3.... . .V n V. ; . V 7.1 5.9... .. V V”. V... . . V 36:9 V \uo.o..: in V V $9.1 . u . V . :5 . V. ..4 . 9 Vow ... . ....at .. ~ .10... ‘40... ... o . .g o o . .. V. — - .V‘ ‘ . . ... . . . V . V. .1...-.. I no.uo..- ... - 0-. .....z 8 ... .. 7.. 1‘1. ...:r... . ..V .. t V . V.... . . .. . . . u r... .... ‘ u . . 0v :..-:4». V . V V. . . .9 V: . .u _ u .n‘ u . o Q on. 0.! . ¢ . ...... ..V.. .o . .- 3‘:- ...O... _:.-.Cu‘ 7‘3. out...-V:u... _.OVV. o~vV.... ... .99... :..-.70. V . V ‘sc 9.....9uou. NV . . V V V ......V. O... ... . .oVV-V..VV.~Q. ._ V . V . .. . ... .V . c“... .. c.1110... ¢V..o.oo‘..oV . V . V V V V V . V . . ~V. . V.V.. V..-:... X. . . .. V V . . V V . V . . . V 0:3... .14. . V V V .. . . V V .V V . . V V V .V V V. V V .V....... ...V. a V . .V .. V. V . VV..}....pu~..o.u....b..f V . . . V V . ...... . .. V. O... .... ... V. :..-V..! I.r1._¢l.a.d. .........n.oV...u_. .V 1-... V V. V.. ..4c»..w.o...‘:..‘ . «u. C. V V V or. ... . 0 ca?- .. 2.5.. .0. V. . . V . .1 V ..— c g . 4 .4 it... ..bOVoSVd #2:, «V0.4 .-.V.:.. . V.. .. u .. .V. V V 0.. . .V V V O ... 0:13."! c: a 1.... . oV .10: o.......‘. . V. V V . .V . ..l . o.- ..1. aux-.0 v ... oolunu ... . -"‘I V V. V V V V. V... V . . . V . V V. . V. . V. .. .... V V.?otv0‘.V-V.o. .1...u. V.. V V . ... V .. V . . . . V ..VV.....' a...— . u . . . . V .. I c. .0... . .‘Oqu 0.0 in p ’ . . V V. . . . . V V V V '0‘ 3 3 . y . V V . V V . . .0: p o...t.va 0.0.1. ..Vuvr V. . . . V . V V V Vnci O.” '5‘. . .0... a..P¢.-..uo.k’ . . . V . 3.. . V . . . V s... V V V V . . V .V . . I V .. 0 . V I ..i a V . V. V V . .. .. at...V.v-u.. Vi ... V V . ...”...V5q” ..ZnVr. . . . V V I:V as V... o 7 . V... ........0. 3... .V .V ' .\ o . v. .V... . _...-o V.. V ...... ...}... 9‘... £c¢..u‘s 0t...v . . V V .V . . V .V V V :..... ... .... cf)... .0...- V O . . . . cow-”......OI-‘n .30? . . .... .1. ..l ..V ...—3:... ~V. . V . . V 4 .... .1- O .. ya" no.” 3?. . 3n . V 3.... v V. . . V V V V V ......V. V V V .V V .. . V V. V.. . V . V V V ... . V V V. . V :..Vo...V . 3.1. V . V V .. ... .0 3'1. . . V . . _ ..V . V . .....V..V. . :0... . . . V V . V V V . .V V . . A. V . . V .V V . _. . . . . _ . V . V . I: . V V . V . . V . . .04.- ..v vi 0..- V V . V V315. ’LIV’. gm .0 .n ...... l ou‘! V 1:73:10: ."n-L . ... . . u .\ v .o c ...4 JV ....- z. ‘3 —: V. .- ..V 1 . pa“ 1' o . u . had. .\v V v .. 3.42.1.3 339.31.23‘.» I V\.V:.:-:4 ... .’..‘V.¢o.1o . V :.. 3. 3. V . V V . V V . _o . V . . n . V . . V 1 I. ... .. . _ V . V V V . . V.“ V V . V. . . . V V .... V . . . V. V V. V ... . . ...-9'”. ..I. o "L‘JFdel V :... V . V t. 04." ‘caof 0“. on. . nooV V . 0 Q. .0. . . . V V V . V . V u :.‘oo "- vlm‘... a 033...}. - I-‘¢o’ ...? . .. . V . . .V V . . V \ouI-dO-‘C-mn. ntu‘t ..334. q. . . V . .V . V V .36.! ...: stay 3:?» Gigtl .... V V V V 0:1}: . ..-..uafi63oo". 55 .s.1.r¢37‘. In... 53‘3Vi cf .1 .D\ ... . V. n . V.- V.. .... to: 3...;- v .....V.:H . n. V . V..... . :..:...Quuu‘..onu.ém.‘!iif . V . . V .... V 30' .... O.‘ V V. V V . . V . V V . ..L. . 8.9.3."!!! . .5; :35 30.3.4” 3.3.32'0‘I51b‘ u do v V- . ‘3 col Vino-vi‘ltall. .o cgé..v.t..nr'uo§”fifllciown . V . V .2 I o O. .. :IO. Etuduufinhsrfui... if“? ..rrVV.¥§qsqVVue.s.u§. . O. ”733;.3 mfictfl’ $0.3 . ......'o-O,!:-I .. o O. {’40ch ..X I. 5.1. V ...... A to. V. V V. V .. :..- !1........ . u . \ V V :..-3.19:. V . V V . . V . . .. V . . V V . . . :..-... . V _ V . . V V V V . V V . . . V . V. . . . . .. V . 0.. . V . V V V . . . V .V . 0 your: . v . V V . V . . V v .V no . - IV... :..” 357...... .... . V .33.. . . V V V V . . ..~ . c. on... a 2: .‘L‘ v2r ca‘.§,§o.wi59 V a. .V . V c . V ... V . V V V . I V . . . V . .. v 0 .....CVSO§3IVOO a) V v4’uxgnl’a' ‘. . V V . . V . V . . ...: V... . . . V. . . _ . . V V V . 21:... .2559 as... 50......) ‘3- 528)”. . .V . . . V. . . . . . V. V . 3.....1) a! :V V V. 3 ...):¢ . 150.1..d4-I’nnluxi9l3r3‘ V J54: Sq! V . . . . . V V V . . V V . . V V . . V V . . $1.... mus-.9...) .0313... 2.3.”! .3025; . V. V _ V V . . _ V V V . V V1.¢l.a..$l '3. .315.- !i .583. . . V . . . V V V . . V . . . . t a _..II‘ V V V . . . .V V. V V ... s . " 'N“.’. V V . V ...‘35’. .{tn' .‘3 V 1: V V '13."."3. .«‘F".’ou V . .353 Zuni-53'- “! ‘ up. ‘ D n v ... o t 1.1.33‘09 . A D 90...)? V. . u. a. ...-II can. u on. £03.. 02.. ...... I .. .....V .’V V. . V .v .00.. ...-0.1.. '— vIo-c. . :0 OJ 1.... .4 V V . V . 3‘ . . . . . V ......7 ... :V ..n'... ..o .... V . . .V . :O :vu’ u '17- . VV V . V . V . V. V . . V . ....V... VQ . . V .... V .. .V V . . V V . .V V V V V . V — . V V V .V . 0V.‘n. ...... . V .V ... .V . V. . ... V V V .. . . .. V V . .. . V V ...: t... V V .V V V .. V. .. _ . . V . V V . V . V V ...-o. ... ..-...o‘io. V _ . . V V. . . V. . ... .93.? w‘ ...! 13!.013.“ . .. . V V . . V . . .V . . V V V .V 3 -. ... _o .3an ...-ON. . V . . V V V V V V . . V. . V V. . . . V. . . V .. V . V V... ... V V _. . V. V. . V V . . V V V V. . V . no... . . . V V o4".am V. . . . V V... .. V . . V . V V V. . V....dVo‘3. V :..: ... A .. V V V. 2 ..VV I V . . . V . . V ..’n.3f.’.-uoof:o’t .... ...a .30. .XAO - . . I... {I u. .. .. V . .. V . . V V . . . . . V c n V V . . V . . . V V . V V. .. V . . . . V V _ V V . .V . ....‘VéVaV. . V V V . .... ...-3.. £93.51... (:....a V.. Vain... ’-9..5..I4V‘.oco9. V.. . Vnt...’..o.‘.‘ . I... rat‘s-l 00.8. .18 .10 :..-1...“... 2.!3‘v I ‘ u. 3‘. .9... ;. 7- :1. - ...¢v . V -. .....Vv-‘v: .. ...! V . . . . . V V ... .v -. ... Q t. . Au- ....0. . .V .3. . o. . no. ...... ... :... . . 0...... V V . V a ‘K.-...Vo..o' ......V. V ...V .. ..nv. no. .‘0 . . .V . V ... V y. .. ..7...‘ .. I. . V _ . . V V V V . V . . .V . ..u . . Z... \ .tt‘tnnv . 30" .V .. 8.... V .. . V V V. .’F o.”AVo.u-H:§ . . . . . . . . V V . . . .V V V. V V I .V o 0 V V V V o. V . V .V . V V . V V..-...-.. ...... . . . V . .. V V V V ....thih.“ V V V. V V V .” ... V . . . . .. V V V V. V V V. .. _ V... V V ... . V . . V V!\.¢autai‘.41.on- .... V . V V . . V V. V V. . . . . V V... V . V V .V . :.....\o.‘-.n?‘.{.o:}."gtt . . . V . . . V . . . V . _ V. . V V . . . . ’..o.t.i.1zéif§u . . V . V V . V V V V. . . V V. V V. 01‘ 3......‘3-03) . . . V .V V . . . Sizitl’ao... .V . . V V\..Vi.a: 'JI$E$O‘U:_ ...uuo-Vft i I “EV-Icy; o“%l 3.93., V. :r..:V-l . .fl‘? o o - . . V . V V . . V . 0V... V V . V V . ... ...V... V V . V V V . .. . . . V 3....th ! .J’a... IR 522:1“.352: .l... v.8. 1 a... V.. V V V V a. . V V. . . : .... V..‘.:..._ur. .....IJZ: V . V. V V . V . :- ‘5. v:.....-. v:oV. A... . V .V . V . . . . V ..Y.. . V . . V . . V. . V. . V . . V . . . V V .5. ...-a- :I. ..I ...-13:323.? V. V‘I‘l'..v V. 0.... A. .0 .... ... ...-f V. V. o. . _:..-V... 7‘...- .r. :4. _V .V- :..-3...... V . V V. ... n. 7:..- .o ... ...XO . o ..‘u u. 7 :9. In. .V ..V. V . V ...V VV-b I . .0 V... l... ... or ....l’ . S. V..... V .9.......... V V. V n.....u....\¢ ...t‘.u’- . V V g . 3. QVXOOb...... .V 3: c .... . . .Q‘. .... ... . (V .O......-. .. .. ... .. ... V V.. V .. r: . .0 V..... ......I. ..Qv. o 'Q‘f‘." 0 Ca: 0;- V'lv. Gall. .- "’i 0‘. 0 V . u . V . ... ... . a: . v . n . ‘ I - P . .. V . v... o . a o . V . hut-.‘vot. .0 V . V . . V..-. . V o o oV...V.O—... . .V .. . v . . . . u u o > V n V A C. . V . _ l I A c. I u n o n V' “2. ... _ ... A .. .9. V . : V.-”..h. 1o .... V... V :.. .... .... V. V. V . . . . . . m. . v . V V. . V. . V..... V .V. “3.9.. uMO'Oh T a .. o.»..;....—u- ... o. 9-. . o. ’. .. ¢ .0 V...“ V . . . 3 V H V. V.. ._ .u ... . V a V.. V.. a e u no :.. n t O. 6. . .0 V .1 . _.... . V ‘ . ‘ b O 0.. r O‘uit- p. .‘o....u.o 9.0.. 'L. a 10- .uV .V-V-l” V A?“ .0“. 0'. V ......o .‘.l V V :1... . _r . V. V.. .o . V o o .7 . .’.l V .V l .. ... . .I-V- U o c .. 2 o . V .f. V‘ .... V 99.... ... V ...... . . . V.. . . 4 . .... o .V. . V. .. ......I .01.... V. . V. o « {:.. ..r. ..."... 3.... 0‘ . ot’.:- . u .9 o ‘ c.3uwunh.»Pv.nhhvrv0‘.buc.3utovo.. o ~h— 0 ...-:..u\?.:»ll‘~‘-o..q V. l u a. .4 ....‘.-V .t m V, .. V... .J . . . ' .3. V .n.. V . V V . . .‘u. .. . V . ... . . o co. V . ...V to.- “4.” . . O . V. 5. . o C ..uc - . V. V _..:... .... ...: ........VVV.V. ... .V V.. .35... 3:3: n. .. .V.. .1. v. .V......_..2 . .VV.._._.V.VRV ...V .5,“ _...VHVQVV“... 1,35,.“33 V 1. .-.{VVVSE ... - . JVVVVVVJV . V _.... .. . :.. u... 2.1.... V. 215%.; . .Lh’hfifiaV V v V. .1» ..v V... o .‘ .V vVJ’.1¢V§ .. I, V. . a . I V ‘1. M ..0'3...IV.. . ..V . V . O... ..‘.V :- . .... .V V o . - . l I In". .I . may” nu“! l.){ \s| \ . I. \ n. ... L)". I . I UH. '—.~. PLACE IN RETURN BOX to remove this checkout from your record. TO AVOID FINES return on or before date due. MAY BE RECALLED with earlier due date if requested. DATE DUE DATE DUE DATE DUE 5/08 K:IProjIAoc&Pres/CIRCIDateDuo.Indd II. | 'Illll’l II! I 'I. Ill 1' I ‘ / INTEGRATION OF PROJECT COST ESTIMATE AND PROJECT TIME SCHEDULE: A PROJECT BREAKDOWN STRUCTURE APPROACH / By Syed Aqeel Ahmed Kak/akhel Master’s Research Plan B Submitted to Michigan State University In partial fulfillment of the requirements For the degree of MASTER OF SCIENCE Department of Agriculture Engineering 1999 ,, D0 mr DETACH ¢s--’*‘“ "" LIB RARY Michigan State University DO NOT DFT‘AF'U CHM“ ABSTRACT INTEGRATION OF PROJECT COST ESTIMATE AND PROJECT TIME SCHEDULE: A PROJECT BREAKDOWN STRUCTURE APPROACH by SYED AQEEL AHMED KAKAKHEL The Project Cost Estimate and the Project Time Schedule are the core plans developed during any construction project planning process. In the current tough competitive business environment, the successful completion of a project is highly dependent on how these two plans are realistically prepared and integrated with one another. Because schedulers and estimators view projects differently, the two plans are seldom integrated for information exchange purposes. Integration is necessary because project costs and time exhibit a complex interdependency: direct costs may increase with a decrease in completion time; on the other hand, indirect costs may decrease. This research paper presents a scheme, the Project Breakdown Structure (PBS), for the integration of the cost estimate and the time schedule. The PBS is a seven-level common work breakdown structure, which conveniently adapts to popular software. An intelligent activity identification fi'amework has also been developed through extension of the PBS codes. As an added benefit, the PBS is a candidate to become the standardized format for the scheduling. In order to demonstrate the scheme, a construction schedule and a cost estimate have been generated on the basis of the PBS for a sample project in Primavera Project Planner and Timberline Precision Estimation. Dedicated to my wife, Shazia Acknowledgments I am especially grateful to my mentor and professor, the late Dr. Thomas H. Burkhardt, for his generous assistance in all aspects of my program, beginning with the application and culminating in this research. I will always remember his kindness and integrity. May Allah grant him eternal rest. The author would like to thank Dr. John Gerrish, who agreed to be my Major adviser after the sad demise of Dr. Thomas H. Burkhardt. His regular, educating and harmonious supervision on the progress of the work helped me to complete this report on time. The author would like to thank Dr. Matt Syal, for his scholarly suggestions and provision of related literature from his personal library. The author learned the technique of conducting a research from Dr. Syal. The author appreciates the willingness of Mr. Timothy Hinds, Case Study Center, to act as a committee member. The author extends his thanks to Dr. Dennis Welch for the timely arrangement of Timberline Precision Estimation, and Means 99 cost database. Table of Content Chapter 1: Introduction 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Overview Problem area Research Objective Research Scope Research Methodology Research Output Research Report Organization Chapter 2 : Literature Review - I 2.1 2.2 2.3 2.4 2.5 2.6 Overview Teicholz’s Model Hendrickson’s Model Ibbs’s and Kim Model Work Packaging Model Summary Chapter 3 : Literature Review - II 3.1 3.2 3.2.1 3.2.2 3.2.3 3.2.4 3.3 3.3.1 3.2.2 3.3.3 3.4 3.4.1 3.4.2 3.4.3 3.4.3.1 3.4.3.2 3.4.3.3 3.4.3.4 3.4.3.5 3.4.3.6 3.5 3.6 Overview Work breakdown Structure WBS definition and Development WBS coding Purposes of WBS Application of WBS in Construction Project Management Masterformat Applications Of Masterforrnat Application of Masterformat for arranging of cost databases Masterforrnat as WBS for cost estimate Uniformat Organization of Uniformat Comparison of Uniformat and Masterformat Application of Uniformat Arranging Cost Information Arranging Preliminary Project Description Arranging Project Manuals Organizing Drawings Arranging Facilities Management Information Arranging Information for Design-Build Applications Primavera Project Planner Timberline Precision Estimation \OOO\I\10\W—‘ 10 13 15 17 19 20 20 20 21 23 24 29 3o 31 33 37 37 39 40 4o 40 41 41 41 41 42 44 Chapter 4 : Project Breakdown Structure 4.1 Overview 4.2 PBS Model 4.2.1 Level 1: Project 4.2.2 Level 2: Element 4.2.3 Level 3: Class 4.2.4 Level 4: Subclass 4.2.5 Level 5: Area 4.2.6 Level 6: Activity 4.2.7 Level 7: Cost Line Item 4.3 Steps for Generation of construction schedule and cost estimate on basis of PBS 4.4 Advantages of PBS Chapter 5 : PBS Application 5.1 Overview 5.2 Construction Schedule on basis of PBS 5.2.1 Detailed PBS Layout 5.2.2 Summary PBS Layout 5.2.3 Classic Schedule Layout 5.2.4 Formwork Activities Layout 5.3 Cost Estimate on basis of PBS 5.3.1 Spreadsheet Report on basis of PBS 5.3.2 Spreadsheet Report on basis of Masterforrnat 5.4 Comparison of Traditional and PBS based schedule 5.5 Comparison of Traditional cost estimate and PBS based estimate Chapter 6 : Conclusions and Recommendations 6. 1 Conclusions 6.2 Recommendations Bibliography Appendix A: Uniformat Appendix B: Sample Project sketches 46 46 55 55 57 57 58 58 61 61 65 68 68 69 70 7O 7O 84 84 85 100 1 O3 111 112 Chapter 1 INTRODUCTION 1.1 OVERVIEW As time progresses, construction projects are becoming more complex and costly, requiring greater attention to the management of both time and resources [AGC 1994]. Today’s owners demand precise execution and control of their projects to satisfy their time and cost constraints [Budeiri 1984]. The construction industry can become proficient by applying the modern techniques of Construction Project Management to complete projects successfully. The elements of construction project management are shown in Figure 1.1 Construction Project A Management Management Management MW Management Project Time finieaQua-fity Project Communication Project Wm Management Management MW Managerial Figure 1.1 Elements of construction project management (Modified from PMBOK 1996). Construction project management is an integrative endeavor: an action, or failure to take an action, in one area will usually affect other areas. The interactions may be straightforward and well understood, or they may be subtle and uncertain. [PMBOK 1996]. For example, expediting of a project to produce a tight schedule may result in higher completion costs due to the increase in direct cost of the execution of activities such as overtime wages of crew, renting of additional equipment or loss of productivity due to overcrowding of a construction site. Project Cost Management (PCM), and Project Time Management (PTM) are the two core elements of construction project management as they ensure the achievement of the main objective, i.e. being on time and within budget. PCM includes the processes required to ensure that a project is completed within the approved budget while PTM consists of the processes required to ensure timely completion of a project. PCM and PTM are composed of component processes, which are shown in Table 1.1. Table 1.1 Component Processes of PCM and PTM (Modified from PMBOK 1996). * 'I I Proie_c,_'t Qost Mgagement P igt Timg Management 0 Cost Estimating 0 Schedule Development I, 0 Cost Budgeting 0 Schedule Implementation . Cost Control . Schedule Control The difl‘erent component processes of PCM and PTM are performed at various stages of the project life cycle. The cost estimating and schedule development processes are performed at the construction project planning (CPP) stage. The CPP can be defined as the decision making process which establishes a set of actions needed to successfiilly progress fi'om the initial stage (i.e. design) of the project to the goal stage (i.e. constructed facility) [Syal 1992]. The project cost estimate is prepared by the estimator(s), whose aim is to forecast an accurate project cost within predefined conditions so that the project’s monetary objectives could be achieved. The project construction schedule is prepared by the scheduler(s) whose main objective is to develop a realistic construction plan so that the project could be completed within the contract time constraints. 1.2 PROBLEM AREA Construction projects exhibit complex relationships between costs and schedules. Although the interdependency between schedule and cost is obvious, it is rare to find project control systems that integrate cost and schedule control fiinctions. Rather, they remain two separate fimctions that are performed independently of each other [Rasdorf 1991] In order to facilitate the planning, the project planners decompose the project into manageable components and sub-components utilizing the Work Breakdown Structure (WBS) technique. Although PCM and PTM require similar information from common sources such as drawings, specifications and other contract documents, planners usually use one WBS to generate a cost estimate and a different WBS to generate a construction schedule. The building construction industry in USA uses Construction Specification 3 Institute’s (CSI) MasterFormat system as the basis for a WBS for generation of a cost estimate. The MasterFormat categorizes the construction products and processes into sixteen divisions based on the following attributes. [Spence 1998] 0 Location ( e. g. division 2: sitework) 0 Material (e.g. division 3 : concrete) 0 Function (e. g. division 7: thermal and moisture protection) 0 Applications (e. g. division 9: finishes) 0 Trade (e.g. division 16 : electrical) The WBS for a cost estimate systematically decomposes a project until the line items are determined. Unlike the cost estimate, there is no specific format or standard for the preparation of a WBS for the schedule. Schedulers develop a WBS based on their experience and intuition. Even within a given company, different WBS’s are adopted to decompose projects for scheduling purposes. A WBS for a schedule is generally based on any of the following: 0 By major deliverables such as main building, auxiliary buildings and outbuilding works 0 By trades such as concrete work, carpentry, metal, electrical and mechanical o By major building components such as foundations, walls, columns, floors and roof 0 By responsibility of project stakeholders such as owner, architect, engineer, general contractor, and subcontractors. o By floor levels for high rise buildings such as ground floor, floor 1, floor 2 and so on. o By construction sequence A WBS for scheduling ends up with a set of construction activities irrespective of the basis on which it is developed. A construction project schedule is then developed from these activities using the networking technique. The adaptation of different WBS’s, one for the generation of a cost estimate and another for generation of a construction schedule for the same project leads to an information- flow blockage between them and prohibits subsequent data-sharing during the cost control and time control processes. For example, when it is necessary to cost load an activity, such as form work footing for the south wall, the scheduler will have to calculate the work quantity from the drawings for that particular activity and then apply the cost for that portion of form work from the estimate. These additional computations are necessary because the cost estimate presents a cumulative quantity of forrnwork for the entire project. The data acquisition relies strongly on the intuition and experience of the cost estimators, schedulers, and project planners and controllers [Kim 1995]. As a consequence, they spend an unreasonable amount of time making adjustments to update and maintain information during the various stages of the project life cycle. For example, quantity of work in the schedule of values for the payment process may not be consistent with the activities, and therefore the actual quantity of work performed must be computed. If the schedule of values and the activities had been developed on the same basis or format, many subsequent computations could have been avoided. Keeping in view the above discussion, two main problems prevent integration of a cost estimate with a construction schedule: a. Non-existence of a standard fi'amework/format for the development of construction schedules. b. Adaptation of different WBS formats — one for the generation of cost estimates and another for the generation of construction schedules. A need, therefore, exists for the development of a common WBS, most appropriately called the Project Breakdown Structure (PBS), which can resolve the above two problems. It means that the proposed PBS (common WBS) should provide: 0 A standard format (standard WBS) for the development of a construction schedule, and o A framework for a schedule (time plan) and a cost estimate (cost plan) generated in an integrated way. Although the author has chosen to use PBS, the name is not original. It has used to describe other similar schemes. [DOE 1981] 1.3 RESEARCH OBJECTIVES The primary objective of this research is to develop a project breakdown structure PBS (common WBS) model to serve as a standard format for the generation of a construction schedule, and as fiamework for the generation of an integrated cost estimate and time schedule. The secondary objectives of this research are: a. To present a process flow diagram depicting the generation of a construction schedule and a cost estimate on the basis of a PBS. b. To demonstrate the utility of the PBS model by applying it to a sample project for the generation of an integrated cost estimate and schedule. Timberline Precision 6 Estimating Extended® Edition and Primavera Project Planner® will be used for the generation of cost estimates and schedules, respectively. c. To compare the cost estimate and the time schedule generated for the sample project on the basis of a common PBS and two traditional divergent WBS’s in order to highlight the advantages of the PBS. 1.4 RESEARCH SCOPE The research will focus mainly on a construction building project being executed in a design-build environment. In the design-build delivery system, a single entity (designer- builder) is responsible to the owner for the execution of the entire project from design to construction, and it benefits from the parallel generation of construction schedules and cost estimates. The unified design-build responsibility facilitates the control of project performance [Rizzo 1997]. There is an intense participation by the constructor during the design phase, communication between all participants is facilitated, and interface problems are reduced [Spink 1997]. 1.5 RESEARCH METHODOLOGY The research efforts are divided into the following steps: a. A comprehensive review of available literature in the area of project management (specifically dealing with cost estimation, scheduling, and work breakdown structures), construction information classification systems (such as MasterFormat and UniFormat), computer-integrated systems, and construction project planning modeling. 1.6 Analysis of the capabilities of the topmost cost estimating software (Timberline Precision Estimating Extended®) and high-ended scheduling software (Primavera Project Planner®) so that the proposed PBS model can be made compatible to the said softwares. Development of a PBS generic model. Development of a PBS detailed model. Development of process flow diagram depicting the generation of a construction schedule and a cost estimate on the basis of PBS. Application of the common PBS model to a sample project for the generation of a schedule and a cost estimate. A comparison of a cost estimate and a time schedule generated for the sample project on the basis of a common PBS and two traditional divergent WBS’s. RESEARCH OUTPUT The following are the outputs of this research study: a. b. A PBS generic model (Figure 4.1) PBS detailed model as a hard copy (Table 4.1) and as an electronic file in MS Word, which can serve as a template for the development of PBS for any given project. Process flow diagram for generation of a construction schedule and a cost estimate on the basis of the PBS. (Figure 4.3) Construction schedule for the sample project on the basis of a PBS generated in Primavera Project Planner. e. Cost estimate for the sample project on the basis of PBS generated in Timberline Precision Estimation software. 1.7 RESEARCH REPORT ORGANIZATION The research report is composed of six chapters, two appendices and a bibliography. Chapter 1 consists of a brief overview of the construction project management, problem area, research objectives, scope, methodology, and expected output. The literature review is presented in chapters 2 and 3. Chapter 2 reviews the previous research attempts focusing on the integration of cost estimates and construction schedules. Chapter 3 covers work breakdown structure, MasterFormat and UniFormat. This chapter also briefly presents the features and capabilities of the topmost cost estimating software (Timberline Precision Estimating Extended®) and high-ended scheduling software (Primavera Project Planner®). Chapter 4 describes the Project Breakdown Structure and presents a process flow diagram for the generation of a construction schedule and a cost estimate on the basis of the PBS. Chapter 5 demonstrates the application of the PBS. It consists of a construction schedule and cost estimate for the sample project developed on the basis of the PBS. Chapter 6 presents the conclusion and recommendations. Appendix A contains the UniFormat numbering and titles up to level 3 while appendix B presents sketches of the sample project. Chapter 2 LITERATURE REVIEW — I 2.1 OVERVIEW Project cost management (PCM) and Project time management (PTM) are the core elements of construction project management as already discussed in section 1.1. A number of models have been proposed by various researchers to integrate the cost plan (cost estimate) and time plan (construction schedule) so that the entire processes of PCM and PTM can be efi‘ective and efficient. This chapter presents the following previous research efforts focusing on the integration of cost estimate and construction schedule. 0 Teicholz’s Model 0 Hendrickson’s Model 0 Ibbs’s and Kim Model 0 Work- Packaging Model 2.2 TEICHOLZ’S MODEL Teicholz initially recognized the existence of two data structures, i.e. different work breakdown structures, for the generation of cost estimates and construction schedules [Kim 1995]. The term “Cost breakdown structure” (CBS) was used for the WBS of the cost estimate. Teicholz’s model is shown in Figure 2.1. 10 Teicholz (1987) proposed a mapping mechanism between the CBS and WBS. The mechanism maps a given cost account to one or more activities that relate to that account. The mapping mechanism employs the concept of percent allocation, where a cost account has a specific percentage for the amount of a given resource (such as labor hours or material quantities) in a cost account on the CBS that should be allocated to a given activity on the WBS. For example, a cost account for the “Strip 20 cm wall” on the CBS (refer to Figure 2.1) corresponds to many tasks on the WBS such as strip 20-cm wall- area A, strip 20-cm wall- area B, strip 20-cm wall- area C. According to William J. Rasdorf and Osama Y. Abudayyeh [Rasdorf 1991], the percent allocation concept proposed by Teicholz is approximate and based on judgment. Synchronization of two separate views of data is an issue, and no attempt has been made to integrate these views physically. Moreover, maintaining links between the cost-and — schedule-control account creates an extra computational overhead that may affect the efficiency of data processing and reporting. 11 Project Project I ............. l l I l l I Site Work Concrete Earthwork Foundations Superstructure I I I I L ..... PM“ a," ”I P” 0 Float Flood Floors Floor! I I I 7 Foundations Walls Beams 8. Slabs l j as Area-A Area-8 Area-c ! L . r_.'_‘ Walls Columns WaIIsColumns Slab a Beams SlabeIBeams Fab Erect Strip «airs-+1 l.__+__|s1erue/Beamar—""3"“c°""""’ ECF'WCrk Reba! Core: 8' 820cm Jarmwork Reoar i Lice Concrete Formworkn Concrete Fab ErectStrip pg, Endsmp Fab EreetSlrip «l 4 l Allocations A ‘ Figure 2.1.Teicholz’s model 12 2.3 HENDRICKSON’S MODEL Hendrickson and Au [1989] proposed a work-element concept for integrating the cost estimate and construction schedule. Hendrickson’s model is shown in Figure 2.2. A work element is a control account defined by a matrix of work packages from the WBS and a cost account from the CBS. In Hendrickson model, work element is used as a common denominator which provides a link between the WBS and the CBS, where a cost account may relate to one or more activities, and at the same time, an activity may relate to one or more cost accounts. Hendrickson and Au recognized the need for a common denominator for acquiring and maintaining data for effective project control. The success of the Hendrickson model is conditional on developing automated data acquisition and representation methods because of the burden of data collection and storage. Moreover, the model maintains two difl‘erent views of project data (the CBS and WBS) which creates an extra computational overhead [Rasdorf 1991]. 13 l V I I Earthwork Forum We l i r e‘ a Project I l Concrete rt Site Work Formwork Rabat Porting I Foundations Counns Wale Beams 0" fir“;— wOrk Element Matrix CF: Thin Fourth his; lw Floor Floor mxxxx 33“"‘* x alts 20cm Watts Cost Accounts x:workelernent Figure 2.2 Hendrickson’s Model 14 2.4 IBBS’S AND KIM MODEL Ibbs’s and Kim (Kim 1989) model uses object-oriented programming (OOP) approach. The model is based on BOD, which is defined as the lowest-level construction task needed to build a specific design object. BOD is the entity that provides a linking between a design object and its corresponding construction operation control fimctions (WBS and CBS). The Model is shown in Figure 2.3. A BOD has three attributes: a work package on the WBS, a cost account on the CBS, and a design object on the drawing. For example, the following five BODs can be generated for an 8—in (20-cm) concrete wall object of area A on the fourth floor: Fabricate formwork o Erect formwork 0 Place rebars 0 Pour concrete 0 Strip formwork Each BOD is then linked to one cost account on the CBS and one work package on the WBS. In this model each BOD is defined at such a refined level that it may be impossible to acquire data to support model. Moreover, Ibbs’s and Kim Model still maintains the dual WBS and CBS views, which creates an extra computational overhead [Rasdorf 1991]. 15 Project Prqect I ............ l I I I I F 5'“! W0“ COM!“ Earthwork Formations Strentructure “m ““3“ PM“? FrooIr Prior: noon Floou L I , 1 1 1 Foundations Columns Walls Beams 8. Slat: Area-A Area-8 ”“4; I F— I l Slabs/Beams Walls Cotmnns I I 25cm “aocrn §\ ~_g B-Incn Wall in Area A Floor 4 Design Object Design Objects Figure 2.3 Ibbs and Kim Model 16 2.5 WORK PACKAGING MODEL Work Packaging (WP) is defined as a method to create common manageable work entities and to interface them with different phases throughout the life cycle of a project, 6. g. design, cost estimation, scheduling, and control. Work packages are derived by combining the WBS and Organizational Breakdown Structure (OBS). Figure 2.4 shows a work packaging model. WPs are developed by creating a matrix in which the WBS defines the columns and the OBS defines the rows. WPs at this level are called control accounts. Control accounts are then divided into tasks. Cost budgets, time budgets, and labor resources are then allocated to these tasks [Kiml995]. This model has a very complex control account coding system. Additionally, it is does not suggest a breakdown structure for the cost estimation. Furthermore, even a small change in the WBS or OBS would afl‘ect the whole model. 17 % ...... "r “r" 3"; B5? ii i ““ §Fw 41—33. ; 2. Lam... l 1222 I EM Conan. Mu Faenm Fairs-1 Fae-um 1220, 1210 um madam Guard r 1, ~. ‘.¢_°"31°!.499.9991 "M ‘ Mr turn-Imam ”IMF“. —'- ”were — mm Figure 2.4 Work packaging model 18 2.6 SUMMARY The models discussed in the previous sections have proposed to integrate the cost estimate and construction schedule by linking WBS with CBS or WBS with OBS through various mechanisms such as direct mapping (Teichloz’s model), work element (Hendrickson’s model), BOD (Ibbs’s and Kim model), control account (work packaging model). These models maintain the dual view of data, and the synchronization issue is not resolved. Moreover, these models will have to be developed (almost fi'om scratch) for every project, which results in computational overhead. These models have not addressed the issue of compatibility with the Masterforrnat classification system, which is being widely used as a standard WBS for the generation of cost estimate by the US construction industry. Nor have these models proposed an activity identification structure. In the author’s view, an efiicient and effective integration between the cost estimate and the construction schedule can be achieved only through a common WBS, most appropriately called the Project Breakdown Structure (PBS). The PBS, developed by the author is presented in Chapter four. The PBS approach to integration incorporates WBS (project management technique), Masterformat and Uniformat (construction information classification systems), Primavera Project Planner (construction management and scheduling software), and Timberline Precision Estimation (cost estimation software). Therefore, prior to presenting PBS, these topics will be discussed in Chapter three. 19 Chapter 3 LITRATURE REVIEW - II 3.1 OVERVIEW This chapter covers the topics of Work Breakdown Structure (WBS), MasterFormat (MF), and UniFormat (UF). WBS is an effective management technique used for the planning and controlling of projects. MasterFormat and UniFormat are the construction information classification systems developed by the Construction Specification Institute (CSI). This chapter also briefly discusses the related advanced features of the Primavera Project Planner (P3) and Timberline Precision Estimation (TPE). 3.2 WORK BREAKDOWN STRUCTURE Over time, projects have been getting larger and more complex. This growth in size and complexity resulted in the introduction of a new project management tool, the Work Breakdown Structure (WBS) in the early 19605 [Chimni 1989]. This section presents the basics of the work breakdown structure technique and its uses in construction project management. 3.2.1 WBS definition and development A WBS is a hierarchical format, which decomposes a project into successively greater levels of detail [Dreger 1992]. A WBS serves as bridge between the end objective and its 20 supporting efforts. It provides an ordered framework for the planning and controlling of a project [DOE 1981]. The work breakdown structure first decomposes a project (or a product) into major subprojects (or subproducts) which are in turn broken down into smaller, more manageable components and sub-components until the project (or product) is defined in adequate detail for planning, executing, and controlling. This decomposition is carried out systematically into levels, each level providing increasingly detailed definition of the project (or product). The number of levels depends on the scope and complexity of the individual project and the degree of control it warrants [DOE 1981]. Figure 3.1, shows a project broken down to three levels. WBS is a hierarchical structure, which can be developed as: a. A tree diagram, as shown in Figure 3.1 b. An indented listing, as shown in Figure 3.2 c. A table, as shown in Table 3.1 3.2.2 WBS coding Each module (such as project, subproject, or component) of a WBS is assigned a code to be used for its identification throughout the life of the project. A simple decimal or alphanumeric coding system is applied that logically indicates the level of each module and relates that module to its parent module. In Figures 3.1, 3.2 and Table 3.1, a numerical decimal system is shown for the coding purpose. 21 Pro'ect Level 1 f .......................................................... ,_-------------------_-------_----_-------------_--------- Sub project Sub project Sub preject Level 2 1 1 1.2 1 3 .-----.-—-------—-—-——--—---————g--—-—-..—uncann—n---.-no—c——-—-----———-—--_---—-----—----—----—-----0--—--——---------- Figure 3.1 WBS graphical representation 1 Project (Level 1) 1. 1 Subproject (Level 2) 1 . 1 . 1 Component (Level 3) 1.1 .2 Component (Level 3) 1.2 Sub project (Level 2) 1.2. 1 Component (Level 3) 1 .2. 2 Component 1.3 Sub project 1 .3. 1 Component 1 .3 .2 Component Figure 3.2. WBS as indented listing 22 Table 3.1 WBS in table format Level 1 Level 2 Level 3 1 Project 1. 1 Subproject 1.1.1 Component 1.1.2 Component 1.2 Subproject 1.2.] Component 1.2.2 Component 1.3 Subproject 1.3.1 Component 1.3.2 Component 3.2.3 Purposes of WBS The major WBS purposes are listed below: [Dreger 1992] e To define total project effort - what the project is 0 To define project scope and limit — what the project is not 0 To state project objectives as tangible, measurable deliverables 0 To structure the work into small, detailed units that define scope and deliverables According to Kerzner [1995], the WBS is the single most important management tool because it provides a common framework from which: 0 The total project can be described as the sum of contributing elements, 0 Planning and forecasting may be performed, 0 Schedules and budgets can be established, 23 Time, cost, and performance can be tracked, Objectives can be linked to company resources in a logical manner, Schedule status reporting procedures can be established, Network construction and control planning can be initiated, and Responsibility assignments for each element can be established. 3.2.4 Application of WBS in construction project management A WBS can be used to provide the basis for: [Kerzner 1995] Keeping in view the scope of this research, only the WBS’s being used for the construction schedule and the cost estimate will be discussed further. Figures 3.3, 3.4 and 3.5 present WBS’s developed on different yardsticks such as major deliverables, major processes, and major work categories for planning of a typical house. In order to generate a construction schedule or a cost estimate, these WBS’s have to be expanded to the next level of detail, i.e. Construction scheduling Cost estimation Responsibility matrix development Risk analysis Organizational structure Contract administration Coordination of objective activities or line items. The US construction industry uses the MasterFormat classification system as a basis for the WBS of cost estimating, whereas there is no industry-wide standard or format for the WBS of construction scheduling. Schedulers develop WBS based on their individual experience 24 and intuition. Even within a given company, ad hoc WBS’s are adopted for the scheduling of particular projects. 25 V.. ES DC- :82 cemeé eeeemv . 338033 5.88 .3 mm? mam 8&5 Wei .3853 NNv I32 .3.... fine Ricki Qv use; 4 _ .09 us He( fin «32!. we. «0.5.5 _ieoraya-O h ... n n m 35.80 :33 of On EOE. .00: Ed: 6203 3301 26 :82 .828 8.8% 83808 8.88 .3 mm? Wm ousmfi 220. new use-i «8.3525 28.80 935... 15355 i.e.... .3.: ES .3893 .980 35:50 w 835... 059m c9333... 7%.; _ y... a £322.: Qumr— 331 ES» j... 344 III _ ......L 806933 .0953 ecu goo 333:3— w _ h 5.3.... 395.3 3:99.023. _ _ _. _ co...5.c§< 62.883 2323.. .33 Glen 0301 27 :82 omega 8.8% motomoueo x53 8.88 .3 mm? On 2&5 8.3.... .520 >653 J 30¢ .20! v8 ...—925001.303 x .8433... :23. .82 . E1. . .22... an .1116 sfifl ......fiwur W 38.80 ‘ TE EB i .1 4441 41nmI§ ...... _......5_ Tia; mm 23.:qu r A niece-O 231a 6.8.... :3: _ 28 3.3 MASTERFORMAT MasterFormat is a construction information classification system developed by C81. MasterFormat categorizes the construction products and processes into sixteen divisions based on the following attributes: [Spence 1998] 0 Location ( e. g. division 2: sitework) 0 Material (e. g. division 3 : concrete) 0 Function (e.g. division 7: thermal and moisture protection) 0 Applications (e. g. division 9: finishes) 0 Trade (e.g. division 16 : electrical) The term “product” means materials, components, and equipment that a contractor incorporates into a project. Products can be new or existing, may be commodities or manufactured units, can be materials, components, finished assemblies or combinations, for example, masonry bricks, concrete mix, wooden floor joists, metal studs, curtain walls. Products are the basic components of construction. The term “ process” means a construction method or procedure utilizing a particular crew or material or both, for example, placing of ready-mix concrete of 3000-psi strength with a pump truck or excavation of soil with a backhoe for a utility trench. The following are the sixteen MasterFormat divisions. These divisions are also called the group phases. [Bledsoe 1992] 0 Division 1: General Requirements 0 Division 2: Site work 0 Division 3: Concrete 0 Division 4: Masonry 29 0 Division 5: Metals 0 Division 6: Wood and Plastics 0 Division 7: Thermal and Moisture Protection 0 Division 8: Doors and Windows 0 Division 9: Finishes 0 Division 10: Specialties 0 Division 11: Equipment 0 Division 12 Furnishings 0 Division 13: Special Construction 0 Division 14: Conveying Systems 0 Division 15: Mechanical 0 Division 16: Electrical 3.3.1 Applications of Masterformat The Masterformat is used for the following purposes: 0 Arranging information within project manuals 0 Cataloging of product information by manufacturers and suppliers 0 Keynoting for drawings to associate items with specifications 0 Arranging of cost databases in books or electronic format such as : - RS Means building construction cost data (book), Richardson cost data books. - RS Means database, Timberline Commercial GC database and Timberline Residential Home Builder database or a company’s proprietary cost database. 0 As a WBS for the generation of cost estimates 3O 3.3.2 Application of Masterformat for arranging of cost databases The various cost databases (electronic and printed) arrange the cost data using the titles and numbering of the MasterFormat. Each MasterFormat division (group phase) is divided into Subdivisions (phases), each Subdivision is divided into Medium Scopes; each Medium Scope is divided into Major Classifications and each Major Classification is divided into line items. [Bledsoe 1992]. For example: The division 2, site work has been arranged as: Division 2: Site work Subdivision O22: Earthwork Medium scope 022 200: Excavation, baclcfill, and compaction Major classification 022 238: Excavating, bulk bank measure, common earth piled Line item 022 238 0200: Backhoe, hydraulic, crawler mounted, 1C.Y cap = 75 C.Y/hr Line items are the individual cost elements tabulated in cost databases and are the smallest division of work to be analyzed. A Line item may be a product or a process. A 10-digit code based on the CSI MasterFormat is used to uniquely describe the line item. The first six digits are MasterFormat medium scope and major classification codes. The last four digits are optional; in this example, the last four digits are those used by the RS Means to identify various crews, equipment, production rates, etc. This complete item code narrows the work item to the finest detail i.e. excavation with a specific equipment type and size [Bledsoe 1992] Figure 3.6 shows cost data arranged on the basis of MasterFormat for a portion of division 2. 31 on noel Inoculation/coupon. an open Over 1500 CV. m an mm. car m greatly. mace Pls. me netted .0 to Oar 15w C.Y. areas. in to ..Y. Om 1500 Cr. in to I (Mr 1500 CV. “ores. c :o . 1.. r. Over 1500 C.Y. m Y., booed on no Ming Dried. vestedJqutm.mmig latrrmrmr senators run 1m torturessor. arr toors Tract drl. cmssor. overeat aid 1m caos Exposures rats. em. for day ’er added day surrey lor 'oom horse. ma ht. rrmm Vellum block «to zone nurun Maxrrun Figure 3.6 Cost data arrangement (Source RS Means 1997) 32 3.3.3 Masterformat as WBS for cost estimate Construction cost estimation consists of two components. 0 Quantity takeoff (quantity surveying): it is the process of taking measurements fi'om architectural and engineering drawings and specifications and converting them mathematically into useful and meaningful quantities for cost estimating [Bledsoe 1992]. 0 Pricing: when the quantities are determined, then prices, or unit costs must be applied to determine the total direct cost. The prices can be obtained from the cost data sources. The overheads and profit are then added to the total direct costs on the bottom line of the estimate summary [RS Means, 1990] The US construction industry uses MasterFormat as the basis for the cost estimate. This means that the quantity takeoff and pricing are carried out according to the sequence of the 16 divisions of MasterFormat. \Vrthin each division, the components or individual items are identified, listed, and priced. Each item is broken down firrther into material, labor, and equipment. A sample WBS suitable for a cost estimate on the basis of MasterFormat is shown in Figure 3.7. A few line items from the phases of division 2 and division 3 have been presented for illustration purposes. A complete WBS for a project may contain line items from most of the phases. 33 Level 1 Project . F Level 2 Division (Group phase) Division 01 General Conditions Dlvision O2 Sitework Concrete Level 3 Subdivision (Phase) wig—Overhead a. Mtscetlaneous I—m- Submittal w4 - Quality control Temp controls. 15-Constmction roams fl- Contract dose out J _4z_J dernotrtton 020 - Subsurteoe Investigation a. 021 - Site preparation and excavation su firm-Earth wort J 023 - Tunneling. Piles 8 Caissons _{Efi - Pavmg & suriecr’ng _E- Piped utilities fiSemmge a. drainage _L028 - Site improvements flumm 031 - Concrete tormwor'k _J _J__I_J.__l_i_ 48- Concrete reinforcement j _IES - Cast-in-plaoe concrete Line Item Level 4 Description of line item 0211040010 Clear and grub. cuta chip. treectoe' diam 02t 1440on Strippingtopsott.a11dstocttpiirro,dey.¢y,20G~thozer 022 254 N10 Excavating. oorrttnuoustooting. oomrnoneerth.1104'deep.3l8C.Y.trador loader/backhoe 02225021110 Medinmexcavattontorspreadtootingmdetevaorpflmonunoneerth, hydraulcbedJne.%C.Y.brx:tet 031 1580010 Form in place, looting- oontinuoswelt 0311505000 Fonnirrpleoe.spreadtootirrg 0311701000 Forrntnpleoesleb-on—grede 0311423!!!) Forminptecehooturrm 031150111!) Forminptaoeineievatedsteb Refluotnglnphee: 03.210705m1ntooungst41007 0321070560‘111001111950810818131113 m1o7mhmgrade 031007 0321070411!) inelcvetedsleb #31007 03210702!!! lnootumns031087 0321070250Inoolurnm3010018 033126011!) Concrete ready mix-2500pst 03312150150 Cameraman-35mm mm 0331721050 illootlnfi.spread1C.Y 0331303950 Inloothgs.strlp—$'xl2reintoroed 0331724350 Instab-on-grade4'tl'rictt Figure 3.7 WBS for a cost estimate on the basis of MasterFormat 34 AW [err-mam l W acne-aortas _[042-uimeeorly j _[eu-srme j ore-MW lldretredories mu USO-Moldm.coditul Afimmm ] —I§-WW i1 Hm—mrm ] efiww m ms... 4"“:“m I Lam-mm J _.jtmm ] _[ge-Pesemm ] We. leer-mooorsurm j tremendous I —E‘W‘MM J _..IE‘I-Hadm ] 4L...“ 1 moo Aim-Th 4...... _joeimfiueuoymm , _mmm. _[oee-Pmamrrooverrngs _—r——r——-r Figure 3.7(oont'd) 35 Wilt-Mum I r42—Ebvarors j tar-mam j ——IB-Prmm 1 43mm 1 _{154-Fieewmj _BG-w j rse-r-mc ] tat-Raceway: I tot-MAM I fimamm j tfl-mmmerdsl m fl-W n Figure 3.7(cont'd) 3.4 UNIFORMAT Uniformat [1998] is an arrangement of construction information based on the physical parts of a facility called systems and assemblies. UniFormat has been developed by CSI and CSC (Construction Specification Canada). These systems and assemblies are characterized by their function without identifying the products that compose them. UniFormat covers systems and assemblies for a range of building types and construction related to buildings. Systems and assemblies render a view of a constructed facility that is different from the view rendered by a breakdown of building materials, products, and processes. The purpose of UniFormat is to achieve consistency in the economic evaluation of projects, enhance reporting of design program information, and promote consistency in filing information for facility management, drawing details, and construction market data. 3.4.1 Organization of Uniformat Uniformat has a hierarchical structure, which decomposes construction information to five levels, each of increasing detail. The hierarchy comprises the following nine major categories of construction information: PROJECT DESCRIPTION SUBSTRUCTURE SHELL INTERIORS SERVICES e EQUIPMENT AND FURNISHINGS 0 F SPECIAL CONSTRUCTION AND DEMOLITION 37 o G BUILDING SITEWORK 0 Z GENERAL A complete list of the Uniformat titles and numbering from level 1 through level 3 is provided in Appendix A. The first category “ Project Description” does not have a letter designation because it is not a building system or assembly. Instead, Project Description is a collection of basic information related to the project, e. g., bidding, proposal, and contract requirements. Thus, Uniformat can be used as a stand-alone contracting structure for construction projects especially design- build projects. The letters and titles of Level 1 categories are fixed and should not be changed in any application. Uniformat divides each Level 1 category into classes of information. At Level 2, classes carry the letter of their parent category, plus a two-digit number e. g. A 10. Levels 3 and 4 are developed by further subdividing Level 2 classes. These subclasses carry the alphanumeric designation of their parent category and class, plus a two-digit number e. g. A1010. Alphanumeric designations and titles of Level 2 and Level 3 subclasses are fixed and should not be changed in application. Alphanumeric designations for Level 4 are unassigned within a group of Level 3 subclasses, and number extensions are assigned by the user. The user-assigned number should carry the alphanumeric designation of the parent Level 3 subclass, plus a two-digit number (as illustrated below by the XX), or the corresponding Masterformat number. Titles presented below Level 4 are Level 5 subclasses, developed by presenting specialized design solutions of their parent Level 4 subclasses. Particular materials may be identified 38 (e. g., concrete and steel) to differentiate one specialized solution from another. Titles at Level 5 are examples of information included in their Level 4 subclass. Level 5, and sometimes Level 4 titles, correspond to Masterformat numbers and titles. The numbering system is as follows: Level 1: A Substructure Level 2: A10 Foundations Level 3: A1010 Standard Foundations Level 4: A1010.XX Wall Foundations Level 5: A1010.XX Column Foundations The Uniformat numbering system is expandable, allows additional numbers, and titles at any level if needed. User-defined numbers and titles that fit within the established fi'amework of Uniformat can be added. Titles in Levels 1 through 3 can be applied to most project descriptions and preliminary cost estimates. Levels 4 and 5 are available for use on detailed, complex projects. Level 4 and 5 titles and detailed listings provide a checklist to ensure comprehensive and complete application of Uniformat. 3.4.2 Comparison of Uniformat and Masterformat The primary difference between Uniformat and Masterformat lies in how each system divides construction information for its intended application. The Uniformat has nine major categories while Masterformat has sixteen divisions. Each views the same construction information or base of data flour a different perspective. Uniformat and Masterformat titles suggest complementary views of construction products and performance requirements: 39 Uniformat names systems and assemblies that have a determinable fiinction whereas Masterformat names components that have specifiable characteristics. [Uniformat 1998]: 3.4.3 Application of Uniformat As suggested by C81, Uniformat can be used for the following purposes: Uniformat [1998] 3.4.3.1 Arranging Cost Information Cost information can be organized according to Uniformat and may be reported in varying degrees of detail, which can be refined as design decisions are made. The presentation of cost information on the basis of UniFormat facilitates the comparison of various building elements, particularly during early design phases. A cost estimate organized on the basis of UniFormat can evolve along with a cost estimate organized according to Masterformat. These two models of cost estimating present a different view of the same project and provide details appropriate for difi‘erent requirements. For example, a cost model organized by UniFormat can provide information about the cost of a concrete structure compared with a steel structure, even though there will be more concrete and steel on the project. However, a cost model organized according to MasterFormat can provide information about the cost of all the concrete and steel on a project regardless of the structural system chosen. UniFormat is most suitable for value analysis, which requires assigning a cost to a particular use or facility function rather than to particular products and activities. 3.4.3.2 Arranging Preliminary Project Descriptions A logical sequence of systems and assemblies is provided by Uniformat to describe a project before all construction materials and methods have been determined. This helps the owners to understand various components and systems proposed by the designer. UniFormat can be 40 adopted to organize, and serves as a checklist for preparing, preliminary project descriptions at various levels of detail. As the design progresses, both descriptions and the estimate of probable construction cost can be refined. 3.4.3.3 Arranging Project Manuals Organizing project manuals, or portions of them, according to Uniformat is well suited for the projects employing Performance Specifying. Uniformat can be used to organize performance specifications for elements crossing Masterformat section and division boundaries. Performance specifying can be used at many levels, from a single product to major subsystems or entire projects. It allows the owner to access a range of options, fiom existing technology to innovative systems and developing technologies. 3.4.3.4 Organizing Drawings UniFormat numbers and titles can be used for organizing architectural and engineering drawings. 3.4.3.5 Arranging Facilities Management Information UniFormat can be used for organizing maintenance and operation programs, and data. 3.4.3.6 Arranging Information for Design-Build Applications Uniformat classification system can be used for the communication of firnctional performance in a design-build project delivery. Owners can communicate project performance requirements organized according to UniFormat to design-build entities in requests for proposals. In turn, design-build contractors must use performance requirements to communicate their proposals. 41 3.5 PRIMAVERA PROJECT PLANNER Primavera Project Planner (P3) is a project management and scheduling software developed by Primavera Systems Inc. (www.primavera.com). P3 is designed to handle large-scale, intricate and multifaceted projects. The following are some P3 (version 2.0 b) features/capabilities: [Primavera 1997] 0 Can handle 100,000 activities per project. 0 Unlimited project groups, projects and target plans can be set. 0 Scheduling and resource leveling can be performed at the project group and/or project level. 0 20-level user definable WBS dictionary. 0 24 user-definable activity codes for selection and sorting. o 10-character user-definable intelligent activity II) codes. 0 Summarization of multiple project groups. 0 What-if analyses for schedule dates and resource planning. 0 Earned value analyses. 0 Merge multiple projects in a project group. 0 31 activity-calendars per project. 0 Time units in hours, days, weeks and months. 0 10 types of schedule constraints (e. g, start-no-earlier-than, finish-no-later—than, etc.) o 9 types of activities for more precise schedule modeling (e. g., task, meeting, independent, milestone, hammock, flags, etc.) 0 Resource calendars and variable availability 0 Unlimited resources per project and activity. 42 Activity splitting, stretching and crunching during leveling and smoothing. Variable resource pricing and availability. Resource-driven activity durations. Unlimited cost accounts per project with intelligent lZ-character codes. Track budget, actual cost this period, actual cost to date, percent complete, earned value, cost to complete, cost at completion. Autocost feature for user-defined rules for planning and updating cost. Unlimited presentation layouts. Hierarchical project outlining organized by any combination of activity codes, resources, cost accounts, and WBS. Summarize and group activities and compare to targets by WBS. Multiple levels of sort and selection (filter) In addition to the above features/ capabilities, P3 has an electronic interface with the following software: Expedition ( contract control) Monte Carlo (risk analysis) Sure Track (scheduling) MS Project (scheduling) Timberline Precision Estimation (cost estimation) Pro Log Manager (Construction management and document control) 43 3.6 TMBERLINE PRECISION ESTIMATION Timberline Precision Estimation (TPE) is cost estimation software developed by Timberline Software Corporation [Timberline 1998]. It has two main parts: a database, and a spreadsheet. The database stores all the standard cost items required to prepare an estimate including labor, material, and equipment items and prices, takeoff formulas, productivity factors, assemblies and more. A database can be built from scratch or an industry-standard model can be purchased and customized to suit company needs. The spreadsheet presents the items, quantities, and dollar amounts that make up an estimate in a format designed specifically for estimating. In the estimate creation process, the information is pulled from the database into the spreadsheet. The dimensions of a structure or quantities are then entered manually or through a digitizer. The TPE finalizes (computes) the costs in a spreadsheet. The database and spreadsheet are stored in separate files. The changes made in the spreadsheet stay in the estimate and afi‘ect neither the database nor other estimates. The following are some of the features/capabilities of Timberline Precision Estimation (extended version): 0 There are four methods of takeoff: Quick takeoff, item takeoff, assembly takeoff and one- time takeoff. 0 Location code: can indicate where items are shown on plans, or where items will be used on the job site. 44 0 WBS codes: Up to 12 WBS codes can be defined in the database. Within each WBS code, numerous WBS values can be defined to which items can be assigned. TPE allows sorting out estimate items based on the user-defined WBS. 0 Four additional spreadsheet sequences (besides Phase/item, takeoff order and assembly) can be defined for an estimate. In addition to Spreadsheet and Standard Estimate report in various layouts, TPE’s can generate the following reports: Estimate Details Report - Takeoff Unit Cost Report - Unit Price Review Report - Bill of Materials Report - Quote Sheet Report - Crew Report - Crew Analysis Report - Comparison Report - Variance Report - Bill of Quantities - Unit Price Analysis Report 45 Chapter 4 PROJECT BREAKDOWN STRUCTURE 4.1 OVERVIEW Chapter 4 presents the Project Breakdown Structure (PBS), developed by the author as a result of the research effort. This chapter includes the explanation of the PBS, a generic PBS model (Figure 4.1), PBS detail model (Table 4.1), and a process flow diagram (Figure 4.3) depicting the development of both a Construction Schedule and a Cost Estimate on the basis of the PBS. 4.2 PBS MODEL Project Breakdown Structure (PBS) is a common work breakdown structure (WBS), which can be adopted: 0 As a standard format for the generation of a construction schedule and, e As a framework for the generation of an integrated construction schedule and cost estimate. It decomposes a construction project into the following seven levels, each of increasing detail. Each of these levels is described in the next few pages. 0 Level 1: Project 0 Level 2: Element 0 Level 3: Class 0 Level 4: Subclass 46 0 Level 5: Area 0 Level 6: Activity 0 Level 7: Cost line item A PBS format/framework is shown in Figure 4.1. A detailed PBS model is shown in Table 4.1. The elements and their associated classes and subclasses divide a building project into its basic parts, each part characterized by its function. The PBS first subdivides a project into major elements which, in turn, are decomposed into smaller, more manageable components until the elements are defined in adequate detail so that a project could be planned, executed, and controlled efficiently. Each element is decomposed to its constituent activities at level 6 of the PBS. At level 70f the PBS, cost line items are assigned to each activity for estimation purposes. The UniFormat classification system’s levels 1, 2, and 3 have been adopted for the levels 2, 3, and 4 of the PBS respectively. Other than that the PBS scheme is the author’s contribution. CSI has suggested many applications (discussed in section 3.4.3) for Uniformat except for schedule development. Some of the reasons for incorporating the UniFormat into the PBS are listed below: 0 UniFormat covers systems and assemblies for a range of building types and construction related to buildings. 0 UniFormat provides a logical sequence of systems and assemblies to describe a construction project before all materials and methods have been determined. Therefore, it can be adopted at the initial planning stages. 0 UniFormat titles and numbering are generic and are expandable to meet specific requirements. For example, level 6 of the PBS has been developed by grouping the related activities within corresponding subclasses. 47 Level‘l Levelz Level: Level4 Levels Levelb Level? Element Class Subclass Area Activity Line Item IDI'OIXm: Element 2 : General _--.,L, 77g ’ ID:XZ CIaeeZtO-GeneriReraiernefl route I CI-IZZOVWWV v I _ 40,le EIementhsnework knew Sit-W ID ' XG 7'110 XG10 cm‘cm'EEWM” ,r-‘—\, xczo m: 11) ’~ _ . , . 7.7 m emcee sums-rem um | . , 4"xsm '/__—_“. Lulu.“ E, ”1, our auereeeeieam “w“ \. ___/ 11)wa . . 083690 cease-cm 3‘ ,' mm \__._.‘ f"! in xcso \x‘ --——’ .. $712010“ Harem-um 022254-0050 - ...... _~__ 7 _-...a 010m Ilium 033160-0010 EIementA.Substrucnne or not: “no" —I Qummo; IDLXA 10 “10 F Fm_ daemon-elm 032107-0500 ”MW” (meme-um esempereo 040W am 071 meme lee-ornamental” flan-0010 Arie—e)“ Want—m 10 ureroror Spa"! Found rozxmoae ___ __ ”WHOM: l_ era-A20 moor-t 31-11mm IO M ID:XA10% Elem B : She“ Che—8101mm ID:X8 _- ro xaro Element C : Interiors ID : XC EIerwntD:Servioes ID:XD 101830 ”WELL, .__ __ ID 1 X320 cries?!)- Rooting 1 metotklertorcm IO XC‘IO tO.XC20 c‘... c267 an? ‘ ' l ci—cio’ m '—T=rmv ID XCJO Clans 010: cm ’ 10 more CB 0‘10;an 113.1020 crnu'osomvrtc 1 ID’XDIDO cumie;nTProucuon'T —- rum EbmentE:Erpt.& Fm ID:XE EIementF:SpecConst& 113;er Jim-m 1 cane 7—spoou1—67mm' _ _1 ‘F' IO.XF‘IO ChertJSelecheDemolten ID'XF20 Figure 4.1: PBS Generic Model ow E as. a: 311% a. 3 $3. xx 82 8883. c 8....88 see. 820 3 as. a: g gag a Setter. a. 3 £23 xx 38.... 9.5.6 see. 220 36 :8 mx CEOBEm 62:35: 6 Evan—H 51% a 3 es. 2.... e. 3 been... xx 3 .2... c8580 8.6:; San g a g 3 as. 2.... e. S are... xx 3 82 @8368 8.38... Scan 3 g a an E as. 2.3 a. 3 been... xx 3 8.... @5380 8.8a Sena 838.550 :3 alrfix g g 8.. 82w 3 as. a... s. 3 beau... xx 3 ea... 13.11%. g mnquIofix 88m .5 .8553. Eur... SEN E as. 2.... so. 3 £32 xx 3 82 a 34love xx 31.. Ex .8256 see... 8.5 a. as. on... s. 3 new}. xx 3 8a. so... as some 22.. ee 8:32.. : . 6.2 33% 8:32.. S . as: space 8:32.. 8 - barge ...ese 83,6... 8 . we onofix E as. 2.... g g 83.8.. 9.85.. SEN o. 3 ate... xx 3 82 8.5x a. as. 2.... g a 38:38.. €30 SEN .9 3 £33 xx 3 9.5. 8:389: 85 we - dd _ 80E an ad” 38.. some... one: ..o g g o. 33% al.5235— 3 as. a... a. 3 x33. xx 3 as. 8.3355... 2.5 ...—sac 3a m” SHZHU N Beau—m m. . .232: _.e ..eeez Base 6...: 9.52:5 ocean-2m 8.3.5:... e3; 38980508895985ng .302 cm g a ... as. B... a. ... 33.5. xx 8:. .8... ... 8:38.580 3... 880 g g a 3 8.. 2.... .9 3 33...... xx .2... m5... ... a... 880 an .33 max. 3 8.....5 ... as. 8.. a. ... 83...... xx 8.... 8.8.8... 8.58... 830 .58.... 3... 30 g g a 3 8.. 8... 82.1.3.3. xx .2... 8.....5 .8838: a... 8.5 288 g .oxoocnox a ... 89. 8.. 3.138... x 82 823.8... .8... 880 £7.83: g 38 a. as. 2.... a. ... 53...... xx .2... 8.3.5.9 m....80 .38 3|.on xxSonox annex 3.8.. 2.... 2.538.. xx§< 8.8.3.... 8.3.. 358 fixxo§ox xxomomox a 3 8.. 8.. 8. ... 53.8... x 3:. 8.8m :85 .88 fixxldmcsm xxlmosmo lelo 80x 3 as. 2.... 8. ... x.38... xx .2... 88m 5.8.. .88 Illcnox g xxosmox osmox 83...... .8... 3 as. 8... 8. ... x.38... xx 8:. 28.5 5.3 2.8 ... .36 am :8 8.xxo88x xxonxox 820x ... es. 2.... 82.1.3.8... xx .2... 3.3.83 280 is. ox Inm|$o ox Souox 3 as. 2.... a. 3 338.. xx 8:. 888.08.. a... 358 fies”? filo 80x 8 ox ... as. 2H... 8. 3 ...38... xx .2... 83... 8588.. .88 g magnum a ... 8.. 8.. 8. 3338... xxx... 533...... 8.8 g g .2an ...—2838...... 3 as. 2.... a. ... .88.. xx .2... 538.. .....8 85 :8 g 8.9.39. 3.8... 3 as. a... a. ... x.38.. xx .2... 8.3.8.8.. 83.. 38:3. 820 g g madam 3 a... 8.. 82.1.3.3. xx .2... .83.... 35 820 a gig omcnmx 3 so: a: .2 3 .0332 xx 82 e89 8:86 258 .3088me g a 388. a: .2 93382 xxs2 5853 6.52m 88m 3 fixxosumx xxosumx a 23295. 3 so: 25 .9 3 3332 xx 82 :13 852m 28m 5.35 an: gala o§mx 3 es— 25 a. 3 352 x 82 8893603,: 82m g g a a 3 so: a: .9 3 3332 xx 82 83530 .8: 28m 9.335215 So am JAE—m .— Sofia—H a go 3% 3 so: a: .9 3 @382 xx 82 «:25 gm 882 a .823on go. .~_o.u2x.-| qawqm EU 3 so: 25 .9 3 @392 xx 82 S§>§m gm 282 2.35:: 82 3 so: 2.: éllfions filoljno 2x $63M .2 3 £362 Xx 82 335 :0 35 one? 3 so: 25 an: 2 g 33 .9 3 £82 xx 82 §§§£ .050 38% 822 8:355. fiasaesfifiam S - 8:350:13 mecca; 9.an Z . Gog-.50.“ :85 32250 .50..“ 8 . 8338 =3 .23. 8 . 8338.2 =25 as“. 8 . 8.35:8 =g 3.55 mm . .o g xxo§55 : Sofie—m i128 jonon x 880x 3 as. 2.: .2 3 22.2 xx 82 85...... 9.58 3.8 .2xxo88x xxosnox qfilfiox E ...... 2.: .2 3 .0322 xx 82 35...... .8... 880 an .2xx 280x xx 088x 280x .325... A... ...... 2.3 i .2 3 35.2 x 82 82...... =5 280 3:8... e8 .2ououox xxOSSx 880x E .2... 2.: .2 3 3322 xx 82 85...... .25 880 .2xxosmox xx..88x o.o8x die x a. ...... 2.: .2 3 2.3.2 xx 82 88.5.80 .25 280 Sam :8 .2986x xxomeox allnoax 3 ...... 2.5 .2 21.322 xx 82 8.228% 25...... 820 '38.. ox xxos.Qx 820x E as. 2.: .2 3 3.2.2 xx 82 289 8.5.... 820 a. .....RIIIJIIOS ox filo 20x 220x 8:35.80 3 as. 2.: .2 3 3.22 xx 82 252...... 280 5.3... :8 ox mac—maz— 0 2.25.“: g a a 3 as. 2.: .2 21.5.2 xx 82 9.8.8.8.. :88 .2xxosnmx a a a 3 Es. 2.: .2 21.3.2 xx 82 252.588.. 28... 9.9.3. an: mm ganja g .2 3 23.22 xx 82 2....3 88... 22 2.2.»... 258 ... ...... 2... a g flag 2.3.5.5 a ... 22. 2... .2 E 2322 xx 82 .22 8E8 .858... 298 .8288... S: g g a E as. 2... xx 82 xx 82 2:2... 8.822.. 2.... 22.6 283 3% flag a ... E... 2.. xx 82 xx 82 .82... 8.822.. 2.... 89A. 283% gamma a 3 a2. 2... xx 82 xx 82 252.2% 83A. gamma 3% a a ... 22. 2... xx 82 xx 82 .832... Box. 828.9... 8.... ex. 282x § 388 2m. 22 E e2. 2... xx 82 xx 82 2.2.2.. .22. 38% 850 882 loan 2xxo88x xxosnnx .2223. E ...... 2... .2 ... 2.3.22 xx 82 .22 225...... .2582 3.8 ....Illlummxxona xxosax 22.80 Indie. 3 E2. 2.: .2 ... 2.2.82 xx 82 22 8325...... 02>: 882 .2xxo38x xxonoax 208x 3 ...2. 2.... .2 ... 2.8.22 xx 82 2...: 8.3.2... 22 .2....52 .88 .2xxo38x xxogmox 2.on E E2. 2... .2 ... 2.5.2 x 82 8235.5 02>: 258 .2xxoSBx xxcsax dllc Sex 3 a... 2... .2 3 2.2.2 xx 82 8.88223. ..88 .2xx..88x xxosmox a ... ...2. 2... .2 3 2.2.2 xx 82 8.8880 .8: 8.8 :08. on xx|.|..o ..an a a 3 ...2. 2... .2 21.2.2 xx 82 2.2...» 9.2.... .....8 02>: :3 a g g 2.2.2.. 22.8.... .28 889 3 82. 2... .2 32.2.2 xx82 a g g 88.25 823 ..3. 958 3.8.. 2... .2 32.3.82 xx82 a g g 283 ...-.3 3.8 2n algal: ... ...... 2... .2 ... 2.22 xx 82 88820 38.8.... 88... mag 33% Inseam 5.2.2.8: .2 ...... 2... .2 3 2.2.2 xx 8.2 8....83 2.28... 2......2. 28.. 82.83 .5. 22.... Ijxos. 788.... 8.828822... 3 ...2. 2... .2 3 2.2.2 xx 82 2.2 28.80 .202... .8... g .xxl ...... o. mum a .2 ...... 2... .2 ... 2.2.2 xx 82 8.....22 .202 9...... £1.82 jam... Ilia. .... ...2. 2... .2 ... 2.2.2 xx 82 2:22.. 8.8.5.80 .283 o8... algae. jog. 82.x .... ...2. 2... .2 3 2.2.2 xx 82 883280 8.222... as... ulna... .2xxoszx 5:8. 4...; o 8.8.585 3 ...... 2... .2 3 2.2.2 xx 82 82.82.28. 2.82m 2o... 38% ...... I 5" ZOEAGEQG 2 ZO—hobfimzcu guamm .— Sofie—H $18me xxlmllo 82x 88.x .... ...... 2... .2 3 2.22 xx 82 22.252 2.82.2 o8"... .308...me 5.28.2 Samx a... .... ...... 2.... - .2 ... 2.2.2 xx 82 22.2.25... .82... 28... 8.2.2.5... .5. E 28.. 2... .2xxo8.mx xxSSmx 822x .2 3 22.2 xx 82 28.2.3... .28 8...... .... ...2. 2... 2.088.”? xxos...x 3... .2 3 2.2.2 xx 82 2.22.2... 28...; o8... 5'38. 3. o. a .2 ...2. 2... .2 3 2.2.2 xx 82 2822...... 1823...... one... gloss? jxx o. 3... and. 3 E2. 2... .2 .2 2.22 xx 82 2.8.2.3.... 1.82280 as... 2852......— 22 I an magnum—ZIP..- a. 9235—53— a .582“.— § g a .2 ...2. 2... .2 .... 22.2 xx 82 282w 3.5%... ......o 8ch a3 gala. a 3 ...... 2... .2 ... 2.22 xx 82 2.2.8.. 2.2 2328.82.58 o8... A PBS also provides a hierarchical coding system that corresponds to each level and components within a level. Each PBS component (such as project, element, class, subclass, area, and activity) is assigned a code for identification throughout the life of the project. This code will be used in the Primavera Project Planner (P3) and Timberline Precision Estimation (TPE) for the development of a schedule and an estimate for a sample project. The various PBS levels are explained below. 4.2.] Level 1: Project An entire construction project is at the level 1 of the PBS (refer to Figure 4.1). A project is subdivided into components at the other levels. A project is a temporary endeavor undertaken to create a unique product or service. Temporary means that every project has a definite beginning and a definite end. Unique means that the product or service is different in some distinguishing way from all the similar products or services [PMBOK 1996]. For the scope of this research, the project being considered is a construction project and the product is a facility such as a commercial building complex. The owner provides the scope of the product (e.g., its intended purpose, financial limits, and completion time requirements) and broad performance specifications. In the PBS, a project has a one-character unique identification (ID). It may be a number, or letter, for example, 1, 2, A, B. In figure 4.1 the project ID is shown as X. The project ID identifies a given project with an organization (company). 4.2.2 Level 2:Element At Level 2 of the PBS, the project is broken down into “Elements”. Level 2 of the PBS is based on the titles and numbering system of level 1 of the UniFormat [1998]. There are nine categories at level 1 of the UniFormat, but only eight of them are incorporated at level two of 55 the PBS. These eight categories and their associated classes and subclasses define the basic parts of a constructed facility, and each basic part is characterized by its function. The first category at the level 1 of the UniFormat is “ Project Description” which is not adopted in the PBS because it is not a physical part of facility, but rather, it is a related project information classification. The element “Z: General”, which is the last category at level 1 of the Uniformat, is also not a physical part of the facility, instead, it contains the titles under which the project pre- construction activities such as mobilization and provision of temporary facilities could be grouped. “Z: General” is placed first at level 2 of the PBS because it includes the tasks/activities that are performed at the initiation of a project. Similarly, the element “G: Site Work” is placed second at level 2 of the PBS because the activities it are executed at the start of the project, i.e., after the element Z activities. Elements A through F are placed in alphabetical order at level 2 of the PBS. The letters and titles of level 2 should not be changed so as preserve consistency in a coding system within an organization for various projects. The elements of the PBS with the designation letters are listed as below: 0 Element Z: GENERAL 0 Element G: BUILDING SITEWORK 0 Element A: SUBSTRUCTURE - Element B: SHELL 0 Element C: INTERIORS 0 Element D: SERVICES 0 Element E: EQUIPMENT AND FURNISHINGS 56 0 Element F: SPECIAL CONSTRUCTION AND DEMOLITION 4.2.3 Level 3:Class At level 3 of the PBS, each element is decomposed into classes. Level 3 of the PBS is based on the titles and numbering system of level 2 of the UniFormat. There are a total of twenty- five classes at level 3 in the eight elements of the PBS (refer to table 4.1). A four—character alphanumeric ID designates each class within the PBS; e.g., X A 10. The first character “X”, is the project ID (refer section 4.2.1), while the second character (alpha) comes from the parent element to which the class belongs and the last two characters (numeric) are added as an ID for the class within a particular element. For Example: Level 1 Project: A building construction project (X) Level 2 Element A: Substructure (X A) Level 3 Class A 10: Foundation (X A 10) The letters and titles of level 3 (except the project ID) should not be changed so as to maintain consistency in coding a system within an organization for various projects. 4.2.4 Level 4:Subclass At level 4 of the PBS, each class is further decomposed into subclasses. Level 4 of the PBS is based on the titles and numbering system of level 3 of the UniFormat. The twenty-five classes at level 3 of the PBS are divided into eighty-eight subclasses at level 4 (refer to Table 4.1). A six-character alphanumeric ID designates each subclass e.g. X A 10 10. For Example: Level 1 Project: A building construction project (X) Level 2 Element A: Substructure (X A) 57 Level 3 Class A 10: Foundation (X A 10) Level 4 Subclass A1010: Standard foundations (X A 10 10) The letters and titles of level 4(except project ID) should not be changed so as to maintain consistency in coding a system within an organization for various projects. 4.2.5 Level 5: Area At level 5 of the PBS, each subclass is assigned to its area of execution or the area where the items of a subclass finally belong. For Example, Subclass “A1010 Standard Foundation” can be assigned to building No.1, 2 or 3. Similarly, for a multi-story building, the columns and beams can be assigned to Floor No 1, 2, or 3. In the PBS, “Area” has a two-character unique identification (ID). It may be numbers, letters or a combination, for example, 12, B1, or F1. In figure 4.1(PBS generic model), the Area ID is shown by XX. 4.2.6 Level 6: Activity At level 6 of the PBS, the project is extended to the activity level. An activity is a single work step that has a recognizable beginning and end. Activities are time-consuming and resource-consuming tasks. The time that an activity requires to complete is called its duration [CQR 1992]. One of the main purposes of the PBS is to break down the project successively and systematically to the activity level so that an efficient and practical schedule can be developed. The quantities computed during the takeoff (quantity surveying) are then allocated to corresponding activities, and subsequent pricing for each activity is carried out to generate the cost estimate. The size of each activity may vary depending on the type of work involved and the importance of the activity to project completion. No activity, however, should be so small as 58 to unnecessarily complicate or lengthen the schedule, or so large that the work cannot be controlled. For example, a construction schedule activity should never be as small as the units of reach, move, turn or release, etc. A construction schedule activity should be not as large as a major phase of a construction project, such as “interior finish”, or “electrical work” because such major activities themselves consist of smaller activities. By preparing a schedule with major activities, the dependency among minor activities is not disclosed [CQR 1992]. The activities will be the main focus in the PBS approach because their completion achieves the objective and goals of the project. An activity is the main planning unit in the PBS. Beside the essential attributes (activity ID, description, and duration), the following attributes will be assigned to each activity so that the schedule can be used as an efficient project management tool for the planning and controlling of time, cost, and resources. 0 Cost 0 Responsibility for the execution 0 Resources required 0 Location of execution 0 Type of activity, i.e. milestone, task, independent, meeting , hammock Each activity has a unique ID (extended systematically from level 1 through level 6) so that it can be identified during the various phases of the project. Similarly the ID will facilitate the filtering and sorting in the computer system. At present, there is no standard or code for specifying activity ID’s. The PBS provides an efficient and systematic activity ID structure (see Fig 4.2) that could be adopted for all building projects. The activity ID should not 59 exceed 10 characters so that it could be used in P3, which allows only ten characters for an activity 11). .- 'wmm‘t 3’ ‘Wuwum‘... :..-"MW““N... __.r"*'~°°'~'“~~---- :..«errf'j': . ~ ' First ' ElementID { Clasle Subclale mm; gAmwny Gide-051003 characteris gaasedon g jwithina :gwithina g §Tobc gnumbe'fV‘mm‘ New: 3 the given givenclass assignedby gsube'm-W Tobe g UniFormat ; 2 element : ; é 53mm“ gassngned by ‘ it “W ... .............................. 2'5. I: ................... c u - .: ;,.............. .._. :- _.... 3 :r '3. i ". '2 t ; 3. é : - '. 5 . -. ‘ 5 3’ ‘r. a '2. i i: ‘1'} ”1:1. I ‘ l I i v I Figure 4.2 Activity ID Structure For example, the activity “Excavate wall foundation” of building No. 1 in a project “P” will have the following ID: PA1010B105 Where “P” is the project ID, “A” is the ID of element substructure, the first “10” is the ID of the class foundation, the second “10” is the ID of the subclass within a class, B1 is the area ID and 05 is the specific activity number within a subclass. The activity ID will also be assigned to cost line items in the cost estimate so as to facilitate tracking of activity cost. TPE do not have a provision for assigning activity ID to the cost line items; therefore the “location field” of the TPE will be used for this purposes. 4.2.7 Level 7: Cost Line Item At level 6 of the PBS, each activity is decomposed into its cost line items for estimation purposes. The line item is an individual cost component. Cost line items are the smallest division of the work to be analyzed [Bledsoe 1992]. It may be a material such as 3000-psi ready- mix concrete, 3 process such as back filling of earth or combination of material and 60 process such as installation of a door. The CSI MasterFormat system is widely used in the United States for the classification of construction products and process. Refer to section 3.2.2 for more details. 4.3 STEPS FOR GENERATION OF CONSTRUCTION SCHEDULE AND COST ESTIMATE ON BASIS OF PBS The steps suggested by the author for the generation of construction schedule and cost estimate on the basis of PBS have been presented in the form of a process flow diagram (PF D) as shown in Figure 4.3. PFD has been developed by the author on the basis of his eight years practical experience in managing construction projects, and the knowledge he gained during the Masters Program. The PFD depicts generation of construction schedule and cost estimate on the basis of PBS in a design-build environment, but it can be easily modified for fast track projects, in which the design is finalized in steps along with execution of the construction work. Besides design-built environment, PBS can also be used for the development of construction schedule and cost estimate in other contract delivery arrangements such as design-bid-build and Construction Management environments. 61 2 Complete design 3 Assign Project Planning Team (PPT) 4 Study! Visualize the entire Protect 5 Decomposeprojectonthe basisotPBSuptoleveH 6 Deoornpose projectonthe basisotPBSuptolevel5 8 Decidemajorconstmctlon methodsandresourcesforln— §P88(uptolewl4)availabbastenplate (MSwordIle)mbemo¢fiodacoordng gtog‘venpmjectbymfl‘rnnm—W ‘gabssosandwbcbssas Quantitiesofmkandrebtodmatorial smaldbetakmoflmmobesisor subchssesoffinPBSiwteadoflho MasterFormatdvision Figure 4.3 : Process Flow diagram for generation of schedule and cost estimate on basis of PBS 62 mm Immmmwi TPEstandsforTmborhe m PradwnEslbnaoonsarMam (W20) (Wm) / r i Z/’ MdaprojedhmmenerthePBS detaIsInmeWBSdictioruyotm MdanewprojecthTPEandenterthe PBSdetaIsinmeWBSdicflonaryotTPE (frornstepe) 712.2 Splitupthe quantitieflwortr/matflor meoorrespondingacttvtties (quantities cdculated in step9) E-Step13pefiormodh TPE ‘-Line‘temspedtasmatoml, crew, andcomtruco’an Mummydmmmmm gdown. $-Quantitiosslnrfibetakenfmmthestep12.2for E-Aaa’mactloloconesparuigm'tunhm ' gEsfinale (TPE) 14.2 CdaflatethedlredooddeadtadivflyhTPE 15.1 WWbaeflvmec £_.———d I_—-_ ..-------- - - -..-”...- MM Figure 4.3 (cont'd) 63 16.1 Calculate preliminary schedule: compute, early and late dates, critical path.TF. FF 16.2 Spread (or prorate) indirect cost and profit over all estimate items (in TPE) ll Analyze the schdule 172 17 3 I.e.RCnticaI: path,flc:ats,todates and I Layout estimateonthebaslsor Layouttheestimateonthebaslsof I . efine ”accordsmagttls 000““ 1 PBS (in TPE) MFforthepreparationofsupply | I orders(inTPE) I i I CostPlan Cost load the schedule (fromthecost estimate) 19 Resource load the schedule and review resources profiles 20 Level resources 21 Assign additional activity codes e.g. resonsibilty, location 1 22 I Create baseline (target plan) I I l .| r------- I Schedule TlmePlan Figure 4.3 (cont'd) 4.4 ADVANTAGES OF PBS The advantages of the PBS are listed below: a. The PBS provides a standard WBS for development of construction schedule for building projects. This relieves the scheduler of deciding how to breakdown each project for scheduling purposes. b. The PBS can be adopted as WBS for the development of cost estimate. This cost estimate will provide a cost breakdown of a project on the basis of its major building component, such as foundation, shell (walls, columns, root) or interiors. In this way, the PBS will facilitate value engineering. The cost estimate developed on the basis of the PBS can be easily presented (without re-entering of the data) on the basis of Masterformat, which is the default WBS in TPE. c. As the PBS provides the development of a construction schedule and cost estimate on a common format and thus integration can be achieved through it. Information exchange between the two can be performed without manipulation. For example, costs from line items in the estimate can be readily assigned to corresponding activities in the schedule; activity durations for the schedule can be calculated from the crew productivity used in the cost estimate. Similarly, the crews adopted in the cost estimate can be assigned to the corresponding activities in the schedule. The resource leveling and smoothing can be then carried out in the scheduling. d. The PBS can be adopted for any building project. The schedule developed on the basis for a given project can be used as a template for the development of similar other projects. 65 e. The PBS is not a theoretical model. It is adaptable both in P3 and TPE. Construction schedule and cost estimate for the sample project “SYED” (presented in chapter 5) has been developed on the basis of PBS in the P3 and TPE, respectively. f. The PBS provides a systematic and intelligent activity ID structure that can be easily customized for a given project. This activity ID structure allows the insertion/deletion of activities at the later stages. This activity ID structure can be used for filtering and sorting purposes and thus facilitates in schedule analysis and resource planning. The same activity ID can be assigned to cost line items in the TPE in the “location field”, so that activity costs can be tracked in the cost estimate. (The TPE do not have any provision for attributing the activity ID with the cost line items. Therefore, author utilized the “location field” for that purpose.) g. PBS provides a specific place for each activity within a schedule. For example, the foundation activities are placed in the “subclass XA1010: standard foundation” and “subclass XA1020: Special foundation”. Similarly the slab on grade activities are placed in the “ subclass XA1030: Slab on Grade”. h. As the activity ID structure has two-character sub-ID for “Area” (see section 4.2.5), this allows the filtering/sorting of the activities for a particular portion of the project. For example, the activities of a multistory building project can be assigned the following sub-[D’s for each floor : Floor 1: F 1 Floor 2: F2 Common over all project activities: OP 66 Similarly if a project consists of more than one building, sub-codes can be assigned as Bl, BZ, etc. The PBS serves as checklist while preparing schedules and cost estimates. The PBS can be used for the development of a schedule for project group within a company and in this way the different projects can be integrated. This integrated schedule for various projects will facilitate resource planning and control. 67 Chapter 5 PBS APPLICATION 5.1 OVERVIEW This chapter presents a construction schedule and a cost estimate developed on the basis of PBS for a sample project named as “SYED”. The construction schedule and cost estimate were developed in parallel by exchanging the project information with one another as shown in the process flow diagram (PFD) in Figure 4.3. Project “SYED” consists of construction of a two-storied concrete structure building of 4800 SF floor area. Site layout, building plan and building cross section are provided in appendix B. Only the site work and structure activities are presented for illustration purposes. The integration between the construction schedule and cost estimate is achieved through the following: a. Common work breakdown structure, i.e. PBS b. A unique activity ID for each activity. Both the schedule and estimate are laid out by the PBS, and activity ID’s are assigned to each line item in the cost estimate besides activities in the schedule. This chapter also presents a traditional construction schedule and a cost estimate for the sample project for the comparison purposes. 5.2 CONSTRUCTION SCHEDULE ON BASIS OF PBS The construction schedule was generated in P3. PBS codes were entered into the WBS code 68 dictionary of P3. Besides PBS, activity codes were entered into the activity code dictionary, which can be used in conjunction with PBS for advance filtering and sorting. Intelligent activity [D’s (discussed in section 4.2.6) were assigned to the activities. The following reports/layouts were generated in P3 for the sample project. 0 PBS code report (Table 5.1) 0 Activity codes report (Table 5.2) 0 Detailed PBS layout (Figure 5. 1) 0 Summary PBS Layout- PBS (Figure 5.2) 0 Classic Schedule Layout (Figure 5.3) o Formwork Activities Layout (Figure 5.4) 5.2.1 Detailed PBS Layout This layout (Figure 5.1): depicts the entire project activities grouped systematically into the various PBS levels. A different color is used for each PBS level. Every activity has a specified place in the PBS. E.g., all foundations-related activities are placed in the Class “Foundation” (code SAIO). Similarly, activities related to columns and beams are placed in the Class “Superstructure” (code SBlO). This layout also presents the blank PBS level so that activities can be added if needed. E.g. Class “Interior Constmction” (code SCIO), Class “Plumbing” (code SD20). The activity costs and resources (crews) were assigned to activities from the cost estimate. Similarly the activities’ durations were calculated on the basis of the productivity specified in the line items of the cost estimate. This layout is primarily meant for the site project managers and field superintendents who need detailed information about every aspect of the project such as activities scheduled dates or crew requirement for a given activity on a particular date. This layout can be used as “Schedule of Values” for progress 69 COS? ofa of] inf: payments. 5.2.2 Summary bars Layout- PBS up to level 3 This layout (Figure 5.2) is generated in P3 on the basis of PBS by summarizing the detailed PBS layout (Figure 5.1) to level 3. This layout does not show activities’ details but instead presents information about a certain major portion of a project. For example, time required for the completion of superstructure, its scheduled start and finished dates, and the associated cost. This layout is very helpfirl for the top management who needs summarized information of all the projects in their control. This layout can be firrther rolled up to the next higher level of PBS such as level 2 and level 1. It is very useful for the site managers for the analysis, planning and control of a project; they often need to see the broader view of the project. The information presented in this layout can facilitate financial planning. Owners would know how much money is needed during a particular phase of the project. 5.2.3 Classic Schedule layout This layout (Figure 5.3) presents all the project activities sorted on the basis of early start and total float. The intelligent activity [D’s in combination with activity codes can be used for the filtering and sorting purposes. 5.2.4 Formwork Activities Layout This layout (Figure 5.4) presents formwork and scaffolding activities of the second floor of the superstructure. This layout was generated fiom a classic schedule layout (figure 5.3) by utilizing the filtering feature of P3. Similar other useful layouts for specific purposes can be generated, such as concreting activities for the entire project or for a particular portion of a project. 70 Table 5.1 PBS Code Report PRIMAVERA PROJECT PLANNER PROJECT BREAKDOWN STRUCTURE (PBS) (Common WBS) SYED - Sample project for research thesis WBS Code Title 15 Project Syed 15.2 Element ZzGeneral 15.2.10 Class 210:General requirement 15.2.10.30 Subclass 21030:Temporary facilities 15.2.10.30.0P Area OP:Temp.facilities- Over all project 15.2.10.40 Subclass 21040: Project close out 15.2.10.40.0P Area OPzProject close out-Over all project 15.2.20 Class 220:Contegencies 2S Project Syed 25.6 Element G:Building sitework 25.6.10 Class 610:Site preparetion 25.6.10.10 Subclass 61010:Site clearing 25.6.10.10.0P Area OP:Site clearing-Over all project 25.6.10.30 Subclass GlO30:Site earthwork 25.6.10.30.0P Area OP:Site work-Over all project site 25.6.20 Class 620:5ite improvements 25.6.20.20 Subclass 62020:parking lots 25.6.20.20.0P Area OP:Parking lots-over all project site 25.6.20.40 Subclass 62040:site development 25.6.20.40.0P Area OP:Site develpoment- over all project 25.6.30 Class G30:Site civil & mech. utilities 25.6.40 Class G40:Site electrical utilities 35 Project Syed 35.A Element A:Substructure 3SLA.10 Class A10:Foundations 35.A.10.10 5ubclass.A1010:Standard foundations 3S.A.10.10.0P Area OP:Stad.foundation Over all project site 35.A.10.30 Subclass A1030:Slab on grade 3S.A.10.30.F1 Area A:Slab on garde-Floor l 3S.A.20 Class A20:Basement construction 48 Project Syed 45.8 Element B:Shell 45.8.10 Class BlO:Superstructure 4S.B.10.10 Subclass BlOlO:Floor construction 45.B.10.10.F1 Area F1:Floor const.-Floor 1 4S.B.10.10.F2 Area F2:Floor const.-Floor 2 4S.B.10.20 Subclass 810202Roof construction 4S.B.10.20.RF Area RFzRoof const.-Roof 4S.B.20 Class BZO:Exterior enclosure 4S.B.20.10 Subclass B2010:Exterior walls 4S.B.20.10.F1 Area F1:Exterior walls—Floor 1 4S.B.20.10.F2 Area F2:Exterior walls-Floor 2 4S.B.20.20 Subclass B2020:Exterior windows 4S.B.20.20.F1 Area F1:Exterior windows-Floor 1 4S.B.20.20.F2 Area F2:Exterior windows-Floor 2 4S.B.20.30 Subclass 82030zExterior doors 4S.B.20.30.F1 Area F1:Exterior doors-Floor 1 45.3.30 Class B30:Roofing 4S.B.30.10 Subclass BBOlO:Roof coverings 4S.B.30.10.RF Area RF:Roof coverings-Roof 55 Project Syed 55.C Element CzInteriors 55.C.10 Class C10:Interior construction 55.C.10.10 Subclass C1010:Partitions 55.C.10.10.F1 Area FlzPartitions-Floor l 55.C.10.10.F2 Area F2:Partitions-Floor 2 55.C.20 Class C20:Stairs 55.C.20.10 Subclass C2010:Stairs construction 55.C.20.10.0P Area OP:Stairs const.-Over all project site 55.C.30 Class C30:Interior finishes 55.C.30.10 Subclass 3010:Wall finishes 55.C.30.10.F1 Area F12Wall finishes-Floor 1 55.C.30.10.F2 Area F2:Wall finishes—Floor 2 65 Project Syed 65.0 Element D:Services 6S.D.10 Class D10:Conveying 6S.D.10.10 Subclass DlOIOzElevators and lifts 65.D.10.10.0P Area OPzElevators & lifts-Over all project 6S.D.20 Class D20:Plumbing 6S.D.30 Class D30:HVAC 65.0.50 Class D50:Electrical 75 Project Syed 7S.E Element E:Eqpt.& furnishes 75.3.10 Class E10:Equipment 7S.E.20 Class E20:Furnishing 85 Project Syed 85.F Element F:Special construction & demolition 85.F.10 Class F10:Special construction 85.F.20 Class F20:Selective demolition —--——-——————_—————-—————-—————-————-———-_—-—————————--———a——-a—u--—---——-—--———--—- Table 5.2:Activity Codes Report PRIMAVERA PROJECT PLANNER ACT IVI TY CODES D I CTI ONARY SYED - Sample project for research thesis Activity Codes: JOB Job Type MOBLI Mobilization & Start up 1 EARTH Earth Work 2 FORMW Form.work and Scafolding 3 MASON Masonry Work 4 REBAR Rebaring 5 CONCR Concreting 6 WATER Water proofing and Thermal insulation 7 MECHE Mechanical 8 ELECT Electrical 9 DOORS Doors and Window installation 10 FINIS Finishes 11 METAL Metal work 12 DEMOB Demobilization & Handing over 13 AREA Area OP Overall Project 1 F1 First Floor 2 F2 Second Floor 3 RF Roof Floor (top roof) 4 HD Head Office 5 E 2:9”. sea. wma 8:88 H... ,9 SEO 580.com 383.2 to. 86.83 0.953 sisal 38.... .3.... III 833 .38 Eouoabmcoo 65.9.3. 3!.» .83.. 2.3... _ $3.86 85 boa-ml 836° cams-ca Tllll. «a. acct-a 3.. 0.3.3:. .0 doi 8.3!" («mm 8.503 8.503 c N § 95:8 .2 3233 .0 .31 oodOououom ! w. . . . . . 8.. .0 acts-300' 84.3; 103 8033.4. 3033? o n 8.. S acts-260 08885.0: ee- _o 3.35. 8.056 3 E 3035..” 8033' o v 8.. B 2580 8.5893 _ . 1...... u. . . aw _...... . . _.oato ass-x' 8.83. 98 803$. 803:: o v .353 8.5-: “8865.... =00 a8 .0 .5951. 8. In (o E 8035. 8032n_ oomOOooFNm 38...an .0 c0332.". 8.09. v m 803(00 80330 o F chdEz .0 co_n_>2a somOonowNw 5:385 83 8.33. «930 3035. 803g 0 m coco-Ea new 81008.3 o<>z a 5.0:.er .nEe. .0 c2265 8.03 2 803.3 $0330 0 P o<>I a 3.88... .9530 5332.". 35393 EeEeoceEEoo «3.2a 8.0 80330 c o E50558 towed _.oaOoooFNm Q C O . 8% seen. we at"; 0.0.0 Saeocool 8.08.0 00 8.608 00508 0 0 0.0.0 252250 2.00820 0.0.0 octzoml 8.0.0 «.2000 00.803 00.503 0 . 0.0.0 00.5.50 8.00820 0.0.0 2.08.0 Sal 8.90 {020 000.008 80.003 0 0 0.0.0 058.0 02.0 0200820 0.0.0 .2 5§§o0l 8.000 F 5 8503 8505 o 0 0.0.0 .2 52,230 858.3 I 0.0.» 00.. 00!. .0 00.02.0000 00.03 4 v E 80580 gmmwon o F 0.040. 08 00!. .0 00380080 80382» .252 0228 0 _...; 00:52.... 0.2.0. 8.0: <90 80008 80008 0 F .252 005.8 a _...; 00280.0 0.80 8000320 .252 2.5.8 25800 0:50. 8.30 00 80008 80008 0 w .252 0228 208.0 0050 5000520 .252 _...; 258.0 0050. 8.08.0 «0 80008 80008 0 P .252 =5 00.320 0:50 2000320 .252 5.5.8 252230. 8.000 00 000008 80008 0 F .052 5.5.8 20228 2002020 .252 =03 052260. 8. {0.0 000 000003 80008 0 P .252 =2, 20288 8000320 .252 =03 .300. 8.000 22000 8033 80:50 0 0 .252 _...; 50.x 0.0000820 02.2.52 0228 5020. 8.000 32000 80300 80030 0 F 025252 55.8 5.50 2000520 .252 55.8 5032500.. 8.30 6 00035.0 000300 0 2 .252 0528 522.50 9000320 .252 _...; 503250- 8. 50.0 .0 80:30 80:50 0 0 .252 =5 £25.50 808520 .252 25.8 22,800. 8.08 .050 0003400 809000 0 m .252 005.8 32690 9002020 . .252 _...: 2.58me 8. 50 9 E 000300 000300 0 P .252 =2, 29820 8000520 .. «.00.. . 2m; “......“ .. ...»... .. O s a s a mmummmru 200m??? A .w. .... ._ 0 . 0020 0220 00 s s 0 . . =0; 05252 00 00020000}. 8.0. 5.0 000 000360 000330 0 F _...; 95.32 5 05288 000003000 =03 020.8: 253.0: 8.80; 02000 0009:" 80900.0 0 . =2, 00.0.82 258.0 80003000 _...; 2.2.52 0:03.500; 8.08.: 6 80360 8005.0 0 0 =2, 00.032 522500 80003000 ”WW“: Hunk... hid... - ,. _... win .....Hwa. .. Mb 0.0.02...“ IL. a}? .1. .. . 1.0. 0.0.0.000 .0 90:20:00 8.02.06 03 8>OzNo 00>02ao o F .0. acct-0 3 9520000 30.080qu 3. 90.0.0.0 08 00!. .0 .02.... 8.08.0 moan 02.000“ 02.000“ 0 _. .0. acct-0 02 003 .0 .020. 810883 0.0a; . I 0300:5003 .0 .5... 8.0029 9:500 00>020N 00>02NN o N E 0305.550 .0 .85 00.003wa \ . .. ‘ ....wv: i . .. . “A? _... \ ., ... .n. Wm-flfrv . . I Nu. 0:03 ..3 05.00... .0.-.5 cod .0... .0 00>02¢N 00>02N. o 0 N... «=03 ..8 9500.0 .802, 39.0 5wa I N». 0.5.5 .50 .0. 5.000: 8.3.. ... on 00>Oz: 00>028 o N N... 0.5.5 .03 .0. 5.0002 32.03wa - N. ...-3.3 .2 3522.8... 8.3.... 85.0 25028 8500“ o n N... 2.2:... .2 8503.80 893.800 I E 235.8 0&8... .3.; 8N6... .o 8522 09028 0 a I 2.2503 8.8... .3.; 3.3580 I I 0:03 «.3 >505: 00.3.. 3 00 00>0200 02.000N o N .... 0:2» 06 >5000.... 3.005wa . E ...-5.3 .o. 053...»... 8.3.... 0&5 8.008 8.005 0 m I ...-3x. a. 2.8580 8.3.2.00 x. . «_......nmwwmdfi ... . ... .H 0 . 0 s n . .... ~ I an 00.0 .00. .0 05.00... ..an oo.v.v.N .0 02.008 02.003 0 N am no.0 .00. .0 05.00... 0500 80103 .00 ~ an as. .00. a 00 05-00 .0 9.00.0000 8.08.0 0N0 02.008 02.008 0 .. 00 no.0 .00. a 00 2.58 .0 9522.00 305350 I am as. .00. .0 mm 05-00 .0 act-30¢ 8.0.0.0. .5001 02.000N 02.000. 0 0 00 no.0 .00. a. 00 05000 .0 950001 moumONo .00 I on a... .00. .0 00 05000 .0. 0..035.+ 8.5 .060 N0 02.000... 02.0000 0 0 00 00.0 .00. a 00 05000 .0. 3.0350... 09.108 50 N0 5.5.00 .0 05.0.0000~ 00.000 ONO 02.003 02.003 0 _. N0 5.5.00 .0 9520.50 0 Etc 5 .00 N0 5.5.00 .0 95300. 8.0 .0.. 32000 00.5000 00.5000 o . N0 5.5.00 .0 05.301 3955.00 N0 5.5.00 .0. 5035.0... 8.03.0 .0 02.0000 00.8000 0 N N0 5.5.00 .0. 0.5.55.0“. 00205.00 N0 00.0 .0 «0 2.5!. .0 9522.00. 8.03.0 ONO 000m00N 00....ng o . N0 00.0 a N0 0503 .0 9522.00 3N3 5.00 N0 020 a N0 :52. .0 0:..300' 8.0.0.0 32000 000003 02303 0 0 N0 00.0 a N0 ...-3 .0 05.300 00205.00 N0 00.0 a N0 2.5!. .0. 0.5.55.0..I 8.00.0.9 No 000008 000000. 0 0 N0 00.0 a No 2.500 .0. 5035.0“. 89.05.00 .0 5.5.00 .0 9522.00. 8.000 0N0 000mm? 000000. 0 . .0 5:28 .0 050.0000 3.005 .00 .0 5.5.00.0 05.0000. 8.0 .0.. .3001 000mg 000003 c N .0 .5200 .0 95300 8.00 ..o .00 .0 055.00 .0. £035.00. 8.0.. ..n .0 0000000 000003 0 N .0 05.5.00 .0. £035.00 8.00 .o .00 u u . n :9 u Ann. .1. . ... . ..I 8.0 60.2.. 0.. u s < s otvz kllifis-Eto 0.... 8.32m _ «51 85203 852% Ho. 5.5.3 5; 80835.04 55:00:30,033 .3.->5. (0 sec. 10.2 .2 208 ...... _.... 4433135334. m... 2,2; .00. .wfiuuaww 9 48:3. 86 been. me -2 .23.... .35 8.8:. fl ...; 00320.; 02022? _n _ Nu. Snags): 8~uo§ow ...m N 303.0055. :..«l 02< «mdpdeddb . E 22...... :35 8. .3.... a A 85201 8523? _N _ E 255:5; 8E9080_ .... Escotétacin nlz< in}: .2....08 . w, 44. mmwmmuw .. % awflCfissEfiswx .-.._ .. . m .. . - . . .... mm . 0 . s . lugs. .82: .0 .3... 8.00m...“ n0 8.503 8.603 c F 2.8» .3250 .35 nomoopowow £2123... 540088 £8». (0 8i. mo. 2 .8 .o .00 a ...”...m... . . , . . s ‘ N Egfil g E.g.edéb “soot-Icons" nlJJs< in... .2660 ..w. ..me .....,. W. .... ..W,_ 2.. , .................... 42%.... .. _. , 2s 4... ...,H... w, . . w... .x ..J . ...: . .x . ..s .0... 14.2., . s . t . n 0 0 s . 8.6 59.90 mm ; ...-.0 .oo. .0 02:00.. 0:95:32 oodvné F>>xw 8>OZno aa>OzNo o N .0.—.0 38 .8 9.602 05550.2 momma 53w log. .00.. 3.30:. .252: 8.056 :56 mgoz _.o 8.803 c m 3.202.953. .2505. momma—boom 302% 30mm: 3% $028.34 0 u s n . n . . I 2009 axe .0 an... 8.959 ...nm mm>OZvn ao>02- o n E 2000 62:0 .35 83.58wa 4 30mg gamut; I21 {60.8.93 gum 030053 ax. _.0 .35 oodoni. 0.me 3>0an 09529 c « Egifiotfis oouuououmw N 500E530]: gunk g E.g.oudfiv . ai .35“. :8» 50 83.8.0 0. 1805.: E E-u_$80 2303 £53 c302 COEFOEQB w>CUmem..oNk mmeO QNle 20:03:30.0. 2050000 ..o...Fu MMEU 0F. m mm. .4 .. a .2. W05}... u..x...$4..‘1A...u44»l.J at? Wom..:..r:u.... flmsvfiw “.5... Ab.» u.) 14.40“... .3. 02?» (4%.? 006.. 00.0.5 00 9::525m omm mme on ..m mm m 2553:0m on. mmSU oF m. MF 4.... .. .... .AA 4.. L0? Nusfikt 026 80.2.”. 3 B0302w..03 00,20 8.0.3 03,103 3.20 00.00 025.259.03 .4030 00.0.3 So? wmn. >56an N...“ 9.39m senomom 833.2 .8 89.20 20an £92.... “mm... M“ 22!. 28259.00 35.9.3. 8.. zufil “Wu...” 5k“... I 8.05.0 _ 85280 85087 0 L. 0 05.8:st 806 2.3.9. + ._ I 809$ _ 090201 8.62%... F _ g m 9533.3 3:3..on 3&0 oufidw ... . Ila! 8.30.3 H 858m 8038.8 0 0 I 8.2.0.: H 850i 0833;; 0 H _ .3.... .....0... .....K. ..., 00.6 80.6.... mm 325: 305020 866.6 8&0 2.. 9mm 335: .52.: .0. F30 2360.0 3&0 3.0.3 _.i. 1p”: k¢‘L.\ 11 I I 8.23.: 0 0302.80 8035:; H _ A w. a=§0>EQ§ 2.9.03 806 8.0.3 + .... I 8.80.0 0 8035A 8035.? 0 0 0 m. 5.02320 8.9.05 30.0 2.9mm. + .... 22“.?) «......Juw...471....nr..._0.£.wx....J... .... . ..wum- ...Wwo‘ «Managfiuswayfifiwhfihu ...... mt. .... .00.. .0....0 0...»... ..00. .vmwmwt «7:4 ...n... 0.00m 80.0... mm . 32:230.: Easesfi 820 2N9. + 30808890- 806 03.9 ...... q 8.20.... _ 880:; 8038? F 0 T. . 0030.09.90 msF «3N: 53358 3.8.35.2 «use 8......» 5.8.588 38%. .....E 8....0 .2 m .3. _....-.‘JJ‘H WV... . ...J... fl... . 11.3.... _ . ‘ h.3.... . .. . ..-...Ifimfv .vsx. ... 8.5.5:... gm 8.6 9.. .m .ms .5533... .2... 8...... 2 m was . in... w}....4..6..x\u sffiquuucx 9.4.. ...... .. wary... .er x, ~.....x.....u..n.. #911). J... £1 I.x_4.... v. .3./War r. uwwrflmr Mhtfirxv.wcam --.... A.....~\.»..w ‘1'”. ”“1”... J£l£>ww¢ am.) $11“. u:V =83§m..8o 8.6 $66. a 32.63 «2.6 2.6.8 332163 3.6 8.9% 8.35% J 8522; 852%. J 1 A j , :..»...cowsfi 916 2.9.9 + . .. arm ...wa...ms.,. .... fix. ., _. ub.u.~.l:?<.x.flqrdx .2 12...... i.e-... A9,!» xxSJR.€$$Pozfi .9023? J A T” 3.3:: ..otactono 3&0 2.20.3 ... J. 8.8m... figoosu— 852% J J J . £89.80 .30 3.98 + _....” . 83338 3:85. .20 «8.6 c.. ..o .3 .. . .,.._......J..m. 9.9.... mm. gal. 583 .5860 2.3.0 ”.m m..— —.— m— n— 20.00008 8200.2 .8 50.05 29:00 fags-ll 3.9. .3... . 0.80.5050 55.9.3. ..HMTI g .58...“ «3.1.5 our» 828' 838 50.8.2. 0.0.» act-coal .3008 8.503 8505 o F 0.0.0 8:88 836820 0.0.» 8:85 usual F85 8505 8.505 5 F 0.0.0 882.. .550 550820 0.0.» .2 foggml F0 8503 8505 o a 0.0.0 .2 535...“. 028820 0.0.» .2 8.3 ... Suzienl .J F 5 8808 8808 o F 0.0.0 .2 8... 5 585.58 88820 ...» a... 0 8 .58.. 5 95.5.60. 80 8808 8808 o F «0 a... 0 8 .58.. 5 852.50 88.5550 «0 a... 0 8 53.. 5 2538' .2008 8808 8805 o ... «0 a... 0 8 58.. 3 9538 885550 a» a... 0 8 .53.. .2 {0558' «0 8808 8808 o 0 «0 ...... 0 8 .58.. .2 52558 880550 5 555.8 5 2.05250. 80 8809 8802 o F 5 5538 F. 0.55930 585550 5 555.8 5 8:38. 32008 8808 8805 o 8 F0 5528... 9538 88550 5 2.528 .2 5255.8. 5 8808 8805 o N 5 2.528 .2 52.58 8:5 5 50 .252 5528 0 _...; 858...: 22.0. <20 8808 8808 o F 5.52 5.5.8 0 =2... 858...: 280 088520 5.52 555.8 8:85 55.0. «0 8808 8808 o F 5.52 5528 8:8... 55.0 508520 .252 =2... 8:85 55.0. N0 8808 8808 o F .952 =3 882.. 55.0 FF885F<0 .552 555.8 0.52230. 00 8808 8808 o F 552 5528 8.8.2.8 058520 .252 _...; 0.5.5.50. 80 8808 8808 o F .252 ...... 952230 858520 5.52 _...; .38. 8.00. 32008 802.5 803.5 5 F 552 =5 .38 588 5 E0 _...; 05552 5 885.50% 8.5 5.8 80 809.8 8038 o F =3 85.8.. 5 852250 5009800 58052 555.8 5.8% 8.8 22008 8038 8038 o F 8.5.252 .528 .88 288520 =2... 9.5.8.. 05.38; 8.80; .5008 8038 8098 o F _...... 85.52 9538 8800530 5.52 555.8 525.8% 8.30 5 803.8 8098 o F .552 .528 52.58 088520 .552 ...; 5358' 8. 86 F0 8038 8038 o n .552 _...; 52.58 088520 0.52 555.8 32.8me 8.08 F050 8098 803%... o a .552 5528 2388 888520 .252 ...: 82.88. 8. F8 0F Fm 8033... 8038 o F .252 =3 25.88 8.50520 ...; 8.55.. 503.58; 888.. F0 8038 8098 o n =5... 85.52 52.58 8808800 2.. 5 858.58: 8.85; _.5 F0 8098 8098 o n 3.. Fe 8:858 8800850 8.. 5 0585' 8.05.» JF F0 803...... 8032 o F. .... ... 8.8.0 888850 =8. 5 0558‘ 8.8F.~ 0.8 803$: 8035: o F. =8. .... 8.5.... 5802200 .3. ..2 .o .2658. 8. F5 <90 803.2 8038 o F =8 as... .5658 888550 8.. .o 05.55 0 8.5.5. 8.3.»; 5 802.5 803<~F o F .... 5 83.8 0 0.58.0 888550 .85.. 28 5 52.52.. 8.8.; ...... 80:8 8038 o F 805.. 92:0 8388 858850 82558 5 52.52... 8.8. .5 80:8 8038 o F 32552 3 83.6... 80805850 0<>z 0 5.058.. 558 Fe 52.52.. 8.08 F... 8038 8038 o F 0<>I 0 .528... 55...... 83.5... 088850 8:885 s.» 8.3:. 850 803...: 8038 o ... 8.582.. 3.0 088850 5.58.5558 82...... 8.5 80:8 5 5 5.5.8558 322.. 5800850 0.... 0.50.0— 508. 0.000000 2000.0 50.00000 0.200.). .2 80.5.0 0.05.00 52:3] .88.. .35.. 8.2.2.] 33.. .3.... gogahumcoo _Oszv—Qx 0035* 8088 6050...... « ... n .....0 our». ..0 .50] .838 :00 0...... 800.0500 505.0 000mm. 5 o o 0000.058 50.0.0 3000193 .05 00.000... .0 5000000... n< 000mo Fo 00>OZon o N .26 05.000... .0 0000000... 80003FNO I N0 02.0.0: :02. V.. 00>020N 00>OZmN o 0 N0 02.0.0: :03 08005000 . E 00.00....— _.0.s V.. 00>020N 00>OZmN o N E 00.00:... :02. 09005000 - I 0.000 8.0 .0 .00... ..nm 00>020N 00>OZNN o 0 F0 0.000 .06 .0 .8... 8F0ononm . E 030053.08 .0 .5... 9.300 00>OZnN 00>OZNN o N F... 030005.06 ..0 .8... 090000wa T3 N0 2500...! 0x0 _.0 .02.. 9.2.00 00>02mw 00>0sz o N N... 0300...... .06 5 ..0... 8953000 I N0 0:03 06 00000.0 .802. 5 00>020N 00>0sz o 0 N0 0:0... 06 00000.0 .203 0800 5wa I w... ...-2...... 00000.0 .803 5 00.520. 00>0200 o 0 .0 0:05.06 00000.0 .203 no [03wa I N0 0...... .08 ..2 E50002 on. 00>Oz .... 00>OZno o 0. N0 0:05 .06 .2 50000.2 396 530 T $ 00. 00.0.50 5 0:020:00 0N0 00>OZNo 00>OzNo o P 5. 00.2.00 _.0 0:020:00 30000300 1.00.300. .0 05.00. 000.0502 :55 00>OZno 02.023 0 N .00.» 50. _.0 0:000. 000.0502 8000 Snow 7 % 00. 00.2.00 .2 0000 .0 00.0 000m 005008 000.000... 0 P 5. 00.2.00 .2 0000 .0 00.0 00008800 i 00.0 .00. 20.00:. .2505 2.3.0 00>Oz ..o 000.000N o N 00.» 50. 00.00:. 5.50.... 8000 5000 I N0 ...-30x0 .2 000.2250» n00<0 00>OzNo 000.008 0 0 N0 0:03.06 .2 0050.330 8.4.00 530 I E ...-.... 0x0 .9500! on. 00>028 000.008 0 n E 0:05 06 20000.2 09005wa F % 2.50 .50... .0 .00.... 00 00.0005 000.005 0 F 2.8» .80.... ..0 ..0... 8009.800 b @5. 05...... .2 0.3.0... _.o .02.. <80 8508 8508 o a 5. 05...... .2 33.80 .o .020 8008800 Illi§0>20 .0 .02.. N>m..m 090200 000.003 0 or .2320 ..0 .6... 808350 l n» 00.0 50. ..0 00:00.0 05.00 5 08.0094. 000.003 0 N 00 00.0 50. _.0 00:00.0 0500 000008 .00 . «0 ...-3.0.0 .2 00.005000 00000 000.003 000.003 0 N E 0:03.06 .2 00.00.0000 8:00 5wa ~ 3 00.0 .00. .0 no 08000 _.0 00005000 8.80.0 80 005003 000.008 0 F 00.0 50. .0 no 08000 5 00020000 30000050 I a» 00.0 .00. .0 3 05.000 00 05.300 8.0 3.9 0.2000 02.003 000.009 0 0 mm 00.0 ..00. .0 8 00.000 5 05.000... 30003 50 I 0» 00.0 .00. .0 am 02.00.. .2 2.035500 8.0 3.00 N0 005009 000.008 0 o 00.» .00. a on 08000 .2 2.055500 80008me «0 5.5.00 _.0 0:005:00. 8.000 80 000.003 000.003 0 P N0 .....200 _.0 050.0000 99.0550 0.0.0 0.522.00l 8.08.. 00 8508 8508 o F 0.0.0 0528.0 500820 No ...—5.00 ..0 05.5000. 8.0 5; 05.000 000.003 000.003 0 F No 5.5.00 5 05.0000 2.000 5 ..mw 00 5.5.00 .2 £036.00 8.03.0 :0 005008 00.5000 0 N «0 5.5.00 .2 2.0.0550 000005 50 so... 8:28.. {$23. a. ....fimié. V.” 235- l 20.88”. 238.2 .0. 80.0... 0368 brig-Ill “Wm “MM 2802.300 35.8.3. a!» _ .335 55%.“. 238.5 our... bat-ml 803.8 593.3 ‘ N... ...-3.88 .0. 3:50:30 8.13. P 9.16 3828 02.003 n N... 3.95.68 3. 3523.8...» Bauowoumm «0 5.5.3 .0. {2553... 8.036 .0 8.508 8.503 a No cE:.oo 8. £2250“. ooumo 55w 2 as. a «a :..-on .8 goal 8.30.94. «0 «acumen gamma. 0 «w n2... a um 8.23 .o. ...gcton. nomuovormw 301.2305 «n. ILOEEQCOQ u... 3.03 E3... 3210“. WW.K.F.E%EEHEEEEFE‘MEFEEF a8 . . 5...... .3» p. . .u . , ..LI..1. ..«Jlu wt: 1 A. .,, . 2.2.2.. .6... i.e.-u .....u M a. 53:2. 5.3 COST ESTIMATE ON BASIS OF PBS A Cost estimate for a sample project on the basis of PBS was generated in an extended version of Timberline Precision Estimation (TPE). Activity [D’s were assigned to each line item (utilizing the “Location” field) so that cost for every activity could be tracked. Prior to developing the cost estimate, PBS was incorporated into the WBS section of the RS Means cost database 99. The WBS section of the RS Means Cost Database was blank and is meant for insertion of a user-defined WBS. The following two reports are presented: 0 Spreadsheet Report on the basis of the PBS 0 Spreadsheet Report on the basis of MasterFormat 5.3.1 Spreadsheet Report on the basis of PBS This report (Table 5.3) lays out the cost estimate on two PBS levels, i.e. PBS level 4 (subclass) and PBS level 6(activity). Similarly any other two levels can be used for laying out the estimate. This report shows the cost and crews for each activity so that then can be assigned directly to activities in the schedule without additional computations. This is one of the main advantages of presenting the cost estimate on basis of the PBS that information can be exchanged between the schedule and the cost estimate. This report can facilitate planning, analyzing and controlling, as the project managers would have all the information available to them for each activity. For example, for the activity “Formwork for columns Cl” (Act II): SBlOlOF103) the following information is provided: MasterFormat Phase and line item number, quantity of formwork, crew type, productivity and cost, materials type and cost, and overall cost of the activity. 84 The cost estimate based on the PBS presents costs for various portions and constituent components of a project. For example, to get the cost for Slab on Grade of the sample project, all the line items from various MasterFormat divisions (division 2, 3 and 7) are grouped in one place and the total cost of the Slab on Grade is appears in one place. 5.3.2 Spreadsheet Report on the basis of MasterFormat: This report (Table 5.4) lays out the cost estimate for the sample project on the basis of the MasterFormat divisions and phases (default WBS of the cost databases), which is the traditional way of preparing cost estimate with the exception of assigning activity ID’s to each line item. This report can be generated without re-entering the project data. 85 fig En Esisgifluah «...... 3...... 8. 8.. 38.9 8.. 83.2 .8... .... 8... h.§£o£o§§ 8. 3...... .80828 a a $4.4 g g 2.... 3a 2...... 3... e8... 3... .3... ...a ... 3.3... :.iiszlwnaIIB-bnt 2 8...... 8.5828 fol-aims 6033.3 and a H..." lag—dud. 9.3 mm... «M... 38228 .538. 8..“ 3... .9... one. .3... 3o .3... 98 B 88o .... 8523.5 N. ...-32...... oil: 8.. 8.3 230228 Um mm. a». 3 2883.383... .... 8... 2... 5.3. 80... .2 38... 85 G 8.8. 8.53%.}; 8 3.... 33223 a ma my. 8.0228 gig .3.. 8.8.... 9... 8.8 82. a... 8...“. Sn 28 a... Sa.§r§§.a8ahse 8. 3.... 3.6228 8......er 223.2 a a a a 3335.! aroma mm W. ...m... mama 8.. 8.8.. - . - - .8 8.. Exiled-3.61883 5.83.50 2. 8.8 8.... 8.8 8 9.... :..... 8 8“ .3 8... 9 .2. 8...... 15.19.88.330 8. 3.... .80323 300030 80.9... 6393.3 ad... a and a is; claw. NI... $1.... $1. a .3 8.3 «... 8.... 8.... n. 8.... 9. 8 8.. H.815... I. 3.8. 8 8.. - - 8 8.. - I... 8.8 8.838.385.3351... 8“ 8.. 3.8. g 8... 8.8. o 8... 8... 8.8. I 8.. 5.5x8§8§.!8uo 8a 3.8. 39.0828 mm M... N... mam 3% 5.8.2.8.» 8.. 8a 8 3R .5... B. 2. 8a .8... 2n ... 8.2. .3330: (.28 88. ...-.85.. .88.. 8 3.8. 88823 a Mad W3 3.62.28 3... .... «on... 3.. 8... 8.... 850 n 8.8.. Snails-6.8.. .38.... 2 3.8. 3.582% mm mm a MM. ... SN 9... one... 8 8.8 8.... at 8.... .< 8 8.. 81-1.... l 3.8. 23 8.8 - - 2» 8.8 . 8. 8.. 92:588.}.5582 8. 3.8. 8.582% 0.3.0.». Eh .93..ng a. £52. 36... 55.8 8:83 WEI an... own 2. .18 .8... - «a... 8.. .8 v8... 8 .- 88... 8188...... gulp-alga 8 8.2. 2.6225 _, .IRM «fl 81...... 8.... g ,_ .3 8... 3. 8.8 8. .o . . . 8. 5... .8 ... 8.8 8...... (3...... «9...... .88 9.8... 8.. a...» _ 8.... 8.... . - - 8... 8... . E 8.8 1.88.3.1... 5.31.3.3 8. 8.8 8.622% mm ......m mm a _ 8. can... . . . 8a 8.2... .8 8w... 3.8.. .... 9... B a. ... _......8. .8... ... usual... 8. B. .8 8.622% . .....2 mm. «a... g _ .... . .83.... fl .8.» 2... - - - 8... 8.. 8... .8... .o 8.. 8.8. 1.1.858. .858. 68.2.8... 2 8.... V. 36228 _ Hm w... ma 3 _ 3.8.33... .6 A .8 a... 8 8.8 .8... - . - 8. 3.... 0.5 E 8. .3 3.0.1. 6.83.. ... 1...... .68.. :..-Rm 8 388 H 8.622% t .5359“. 218.80 63.5.3. am «fl a... mm a _ .8 8.8 3. 8.8 2“... . . . .8 8.... 80 ... 8...... 8...... ......- h. I... .88 8.8... 8.. 8.8 . 2a.. 8. .o - - - 2... 8.... - ..o 8.3 .... 38. its... ...... C... 8.580 8. 8.8 ‘ 862.83 _ a a mm... an.“ M 8.... 8.3.. . . - 8.... 82. .3 .82 :39. 8. 8N .... ... 8 ...! .8... ... .58.... 8. B. .8 N 362.8% m wind“ ......3 .33 a _ .... . 838 _ «8.. v... - - . ...... 8.. ...." .8... .o 8.. 8.8. .1... 385.8 .858. .8... ... 1...... 2 8.. .n _ 86388 1 £2.60 ’0 33.: _. a a a a a; a mum... WNW 33 3.6883 8...... 88.8.3.5 8...... .....u ...... 3.... .8... - «8.8 8.8 8... .8... 8n .. «mg ...... a. E... .- ...-...»... 8580 8a 8.8 36883 a... «m3 m3 .....lo mama 8...... .3838 8... .3.. 3.... 8.8 .8... . «8... B... .8 «.3 n8. .. 8.83 .8... ...... 8.1.6 ...... ...... 6.38 .... 8 8.8a 3.688% mg .43 MW 9% .6 88 Sta 8 . .5 . 8.8 ...... - - - .8 2.... <8. .. «~83 ... I... I... .88.... .2 a 2...... ....u 2 388 8.6883 .... 9.3.... 883... a as a a; a a m... 8.633 .3 _H a a... __ .55.... .588 2...... 8.... .82.. .53.... .55.... ...... 2...... 832.. ...-.0 .85.... 83...... ...... ...... 888.. 3a.... m 39... 3.5m 3.3m ......m 30 i 3.8.! 8.1.. 3h . . lab 3.. .fl . . . L . o. ...)... .32. 55.8 =88... a)“ Ezisgindsfir 88.1.... mm 8m.“ 8..” ::823 88 «.8888.§§8112§m 3.8: ooooooooo gig 6323.9. a flu g g $3.4m mm .....qu oooooooooo 8a.. 8983 83 3.68.. .- 8.80.9 3913 3 Ella .88 , ooooooooo , I... gigs-8&3} ii§§.llia.§.ip_ 83.88 In... 8:83. 38... gm Q§§§§ gsiigin.osafi 8&8098 ooQOopowow nonOopo—Ow moaOongm 08003va moaOOmowNw mongowNw 09.008er NOQOQmo w Nw ooaOonova momma F 8mm Brnowowmm @8096er MOQOQSPNw who.“ 3 I t") :0; g 8m o8 a... 25; 80.? a $3 3» 83 mm”. Gav E3. 3: § . m3 '8; onm own 90 8mg.— hes 8,5 005 0&va 8 3 § §I§| ope woe Coin on: l'filll Sam :6 a MN 2.. a at 9..an VENN nvem om‘nm OMEN 8?: 80.0 08.? 089 «.86 09.0 89’ 806 000+ :08 worm onm 3m «9‘40 mama mm ~20 .3 8." 3 8d: 20. «v. ‘ )3 8.. HE 8.8 00 8.9 2.2 8.8 so cos 3 8.0: 28000 :8 8.0». 30 8,9.” we 8.. 08 8g. .m .8285 a: m .z a 9.383 65.858 8» 35:39.30 93.32%- P50 ...! .330 ....I 8m .58. 6c: .2238: d .388 628.5 on 9.39.6 aim. ncm awal 9662 d REE. can 58228 is. 658$ .25 a .86 8— 9:3 nca :35 203415.? utm Enigma: , . 9.1.me Emo 22566 ...-3:58 33.8 65.8 2.0 o: 9:53 230 2.5023 utmaohmz‘. “Ewan gunman , m: 35.3.0 .2.: 6228: .9520 8. a: 05520 PDONQOJO h0g0 g a she .8. £83.82: II. as an 2... 5.2.8 .2 .3322 8:3 .850 8a ‘ . £82 an 22 ..o x N» .838; 8 .8353 ......E 8.5 Sn qu—O 3.25%; .33 .25 .c 658:3 02 ...c .95 .88. 52853 .88”. 8 miaBmEm Uta mcnom 0.595“. :9; .o _...... set .3 t .0525“. 9 9:25.“. www.mmwi .8. o a r .9: .8 8: v.82 =9; 3 83.533 2.9.63.8 8 .2- o 8 F .8. i 8: “.83 =1 ...s 33.533 $3.oc.u.o:8m 8 22.36 35.20 E2... 02¢ .50... haze manna flawmxa ouammairu c8028.»: ll 93: .359. 8.5!! .Scoaxooocsuiu. 8. omcwaxm 3E0 Bot. 321mg V . , _...: 53.8 .38 23:2 5230 .5654 2:3 as can 250:2 _...—8.2 8E 5.8-: 2:25 book. a... 320 Duel—G toast... |. dammrfiumaalililll {ll}..- - ..rl n!!! wed—N «$.me voérm oawom voét wommw «Qmmw 3....an 3,.wa 3.8.. 86:. 8.8a 3.9: 3.02 8.63 Santa-co Ea: 32E 3:95 fin .antsuu: 3 .32 so :28: 8.5.55.» tn snap a. £53 «>65 5560 c380.— nowuowormw gumowopmw monuopowmm novuomowé 08098. 8 thOONONOw 8QOONOvaw MOQOONONOw nOQOO—QOw 00109033 mwaOoeoFSw nmaOoFozm a: .n WEN. «3.9 mvwdr and“ $5” 8“ as.” fizfim 85.00 5nd :9.“ 5+ NFQ wwM‘M a: whoN mama [‘11. «and 9N 3mm hon 3.0m . 8% main vein mo ow o_..NN no vu ow _.N coma and mad 050 03 .o 80 .0 «50 $90 510.0 no? .0 08... ...:m 4:0 omm moan (mmm mvmm 03m pgo out 8.8m... 8% 8,09”... F 368 r :33; F fig.“ : $22 : «Sand a 88¢ a 8.; 3 8.2 3 8.3 .u. x h. fie .258: c is»... no.5: .88 .8528 .82.. c. .58“. 9.53.3 Jun—a 5 «atom gum... V .3 . .8.) .fi .Soia ..eusau «8 .325 a 5.8 .82.. s 258 8: w .8? hp .833 .5938 as .32... a .58 .8...“ c. 28“. 22:6 uca manndE 1832.50“. #510200 gang ‘ o. .55 0.5.... 3:82 .82.. S 3.8. .85 SI 8:. =23 .83... 5.; 82... mm 2 8.. Sea of £22m «Eu .. quoflwfl «fluucow. . x25 .5 .322525 .88 .m— ..E2.e 4569!. 82280 E2523 BEucoo 02.3%...» az< 0255., and“. 3,50“. 3.5 no! .n €891.88 .88. in nos-:8 .82. 09-. .0838 8am grace wmmm _ mmmm 5 8mm 8 «new :25 639.93 :9 4 282a Guam 3am . m==amx .683. a F .2.. 959 .E m .5 m. .53.... >3: 553a: m:::nI coco: :zmwzmuxw 3:3. .20!» >0 3.0.1 6:382. 8 .8 58 £82. 82693 cocoa .aczguuxm .8: 25m Eugaux ‘ .8 >38 .98 b 8 in .25... .3563. dag->8 82. 80 80 8: or or 3 9 .330sz 6:23.86 . _Exuam ‘ 65:!» .80 9:3 3:2 .22... .o s 5885 .22 5 .538- _.Eu-o gram 3%: g 8. wvé; mnérm «~va omémm mo.mmm 3.MNN meNN ENNN om.mmm voamm 8.3” 8.3" 8.3" . sou-84‘ 23.8. , :8» as can 250:2 3.8-2 ,_..8,E ‘ “.33 ‘ . 320 £3 . , 3:20 Em 35838: 3 23.. so :83. 82.32% 3 cash o.§§§3§§4 2.2—2:02:83: .20 «33 co taco: agntcoam v.» 032. 1.139204%, W9 22de - -|!:9 8 m2! . do: : EISoflfififlwumfiflmaelfisaau 82-»! «889% 98.2” 82: 98.2.. 8 2o 26 83 a: 88 2:93.238 .222: 2228. 8288 8.2 28:99:: 28.22 8.2: «8.: 8 2: 2o 8 a a: 88 2:92 33:2 2:. 282 8288 82 02209025 8m 8 20 con 8 20 >0 8 o .6: 83 2:92; 5262 .32: an... 32950 82 820993 02.2 8 20 98.2 8 2o 2: oo 3 2.: 88 2:92: 22:02 .29: 222.2 82950 82 2920:8022 9:2 8 2: 90.2 82: 2a 8.8 a: 88 2:9! 5:222 ,9: 222.2 8288 82 222.: >292! 62:23:00 mménn Eur—0200 wogzzg‘o 363 a.“ a 3 Hang; M3 «[3. “2.58 2;) 22:22.35 82:28:25 «22 8.. 222 888 08 8 «:00: 28 8.8 “$2,222: 8.8.: .... 2522 2:: 22:22.25 «o.««n 9:48 332 «22.2.2 825.. 95. 52:62: 8:888 8:2 8.8 88.2 8 9n 9: 9.8 «8.9 :80: :8 8.« R 2 8 .23; .82: 22. 2222:2250: 82 22:09:25 .8 8.2: :8 8 9: :8 9.8 :8 9 3:00: :2 8o «2. 2 I 8:82 .82: :. 22:92:20: 8: 280995 :9 8 2K: :8 8 9: 228 9 8 :8 9 3.50: :8 9 o «a 2 :2 .3582 .82: c. 92225:: 8: «:2 B I .82. 8:28:23 228.: 9 8: 8:: 8.9: 92 9 8 8.22 :50: :8 8.2 883.. .8 one: 92 .82: .2. 8.22:3: 8' 2‘ 2 3 .82. 8:993 92”.. 9.8: 8«.« 8.8: 90.2 9.8 «8.22 3.200: :2 8.: 22826.. .8 out: 99: .82: :.. 9:222:52: 09 2. 2292998 9222 8 82.2 82 8 on: «8 9.8 08.8 3200: :8 8.2 8 9 .8528 .8 6 992 .82: :. 8.29:3: 8« «22 82:998 90.2 8.82 .2 8.2 8 8: «8 9.8 :88 :60: :2 8.2 8 9 .8228 .8 :0 99: .82: :. 22:22:25: 8« «u 2 9 2.2.: 8:28:28 «3.9 8 92.2 92 _« 8.8: «9.« 9 8 8° 8 :60: :8 8.: 22:. 2:8: .8 :0 99: .83: :_ 8.82:5: 82 «u 2 9 222.: 088298 «3.. 8 92.2 92.« 8 :8 «9.... 9 8 228.8 :30: :2 8.: 22:. .58: .8 .0 99 .82: :.. 8.285.: 82 322: E 9:822:32 «06mm Sutuoguzfim 9.50200 8.3» a and” a flag 8:; mm 3N; onEqmmmeuflu 92:0“. 8: 2 .228; .229: 82:89.8 89.2 8 2. 82 «o o 9«.2 3.8 82 .o 20 2. 8 8m .«2 B .9382: :2. .828 .08 .82: s .25: 89 326 an? .322: mEBu 2.2.3” :82 8:6 228.: M 2:89 32... 2: «E5: 9:82:25 .2: 22.: 9« 9 « :8 3.8 82.: 2o 82. 8.8 8: 2 5:25.: .8582 82:. .82: :. 2:3: :8: on: 2 68.52.: 000002025 3nd v: 80.2 no 2 892 3 ow moo o 20 88 8 03 ...-2 3032222228 .3582 .82: c. 22:0: 02 .3 2 223322: 88988 «8.9 .2 v 28.2 8 2 29.« :2 8 :8: 2o 82. 8 8: ....2 338:8 «882 .82: 5 2:6: 9 3:502 .32: E 9:20“. 3.30 822.8 832 228.22 .32: 22:28:32.7: 8: 2 .229: 8:28:28 80.8 2«.: 28.: 9 « «9.9 8.8 «9 .o «o 2. 8.8:.” .9 2 2232.: 22: 2.: .3... >1. .82: :. 2:3: :82 .3 2 :9: 28:99:: 90.9 2« o 228.: 9.« 8.: 8 8 «9.: «o 2. 8 8.8 .9 2 2:22.: 8.: 2.: .8... it .82: s .26: :82 32: 2222229: 8.25 mmmd «woa m2m n M22633 «$299 mEBui .«2 .2 .«2 2:2 .8228: 8:998 928 «3 98.2 9.« 88.2 3.8 :8: 2o 82: 8.82 9.2.1.: 28:3: 288 .8228 .82: :_ 2:0: 88 «2:25.82 .35: :. mate”. ~82; a 2: 22.3.5 2: 2222 2:3 8. 2:325 8:: 22228:: 222222.30 .2333 :22 32230 2.22922 E< i 320 Santa-on 2228. cast :35 .88. .2220 sum 25 328-: 22.8.2: :33 .3.... a... 2282...... .80... an»: o. H.228 96:» 5.5.8 .2883 xncmwnmow,l1zl!{l{}ffi{4 8.88:6 on. o; 8 SN a: 8.8 93 {50 .8 8.8 .2. ..oEB 3%) 8238.8 :88 8.23 8m :53 9.53:6 «ma: mug mm mm Emmam ....EEQ» access #8883 «a... .3 an :.o 83” 8.8 Bed 6 t 8.08.“ 258.302.; .38" .398238 R: «COEOO 8.888 «6.. 8.. - 8m ta 8w.» 8.8 $3 6 u 8.83 Eaton. 3895.8! .98 a 8.98 88.8 8. 9:93 EwEmo mow: Sod .3.». <3; a 3:09.92?) $.29ch co 0935- 83923 '8 8.“ 9 «8 8.. «a «a 8 8o 0 «o t 8.9: 588.3... a: 98288.; 88:55.0 8 co 18% $6993 8o.“ 88 28 an: 8.. *8 8.8 38.0 no t 8.9: 683.3. .3 659298.; «385600 8 m:coo.3w33 muscwEmo and: Eva MHV mm :3 _. 95005.35; mcafiEmE nuance Suaouoam :...u 8 o t. on. 9 .o S: B 8 as o 5 3 8.83 a: s3 . .8... S 28292.; 2.25.: 2 053992.“; 255:5: 3. FE gégaozmgl‘; 86: a a]; p a g "8.8 1mm?“ ~88 8:3: £83 33250 3583286252 88.8mm «8.: :.o 28.0 88 .86 8 8 93 3 t 8.80.“ 28.98.58: 33.32.55“. 28 98 3.02.02.93.35 098,83 «8.: :.o 8.0 8." .86 8.8 m: o 8 .- 8.8m." 58.28638: Basagéaga 28 08 3:33 .303 330200 3.an >¢zOm30 .88 958E 8: non—:2... 89.993 2: 8.9 «8 o: 2 .8 56 8o .6 8.9 is b 55 8o. .89. 2... .88 985 8: non—Ea 8958mm 9m :8 8 8w 9.8 83 8o 8 0; 10.558392588633098; 8. 282... 8536me m8 :..8 8 8w 2.8 53 80 x... o; .55 N. 832258 .2528 .28 098E 8' 581893 :8 K 8 8 one 2 8 $3 80 a 8 2 “.852. .5. ...23 .253 .88 8.85 8 58.3673 :6 Z. on can o3 9 8 So... 80 so 8 9 v2.62. .3.. ...an .258 6:3 use-E 8 322.00 9.62.“. ~5an ~88 M85 3:: 881133.88 285656 8e 86 8. 8.6 - .6 8o .8 88593.53? .55 :82 8888 8. 5E .33. .SEucoo 3.an . . «...—85¢ 252.2 252.2 «:3 «Sosa 8.... 250:2 3t.“ buck. 33:30 3:30.. 25:30 a . 320 53:33 E8. 32... . 965 .58 .38. .23 a... m ..3 3.8.: 3.8-: .2.... .33 e: :83 out o. 858 $2» :53 8:83 .2533. _o «33 5 :88. 82.235» to «as» noucovonmm nommo _. 80m 0800 Snow 0800 .88 :..uonowa gage—(m 89.888 no. mouommw 8Nmowowmm won ".80me VII. Jillll‘l' ii) ‘1 i a Ema 34 010.0 «add .83. on. 93 mmm N 000 _N N09: 8‘? a at. r at... 00.80 00.80 8.09... 00 03.0 3 ll' (JIJJSI Pm? N 8v C! N .4 av .QNN 03.; av .0 Sid :0 03. r 80 8N3 own; 8.5 «aim QMNN 8% 80.0 “man I‘ll mm M3 000.80; 0008 mmme 08¢ accoowdsézam 029.50: 253.32 mania-a... magma! c8232. «.2. .p L 5.28 no} .8255 .89 co 8: £8. .38. .858 um>fiam 20.5.1502. «angina. :55 £33.82... 8.3 .0.... 9:85 .Bocuéoasfifl.a£€_fisnm :Sm 029.203.05— 4(th gag. 5E wamfldflmficoo 3n 08m 2955:? .55 .82 8888 ES >02: .Smbcou 2.9.0200 moss—.2753» gag. 25$ 8;» 3303.1 “603. E 8' x o: v.5: v.25 . 0 x0 .30.:- .858 2.! 000.25 258 2.3 322$ ENENOKOIZEK “510200 . final 9.03% 05:80 .b..v x .3.. .95: 22.8 .52: 58.8 .2625 .86 05:28 .04 x .3.. .95.. 238 Es. 28.8 .52.; .86 250053 320 , «332.3 #5: g , 33.. m0 3: 8.9 3: 8.8 c 8.9 ‘0 gin chsmm so 8.0m no Svm 2, .99: b.5521 .8o..¥2a88_u.mu._& Snaidcfia .8 958 23:00 003 _wfim _UEmOummEh 1.05.9000 3.3.5 Nam—<0 a 8N am no 8,. 5000 32m 05083.3. 9.000 450mm» 33.. imam 33:6 85 090 83 95.. Q8, 08. .00. 603.55 3:300 3300.5 :- gigoloh gr wig 3.5.3 «.0.—boo mwénno Nonmo 00.me Nmsmm wwwmw 00.0050 00.030 00.0000 00.0000 00.300 00.000 00.000 c333 .5530 .80... 230:2 2:054 Esau 0:» 28.5 .3.... fit a... 320 5.56 :8...» 83.8.0 E3. ...-E 320 gm 9 £52 965 2.5.8 8:83 ugh—5800! .0 £03 :0 taco”. «cop—acacia 0.0 033—. I‘ll]. noaOorovom 323 ”8360an $3 noioronum 2a.. mouuo—omuc cow; memorandum 80.— momuoronom och.» mowuowomow 0mm.— ooumoeommw 8v nouxoponmw 8m.» «36.3 ‘3.— ooo 350 so 853 SQ! E8555 «8.68 .28.: ..o 23:; 23: .83 £80... magnum dam ‘13 la: a g 3% .vlomqm Ea 3m- usfiuzgflwmmaa be. 8 65” 08.2. 8 83“ 63 9 mm 80.9: 98m 8 8; N a: e 88 593.2. a: .322 £2.35 a; El.— Qum. ianhu>c>£ammmm 3.83 «8.5;me 3.3: a mum flag. 3 Mad alum Wmqu :OmaE mzam’JEEa :_o 83 808 80.83 3 .- 880.9 89.5 a... 9:58. .I 3 0 3m; Show 80 con; 3 3 8 086 32-5 us. 055.»... ..l .288 .533 .8555; mm o 8“ 30 8a 9 o t 88% .52 .3223 .588. 5:0 .2.»; .63. 83 ~08 0:00. .3 02 8.0 03 So 3 8.80.. is; .23 .585 5:0 «:25 Ex. 88 58!: .51 3o 8? 8o 83 3o 3 883 ....Qscean .585. .220 5882 .23; as}. 28 58.2: .5... 3o 3 8o 83 5.0 u 883 £253 .582. .320 6882 .2.“; it 28 228.2: 2:3, .25.“. «~38 §¢u>00 44(2— _~ 02:23.. 8.33 a a a a g; . Mmfim ma $3 a ‘ 9:32 93:3 2.2 8. SEN 80.? £56 a. 8,3 sang... .I . vans gem; of: ’8 2.3 8.8 93 SS 8 8.8 8.... n #2. 83 £3 Eu? 6 88 $8.13 88 3:8. 3.25m 838 .522, 3380 .335 23.5 .5 53:2 «9.... .595 8E 3.8... 320 5:30 53:28 as. 8:... 9.20 38,, .. in». ,. .25 2:3 e.» 3.3.: 3.8-: .33 .83 ...: :85. . Pl ‘ IIL a)” 35.858: 8 .33 co :83. 822823 .3 3...: o. €58 £2» 55.8 8:83 5.4 COMPARISON OF TRADITIONAL AND PBS BASED SCHEDULE In order to prepare a traditional schedule, the scheduler adopts a WBS for decomposition of the project according to his own experience and intuition. The WBS is often used only for the preliminary determination of the Major Milestone activities, and is not used for final presentation of schedule. Similarly activity ID’s are incremented by a certain number such as 5 or 10 and, certain activity codes such as responsibility or department are assigned to the activities. No intelligence is built into activity ID’s. As a different WBS is usually adopted for each project, so there is no uniformity in schedules for various projects of a company. A traditional schedule for the sample project is presented in (Figure 5.5) where the activities ID’s are incremented by 5. By comparing this layout (Figure 5.5) with the layout of Figure 5.1, which is developed on the basis of PBS one would find that the data in the latter is presented in a more meaningful way for analysis, planning and control. Unlike the PBS based layout the traditional layout cannot be summarized to various levels. The addition of activities in a PBS-based schedule is very convenient because every activity has a specific place. Similarly, sequencing and linking/de—linking of activities in a traditional schedule is very cumbersome, especially during the execution a stage of project when activities are removed or added. The PBS, however, facilitates this process. Activities can be filtered on the various PBS levels or components within a level; filtered lists can be and analyzed instead of analyzing the activities of the entire project at a time. 100 52...... 2558 .2255 9m 9.39“— :ofiomfi. 223.2 .0.. F093... 03an infill .38.. .35.. 8303350 55.8.3. 3%] HM 2H...” 22.86 85 hoe-ml 83.8 58.855 0.0.» 9.52.3.1 «209. 8503 8503 o F 0.0.... 953:. 8a odd 2585 381 F556 8503 8505 o F odd 258... 55.5 SF 0.0.» 5. {assaul F0 8503 8505 o a odd 5. 5255“. 02 ed.» 5. 23. .0 Sac-nail .. F Fm Summon Summon o F odd 5. 83 5 8.5.2.5.. 9.: S a... a «a .53.. .0 2522.8. one 8533 gamma o F «m ....» a «m 58.. 5 2.5.88 at «a as. a an 53.. .0 Etzoml $.09. «9.me gamma o n «m ...... a «m 58.. .o 2...-...... 2F 3 ...... a «a .53.. 5.. 5o3§oal «o Sammom 85.32 o o «m ...... ... um .58.. .5 5355“. 8F 5 5528 5 2552.8. 98 8.52: 85mm? 0 F 5 555.8 5 2.8.28 8F 6 555.8 5 952...... :69. 85mg magmas o .4. 6 555.8 5 8.53. 8F 5 2.55.8 5. 522:3. F0 8538 8533 o N 6 555.8 .2 535...“. SF .255 55.8 a ...-z 558...: .63. (En Summon. 8&3. o F .252 555.8 a =5 558...: 58 9: .250. 553.3 05:02.. 958. no «guano commune o F .252 5.5.8 0535 Econ. 03 .255 =25 2585 555. «o 8.580 8538 o F .255 ...; 8:8... ..58 SF .255 555.8 2552.8. 8 8538 8.598 c F .252 5.5.8 2.528 SF .255 _...; 2552.8. 80 85mg Smmwwo o F .255 ...s 2.5.2.8 3F .255 .....s .33.... .569. 803.5 802.5 0 F .255 ...; 58¢ 8F =55 2.5.52 5 2.555851% 98 803.8 802.8 0 F ...; 2.5.52 5 8.5.88 2 F 55.55.... 555.8 Snug «zoom 803.8 8038 o F 8.528. 555.8 .85. SF ....z 9.5.52 95.33.; 3209.. 803.8 8035... o F _...; 2.5.55 253;. SF .255 555.8 {035.85% 6 8033 803R 0 F .255 555.8 52259.. no .252 _...; 5055.8! 6 803.8 803%... o n .255 =3 52553. 8 .252 555.8 :38me F930 80:5“ 83%" o N .255 555.8 828.6 2. .255 .....s 5.53.6. oF Fm 8032. 803mm 0 F .252 ....s 838.0 8 _...: 2.5.52 503555; 6 803$" 8035" o n _...; 9.5.35 52558 8 2.. ..o acts-zoo! .35 8038 8032 o n 3.. 5 8.5.38 B 8.. .o 8.2.6] .. F Fm 8033 8022 o w 3.. Fe 9.550 8 _.o... .o 2.5-:1 98 80:5: SoafiF o v ..8. 3 2.51.. 9. ..o. as .o .5653... SE 803020N o N F... 05.5.5. ....s 03 - ... ..80 ..x. .0 0.5 +00 0902.0 00>02NN o 0 F0 280 .0.. .0 ...... 0.0 . F. .3855... .o 0.... 9.2.00 09029.. 00>02NN 0 N .. $0055... .0 ...... 000 bull! N“. .5005; .... .0 0.5 9.2.00 09020. 0902... o N N... .585; .0.. .0 ...... 000 I N. ...-5 :.. 9.08... .8.; 5 0902.0 0902NF o 0 N... ...... .... 05.8... .2.; 0N0 I F. .....5... 05:8... .8.; .0 09022 090200 0 0 F“. 5.55. 05.8.. .29.. 0F. I N. ...-3 a... .2 .08.... 00 0902F F 09028 0 . Nu. ...... .... .2 0580.2 20 k % .0. 9.3.00 .0 950.0000 mum 00>02~o $>Oz~o o F .0. 9.2.00 .0 9.00.0000 non 1.00.0 .00. .0 00:00. 000.0502 F220 £028 00>028 o N .00.... .00. .0 9.500. 000.060.: con 0 h .o. 05...... 8. ...... .o .0.... 0000 00.000N 00.000N o . .0. 05...... .2 .... .o .0.... 00N i a... .8. .95.... 55...: $0.0 0902 F0 00.Foo0N o N a... .8. 5.5.5 55...... BN I N... ...-5.... .0. .0522...» 00.70 09028 0050000. 0 0 N. 5.5.... .2 3552.80 8N I F. .....s 0.. 08...; 00 090200 005000... 0 b F". ...... .x. 058.5. 20 T LQ ...... .35 .o 0.5 00 0200.0 0050.0 0 F ...... 3.5 .0 ...... SN 0. g .0. 05...... .0. 3.0.0:. .0 .0.... $8 00.003 00.508 0 N .0. 05...... .2 0.3.0:. .o .00... BN TIE .8920 .0 00:. ~>m0m 00.628 02.003 o o_. .8920 .0 .005 on" i 00 a... .8. .0 0508... .58 .0 00.508 00.603 0 N 00 n... .8. .o 05.8... 05.0 9N F. 5.23... .2 05000.30. 00.20 00.508 00.005 0 N F... ...-3.5. .2 05.8580 9N . on 00.0 .00. a on 08000 .0 9.00.0000 94.0 02.000“ 02008 0 F 00.0 .00. a 8 05.000 .0 9.00.0000 can I on 00.. .00.. 0 am 08000 .0 95.0000. 3200... 02.000.” 03.009 0 0 3 00.0 .00. 0 mm 0....000 .0 9.0000”. can .0 a... .8. 0 3 .50... .2 5035.0... I N0 00.002 0050000 0 0 ...... .8. 0 00 .5... .2 52.5.... 0N0. N0 555.8 .0 9.02.500. 000 00.808 00.803 0 F N0 555.8 .0 05028.0 0NN 0.0.0 9.032.001 00 02.0000 0020000 0 F 0.0.0 955.80 .....N N0 055.8 .0 05.00.... 3200... 00508 005008 0 F No 555.8 .0 05.3.... 0:. 00 050.8 .0. .855... F0 02.008 002008 0 N 8 555.8 .2 9.2.5.... 08 5.5 COMPARISON OF TRADITIONAL COST ESTIMATE AND PBS BASED ESTIMATE Traditional cost estimate on the basis of MasterFormat for the sample project is presented in Table 5.5. The information from this estimate such as quantity of work/material, cost, and crew cannot be assigned to activities in the schedule unless additional computations are carried out. The various line items are grouped into MasterFormat divisions and phases. For example, all the quantities for concrete (3 OOO-psi strength) required for the slab on grade, columns and beams of various floors are totaled in one place irrespective of when they will be needed at the site. In contrast, the PBS-based schedule provides the information exactly as it is needed for assigning to the activities. PBS based estimate will be more accurate than the MF based estimate as all the required constituents any for building component are estimated in one place irrespective of in which MF division they fall. For example, for wall foundation (a building component) all its constituents process and materials such as excavation (MF Div. 2); Formwork, rebaring and concreting (MF Div.3); and waterproofing (MF Div. 7) will be taken ofl‘ and priced in one place unlike MF based estimate where they are taken off and priced as per the divisions sequence. The estimating of any building component at one place prevents the omission of any constituents’ item. A Bill of Quantities (BOQ) report can be generated on the basis of the various levels of the PBS. For example, the BOQ report presented in Table 5.6 is based on level 4 of the PBS. A similar report generated on MasterFormat basis is presented in Table 5.7. These tables present the breakdown of project costs from difi‘erent perspectives. 103 £3000. 85 35 .8.. '8 2.8 53 98 a 8.8g 3 as 88. _E n £0 2 .232... is. .33.: 8' 8.98 .88. 362. >0 3.0.1 Bu 2... 8 n2 8..." 3:. 0.3 E 8. 3 .9332. 8 .9. 28 .85.. gm 8 3.3“ , =8 .623 8a 9.3 can 9.3 8.. 550 E 8.8 .88 b 2 an .82. .8823 8.58m 2 8.8 , 6:303 .80 0600 at 8... 3 on. 8.8 83 35 E 8.3 8:2 .35 b s 883:8 .82 3 ...§ o3 3.8.. xmogzhmfi 3.0"" an and a gnaw. 0E3 2.62.180 «3.. 3.3m 8. 8a 8.8 8a.". .68 >8. 8.» .u .822... a... a .... a 8152. 88.360 8» 3.3.“ 88 .83 .38.. a: 5 8... 2m 5. 8.8 8.0 88 a 8.9:. 8... ...—.8. 8... 8:38.. a :88. .885» 8 3:8 26E! d .953 .3.: 8.80.. an... N: 83 83: 8m 28 «I a8 128680 .32 .888 .28 a .30. on. 3.5". zofiz. "Ewan 8.094. a um am a gamma: 8a.. 8.8 8 8 8a .3 3.3 08... m< we 8.8 . , .2: 68388530 8. 3.5 , ...:meo._o hoghzoo 8.0: Ea E a g 38383 .3 33» N: at 95.. 8a.. 2 8 8.. , , as 55.28. .... 3.3. 8 8.. - 8 8.. - 1.... 8.8 2.5 .8 8a 5.2.8 a. .8352 .82. .8....0 8a 3.8. . , . .8 . 83 8.8. o 8... 8.8. 8 8s 52 6me 69.828 .838. .5888 can 3.8. .88 .965 .v 88:3 8.. 84. mm 2: o: cow :8 Bad 3n. . k 8.2. . 02 _.... .28 .88. 528:8. 88¢ 8 8.8. 3:... NE. - New.“ 3+ «8.. 9.8 83 «930 a 8.8». 8... .m 1.... 520 .8 z 8.2.... 2 3.8, Bin 0. F .0.: .0... , 83 8. 5 E} 8.3.. 8...; 8.2 83 836 .8 8.8 8.. 2.8. _...; 8. 83.5.8. 3.3.8.388 8. .32 33.20 with az< .50“. .520 8.3.. a a 3 «NH . aqua 3" m3: 8 «t 8:. 83 E 8 8.. . . 8.3.38. .... 3.8. So 8.8 . 05 8.8 . - 8. 8s 93: a £9. 8.8 18.8.8.8 8.8 as“. 8. 3.8. ems—go 8.8.. . . . . w, .50.: .52: E 5.0:. ._ . cm: . , a < .5530 a < a < u < 00. a .5084 00. a 300.5 26.6 b: O :Qfitonoo 82. 395 0:20 .53 2:3 as» 3.8a: 3.8:: .33 8.. .83.; .80... . .003 Qm>m "=2 3 223 .3 2.88m .2285 m.» 2...: I‘ll... flu! I] . (I'll J’S‘ [I'lflli |l||'\ ill. .I‘lllf.’ 1 I I ‘ ll‘ : il-lllil .I'I‘II’iA‘E [II llv\ lllux.lul’|."1‘|'| ll'lll :1'1Iluull‘r 8n. ...8 or... - 8.. 2.2 .8.. 80 - a own-MEFWJ? waif. =95 23.2 .88 £an evilrfiumwfinnajl .84.. 8. 5 . .8.“. 8. .o - .. E anew .8. OS.” 2%.; 3.32 is 2.8. 20880 8.. on. .8 mhmmozoo wo<4$zzmm ".2 3 033 :0 QQEBQM 3:25.05... n6 03¢... mg 3 av x05 “.2 3 «.03 :0 80:53 3.52302... a.» 033... 8' 8.8 8. 86 3a 8.2 .8 8+~ 1.338363 .38... .2552? 83.3 88 B.-8 Ewing—9.2.5. mhmmozoo 3.33 a g a gas: , 93:30 buv «8.8 8.8m 88.8 88¢, ,-..~ 8.8 83 93$ 8 8.8 x .o.~ .82. 03:8 .8.... 5280 .982? .86 82. 3.5» wBODZS> .2.—h! 8.3» and... an an... 8.3 gamma. 2, .98.: 8.5.52. 2.... 8.8 . 8o 88.. 9~ 8.3 83 856 a 8.~ .Bo..¥2a.o§o.E.8 33:38.8 .8 82 ~38 125:8 83...... :3 8.93.5 8. 8m.» 8.8m.» .8 RS 8.8 mm 8 8.? .8. .392 35.8 3.8.... _a 98883. 82 $88 «moon 45093 3.80 a Na and an: «Egg 35.08. 2~ a; 8 8.~ ~: 8.3 23 E56 8 8.v~ .3.}:88221318 ...88 86.3 .8 -.o: __ ...—9:8 38.» :.. ~2 :.o ~v~.~ 8.8 .85 E t 868.: 88.8 8888...; .88 ~ .398 280 8r 8.»: ._ . 3183 ~85 8.~ 2n '3; 8.. 5 ~a.- v8... 8 t 8.23 5.83% .2. 88883516225 8. ~35 St~ 8.0 Re 09 n3 8} $.- ~85 5 t 8.83 ..I .8 F .35. 8 E.g. 8283.2 o. 3.5 CZEOOKmmin—QOmemmhfis 86:. and a sad" 3 .fib.£.fi~.8..§_ «8.2 :.m ~36. -.~ «8.9 8.8 2 to 8 t 8.80.. E§.§~ a 38.8.2451: 88 8? 2.8. . 5.20% ...—2: 8.94% a 9.3 a a , a , 8» 8.8 3. . Sn 2.8 ~88 80 E 8.8 89.5.. 558. is; .88 8.09.. 85 ~28 , 22.0 .88 .3...” ~o~ - -n B- 33 8 a 8.3 is... .o .26 fl. .85 8 as. .8 2.8K 88 a. .8 £5822. 8. 8.8 w a: 5.8 83 8 E 86 .5 F .8.... .828 .8893 ESE 83 ~58 .34 8.: .3 08 2.8 53 80 E 8.8 89:8 (8:28.858. 8898.! 82 ~58 M . . a. . 63.. 2.9 8. 88 2.8 $3 80 E 8.8 .3.... b 55 8.. .8.... 3.. .88 33a 83. -. .8 M . ~3 :8 .2 an 3.8 BS 80 3 9.? 30.5.2 .83.!!! .8528 .88 8.8x 8.. ~58 whmmozoo NOSWZThg 363 E=OE< , 2525‘ 2:4 2:023 8cm. . .8...“— suuoi ,gcaac , . . _ . . ,. . . . , . . .. . .5530 a u . . . ==OE< 320 . . , catatonia E8. 03.5 .520 .80... . 3 m as» .8582 3.8.2 .393 3a.. toga... . , , . . X , , ., _ .33. w , .33. . , _ _. , . p w 093. ...—E _.O 033 :0 gap—gnaw .2.—0359:. n.» 03a... 8.5.. 3.222 8 «3:... 2a.»: .83 :32. 8.5.3 at fig flew a V 8 as. N .98 83:8 . 8&8 8.08.8 33 3.8 8.8. gm 8 8., .88 e 88 388.8 1.. .812 .2295 2.. 3.8: , m¢0h<>mdm 3.94.3 as «an a gamma—mun 98; Id 83 8.8.." 80.8.»... 3 t 8.82: 892° no. 3.5.x. .... 3488 .8.. «3 5a.. canon .88? 3 3 868... 8930 as 8E...“ .... ..~.68 _ 9.83 .503 328325 82 N3 8“ 3.0 8. a3 a 8.98.» .5... .8223 .585. .26 ....S .2.! 83 .308 __ .08 9.83 68.. cud 8. 8o 95 .3 t 8.83 .3! 12.23.883.3923533 88 8.58 n. . . 58 .2: .53. SN...” «no Bu 8... 92 5o 3 8.83 £92.93 .535 .2888? .2_§.E_aa 2.8. 8.38 $023900 .335 a @zeam 8.38 a a a a Gaga“: 8.. :5 8: 89.5“ 80.2 pxzim w. 8.8 55:88. .... 8.53 REE ...o. ...; 8.... 83 8. F 2 .8 9a.. 8.8 as." 8.5 8 8.8 n .52. 83 £3 E93 8 83 88 £3 88 8. BB . . 023.001 mz<¢m2m2 8.83 a a a a gamma: c9 96 8. 3+2 8983 .xme a 8.8...." 55.38. .... 3.83 99. FL £88 “.98 . Sod 3.. m8; 2} 93 83.. :.o u 8.83” .2285 .32 8 25 ES. .32. 353 88 9.88 20:41:52. 3.33 «and a a $3. ‘ . «flags: «3 8.9 . a? 8.3 80.8 no i. 8.9 8 , 7 8.3.22. .... 3.58 m on; .84 we 3. «:9 o: one...” 8.8 on? 8.8 a: 8.9 .8.. an .2.. 25 .8855 ... 58 z: .3 ..3w 88. a. 58 a Vic—53:33. .2.—ME 8883 a.“ g Huang 8a..” 8. 3 8a.... 8. E a 8.9. i. 88 293 in? is 5.2 cincoo 33 8. 58 mhmmozoo wojm.z_.._.mm and 62.. .805 :0 03. P3” Emir «Each 2583mm EEO EoEaEum Qmsam “=2 no Ewan :0 0353mm _GCOEUEH md 033. Table 5.6 Summary 800 Report on Basis of PBS Description Quantity Unit Price m Dongs Centgk Tenporary Faciiities (Page 2) 7.019 48 Prohct Closeout (Page 3) 1,“ 84 Site Clearing (Page 4) 4.09 94 Site Eatinvorix (Page 8) 4.590 82 Parking Lot (Page 0) 67.1w) 91 Site Development (Page 7) 7.737 13 Stand-11 Foundation (Page 8) 11.492 73 sun: on Grade (Pogo O) 5.8% 15 Floor Construction (Page 10) 48.4w 12 Roof Construction (Page 11) 49.550 13 Exterior Walls (Page 12) 34.63 10 Exterior Windows (Page 13) 27.091 59 Exterior Doors (Page 14) 10,719 35 Roof Covering (Page 15) 9.818 66 Stain Conatmction (Page 10) 5.55 20 Wall Finishes (Page 17) 8.009 20 Elevators a Lifts (Page 18) 32.104 00 W _.gm _36 Table 5.7 Summary BOQ Report on Basis of MasterFormat SYED ' Description Ouanttty UnIt Price "mu" Dollar: Cong [ OVERHEAD (Page 2) 856 25 CNST FCLT AND TMPR CNTRLS (Page 3) 9,271 23 CONTRACT CLOSEOUT (Page 4) 999 94 SSSRF INVSTOCSITE DEMOLTN (Page 5) 500 00 SITE PREPARATION (Page a) 2,997 34 EARTHWORK (Page 7) 14.313 78 PAVING AND SURFACINS (Page a) 59.564 22 CONCRETE FORMWORK (Page 9) 69,943 58 CONCRETE REINFORCEMENT (Page 10) 25.935 21 CAST-IN-PLACE CONCRETE (Page 11) 17.051 39 UNIT MASONRY (Page 12) 23.503 97 WATRPRFNCCDAMPPROOFINO (Page 13) 13.655 45 SPECIAL DOORS (Page 14) 10,719 35 METAL WINDOWS (Page 15) 27.091 59 CONCRETE REINFORCEMENT (Page 19) 499 20 CAST-IN-PLACE CONCRETE (Page 17) 2,999 Do METAL FABRICATIONS (Page 19) 5,535 20 INSULATION (Page 19) 5.476 33 MEMBRANE ROOFING (Page 29) 4,342 33 PAINTING a WALL COVERINCS (Page 21) 9.009 20 ELEVATORS (Page 22) 32.104 00 W W335 233 M33 Chapter 6 CONCLUSIONS AND RECOMMENDATIONS 6.1 CONCLUSIONS The PBS developed by the author provides a standard WBS for schedule generation, and a common framework for the development of integrated schedule and cost estimate in design- build environments. It can be also used as stand-alone WBS for the generation of either in other contract delivery arrangements. A process flow diagram was presented in Figure 4.3 depicting the steps for the generation of an integrated construction schedule and cost estimate using the PBS. I have demonstrated the usefiilness of the PBS scheme by applying it to a sample project of 2400 SF floor area requiring about four months for construction with an estimated cost of $335,000. I have shown that the use Of separate WBS’s for cost and time produces documents that do not map easily to each other. The integration between the estimate and schedule has been achieved through a PBS (common WBS) and activity ID. In the view of the author the PBS scheme is easily adaptable as it incorporates the information classifications system (UF and MF) and construction management software already in vogue in the construction industry. Moreover, the coding system is not complex to understand and, once entered in the computer system for the first project, it can be very easily used for other future projects. 111 6.2 RECOMMENDATIONS AND SUGGETIONS FOR FURTHER STUDY The author used two different computer programs for the generation of a construction schedule and cost estimate and therefore the project data had to be entered twice. The author feels that there is a dire need for the development of common construction management software, which can perform both of the two functions. The software should be capable of linking line items from a cost database to their corresponding activities. The use of the proposed single software will increase efficiency by avoiding double may of the data. Accuracy will be also achieved, as there will be fewer chances to forget any data input. The author also recommends that the PBS scheme should be applied to a completed project in retrospective to check its applicability and usefulness in the real world situation. 112 [AGC 1994} [Abudayyeh 1991] [Bledsoe 1992] [Budeiri 1984] [Carr 1998] [Clough 1991] [Chimni 1989] [CQR 1992] [Dreger 1992] [DOE 1981] [Hendrickson 1989] [Kerzner 1995] [Kang 1997] BIBLIOGRAPHY AGC Education Committee 1994. “ Construction project planning and scheduling”, Associated General Contractors Of America, Washington, DC. Abudayyeh, O.Y., and WJ Rasdorf. 1991. Integrated cost and schedule control automation. Proceedings of the Construction Congress’ 91, ASCE, Cambridge, MA Bledose, J. D. 1992. “ Successful estimating methods fi’om concepts to bid.” RS Means. www.netplaza.com/meanscatalog Budeiri, M. J. 1984. Preparation of the work breakdown structures in the Construction Industry. MS thesis, Pennsylvania State University. Carr, R. I. 1998. “ Cost, schedule, and time variances and integration ” Published in Journal Of Construction Engineering and Management. June 1993. Corrected and edited in 1998. Clough, R. H. and Sears, Glenn A. 1991. “Construction project management” 3rd edition, John Wiley & sons, Inc. NY Chimni, J. An approach to computer-based support for work breakdown structure development. MS thesis, Carleton University Callahan, M. T., D. G. Quackenbush, G. and J. E. Rowings. 1992. “Construction project scheduling ” McGraw-Hill, Inc. NY Dreger 13. 1992. “ Project management: effective scheduling” VNR, 115 Fifth Avenue New York, NY 10003 Department of Energy. USA 1981. “ Cost and schedule control systems criteria for contract performance measurement ” Washington DC. Hendrickson, CT, and T. Au, 1989. “Project management for construction: fundamental concepts for owners, engineers, architects, and builders.” Prentice Hall, Englewood Chfls, NJ Kerzner, H. 1995, “ Project management: A system approach to planning, scheduling, and controlling. VNR, 115 Fifth Avenue New York, NY 10003 Kang, L S. and PB. Paulson. 1997. “ Information management to integrate cost and schedule for civil engineering projects ” Journal of Construction Engineering and Management. Vol. 124 No. 5 [Kim 1995] [Kim 1989] [Precision 1997] [Primavera 1997] [PMBOK 1996] [RS Means 1997] [RS Means 1990] [Rasdorfl99l] [Rizzo 1997] [Spink 1997] [Spence 1998] [Syal 1991] [Teicholz’s 1987] [Uniformat 1989] Kim, K. 1995. A collaborative construction planning data model for cost estimation, scheduling, and cost control systems. Ph.D. dissertation, University of Texas at Austin. Kim, H. 1989. “ An Object-oriented database management system approach to improve construction planning and control” Ph.D. dissertation, University of Illinois, at Urbana. Original document not seen, cited in [Rasdorf 1991] Timberline Precision Collection. 1997. “Precision estimating- extended edition: User Manual” wwwtimberlinecom. Timberline Software Corporation, Beaverton, OR Primavera System Inc. 1997. “ Primavera project planner: Reference manual” for version 2.0. Bala Cynwyd, PA PMI Standards Committee. 1996. “A guide to the project management Body of knowledge ” Project Management Institute, Upper Darby, PA. RS Means. 1997. “Building construction cost data” www.netplaza.com/mcanscatalog RS Means. 1990. “Estimating handbook.” www. netplazacom/meanscatalog Rasdorf, W.J and CY. Abudayyeh, 1991. Cost and schedule-control integration: issues and needs. ASCE Journal of Construction Engineering and Management, Vol. 117, NO. 3, 486 ~ 501. Rizzo, J. R. 1997. Design-build alternative: A contracting method. Proceedings of the Construction congress V. ASCE, Cambridge, MA Spink C. M. 1997. Choosing the right delivery system. Proceedings of the Construction Congress V. ASCE, Cambridge, MA Willaim PS. 1998 “ Construction materials, methods, and techniques.” Delmar Publishers. www.delmar.com. Syal, M.G. Parfitt, MK, and Willenbrock, J .H. 1991. “Computer-integrated design drawing, cost estimating, and construction scheduling. HRC Series No. 11, Housing Research Center. The Pennsylvania State University, University Park, PA. Teicholz, P. M. 1987. Current needs for cost control systems. Proceeding of a Specialty Conference. Original document not seen, cited in [Rasdorf 1991]. Uniformat. 1989. (Electronic file) Construction Specification Institute. www.csi.com APPENDIX A UNIFORMAT UniFormat" LEVELS ONE TNRU THREE NUMBERS AND TrTLES Proiectgescrigtion Construction Systems and Assemblies PROJECT DESCRIPTION 1 0 PROJECT DESCRIPTION 1010 PROJECT SUMMARY 1020 PROJECT PROGRAM 1030 EXISTING CONDITIONS 1040 OWNER'S WORK 1050 FUNDING 20 PROPOSAL, BIDDING, AND CONTRACTTNG 2010 DELIVERY METHOD 2020 QUALIFICATIONS REQUIREMENTS 2030 PROPOSAL REQUIREMENTS 2040 BIO REQUIREMENTS 2050 CONTRACTING REQUIREMENTS 30 COST SUMMARY 3010 ELEMENTAL COST ESTIMATE 3020 ASSUMPTIONS AND QUALIFICATIONS 3030 ALLOWANCES 3040 ALTERNATES 3050 UNIT PRICES CONSTRUCTION SYSTEMS AND ASSEMBUES ELEMENT A SUBSTRUCTURE A10 FOUNDATIONS A1010 STANDARD FOUNDATIONS A1020 SPECIAL OTHER FOUNDATIONS A1030 SLAB ON GRADE A20 BASEMENT CONSTRUCTION Wflixy IA) ~ A2010 A2020 ELEAENT B B10 B1010 B1020 B20 3201 0 32020 32030 33010 33020 ELEMENT C C10 C1010 C1020 C1030 C20 C201 0 C2020 C30 C301 0 C3020 C3030 ELEAENT D D10 BASEMENT EXCAVATION BASEMENT WALLS SHELL SUPERSTRUCTURE FLOOR CONSTRUCTION ROOF CONSTRUCTION EXTERIOR ENCLOSURE EXTERIOR WALLS EXTERIOR WINDOWS EXTERIOR DOORS ROOFING ROOF COVERINGS ROOF OPENINGS INTERIOR CONSTRUCTION PARTITIONS INTERIOR DOORS FITTINGS SPECIALTTES STAIRS STAIR CONSTRUCTION STAIR FINISHES INTERIOR FINISHES WALL FINISHES FLOOR FINISHES CEILING FINISHES SERVICES CONVEYING 01010 D1020 01090 020 0201 0 02020 02030 02040 02090 030 0301 0 03020 03030 03040 03050 03060 03070 03090 0401 0 04020 04030 04090 050 0501 0 05020 05030 05090 5.5m E E10 ELEVATORS AND LIFTS ESCALATORS AND MOVING WALKS OTHER CONVEYING SYSTEMS PLUMBING PLUMBING FIXTURES DOMESTIC WATER DISTRIBUTION SANITARY WASTE RAIN WATER DRAINAGE OTHER PLUMBING SYSTEMS HEATTNG, VENTTLATING, AND AIR CONDITIONING (HVAC) ENERGY SUPPLY HEAT GENERATION REFRIGERATION HVAC DISTRIBUTION TERMINAL AND PACKAGED UNITS HVAC INSTRUMENTATION AND CONTROLS TESTING, ADJUSTING, AND BALANCING OTHER SPECIAL HVAC SYSTEMS AND EQUIPMENT FIRE PROTECTTON SPRINKLERS STANDPIPES FIRE PROTECTION SPECIALTIES OTHER FIRE PROTECTION SYSTEMS ELECTRICAL ELECTRICAL SERVICE AND DISTRIBUTION LIGHTING AND BRANCH WIRING COMMUNICATIONS AND SECURITY OTHER ELECTRICAL SYSTEMS EQUIPMENT AND FURNISHINGS EQUIPMENT E1010 E1020 E1030 E1090 E20 E201 0 E2020 mmF F10 F1010 F1020 F1030 F1040 F1050 F20 F201 0 F2020 ELEAENT G 610 61010 61020 61030 61040 620 62010 62020 62030 62040 62050 COMMERCIAL EQUIPMENT INSTITUTIONAL EQUIPMENT VEHICULAR EQUIPMENT OTHER EQUIPMENT FURNtSHINGS FIXED FURNISHINGS MOVEABLE FURNISHINGS SPECIALCONSTRUCTIONANDDEMOLTDON SPECIAL CONSTRUCTION SPECIAL STRUCTURES INTEGRATED CONSTRUCTION SPECIAL CONSTRUCTION SYSTEMS SPECIAL FACILITIES SPECIAL CONTROLS AND INSTRUMENTATTON SELECTIVE DEMOLITION BUILDING ELEMENTS DEMOLITION HAZARDOUS COMPONENTS ABATEMENT BUILDING SITEWORK SITE PREPARATION SITE CLEARING SITE DEMOLITION AND RELOCATIONS SITE EARTHWORK HAZARDOUS WASTE REMEDIATION SITE IMPROVEMENTS ROADWAYS PARKING LOTS PEDESTRIAN PAVING SITE DEVELOPMENT LANDSCAPING 630 63010 63020 63030 63040 63050 63060 63090 6401 0 64020 64030 64090 690 69010 69090 ELEMENTZ Z10 Z1010 Z1020 Z1030 Z1040 Z1050 Z1060 220 22010 22020 22030 STTE CIVIIJMECHANICAL UTILITIES WATER SUPPLY SANITARY SEWER STORM SEWER HEATING DISTRIBUTION COOLING DISTRIBUTION FUEL DISTRIBUTTON OTHER SITE MECHANICAL UTILITIES SITE ELECTRICAL UTTUTIES ELECTRICAL DISTRIBUTION SITE LIGHTING SITE COMMUNICATIONS AND SECURITY OTHER SITE ELECTRICAL UTILITIES OTHER SITE CONSTRUCTION SERVICE TUNNELS OTHER SITE SYSTEMS GENERAL GENERAL REQUIREMENTS ADMINISTRATION QUALITY REQUIREMENTS TEMPORARY FACILITIES PROJECT CLOSEOUT PERMITS, INSURANCE, AND BONDS FEE CONTINGENCIES DESIGN CONTINGENCY ESCALATION CONTTNGENCY CONSTRUCTION CONTINGENCY 598. Sofia anmm .92 x .8— 6.. ocean. 2.23m .3 x .8 .oo _. I4: bow 9.23 So car. 6903 29:3 85th EB“. ch:_ou,,8o._ocoo A - m=m>> Become—2 B I i l << © cozomm - x H Sop—oi anmm ad 239“. i .3 JT E - hoo_n.__ «BE N". - .8.“. 28% _.III_ Exes 8:88.. 528 /b \ A] v0 . .35 2:550 iv « N m - .m._.x._. Emom V 5. SEE; ouaoéoanm A11 N o - .32 mcano IIV 9; WI i N w - x25 ..0 93m « m m . .méx; Emom ! r m w 3.25 ..m 03w “—001 4.0 IY LIBRARIES IIIHHHIIIIJHIII MICHIGAN STATE UNIVERSI III ”WWII!!!IIIHIIHHIIIHIIIH 4 6 4 0 9 7 5 2 0 3 9 2 1 3 . . 4 4 . . . 4 4 4 . 4 a 4 . . 4 I . 4 . . 4 . . . . 4 4 .- .. . . 4 4 . . . . . 4 4 n4 . . . . 4 4 .444 4 4 4 4 . 4 . 4. . 4 . .. 4 . 4 4 . 4 4 S . 4 . . . . . . 4 _ S . . 4 . 1 4| 4 .. .. . . . 4. . 4 . .4. .4 .. 4 . _ 4 . . 44 .. 4 .4 P . 4 . 4 . 4 . 4 . 4 . . 4 4 I . 4 . . _ . .. . . 4 . 1 4 4 . 4 . . 4 . 4 t 4 . . . . 4 .4 . 4 . . 4 . . . 4 44- 4 . . . a 4 .4 . 4 4 4 4 . 4 4 . 4 . . . . .. 4 .. 44 . . . 4 . 4 . . . .. . . . .. . . . 4 V 4 . . . 4 4 .. . . 4 . .4 . . .O . . . . . a. 4 . .S . _. . . . . 4 . . . o .4.. . . . . . 4. .44 . 4 4 4 .. . . . . .. 4 . 4 4 . 44 4. . 4 4 . . . 44 I4 4 4 4 4 04 .4 4 . . . . 4 . 4 4 4 . e .. 4 . . . . 4 . . . 444 ... .4 4 4. . . .. ..4 . . . . . 4 . . . 4 4 . 4 4 . 4 .4 . . . 4. . v . . . 4 . 4 .4 4 . 4 ..4 .4 44 . . . .. 4 . . . . . . 4 . . . . .4. 4.. . . . 4 4 .. .. .a . 4 u c 4 . . .. 4 .. .44 . .. . . 44 4a.. . 4 . . . 4 . a. 4 4e . . 4. . . . .4 . 4 . . 4 . 4 . A . 4 4 4 . . 4 . 4 .4 4 . . .44 . 4 . . i . . .. .. 4 . 4 44. a. . . . . 4 . . . v e 4 .. 4 4 .. 4.. . 4. . 4 . 4 . ta . .. 4 4 . . . 4 . .a . .44 e . . . a. 4 l . 4 . 4 u 4 4 a . . . 4. 4 4 4 . .1. 4 e.a e44 v4. .44 1 4 4 . .. . .4 . 44 . 4 4 . 4 4 4 ‘. .. . .4- 4 . 4 . . . 4 .. 4 . I . .0... 4 . . . . . . . . 4.4 . ... 4 . a . O 4 u .a 4 . e 4 a e I 4 . . 4 . . . 4 . . . . ... . 4 . 4 .. .44 4 a .4 _ .44 . . 4 . . . _ 4 . 1 4 .. . .. .. . 4. 4 4 .4 . e .4 . . 44 4 . . . 4 . . 4 44 . 4 .. . . . . . 4 . 4 . 4 . 4444- . 4.4 . 4 . . . 4 . 0.4 . 4 .o 4 4. . . . . l 4 4 . . .4 4.0. .4 4 . .. 4 . . . 4 0 . 44 ..4 4 . 4 . 4 . . . . 4 . 44. 4.. . 4 . 4 . 4 4 . . . . . .. 4 v . 4 o. 4. 4 .... .4 4 .4 . . . . . a 4 .4 4 I. . 4 . a 4 4 . . 4 4 4 .1 4 4 :- 44 . 1.... . . 4.. 4... . . . . 44 4.. 4 . a . 44 . 4 I . . .4 4. 4. _ 4 4. 4 . . . 4. 4 . 4 . . 4 ..I 4.4..4 o _......4 4.4444 . .444. . v .4 .. 4.4.4}. . ..4 ...4 . .1... ‘ 4 v. .44. . . .4.- 14.4\44on:. 0 ~34. as