) , qit ∼ iidN(0, 1)

and α =1

2. xit ∼ iidU(0, 1), β = −0.2

3. c1i ∼ iidU(0, 1)
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4. uit = rit + vit where rit = fi + iidU(0, 1) and

vi1

vi2

vi3

vi4


∼MVN





0

0

0

0


,





1 ρ ρ ρ

ρ 1 ρ ρ

ρ ρ 1 ρ

ρ ρ ρ 1






where MVN is multivariate normal and ρ=0.7 in the simulation.

The selection is complicated by including an interaction term which is omitted in the logit

model estimation.

si1 = 1 and sit = 1 if sit−1 = 1 and fi + δyit−1 ∗ c2it + c2it + εit > a

where εit ∼ iidN(0, 1) and c2it = rit + qit and where a is the cut-off value that determines

the fraction of missing sample to full sample and a=0, -1, -2 are chosen and corresponding

fraction of missing data are about 75, 50, and 25 percents, respectively. For correctly speci-

fied selection model, IPW FD estimator is consistent since the unique source of differential

correlation, fi, can be eliminated by FD transformation.

The probability weights for IPW are obtained using following model specification for se-

lection process, π̂it, which is given by:

πit =
exp(zitγ)

1 + exp(zitγ)
, t = 2, 3, 4 for sit−1 = 1

where zit=(fi, c2it) and the omission of interaction term and logit estimation instead of

probit lead to misspecification of selection model.

Simulation Result: Sensitivity of IPW estimators to probability of selection

model misspecification We simulate with four values for the parameter of misspecifi-
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cation, δ=0, 0.2, 0.5, and 1 where δ=0 implies correct specification. As the values of δ

increases, the degree of misspecification increases. For instance, in DGP with δ=0.2, the

variation by the omitted variable (yit−1 ∗ c2it) represents about 3 percent of total variation.

Moreover, as δ increases to .5 and 1, the fraction of variation due to the variation of the

omitted variable represents 10 and 25 percent of total variation respectively. This simulation

intends to clarify the impact of misspecification of selection since we possibly do not observe

some important variables in the selection model. Tables from 2.14 to 2.21 show simulation

results. Even with the misspecification for the probability of selection model, the bias of

IPW estimators is no greater than the bias of unweighted estimators with δ ≤0.5. Figure

2.1 compares biases between unweighted and IPW methods for LS and FD estimators. Es-

pecially if missing fraction is less than or equal to 0.5, the biases for IPW estimators are less

than those of unweighted estimators in the presence of misspecification of selection model

for δ ≤0.5. In sum, simulation results show that the estimates from IPW FD estimator does

not exacerbate the bias even if selection model is misspecified when it is compared to the

estimates from unweighted FD estimator with δ ≤0.5.
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Table 2.14. Selection model misspecification: MTE for unweighted estimators, δ=0

Unweighted LS FE FD

number of n missing fraction Mean(α̂) SD(α̂) Mean(α̂) SD(α̂) Mean(α̂) SD(α̂)

100 0.75 1.265 .246 .955 .197 .953 .219

100 0.5 1.267 .169 .973 .102 .975 .118

100 0.25 1.269 .154 .981 .092 .981 .104

200 0.75 1.257 .179 .951 .136 .951 .147

200 0.5 1.258 .115 .976 .073 .977 .082

200 0.25 1.261 .106 .983 .064 .984 .073

500 0.75 1.251 .111 .949 .086 .948 .096

500 0.5 1.253 .072 .973 .044 .974 .052

500 0.25 1.257 .066 .982 .040 .982 .046

1,000 0.75 1.259 .081 .951 .063 .951 .070

1,000 0.5 1.259 .049 .975 .032 .974 .036

1,000 0.25 1.260 .045 .982 .028 .982 .032

*Note: Missing fraction is the fraction of missing sample to full sample. δ represents the degree of misspecification of the
selection model.
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Table 2.15. Selection model misspecification: MTE for IPW estimators, δ=0

IPW LS FD

n % missing Mean(α̂) SD(α̂) r coverage of r Mean(α̂) SD(α̂) r coverage of r

100 0.75 1.271 .354 .209 (.181,.236) .989 .299 .171 (.146,.196)

100 0.5 1.271 .193 .342 (.313,.371) .994 .139 .090 (.072,.108)

100 0.25 1.275 .165 .413 (.383,.444) .994 .113 .081 (.064,.098)

200 0.75 1.250 .275 .233 (.207,.260) .982 .216 .120 (.100,.140)

200 0.5 1.261 .134 .552 (.521,.583) .998 .097 .087 (.070,.104)

200 0.25 1.265 .115 .663 (.634,.692) 1.000 .083 .079 (.062,.096)

500 0.75 1.243 .199 .384 (.354,.414) .984 .160 .116 (.096,.136)

500 0.5 1.263 .086 .876 (.856,.896) .998 .064 .088 (.070,.106)

500 0.25 1.263 .073 .955 (.942,.968) .998 .051 .077 (.060,.094)

1,000 0.75 1.255 .153 .553 (.522,.584) .990 .116 .097 (.079,.115)

1,000 0.5 1.266 .058 .990 (.984,.996) .998 .043 .084 (.067,.101)

1,000 0.25 1.266 .049 .998 (.995,1) .998 .035 .074 (.058,.090)

*Note: r ≡ 1(p < .05) is the rejection rate for the null of H0:α=1 with nominal value 0.05.; Cluster robust standard error has
been used in all estimations.
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Table 2.16. Selection model misspecification: MTE for unweighted estimators, δ=.2

Unweighted LS FE FD

number of n missing fraction Mean(α̂) SD(α̂) Mean(α̂) SD(α̂) Mean(α̂) SD(α̂)

100 0.75 1.401 .240 .938 .165 .926 .183

100 0.5 1.303 .157 .973 .095 .966 .110

100 0.25 1.288 .146 .984 .089 .978 .102

200 0.75 1.417 .169 .941 .115 .929 .126

200 0.5 1.317 .112 .973 .069 .966 .078

200 0.25 1.295 .104 .982 .064 .977 .073

500 0.75 1.418 .107 .941 .075 .932 .084

500 0.5 1.316 .072 .974 .043 .968 .049

500 0.25 1.293 .067 .982 .040 .977 .045

1,000 0.75 1.415 .075 .939 .050 .929 .057

1,000 0.5 1.314 .050 .975 .030 .969 .035

1,000 0.25 1.292 .047 .983 .028 .979 .032

*Note: Missing fraction is the fraction of missing sample to full sample.
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Table 2.17. Selection model misspecification: MTE for IPW estimators, δ=.2

IPW LS FD

n % missing Mean(α̂) SD(α̂) r ≡ 1(p < .05) coverage of r Mean(α̂) SD(α̂) r ≡ 1(p < .05) coverage of r

100 0.75 1.381 .300 .318 (.289,.347) .930 .231 .141 (.119,.163)

100 0.5 1.288 .158 .458 (.426,.489) .970 .115 .114 (.094,.134)

100 0.25 1.281 .144 .488 (.455,.521) .981 .103 .106 (.086,.126)

200 0.75 1.405 .216 .533 (.502,.564) .937 .163 .129 (.108,.150)

200 0.5 1.305 .116 .780 (.754,.806) .970 .081 .116 (.096,.136)

200 0.25 1.289 .105 .809 (.784,.883) .981 .074 .107 (.088,.126)

500 0.75 1.401 .140 .855 (.833,.877) .942 .109 .141 (.119,.163)

500 0.5 1.304 .074 .992 (.986,.998) .973 .051 .137 (.116,.158)

500 0.25 1.286 .068 .989 (.983,.995) .981 .046 .129 (.108,.150)

1,000 0.75 1.395 .095 .980 (.971,.989) .940 .073 .185 (.161,.209)

1,000 0.5 1.302 .050 1 (1,1) .974 .036 .181 (.157,.205)

1,000 0.25 1.286 .047 1 (1,1) .982 .033 .134 (.113,.155)

*Note: 1(P<.05) is the rejection rate for the null of H0:α=1 with nominal value 0.05.; Cluster robust standard error has been
used in all estimations.
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Table 2.18. Selection model misspecification: MTE for unweighted estimators, δ=.5

Unweighted LS FE FD

number of n missing fraction Mean(α̂) SD(α̂) Mean(α̂) SD(α̂) Mean(α̂) SD(α̂)

100 0.75 1.416 .215 .936 .142 .916 .157

100 0.5 1.303 .147 .971 .094 .962 .110

100 0.25 1.292 .143 .980 .089 .976 .105

200 0.75 1.424 .146 .936 .097 .918 .110

200 0.5 1.307 .101 .974 .064 .967 .074

200 0.25 1.288 .097 .982 .060 .977 .070

500 0.75 1.424 .098 .939 .062 .922 .070

500 0.5 1.306 .071 .974 .042 .965 .047

500 0.25 1.289 .068 .982 .039 .976 .045

1,000 0.75 1.423 .067 .941 .042 .924 .048

1,000 0.5 1.305 .048 .976 .028 .968 .033

1,000 0.25 1.287 .046 .983 .027 .978 .031

*Note: Missing fraction is the fraction of missing sample to full sample.
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Table 2.19. Selection model misspecification: MTE for IPW estimators, δ=.5

IPW LS FD

n % missing Mean(α̂) SD(α̂) r ≡ 1(p < .05) coverage of r Mean(α̂) SD(α̂) r ≡ 1(p < .05) coverage of r

100 0.75 1.379 .259 .400 (.370,.431) .914 .178 .142 (.120,.164)

100 0.5 1.297 .154 .505 (.472,.539) .962 .112 .120 (.098,.141)

100 0.25 1.290 .145 .495 (.454,.535) .977 .104 .114 (.088,.140)

200 0.75 1.389 .177 .656 (.627,.685) .910 .124 .174 (.150,.198)

200 0.5 1.300 .105 .798 (.773,.823) .968 .075 .109 (.090,.129)

200 0.25 1.285 .099 .799 (.773,.825) .978 .071 .099 (.080,.119)

500 0.75 1.385 .113 .942 (.927,.957) .918 .077 .257 (.230,.284)

500 0.5 1.299 .073 .991 (.985,.997) .967 .048 .169 (.146,.192)

500 0.25 1.286 .069 .992 (.986,.998) .977 .045 .138 (.117,.160)

1,000 0.75 1.384 .079 .995 (.991,.999) .920 .053 .405 (.375,.435)

1,000 0.5 1.297 .049 1 (1,1) .969 .033 .215 (.189,.241)

1,000 0.25 1.284 .046 1 (1,1) .979 .031 .161 (.138,.184)

*Note: 1(P<.05) is the rejection rate for the null of H0:α=1 with nominal value 0.05.; Cluster robust standard error has been
used in all estimations.
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Table 2.20. Selection model misspecification: MTE for unweighted estimators, δ=1.0

Unweighted LS FE FD

number of n missing fraction Mean(α̂) SD(α̂) Mean(α̂) SD(α̂) Mean(α̂) SD(α̂)

100 0.75 1.378 .207 .929 .129 .905 .150

100 0.5 1.314 .156 .961 .093 .944 .107

100 0.25 1.298 .151 .966 .091 .955 .106

200 0.75 1.382 .150 .936 .093 .910 .107

200 0.5 1.313 .114 .966 .067 .952 .077

200 0.25 1.297 .110 .973 .064 .963 .072

500 0.75 1.374 .090 .931 .057 .905 .064

500 0.5 1.313 .067 .964 .042 .948 .047

500 0.25 1.299 .065 .972 .040 .960 .045

1,000 0.75 1.376 .064 .933 .038 .907 .045

1,000 0.5 1.311 .049 .964 .029 .949 .034

1,000 0.25 1.298 .047 .972 .027 .962 .032

*Note: Missing fraction is the fraction of missing sample to full sample.
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Table 2.21. Selection model misspecification: MTE for IPW estimators, δ=1.0

IPW LS FD

n % missing Mean(α̂) SD(α̂) r ≡ 1(p < .05) coverage of r Mean(α̂) SD(α̂) r ≡ 1(p < .05) coverage of r

100 0.75 1.402 .248 .442 (.410,.473) .902 .167 .170 (.146,.193)

100 0.5 1.323 .160 .529 (.496,.563) .943 .108 .133 (.110,.156)

100 0.25 1.305 .154 .527 (.488,.565) .955 .107 .127 (.102,.153)

200 0.75 1.412 .176 .730 (.702,.758) .903 .115 .208 (.183,.233)

200 0.5 1.323 .118 .807 (.783,.832) .952 .077 .149 (.127,.171)

200 0.25 1.305 .112 .817 (.792,.841) .964 .072 .129 (.108,.150)

500 0.75 1.402 .105 .981 (.973,.989) .896 .069 .416 (.385,.447)

500 0.5 1.322 .069 .997 (.994,1) .947 .048 .257 (.230,.284)

500 0.25 1.307 .066 .996 (.992,1) .960 .045 .204 (.179,.229)

1,000 0.75 1.406 .074 1 (1,1) .897 .049 .614 (.584,.644)

1,000 0.5 1.321 .050 1 (1,1) .948 .034 .423 (.392,.454)

1,000 0.25 1.305 .047 1 (1,1) .962 .032 .297 (.269,.325)

*Note: 1(P<.05) is the rejection rate for the null of H0:α=1 with nominal value 0.05.; Cluster robust standard error has been
used in all estimations.



2.5.4 The robustness of first-differencing estimator with small

within-variation

In most experiments, program participants ideally maintain their treatment or control groups

status from the start to the end of a program. This inevitably induces very small within-

variation for treatment variable and this is one of main criticisms for fixed effects and first

differencing estimators in the program evaluation studies. Thus, we examine the sensitivity

of IPW first-differencing estimator to small within-variation of treatment variable. The

magnitude of within-variation is induced randomly and we assume correct specification for

the probability of selection.

Motivation of sensitivity test for IPW FD estimator to small within variation

Fixed effects and first differencing estimators are very effective methods to eliminate the

source of bias when across treatment and control groups, response variables are system-

atically different for missing data individual units and its difference is due to unobserved

heterogeneity. However, identification of first differencing estimator is based only on within

variation.

DGP for dit with small within variation

Three different magnitudes of within-variation for treatment status dit are induced randomly

in the simulation.

No restriction on treatment status L = 0 First type use the generation of treatment

variable without any restriction for within-variation imposed on for treatment variable. No
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Figure 2.1. Bias of unweighted and IPW LS estimator

(Note) For figures in first row, six sets of bar represent LS (a=.25), IPW-LS (a=.25), LS

(a=.5), IPW-LS (a=.5), LS(a=.75), and IPW-LS (a=.75) estimates from the left to the

right where true value is 0. The colors of bar represent degree of mis-specification - blue

(correctly specified), Red (δ=.2), green (δ=.5), and Purple (δ=1.0)- where δ is the

magnitude of misspecification coefficient in the selection model and a is fraction of missing

data. For figures in second row, six sets of bar represent FD (a=.25), IPW-FD (a=.25), FD

(a=.5), IPW-FD (a=.5), FD(a=.75), and IPW-FD (a=.75) estimates from the left to the

right. In both columns, the left panel reports simulation results for n=100 and right panel

for n=1000.
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restriction induces dit for which about 68 percent of sample change status during four time

periods.

dit = 1 if fi + qit > 0 and dit = 0 otherwise, where fi ∼ iidU(0, 1) , qit ∼ iidN(0, 1)

Small within variation treatment variable Smaller within-variations for the treat-

ment status were induced with the following DGP. di1 = 1 if fi + qi1 > 0 and di1 = 0

otherwise. dit = dit−1 if −L < fi + qit < L and dit = 0 if fi + qit < −L and dit = 1 if

fi+qit > L. Therefore, the value L determines the magnitude of fraction of within-variation

for a treatment variable.

si1 = 1 and sit = 1 if sit−1 = 1 and fi+c2it+εit > a where εit ∼ iidN(0, 1), and c2it = rit+qit.

where a is cutoff value which is adjusted from DGP I.

The model for selection process is assumed to be specified correctly so that π̂it is obtained

from the following:

πit =
exp(zitγ)

1 + exp(zitγ)
, t = 2, 3, 4 for sit−1 = 1

where zit=(fi, c2it).

Sensitivity of IPW FD estimator to small within variation for a treatment vari-

able

We test the sensitivity of IPW FD estimator to small within variation of a treatment variable.

DGPs are a treatment variable with full variation, with 50 % variation of units and with 15

% variation of units. The simulation intends to clarify the impact of small within variation

on the consistency of IPW FD estimator.
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Simulation results Tables from 2.22 to 2.24 show that the bias of FD and IPW-FD

estimators to small within variation treatment. The key is that for missing fraction less than

50 % and within variation more than 50 %, IPW-FD estimate quite consistently estimate

MTE. Figure 2.2 compares the biases between FD and IPW-FD methods. Especially if

missing fraction is less than 0.5, IPW-FD method works quite well. Unless variation is less

than 25 percent, the bias by random small within variation is not substantial.
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Table 2.22. Sensitivity analysis to small within-variation: MTE with full within-variation

FD IPW-FD

number of n missing fraction Mean(α̂) SD(α̂) Mean(α̂) SD(α̂) r ≡ 1(p < .05) coverage of r

100 0.75 .946 .219 .974 .290 .147 (.123,.171)

100 0.5 .967 .130 .992 .155 .104 (.085,.122)

100 0.25 .984 .101 .994 .107 .083 (.066,.101)

200 0.75 .949 .150 .974 .224 .126 (.105,.146)

200 0.5 .970 .090 .998 .111 .076 (.060,.092)

200 0.25 .987 .072 1.000 .078 .083 (.066,.100)

500 0.75 .948 .096 .979 .169 .122 (.101,.142)

500 0.5 .967 .057 .993 .079 .089 (.071,.107)

500 0.25 .987 .046 .998 .049 .095 (.077,.113)

1,000 0.75 .947 .068 .985 .124 .093 (.080,.106)

1,000 0.5 .968 .040 .994 .055 .084 (.067,.101)

1,000 0.25 .986 .032 .999 .036 .100 (.081,.119)

*Note: Missing fraction is the fraction of missing sample to full sample.
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Table 2.23. Sensitivity analysis: MTE with within-variation of 50% sample only

FD IPW-FD

number of n missing fraction Mean(α̂) SD(α̂) Mean(α̂) SD(α̂) r ≡ 1(p < .05) coverage of r

100 0.75 .941 .302 .964 .392 .190 (.163,.216)

100 0.5 .962 .177 .993 .218 .109 (.090,.129)

100 0.25 .987 .134 1.001 .145 .087 (.069,.105)

200 0.75 .952 .210 .987 .294 .145 (.123,.167)

200 0.5 .964 .120 .995 .156 .100 (.081,.119)

200 0.25 .983 .095 .998 .106 .081 (.064,.098)

500 0.75 .941 .137 .979 .223 .142 (.120,.164)

500 0.5 .961 .077 .998 .100 .071 (.055,.087)

500 0.25 .984 .058 .999 .067 .063 (.048,.078)

1,000 0.75 .933 .091 .983 .164 .115 (.095,.135)

1,000 0.5 .965 .053 1.001 .072 .063 (.048,.078)

1,000 0.25 .983 .041 1.000 .045 .071 (.055,.087)

*Note: Missing fraction is the fraction of missing sample to full sample.
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Table 2.24. Sensitivity analysis: MTE with within-variation of 15% sample only

FD IPW-FD

number of n missing fraction Mean(α̂) SD(α̂) Mean(α̂) SD(α̂) r ≡ 1(p < .05) coverage of r

100 0.75 .733 .735 .731 .793 .566 (.532,.599)

100 0.5 .935 .418 .968 .479 .221 (.195,.247)

100 0.25 .959 .280 .981 .299 .117 (.097,.137)

200 0.75 .904 .571 .922 .669 .412 (.381,.442)

200 0.5 .940 .273 .960 .343 .155 (.132,.177)

200 0.25 .973 .186 .994 .212 .090 (.077,.102)

500 0.75 .927 .314 .973 .485 .251 (.224,.278)

500 0.5 .942 .164 .974 .233 .116 (.096,.136)

500 0.25 .976 .116 1.003 .135 .060 (.045,.075)

1,000 0.75 .902 .208 .919 .385 .191 (.167,.215)

1,000 0.5 .946 .115 .986 .170 .097 (.079,.115)

1,000 0.25 .971 .082 1.004 .096 .055 (.041,.070)

*Note: Missing fraction is the fraction of missing sample to full sample.



Figure 2.2. Bias of unweighted and IPW FD estimator to small within variation

(Note) Six sets of bar represent FD and IPW-FD estimator according to covariate

variation. From left to right, sets of bar represent FD (v=1), IPW-FD (v=1), FD (v=.5),

IPW-FD (v=.5), FD (v=.15), and IPW-FD (v=.15) where v represents fraction of

covariates which vary over time. Missing fraction is represent by the color of bar - Blue:25

% , Red: 50 %, and Green: 75 %. Left panel reports the estimates for n=200 and right

panel reports the estimates for n=1,000.

2.6 Empirical application: The return to class size

reduction (CSR) on SAT score

In this section, we estimate the effect of CSR on SAT score for grades in K-3 using Ten-

nessee’s STAR experiment data which is accumulated for a single cohort of students from

1985 to 1989. Data for class size, student characteristics, teacher characteristics, classroom

peer characteristics, and student achievement scores are collected. However, substantial pro-

portion of data is missing so that only about 50 percent of sample is complete-case. Out

of 11,601 students, for each grade from K to 3, about 6,800 students are in the program in

each grade.

We start by testing MCAR using Hausman-type test and variable addition test to deter-
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mine whether we can use unweighted estimator with complete-case. As we reject the null

of MCAR, we apply IPW and MI-IPW methods using Becker [1993]’s parent school choice

model for the specification of the probability of selection.

This section proceeds as follows. We first briefly describe Tennessee’s STAR experiment

and provide detailed information on noncompliance and missing patterns of data.19Second,

we provide Hausman-type test and variable addition test of MCAR. Third, we report IPW

estimates and compare this to unweighted estimates.

2.6.1 Background information on Project STAR experiment of

CSR

Origination of experiment Observational data has not been able to find consistent class

size reduction effect on student performance (Hanushek [1986] and Hanushek [1997]) while

experimental studies of class size reduction show strong and positive effect.20 Therefore,

the Tennessee legislature funded a randomized experiment, Tennessee’s Project STAR (Stu-

dent/Teacher Achievement Ratio), to provide the definitive answer to the effectiveness of

CSR on student achievement in 1985.21

Experiment design It was a randomized experiment that assigned students and teachers

to three different class types, a small-size class (target of 13-17 students), a regular-size

19 More detailed description of STAR experiment is provided in Word et al. [1990].
20 For instance, experimental studies such as Tennessee’s Project STAR (Student/Teacher

Achievement Ratio), Wisconsin’s Student Achievement Guarantee in Education (SAGE)
Program and Israel’s Maimonides’ Rule reported a strong link between class size reduction
and improvement in student achievement.

21 The experiment funded by the Tennessee State Legislature under Lama Alexander at
a total cost of $12 million with $3 million for the first year of program.
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class (target of 22-25 students), or a regular-size class with a full-time teacher’s aide. The

randomization was done within school for both students and teachers.22 Each year about

6,800 students, 330 classes, and 79 schools in 46 districts participated in the program from

1985 to 1989. A single cohort of students who entered a participating school in the 1985-

1986 school year participated in the experiment for grades in K-3. Thus, Project STAR

experiment possess essential features of a controlled experiment designed to produce reliable

evidence about the effects of reducing class size.23

Major findings in previous studies The evidence showed that the students in the

smaller classes outperformed the students in the regular classes, whether or not the regular

class teachers had a full-time aide helping them. In particular, the positive effect of smaller

classes are greater for black and inner-city poor students. Moreover, students who had been

in small class performed better even after treatment is over (Krueger and Whitmore [2001]).

2.6.2 Evidence of experimental violation

The validity of an experimental analysis depends on initial randomization and no differential

attrition and refreshment across treatment and control groups. It is quite well supported by

some evidences that initial class types were randomly assigned among students and teachers

within school, but the Project STAR experiment suffers from implementation problems of

22All participating schools implemented at least one of each of the three types of classes
in order to cancel out the possible influences coming from variations in the quality of the
participating schools that might affect the quality of the classroom activity.

23 See previous studies such as Word et al. [1990] and Krueger [1999] for more details of
description on experiment design and implementation.

117



Table 2.25. Students in each class types for grades in K-3

small regular/aide Total

Kindergarten

1900 4425 6325

Randomly assigned 1900 4425 6325

First grade

Previously randomly assigned 1293 2867 4160

New entrant 384 1929 2313

Switchers 248 108 356

Switchers from previous years 248 108 356

Total 1925 4904 6829

Second grade

Previously randomly assigned 1273 3402 4675

New entrant 366 1313 1679

Switchers 377 109 486

Switchers from previous years 192 47 239

Total 2016 4824 6840

Third grade

Previously randomly assigned 1276 3567 4843

New entrant 373 908 1281

Switchers 525 153 678

Switchers from previous years 207 72 279

Total 2174 4628 6802

source: author’s own calculation from the sample of Project STAR data.
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noncompliance and differential missing across treatment and control groups.24

Noncompliance

Size of noncompliance sample There were sizable non-compliance of initial class type

assignment of treatments and control. Among the complete samples of 24,275, about 2,200

samples were reassigned to different class types from initial assignment. For instance, table

2.25 shows the number of reassignments from small to other types of class or vice versa. For

instance, first grade, out of 4,515 remaining students, 356 (7.9%) students switched class

types from small to aide/regular or vice versa. For second and third grades, out of 5,049

and 5,413, remaining students 239 (4.9%) and 279 (5.2%) students switched class types,

respectively. In sum, about 10 % of students were moved from one class type to another in

a non-random manner. 25

The solution to noncompliance If initial assignments of treatments and control were

completely random, noncompliance problem can be overcome quite easily in linear panel

data model by using Instrumental Variable(IV) method in which one uses initial treatments

as IV for actual treatments.

Missing Data

Differential missing Ignoring missing causes problem in the estimation of MTE if missing

is systematically different across treatment and control groups. Typically, attrition can

24[Krueger, 1999, p.502] for details of initial random assignment of class types for kinder-
gartners.

25 Krueger [1999] reported that most of these moves were due to student misbehavior,
and were not typically the result of parental request for small class reassignment.
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depend on some observed and unobserved characteristics and different characteristics across

treatment and control groups can lead to differential attrition. Table 2.26 and 2.27 provide

an indirect evidence for possible differential attrition across class types by comparing simple

mean of SAT score across groups. Table 2.26 summarizes the frequency and fraction of

missing for each class types and table 2.27 compares average SAT score for attritors and

stayers of the program across class types. The difference of score between attritors and

remainders is greater for students in regular classes and that in small classes.

Size of missing data There was sizable missing from the prior year’s treatment and

control groups. Table 2.27 shows that about 6,000 to 7,000 students for each grade, 1,809

students left the program in first grade, 1,608 students left the program in second grade, and

1,319 students left the program in third grade. For instance, among those students in the

program at the beginning, about 45 percent of students left Project STAR program before

finishing third grade. Overall, out of 11,601 students, about 48 % of all participant students

either left the program before it ends or enter the program after kinder grade.
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Table 2.26. Attrition and reassignments of class types (noncompliance)

A. Kindergarten to first grade

Kindergarten First grade

small regular regular with aide leaving sample (All-K) fraction of attrition

small 1293 60 48 380 (1,900) 0.20

regular 126 737 663 668 (2,194) 0.31

aide 122 761 706 642 (2,231) 0.29

new sample 384 1,026 903 2,313(new)/1,809(leaving)

B. First grade to second grade

First grade Second grade

small regular regular with aide leaving sample (All-G1) fraction of attrition

small 1,435 23 24 443 (1,925) 0.23

regular 152 1,498 202 732 (2,584) 0.28

aide 40 115 1,560 650 (2,320) 0.28

new sample 389 693 709 1,791(new)/1,668(leaving)

C. Second grade to third grade

Second grade Third grade

small regular regular with aide leaving sample (All-G2) fraction of attrition

small 1,564 37 35 380 (2,016) 0.188

regular 167 1,485 152 525 (2,329) 0.225

aide 40 76 1,857 522 (2,495) 0.209

new sample 403 487 481 1,371(new)/1,319(leaving)

source: Project STAR and beyond: Database User’s Guide(2007)
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Table 2.27. SAT percentile scores at t− 1 for Leavers and stayers

1st grader Frequency Mean SE Diff(small-reg/aide)

Stayer of small class at first grade 1,319 59.19 25.40 13.64

Leave small sample at first grade 453(25.6%) 45.55 28.22

Stayer of regular or regular with aide class at first grade 2949 54.56 25.26 12.30

Leave regular or regular with aide class at first grade 1182(28.6%) 42.26 26.54

Stayer of all class types at first grade 4267 55.99 25.40 12.81

Leaver of all class types at first grade 1635 43.18 27.05

2nd grader Frequency Mean SE

Stayer of small class at second grade 1173 61.35 24.69 14.41

Leave small sample at second grade 276(19.0%) 46.94 27.13

Stayer of regular or regular with aide class at second grade 2187 57.63 24.26 13.35

Leave regular or regular with aide class at second grade 631(22.4%) 44.28 25.17

Stayer of all class types at second grade 3360 58.93 24.27 13.84

Leaver of all class types at second grade 907 45.09 25.80

Note: Average score for the group are reported in mean column. Diff(small-reg/aide) column report the average score
difference between stayers and leavers for each class type.



Basic statistics of missing data

Table 2.28 shows data used in the regression analysis for grades in K-3. Overall, 48 percent

of data is missing and there are 16 different types of missing patterns appear in the data as

in table 2.29. Among those students in the STAR program, about 5 participating students

have missing variables as shown in table 2.28, but only about 52 percent of students have

complete-case data. Therefore, there is severe attrition problem. Missing occurs in Project

STAR due to students’ attrition and missing variables of participating students.
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Table 2.28. Data availability for covariates

K G1 G2 G3

Small class 6325 6829 6840 6802

Aide class 6325 6829 6840 6802

Regular class 6325 6829 6840 6802

White/Asian 11467 11467 11467 11467

Female 11581 11581 11581 11581

Free Lunch 6300 6650 6496 6520

Teacher white 6286 6810 6780 6737

Teacher experience 6304 6810 6739 6751

Teacher master degree and above 6304 6788 6744 6736

Fraction of free lunch in class 6325 6781 6645 6652

Fraction of kinder attendee in class 6325 6829 6840 6801

outcome (yit) available 5907 6684 6559 6464

all covariates (xit) available 6256 6584 6288 6428

Both yit and all covariates (xit) available (≡ A) 5840 6430 5919 6086

Number of students in the program (≡ B) 6325 6829 6840 6802
A
B 0.923 0.942 0.865 0.895
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Table 2.29. Data availability by selection indicator

K G1 G2 G3 # of sample

case1 © © © © 2418

case2 © © © × 513

case3 × © © © 1079

case4 © © × × 898

case5 × © © × 328

case6 × × © © 935

case7 © × × × 1582

case8 × © × × 847

case9 × × © × 492

case10 × × × © 1154

case11 © × © © 101

case12 © × © × 53

case13 © × × © 52

case14 © © × © 223

case15 × © × © 124

case16 × × × × 802

Total 11601

(Note) © implies sit = 1 and × implies sit = 0.
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Table 2.30. Basic statistics: The mean and standard deviation

K G1 G2 G3

SAT score 52.44 52.82 52.40 51.85

(26.49) (27.46) (26.99) (27.17)

Small class 0.30 0.28 0.29 0.32

(0.46) (0.45) (0.46) (0.47)

Aide class 0.35 0.34 0.37 0.37

(0.48) (0.47) (0.48) (0.48)

Regular class 0.35 0.38 0.34 0.31

(0.48) (0.49) (0.47) (0.46)

White/Asian 0.67 0.67 0.65 0.67

(0.47) (0.47) (0.48) (0.47)

Female 0.49 0.48 0.48 0.48

(0.50) (0.50) (0.50) (0.50)

Free Lunch 0.48 0.52 0.51 0.51

(0.50) (0.50) (0.50) (0.50)

Teacher white 0.84 0.83 0.80 0.79

(0.37) (0.38) (0.40) (0.41)

Teacher experience 9.26 11.63 13.14 13.93

(5.81) (8.94) (8.65) (8.61)

Teacher master degree and above 0.34 0.34 0.36 0.43

(0.47) (0.47) (0.48) (0.49)

Fraction of free lunch in class 0.48 0.52 0.51 0.51

(0.29) (0.28) (0.29) (0.28)

Fraction of kinder attendee in class 0.66 0.54 0.47)

(0.18) (0.20) (0.19)

(Note) Standard deviation is in parenthesis.



Selection indicator, sit : Selection indicator sit has value 1 only if both response vari-

ables and all covariates [small class (dummy), class with aide (dummy), student (race, gen-

der, free lunch), teacher (race, experience, degree), class (fraction of free lunch, fraction of

kindergarten attendees)] are observed, otherwise we assign sit to be 0. And we also denote

Ti=
3∑

t=K
sit. Table 2.29 shows the number of students for each type of data based on using

selection indicator sit. Cases of data from 11 to 15 in table 2.29 are non-monotone II type

missing so we assume MCAR of these missing patterns in the application of MI-IPW method.

2.6.3 The impact of CSR on SAT score for grades in K-3

We start by replicating complete-case estimations in previous studies under MCAR.

Model for the effect of CSR on SAT score

Using the model specification of Krueger [1999], we adopt linear panel data model as in

(2.41).

Model Operationally ignoring missing in estimation, we can apply pooled LS or pooled

reduced-form (IV) estimators. 26

yit = Dit · β + x1itδ + x2iγ + ft + ci + uit (2.41)

i = student, t = K,G1, G2, G3, where Dit : two treatments

yit = xitθ + ci + uit, where xit = (Dit x1it x2i ft), θ = (β′ δ′ γ′, 1)′

26A reduced-form estimation uses initial treatments and control as explanatory variables
in model specification.
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where yit is student academic achievement ,

Dit is vector of class type assignments- small and regular with aide,

Observed covariates include student, teacher, peer characteristics

x1it time varying observable covariates including school dummy,

x2i time-fixed observable covariates,

ci unobserved heterogeneity, ft time effect, and uit unobserved errors

y (Achievement Score) Achievement score we use is Standard Achievement Test (SAT).

It measures student achievement in reading, math, and word skills in grade K-3. Follow-

ing Krueger [1999], we scaled the test score into percentile ranks. Percentile ranking was

calculated using the scores for those students who are assigned to regular and regular with

full-time aide class types only. And three separate percentile rankings for each subject were

generated. Response variable y is obtained as average of these three percentile rankings.

For those students who are not available all three percentile rankings, we use the average

percentile ranking of available percentile rankings. If one of three subject scores is missing,

we use only two subject test scores to obtain y and if two subject scores are missing, then

we use only available one subject’s test score for y. 27

Covariates x include: (i) student characteristics: race, gender, free lunch status (ii)

teacher characteristics: years of experience, highest degree dummy, race (iii) peer charac-

teristics: fraction of classmates with free lunch, fraction of female classmates, fraction of

27 Project STAR Public Access Data is obtained from www.heros-inc.org/data.html. All
the following descriptions of variables used in this study are based on Project STAR and
Beyond: Database User’s Guide (2007).
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classmates of kindergarten attendees, and fraction of minority classmates, and (iv) school

variables: school indicator, school location indicator.

Unweighted estimations Results

Cross-section estimation Table 2.31 reports unweighted cross-section estimates for both

LS and IV. The estimated cross-section return of small class is about 5 to 7 percentile points

for grades in K-3. It is about 1
5 of standard deviation of SAT score. The estimated cross-

section return of the class with full-time aide is not statistically different from 0 for grades

in K-3.
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Table 2.31. Cross-section unweighted LS and reduced-form estimates

OLS reduced-form

K G1 G2 G3 K G1 G2 G3

Small 5.205 7.683 5.821 4.964 5.205 6.621 5.279 5.247

(.749) (.740) (.776) (0.822) (.749) (.758) (.786) (.814)

Aide .259 1.866 1.642 -.492 .259 1.509 1.175 -.072

(.698) (.710) (.733) (.770) (.698) (.679) (.700) (.726)

R-squared .309 .299 .278 .221 .309 .295 .276 .220

# of sample 5840 6430 5919 6086 5840 6430 5919 6086

Other covariates School dummy, student and School dummy, student and

teacher characteristics teacher characteristics

OLS reduced-form

K G1 G2 G3 K G1 G2 G3

Small 5.224 7.599 5.440 4.644 5.224 6.490 5.064 4.979

(.749) (.747) (.782) (0.836) (.749) (.767) (.786) (.817)

Aide .434 2.012 1.445 -.791 .434 1.560 1.156 -.078

(.698) (.716) (.738) (.777) (.698) (.680) (.699) (.728)

R-squared .311 .300 .280 .222 .311 .296 .279 .221

# of sample 5840 6430 5919 6086 5840 6430 5919 6086

Other covariates School dummy, student, teacher School dummy, student, teacher

peer(classmates) characteristics peer(classmates) characteristics

(Note) Students cluster-robust standard errors are provided in parentheses. Student characteristics include race, gender, and

free lunch status and teacher characteristics include race, years of experience and highest degree dummy. Peer characteristics

include the fraction of classmates with free lunch, fraction of minority classmates and fraction of female classmates.

Reduced-form estimation use initial assignments of treatments as independent variables.



Pooled estimation of LS and FD estimation Table 2.33 reports unweighted FD

estimates for the return of CSR on SAT score. First, the FD estimates for the return of

CSR are about 6.4 percent (1.6 · 4 = 6.4) while the return of CSR for unweighted pooled

LS estimate are about 7.5 percent in table 2.32. Second, unweighted FD estimates imply

that the class with full-time aide has statistically significant impact on the improvement of

SAT score when compared to regular class without full-time aide while pooled estimates for

the return of class with full-time aide are not statistically different from zero. Overall, with

unweighted methods, the effect of CSR on SAT score is between 5(pooled IV) and 7.5(pooled

LS) percents.
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Table 2.32. Unweighted pooled LS and reduced-form

LS: full sample IV: full sample LS: attrition sample IV: attrition sample

Initial small 3.243 3.201 4.991 4.903 3.474 3.441 4.856 4.806

(.806) (.806) (.507) (.507) (.980) (.980) (.698) (.699)

Initial aide .495 .518 .782 .796 -.022 -.004 .205 .244

(.671) (.670) (.507) (.507) (.797) (.797) (.663) (.663)

Cumulative years in small 1.003 .978 .746 .743

(.388) (.388) (.436) (.436)

Cumulative years in aide .262 .254 .221 .241

(.376) (.377) (.426) (.427)

R-squared .228 .229 .226 .227 .227 .229 .226 .227

# of sample 24,275 24,275 24,275 24275 16,222 16,222 16,222 16,222

Student characteristics Yes Yes Yes Yes Yes Yes Yes Yes

teacher characteristics Yes Yes Yes Yes Yes Yes Yes Yes

peer characteristics No Yes No Yes No Yes No Yes

School, grade,PP-year Yes Yes Yes Yes Yes Yes Yes Yes

(Note) Students cluster-robust standard errors are provided in parentheses. PP-year implies program participation year

dummy. Grade implies dummies for grades in K-3. IV represents the estimation method for which initial assignments of class

type were used as treatment variables.
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Table 2.33. Unweighted FD estimates

FD with full sample FD with attrition sample

Cumulative years in small 1.738 1.680 1.651 1.827 1.641 1.613

(.362) (.364) (.364) (.416) (.413) (.414)

Cumulative years in aide 1.492 1.370 1.359 1.738 1.692 1.689

(.358) (.363) (.364) (.426) (.427) (.428)

R-squared .016 .020 .020 .015 .019 .020

# of sample 13214 12924 12924 9883 9793 9793

Student characteristics Yes Yes Yes Yes Yes Yes

teacher characteristics No Yes Yes No Yes Yes

peer characteristics No No Yes No No Yes

School, grade,PP-year Yes Yes Yes Yes Yes Yes

(Note) Students cluster-robust standard errors are provided in parentheses. Grade implies dummies for grades in K-3.



2.6.4 Test of strict exogeneity assumption

We formally test strict exogeneity using Hausman-type test which is based on unweighted

FD and FE estimators. We perform Hausman-type II test and regression based variable

addition test of Wooldridge [2009] for unbalanced panel data.

Test Results

Table 2.34 shows the rejection of the null hypothesis for strict exogeneity at nominal level

of 0.05. This implies that the violation of strict exogeneity and unweighted FE and FD es-

timators with complete-case would produce bias and incorrect standard error. Furthermore,

table 2.35 shows the results for a regression based variable addition tests and H0 : λ = 0 in

(2.19)-(2.21) are rejected for FD and FE estimation models. Tests imply MCAR is violated

and, therefore, both unweighted FD and FE estimators are not valid.

Indirect evidence of weak exogeneity from LS and reduced-form(IV) Unfortu-

nately, we cannot directly test conditional contemporaneous exogeneity(i.e. weak exogeneity

conditional on selection E(sit · dit · errorit) =0) for pooled LS and reduced-form(IV) esti-

mators. However, if we assume that E(sit|·) and E(sit+1|·) are serially correlated, we can

conjecture the sign of E(sit · dit · errorit) from the sign of E(sit+1 · dit · errorit). LS and IV

columns in table 2.35 report that E(sit+1 · dit · errorit) >0 and, thus for instance, if both

E(sit · dit ·uit) and E(sit+1 · dit · errorit) have the same sign, both LS and IV estimators are

biased upward.
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Table 2.34. Hausman-type test II: strict exogeneity

FD FE FD FE FD FE FD FE

Cumulative year in 1.569 .544 1.741 .477 1.682 .458 1.648 .442

small class (.391) (.321) (.403) (.324) (.363) (.326) (.363) (.327)

Cumulative year in 1.514 .809 1.501 .774 1.377 .705 1.360 .692

aide class (.386) (.319) (.400) (.322) (.361) (.323) (.362) (.324)

# of sample 31228 30309 29960 29960

H0 : θ̂pols = θ̂FE , k = 2 Ŵ2 = 4.82 Ŵ2 = 6.70 Ŵ2 = 6.37 Ŵ2 = 6.16

P-values {.089} {.035} {.041} {.045}
Student characteristics No Yes Yes Yes

teacher characteristics No No Yes Yes

peer characteristics No No No Yes

School, grade,PP-year Yes Yes Yes Yes
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Table 2.35. Variable addition test: strict exogeneity

PLS PIV FE FD PLS PIV FE FD

Selection (Sit+1) 10.439 10.474 4.571 3.889 10.975 10.287 4.185 3.604

(.420) (.420) (.514) (.544) (.418) (.419) (.510) (.540)

Initial small 2.702 5.047 2.848 4.113

(.919) (.575) (.923) (.598)

Initial aide .076 .922 .185 .886

(.749) (.513) (.753) (.516)

Cumulative year in 1.602 1.276 2.054 .951 1.249 2.084

small class (.522) (.474) (.491) (.545) (.478) (0.494)

Cumulative year in .802 1.866 2.085 .668 1.756 2.110

aide class (.510) (.468) (.492) (.516) (.471) (.498)

R-squared .269 .269 .037 .272 .272 .037

# of sample 18386 18386 18386 8538 18189 18189 18189 8390

Student characteristics Yes Yes Yes Yes Yes Yes Yes Yes

teacher characteristics No No No No Yes Yes Yes Yes

peer characteristics No No No No Yes Yes Yes Yes

School, grade,PP-year Yes Yes Yes Yes Yes Yes Yes Yes



2.6.5 Estimation with inverse probability weighted(IPW) and

multiple imputation(MI)

The two formal tests in previous section show the evidence of differential correlation among

unobserved heterogeneity, ci, and idiosyncratic error, ui = (ui1, ui2, ...., uiT ) and selection

indicator, si across dit and this implies that MCAR is violated. Therefore, we apply IPW

and MI-IPW methods using the probability of selection which satisfies MAR assumption as

weights.

IPW estimation

In the estimation of the probability of selection (i.e. E[sit|Wit−1]), we adopt the method in

Robins et al. [1994] and Wooldridge [2010] for which the probability of selection is estimated

in sequential manner for unbalanced panel data. We base our choice of the predictors for

the probability of selection on parents’s school choice between private and public. At the

beginning of period, all students start in public school.

Parents’s school choice and attrition

We use parents’s school choice model in Becker [1993] to describe students attrition in STAR

Program. Using this model, we specify the model for the probability of selection which

satisfies MAR assumption. Estimated probability of selection is used as inverse probability

weights in IPW estimation.

Assumptions

1. Parents maximize utility directly for two periods and indirectly infinite periods
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2. heterogeneity takes two forms which are parent resource (h1i) and student individual

ability (h2i)

3. Each period choice is made for the resource allocation among (i) consumption (ii)

spending on human capital of children (Et)

4. Initially, as all students start in public school, we assume that the marginal cost of

moving to private school is greater than the marginal benefit.

Model: Parent’s optimization problem Following Becker [1993], at time t, parent’s

utility depends both on the utility of themselves and their children as in (2.42).

Ut = u(ct) + ρ · u(ct+1) (2.42)

where ct is the consumption of parent, ρ is a constant which measures the relative weight

for child’s utility, ct+1 is children’s consumption when they become adult.

If the preference (2.42) is the same for all generations and consumption during childhood

can be ignored, then the utility of parent can be written as in (2.43).

Ut =
∞∑
i=1

ρi · u(ct+i). (2.43)

The utility of parent depends directly only on the utility of their own children and indirectly

on all descendants.

Resource constraint for parent and children at period t is given by

yt = ct + Et; yt = h1i; yt+1 = f(h2i, Et); with linearity yt+1 = a(h2i) · Et (2.44)

where h1i is parent’s income, Et parents’ human capital investment for their children at t

and a >0 is the marginal return for human capital investment which varies across students as
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their ability varies. For the sake of simplicity of illustration, we assume a linear production

function for children in (2.44). 28

At the optimum, with linearity assumption on children’s production function, we have the

following optimal condition.

u′(h1i − Et) = ρ · Et(a(h2i) · u′(ct+1)|It) (2.45)

where Et(·|It) is conditional expectation at period t using all available information, It, at

the beginning of period t. LHS of (2.45) is marginal cost of moving to private school and

RHS of (2.45) is expected marginal benefit of moving to private school. Parent does not

have complete information on their children’s ability so they update their children’s ability

as they obtain new information. At the beginning of program, for all participating students,

LHS is greater than RHS in (2.45). At the end of each grade, parents update their expected

marginal benefit of moving to private school as new information on student’s score, class,

teacher, and school quality become available. Therefore, attrition by school choice occurs as

RHS becomes larger than LHS in (2.45) after new information arrives at the end of period.

There are other reasons for students move and leave STAR program such as parent job

reallocation, the move due to sibling concerns, and others. We assume that the attrition of

students by these reasons should not be causing differential attrition across class types since

it is very hard to think that these reasons to move only occur to one type of class. Therefore,

we assume that differential attrition across class types only occurs through parent’s decision

of the moving.

28 We assume no transfer from parents to children other than human capital investment
and bequest transfer. Bequest transfer is determined at the level which expected marginal
returns from bequest transfer is equal to marginal return from human capital investment.
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The probability of selection model The attrition of student is determined by updated

information Et(·|It) between at the end of t − 1 and at the beginning of t. It includes

student’s score (yit−1) and updated class, teacher, and school characteristics(z1it−1) where

z1it−1 include class average on SAT score, teacher’s experience, teacher’s highest degree,

the fraction of free lunch students and so on. In the application, we use yit−1 and (z1it−1)

as predictors for the probability of selection model. In this setting, MAR is satisfied as in

(2.46) and MAR implies that, once we know parent information It, we can figure out parent’s

school choice and attrition status. We use logit model in the application.

P (sit = 1|Wit) = P (sit = 1|zit)P (sit = 1|Wit, sit−1 = 1) = P (sit = 1|zit, sit−1) = πit

(2.46)

where zit = (z1it−1, yit−1).

πit = G(zit; γ)Λ(zit · γ) (2.47)

where wit =(xit−1, yit−1) and Λ(·) =
exp(·)

1+exp(·) .

2.6.6 IPW estimation

We illustrate IPW estimation with complete-case. MI-IPW estimation is conducted with

pseudo-complete case data.29

We construct pit in sequential manner using conditional expectation.

pit = p(sit = 1|zit, sit−1 = 1)·p(sit−1 = 1|zit−1, sit−2 = 1)····p(si2 = 1|zi2, si1 = 1), t = 1, 2, 3

(2.48)

29 Pseudo-complete case is the case that combines complete case and non-monotone II
which become complete case after imputations.
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pit = πit · πit−1 · · · πi1

Using the sequential approach as in (2.48), and assuming the sequence of binary response

models is correctly specified as in (B.1), we can consistently γ̂. Once we obtain γ̂ from MLE,

we use G(zit, γ̂) to construct p̂it for all i and t with sit = 1.

IPW estimates: The return of CSR on SAT score

For cross-section estimation, we estimate pit = πit = p(sit = 1|zit, sit−1 = 1) using logit

model. zit−1 include class types, student characteristics (gender, race, free lunch), teacher

characteristics (race, experiences, highest degree), school fixed effects, and SAT percentile

score of period t− 1.

Cross-section estimation of probability weight Figure 2.3 show estimated probabil-

ity weight for cross-section estimation in grades K-3. One of practical criticism for IPW

estimation is that estimates can be very unstable if certain subsets of population have very

low non-attrition probabilities.(Little and Rubin [2002]) However, as wee see in figure 2.3, all

of estimated p̂it is strictly greater than 0.4 so that our assumption of pit > 0 is well satisfied.

The overlap assumption of p̂it for treatment and control groups is also well satisfied as we

see in figure 2.4.

IPW estimates: cross-section Table 2.36 reports cross-section IPW estimates of both

LS and reduced-form for grades in 1-3. The estimated cross-section return of small class

is about 5 to 7 percentile points. Students in small classes obtain about 5 to 7 percentile
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point higher test scores than students in regular class for grades in K-G3. It is about 1
5 of

standard deviation of SAT score. The estimated cross-section return of full-time aide class

is not statistically different from 0. The implication of IPW estimates is no different from

the one of unweighted estimates. In all grades, the difference between unweighted and IPW

estimates is within 1 percent percentile.
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Figure 2.3. Estimated πit for t = 1, 2, 3

(Note) For all figures, x-axis represents π̂it and y-axis represents fraction. For the figure in
first row and first column, π̂i1 in x-axis is ranged from 0.4, to 0.9 and its unit interval is .1.
y-axis is ranged from 0 to 0.05 and its unit interval is 0.01. For the figure in first row and
second column, π̂i2 in x-axis is ranged from 0.4, to 1 and its unit interval is 0.2. y-axis is
ranged from 0 to 0.06 and its unit interval is 0.02. For the figure in second row and first
column, π̂i3 in x-axis is ranged from 0.6, to 1 and its unit interval is 0.1. y-axis is ranged

from 0 to 0.06 and its unit interval is 0.02.
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Figure 2.4. Estimated πit conditional on sit = 0 or sit = 1 for t = 1, 2, 3

(Note) x-axis represents π̂it and y-axis represents fraction. We denote figure in ith row and

jth column as F(i,j). F(i,1) shows π̂it conditional on sit = 0 and F(i,2) shows π̂it conditional

on sit = 1. F(1,1) shows π̂i1 conditional on si1 = 0, x-asix is ranged from 0.4 to 0.9 and

y-asix is ranged from 0 to 0.06 with interval of 0.02. F(2,1) shows π̂i2 conditional on

si2 = 0, x-asix is ranged from 0.4 to 0.9 and y-asix is ranged from 0 to 0.05 with interval of

0.01. F(3,1) shows π̂i3 conditional on si3 = 0, x-asix is ranged from 0.6 to 1 and y-asix is

ranged from 0 to 0.06 with interval of 0.02. F(1,2) shows π̂i1 conditional on si1 = 1, x-asix

is ranged from 0.4 to 0.9 and y-asix is ranged from 0 to 0.06 with interval of 0.02. F(2,2)

shows π̂i2 conditional on si2 = 1, x-asix is ranged from 0.4 to 1 and y-asix is ranged from 0

to 0.08 with interval of 0.02. F(3,1) shows π̂i3 conditional on si3 = 1, x-asix is ranged from

0.6 to 1 and y-asix is ranged from 0 to 0.08 with interval of 0.02.
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Table 2.36. Cross-section IPW LS and IPW reduced-form estimation

LS reduced-form

K G1 G2 G3 K G1 G2 G3

Small 5.205 7.309 6.025 5.491 5.205 5.613 5.536 6.224

(.749) (.926) (.928) (0.953) (.749) (.960) (.953) (.945)

Aide .259 1.090 2.375 .289 .259 .013 1.480 .820

(.698) (.950) (.913) (.904) (.698) (.898) (.848) (.833)

R-squared .309 .318 .294 .234 .309 .313 .293 .235

# of sample 5840 4052 4338 4533 5840 4052 4338 4533

Other covariates School dummy, student and School dummy, student and

teacher characteristics teacher characteristics

OLS reduced-form

K G1 G2 G3 K G1 G2 G3

Small 5.224 7.282 5.595 5.355 5.224 5.508 5.312 6.072

(.749) (.935) (.940) (0.969) (.749) (.973) (.955) (.949)

Aide .434 1.442 2.235 .092 .434 .076 1.544 .728

(.698) (.955) (.921) (.910) (.698) (.897) (.847) (.834)

R-squared .311 .320 .296 .235 .311 .316 .293 .235

# of sample 5840 4052 4338 4533 5840 4052 4338 4533

Other covariates School dummy, student, teacher School dummy, student, teacher

peer(classmates) characteristics peer(classmates) characteristics

(Note) Students cluster-robust standard errors are reported in parentheses. Student characteristics include race, gender, and

free lunch status and teacher characteristics include race, years of experience and highest degree dummy. Peer characteristics

include the fraction of classmates with free lunch, fraction of minority classmates and fraction of female classmates. Reduced

form estimation use initial assignments of treatments as independent variables.



Panel probability weights estimation π̂it is estimated using equation (2.49) by con-

ditional MLE.

πit = Λ(zit · γ) for sit−1 = 1. (2.49)

where j = 1, 2, 3.

The probability weight estimate, p̂it is sequentially constructed as in (2.50).

p̂it = π̂it · π̂it−1 · · · ·π̂i1. (2.50)

Figure 2.5 shows the histogram of estimated probability weight, π̂it and p̂it π̂it and p̂it are

greater than .15 and .35 for all i and t respectively.
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Figure 2.5. Estimated πit and pit for t = 1, 2, 3 with attrition sample

(Note) F(i,j) identifies the location of figure. i identifies the row and j identifies column.

Figures in left panel of rows represent π̂it. First, second, and third row show figures for π̂i1,
π̂i2, and π̂i3 respectively. Figures in right panel of rows represent π̂it. First, second, and
third row show figures for p̂i1, p̂i2, and p̂i3 respectively. For π̂i1 in F(1,1), x-axis is ranged

from 0.4 to 0.9 and y-axis is ranged from 0 to 0.05 with interval of 0.01. For π̂i2 in F(2,1),

x-axis is ranged from 0.2 to 1 and y-axis is ranged from 0 to 0.06 with interval of 0.02. For
π̂i3 in F(3,1), x-axis is ranged from 0.5 to 1 and y-axis is ranged from 0 to 0.08 with interval

of 0.02. For p̂i1 in F(1,2), x-axis is ranged from 0.4 to 0.9 and y-axis is ranged from 0 to

0.05 with interval of 0.01. For p̂i2 in F(2,2), x-axis is ranged from 0.2 to .8 and y-axis is

ranged from 0 to 0.05 with interval of 0.01. For π̂i3 in F(3,2), x-axis is ranged from 0 to .8

and y-axis is ranged from 0 to 0.05 with interval of 0.01.
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Panel IPW estimation results Table 2.37 provides IPW pooled estimates. The es-

timated effects of IPW LS for the effect of CSR on SAT score is about 6.4 % while the

estimated effect of unweighted LS is 7.3 % in table 2.32. Moreover, the estimated effects

of IPW IV for the effect of CSR on SAT score is about 4.5 % while the estimated effect of

unweighted IV is 5.5 %. Table 2.38 reports IPW FD estimates. The estimated effects of IPW

FD estimator is 5.5 % while the effect for unweighted FD estimates is about 7 %. Again,

the effect is large for the unweighted estimator. Thus, for all three estimates, unweighted

estimates for the return of CSR on score are greater than IPW estimates.

Summary of estimation results: Unweighted and IPW estimates in unbalanced

panel data

Unweighted estimates are greater than IPW estimates for pooled LS, pooled reduced-

form(IV), FD estimators. However, the difference of estimates is very small for pooled LS,

pooled reduced-form, and FD estimator and is within 2%. If IPW estimates are consistent,

unweighted LS, reduced-form, and FD estimators overestimate the return of CSR about 1

to 2 percent. In sum, we conclude that the return of CSR on SAT score for grades in K-3 is

within the range from 4 to 6.5 percent.
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Table 2.37. IPW pooled LS, pooled IV

Pooled LS Pooled IV

Initial small 2.152 2.374 2.328 4.500 4.497 4.448

(1.163) (1.163) (1.163) (.813) (.815) (.815)

Initial aide -.601 -.414 -.390 -.221 -.123 -.074

(.897) (.905) (.903) (.762) (.768) (.768)

Cumulative years in small 1.154 1.033 1.038

(.506) (.508) (.508)

Cumulative years in aide .360 .275 .297

(.471) (.476) (.476)

R-squared .228 .229 .231 .228 .229 .230

# of sample 15395 15241 15241 15395 15241 15241

Student characteristics Yes Yes Yes Yes Yes Yes

teacher characteristics No Yes Yes No Yes Yes

peer characteristics No No Yes No No Yes

School, grade,PP-year Yes Yes Yes Yes Yes Yes
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Table 2.38. Weighted FD estimates

IPW FD unweighted FD

Cumulative years in small 1.317 1.380 1.361 1.827 1.641 1.613

(.415) (.416) (.416) (.416) (.413) (.414)

Cumulative years in aide 1.697 1.572 1.572 1.738 1.692 1.689

(.433) (.435) (.435) (.426) (.427) (.428)

R-squared .014 .018 .019 .015 .019 .020

# of sample 9512 9401 9401 9883 9793 9793

Student characteristics Yes Yes Yes Yes Yes Yes

teacher characteristics No Yes Yes No Yes Yes

peer characteristics No No Yes No No Yes

School, grade,PP-year Yes Yes Yes Yes Yes Yes



2.6.7 MI-IPW method

The major disadvantage of imputation method in our application is the necessity of modeling

the joint distribution of missing variables which include both categorical and continuous

variables. For instance, our application of project STAR data includes score (continuous),

free lunch (binary), teacher experience (continuous), teacher race (binary), many other class

peer (fractional variables with having values between zero and one). However, we mitigate

this problem of high dimensional covariates by focusing on non-monotone II type of missing

in imputation. It is easy to implement MI method since built-in command for MI method

exists with Stata, SAS and R.30.

Models of missing variables with multiple imputation

Participating students with missing observations are about 5 percent at each grade and

missing observations mostly occur to SAT score. Therefore, most of missing data comes

from attrition of students for Project STAR data.

Imputation model for missing variables using MICE In Stata, we imputed missing

variables which include outcome, treatments and covariates using following predictors and

distributional assumption in table 2.39.

30 We implement multiple imputation for the estimation of the return of CSR on score
using ”ice” Stata command with the simplest assumption on the distribution of missing
variables. Further details on imputation methods under MAR have been studied extensively
in theory and practice(Rubin [1987] and Little and Rubin [2002])
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Table 2.39. Covariates and distributional assumption used for MICE

variables distribution command prediction equation

SAT score Normal regress treatments, student, teacher, peer characteristics

small class Logistic logit SAT score, student, teacher, peer characteristics

aide class Logistic logit SAT score, student, teacher, peer characteristics

free lunch Logistic logit SAT score, treatments, student, teacher, peer characteristics

teacher’s race Logistic logit SAT score, treatments, student, teacher, peer characteristics

teacher’s highest degree Logistic logit SAT score, treatments, student, teacher, peer characteristics

teacher’s years of experience Logistic logit SAT score, treatments, student, teacher, peer characteristics

fraction of students with freelunch Normal regress SAT score, treatments, student, teacher, peer characteristics

fraction of female students Normal regress SAT score, treatments, student, teacher, peer characteristics

fraction of black students Normal regress SAT score, treatments, student, teacher, peer characteristics

(Note) (i) Treatments are class-type indicators. (ii) Students characteristics include race, sex and free lunch status. (iii)

Teacher characteristics include race, degree, and experience. (iv) Peer characteristics include the fraction of student with free

lunch, fraction of female and fraction of black classmates. For panel data MI estimation, grade, program participation grade

and school dummies are additionally included in predictions of all missing variables.



Estimates with MI-IPW

Using the set of imputed variables for STAR participating students as complete case, we

apply IPW estimation.

Tables 2.40 and 2.41 reports pooled LS, pooled IV and pooled FD estimates for the return

of CSR on score using MI-IPW method. There are about 4.5 percent more sample observa-

tions are used in MI-IPW method than IPW method. For instance, in the case of pooled LS

estimator, MI-IPW method uses 17,468 observations while IPW method 15,395 observations

in the estimation. The rest of missing data which is more than 40 percent of full-sample is

due to attrition. The difference of estimates between IPW and MI-IPW is very small while

standard errors are small for MI-IPW method so that MI-IPW estimates provide the same

implications as those of IPW estimates. In sum, unweighted estimator overestimates CSR

on SAT score about 1 to 2 percentage points.

Summary of results

The return of CSR on SAT score is about 4 to 6.5 percent for MI-IPW estimator while it

is about 5 to 7.5 percent for unweighted estimator. Unweighted estimator overestimates the

effect of CSR by about 1 to 2 percentage point. The return of aid class on SAT score is not

statistically significant for pooled LS and IV estimates while it is statistically significant for

FD estimator. The statistical significance of the return for both small class and aide class

does not change whether we use either unweighted or IPW (MI-IPW) methods.
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Table 2.40. MI-IPW pooled LS, pooled IV

Pooled LS Pooled IV

Initial small 2.584 2.202 2.267 4.788 4.511 4.416

(1.084) (1.087) (1.080) (.747) (.756) (.760)

Initial aide .170 -.127 -.094 .275 .066 .080

(.840) (.839) (.843) (.716) (.716) (.716)

Cumulative years in small .997 1.065 .905

(.453) (.455) (.488)

Cumulative years in aide .090 .172 .164

(.421) (.423) (.435)

R-squared .201 .200 .206 .201 .200 .206

# of sample 17468 17468 17468 17468 17468 17468

Student characteristics Yes Yes Yes Yes Yes Yes

teacher characteristics No Yes Yes No Yes Yes

peer characteristics No No Yes No No Yes

School, grade,PP-year Yes Yes Yes Yes Yes Yes

Table 2.41. MI-IPW FD estimates

MI-IPW FD unweighted FD

Cumulative years in small .982 .894 .901 1.827 1.641 1.613

(.411) (.413) (.413) (.416) (.413) (.414)

Cumulative years in aide 1.241 1.358 1.460 1.738 1.692 1.689

(.425) (.430) (.430) (.426) (.427) (.428)

R-squared .016 .020 .020 .015 .019 .020

# of sample 11,146 10,761 10,761 9883 9793 9793

Student characteristics Yes Yes Yes Yes Yes Yes

teacher characteristics No Yes Yes No Yes Yes

peer characteristics No No Yes No No Yes

School, grade,PP-year Yes Yes Yes Yes Yes Yes
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2.7 Direction (sign) of the bias for unweighted estima-

tors

In this section, we try to obtain information about the direction of the bias for unweighted

estimators by making assumption that E(vitsit|zit) and E(vitsit+j |zit) has the same sign.

This is because the source of bias for unweighted estimators is E(vitsit|zit) and we cannot

directly estimate it. Although we can not obtain an estimate for equation (2.51), we can

obtain an estimate for (2.52) and we infer E(vitsit|zit) from E(vitsit+j |zit).

E(vitsit|xit, zit) = E(vitsit|zit) where xit ⊆ zit and zit is instrument (2.51)

where vit = ci + uit

E(vitsit+j |zit) where |j| ≥ 1 (2.52)

Under the assumption that E(vitsit|zit) and E(vitsit+j |zit) has the same sign, we can

calculate the direction of the bias of unweighted IV estimates and thereby we can obtain the

bound for true return of class size reduction.

2.7.1 Bound for the effects of small class

First, we consider an estimator for E(vitsit+j |zit).

Cross-section IV regression

̂E(uitsit+j |zit) =
1

n

n∑
i=1

v̂itsit+j (2.53)
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where v̂it be residual from unweighted IV estimator 31We can rewrite IV estimator as follows.

θ̂IV = (
n∑
i=1

sitz
′
itzit)

−1(
n∑
i=1

sitz
′
ityit) = (

n∑
i=1

sitz
′
itzit)

−1(
n∑
i=1

sitz
′
it(zitθ + vit))

= θ + (
n∑
i=1

sitz
′
itzit)

−1(
n∑
i=1

z′itsitvit)

(
n∑
i=1

sitz
′
itzit)

−1(
n∑
i=1

z′itsitvit) = (
1

n

n∑
i=1

sitz
′
itzit)

−1(
1

n

n∑
i=1

z′itsitvit)

p→ E(sitz
′
itzit)

−1E(z′itsitvit)

=︸︷︷︸
Since Z exogenous

E(sitz
′
itzit)

−1E(z′it)E(sitvit)

Thus, finally, we obtain cross-section IV estimator as follows.

θ̂IV = θ + E(sitz
′
itzit)

−1E(z′it)E(sitvit)

θ̂IV > θ if sign(E(sitvit)) is positive

< θ if sign(E(sitvit)) is positive

Therefore, θ̂IV becomes the upper bound for θtrue if sign(E(sitvit)) is positive and lower

bound if sign(E(sitvit)) is negative.

pooled IV regression

̂
E(

G3∑
t=K

uitsit+j |zit) =
1

nT

n∑
i=1

G3∑
t=K

v̂itsit+j (2.54)

v̂it = yit − zitθ̂pooledIV , where θ̂pooledIV = (
n∑
i=1

G3∑
t=K

sitz
′
itzit)

−1(
n∑
i=1

G3∑
t=K

sitz
′
ityit)

31 This is not conventional IV estimator. We define IV estimator here to be equivalent
estimator as in Krueger [1999] where he called this estimator as reduced form estimator.

156



Similarly, as in cross-section IV case, we obtain an pooled IV estimator as

θ̂pooledIV = θ + E(
G3∑
t=K

sitz
′
itzit)

−1E(
G3∑
t=K

z′itsitvit)

θ̂IV > θ if sign(E(sitvit)) is positive

< θ if sign(E(sitvit)) is positive

This is because E(zit) > 0 and zit is exogenous in our data.

Estimation results

Pairwise correlation coefficient estimates for (2.53) is reported in table 2.42. The estimates

for ̂E(vitsit+j |zit) = 1
n

∑n
i=1 v̂itsit+j is positive and statistically significantly different from

zero ∀ j ≥ 1 in all grades. (i.e. residuals from cross-section IV estimators and lead of se-

lection is positively correlated in statistically significant way.) However, pairwise correlation

coefficients for residuals and lag of selection are not statistically different from zero. In other

word, we simply cannot reject the null hypothesis of E(vitsit−j |zit) = 0 for j ≥ 1.

Thus, given that sample estimates for ̂E(vitsit+j |zit) = 1
n

∑n
i=1 v̂itsit+j(≥ 0) is non-

negative ∀ j and j 6==0. It is positive for leads of selection and zero for lags of selection.

Therefore, if we assume the of sign(E(vitsit|zit))=sign(E(vitsit+j |zit)) ∀ j≥ 1, we can infer

that θ̂IV is biased upward. Thus, under this assumption, θ̂IV overestimate true effects of

small class. Table 2.43 shows the upper bound cross-section IV estimates.
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Table 2.42. corr(v̂it, sit+j) ∀ j≥ 0

covariates(1) covariates(2)

ûiK ûiG1 ûiG2 ûiG3 ûiK ûiG1 ûiG2 ûiG3

siK .0011 -.0019 -.0020 .0018 .0003 -.0007

siG1 .1954* .0115 .0075 .1733* .0205 .0097

siG2 .2539* .2583* .0074 .2196* .2261* -.0007

siG3 .2708* .2810* .1409* .2282* .2561* .1157*

covariates(3) covariates(4)

ûiK ûiG1 ûiG2 ûiG3 ûiK ûiG1 ûiG2 ûiG3

siK .0049 .0014 .0022 .0048 .0012 .0022

siG1 .1692* .0220 .0099 .1696* .0224 .0099

siG2 .2156* .2235* .0038 .2156* .2241* .0041

siG3 .2215* .2481* .1073* .2217* .2485* .1066*

(Note) *: statistically significant at the level .05. Covariates (1) include treatments and

school dummies, covariates (2) include covariates (1) and student characteristics.

Covariates (3) include covariates(2) and teacher characteristics and, finally, covariates (4)

include covariates (3) and peer characteristics.

Table 2.43. Upper bound estimates for cross-section IV estimator

reduced-from

K G1 G2 G3 K G1 G2 G3

Initial small 5.205 6.621 5.279 5.247 5.224 6.490 5.064 4.979

(.749) (.758) (.786) (.814) (.749) (.767) (.786) (.817)

Initial aide .259 1.509 1.175 -.072 .434 1.560 1.156 -.078

(.698) (.679) (.700) (.726) (.698) (.680) (.699) (.728)

R-squared .309 .295 .276 .220 .311 .296 .279 .221

# of sample 5840 6430 5919 6086 5840 6430 5919 6086

Other covariates School dummy, student and School dummy, student, teacher

teacher characteristics peer(classmates) characteristics

(Note) Students cluster-robust standard errors are provided in parentheses. Student

characteristics include (i) race (ii) gender (iii) free lunch status and teacher characteristics

include (i) race (ii) years of experience (iii) highest degree. Peer characteristics include (i)

fraction of classmates with free lunch (ii) fraction of minority classmates (iii) fraction of

female classmates.
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2.8 conclusion

Two formal tests of the missing completely at random (MCAR) assumption are introduced in

unbalanced panel data. The powers of tests for strict exogeneity increase with cross-section

size n and missing proportion of data. For instance, the power of Hausman-type tests which

is based on the difference of pooled LS(or RE) and FE estimators with a data set of n ≥5,000

and T = 4 is 1. The power of the variable addition test is also 1 with a data set of n ≥5,000

and T = 4.

We compare the estimates of unweighted, IPW and MI-IPW methods in unbalanced panel

data using a Monte Carlo simulation. The results show that the IPW method under MAR

works well if the probability of selection is correctly specified. We also study the robustness

of the IPW estimator with the probability of selection model misspecification. Simulation

shows that finite sample bias of the IPW estimator is smaller than that of an unweighted

estimator unless misspecification is severe.

We provide the MI-IPW method under MAR to improve efficiency by combining the MI

and IPW methods together in an unbalanced panel data model. The estimated effect of

class size reduction (CSR) on student academic achievement for students in grades K-3 is

about 4 to 6 percent with both IPW LS and FD and MI-IPW LS and FD estimators while

the estimated effect for unweighted LS and FD estimators with complete-case is about 6 to

7 percent. Estimators ignoring missing data overestimate the effect of CSR on student score

by about 1 to 2 percentage points.
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Chapter 3

Cluster robust inference in

unbalanced panel data when T is large

3.1 Introduction

A robust inference method in the linear panel data model with a long T has become more

relevant recently as more panel data are available with long time dimensions. An inference

method which ignores heterogeneity and dependence can severely distort the inference about

parameters of interest. For instance, if errors are correlated across observations either in the

time or cross-section dimension, a covariance matrix using OLS standard error is biased.

Recently, Wooldridge [2003], Hansen [2007], Bester et al. [2009], Vogelsang [2008] and Ibrag-

imov and Muller [2009] provide robust inference methods with dependent data in a balanced

panel data model.1 However, attrition in a panel data and unbalancedness in a two-level data

1 Arellano [1987] provides asymptotic properties of a covariance matrix in the linear panel
models with random sampling (over cross-section unit) but it is limited only to the case
when T fixed and n large. Moreover, cluster covariance estimators are used with data that
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occur frequently in a large T data or a two-level data. For instance, unbalancedness of data

occurs when each school has different numbers of classes or each region has different num-

bers of states or starting periods of available data that can differ across cross-section units.

Therefore, this paper focuses on robust inferences in unbalanced panel data and the effect

of an unbalancedness on the validity for the inference methods in balanced panel data. In

particular, unbalancedness causes heterogeneity even if attrition or unbalancedness occurs

completely at random and heterogeneity can cause distortion in inference. For example,

the methods in Hansen [2007] and Vogelsang [2008] require homogeneity in cross-section

units to use t-distribution and F -distribution as reference distributions for hypothesis tests.

Therefore, unfortunately, robust inference methods in balanced panel data cannot be directly

extended to unbalanced panel data.

Among those robust inference methods in balanced panel data, the Ibragimov and Muller

[2009] approach provides a t-statistic based inference method. However, this t-statistic based

inference method uses only between variations so there is room for improving efficiency.

Bester et al. [2009] shows simulation results that the t-statistic based method of Ibragimov

and Muller [2009] performs poorly if the estimator presents substantial finite sample bias

using the example of 2SLS simulation with weak IV.

On the other hand, Hansen [2007] provides methods based on constructing t and Wald

statistics using a cluster covariance matrix estimator (CCE). Under homogeneity in both

covariates and errors, t and Wald statistics based on CCE follow standard t and F distri-

has a group structure with independence across groups. In our panel data setting, cross-
section units represent groups and time series represents group members and we assume
independence between groups. See Wooldridge [2003], Liang and Zeger [1986] and Bertrand
et al. [2004] for more details.

161



bution with scale factors and provide valid inference. Under homogenous covariates and

heterogenous variance, t statistic using CCE with scaling factors converges t-distribution so

the t-test provides conservative inference in Bakirov and Szekely [2006]. When heterogene-

ity exists for both covariates and errors, the t statistic using CCE converges to a limiting

distribution which is neither standard nor pivotal in both Hansen [2007] and Ibragimov and

Muller [2009]. Hansen [2007]’s method without homogeneity can not perform valid robust in-

ference using standard reference distributions of t and F while Ibragimov and Muller [2009]’s

approach provides conservative inference of Bakirov and Szekely [2006] in the presence of

heterogenous variance.

Vogelsang [2008] provides a robust inference method based on constructing t and Wald

statistics with HACs of a covariance matrix where the HAC smoothing parameter grows

proportionally to the sample size (this is called fixed-b inference). Vogelsang [2008] also

shows convergence of t and Wald statistics with HACs covariance matrix based on fixed-b

smoothing parameter to t and F distribution with scaling factors under homogeneity. Both

in Hansen [2007] and Vogelsang [2008], we need to calculate limiting distributions for t and

Wald statistics treating the covariance matrix as random variables in the limit. This causes

heterogeneous variance for the data with different time periods of attrition across different

cross-section units.

Our objective, in this paper, is to propose a method which provides a robust inference

with heterogenous variance and autocorrelation in an unbalanced linear panel data model.

We compare our method to those in Hansen [2007] and Ibragimov and Muller [2009] which

are developed for balanced panel data. Our proposed inference method is an extension of the

OLS method in Hansen [2007] to weighted least squares (WLS) in constructing t and Wald
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statistics using CCE where attrition periods are used as weights. We show that, using the

result of Bakirov and Szekely [2006], t-test with WLS provide conservative inference result.

To our knowledge, there has been no study that focuses on the asymptotic properties of a

variance matrix in unbalanced panel data in the presence of heterogeneity and autocorrela-

tion. For the sake of simplicity, when doing the simulation we focus on random attrition for

panel data and random unbalancedness for two-level data.

In the MC experiment, heterogeneity in variance and covariates are induced through ran-

dom attrition in unbalanced panel data. Our proposed inference method based on WLS

which extends Hansen [2007] is compared to the t-statistic based method of Ibragimov and

Muller [2009] and the method of Hansen [2007] with OLS. The WLS method which uses the

attrition periods information as weights, in comparison to the OLS method in Hansen [2007],

shows significantly smaller size distortion. Simulation results also reveal that our method

shows power improvement over the t-statistic based method in Ibragimov and Muller [2009].

We also extend our proposed method with WLS to the case where the heterogeneity by both

attrition and heteroskedastic variance is present. We compare the power of our method to

that of Ibragimov and Muller [2009] and provide evidence for improvement of power perfor-

mance through a MC simulation.

Unbalancedness which is caused by attrition introduces heterogeneity and this forces con-

servative t-tests for the method in Ibragimov and Muller [2009]. Thus, we examine the

tradeoff for the t-tests based on the method in Ibragimov and Muller [2009] as we drop data

on purpose to make the data balanced. Dropping available data inevitably introduces the

loss of power while the balancedness of data eliminates heterogeneity so it leads to no size

distortion in inference. Simulation results show that the cost of losing power dominates the
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benefit of eliminating size distortion as the loss of power is substantial while size distortion

is not significant.

The rest of the paper is organized as follows. In section 2, we introduce models with

individual fixed effects in unbalanced panel data and propose a robust inference method

which extends the method of Hansen [2007] with WLS in unbalanced panel data. Section

3 contains MC experiment results and, in section 4, we provide a brief summary of results

and the conclusion.

3.2 Model

This section presents a method for conducting robust inference with attrition in linear un-

balanced panel data model.

yit = zitβ0 + ci + ft + uit (3.1)

with i = 1, 2, ..., n and t = 1, 2, ..., T .

yit is continuous and zit is a vector of covariates, ci is individual fixed effects, ft is time

fixed effects and uit is weakly dependent error. We assume random sampling for cross-section

units but allow weak dependence in time dimension.2 For the sake of simplicity of notation,

2 The application of balanced panel data model of (3.1) with large T has been appeared
in empirical finance literature, in equity returns and earnings surprises, and oftentimes in
these models standard errors were estimated with the adjustment to reflect correlation across
observations. Typical standard error adjustments was based on Fama and MacBeth [1974]
procedure or the method of clustering across time is most common. Recently, the use of
panel data and linear model with outcome of serial dependence becomes quite common in
finance and macroeconomics applications but Petersen [2009] surveys that the methods each
researcher uses to adjust the bias of standard errors are quite various.
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we rewrite (3.1) as in (3.2).

yit = xitβ + ci + uit (3.2)

where xit = (zit, ft) and β = (β′0, 1)′.

Now we define selection indicator (sit) to express the model with unbalanced panel data

by random attrition. sit = 1 if both dependent variable (yit) and all of covariates (xit) are

available and sit = 0 otherwise.

Consider the following fixed-effects (FE) transformation of the original model of (3.1) to

(3.3) with balanced panel data.

ỹit = x̃itβ + ũit (3.3)

where

ỹit = yit −
1

Ti

T∑
t=1

sit · yit, Ti =
T∑
t=1

sit, x̃it = xit −
1

Ti

T∑
t=1

sit · xit, ũit = uit −
1

Ti

T∑
t=1

situit

(3.4)

Correspondingly, fixed-effects (FE) transformed model for unbalanced panel data can be

expressed with selection indicator as follows.

sitỹit = sitx̃itβ + sitũit (3.5)

The focus is on inference about β. OLS estimator for β in (3.5) is given by (3.6).(We

denote this FE estimator as OLS hereafter.)

β̂ols = (
n∑
i=1

T∑
t=1

sitx̃
′
itx̃it)

−1
n∑
i=1

T∑
t=1

sitx̃
′
itỹit (3.6)
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where we use s2
it = sit.

β̂ols − β = (
n∑
i=1

T∑
t=1

sitx̃
′
itx̃it)

−1
n∑
i=1

T∑
t=1

sitx̃
′
itũit = (

n∑
i=1

T∑
t=1

sitx̃
′
itx̃it)

−1
n∑
i=1

T∑
t=1

sitx̃
′
ituit

(3.7)

3.2.1 Robust inference with t-test in unbalanced panel data

In this section, we present fixed-n, large-T asymptotic properties of the CCE for unbalanced

panel data. Under fixed-n and large T , the CCE is not consistent but converges in distri-

bution to a limiting random variable. In the CCE with attrition, Ti plays the role of the

HAC smoothing parameter as Ti determines the bandwidth for each cross-section unit i. In

particular, smoothing parameter, λi =
Ti
T which changes for each cross-section unit is equiv-

alent to b in HAR covariance estimator in fixed-b asymptotic theory (Kiefer and Vogelsang

[2002] and Kiefer and Vogelsang [2005]).

For balanced panel data, Hansen [2007] shows that we can perform t and F tests with scaled

t and Wald statistics under the assumption that covariates and error terms are independent

of cross-section unit (hereafter we call this assumption as cross-section homogeneity).

Theorem 4 (Hansen 2007) Under cross-section homogeneity and balanced panel, stan-

dard t-statistic for β̂ols with cluster robust standard error converges to a t-distribution with

n− 1 degree of freedom, scaled by
√

n
n−1 , under the null hypothesis.

However, the methods which ignore attrition cannot be directly applied with unbalanced

panel data since attrition introduces heterogeneity in both covariates and variance so this

leads to distortion in inference for unbalanced panel data.
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We extend the result of theorem 4 to unbalanced panel data using weights and the result

of Bakirov and Szekely [2006]. We use weight for each cross-section unit to recover original

homogeneity in covariates of balanced panel data. The idea of recovering homogeneity is

that cross-section units with fewer time-series get higher weights for each observation to

contribute evenly across cross-section.

With the following assumptions, under cross-section homogeneity of original balanced

panel data, t-test with weighted least squares (WLS) of (3.8) and CCE of V̂w−clus in (3.9)

provides a conservative inference result of Bakirov and Szekely [2006] for unbalanced panel

data.

β̂wls = (
n∑
i=1

T∑
t=1

sit
x̃it
′

√
λi

x̃it√
λi

)−1
n∑
i=1

T∑
t=1

sit
x̃it
′

√
λi

ỹit√
λi

(3.8)

V̂w−clus = (
n∑
i=1

T∑
t=1

1

λi
sitx̃it

′x̃it)
−1Ω̂wls(

n∑
i=1

T∑
t=1

1

λi
sitx̃it

′x̃it)
−1, (3.9)

where

Ω̂wls =
n∑
i=1

[(
T∑
t=1

1

λi
sitx̃it

′ûit)(
T∑
t=1

1

λi
sitx̃itûit)]

and ûit = ỹit − x̃itβ̂WLS .

Assumption 5 1. Independent sampling across cross-section, n is fixed and Ti goes in-

finity for each i

2. Weak dependence for xit, uit

3. (WLLN) 1
T

T∑
t=1

sitx̃it
′x̃it

p→ λiQi and Q−1
i exists, where

Ti
T = λi λi ∈ (0, 1]

4. (FCLT) 1√
T

T∑
t=1

sitx̃ituit ⇒ ΛiW (λi), where W (λi) is brownian motion with mean zero

and variance λi
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5. (Homogeneity across cross-section) Qi = Q and Λi = Λ

6. (Missing Completely At Random) E(uit|xit, si) = 0 where si = (si1, si2, ...., siT )

Consider testing linear hypothesis about β of the form

H0 : Rβ = r, H1 : Rβ 6= r (3.10)

where R is a q × k matrix of known constants with full rank and r is a q × 1 vector of

known constants.

In the case q = 1 we can define the t-statistics

t̂ =

√
T (Rβ̂ols − r)√
R · T · V̂clusR

′
, t∗wls =

√
T (Rβ̂wls − r)√

R · T · V̂w−clusR
′

(3.11)

Using following two theorems 6 and 7, we can obtain corollary 8 which allows conservative

inference for t-test with weight.

Theorem 6 (Bakirov and Szekely [2006]) Let X1, X2, ....., Xn be an i.i.d. sample from

normal scale mixture, and let y1, y2, ....., yn be independent normal (0, σi) random variables,

y = 1
n

n∑
i=1

yi, and S2
y = 1

n−1

n∑
i=1

(yi − y)2. Then

P{
√
n
X − µ
SX

> x} = sup
σ1,σ2,...σn

∫
Rn

P{
√
n
y

Sy
> x}

n∏
i=1

dF (σi)

Proof. See Bakirov and Szekely [2006].

Theorem 7 (Bakirov and Szekely [2006]) Let Cn−1(α) be the critical value of the usual

two-sided t-test based on (3) of level α (i.e. P (|Tn−1| > Cn−1(α)) = α)

Tn−1 =

√
nX

SX
where X1, X2, ....., Xn be an i.i.d.sample from normal (3.12)
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Then, using theorem 6,

(i) If α ≤ 2 · (1− Φ(
√

3)) = 0.0832...., then ∀n ≥ 2,

sup
σ1,σ2,...σn

P (|T̂n−1| > Cn−1(α)) ≤ P (|Tn−1| > Cn−1(α)) = α (3.13)

(i.e. α ≤ 0.0832 and ∀n ≥ 2, T̂n−1 ⇒ Tn−1 where Tn−1 is t-distribution with n− 1 degree

of freedom)

(ii) Usual one-sided t-test of nominal level 0.05 or lower remains valid as long as n ≤14.

For n >15, usual two-sided tests of nominal level 0.1(or one-sided tests of nominal level

0.05) are not automatically conservative for large n.

(iii) For α ≤ 0.0832 and ∀n ≥ 2, as n→∞ ,

sup
σ1,σ2,...σn

P (|T̂n−1| > Cn−1(α)) ≤ P (Z > Cn−1(α)) = α

where Z ∼ N(0, I)

Proof. See Bakirov and Szekely [2006].

Corollary 8 Under assumptions 5 and attrition, the inference based on t∗wls in (3.11) scaled

by
√

n
n−1 converges to T̂n−1-distribution in theorem 7, under the null hypothesis.

Proof. Here we provide the sketch of the proof. See appendix for details. First, consider the

numerator of t∗wls. β̂wls = (
n∑
i=1

T∑
t=1

sit
x̃it
′

√
λi

x̃it√
λi

)−1
n∑
i=1

T∑
t=1

sit
x̃it
′

√
λi

ỹit√
λi

. Under assumptions 5

and null hypothesis, we can rewrite numerator as

√
T (Rβ̂wls −Rβ) = R

√
T (β̂wls − β)

R
√
T (β̂wls − β) = R

√
T (

n∑
i=1

T∑
t=1

sit
x̃it
′

√
λi

x̃it√
λi

)−1
n∑
i=1

T∑
t=1

sit
x̃it
′

√
λi

uit√
λi
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R
√
T (β̂wls − β) = R

√
T (

n∑
i=1

T∑
t=1

sit
x̃it
′

√
Ti

x̃it√
Ti

)−1
n∑
i=1

T∑
t=1

sit
x̃it
′

√
Ti

uit√
Ti

=> R(
n∑
i=1

1

λi
λiQi)

−1
n∑
i=1

1

λi
ΛiW (λi) = R(

n∑
i=1

Qi)
−1

n∑
i=1

1

λi
ΛiW (λi)

where W (λi) is wiener process with mean zero and variance λi.

Now consider denominator T · V̂w−clus

T · V̂w−clus = (
n∑
i=1

1

Ti

T∑
t=1

sitx̃it
′x̃it)

−1Ω̂wls(
n∑
i=1

1

Ti

T∑
t=1

sitx̃it
′x̃it)

−1

Ω̂wls =
n∑
i=1

[(
1

λi

1√
T

T∑
t=1

sitx̃it
′ûit)(

1

λi

1√
T

T∑
t=1

sitx̃it
′ûit)

′]

1

λi

1√
T

T∑
t=1

sitx̃it
′ûit =

1

λi

1√
T

T∑
t=1

sitx̃it
′uit −

1

λi

1

T

T∑
t=1

sitx̃it
′x̃it
√
T (β̂WLS − β) + op(1)

=⇒ 1

λi
ΛiW (λi)−Qi(

n∑
j=1

Qj)
−1(

n∑
j=1

1

λj
ΛjW (λj))

Let’s denote W (λj) as Wj for simplicity of notation.

Under cross-section homogeneity, T · V̂w−clus ⇒ (
n∑
i=1

Qi)
−1Ω̂wls(

n∑
i=1

Qi)
−1 =

(nQ)−1Ω̂wls(nQ)−1 and Ω̃wls ⇒ Λ[
n∑
i=1

Wi
λi

W ′i
λi
− 1

n(
n∑
j=1

Wj
λj

)(
n∑
j=1

W ′j
λj

)]Λ′.

Let’s define yi as yi ≡ RQ−1Λ
W (λi)
λi

. Since Wi ≡ W (λi) is brownian motion with mean

0 and the variance λi, yi is mean zero and variance of
RQ−1Λvar(W (λi))Λ

′Q−1R′

λ2
i

. As the

variance of W (λi) is λi ∗ Iq, for the case of q = 1, y1, y2, y3, ....., yn is independent and each

yi is normal (0, RQ
−1ΛΛ′Q−1R′

λi
). Then, in the case of q = 1, we have

t∗wls ⇒

n∑
i=1

yi√
n∑
i=1

y2
i −

1
n

n∑
i=1

yi
n∑
j=1

yj

=
ny√

n∑
i=1

y2
i − ny2

=
ny√

n∑
i=1

(yi − y)2

=

√
n

n− 1
·

√
ny√

1
n−1

n∑
i=1

(yi − y)2

≡
√

n

n− 1
T̂n−1 where T̂n−1 ≡

√
n
y

Sy
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Thus, the proper weight leaves λi as the only source of heterogeneity so that we can apply

Bakirov and Szekely [2006] result and obtain conservative inference.

Remark 9 Heterogeniety is induced by attrition. Attrition leads to heterogeneity in sitx̃it
′x̃it

and sitx̃it
′ũit for each i. However, using the ratio of the length of time-series to full length

of time series as weight, λi =
Ti
T , we apply WLS and the weight eliminates heterogeneity in

covariates.

Under cross-section homogeneity assumption, as attrition is the unique source of hetero-

geneity, the use of weights recovers the homogeneity in covariates. Moreover, since empiri-

cally most relevant case is two-sided tests with α ≤ 0.05, we can conduct inference with t∗wls-

statistics by multiplying
√

n−1
n , which is equivalent to replace V̂w−clus with n

n−1 · V̂w−clus.

For a significant level .05 or lower, the t-test with t∗wls-statistic scaled by
√

n−1
n remains

conservative.

3.2.2 WLS with heterogenous covariance matrix in unbalanced

panel data

In addition to heterogeneity by attrition, we introduce heteroskedastic variance for each

cross-section unit in unbalanced panel data. For balanced panel data, t-statistic based test

in Bester et al. [2009] and Ibragimov and Muller [2009] provide conservative inference results

of Bakirov and Szekely [2006] in the presence of heteroskedastic variance. For unbalanced

panel data, if homogeneity only holds for covariates but not for variance so that Qi = Q

and Λi 6= Λ hold because of heteroskedastic variance, we can still obtain the conservative
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inference result in Bakirov and Szekely [2006] with t-test as we use t∗wls-statistic with scale

factor.

Under heteroskedastic variance and homogenous covariates for unbalanced panel data, we

have two sources of heterogeneity but we can still apply corollary 8 with β̂WLS and V̂w−clus

and perform t-test. Only change from homoskedastic variance is that we define yi in the

proof of corollary 8 as RQ−1Λi
W (λi)
λi

so that its variance is
RQ−1ΛiΛ

′
iQ
−1R′

λi
. The key for

the determination of weights is making each cross-section unit to contribute evenly as in

the case of no heteroskedastic variance. Units with fewer time series observation and with

smaller variance receive more weights than the units with more time series or large variance.

This weighting eliminates heterogeniety in covariates but two sources of heteroskedasticity

in error still remains after weighting.

In sum, we show that robust inference method in balanced panel data can be extended to

unbalanced panel data with proper choice of weights for cross-section units. Corollary 8 shows

that t-test with WLS in unbalanced panel data provides the bound result of conservative

inference under heterogenous variance and attrition.

3.3 Monte Carlo experiment

In this section, we examine finite sample properties of proposed WLS method in unbalanced

linear panel data model with dependent data. We provide two sets of simulation. The only

source of heterogeneity is attrition in the first simulation while there are two sources of

heterogeneity, attrition and heteroskedastic variance in the second simulation. Simulation

results for the size distortion and the power of test are provided. In each set of simulation,
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we compare the size distortion and the power of our method to those of Hansen [2007]

and Ibragimov and Muller [2009] methods which were developed for balanced panel data.

Attrition time periods are generated in simulation not to be correlated with either outcome

or covariates. Thus, each cross-section unit has different attrition time period and this leads

to different time-series length which introduces heterogenous variance for each cross-section

unit.

3.3.1 The t-test using t∗wls-statistic with scaled factor under home-

geniety and attrition

DGP I: Attrition is the only source of heterogeneity

We consider following data generating process for balanced panel data.

Yit = xit · β + ci + ft + uit, for i = 1, 2, .., n and t = 1, 2, ..., T

where xit is continuous variable.

Variables generation

1. xit ∼ iidN(0, 1), β = 1

2. Homogeneous error, ui, with t=T

ui1

ui2

...

uiT


∼MVN





0

0

...

0


,





1 ρ . . . ρT−1

ρ 1 ρT−2

... 1
...

ρT−1 . . . 1






where MVN is multivariate normal and ρ=0.75 in the simulation.
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3. ci = ai + x̄i , ai ∼ iidN(0, 1) and x̄i=
∑T
t=1 sit · xit

4. ft = 0

The determination of attrition for unbalanced panel data is presented in table 3.1. Two

key features in the determination of attrition are: (i) the proportion of available data is

about 60% and (ii) the length of available time-series for each cross-section units vary so

the variation of time length for each cross-section unit induces heterogeneity. We consider

various length of time-series, T=50, 100, 300, and 1,000 for balanced panel data. T=50

has relevance for yearly data of 40 years such as data from 1970 to 2009, while T=100 has

relevance for quarterly data of 25 years such as from 1985 to 2009.
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Table 3.1. selection process

T=50 missing fraction

n=4 50(2), 10(2) 0.4

n=5 50(2), 30(1), 10(2) 0.4

n=6 50(2), 40(1), 20(1), 10(2) 0.4

n=7 50(2), 40(1), 30(1), 20(1), 10(2) 0.4

n=8 50(2), 40(2), 20(2), 10(2) 0.4

n=9 50(2), 40(1), 35(1), 30(1), 25(1), 20(1), 10(2) 0.4

n=10 50(2), 40(1), 35(1), 30(2), 25(1), 20(1), 10(2) 0.4

n=11 50(2), 40(1), 35(1), 30(3), 25(1), 20(1), 10(2) 0.4

n=16 50(2), 40(2), 35(2), 30(4), 25(2), 20(2), 10(2) 0.4

T=100 missing fraction

n=4 100(2), 20(2) 0.4

n=5 100(2), 60(1), 20(2) 0.4

n=6 100(2), 70(1), 50(1), 20(2) 0.4

n=7 100(2), 70(1), 60(1), 50(1), 20(2) 0.4

n=8 100(2), 70(1), 60(2), 50(1), 20(2) 0.4

n=16 100(2), 80(2), 70(2), 60(4), 50(2), 40(2), 20(2) 0.4

T=300 missing fraction

n=4 300(2), 100(2) 0.33

n=5 300(2), 100(3) 0.4

n=6 300(2), 140(2), 100(2) 0.4

n=7 300(2), 180(1), 140(2), 100(2) 0.4

n=8 300(2), 200(2), 160(1), 140(1), 100(2) 0.4

n=16 300(4), 240(1), 210(2), 150(2), 125(2), 90(4) 0.4

(Note) The length of time is reported and number of cross-section is reported in parentheses.



Simulation result: Homogeneity and attrition

In all simulation, we consider inference about parameter β in panel data model of (3.3) using

OLS in (3.6) and WLS in (3.8). Table 3.2 shows the size of t-test with nominal level 0.05.

The first column shows the dimension of panel data. The second column reports the rejection

probability of t-test for balanced panel data using t-statistic in Hansen [2007]. As the

homegeneity assumption is satisfied, t-test for balanced panel data shows no size distortion.

Coverage rate for rejection probability contain nominal level 0.05 for all n. Third column

reports the rejection probability for t-test of complete case from unbalanced panel data.

For all simulated cross-section dimension n ≤8, rejection probability shows substantial size

distortion by over-rejection and the size distortion is greater for unbalanced panel data with

smaller n. Therefore, simulation results verify that t-test using t-statistic in Hansen [2007]

show size distortion with unbalanced panel data. The fourth column shows the rejection

probability from t-test of Ibragimov and Muller [2009] method. t-statistics in Ibragimov and

Muller [2009] is obtained from (3.14).

tβ =
√
n

¯̂
β

s
β̂

(3.14)

where
¯̂
β= 1

n

∑n
j=1 β̂j and s2

β̂
= 1
n−1

∑n
j=1(βj −

¯̂
β)2

The rejection probability from t-test of Ibragimov and Muller [2009] method provides the

evidence of conservative inference when there is heterogeneity. It also shows that the size

distortion tapers off as n increases. Eventually, Ibragimov and Muller [2009] method with

heterogeneity and n=16 shows no size distortion at all.

The fifth column in table 3.2 provides the rejection probability of t-test with t∗wls-statistics
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where the weights for each cross-section is calculated by
√

T
Ti

. As WLS put more weights

to cross-section unit with shorter length so that eliminate heterogeneity across cross-section.

Simulation results for t-test with t∗wls-statistics in table 3.2 verify the conservative inference

of corollary 8 and the size distortion with WLS is substantially smaller than that of OLS

especially for small n ≤8. In sum, WLS method reduces type I error. The bound from WLS

is very close to .05 and much closer to .05 than the bound from Ibragimov and Muller [2009]

method.

Table 3.3 reports the size adjusted power of t-test for T=50. Power is greater for t-test

of Hansen [2007] with WLS than for that of Ibragimov and Muller [2009]. An inference of

Hansen [2007] with WLS dominates that of Ibragimov and Muller [2009] in all n and the

power advantage of Hansen [2007] with WLS comes from using both within and between

variations while Ibragimov and Muller [2009] only use between variation. All these imply

that a robust inference of Hansen [2007] with WLS is preferred method especially with small

n ≤8 when attrition is the sole source of heterogeneity. We obtain the same qualitative

implication in table 3.4 with T=100. As n and T increases, the power of tests also increases

for all four methods. The order of higher power is balanced data, complete case with OLS,

complete case with WLS and complete case with Ibragimov and Muller [2009] method.
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Table 3.2. The size of test, 1(p < 0.05)

T=50 balanced complete-case complete-case complete-case

OLS OLS t-stat inference of IM WLS

n=4 .051(.047,.055) .090(.084,.096) .032(.028,.035) .051(.046,.055)

n=5 .053(.048,.057) .074(.069,.079) .034(.030,.037) .051(.046,.055)

n=6 .053(.048,.057) .068(.063,.073) .039(.035,.043) .050(.044,.054)

n=7 .053(.048,.057) .065(.060,.070) .039(.035,.043) .049(.045,.054)

n=8 .049(.045,.053) .058(.053,.062) .045(.041,.049) .049(.044,.053)

n=16 .050(.046,.054) .049(.045,.054) .050(.044,.054) .046(.041,.051)

T=100 balanced complete-case complete-case complete-case

OLS OLS t-stat inference of IM WLS

n=4 .050(.046,.054) .083(.078,.089) .035(.031,.038) .044(.040,.048)

n=5 .052(.047,.056) .090(.085,.096) .024(.021,.027) .045(.041,.049)

n=6 .048(.044,.053) .079(.073,.084) .029(.026,.032) .045(.041,.049)

n=7 .049(.045,.054) .068(.063,.073) .028(.025,.031) .043(.040,.047)

n=8 .051(.046,.056) .061(.056,.066) .042(.038,.045) .045(.041,.049)

n=16 .051(.045,.057) .050(.044,.056) .051(.045,.058) .050(.044,.056)

T=300 balanced complete-case complete-case complete-case

OLS OLS t-stat inference of IM WLS

n=4 .051(.046,.055) .075(.069,.080) .034(.030,.037) .042(.038,.046)

n=5 .049(.044,.053) .067(.062,.071) .040(.036,.044) .045(.041,.049)

n=6 .052(.047,.056) .067(.062,.072) .042(.038,.046) .047(.043,.051)

n=7 .047(.043,.051) .062(.058,.067) .041(.037,.045) .045(.041,.049)

n=8 .049(.044,.053) .061(.056,.066) .042(.038,.045) .045(.041,.049)

n=16 .048(.044,.052) .055(.050,.059) .047(.043,.051) .049(.045,.054)

(Note) The rejection probability with nominal level .05 is reported. 95 % coverage rate for
rejection probability is reported in parenthesis. The number of replications in simulation is
10,000. Balanced OLS and complete case OLS is based on the methods in Hansen [2007].
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Table 3.3. The size adjusted power of test

T=50 balanced complete-case complete-case complete-case

n=4 OLS OLS t-stat inference of IM WLS

bias=0 .051(.047,.055) .090(.084,.096) .032(.028,.035) .051(.046,.055)

bias=2% .056(.051,.060) .089(.083,.094) .033(.029,.037) .050(.045,.054)

bias=5% .077(.071,.082) .103(.097,.109) .039(.035,.042) .060(.056,.065)

bias=10% .147(.140,.153) .152(.145,.159) .061(.057,.066) .096(.091,.102)

bias=20% .395(.385,.404) .347(.337,.356) .157(.149,.164) .244(.236,.253)

T=50 balanced complete-case complete-case complete-case

n=5 OLS OLS t-stat inference of IM WLS

bias=0 .053(.048,.057) .074(.069,.079) .034(.030,.037) .051(.046,.055)

bias=2% .057(.052,.061) .082(.077,.087) .037(.033,.041) .054(.050,.059)

bias=5% .084(.078,.089) .098(.092,.104) .048(.044,.053) .067(.062,.072)

bias=10% .188(.181,.196) .171(.164,.178) .087(.082,.093) .119(.113,.126)

bias=20% .551(.541,.561) .429(.420,.439) .238(.229,.246) .345(.226,.354)

T=50 balanced complete-case complete-case complete-case

n=6 OLS OLS t-stat inference of IM WLS

bias=0 .053(.048,.057) .068(.063,.073) .039(.035,.042) .050(.045,.054)

bias=2% .055(.050,.060) .074(.069,.079) .045(.041,.049) .056(.051,.060)

bias=5% .091(.086,.097) .096(.090,.101) .059(.054,.063) .072(.067,.077)

bias=10% .227(.219,.235) .188(.180,.195) .107(.100,.113) .149(.142,.156)

bias=20% .668(.658,.677) .498(.488,.507) .307(.298,.316) .430(.420,.440)

T=50 balanced complete-case complete-case complete-case

n=7 OLS OLS t-stat inference of IM WLS

bias=0 .053(.048,.057) .065(.060,.070) .039(.035,.042) .049(.045,.054)

bias=2% .058(.053,.062) .072(.067,.077) .045(.040,.049) .056(.052,.061)

bias=5% .107(.101,.113) .100(.094,.106) .064(.059,.069) .080(.075,.086)

bias=10% .278(.269,.287) .206(.198,.214) .131(.125,.138) .172(.165,.179)

bias=20% .763(.754,.771) .576(.567,.586) .372(.363,.382) .513(.503,.523)

T=50 balanced complete-case complete-case complete-case

n=8 OLS OLS t-stat inference of IM WLS

bias=0 .049(.045,.053) .058(.053,.062) .045(.041,.049) .049(.044,.053)

bias=2% .059(.054,.063) .066(.061,.071) .046(.042,.050) .056(.052,.061)

bias=5% .118(.111,.124) .105(.099,.111) .075(.069,.080) .089(.084,.095)

bias=10% .320(.311,.330) .230(.221,.238) .158(.151,.165) .201(.193,.209)

bias=20% .835(.827,.842) .641(.631,.650) .465(.455,.474) .601(.591,.610)

(Note) The rejection probability is reported. 95 % coverage rate for rejection probability is
reported in parenthesis. Generated errors are from AR(1) process with correlation

coefficient 0.75. The number of replications is 10,000. Balanced OLS and complete case
OLS is based on the methods in Hansen [2007].
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Table 3.4. The size adjusted power of test, 1(p < 0.05), T = 100

T=100 balanced complete-case complete-case complete-case

n=4 OLS OLS t-stat inference of IM WLS

bias=0 .050(.046,.054) .083(.078,.089) .035(.031,.038) .044(.040,.048)

bias=2% .056(.051,.060) .083(.078,.089) .036(.032,.039) .049(.044,.053)

bias=5% .097(.091,.104) .117(.109,.124) .044(.039,.049) .067(.061,.073)

bias=10% .228(.220,.237) .223(.215,.231) .097(.091,.103) .140(.133,.146)

bias=20% .646(.635,.657) .549(.537,.560) .289(.278,.299) .407(.396,.418)

T=100 balanced complete-case complete-case complete-case

n=5 OLS OLS t-stat inference of IM WLS

bias=0 .052(.047,.056) .090(.085,.096) .024(.021,.027) .045(.041,.049)

bias=2% .063(.056,.069) .097(.089,.104) .027(.023,.031) .046(.040,.051)

bias=5% .117(.109,.125) .141(.132,.149) .040(.035,.045) .080(.073,.087)

bias=10% .320(.309,.330) .281(.271,.290) .096(.090,.103) .176(.168,.185)

bias=20% .821(.813,.828) .678(.669,.687) .285(.276,.293) .543(.533,.553)

T=100 balanced complete-case complete-case complete-case

n=6 OLS OLS t-stat inference of IM WLS

bias=0 .048(.044,.053) .079(.073,.084) .029(.026,.032) .045(.041,.049)

bias=2% .058(.054,.063) .089(.083,.094) .030(.027,.033) .056(.052,.060)

bias=5% .140(.131,.148) .142(.133,.150) .056(.050,.061) .094(.087,.102)

bias=10% .406(.396,.416) .315(.306,.324) .131(.124,.138) .233(.225,.241)

bias=20% .916(.909,.923) .766(.755,.777) .399(.387,.411) .679(.667,.691)

T=100 balanced complete-case complete-case complete-case

n=7 OLS OLS t-stat inference of IM WLS

bias=0 .049(.045,.054) .068(.063,.073) .028(.025,.031) .043(.039,.047)

bias=2% .073(.067,.080) .086(.078,.093) .038(.033,.043) .060(.052,.061)

bias=5% .172(.161,.182) .142(.132,.151) .067(.059,.069) .102(.093,.111)

bias=10% .487(.474,.500) .366(.354,.378) .171(.161,.180) .293(.282,.304)

bias=20% .964(.960,.968) .850(.842,.858) .495(.484,.505) .789(.780,.798)

T=100 balanced complete-case complete-case complete-case

n=8 OLS OLS t-stat inference of IM WLS

bias=0 .051(.046,.056) .061(.056,.066) .042(.038,.045) .045(.041,.049)

bias=2% .070(.064,.075) .078(.072,.083) .049(.044,.053) .060(.052,.071)

bias=5% .188(.178,.198) .163(.153,.173) .095(.086,.104) .128(.118,.139)

bias=10% .554(.544,.564) .408(.398,.418) .248(.238,.258) .348(.338,.358)

bias=20% .986(.982,.989) .893(.883,.902) .670(.659,.680) .855(.844,.865)

(Note) The rejection probability is reported. 95 % coverage rate for rejection probability is
reported in parenthesis. Generated errors are from AR(1) process with correlation

coefficient 0.75. The number of replications is 10,000. Balanced OLS and complete case
OLS is based on the methods in Hansen [2007].
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Table 3.5. Configuration of heteroskedastic variance

a1 a2 a3 a4 a5 a6 a7 a8

n=4 1.5 .5 2 .8

n=5 1.5 .5 2 .8 .9

n=6 1.5 .5 2 .8 .9 1.1

n=7 1.5 .5 2 .8 .9 1.1 1.2

n=8 1.5 .5 2 .8 .9 1.1 1.2 .7

3.3.2 The t-test using t∗wls-statistic with scaled factor under het-

erogenous variance and attrition

DGP II: Attrition and heterokedastic variance

We use the same data generating process as in DGP I where attrition is the only source of

heterogeneity and attrition configurations as in table 3.1. In DGP II, the only difference

in DGP is coming from error process ui. As in DGP I, each uit is initially drawn from

standard normal with AR(1) process of serial correlation coefficient, ρ=0.75. Then, we

introduce heteroskedastic variance by replace uit with ai ∗ uit where, for the case of n=4,

we assign a1=1.5, a2=.5, a3=2 and a4=.8. Heteroskedastic variance configurations in DGPs

are provided in table 3.5.

Simulation result: Heteroskedastic variance and attrition

Table 3.6 shows the size of t-test at the nominal level .05 for data with n=4,5,6,7,8,16 and

T=100. The t-test inference of Hansen [2007] results in balanced panel data are reported

in the second column and it shows conservative inference for all n. As n increases, the

rejection frequency approaches nominal level .05 so that size distortion disappears. Third

column shows the results of t-test with complete case in unbalanced panel data. There are
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two sources of heterogeneity for the t-test with complete case: attrition and heteroskedastic

variance. Both sources of heterogeneity are not controlled for t-test with complete case.

Results in third column shows that two sources of heterogeneity may work against each

other as attrition mitigates standard error while heteroskedastic variance increases standard

error used in t-statistic. Thus, there are no consistent pattern of over-rejection or under-

rejection as we change n. The fourth column reports the results of t-tests using the method

in Ibragimov and Muller [2009] with complete case in unbalanced panel data. The t-tests

provide conservative inference for all n while rejection frequency approaches to true nominal

level .05 as n increases up to n=16. The mean value of MC rejection frequency for Ibragimov

and Muller [2009] is lower than that for Hansen [2007] in balanced panel data. Fifth column

reports the results of t-test with complete case in unbalanced panel using WLS which is

proposed in this paper. For this method, weights used in WLS eliminate heterogeneity

in covariates due to attrition while heterogeneity in errors by two sources still remains.

The results in fifth column shows conservative inference for all n. The rejection frequency

approaches to true nominal level .05 as n increases up to n=16. The mean value of MC

rejection frequency is lower than that in balanced panel data for all n.

Table 3.7 shows the power of t-tests for the method in Hansen [2007] with balanced panel,

the method in Hansen [2007] with unbalanced panel, the method in Ibragimov and Muller

[2009] with unbalanced panel, and our suggested WLS method with unbalanced panel. The

power increases with n for all methods. Our WLS method has higher power than the method

in Ibragimov and Muller [2009] for all n and all magnitude of bias. The third column shows

the power for the methods in Hansen [2007] while the fifth column reports the power for our

WLS method in unbalanced panel. The WLS method has lower power than the method in
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Table 3.6. The size of test, 1(p < 0.05)

T=100 balanced complete-case complete-case complete-case

OLS OLS t-stat inference of IM WLS

n=4 .033(.030,.037) .031(.028,.034) .017(.014,.020) .018(.015,.020)

n=5 .036(.031,.040) .049(.044,.054) .027(.023,.031) .028(.024,.031)

n=6 .038(.033,.042) .051(.045,.056) .027(.023,.031) .033(.028,.037)

n=7 .042(.038,.046) .051(.047,.056) .029(.025,.032) .037(.033,.040)

n=8 .042(.038,.046) .055(.050,.060) .036(.032,.040) .042(.037,.046)

n=16 .047(.041,.053) .058(.052,.064) .042(.036,.048) .046(.040,.052)

(Note) The rejection probability with nominal level .05 is reported. 95 % coverage rate for
rejection probability is reported in parenthesis. The number of replications in simulation is

2,000. Balanced OLS and complete case OLS is based on the methods in Hansen [2007].

Hansen [2007] but the difference is quite small overall. However, compared to homogeneous

case, the introduction of heteroskedastic variance leads to loss of power for all methods we

considered in simulation.

3.3.3 Trade-off calculation: Dropping observation to make bal-

anced panel data

As unbalancedness of panel data causes heterogeneity and it forces conservative t-tests for

the methods in Ibragimov and Muller [2009] and Bester et al. [2009] and leads to t-tests

invalid when these methods use t-distribution as reference distribution. Thus, we examine

the tradeoff of dropping some observations on purpose to make data balanced.3 Dropping

observations inevitably introduces the loss of power while balanced panel data eliminates

3 We observe this practice of balancing data occasionally especially in international
macroeconomic data. Many data are available from 1970 and the number of countries ana-
lyzed sometimes less than 50. It is quite common that researchers have shorter time-series
for developing countries and they use only balanced data from 1980 or later period.
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Table 3.7. The size adjusted power of test, 1(p < 0.05), T = 100

T=100 balanced complete-case complete-case complete-case

n=4 OLS OLS t-stat inference of IM WLS

bias=0 .033(.030,.037) .031(.028,.034) .017(.014,.020) .018(.015,.020)

bias=2% .037(.028,.046) .033(.030,.037) .017(.014,.020) .019(.016,.021)

bias=5% .069(.061,.077) .059(.051,.064) .028(.024,.033) .034(.027,.041)

bias=10% .190(.182,.198) .153(.145,.161) .064(.059,.069) .093(.087,.100)

bias=20% .497(.489,.505) .422(.414,.430) .208(.203,.213) .300(.293,.307)

T=100 balanced complete-case complete-case complete-case

n=5 OLS OLS t-stat inference of IM WLS

bias=0 .036(.031,.044) .049(.044,.054) .027(.023,.031) .028(.024,.031)

bias=2% .045(.037,.053) .097(.089,.104) .027(.023,.031) .046(.040,.053)

bias=5% .081(.073,.089) .141(.133,.149) .040(.035,.045) .080(.073,.087)

bias=10% .260(.252,.268) .281(.273,.289) .096(.091,.101) .176(.169,.184)

bias=20% .681(.673,.689) .678(.670,.686) .285(.276,.290) .543(.535,.550)

T=100 balanced complete-case complete-case complete-case

n=6 OLS OLS t-stat inference of IM WLS

bias=0 .038(.033,.042) .051(.045,.056) .027(.023,.031) .033(.028,.037)

bias=2% .051(.043,.059) .058(.053,.063) .035(.030,.040) .043(.037,.050)

bias=5% .114(.106,.122) .107(.100,.114) .051(.047,.056) .077(.070,.084)

bias=10% .316(.308,.324) .254(.246,.262) .111(.106,.116) .181(.174,.188)

bias=20% .786(.778,.794) .622(.614,.630) .349(.344,.354) .565(.558,.572)

T=100 balanced complete-case complete-case complete-case

n=7 OLS OLS t-stat inference of IM WLS

bias=0 .042(.038,.046) .051(.047,.056) .029(.025,.032) .037(.033,.041)

bias=2% .059(.051,.067) .063(.056,.071) .036(.031,.040) .045(.038,.052)

bias=5% .137(.129,.144) .117(.110,.125) .060(.055,.065) .085(.078,.092)

bias=10% .391(.383,.399) .311(.303,.319) .134(.129,.140) .241(.234,.248)

bias=20% .870(.863,.878) .717(.709,.725) .409(.404,.415) .655(.648,.662)

T=100 balanced complete-case complete-case complete-case

n=8 OLS OLS t-stat inference of IM WLS

bias=0 .042(.038,.046) .055(.050,.060) .036(.032,.040) .042(.037,.046)

bias=2% .070(.064,.075) .078(.072,.083) .049(.044,.053) .060(.052,.071)

bias=5% .188(.178,.198) .163(.153,.173) .095(.086,.104) .128(.118,.139)

bias=10% .554(.544,.564) .408(.398,.418) .248(.238,.258) .348(.338,.358)

bias=20% .986(.982,.989) .893(.883,.902) .670(.659,.680) .855(.844,.865)

(Note) The rejection probability is reported. 95 % coverage rate for rejection probability is
reported in parenthesis. The number of replications is 2,000. Balanced OLS and complete

case OLS is based on the methods in Hansen [2007].
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heterogeneity and the size distortion in inference. Thus, we can quantify the tradeoff between

the benefit of eliminating the rejection probability bias and the cost of losing power using

DGP I.

Table 3.8 reports the size of t-tests for a method in Ibragimov and Muller [2009]. The

first column shows cross-section dimension of data. The second column reports the rejection

probability of t-test for balanced panel data without attrition. The fourth and fifth columns

report the rejection probability of t-test for balanced panels by dropping observations (re-

duced balanced panel) from complete case for time dimension and cross-section dimension

respectively. These three columns show that there is no size distortion of inferences for

balanced panels in simulation. The third column reports the rejection probability of t-test

for complete case of unbalanced panel data. Different length of data due to missing process

configuration of table 3.1 induces heterogeneity and heteroskedastic variance leads to con-

servative inference of t-test as theory prediction of Ibragimov and Muller [2009] approach

indicates. As n increases the degree of conservativeness of inference is mitigated and, for

n=16, inference exhibits no size distortion regardless of size of time dimensions.

Table 3.9 and appendix I report the size adjusted power of t-tests in Ibragimov and Muller

[2009] for T=50, 100, 300 and 1,000 respectively. Regardless of T , the loss of power is quite

significant for reduced balanced panel. Especially for large n ≥8 and bias=20%, the power

of t-test for reduced balanced panel is less than 50% of the power of unbalanced panel of

complete case. This is noticeable decline of power by dropping observations. As reported in

tables 3.3 and 3.4, the difference of the power of t-tests of between complete case with OLS

and complete case with WLS is negligibly small. The power analysis for reduced balanced

panel data shows that the cost of losing power overwhelms the benefit of no size distortion.
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Table 3.8. The size of test, 1(p < 0.05) where AR(1) error with correlation coefficient 0.75

T=50 balanced complete-case balanced balanced

keep ∀i drop t keep ∀t drop i

n=4 .053(.045,.059) .031(.025,.036) .050(.042,.056) .050(.043,.056)

n=5 .054(.046,.060) .034(.029,.040) .045(.039,.051) .055(.048,.063)

n=6 .047(.040,.054) .037(.031,.043) .049(.042,.056) .050(.043,.056)

n=7 .046(.039,.053) .042(.036,.048) .048(.041,.054) .049(.042,.055)

n=8 .051(.044,.058) .039(.033,.045) .050(.043,.056) .052(.045,.059)

n=9 .052(.045,.059) .040(.034,.046) .047(.040,.053) .052(.045,.059)

n=10 .047(.040,.054) .042(.036,.048) .049(.042,.056) .053(.046,.060)

n=11 .049(.042,.056) .048(.041,.055) .051(.044,.058) .052(.045,.059)

n=16 .050(.043,.057) .048(.041,.055) .054(.047,.062) .048(.041,.054)

T=100 balanced complete-case balanced-drop t balanced -drop i

n=4 .048(.041,.054) .028(.023,.033) .046(.040,.053) .053(.046,.060)

n=5 .050(.043,.056) .023(.019,.028) .051(.044,.058) .047(.040,.053)

n=6 .046(.040,.053) .027(.022,.032) .046(.039,.053) .048(.041,.054)

n=7 .054(.047,.061) .030(.025,.036) .047(.040,.054) .048(.041,.054)

n=8 .048(.042,.055) .038(.032,.044) .050(.043,.057) .053(.046,.060)

n=16 .048(.041,.055) .049(.040,.058) .050(.042,.057) .050(.043,.057)

T=300 balanced complete-case balanced-drop t balanced -drop i

n=4 .046(.039,.053) .029(.022,.035) .053(.042,.063) .048(.039,.057)

n=5 .051(.044,.058) .032(.026,.038) .051(.045,.058) .046(.040,.053)

n=6 .053(.046,.060) .039(.032,.045) .050(.043,.057) .052(.046,.059)

n=7 .045(.038,.052) .038(.032,.044) .051(.044,.059) .049(.041,.056)

n=8 .053(.042,.055) .042(.035,.049) .049(.040,.057) .050(.042,.058)

n=16 .046(.041,.055) .050(.043,.057) .050(.043,.057) .048(.041,.055)

T=1,000 balanced complete-case balanced-drop t balanced -drop i

n=4 .056(.049,.063) .033(.026,.040) .042(.034,.049) .057(.050,.064)

n=5 .051(.044,.058) .039(.033,.046) .045(.038,.052) .049(.042,.055)

n=6 .050(.043,.057) .040(.034,.047) .050(.043,.057) .050(.043,.057)

n=7 .047(.040,.053) .038(.032,.044) .047(.040,.053) .053(.046,.060)

n=8 .046(.038,.055) .037(.031,.044) .052(.045,.058) .055(.048,.063)

n=9 .051(.041,.058) .043(.036,.051) .049(.042,.056) .045(.038,.052)

n=16 .050(.043,.057) .046(.039,.053) .050(.043,.057) .048(.041,.055)

(Note) The rejection probability is reported. 95 % coverage rate for rejection probability is
reported in parenthesis. The number of replications is 4,000.
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Table 3.9. The size adjusted power of test, 1(p < 0.05), T = 50

T=50, n=4 balanced complete-case balanced balanced

keep ∀i drop t keep ∀t drop i

bias=0 .053(.045,.059) .031(.025,.036) .050(.042,.056) .050(.043,.056)

bias=2% .058(.047,.068) .043(.034,.051) .047(.037,.057) .057(.046,.067)

bias=5% .074(.063,.085) .049(.040,.058) .049(.040,.058) .066(.056,.076)

bias=10% .137(.121,.152) .072(.060,.083) .058(.047,.068) .082(.070,.094)

bias=20% .391(.369,.412) .174(.157,.190) .101(.088,.114) .121(.107,.135)

T=50, n=8 balanced complete-case balanced-drop t balanced -drop i

bias=0 .051(.044,.058) .039(.033,.045) .050(.043,.056) .052(.045,.059)

bias=2% .058(.048,.068) .052(.042,.062) .054(.044,.064) .059(.049,.069)

bias=5% .114(.100,.128) .071(.059,.082) .060(.049,.070) .064(.053,.074)

bias=10% .307(.287,.327) .152(.136,.167) .081(.069,.092) .083(.071,.095)

bias=20% .812(.794,.829) .467(.445,.488) .204(.186,.222) .132(.117,.146)

T=50, n=16 balanced complete-case balanced-drop t balanced -drop i

bias=0 .050(.043,.057) .048(.041,.055) .054(.047,.062) .048(.041,.054)

bias=2% .074(.063,.085) .053(.043,.062) .053(.043,.063) .054(.049,.064)

bias=5% .191(.173,.208) .102(.089,.115) .083(.071,.095) .073(.062,.084)

bias=10% .613(.591,.634) .306(.286,.326) .176(.159,.193) .132(.117,.147)

bias=20% .993(.989,.997) .810(.792,.827) .503(.481,.525) .383(.361,.404)

(Note) The rejection probability is reported. 95 % coverage rate for rejection probability is
reported in parenthesis. Generated errors are from AR(1) process with correlation

coefficient 0.75. The number of replications is 2,000.
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3.4 Conclusion

In this paper, we extend the robust inference method with heterogenous variance and auto-

correlation in Hansen [2007] to unbalanced panel data. In unbalanced panel data, hetero-

geneity is induced by attrition and heterogeneity in both covariate and variance makes the

t-test using OLS with scaled t-statistic in Hansen [2007] invalid. We derive robust inference

result using weighted least squares (WLS) for unbalanced panel data where t∗wls-statistic with

scaling factor provides conservative inference results with standard t-test in the presence of

both attrition and heteroskedastic variance.

We examine our proposed WLS inference method and compare to the methods in Hansen

[2007] and Ibragimov and Muller [2009] via MC simulation. Simulation results verify the

bound result of t-test for the method with WLS when attrition is the only source of het-

erogeneity and compared to the method in Hansen [2007], the size distortion is significantly

reduced with WLS especially for small n. Moreover, compared to t-statistic based method

of Ibragimov and Muller [2009], WLS method performs better in power and the bound of

type I error is closer to .05. Simulation also shows that the proposed WLS method in an

unbalanced panel provides conservative inference but shows greater power than the method

in Ibragimov and Muller [2009] in the presence of both heterogenous variance and attrition.

Finally, we examine the tradeoff of dropping some observations on purpose to make the data

balanced. Balanced panel data eliminate heterogeneity and the size distortion in inference

but the loss of power due to dropping observations is quite substantial. Overall, the cost of

losing power dominates the benefit of eliminating the rejection probability bias.
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Appendix A

Gaussian copula density

Consider following joint logistic distribution for (u1, u2, ....., uT ).

F (u1, u2, ....., uT ) = C(F1(u1), ..., Ft(ut), ..., FT (uT ); ρ)

where F (·) is joint logistic distribution and Ft(·) is univariate logistic distribution.

Then, we can obtain joint logistic density as following.

f(u1, u2, ....., uT ) =
∂TC(ε1, ε2, ...., εT ; ρ)

∂ε1∂ε2 · · · ∂εT
∂ε1

∂u1

∂ε2

∂u2
· · · ∂εT

∂uT
(A.1)

where Ft(ut) = εt,
∂εt
∂ut

= ft(ut) for all t and let
∂TC(ε1,ε2,....,εT );ρ)

∂ε1∂ε2···∂εT
= c(ε1, ε2, ...., εT ; ρ).

Since C(·) is gaussian copula, we can rewrite c(·) as follow using the probability integral

transformation(Hoel et al. [1972]) which transforms normal CDF to logistic CDF.

c(ε1, ε2, ...., εT ; ρ) =
φ(Φ−1

1 (ε1),Φ−1
2 (ε2), ...,Φ−1

T (εT ); ρ)

φ1(Φ−1
1 (ε1)) · φ2(Φ−1

2 (ε2)) · · ·φT (Φ−1
T (εT ))

(A.2)

where φ(·) is joint normal density and φt(·) is a univariate normal density.
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Using the equations (A.1) and (A.2), we obtain following logistic density. In applications,

we can use equation (A.3) to estimate model parameters by maximum likelihood estimation.

f(u1, u2, ....., uT ) = φ(Φ−1
1 (F1(u1)),Φ−1

2 (F2(u2)), ...,Φ−1
T (FT (uT )); ρ)

T∏
t=1

ft(ut)

φt(Φ
−1
t (Ft(ut)))

(A.3)

where joint normal density is given by the following.

φ(g1, g2, ..., gT ) = (
1

2π
)
T
2 |Σ|−

1
2 exp(−1

2
g′(|Σ|−1 − IT )g)

where g = (g1, g2, ..., gT )′ and Σ is covariance matrix of g, cov(g).
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Appendix B

Proof for the consistency of

conditional logit estimator in chapter

1

Likelihood of joint T events yi1, yi2...., yiT can be obtained from the following.

P (yi1 = y1, ...., yiT = yT |xi, ci, ni = n) =
P (yi1 = y1, ...., yiT = yT |xi, ci)

P (ni = n|xi, ci)

=︸︷︷︸
CI−A4

P (yi1 = y1|xi, ci)P (yi2 = y2|xi, ci) · · · · · P (yiT = yT |xi, ci)
P (ni = n|xi, ci)

=︸︷︷︸
SE−A2

P (yi1 = y1|xi1, ci)P (yi2 = y2|xi2, ci) · · · · · P (yiT = yT |xi3, ci)
P (ni = n|xi, ci)

=︸︷︷︸
A3

exp(
T∑
t=1

yitxitβ)

∑
a∈Ri

[exp(
T∑
t=1

atxitβ)]

(B.1)
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where a = (a1, a2, ...., aT ), at ∈ {0, 1} at = 1 if yit = 1,
T∑
t=1

at = ni and Ri is the subset of

RT defined as {a ∈ RT : at ∈ {0, 1} and
T∑
t=1

at = ni}.

β̂c−log it = arg max
b

n∑
i=1

li(b) (B.2)

li(b) = log{
exp(

T∑
t=1

yitxitb)

∑
a∈Ri

[exp(
T∑
t=1

atxitb)]

}

192



Appendix C

Monte Carlo simulation results:

Coefficient β for continuous covariate
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Table C.1. Unconditional logit estimates for β with no serial correlation

ρ=0, n=100 Mean SD SE r ≡ 1(P<0.05) 95-CI

t = 2 2.46 1.20 0.86 0.30 (0.28,0.32)

t = 3 1.75 0.46 0.44 0.34 (0.32,0.36)

t = 4 1.48 0.31 0.29 0.33 (0.31,0.35)

t = 5 1.36 0.23 0.22 0.32 (0.30,0.34)

t = 6 1.28 0.18 0.18 0.30 (0.28,0.32)

t = 7 1.23 0.16 0.16 0.29 (0.27,0.31)

t = 8 1.20 0.14 0.14 0.27 (0.25,0.29)

ρ=0, n=200 Mean SD SE r ≡ 1(P<0.05) 95-CI

t = 2 2.19 0.59 0.54 0.60 (0.58,0.62)

t = 3 1.67 0.30 0.29 0.63 (0.61,0.65)

t = 4 1.45 0.20 0.20 0.61 (0.59,0.63)

t = 5 1.33 0.16 0.15 0.57 (0.54,0.59)

t = 6 1.26 0.13 0.13 0.52 (0.50,0.55)

t = 7 1.22 0.11 0.11 0.50 (0.47,0.52)

t = 8 1.18 0.10 0.10 0.47 (0.45,0.49)

ρ=0, n=400 Mean SD SE r ≡ 1(P<0.05) 95-CI

t = 2 2.07 0.37 0.36 0.89 (0.88,0.90)

t = 3 1.63 0.21 0.20 0.92 (0.90,0.93)

t = 4 1.42 0.14 0.14 0.90 (0.89,0.91)

t = 5 1.32 0.11 0.11 0.87 (0.85,0.88)

t = 6 1.25 0.09 0.09 0.82 (0.81,0.83)

t = 7 1.20 0.08 0.08 0.77 (0.75,0.79)

t = 8 1.17 0.07 0.07 0.74 (0.71,0.77)

ρ=0, n=600 Mean SD SE r ≡ 1(P<0.05) 95-CI

t = 2 2.03 0.30 0.29 0.99 (0.98,0.99)

t = 3 1.62 0.17 0.16 0.98 (0.98,0.99)

t = 4 1.42 0.11 0.11 0.98 (0.98,0.99)

t = 5 1.31 0.09 0.09 0.96 (0.95,0.98)

t = 6 1.24 0.07 0.07 0.95 (0.94,0.96)

t = 7 1.20 0.06 0.06 0.92 (0.91,0.94)

t = 8 1.17 0.05 0.05 0.90 (0.88,0.92)

*Note: r is the rejection rate for the null of H0:β=1 with nominal value 0.05.

ρ is AR(1) serial correlation coefficient for the errors.
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Table C.2. Conditional logit estimates for β with no serial correlation

ρ=0, n=100 Mean SD SE r ≡ 1(P<0.05) 95-CI

t = 2 1.23 0.60 0.45 0.03 (0.03,0.04)

t = 3 1.08 0.26 0.25 0.04 (0.03,0.05)

t = 4 1.04 0.20 0.19 0.06 (0.05,0.07)

t = 5 1.04 0.16 0.16 0.05 (0.04,0.06)

t = 6 1.03 0.14 0.14 0.04 (0.03,0.05)

t = 7 1.03 0.13 0.12 0.05 (0.04,0.06)

t = 8 1.02 0.11 0.11 0.05 (0.04,0.06)

ρ=0, n=200 Mean SD SE r ≡ 1(P<0.05) 95-CI

t = 2 1.09 0.29 0.27 0.04 (0.03,0.05)

t = 3 1.03 0.17 0.17 0.05 (0.04,0.06)

t = 4 1.02 0.13 0.13 0.05 (0.04,0.06)

t = 5 1.02 0.11 0.11 0.05 (0.04,0.06)

t = 6 1.01 0.10 0.10 0.05 (0.04,0.06)

t = 7 1.01 0.09 0.09 0.05 (0.04,0.06)

t = 8 1.01 0.08 0.08 0.05 (0.04,0.06)

ρ=0, n=400 Mean SD SE r ≡ 1(P<0.05) 95-CI

t = 2 1.03 0.19 0.18 0.04 (0.03,0.05)

t = 3 1.01 0.12 0.12 0.05 (0.04,0.06)

t = 4 1.01 0.09 0.09 0.05 (0.04,0.06)

t = 5 1.00 0.08 0.08 0.05 (0.04,0.06)

t = 6 1.00 0.07 0.07 0.05 (0.04,0.06)

t = 7 1.00 0.06 0.06 0.05 (0.04,0.06)

t = 8 1.00 0.05 0.05 0.05 (0.04,0.06)

ρ=0, n=600 Mean SD SE r ≡ 1(P<0.05) 95-CI

t = 2 1.01 0.15 0.15 0.05 (0.04,0.06)

t = 3 1.01 0.10 0.09 0.05 (0.04,0.06)

t = 4 1.00 0.07 0.07 0.05 (0.04,0.06)

t = 5 1.00 0.06 0.06 0.06 (0.05,0.07)

t = 6 1.00 0.05 0.05 0.05 (0.04,0.06)

t = 7 1.00 0.05 0.05 0.05 (0.04,0.06)

t = 8 1.00 0.05 0.05 0.05 (0.04,0.06)

*Note: r is the rejection rate for the null of H0:β=1 with nominal value 0.05.

ρ is AR(1) serial correlation coefficient for the errors.

195



Table C.3. Unconditional logit estimates for β with serial correlation

ρ=0.2, n=100 Mean SD SE r ≡ 1(P<0.05) 95-CI

t = 2 2.88 1.89 1.04 0.36 (0.34,0.38)

t = 3 1.94 0.53 0.48 0.45 (0.43,0.48)

t = 4 1.60 0.34 0.31 0.46 (0.44,0.48)

t = 5 1.45 0.24 0.24 0.46 (0.44,0.48)

t = 6 1.35 0.20 0.19 0.41 (0.39,0.43)

t = 7 1.28 0.17 0.16 0.39 (0.37,0.41)

t = 8 1.25 0.15 0.14 0.38 (0.36,0.40)

ρ=0.2, n=200 Mean SD SE r ≡ 1(P<0.05) 95-CI

t = 2 2.50 0.72 0.62 0.72 (0.70,0.74)

t = 3 1.84 0.33 0.32 0.80 (0.78,0.82)

t = 4 1.56 0.21 0.21 0.78 (0.76,0.80)

t = 5 1.41 0.16 0.16 0.75 (0.73,0.76)

t = 6 1.32 0.13 0.13 0.70 (0.68,0.72)

t = 7 1.27 0.12 0.11 0.67 (0.65,0.69)

t = 8 1.22 0.10 0.10 0.62 (0.60,0.64)

ρ=0.2, n=400 Mean SD SE r ≡ 1(P<0.05) 95-CI

t = 2 2.37 0.42 0.42 0.97 (0.96,0.98)

t = 3 1.80 0.23 0.22 0.98 (0.97,0.99)

t = 4 1.54 0.15 0.15 0.98 (0.97,0.99)

t = 5 1.40 0.12 0.11 0.97 (0.96,0.98)

t = 6 1.32 0.09 0.09 0.95 (0.93,0.96)

t = 7 1.26 0.08 0.08 0.92 (0.91,0.93)

t = 8 1.22 0.07 0.07 0.90 (0.88,0.92)

ρ=0.2, n=600 Mean SD SE r ≡ 1(P<0.05) 95-CI

t = 2 2.31 0.35 0.33 0.99 (0.99,1)

t = 3 1.79 0.19 0.18 1 (1,1)

t = 4 1.53 0.12 0.12 1 (1,1)

t = 5 1.40 0.09 0.09 1 (1,1)

t = 6 1.31 0.07 0.08 1 (1,1)

t = 7 1.25 0.07 0.07 0.99 (0.98,0.99)

t = 8 1.22 0.06 0.06 0.98 (0.97,0.99)

*Note: r is the rejection rate for the null of H0:β=1 with nominal value 0.05.

ρ is AR(1) serial correlation coefficient for the errors.
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Table C.4. Conditional logit estimates for β with serial correlation

ρ=0.2, n=100 Mean SD SE r ≡ 1(P<0.05) 95-CI

t = 2 1.44 0.94 0.56 0.02 (0.01,0.02)

t = 3 1.18 0.30 0.27 0.05 (0.04,0.06)

t = 4 1.12 0.22 0.20 0.07 (0.06,0.08)

t = 5 1.10 0.17 0.17 0.07 (0.06,0.08)

t = 6 1.08 0.15 0.14 0.07 (0.06,0.08)

t = 7 1.07 0.13 0.13 0.07 (0.06,0.08)

t = 8 1.06 0.12 0.12 0.07 (0.06,0.08)

ρ=0.2, n=200 Mean SD SE r ≡ 1(P<0.05) 95-CI

t = 2 1.25 0.36 0.32 0.05 (0.04,0.06)

t = 3 1.14 0.19 0.18 0.07 (0.06,0.08)

t = 4 1.09 0.14 0.14 0.08 (0.07,0.09)

t = 5 1.08 0.11 0.12 0.08 (0.07,0.09)

t = 6 1.06 0.10 0.10 0.08 (0.07,0.09)

t = 7 1.06 0.09 0.09 0.09 (0.08,0.10)

t = 8 1.05 0.09 0.08 0.09 (0.08,0.10)

ρ=0.2, n=400 Mean SD SE r ≡ 1(P<0.05) 95-CI

t = 2 1.18 0.21 0.21 0.08 (0.06,0.09)

t = 3 1.11 0.13 0.13 0.11 (0.10,0.13)

t = 4 1.08 0.10 0.10 0.12 (0.10,0.13)

t = 5 1.07 0.08 0.08 0.13 (0.12,0.15)

t = 6 1.06 0.07 0.07 0.12 (0.10,0.14)

t = 7 1.05 0.06 0.06 0.10 (0.08,0.11)

t = 8 1.04 0.06 0.06 0.10 (0.08,0.12)

ρ=0.2, n=600 Mean SD SE r ≡ 1(P<0.05) 95-CI

t = 2 1.16 0.17 0.17 0.10 (0.08,0.12)

t = 3 1.11 0.11 0.10 0.15 (0.13,0.17)

t = 4 1.08 0.08 0.08 0.16 (0.13,0.18)

t = 5 1.06 0.06 0.07 0.14 (0.12,0.17)

t = 6 1.05 0.06 0.06 0.14 (0.12,0.16)

t = 7 1.04 0.05 0.05 0.13 (0.11,0.15)

t = 8 1.03 0.05 0.05 0.13 (0.11,0.15)

*Note: r is the rejection rate for the null of H0:β=1 with nominal value 0.05.

ρ is AR(1) serial correlation coefficient for the errors.
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Table C.5. Unconditional logit estimates for β with serial correlation

ρ=0.4, n=100 Mean SD SE r ≡ 1(P<0.05) 95-CI

t = 2 3.59 2.65 1.32 0.44 (0.42,0.46)

t = 3 2.26 0.65 0.57 0.60 (0.58,0.63)

t = 4 1.81 0.40 0.36 0.63 (0.61,0.65)

t = 5 1.60 0.27 0.26 0.65 (0.63,0.67)

t = 6 1.47 0.21 0.21 0.62 (0.60,0.65)

t = 7 1.38 0.18 0.18 0.57 (0.54,0.59)

t = 8 1.33 0.16 0.15 0.57 (0.55,0.59)

ρ=0.4, n=200 Mean SD SE r ≡ 1(P<0.05) 95-CI

t = 2 2.99 0.92 0.77 0.84 (0.83,0.86)

t = 3 2.12 0.39 0.38 0.93 (0.91,0.94)

t = 4 1.75 0.25 0.24 0.93 (0.91,0.94)

t = 5 1.56 0.18 0.18 0.92 (0.91,0.94)

t = 6 1.44 0.15 0.14 0.89 (0.88,0.91)

t = 7 1.36 0.12 0.12 0.87 (0.86,0.89)

t = 8 1.31 0.11 0.11 0.83 (0.81,0.84)

ρ=0.4, n=400 Mean SD SE r ≡ 1(P<0.05) 95-CI

t = 2 2.79 0.54 0.50 0.99 (0.99,1)

t = 3 2.07 0.27 0.26 1 (1,1)

t = 4 1.73 0.17 0.17 1 (1,1)

t = 5 1.54 0.13 0.13 1 (1,1)

t = 6 1.42 0.10 0.10 1 (1,1)

t = 7 1.35 0.09 0.09 0.99 (0.99,1)

t = 8 1.30 0.08 0.08 0.98 (0.98,0.99)

ρ=0.4, n=600 Mean SD SE r ≡ 1(P<0.05) 95-CI

t = 2 2.72 0.43 0.40 1 (1,1)

t = 3 2.06 0.21 0.21 1 (1,1)

t = 4 1.72 0.14 0.14 1 (1,1)

t = 5 1.53 0.10 0.10 1 (1,1)

t = 6 1.42 0.08 0.08 1 (1,1)

t = 7 1.35 0.07 0.07 1 (1,1)

t = 8 1.30 0.06 0.06 1 (1,1)

*Note: r is the rejection rate for the null of H0:β=1 with nominal value 0.05.

ρ is AR(1) serial correlation coefficient for the errors.
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Table C.6. Conditional logit estimates for β with serial correlation

ρ=0.4, n=100 Mean SD SE r ≡ 1(P<0.05) 95-CI

t = 2 1.80 1.32 0.77 0.004 (0.01,0.02)

t = 3 1.35 0.35 0.32 0.11 (0.04,0.06)

t = 4 1.25 0.25 0.22 0.14 (0.06,0.08)

t = 5 1.20 0.19 0.18 0.15 (0.06,0.08)

t = 6 1.17 0.16 0.15 0.16 (0.14,0.18)

t = 7 1.13 0.14 0.14 0.15 (0.13,0.16)

t = 8 1.13 0.13 0.13 0.15 (0.13,0.16)

ρ=0.4, n=200 Mean SD SE r ≡ 1(P<0.05) 95-CI

t = 2 1.50 0.46 0.39 0.12 (0.10,0.13)

t = 3 1.28 0.21 0.21 0.21 (0.19,0.23)

t = 4 1.21 0.16 0.15 0.25 (0.23,0.27)

t = 5 1.18 0.13 0.12 0.26 (0.23,0.27)

t = 6 1.15 0.11 0.11 0.25 (0.22,0.26)

t = 7 1.13 0.09 0.10 0.24 (0.21,0.26)

t = 8 1.11 0.09 0.09 0.23 (0.21,0.25)

ρ=0.4, n=400 Mean SD SE r ≡ 1(P<0.05) 95-CI

t = 2 1.39 0.27 0.25 0.27 (0.25,0.29)

t = 3 1.26 0.15 0.14 0.40 (0.38,0.42)

t = 4 1.20 0.11 0.11 0.45 (0.42,0.47)

t = 5 1.16 0.09 0.09 0.46 (0.43,0.48)

t = 6 1.14 0.08 0.08 0.41 (0.38,0.44)

t = 7 1.12 0.07 0.07 0.42 (0.39,0.45)

t = 8 1.10 0.06 0.06 0.40 (0.37,0.43)

ρ=0.4, n=600 Mean SD SE r ≡ 1(P<0.05) 95-CI

t = 2 1.36 0.21 0.20 0.40 (0.37,0.43)

t = 3 1.26 0.12 0.12 0.59 (0.56,0.62)

t = 4 1.19 0.09 0.09 0.64 (0.61,0.67)

t = 5 1.16 0.07 0.07 0.61 (0.58,0.64)

t = 6 1.13 0.06 0.06 0.59 (0.56,0.62)

t = 7 1.11 0.06 0.05 0.56 (0.52,0.59)

t = 8 1.10 0.05 0.05 0.53 (0.50,0.56)

*Note: r is the rejection rate for the null of H0:β=1 with nominal value 0.05.

ρ is AR(1) serial correlation coefficient for the errors.
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Table C.7. Unconditional logit estimates for β with serial correlation

ρ=0.6, n=100 Mean SD SE r ≡ 1(P<0.05) 95-CI

t = 2 5.32 10.91 1.89 0.57 (0.55,0.59)

t = 3 2.87 0.94 0.76 0.79 (0.77,0.81)

t = 4 2.21 0.49 0.45 0.86 (0.84,0.87)

t = 5 1.90 0.33 0.32 0.88 (0.87,0.90)

t = 6 1.71 0.25 0.25 0.87 (0.85,0.88)

t = 7 1.58 0.21 0.20 0.85 (0.84,0.87)

t = 8 1.49 0.18 0.17 0.83 (0.82,0.85)

ρ=0.6, n=200 Mean SD SE r ≡ 1(P<0.05) 95-CI

t = 2 3.94 1.66 1.09 0.91 (0.90,0.93)

t = 3 2.66 0.52 0.49 0.99 (0.98,0.99)

t = 4 2.13 0.32 0.30 0.99 (0.99,1)

t = 5 1.84 0.22 0.22 0.99 (0.99,1)

t = 6 1.67 0.17 0.17 0.99 (0.99,1)

t = 7 1.55 0.15 0.14 0.99 (0.99,1)

t = 8 1.47 0.13 0.12 0.98 (0.98,0.99)

ρ=0.6, n=400 Mean SD SE r ≡ 1(P<0.05) 95-CI

t = 2 3.55 0.74 0.67 1 (1,1)

t = 3 2.56 0.35 0.33 1 (1,1)

t = 4 2.09 0.21 0.21 1 (1,1)

t = 5 1.82 0.15 0.15 1 (1,1)

t = 6 1.64 0.12 0.12 1 (1,1)

t = 7 1.53 0.10 0.10 1 (1,1)

t = 8 1.46 0.09 0.09 1 (1,1)

ρ=0.6, n=600 Mean SD SE r ≡ 1(P<0.05) 95-CI

t = 2 3.43 0.58 0.52 0.99 (0.99,1)

t = 3 2.55 0.27 0.27 1 (1,1)

t = 4 2.08 0.16 0.17 1 (1,1)

t = 5 1.80 0.12 0.12 1 (1,1)

t = 6 1.64 0.10 0.10 1 (1,1)

t = 7 1.53 0.08 0.08 1 (1,1)

t = 8 1.45 0.07 0.07 1 (1,1)

*Note: r is the rejection rate for the null of H0:β=1 with nominal value 0.05.

ρ is AR(1) serial correlation coefficient for the errors.
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Table C.8. Conditional logit estimates for β with serial correlation

ρ=0.6, n=100 Mean SD SE r ≡ 1(P<0.05) 95-CI

t = 2 2.86 11.06 3048013 0.001 (0,0.03)

t = 3 1.68 0.50 0.41 0.27 (0.25,0.29)

t = 4 1.49 0.29 0.27 0.39 (0.37,0.41)

t = 5 1.40 0.22 0.21 0.45 (0.42,0.47)

t = 6 1.34 0.18 0.18 0.47 (0.44,0.49)

t = 7 1.29 0.16 0.15 0.45 (0.43,0.47)

t = 8 1.25 0.14 0.14 0.44 (0.42,0.46)

ρ=0.6, n=200 Mean SD SE r ≡ 1(P<0.05) 95-CI

t = 2 1.97 0.83 0.58 0.23 (0.21,0.25)

t = 3 1.57 0.28 0.26 0.59 (0.57,0.61)

t = 4 1.44 0.19 0.18 0.72 (0.70,0.74)

t = 5 1.36 0.15 0.14 0.73 (0.71,0.75)

t = 6 1.31 0.13 0.12 0.75 (0.73,0.77)

t = 7 1.27 0.11 0.11 0.71 (0.69,0.73)

t = 8 1.24 0.10 0.09 0.71 (0.69,0.73)

ρ=0.6, n=400 Mean SD SE r ≡ 1(P<0.05) 95-CI

t = 2 1.77 0.37 0.34 0.68 (0.67,0.70)

t = 3 1.52 0.19 0.18 0.89 (0.88,0.90)

t = 4 1.42 0.13 0.13 0.95 (0.94,0.96)

t = 5 1.35 0.10 0.10 0.96 (0.95,0.97)

t = 6 1.30 0.09 0.08 0.95 (0.94,0.96)

t = 7 1.26 0.07 0.07 0.95 (0.94,0.96)

t = 8 1.23 0.07 0.07 0.96 (0.94,0.97)

ρ=0.6, n=600 Mean SD SE r ≡ 1(P<0.05) 95-CI

t = 2 1.71 0.29 0.27 0.85 (0.83,0.87)

t = 3 1.51 0.15 0.14 0.98 (0.98,0.99)

t = 4 1.41 0.10 0.10 1 (0.99,1)

t = 5 1.34 0.08 0.08 1 (0.99,1)

t = 6 1.29 0.07 0.07 0.99 (0.99,1)

t = 7 1.25 0.06 0.06 0.99 (0.99,1)

t = 8 1.22 0.06 0.05 0.99 (0.98,0.99)

*Note: r is the rejection rate for the null of H0:β=1 with nominal value 0.05.

ρ is AR(1) serial correlation coefficient for the errors.
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Table C.9. Unconditional logit estimates for β with serial correlation

ρ=0.8, n=100 Mean SD SE r ≡ 1(P<0.05) 95-CI

t = 2 8.70 17.11 3.05 0.67 (0.65,0.68)

t = 3 6.53 25.88 1.67 0.91 (0.89,0.92)

t = 4 3.34 0.90 0.75 0.98 (0.98,0.99)

t = 5 2.72 0.52 0.50 1 (0.99,1)

t = 6 2.36 0.39 0.36 1 (0.99,1)

t = 7 2.13 0.31 0.29 1 (0.99,1)

t = 8 1.96 0.25 0.24 1 (0.99,1)

ρ=0.8, n=200 Mean SD SE r ≡ 1(P<0.05) 95-CI

t = 2 7.12 12.38 2.33 0.93 (0.92,0.94)

t = 3 4.05 0.92 0.83 1 (1,1)

t = 4 3.13 0.53 0.48 1 (1,1)

t = 5 2.61 0.34 0.33 1 (1,1)

t = 6 2.26 0.25 0.24 1 (1,1)

t = 7 2.06 0.20 0.20 1 (1,1)

t = 8 1.91 0.17 0.17 1 (1,1)

ρ=0.8, n=400 Mean SD SE r ≡ 1(P<0.05) 95-CI

t = 2 5.50 2.28 1.25 1 (0.99,1)

t = 3 3.81 0.58 0.54 1 (1,1)

t = 4 3.03 0.34 0.33 1 (1,1)

t = 5 2.55 0.23 0.23 1 (1,1)

t = 6 2.24 0.18 0.17 1 (1,1)

t = 7 2.04 0.14 0.14 1 (1,1)

t = 8 1.89 0.12 0.12 1 (1,1)

ρ=0.8, n=600 Mean SD SE r ≡ 1(P<0.05) 95-CI

t = 2 5.09 1.07 0.92 1 (1,1)

t = 3 3.74 0.46 0.43 1 (1,1)

t = 4 3.00 0.27 0.26 1 (1,1)

t = 5 2.52 0.18 0.18 1 (1,1)

t = 6 2.23 0.14 0.14 1 (1,1)

t = 7 2.03 0.11 0.11 1 (1,1)

t = 8 1.89 0.09 0.09 1 (1,1)

*Note: r is the rejection rate for the null of H0:β=1 with nominal value 0.05.

ρ is AR(1) serial correlation coefficient for the errors.
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Table C.10. Conditional logit estimates for β with serial correlation

ρ=0.8, n=100 Mean SD SE r ≡ 1(P<0.05) 95-CI

t = 2 5.52 29.96 6296147 0 (0,0)

t = 3 4.03 19.14 380015 0.61 (0.59,0.63)

t = 4 2.12 0.50 0.42 0.89 (0.87,0.90)

t = 5 1.91 0.32 0.30 0.95 (0.94,0.97)

t = 6 1.78 0.26 0.24 0.96 (0.95,0.97)

t = 7 1.69 0.22 0.20 0.96 (0.95,0.96)

t = 8 1.61 0.19 0.18 0.97 (0.96,0.97)

ρ=0.8, n=200 Mean SD SE r ≡ 1(P<0.05) 95-CI

t = 2 3.69 11.54 1053342 0.27 (0.25,0.29)

t = 3 2.29 0.48 0.44 0.98 (0.98,0.99)

t = 4 2.01 0.29 0.27 1 (1,1)

t = 5 1.84 0.21 0.20 1 (1,1)

t = 6 1.72 0.17 0.16 1 (1,1)

t = 7 1.64 0.14 0.14 1 (1,1)

t = 8 1.57 0.13 0.12 1 (1,1)

ρ=0.8, n=400 Mean SD SE r ≡ 1(P<0.05) 95-CI

t = 2 2.75 1.14 0.68 0.98 (0.98,0.99)

t = 3 2.17 0.30 0.28 1 (1,1)

t = 4 1.95 0.19 0.18 1 (1,1)

t = 5 1.81 0.14 0.14 1 (1,1)

t = 6 1.70 0.12 0.11 1 (1,1)

t = 7 1.63 0.10 0.10 1 (1,1)

t = 8 1.56 0.09 0.08 1 (1,1)

ρ=0.8, n=600 Mean SD SE r ≡ 1(P<0.05) 95-CI

t = 2 2.55 0.54 0.47 1 (1,1)

t = 3 2.13 0.24 0.22 1 (1,1)

t = 4 1.94 0.15 0.15 1 (1,1)

t = 5 1.79 0.11 0.11 1 (1,1)

t = 6 1.69 0.09 0.09 1 (1,1)

t = 7 1.62 0.08 0.08 1 (1,1)

t = 8 1.56 0.07 0.07 1 (1,1)

*Note: r is the rejection rate for the null of H0:β=1 with nominal value 0.05.

ρ is AR(1) serial correlation coefficient for the errors.
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Appendix D

Monte Carlo simulation results: APEs

for continuous covariate
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Table D.1. LPM, unconditional logit, CRE logit APE estimates for β

n=100 ρ=0 Mean SD SE r ≡ 1(P<0.05) 95-CI

t = 2 LPM 0.157 0.040 0.040 0.058 (0.047,0.068)

t = 2 uncon logit 0.348 0.081 0.048 0.869 (0.854,0.884)

t = 2 CRE logit 0.158 0.040 0.040 0.059 (0.048,0.068)

t = 3 LPM 0.161 0.028 0.028 0.058 (0.048,0.068)

t = 2 uncon logit 0.276 0.044 0.034 0.833 (0.816,0.849)

t = 3 CRE logit 0.162 0.028 0.028 0.057 (0.056,0.068)

t = 4 LPM 0.163 0.023 0.023 0.049 (0.040,0.058)

t = 4 uncon logit 0.235 0.032 0.027 0.692 (0.672,0.712)

t = 4 CRE logit 0.163 0.023 0.023 0.053 (0.043,0.063)

t = 5 LPM 0.164 0.020 0.020 0.056 (0.046,0.066)

t = 5 uncon logit 0.215 0.025 0.022 0.586 (0.048,0.068)

t = 5 CRE logit 0.164 0.020 0.019 0.060 (0.050,0.071)

t = 6 LPM 0.165 0.018 0.018 0.050 (0.040,0.059)

t = 6 uncon logit 0.202 0.021 0.019 0.453 (0.432,0.475)

t = 6 CRE logit 0.165 0.018 0.018 0.069 (0.040,0.058)

t = 7 LPM 0.166 0.017 0.016 0.053 (0.041,0.060)

t = 7 uncon logit 0.194 0.019 0.017 0.392 (0.370,0.413)

t = 7 CRE logit 0.166 0.017 0.016 0.059 (0.049,0.069)

t = 8 LPM 0.166 0.016 0.015 0.051 (0.041,0.060)

t = 8 uncon logit 0.194 0.017 0.015 0.332 (0.311,0.352)

t = 8 CRE logit 0.166 0.015 0.015 0.056 (0.046,0.066)

*Note: r is the rejection rate for the null of H0:β=1 . ρ is AR(1) serial correlation coefficient for the errors. True APE is

0.162(t = 2), 0.162(t = 3), 0.165(t = 4), 0.165(t = 5), 0.167(t = 6), 0.166(t = 7), and 0.166(t = 8).
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Table D.2. LPM, unconditional logit, CRE logit APE estimates for β

n=200 ρ=0 Mean SD SE r ≡ 1(P<0.05) 95-CI

t = 2 LPM 0.157 0.028 0.028 0.059 (0.049,0.069)

t = 2 uncon logit 0.349 0.050 0.032 0.979 (0.973,0.985)

t = 2 CRE logit 0.157 0.028 0.028 0.060 (0.049,0.070)

t = 3 LPM 0.161 0.020 0.020 0.053 (0.043,0.063)

t = 3 uncon logit 0.273 0.031 0.024 0.973 (0.966,0.980)

t = 3 CRE logit 0.161 0.020 0.020 0.055 (0.045,0.065)

t = 4 LPM 0.163 0.016 0.016 0.053 (0.043,0.062)

t = 4 uncon logit 0.236 0.022 0.019 0.927 (0.915,0.938)

t = 4 CRE logit 0.163 0.016 0.016 0.058 (0.048,0.068)

t = 5 LPM 0.164 0.014 0.014 0.057 (0.047,0.067)

t = 5 uncon logit 0.214 0.028 0.015 0.851 (0.834,0.866)

t = 5 CRE logit 0.164 0.014 0.014 0.056 (0.045,0.066)

t = 6 LPM 0.165 0.013 0.013 0.054 (0.044,0.063)

t = 6 uncon logit 0.201 0.015 0.013 0.753 (0.734,0.772)

t = 6 CRE logit 0.165 0.013 0.013 0.055 (0.045,0.065)

t = 7 LPM 0.166 0.011 0.011 0.047 (0.037,0.056)

t = 7 uncon logit 0.194 0.013 0.012 0.658 (0.637,0.678)

t = 7 CRE logit 0.166 0.011 0.011 0.049 (0.039,0.058)

t = 8 LPM 0.166 0.011 0.011 0.060 (0.049,0.070)

t = 8 uncon logit 0.188 0.011 0.011 0.622 (0.601,0.643)

t = 8 CRE logit 0.166 0.011 0.011 0.059 (0.049,0.069)

*Note: r is the rejection rate for the null of H0:β=1 . ρ is AR(1) serial correlation coefficient for the errors. True APE is

0.163(t = 2), 0.163(t = 3), 0.164(t = 4), 0.165(t = 5), 0.165(t = 6), 0.166(t = 7), and 0.164(t = 8).
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Table D.3. LPM, unconditional logit, CRE logit APE estimates for β

n=400 ρ=0 Mean SD SE r ≡ 1(P<0.05) 95-CI

t = 2 LPM 0.156 0.020 0.020 0.063 (0.051,0.073)

t = 2 uncon logit 0.347 0.033 0.023 1 (1,1)

t = 2 CRE logit 0.156 0.020 0.020 0.063 (0.052,0.073)

t = 3 LPM 0.160 0.014 0.013 0.060 (0.049,0.070)

t = 3 uncon logit 0.273 0.022 0.017 1 (1,1)

t = 3 CRE logit 0.160 0.014 0.014 0.055 (0.045,0.065)

t = 4 LPM 0.163 0.011 0.011 0.056 (0.046,0.066)

t = 4 uncon logit 0.235 0.015 0.013 0.997 (0.994,0.999)

t = 4 CRE logit 0.163 0.011 0.011 0.056 (0.046,0.066)

t = 5 LPM 0.164 0.010 0.010 0.056 (0.046,0.067)

t = 5 uncon logit 0.214 0.012 0.011 0.986 (0.980,0.991)

t = 5 CRE logit 0.164 0.010 0.010 0.056 (0.046,0.067)

t = 6 LPM 0.165 0.009 0.009 0.044 (0.035,0.060)

t = 6 uncon logit 0.202 0.010 0.009 0.962 (0.953,0.970)

t = 6 CRE logit 0.165 0.009 0.009 0.048 (0.039,0.062)

t = 7 LPM 0.165 0.008 0.008 0.054 (0.044,0.064)

t = 7 uncon logit 0.193 0.009 0.008 0.847 (0.831,0.865)

t = 7 CRE logit 0.165 0.008 0.008 0.056 (0.046,0.066)

t = 8 LPM 0.166 0.007 0.007 0.050 (0.040,0.060)

t = 8 uncon logit 0.188 0.008 0.008 0.800 (0.780,0.820)

t = 8 CRE logit 0.166 0.007 0.007 0.053 (0.043,0.063)

*Note: r is the rejection rate for the null of H0:β=1 . ρ is AR(1) serial correlation coefficient for the errors. True APE is

0.161(t = 2), 0.162(t = 3), 0.166(t = 4), 0.166(t = 5), 0.165(t = 6), 0.167(t = 7), and 0.167(t = 8).
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Table D.4. LPM, unconditional logit, CRE logit APE estimates for β

n=600 ρ=0 Mean SD SE r ≡ 1(P<0.05) 95-CI

t = 2 LPM 0.156 0.016 0.016 0.101 (0.082,0.119)

t = 2 uncon logit 0.346 0.028 0.018 1 (1,1)

t = 2 CRE logit 0.156 0.016 0.016 0.097 (0.078,0.115)

t = 3 LPM 0.160 0.012 0.011 0.062 (0.047,0.076)

t = 3 uncon logit 0.273 0.018 0.014 1 (1,1)

t = 3 CRE logit 0.160 0.012 0.011 0.062 (0.047,0.076)

t = 4 LPM 0.163 0.009 0.009 0.056 (0.041,0.072)

t = 4 uncon logit 0.235 0.013 0.011 1 (1,1)

t = 4 CRE logit 0.163 0.009 0.009 0.060 (0.045,0.076)

t = 5 LPM 0.164 0.008 0.008 0.059 (0.044,0.073)

t = 5 uncon logit 0.214 0.010 0.009 1 (1,1)

t = 5 CRE logit 0.164 0.008 0.008 0.059 (0.045,0.073)

t = 6 LPM 0.165 0.007 0.007 0.047 (0.034,0.060)

t = 6 uncon logit 0.202 0.008 0.007 0.998 (0.995,1)

t = 6 CRE logit 0.165 0.007 0.007 0.047 (0.034,0.060)

t = 7 LPM 0.165 0.007 0.007 0.055 (0.041,0.069)

t = 7 uncon logit 0.194 0.007 0.007 0.997 (0.967,0.986)

t = 7 CRE logit 0.165 0.007 0.007 0.058 (0.044,0.073)

t = 8 LPM 0.166 0.006 0.006 0.049 (0.036,0.062)

t = 8 uncon logit 0.188 0.006 0.006 0.931 (0.915,0.947)

t = 8 CRE logit 0.166 0.006 0.006 0.055 (0.040,0.069)

*Note: r is the rejection rate for the null of H0:β=1 . ρ is AR(1) serial correlation coefficient for the errors. True APE is

0.165(t = 2), 0.163(t = 3), 0.167(t = 4), 0.165(t = 5), 0.164(t = 6), 0.167(t = 7), and 0.167(t = 8).
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Table D.5. LPM, unconditional logit, CRE logit APE estimates for β

n=100 ρ=0.2 Mean SD SE r ≡ 1(P<0.05) 95-CI

t = 2 LPM 0.156 0.039 0.038 0.068 (0.057,0.078)

t = 2 uncon logit 0.362 0.083 0.047 0.906 (0.893,0.918)

t = 2 CRE logit 0.157 0.039 0.038 0.070 (0.060,0.081)

t = 3 LPM 0.160 0.027 0.027 0.056 (0.045,0.066)

t = 2 uncon logit 0.289 0.047 0.034 0.889 (0.875,0.903)

t = 3 CRE logit 0.161 0.027 0.027 0.057 (0.046,0.067)

t = 4 LPM 0.162 0.023 0.023 0.057 (0.046,0.067)

t = 4 uncon logit 0.246 0.033 0.027 0.802 (0.785,0.820)

t = 4 CRE logit 0.163 0.023 0.023 0.057 (0.047,0.067)

t = 5 LPM 0.164 0.020 0.020 0.053 (0.043,0.064)

t = 5 uncon logit 0.223 0.025 0.022 0.713 (0.693,0.733)

t = 5 CRE logit 0.164 0.020 0.019 0.053 (0.043,0.063)

t = 6 LPM 0.165 0.018 0.018 0.055 (0.045,0.065)

t = 6 uncon logit 0.208 0.021 0.019 0.614 (0.477,0.521)

t = 6 CRE logit 0.165 0.018 0.018 0.063 (0.052,0.074)

t = 7 LPM 0.165 0.016 0.016 0.050 (0.040,0.060)

t = 7 uncon logit 0.198 0.018 0.017 0.499 (0.477,0.521)

t = 7 CRE logit 0.165 0.016 0.016 0.056 (0.046,0.067)

t = 8 LPM 0.166 0.015 0.015 0.046 (0.036,0.055)

t = 8 uncon logit 0.193 0.016 0.015 0.426 (0.404,0.448)

t = 8 CRE logit 0.166 0.015 0.015 0.050 (0.040,0.059)

*Note: r is the rejection rate for the null of H0:β=1 . ρ is AR(1) serial correlation coefficient for the errors. True APE is

0.163(t = 2), 0.162(t = 3), 0.164(t = 4), 0.165(t = 5), 0.165(t = 6), 0.166(t = 7), and 0.166(t = 8).
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Table D.6. LPM, unconditional logit, CRE logit APE estimates for β

n=200 ρ=0.2 Mean SD SE r ≡ 1(P<0.05) 95-CI

t = 2 LPM 0.157 0.027 0.028 0.059 (0.049,0.069)

t = 2 uncon logit 0.363 0.050 0.032 0.979 (0.973,0.985)

t = 2 CRE logit 0.157 0.028 0.028 0.060 (0.049,0.070)

t = 3 LPM 0.161 0.019 0.019 0.049 (0.039,0.058)

t = 3 uncon logit 0.289 0.031 0.024 0.995 (0.992,0.998)

t = 3 CRE logit 0.161 0.019 0.019 0.054 (0.044,0.064)

t = 4 LPM 0.163 0.016 0.016 0.051 (0.041,0.061)

t = 4 uncon logit 0.246 0.022 0.019 0.978 (0.972,0.984)

t = 4 CRE logit 0.163 0.016 0.016 0.049 (0.039,0.058)

t = 5 LPM 0.164 0.014 0.014 0.049 (0.040,0.058)

t = 5 uncon logit 0.222 0.017 0.015 0.946 (0.936,0.955)

t = 5 CRE logit 0.164 0.014 0.014 0.050 (0.040,0.059)

t = 6 LPM 0.165 0.013 0.013 0.050 (0.040,0.059)

t = 6 uncon logit 0.208 0.014 0.013 0.858 (0.842,0.872)

t = 6 CRE logit 0.165 0.013 0.012 0.055 (0.045,0.065)

t = 7 LPM 0.166 0.011 0.011 0.051 (0.041,0.060)

t = 7 uncon logit 0.199 0.013 0.012 0.776 (0.758,0.794)

t = 7 CRE logit 0.166 0.011 0.011 0.056 (0.046,0.066)

t = 8 LPM 0.166 0.011 0.011 0.054 (0.044,0.064)

t = 8 uncon logit 0.192 0.012 0.011 0.664 (0.643,0.685)

t = 8 CRE logit 0.166 0.011 0.011 0.056 (0.046,0.066)

*Note: r is the rejection rate for the null of H0:β=1 . ρ is AR(1) serial correlation coefficient for the errors. True APE is

0.163(t = 2), 0.162(t = 3), 0.164(t = 4), 0.165(t = 5), 0.166(t = 6), 0.166(t = 7), and 0.164(t = 8).
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Table D.7. LPM, unconditional logit, CRE logit APE estimates for β

n=400 ρ=0.2 Mean SD SE r ≡ 1(P<0.05) 95-CI

t = 2 LPM 0.156 0.019 0.019 0.056 (0.046,0.066)

t = 2 uncon logit 0.364 0.032 0.020 1 (1,1)

t = 2 CRE logit 0.156 0.019 0.019 0.056 (0.046,0.066)

t = 3 LPM 0.160 0.014 0.014 0.053 (0.043,0.063)

t = 3 uncon logit 0.288 0.022 0.017 1 (1,1)

t = 3 CRE logit 0.160 0.014 0.013 0.052 (0.042,0.062)

t = 4 LPM 0.163 0.011 0.011 0.055 (0.045,0.065)

t = 4 uncon logit 0.246 0.015 0.013 1 (1,1)

t = 4 CRE logit 0.163 0.011 0.011 0.058 (0.048,0.068)

t = 5 LPM 0.164 0.010 0.010 0.052 (0.041,0.063)

t = 5 uncon logit 0.222 0.012 0.011 0.998 (0.996,1)

t = 5 CRE logit 0.164 0.010 0.010 0.056 (0.046,0.067)

t = 6 LPM 0.165 0.010 0.009 0.052 (0.038,0.066)

t = 6 uncon logit 0.208 0.010 0.009 0.990 (0.984,0.996)

t = 6 CRE logit 0.165 0.009 0.009 0.054 (0.039,0.068)

t = 7 LPM 0.165 0.008 0.008 0.050 (0.040,0.060)

t = 7 uncon logit 0.198 0.009 0.008 0.972 (0.964,0.979)

t = 7 CRE logit 0.165 0.008 0.008 0.052 (0.042,0.062)

t = 8 LPM 0.166 0.008 0.008 0.058 (0.044,0.072)

t = 8 uncon logit 0.192 0.008 0.008 0.923 (0.907,0.939)

t = 8 CRE logit 0.166 0.008 0.007 0.056 (0.042,0.070)

*Note: r is the rejection rate for the null of H0:β=1 . ρ is AR(1) serial correlation coefficient for the errors. True APE is

0.162(t = 2), 0.162(t = 3), 0.166(t = 4), 0.165(t = 5), 0.165(t = 6), 0.165(t = 7), and 0.166(t = 8).
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Table D.8. LPM, unconditional logit, CRE logit APE estimates for β

n=600 ρ=0.2 Mean SD SE r ≡ 1(P<0.05) 95-CI

t = 2 LPM 0.155 0.015 0.016 0.062 (0.047,0.077)

t = 2 uncon logit 0.363 0.028 0.017 1 (1,1)

t = 2 CRE logit 0.155 0.015 0.015 0.060 (0.045,0.075)

t = 3 LPM 0.160 0.011 0.011 0.052 (0.039,0.066)

t = 3 uncon logit 0.288 0.018 0.014 1 (1,1)

t = 3 CRE logit 0.160 0.011 0.011 0.052 (0.039,0.066)

t = 4 LPM 0.163 0.009 0.009 0.060 (0.045,0.075)

t = 4 uncon logit 0.246 0.013 0.011 1 (1,1)

t = 4 CRE logit 0.163 0.009 0.009 0.060 (0.045,0.075)

t = 5 LPM 0.164 0.008 0.008 0.046 (0.033,0.059)

t = 5 uncon logit 0.222 0.010 0.009 1 (1,1)

t = 5 CRE logit 0.164 0.008 0.008 0.050 (0.036,0.064)

t = 6 LPM 0.165 0.007 0.007 0.046 (0.033,0.059)

t = 6 uncon logit 0.208 0.008 0.008 1 (1,1)

t = 6 CRE logit 0.165 0.007 0.007 0.049 (0.036,0.062)

t = 7 LPM 0.165 0.007 0.007 0.057 (0.042,0.071)

t = 7 uncon logit 0.198 0.008 0.007 0.990 (0.984,1)

t = 7 CRE logit 0.165 0.007 0.007 0.057 (0.042,0.071)

t = 8 LPM 0.166 0.006 0.006 0.045 (0.032,0.058)

t = 8 uncon logit 0.192 0.006 0.006 0.975 (0.965,0.985)

t = 8 CRE logit 0.166 0.006 0.006 0.045 (0.032,0.058)

*Note: r is the rejection rate for the null of H0:β=1 . ρ is AR(1) serial correlation coefficient for the errors. True APE is

0.165(t = 2), 0.163(t = 3), 0.165(t = 4), 0.164(t = 5), 0.164(t = 6), 0.167(t = 7), and 0.167(t = 8).



213

Table D.9. LPM, unconditional logit, CRE logit APE estimates for β

n=100 ρ=0.4 Mean SD SE r ≡ 1(P<0.05) 95-CI

t = 2 LPM 0.155 0.037 0.037 0.074 (0.063,0.086)

t = 2 uncon logit 0.379 0.094 0.047 0.936 (0.925,0.946)

t = 2 CRE logit 0.155 0.037 0.036 0.078 (0.066,0.089)

t = 3 LPM 0.160 0.027 0.026 0.057 (0.047,0.068)

t = 2 uncon logit 0.310 0.047 0.033 0.955 (0.946,0.964)

t = 3 CRE logit 0.161 0.027 0.026 0.058 (0.048,0.068)

t = 4 LPM 0.163 0.022 0.022 0.058 (0.048,0.068)

t = 4 uncon logit 0.262 0.034 0.027 0.910 (0.897,0.923)

t = 4 CRE logit 0.163 0.022 0.022 0.059 (0.049,0.070)

t = 5 LPM 0.164 0.019 0.019 0.055 (0.045,0.065)

t = 5 uncon logit 0.235 0.025 0.022 0.859 (0.844,0.874)

t = 5 CRE logit 0.164 0.019 0.019 0.059 (0.049,0.069)

t = 6 LPM 0.165 0.018 0.018 0.053 (0.043,0.063)

t = 6 uncon logit 0.218 0.021 0.019 0.762 (0.743,0.781)

t = 6 CRE logit 0.165 0.018 0.018 0.058 (0.049,0.069)

t = 7 LPM 0.165 0.016 0.016 0.045 (0.036,0.054)

t = 7 uncon logit 0.206 0.018 0.017 0.669 (0.648,0.690)

t = 7 CRE logit 0.165 0.016 0.016 0.050 (0.041,0.060)

t = 8 LPM 0.166 0.015 0.015 0.055 (0.045,0.065)

t = 8 uncon logit 0.198 0.017 0.016 0.561 (0.539,0.583)

t = 8 CRE logit 0.166 0.015 0.015 0.057 (0.047,0.067)

*Note: r is the rejection rate for the null of H0:β=1 . ρ is AR(1) serial correlation coefficient for the errors. True APE is

0.161(t = 2), 0.162(t = 3), 0.164(t = 4), 0.165(t = 5), 0.166(t = 6), 0.165(t = 7), and 0.167(t = 8).
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Table D.10. LPM, unconditional logit, CRE logit APE estimates for β

n=200 ρ=0.4 Mean SD SE r ≡ 1(P<0.05) 95-CI

t = 2 LPM 0.157 0.026 0.026 0.057 (0.046,0.067)

t = 2 uncon logit 0.378 0.048 0.027 0.998 (0.996,1)

t = 2 CRE logit 0.157 0.026 0.025 0.059 (0.048,0.069)

t = 3 LPM 0.160 0.018 0.019 0.048 (0.039,0.057)

t = 3 uncon logit 0.308 0.031 0.023 0.995 (0.996,1)

t = 3 CRE logit 0.160 0.018 0.018 0.053 (0.043,0.063)

t = 4 LPM 0.162 0.016 0.016 0.060 (0.049,0.070)

t = 4 uncon logit 0.262 0.023 0.019 0.998 (0.982,0.995)

t = 4 CRE logit 0.162 0.016 0.016 0.057 (0.047,0.067)

t = 5 LPM 0.164 0.014 0.014 0.055 (0.040,0.070)

t = 5 uncon logit 0.235 0.018 0.016 0.989 (0.982,0.995)

t = 5 CRE logit 0.164 0.014 0.013 0.051 (0.047,0.076)

t = 6 LPM 0.165 0.012 0.012 0.058 (0.047,0.068)

t = 6 uncon logit 0.218 0.015 0.013 0.953 (0.943,0.962)

t = 6 CRE logit 0.165 0.012 0.012 0.056 (0.046,0.076)

t = 7 LPM 0.165 0.011 0.011 0.053 (0.043,0.063)

t = 7 uncon logit 0.206 0.013 0.012 0.906 (0.893,0.919)

t = 7 CRE logit 0.165 0.011 0.011 0.051 (0.041,0.060)

t = 8 LPM 0.166 0.011 0.011 0.055 (0.045,0.065)

t = 8 uncon logit 0.198 0.012 0.011 0.834 (0.818,0.851)

t = 8 CRE logit 0.166 0.011 0.011 0.059 (0.049,0.070)

*Note: r is the rejection rate for the null of H0:β=1 . ρ is AR(1) serial correlation coefficient for the errors. True APE is

0.163(t = 2), 0.161(t = 3), 0.165(t = 4), 0.163(t = 5), 0.166(t = 6), 0.165(t = 7), and 0.164(t = 8).
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Table D.11. LPM, unconditional logit, CRE logit APE estimates for β

n=400 ρ=0.4 Mean SD SE r ≡ 1(P<0.05) 95-CI

t = 2 LPM 0.156 0.019 0.018 0.068 (0.056,0.079)

t = 2 uncon logit 0.379 0.032 0.018 1 (1,1)

t = 2 CRE logit 0.156 0.019 0.018 0.066 (0.056,0.076)

t = 3 LPM 0.160 0.013 0.013 0.050 (0.040,0.060)

t = 3 uncon logit 0.307 0.022 0.016 1 (1,1)

t = 3 CRE logit 0.160 0.013 0.013 0.054 (0.044,0.064)

t = 4 LPM 0.163 0.011 0.011 0.046 (0.037,0.055)

t = 4 uncon logit 0.262 0.016 0.013 1 (1,1)

t = 4 CRE logit 0.163 0.011 0.011 0.048 (0.038,0.057)

t = 5 LPM 0.164 0.010 0.010 0.054 (0.044,0.064)

t = 5 uncon logit 0.234 0.012 0.011 1 (1,1)

t = 5 CRE logit 0.164 0.010 0.010 0.056 (0.046,0.067)

t = 6 LPM 0.165 0.009 0.009 0.048 (0.035,0.060)

t = 6 uncon logit 0.217 0.010 0.010 1 (1,1)

t = 6 CRE logit 0.165 0.009 0.009 0.048 (0.035,0.060)

t = 7 LPM 0.165 0.008 0.008 0.050 (0.040,0.060)

t = 7 uncon logit 0.206 0.009 0.008 1 (1,1)

t = 7 CRE logit 0.165 0.008 0.008 0.051 (0.041,0.061)

t = 8 LPM 0.166 0.008 0.008 0.056 (0.046,0.076)

t = 8 uncon logit 0.199 0.008 0.008 0.982 (0.972,0.991)

t = 8 CRE logit 0.166 0.008 0.007 0.055 (0.045,0.075)

*Note: r is the rejection rate for the null of H0:β=1 . ρ is AR(1) serial correlation coefficient for the errors. True APE is

0.162(t = 2), 0.162(t = 3), 0.166(t = 4), 0.165(t = 5), 0.166(t = 6), 0.166(t = 7), and 0.165(t = 8).
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Table D.12. LPM, unconditional logit, CRE logit APE estimates for β

n=600 ρ=0.4 Mean SD SE r ≡ 1(P<0.05) 95-CI

t = 2 LPM 0.155 0.015 0.015 0.071 (0.055,0.086)

t = 2 uncon logit 0.378 0.026 0.014 1 (1,1)

t = 2 CRE logit 0.155 0.015 0.015 0.074 (0.057,0.090)

t = 3 LPM 0.160 0.011 0.011 0.052 (0.039,0.066)

t = 3 uncon logit 0.309 0.017 0.013 1 (1,1)

t = 3 CRE logit 0.160 0.011 0.011 0.054 (0.041,0.068)

t = 4 LPM 0.163 0.009 0.009 0.045 (0.032,0.057)

t = 4 uncon logit 0.262 0.012 0.011 1 (1,1)

t = 4 CRE logit 0.163 0.009 0.009 0.048 (0.035,0.061)

t = 5 LPM 0.164 0.008 0.008 0.045 (0.032,0.057)

t = 5 uncon logit 0.234 0.010 0.009 1 (1,1)

t = 5 CRE logit 0.164 0.008 0.008 0.048 (0.035,0.061)

t = 6 LPM 0.165 0.007 0.007 0.046 (0.033,0.059)

t = 6 uncon logit 0.217 0.008 0.008 1 (1,1)

t = 6 CRE logit 0.165 0.007 0.007 0.043 (0.030,0.056)

t = 7 LPM 0.165 0.007 0.007 0.054 (0.040,0.068)

t = 7 uncon logit 0.206 0.007 0.007 1 (1,1)

t = 7 CRE logit 0.165 0.007 0.007 0.057 (0.042,0.071)

t = 8 LPM 0.166 0.006 0.006 0.044 (0.031,0.057)

t = 8 uncon logit 0.199 0.006 0.006 1 (1,1)

t = 8 CRE logit 0.166 0.006 0.006 0.043 (0.031,0.055)

*Note: r is the rejection rate for the null of H0:β=1 . ρ is AR(1) serial correlation coefficient for the errors. True APE is

0.165(t = 2), 0.162(t = 3), 0.163(t = 4), 0.165(t = 5), 0.164(t = 6), 0.166(t = 7), and 0.166(t = 8).
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Monte Carlo simulation results:

Coefficient δ for binary covariate
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Table E.1. Unconditional logit for δ with low serial correlation for n = 100

ρ=0 Mean SD SE r ≡ 1(P<0.05) 95-CI

t = 2 2.57 3.04 1.22 0.16 (0.13,0.18)

t = 3 1.65 0.63 0.62 0.13 (0.11,0.15)

t = 4 1.41 0.43 0.42 0.14 (0.12,0.16)

t = 5 1.29 0.33 0.34 0.12 (0.10,0.14)

t = 6 1.26 0.29 0.29 0.14 (0.12,0.16)

t = 7 1.20 0.25 0.25 0.11 (0.09,0.13)

t = 8 1.18 0.23 0.23 0.11 (0.00,0.13)

ρ=0.2 Mean SD SE r ≡ 1(P<0.05) 95-CI

t = 2 3.05 3.80 7.93 0.18 (0.16,0.21)

t = 3 1.83 0.69 0.66 0.18 (0.16,0.21)

t = 4 1.51 0.45 0.45 0.17 (0.15,0.20)

t = 5 1.37 0.35 0.35 0.15 (0.13,0.17)

t = 6 1.32 0.30 0.30 0.17 (0.15,0.19)

t = 7 1.26 0.26 0.36 0.16 (0.13,0.18)

t = 8 1.22 0.24 0.24 0.14 (0.12,0.16)

ρ=0.4 Mean SD SE r ≡ 1(P<0.05) 95-CI

t = 2 4.69 30.20 1.73 0.21 (0.18,0.24)

t = 3 2.12 0.77 0.75 0.26 (0.24,0.29)

t = 4 1.69 0.50 0.48 0.27 (0.24,0.30)

t = 5 1.50 0.37 0.37 0.24 (0.22,0.26)

t = 6 1.41 0.32 0.32 0.25 (0.23,0.28)

t = 7 1.35 0.28 0.28 0.23 (0.20,0.25)

t = 8 1.29 0.25 0.25 0.20 (0.18,0.23)

*Note: r is the rejection rate for the null of H0:δ=1 with nominal value 0.05.

ρ is AR(1) serial correlation coefficient for the errors.
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Table E.2. Unconditional logit for δ with high serial correlation for n = 100

ρ=0.6 Mean SD SE r ≡ 1(P<0.05) 95-CI

t = 2 7.43 35.86 6.24 0.27 (0.24,0.30)

t = 3 2.69 1.52 0.92 0.40 (0.37,0.43)

t = 4 2.04 0.57 0.56 0.45 (0.42,0.48)

t = 5 1.76 0.43 0.42 0.42 (0.39,0.45)

t = 6 1.62 0.35 0.34 0.43 (0.40,0.46)

t = 7 1.52 0.30 0.30 0.41 (0.38,0.44)

t = 8 1.43 0.26 0.26 0.37 (0.34,0.40)

ρ=0.8 Mean SD SE r ≡ 1(P<0.05) 95-CI

t = 2 146.09 46.19 20.32 0.34 (0.31,0.38)

t = 3 6.15 23.83 1.77 0.63 (0.60,0.66)

t = 4 3.03 1.37 0.81 0.78 (0.75,0.80)

t = 5 2.45 0.58 0.56 0.80 (0.77,0.82)

t = 6 2.18 0.47 0.44 0.80 (0.77,0.83)

t = 7 2.00 0.38 0.37 0.79 (0.76,0.81)

t = 8 1.86 0.33 0.32 0.77 (0.74,0.80)

*Note: r is the rejection rate for the null of H0:δ=1 with nominal value 0.05.

ρ is AR(1) serial correlation coefficient for the errors.
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Table E.3. Conditional logit for δ with low serial correlation for n = 100

ρ=0 Mean SD SE r ≡ 1(P<0.05) 95-CI

t = 2 1.29 1.55 19.40 0.03 (0.01,0.04)

t = 3 1.06 0.39 0.38 0.05 (0.03,0.06)

t = 4 1.04 0.31 0.30 0.06 (0.04,0.07)

t = 5 1.02 0.26 0.26 0.04 (0.03,0.05)

t = 6 1.04 0.23 0.23 0.05 (0.04,0.07)

t = 7 1.02 0.21 0.21 0.05 (0.03,0.06)

t = 8 1.02 0.19 0.19 0.04 (0.03,0.06)

ρ=0.2 Mean SD SE r ≡ 1(P<0.05) 95-CI

t = 2 1.53 1.94 38.55 0.02 (0.01,0.03)

t = 3 1.17 0.43 0.18 0.06 (0.04,0.07)

t = 4 1.10 0.32 0.14 0.05 (0.04,0.06)

t = 5 1.08 0.27 0.27 0.05 (0.03,0.06)

t = 6 1.07 0.24 0.24 0.06 (0.04,0.07)

t = 7 1.06 0.22 0.22 0.05 (0.04,0.06)

t = 8 1.06 0.21 0.20 0.05 (0.03,0.06)

ρ=0.4 Mean SD SE r ≡ 1(P<0.05) 95-CI

t = 2 4.32 75.84 68.47 0.02 (0.01,0.03)

t = 3 1.34 0.46 0.45 0.07 (0.05,0.08)

t = 4 1.23 0.35 0.34 0.08 (0.07,0.10)

t = 5 1.17 0.28 0.29 0.08 (0.06,0.10)

t = 6 1.16 0.25 0.25 0.09 (0.07,0.10)

t = 7 1.14 0.23 0.23 0.08 (0.07,0.10)

t = 8 1.12 0.21 0.21 0.08 (0.06,0.10)

*Note: r is the rejection rate for the null of H0:δ=1 with nominal value 0.05.

ρ is AR(1) serial correlation coefficient for the errors.
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Table E.4. Conditional logit for δ with high serial correlation for n = 100

ρ=0.6 Mean SD SE r ≡ 1(P<0.05) 95-CI

t = 2 5.23 45.89 326.60 0.02 (0.01,0.02)

t = 3 1.67 0.82 3.24 0.17 (0.14,0.19)

t = 4 1.47 0.39 0.38 0.19 (0.17,0.22)

t = 5 1.37 0.32 0.32 0.19 (0.17,0.22)

t = 6 1.33 0.28 0.27 0.20 (0.17,0.23)

t = 7 1.28 0.25 0.25 0.19 (0.17,0.21)

t = 8 1.24 0.23 0.23 0.17 (0.14,0.19)

ρ=0.8 Mean SD SE r ≡ 1(P<0.05) 95-CI

t = 2 253.9 80.97 1255596 0.003 (0.00,0.006)

t = 3 3.48 11.39 155.10 0.38 (0.35,0.41)

t = 4 2.11 0.78 2.58 0.56 (0.53,0.59)

t = 5 1.88 0.41 0.40 0.59 (0.56,0.62)

t = 6 1.76 0.36 0.34 0.61 (0.58,0.64)

t = 7 1.68 0.31 0.30 0.63 (0.60,0.66)

t = 8 1.60 0.28 0.27 0.62 (0.59,0.65)

*Note: r is the rejection rate for the null of H0:δ=1 with nominal value 0.05.

ρ is AR(1) serial correlation coefficient for the errors.

221



Appendix F
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Table F.1. LPM, unconditional logit, CRE logit APE estimates for δ

n=100 ρ=0 Mean SD SE r ≡ 1(P<0.05) 95-CI

t = 2 LPM 0.184 0.089 0.084 0.063 (0.048,0.086)

t = 2 uncon logit 0.454 0.373 1834.10 0.564 (0.534,0.595)

t = 2 CRE logit 0.174 0.084 0.036 0.065 (0.049,0.080)

t = 3 LPM 0.176 0.059 0.059 0.050 (0.036,0.063)

t = 2 uncon logit 0.311 0.100 0.078 0.483 (0.453,0.513)

t = 3 CRE logit 0.168 0.055 0.055 0.052 (0.038,0.065)

t = 4 LPM 0.174 0.049 0.049 0.061 (0.046,0.076)

t = 4 uncon logit 0.260 0.069 0.059 0.391 (0.361,0.421)

t = 4 CRE logit 0.168 0.046 0.046 0.053 (0.038,0.068)

t = 5 LPM 0.167 0.041 0.041 0.056 (0.042,0.070)

t = 5 uncon logit 0.231 0.053 0.048 0.331 (0.302,0.360)

t = 5 CRE logit 0.162 0.039 0.039 0.056 (0.042,0.070)

t = 6 LPM 0.170 0.038 0.037 0.051 (0.037,0.065)

t = 6 uncon logit 0.221 0.046 0.041 0.306 (0.277,0.335)

t = 6 CRE logit 0.166 0.036 0.035 0.052 (0.038,0.066)

t = 7 LPM 0.163 0.033 0.034 0.043 (0.030,0.056)

t = 7 uncon logit 0.205 0.039 0.037 0.253 (0.226,0.280)

t = 7 CRE logit 0.160 0.031 0.031 0.048 (0.035,0.061)

t = 8 LPM 0.164 0.031 0.031 0.051 (0.037,0.065)

t = 8 uncon logit 0.198 0.035 0.033 0.246 (0.219,0.273)

t = 8 CRE logit 0.160 0.030 0.030 0.058 (0.043,0.073)

*Note: r is the rejection rate for the null of H0:APE for δ=true APE . ρ is AR(1) serial correlation coefficient for the errors.

True APE is 0.172(t = 2), 0.166(t = 3), 0.168(t = 4), 0.164(t = 5), 0.166(t = 6), 0.162(t = 7), and 0.160(t = 8).
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Table F.2. LPM, unconditional logit, CRE logit APE estimates for δ

n=100 ρ=0.2 Mean SD SE r ≡ 1(P<0.05) 95-CI

t = 2 LPM 0.184 0.081 0.080 0.068 (0.052,0.084)

t = 2 uncon logit 0.501 0.397 13231 0.616 (0.586,0.647)

t = 2 CRE logit 0.174 0.077 0.075 0.068 (0.052,0.084)

t = 3 LPM 0.176 0.057 0.057 0.050 (0.036,0.064)

t = 2 uncon logit 0.335 0.104 0.080 0.547 (0.516,0.578)

t = 3 CRE logit 0.168 0.054 0.053 0.050 (0.036,0.064)

t = 4 LPM 0.172 0.047 0.047 0.051 (0.038,0.065)

t = 4 uncon logit 0.273 0.069 0.060 0.439 (0.408,0.470)

t = 4 CRE logit 0.168 0.044 0.044 0.058 (0.043,0.073)

t = 5 LPM 0.167 0.040 0.041 0.050 (0.037,0.064)

t = 5 uncon logit 0.243 0.053 0.049 0.280 (0.350,0.410)

t = 5 CRE logit 0.163 0.038 0.038 0.056 (0.043,0.070)

t = 6 LPM 0.170 0.037 0.037 0.056 (0.037,0.070)

t = 6 uncon logit 0.228 0.046 0.042 0.360 (0.330,0.390)

t = 6 CRE logit 0.166 0.035 0.035 0.051 (0.037,0.065)

t = 7 LPM 0.164 0.032 0.033 0.046 (0.033,0.059)

t = 7 uncon logit 0.213 0.040 0.037 0.298 (0.270,0.326)

t = 7 CRE logit 0.160 0.031 0.031 0.051 (0.037,0.065)

t = 8 LPM 0.164 0.031 0.031 0.049 (0.036,0.062)

t = 8 uncon logit 0.204 0.036 0.033 0.294 (0.266,0.322)

t = 8 CRE logit 0.160 0.029 0.029 0.051 (0.037,0.065)

*Note: r is the rejection rate for the null of H0:APE for δ=true APE . ρ is AR(1) serial correlation coefficient for the errors.

True APE is 0.172(t = 2), 0.166(t = 3), 0.168(t = 4), 0.164(t = 5), 0.166(t = 6), 0.161(t = 7), and 0.159(t = 8).
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Table F.3. LPM, unconditional logit, CRE logit APE estimates for δ

n=100 ρ=0.4 Mean SD SE r ≡ 1(P<0.05) 95-CI

t = 2 LPM 0.182 0.076 0.075 0.062 (0.047,0.077)

t = 2 uncon logit 0.566 0.528 17430 0.677 (0.647,0.706)

t = 2 CRE logit 0.173 0.072 0.070 0.062 (0.047,0.077)

t = 3 LPM 0.176 0.053 0.054 0.050 (0.039,0.061)

t = 2 uncon logit 0.372 0.105 0.082 0.652 (0.627,0.677)

t = 3 CRE logit 0.169 0.050 0.050 0.049 (0.038,0.060)

t = 4 LPM 0.173 0.045 0.045 0.058 (0.043,0.073)

t = 4 uncon logit 0.298 0.071 0.061 0.555 (0.524,0.586)

t = 4 CRE logit 0.167 0.042 0.042 0.058 (0.043,0.073)

t = 5 LPM 0.167 0.038 0.039 0.044 (0.031,0.057)

t = 5 uncon logit 0.261 0.054 0.050 0.477 (0.446,0.508)

t = 5 CRE logit 0.162 0.036 0.037 0.058 (0.034,0.061)

t = 6 LPM 0.169 0.036 0.036 0.059 (0.044,0.074)

t = 6 uncon logit 0.242 0.046 0.042 0.436 (0.405,0.467)

t = 6 CRE logit 0.165 0.034 0.034 0.059 (0.044,0.074)

t = 7 LPM 0.164 0.032 0.032 0.046 (0.033,0.059)

t = 7 uncon logit 0.225 0.041 0.038 0.417 (0.386,0.448)

t = 7 CRE logit 0.161 0.031 0.031 0.050 (0.036,0.064)

t = 8 LPM 0.163 0.031 0.030 0.051 (0.037,0.065)

t = 8 uncon logit 0.213 0.036 0.034 0.379 (0.349,0.409)

t = 8 CRE logit 0.159 0.029 0.029 0.051 (0.037,0.065)

*Note: r is the rejection rate for the null of H0:APE for δ=true APE . ρ is AR(1) serial correlation coefficient for the errors.

True APE is 0.172(t = 2), 0.166(t = 3), 0.168(t = 4), 0.164(t = 5), 0.166(t = 6), 0.162(t = 7), and 0.158(t = 8).
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Table F.4. LPM, unconditional logit, CRE logit APE estimates for δ

n=100 ρ=0.6 Mean SD SE r ≡ 1(P<0.05) 95-CI

t = 2 LPM 0.182 0.069 0.069 0.058 (0.043,0.073)

t = 2 uncon logit 0.695 0.729 95297 0.737 (0.708,0.765)

t = 2 CRE logit 0.172 0.065 0.064 0.066 (0.050,0.082)

t = 3 LPM 0.176 0.050 0.050 0.049 (0.036,0.062)

t = 2 uncon logit 0.432 0.163 0.781 0.785 (0.759,0.810)

t = 3 CRE logit 0.169 0.047 0.047 0.052 (0.038,0.066)

t = 4 LPM 0.173 0.041 0.042 0.050 (0.037,0.064)

t = 4 uncon logit 0.341 0.072 0.063 0.737 (0.710,0.765)

t = 4 CRE logit 0.168 0.022 0.022 0.053 (0.039,0.067)

t = 5 LPM 0.167 0.037 0.037 0.056 (0.042,0.070)

t = 5 uncon logit 0.294 0.058 0.052 0.673 (0.644,0.702)

t = 5 CRE logit 0.163 0.035 0.035 0.054 (0.040,0.068)

t = 6 LPM 0.169 0.034 0.034 0.052 (0.038,0.065)

t = 6 uncon logit 0.268 0.048 0.044 0.633 (0.603,0.663)

t = 6 CRE logit 0.164 0.032 0.032 0.056 (0.042,0.070)

t = 7 LPM 0.164 0.031 0.031 0.054 (0.040,0.068)

t = 7 uncon logit 0.247 0.042 0.039 0.591 (0.560,0.621)

t = 7 CRE logit 0.161 0.029 0.029 0.054 (0.040,0.068)

t = 8 LPM 0.162 0.029 0.029 0.054 (0.040,0.068)

t = 8 uncon logit 0.232 0.037 0.035 0.568 (0.536,0.599)

t = 8 CRE logit 0.158 0.028 0.028 0.056 (0.041,0.070)

*Note: r is the rejection rate for the null of H0:APE for δ=true APE . ρ is AR(1) serial correlation coefficient for the errors.

True APE is 0.172(t = 2), 0.166(t = 3), 0.168(t = 4), 0.164(t = 5), 0.166(t = 6), 0.162(t = 7), and 0.158(t = 8).
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Table F.5. LPM, unconditional logit, CRE logit APE estimates for δ

n=100 ρ=0.8 Mean SD SE r ≡ 1(P<0.05) 95-CI

t = 2 LPM 0.174 0.061 0.061 0.060 (0.043,0.077)

t = 2 uncon logit 0.892 1.112 173194 0.739 (0.708,0.770)

t = 2 CRE logit 0.165 0.058 0.058 0.055 (0.038,0.073)

t = 3 LPM 0.176 0.045 0.045 0.045 (0.032,0.058)

t = 2 uncon logit 0.638 0.600 40290 0.902 (0.883,0.920)

t = 3 CRE logit 0.168 0.042 0.042 0.050 (0.036,0.064)

t = 4 LPM 0.175 0.037 0.039 0.052 (0.038,0.066)

t = 4 uncon logit 0.434 0.127 0.329 0.946 (0.933,0.961)

t = 4 CRE logit 0.168 0.032 0.032 0.046 (0.033,0.059)

t = 5 LPM 0.168 0.034 0.034 0.044 (0.032,0.057)

t = 5 uncon logit 0.366 0.061 0.054 0.934 (0.919,0.950)

t = 5 CRE logit 0.163 0.032 0.032 0.044 (0.032,0.057)

t = 6 LPM 0.169 0.032 0.032 0.051 (0.037,0.067)

t = 6 uncon logit 0.329 0.052 0.046 0.911 (0.893,0.929)

t = 6 CRE logit 0.165 0.031 0.030 0.054 (0.039,0.069)

t = 7 LPM 0.164 0.029 0.029 0.047 (0.034,0.060)

t = 7 uncon logit 0.301 0.044 0.041 0.906 (0.888,0.924)

t = 7 CRE logit 0.161 0.028 0.028 0.052 (0.038,0.065)

t = 8 LPM 0.162 0.028 0.028 0.050 (0.037,0.064)

t = 8 uncon logit 0.279 0.040 0.037 0.867 (0.845,0.888)

t = 8 CRE logit 0.159 0.026 0.026 0.048 (0.035,0.061)

*Note: r is the rejection rate for the null of H0:APE for δ=true APE . ρ is AR(1) serial correlation coefficient for the errors.

True APE is 0.171(t = 2), 0.166(t = 3), 0.168(t = 4), 0.164(t = 5), 0.166(t = 6), 0.162(t = 7), and 0.159(t = 8).



Appendix G

Proof of Hausman-type test in

chapter 2

We start with rewriting stacked estimator to obtain asymptotic variance.
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θ̂a is a consistent estimator for θa by rank conditions and exogeneity conditions for pooled

LS and FE estimators.
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Ĝ−1
a =

 Â11 0
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v̂ar(
√
n(θ̂a − θa)) =

 Â11 0
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 Â11 0

0 Â22
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itûit)

′]
p→ E[((

T∑
t=1

sitx
′
ituit)(

T∑
t=1

sitx
′
ituit)

′] = D11

D̂12 =
1

N

n∑
i=1

[(
T∑
t=1

sitx
′
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Denote following notations ,
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Appendix H

Proof of Corollary 3 in Chapter 3:

Robust inference in unbalanced panel

data

Proof First, we consider WLS estimator.
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Now consider t-statistic based on WLS which we use for t-test.
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For the denominator, using (H.2), we have
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Using (H.3) and (H.4) together, we have
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Appendix I

Monte Carlo simulation results in

chapter 3: Size-adjusted power for

t-test in Ibragimov and Muller [2009]
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Table I.1. The size adjusted power of test, 1(p < 0.05), T = 100

T=100, n=4 balanced complete-case balanced balanced

keep ∀i drop t keep ∀t drop i

bias=0 .048(.041,.054) .028(.023,.033) .046(.040,.053) .053(.046,.060)

bias=2% .059(.048,.069) .038(.029,.046) .048(.039,.057) .063(.052,.073)

bias=5% .092(.079,.105) .052(.042,.061) .050(.040,.060) .070(.059,.081)

bias=10% .219(.200,.237) .100(.087,.113) .063(.052,.074) .093(.080,.105)

bias=20% .626(.605,.647) .302(.282,.322) .136(.120,.151) .159(.143,.175)

T=100, n=8 balanced complete-case balanced-drop t balanced -drop i

bias=0 .048(.042,.055) .038(.032,.044) .050(.040,.059) .053(.046,.060)

bias=2% .073(.061,.084) .054(.044,.063) .047(.037,.056) .052(.042,.061)

bias=5% .167(.150,.183) .099(.085,.112) .062(.051,.072) .060(.049,.070)

bias=10% .517(.495,.539) .243(.224,.262) .108(.094,.122) .089(.077,.101)

bias=20% .977(.970,.983) .671(.650,.692) .311(.290,.331) .156(.140,.171)

T=100, n=16 balanced complete-case balanced-drop t balanced -drop i

bias=0 .048(.041,.055) .050(.043,.057) .050(.043,.057) .048(.041,.055)

bias=2% .110(.096,.123) .069(.057,.080) .057(.047,.067) .059(.048,.069)

bias=5% .362(.340,.383) .191(.174,.208) .124(.109,.138) .094(.081,.106)

bias=10% .887(.873,.901) .574(.552,.595) .330(.309,.351) .225(.206,.243)

bias=20% 1(1,1) .984(.978,.989) .839(.823,.855) .628(.607,.649)

(Note) The rejection probability is reported. 95 % coverage rate for rejection probability is
reported in parenthesis. Generated errors are from AR(1) process with correlation

coefficient 0.75. The number of replications is 2,000.
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Table I.2. The size adjusted power of test, 1(p < 0.05), T = 300

T=300, n=4 balanced complete-case balanced balanced

keep ∀i drop t keep ∀t drop i

bias=0 .046(.036,.055) .029(.022,.037) .058(.047,.068) .048(.039,.077)

bias=2% .067(.056,.078) .034(.026,.041) .053(.043,.063) .055(.046,.065)

bias=5% .169(.153,.185) .088(.075,.100) .072(.061,.083) .079(.067,.090)

bias=10% .520(.498,.541) .237(.218,.255) .143(.127,.158) .145(.130,.160)

bias=20% .968(.960,.976) .642(.621,.663) .367(.346,.388) .262(.243,.281)

T=300, n=8 balanced complete-case balanced-drop t balanced -drop i

bias=0 .053(.046,.060) .042(.034,.050) .049(.040,.059) .050(.043,.058)

bias=2% .122(.107,.136) .089(.076,.101) .070(.059,.081) .053(.043,.063)

bias=5% .435(.413,.457) .270(.250,.289) .179(.162,.196) .070(.059,.081)

bias=10% .941(.931,.951) .748(.729,.767) .548(.526,.569) .126(.111,.141)

bias=20% 1(1,1) .999(.998,1) .986(.980,.991) .249(.230,.268)

T=300, n=16 balanced complete-case balanced-drop t balanced -drop i

bias=0 .046(.036,.055) .050(.040,.060) .050(.040,.059) .048(.038,.057)

bias=2% .187(.170,.204) .135(.120,.150) .084(.072,.096) .060(.050,.071)

bias=5% .798(.780,.815) .502(.480,.523) .294(.274,.313) .180(.163,.197)

bias=10% 1(1,1) .960(.951,.969) .782(.763,.800) .530(.508,.551)

bias=20% 1(1,1) 1(1,1) 1(.999,1) .971(.963,.978)

(Note) The rejection probability is reported. 95 % coverage rate for rejection probability is
reported in parenthesis. Generated errors are from AR(1) process with correlation

coefficient 0.75. The number of replications is 2,000.
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Table I.3. The size adjusted power of test, 1(p < 0.05) , T = 1, 000

T=1,000, n=4 balanced complete-case balanced balanced

keep ∀i drop t keep ∀t drop i

bias=0 .056(.045,.066) .033(.025,.041) .042(.033,.050) .061(.050,.071)

bias=2% .136(.121,.151) .067(.056,.078) .047(.038,.057) .076(.064,.087)

bias=5% .484(.462,.506) .220(.201,.238) .050(.040,.060) .130(.115,.144)

bias=10% .942(.931,.952) .603(.581,.624) .072(.061,.083) .250(.231,.269)

bias=20% 1(1,1) .959(.950,.967) .147(.131,.163) .480(.458,.502)

T=1,000, n=8 balanced complete-case balanced-drop t balanced -drop i

bias=0 .046(.038,.054) .036(.027,.044) .052(.042,.061) .055(.045,.065)

bias=2% .273(.253,.292) .144(.129,.159) .092(.079,.104) .066(.055,.077)

bias=5% .906(.893,.918) .577(.555,.598) .281(.261,.300) .130(.115,.144)

bias=10% 1(1,1) .963(.955,.971) .740(.721,.759) .240(.221,.258)

bias=20% 1(1,1) 1(1,1) .999(.997,1) .442(.420,.464)

T=1,000, n=16 balanced complete-case balanced-drop t balanced -drop i

bias=0 .050(.045,.059) .046(.037,.055) .050(.040,.060) .050(.040,.060)

bias=2% .523(.046,.060) .285(.265,.305) .187(.169,.204) .133(.118,.147)

bias=5% 1(1,1) .939(.929,.949) .739(.721,.758) .469(.447,.491)

bias=10% 1(1,1) 1(1,1) .999(.997,1) .942(.932,.952)

bias=20% 1(1,1) 1(1,1) 1(1,1) 1(1,1)

(Note) The rejection probability is reported. 95 % coverage rate for rejection probability is
reported in parenthesis. Generated errors are from AR(1) process with correlation

coefficient 0.75. The number of replications is 2,000.
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