I 0' .7 .0 g I O I . . . I u . . o I. O I .I I h... I I I I I. . . o . I I ‘I I . . . 0 I “I I I I C II o. . I . o . I I . . I . f o I I . o . . I . .... I. . . .\ . . . I . .. I II I I . .... I I 0 . I I I o I. u . .. . I . . I o. . . I . II o . . . II... I 4 .I o I. . I o 0 I .. I I . I I o I ' I . I 0 I I I . . o «I . . I I I I I . I I o o. I I I . I I I . I J I. I I I . .so . I 0 I D I . I o I - o .I . o . . 0 I . _ . . I I .I O I I I ' . I . . I I . II. 0 .I. . I 0 I -. .I .c I” o . I I O I I a I. . . I .I O . w I _ . I. I. I 2 .I I I. I0 I I II. o I o I I I . II I . S .- I . I . . Q I A. . .£ . I 'I . I0 I I . I I. . I I I I . . 0 I... I. II I I d I .. .4 .I. .III In"...¢. ‘0 GIVI. .I. :0 ....r I . . L I I 0 I' . I . ... .. I C I O I 9. . I... a... 0. . I I .IOI .Ja I. .. . . . $0 _. . I 0 . o I 9 . ... . . 0. K....0.II0~IAI1 I . “3.47... . I. . I . v I I o o . . . I . . I I . I «I o .7 in «H.512 . .3; gr I . . . I _ I . 0 . . I. I o _ I . 0 ‘I Ifiq tilt {know}! I I I Y I I o ...- I I u I. I . O . I . . I I I . 2...... . . - .... ..N. 1......“ .......a..........«...:....... I . . I . o . I I. w :1... I .0 . .. I . . I I .0. o 0 . I II... no. 9 . ..I‘I I .... ..1WMIJWI....;IP..I... I “um-V»: Au.o...1. .7“. I I _.III A . v - II o I» I . I . III. . . . I ..l I .5 II . I. k . o. .«u ..MI.0.. ’- 31. a. I . . . I - . I: -- - . I I I .1 I . I . .3 Flee: a!!! . . . I . I. I .GOIQ . o'- r o O I . I. I . J:04\" “.05 s ”k . p . I I I o . u .o I I A .<.. I . . I . 5 . v . 0 I I I I I I I. . . t at. C 0 a O . . I I. 0 I I 0 It. .. u. ._ . . “figfi ... ..g l. I. 0 .0 I o I O I I . 0 I I 0 I. . o A I I. I I I I I I o 0 . . o. I . 4 I 3 S. .. . I I. I I A I I . I . . I I I. . I I o I. I I O. I I O I I 0 I . . w I I I I I 0. .0I 4 I . . I O. 0 III I I. .t.o.&I ......IIIGA. . I'M-owo‘. .9104. I o- . I II I I c I I I v .0 0 I I. .3.0 IL. I... ..0 ...Ir. HI... ID! 0 .I . I I o I I o . I I . I m. . O I I . . . o I .../III. «0.02.0 “W4” 4......" I I I I .I . I I I I I O . . I .. . .V. . II. . .8 I . 'I .. ‘3‘ O .I‘ 0 I . I I I . I . .I . ... I I I 5 I I I . . I I . I I I I II .2“ . .1.I I. .I- it... .I- I r I. I .... . I I o I . I . III «I. a C . I I . . I 2 0 I J I 33 .. .. ‘0...‘..I.o ~1I‘...” .2. . ‘ I . . .- I I I . ... . .. I. I I . .I I. . . 0 I .I ... I .I . II. I ... {fiv‘fitl‘i I I l I 4 G o . I. ' I II .I. I :0 o ... I I.ra. .I ..I. .....I. . :0 8‘: I ‘89 . .a I . I. I ..I o I . ..IIQ ..0 0:... ..Nu.. I. 0.0“. v. Q . . I . I . I I . . . a; . 0 0 I I I . I . 0. . I I . g I .I . 0 .. . I. III .I. F. ..‘n‘ I . ... o I . .. I I I. I .I I I I . . I . I . II . I . I 0 .- ... .I. ..0. .... ..— .erT I ...II. A |. I. . . . . . .I I. . ..... I CI. . O . . ... . II. I . . I .. I ... . . .I .. OI I“. I .... . . I . I . . .0. I1 . . . r O I. ‘ ... Ac. .. .. ... 0 I .... I . a (I . In ... o. 0. I... ”L‘rtk“. l . A I .I I ~ I I .9 I . .0. I I. I ‘ a . RH; I .V..'HI...'II at :30 I1“. II 0. . I . . . . . . 0 a a. .. I o a . I o 0I . I I n I . .IIQ» 00.30.} . .a . . I . I I . I . ..I 20 . I . . . I . . o . I I .. . V. I. .00.... Win”. 9 I . . . . I u I Q I I . I I o I I I a I I I. I ...... ... Q .I .I ”.0. J... . ... . . . . I I I . I . ... . 0 . I . . . ..I I . I . . .. . . 3.. “..04“... . I . 0 I I u .I I . .. 0 .1 I. I {,7 I. n‘. . I I. O . I I C I I I I . I I . I _ I I I . O O 4 . I. A. I . I. o . VI. .1 CI IL .. W I . i; I II. . I..I It . I I 0 I II V . I 0 I 0 o 4.0 “...-Idi‘ov I I 0 I o J .u o 9 . 0 I . IL. 0.. .10 tn w I I . I I I I I I I I O I I I I .6 I . I. . . II I I I I.... . I .. . . I . I . I 0 E. i..II ’0 .. I I I .I . . I I . It . 0.... .2.“ . .II o . I 0 I I . I . . I I 0 0| 0.00. .... ‘ o P . .I I . . I I __ I I o I I... .‘I I .v. :i. . . I I . . ._ . I . . .3... II ...Ittigl I V. . I I . . . I I I . I I. . .0. I 0 I I u I I o . I. 00 .04.. 3.081 . I J 4 I 0 I . I I I OI - I I I . . 0 . 0 O . I“ III. I: .3“. . . I. I . I | .00 I I I I I o I I I o . I II . 8&1I5II 0”,. . 9 I13. I. If. In. 4|". I I I . I I I. I. . I o I r I I :0 . ... ...H .3. I. 0| .0 I. ...-.qu33 . . o I 0. I 1. I r. . I I . I I .c . «I: ... _ O I It; I. .m‘. 0. .00.: L: I l I I I‘ I I I II .. . in. .w . I I . I I? I 1 I I0 I O a 0 . o I. “I99 I.- . II. a g.” ‘ .....NIY IOHIIINM‘ .I v .I.‘ . . . . . I .I III.._.. . . 3.10. 31.. Ilu‘ 0 . . 0 . -0, I . I c . I .I I). I . II II. I: II. .I.. 00.. II. P I... _ . . . I . I . I I I . . I I o I I . I {$3.201 I: I s I . I I I III . 0 . I I ? I In ..I. I ...I VIII 2 . .I...vr.. .kSI . . . I'lI I I o I .. I . ... I I I I 0 . o . . . I III I I b .I .0. .. ION; . in... 0. I0“ . IIII‘II 4 5 . . . . I . . I . .. . . . . ., . .. . . ......n....... ....»u......3.~.... I} .... . -I .. 0 I I 0 I‘I I 7 I I . .. I I . \Ihw \ .‘zI’I I . I 0.1 I p .. 0 . I .. .n. .I .II. C ..IV? :4- .‘2-9 .- A. . V I I. 9 II... I I II I I . I. . O I a .I.¢W!I aOIItwuoI I. ‘ I I I 0 I I . 0 . . I I I I. I III 0 n 1 I Y I . 0 III..- I. I I C . I 0 I v . II 0‘ I . O . 0 . a V O 0 .4 0 n V a - — II I . I I 'III' . 0.. .. I . I I I I I . . .. I . w . 0 I I . I I . I C .. I- . . o o . II I I I I . I I . 0 I . o I I I . . n I . I I I I 0‘ ¢ I I I I . I . . .. A I . I0 I I I 0 .. .I I. ... I I .. t A III . . I o . ...l. .I. I I o . o I I . OI I I..o I. or; I. O A“ r I I I I I r V . .I .Iv..—r‘u.‘u II. . . .0 0 . . c 0 $ .I I...) u v .0 . O . I ..‘I I.~.0.I. . I I I 0 I. . . f I I . I I .. . 0 0 00 I 0 III . fI . o I . I I .. I ... I. . . . . I I . I 30 o. h - l s . u .- 0 _ 0.0 . I I . . I . .I. O O I u. .I I .9. I 0‘ A . I . 0. I .0 7.! ‘r I .. . . I . . ... . ..I III A I .I I I I. I. : I _ . ..I I .s . . I . I . I .... J- w... . I D I I O 'I I I I I I 0‘: I L I . I ... . w . . o 0 I I I . I I _ II . . ..I .w . I .01.... . . I . I v I I I I I .- w . I . I. no". cu It's". I? I . I . I. I . I I .l... 3' GI I _ I I . .. I .... :0. so I I «0 I I .‘1: II-I‘ ‘1 “1...: u r . _ .. .. I . .. I I I I I . I. I ....o 3.400s "H331... I I. 0 . O ......IIII .II .I.. A I... .... ’ ... I . .I . .III‘ OI ..O....|I. coil .a ‘Hoo — . I . ... . . I. I ... I. I .I :03... IO. I00 ‘90...." I . I I I I I.. ..Iv.v 0.03.3 .01... I- ..w I . . .. I I . . .... I I. ....oa. .r...~I..1 010.0:1 . — . . ...: ..V .. I 2...: . ..1... _. (I. i I I. s...!rIII III. .. .. I .I. . . I I . _ I . I. I I. . I . i I I I. I . I . I I . A . I I . An ' I I W . I I. I0 I I I 19:6: . d. I I." h I" II I.’ 0)?" AI II I I I. I ..~.. 0. II.A 0.1II9I’3L'I III“..va- .I . .. . . . I II... II . ....I ...... II .III. IJI. I I I I I I . . I I .0 .‘I I I I‘DI-Iaa01 aunt. W I I . . . I. . . . I. II. 00.. III 00...... ‘I. ..‘II'II I . . . II . ...I I _ .... .. L i. o II’IOIOQ .0: -..t. Ilnnrv’l". . II I I . . I. I. II ...... I.3I V 41%... .1151. OIIIII I I . I I I I I ... I I. r I ......IIIW I\.I>I) . I. I. J .I. I II I” III..." .IIIIIIII. I 0). I. I I. . v .1 ... .I .‘...0.l...r.iolI-0! I. I. I I.. .‘o I . 4....lhd .4 .. II II..." ‘I.‘k~ .I‘l. ho“..- . (o I !I II [70“ 143011;” L.ILI£I 0 I 1.. . .. II I I IIQIC I I I ..II .03» 0-. five...‘ ; II II\ I . I 62”.. 0 . ‘ ..«ntII .. I II II. 03.1.... 3.0. .0 _III I I I 1. I I. . 1 .- Id! 0‘. A I I I II 41 II. JWWWII .I $0.3“?! w I I. I II .\ t . . n I 0. 35.1 IIOI‘VIIi... | I I > I V I III-OWL...- l‘IIII III ..IaiIfEIJA W I I . . . . I II .. . I, I‘ll III...I.I.’IIIIIII0| I I. . . I. I9 I.“ III. I III}: \I.‘a.. .2711... A. I I I . I I: I I ‘0,I!.I...II~‘II .tII‘.‘ .' I I. I a I I I I III. I). I 1. I Q... I.II\I\III.ID A I I .I o. . . I I ....IIIVI..I..... J I: III-It‘s I. I 2 3 I .VI I III-l 000100.: .1000? 0.11 w I I I I II. .. I I II ...-I. III I .. ..III .I 11130 1.... ..II 7 I. I ‘ I. \ .I AM .I 01 0.). ,ot...‘vl“..“ 0.0 l b .v c I .I I ..I I.» I It :04 ‘I I ‘0: 0"} I A I ..I t I 0‘5. .. II. \. ... 0’. {U‘IIII gr I I V 0 I. I .0 I . or.I.ILIII I I... I '0'..- L . I . I I ‘ I I I .II I I IIIZIIO I‘I \II II. I.“ I ..fi I .I :1 II . I 105. I. .III II}. Ila-II .v IIIIIII \.I ... III I.‘II..II I: I I‘ll I . 0 I a I .‘ .IIIII .I. I... III I.I'I.I 3| . I II A I . I I . 0‘. (.I .I. '1‘. IIQI I0I|II.II v. I II. .\OI 'I.!.:I ‘III I 0 I 'I III. 1"I‘I I 3‘0, "#w I I I0. I 0 0.5.‘(IIIOIII‘ . I II II? .5 II ..‘IIOIIYIII-I'JIII I III -4...‘ I .‘I IJI‘I I l .0 PI . ..--..II0II I. I00) 7 I on. v 0 I 0 "l I. fill!" ' I ..I I .v- I 0 .0 .0. II 0 I‘00‘ .v I .. I. I. 0. I. I I. OOIIIIIII 'II. - I . IIII.‘ I. I .I 00.. II III! I 0! I I it 'I_ ’ l c 4 . I 'I'o“ .00». III- “ II ’ I \ {1' (III-.1 IIIII .l I :4 V 0! II Ivtl I I a A I I I I III! 0: I III! " 0 - . I ... VII IfioI. 0 I .C I n . I . I I .. IIIII I I . . I 04 I 00 O I II . ..I I l I I I I It" 0, I.‘ I‘ II I II II . S I. III! I l I I6 .. «”3”» I? .1 n I 0 ... II .. .. . .. . .... -.. {$12. I .. . .- .- {IF .. I. . ...I......... ...... .. 3...: ii... ..........I.. .fi...3%.i¥.§..§dgaa§ I o. .. . . . . . . . . .. . . . .z. -.....s It} ...... . .I:.v..._...g§é§§$?.u§.§fl ”if?!“ M"? 315 TH5 PLACE IN RETURN BOX to remove this checkout from your record. TO AVOID FINES return on or before date due. MAY BE RECALLED with earlier due date if requested. DATE DUE DATE DUE DATE DUE 5/08 K/Proj/AocaxPres/CIRC/Dateouemw ABSTRACT SEASONAL RESPONSES )F SOLUBLE CARBOHYDRATES IN THE LEAVES OF FOUR COOLuSBASCN CRiSSES TO FIVE NITROGEN TREATHENTS by David S. Green The quantitative effects of applying 0, 3, 6, 9 and 12 pounds of actual nitrogen per thousand square feet on the soluble sugars in the leaves of Agrostis palu: ris, Festuca rubra, Loliungperenne and £23 pratens's were studied to determine the degree of carbohydrate depletion at higher nitrogen treatments. The mono-, di-, and oliogosaccharides were extracted with boiling 80 percent ethanol, separated via paper chromatograms, and the resulting sugar Spots evaluated quantitatively with a densitometer. The polysaccharide fraction was observed to be a glucopolvfructan, extracted with boiling water and quantified colorinet- ricallv by a ketohexose test. The greenhouse environment produced leaf tissue considerably lower in oligosaccharide than field samples. Effects attributable to nitrogen treatments were most prominent in the oligosaccharide fraction, particuc larly oligosaccharides other than sucrose. The di- and monosaccharides failed to produce concentration differentials directly attributable to the nitrogen treatments. Treatments providing more than one and one-half pounds of actual nitrogen per thousand square feet per application pro- duced near identical carbohydrate reaponses. Regrowth in the dark estimates of food reserve agreed favourably with chemical determinations, particu— larly values for oligosaccharide minus the sucrose fraction. Temperatures in the 80 F range and higher appeared to exert an adverse effect on prowth A a: ‘\ o ' \v s' i‘f‘ CIR} (.1 :1 U c l a- 1"- a. . v] ‘J-v L-alq ( v 1 i'a _’ ab na- 1 SE SUNAL RESPONSES OF SOLUBLE CARBOHYDRATES IN THE LEAVES OF FUUR COOL-SLASON GRASSES TO FIVE NITROGEN TREATMENTS By DaVid Go Green A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Department of Crop Science 1963 QM“; fl ’0 0 Approved: " 47 v . [Lilla 2/ I I ACKN 0W LE GE KENT The author expresses appreciation to Drs. J. B. Beard, C. R. Olien, C. J. Pollard and H. M. Brown for advice and encouragement during the course of this study. A special consideration is given to my wife, Dixie, for assistance in conducting the statistical analysis, and in preparing the manuscript. Ho Ho - ‘1 . . .0, .> _ ., v- II-I' - ’ t ‘ I V' " x i" 3 u .. . .' L - U . .fl - I-v 9 .1 .. - ’ s -' L n 2“ ';x I‘. I). '0'- .h is 0 l ' ‘. ..3 . a e v I" ~ v“. o m- 'I’ A. ,,r \. o '. - .... . :- : t l I _ A i I - ‘ - n; ”... r " : ‘~ ~ . . .._ . . I.‘ ¢ r- ,7 ‘ L ., l o t.) '. > ‘ I. ~ | .4 v ‘F .n\. - -, ,3 ~p . ‘o‘n ; 0 .1 . u. 't 1! '. ."1. I I . ’ 9'” v—c ,fi. . .L _.q p v: . ‘Pv' .ef-Rl" |.. , . ff- :3 .lfa ’~--'r C5- -" | ~--‘ t '-.‘ I’. . *i)..3 .‘V' ":‘ f , .. , . --‘~wa 00.0.0000...0000690000...00.0.0000000000.... 3. r. y... 131 'II‘, 1- 1 . . J _ . . ‘-""-~v' 4--='“-“" .0.........OOOOOOOOOOOOCIO...0.0.0.. v .1- '..‘ .‘C Vi." . * ... 000.006.0000....900....IODOIOOOOOODDOUIOOIO. I. f" I"? 1 t'” 3........C'OOOOOOOUOIOII.......OOOUOOOOIOOOIOOOU .‘.. H L‘yr 1.1151"? 6" fi -‘--o 4...-..4.-....: 00......OOOOOIIOOIOOOOOOOOOiQOO0000 4. "e ' t" . "-T v . ~ - 59w ur- v - ‘, § ‘9- ,-.,l'.~ Asap. >u yr. .‘t ., v :I ‘ ~u.. .~ . , . . '. r. . .3“... ...$_ :1.’1.:a\‘\.£. k... 3_. _ '.f i a ...‘. ,.. .f ‘ (I ' A .er f» «'3' <§ H «.31 .‘.'~ 9“". ".2 7~‘n§7*‘f .31? 3}?”3! frj '.'~ wry: 13"": -“d (9 A 'L I ii I‘ 31 't"‘Q-l-§ 3‘1‘ :Jtd-fl . u“ ‘.:- {a "I ‘* > E- c i. ' g - ... u..<'.§ ‘. ,‘ '1“"~" a...-- . 9| .. _ ’ I .- . g“... 5 7'. ..r'u... .. '5'“ ,n ., ”,V ‘ . .1. _ . ‘ ... .‘ 4 . . f‘ '. ‘ '=‘ -a - th'r' r ' "1~. .- ' wn'Jfiux’a '-...~\'.~?.,il"' v .‘.‘ _ . 0‘ .J-‘ 51- T" .5. . .-. 4.2 . f- 4-‘. .« .-. r“ 9': {.1 ‘s 1 '4 o 7 v, H ", -‘| V 3' ".l r . "'~'-"J;-"-¢3 “‘9“ I" "‘-I' 0C...GOQQUOOUQOCCOCICQOIOO 3 et“." 11‘!‘ I.” " ~"-t-5“--‘ UOOODICIQOOOQIOIDOOOO‘JIIOIQOOOCQOOOOS... ‘~"~ ... .. F‘ "‘5~“T~’.fi(.' 1.1 -.. “Jive.” 00-00000...ooooooooooooooueeOJone...o .- T I" '\ tr _V'- ' *' '\ ‘ 1 V", ' ." :«Q‘~"’ {PF I IQ‘J'o -.fi 'fi' *1 v . . _ 'g -' ‘ .:‘ l r ..g iii-. .LI‘ .u.J.'su'l.,.-J --3 .«Ablw... .o-‘b :~I.u:'sl (if. . as" o . ’5'“, g ‘. o. fa ,1, (at. E"'I,_Os’.D,-.Qll.'-.'EIQ «v 3 1..« yr ~-_'-x . 1. I ,.~.._ ‘1‘? :5 SHAH?“ g-L. ”0”,... :1-:.-.. .5" 3.15”}; cw.) .. " ‘- ~ .4 .' ff‘vWU-OU‘W‘Q’U‘H' . ; 1 .',r , .-.- r. , ~ , I in. n-q.. ,- . v.’ v . ' “ .0 ' P". V, ‘IIN’Q .'|' l_. I. f", 3.- '1" \ ' .f‘ ‘_ ‘V 5 ‘. ..~ - .. ; > p . . _ .. .J u . l. , y n ,. ‘ c-oAv4-t-wuawu m-“m:bmd an... A -— -__._.-- ...-... ’0‘. ‘0 . fto\-.\-a f-.-" ‘,.- LbOu‘u" 5. 'MLI L~.I.i -. 4.7‘.,..,..‘.“ ‘1‘ -. 3 "_.:,'.4“.. an. I-«‘-ob«‘--Lw ~.~.u . m.) cocoooaoouooOQOOOOOuooauoo . in ”H?" I} 2“ ’J- -‘ ' IOOOOIOOODOOOOOOOUOOQOOOOOOGOOOiOOO30.0. F7.vo'-~t‘:l_f 7.1 ‘3” “"""*"“r"-" ..OOOOUOQOOQOOQOCOOICCOUOOOOOOOUOOOO. “ n, C .I. .. I _- , '- -~ I ‘ :_ ..n‘ {I Jug“ )‘A r ODIIOCQDOOIOIOOOOUOOOOOOOIDIIOCOOOOU “' - v.1..— .’ -. in; <- -.-.... 590.IQOOOOODOOOOO0.000000IOOUIOOIUOOOOIIBOO - _.' . u.‘ .00....I.IOOOOOOOOOUOIOOGOQICII...OOICIOOIIOOOIDOIO "3 vi 1. f J .43}? m Y ;\ ’- Q ..., :" In? L‘IM‘T 3.1! .l 1144*, '. f: a’. ..,‘- - ‘ - u. \n; \ ~q. - . I. VAU“: . .--s. L463; 6:33 ilk—'5: fut‘nffi {If}: ‘Cfi‘ In? 3:93 Hal. J r «£141.! £31"! 3 ‘2; ‘I ~. . "9‘ L. ,. 2 4 -. . - v ’i n or : ... ' 0-. a . c ‘ .. -. . ‘n. Hui 4t use.s cccurr:ns in nw;mca leutuchz hide re,s n i ‘ t“ . VG. - s .‘ - v '- ‘QO. 'i Reflux-3‘? $111“) filLI’d‘ffi-‘tl tlfirlt¥nftlltia¢ ...g....°q.g....§..... Len; enrnnhwfirate percentefea isisrtined an a dry weioht bauis ensucrfnn in anmatn creetin: bent'rass \ I .. ..j c" . ' .. .u . .. .3 If?! ‘31" .l‘ffl Illtfi..‘§.’,t.'7! th—‘nimfinteo ooooIo-oooooooraoooooeu I --‘~ \ I -.\ v n. - ‘\( I I ' x . ‘- ’6' <‘ . r' I- Les? r “Jonywrmte werme Yniifl Materninul on a dry : - ‘. x a- . . n c‘. ( -.- v- |.- I. - a ‘ .- - » wulvut basis occurrirfi 13 comrww :eresn.el rgwqr;ea .‘x‘. 8 a..~ ...-.... unecr lies nitreinn treltflrntx. ...................... iv .9 13 pa G‘- 15 I) ’1 :o 117%,"- H M. 0 H In. 4 0 'f? ‘.’ a. Laid: f . ‘0'; i 0 .- . n In“: 211‘s: 5 a GI" 'JrlFf‘I. 4.3M“. “IV" C .1- 1. for: ”Y" i ‘I- L", n ,0 . . .1' &‘ .~ “.| '.. A a 2173‘? {31' V.:'~:2“:o".}‘.C-é? !' 1* .1‘ 331‘ are". e; ’3}; y ‘ l'nI-I- ‘wrc'm 1%,: ' "\'T‘\""‘V" M '1'“ 4", 'fi. ':”‘-\i 1" A"! ' o l . ~.‘ ‘IIIOL Holt 3‘. -.‘un "‘-. a 'Jmllt‘ ’ ‘y ’ I'-I. t i’o rr-l--5li :IA \Jtl a :05. I" ‘ I‘ I‘ J 3 “F“ I"ira t ‘ 1"?“ I: '1‘“ "I" s: -m-~ fi‘JAtL. lb ‘.3 {Jr - _.‘1.-‘*-.r" ! L«6'u.«. - 5 Va :thLA'u‘- . .. . .- . ' .. .a. -. as. . ' ,.= .. 'j" ' ‘. VIII; tIRmItIQ!.LQ. ii'A‘"' a [11' :51. ~.L'--t cI-L’ 1~-I“-"I’. .00.... ' t I .t '\ ‘ a. J.“ ‘ 'I" ". Q I' 4‘ n .s "l'f“l" -. " 1- ,.~, -" t ?. ',‘ .- . P , ". i . '1)‘ (J.L.L: (- \ffil-'-.a LII: .s .3 Ituai.) 3f: .00.. u'la‘w .o , “ .C53I'. '9’", t1“! - -’ .1‘ ; " "~ .‘ 4" ).e' 0-1. '1 b II. C 3‘? . .w - a ‘ 0 "0 y «In a 9.: C "C‘A ‘I-ib LI‘II.‘2 .; . ‘.'I I 3"».3.“ _. undyr five 3“ a” 2., .. . {~47 1."! lth o 1 . .fE L’Ad‘m .‘0 . 5-1.3? ’ , o 1:; t'ms leava': or" 'ia'rrrzztxr‘: r: .f‘:3'.l" x .I. - c. . - n 'n- v. 1'1 . n. -- v- . tt¢s nLt'Hgsn tree.»eu.s, JUufi b tc a1 5 7'}. he blufl ( I . -s .n‘ l . i 0 . . u e . r - ‘| - L " fzxm fi;:"t, w thaat sits, June a .- I 'rewses H to .0......IOOOOOOOOOOOOIIOOOOCOOOO 00:113.:rzt I". it '1 ”"3 5 ‘ Ali'WI-i‘.’ ‘1‘ ‘ ‘7 . i . V i 0 ‘ I‘ II - .-. I ..., m" .' _ .I n I .. '0 a. --a. .c $.3'r'fl- tit .-I- a} i I13 (.U;lL.x:3".7. 'I‘f-L ...-.3: ‘. ' 2"1'! 33 ’3 133'3; .. T. A .AI-lg'deC £1. 0.000IOOOODOOOOOOOOOOOOOO...OOIOOOOOOOOIOIO ,une 15 to July 11, 0.00.0.0...00.0.0........OOOOOOOOOOOOOOOOOO 3?} ...!» .~~~- . Mt) a ls.\¢ r - . -. . .1 -. .. 0:1ltvw' e the n**u'c3 “er 80.ua18 ee- 4 1*)?”74" '.".’ 2311‘" " 51 “ii 5‘3? 5"..-L-31"-:I‘tU-‘? Viil‘iiu': 3 I .. u . ‘. , I l . ..Hf "".‘"'13r.". 1’5"" " '5}: ‘ oLFY‘III‘J'l."c3.“";".?.o OQOOOOOOOOOOUOO ' - a .. . ,. " m . 3. .'. (zazn-rrf..x‘:r‘f«.t ‘18’fl,‘.ti . r... lime“ 1mm! {'71 a :5. 3' .-.':v', . DI " 0 u 5v v I. I“. o ‘ ~ ','. ' ‘0 ‘u r h :.--.‘-.1 (SLC 1?"? .1. ' s1 rrh'l-xfm hl‘ufclf‘flx 3' £111.18; 2" “-3-. m 27' K.-. .'- .fi ‘7 -’ ' - .. ... .,,.., t.'*» ith‘sd ‘ 'lir Li'u nits .vn ere I'Glta' ”.-‘:¢|‘vu - “ III. ...I ‘-'-:‘ A. «3 A o 00000000000000.000900000000000000 ‘ C""."‘v..' "1" Hi? ' ‘*.""9! 9 ~‘ ’tv ? 'I' “‘3? 4-bit} Y "a T m r\ m. ~.w-.--' «- : - '.'.--,|-_"A.-o'~ '- .- 3'4 ;-|I"\v )~_‘\ All ' ...: ..r..,;". if. at} L. N41 F’ L .‘J-u‘m ....M '~ -.'.--a. -.-wz..»° d. - tlzee .sn.i' e .i.tc»1nw n; to . carketvdrfitn I. Lnn.e {Hr-”~12 35.1". "159 n 2" 1'25: 3. . .. y- : u -' wt .3 , . .. II‘ on a 53:71" -\ *9 ... be! - I U.‘ . t . v. I v a . r. (H a dry meijk- {SVT&T” mfifa" ~l 0..IOOOOOOOOQOOOIIOO0.00000UIOOO. . 0......OOOCUOGOOOCIOIIOOOOOOQOOOU {o ‘- Fave Md Pa .71: carhthydrate percentases deterv1nad an a dry we1~ht hasLs accurerg in Fenil&wn Chafinln. ~ev fefiaug ug}gp 2’ thyme Einr1¢ skylicntinn nitrofien trea.ments. ‘1 913????“ F "'L" 7 ~ '73 .. ...r.»\. J, 4.10... 00000000000000.00000000000000003000 ., pa h: J? L.“ 8 a: ‘5 ‘ ~~ " . - ~~ , ... - ~ 1": n 'lqu swwuuufr~t . . . . 1 '. :r£.1 «cnfnum' .* t . .. -- ' ' 0‘ “‘~0; ‘ 31.:9 en r9131.un1 ‘. -; ‘«“r '..-.r..:* 1 (3.: C.:-,:l". ‘.‘r ca.wn3 tehtucxf kl .’ , ‘ . . O u .. t: {tr-‘\ L'fl ‘2th "NH-u? ‘ ' H .5 .,;, _ .. . 1. ‘ Lav W..u:mTc uvnuv~;x.t as . . - a 5 I‘rf ‘0 6:: cgwfir‘. '10 . .K‘ a. “g¢.._ 1.3."? 'rj-T o 0 0 ~. C131! ’.' 1-"! V L"- . V ('3 n12...;u.: (.‘P'flt: ;. :113 “If fi‘dh trau ‘2 '\_ 't n" . ‘5. VA r'L.‘\..‘ ‘ g '. 4.9"")? ’3 in _ , s ‘ A .3 . ‘4 r L v J 0. L‘szfiv. L 3“: .n-3‘41 ' by. :— 3. ‘1”:- V» .5 1* ' I .3 ' " r‘ " .9 a. a. -'..i’o.‘ -;..f'. t ;‘...:._f ,v.‘-;, 2'. ' ~ ‘9 . 3' {£3 »; 'rll kit 4: 1 nu? A'J "9 0000000000000000000000000000000 . _.':."._,’~_{ 1*: t}!{.‘ 56*fafia '1 6 :~ . I . 33 {La 1" ”‘3”‘0' . ‘Caiv s.‘ . 2 3%. "i 0000000000000000000000000000000 .v 0 ._ ;uuw in the 5?. ~,. . “ ‘4 .15.”; 1'. ' 3"? A. ....J a ,- y-e'i! 9:0 '. ,. vs%'\'~.*"; C' ’ ma ta imivau r“ 1.23”. .7 .1: tr; 1:: .-: *m I} h .‘7 I“? .L- n .. ’. ‘~ .1 .. ‘2"? 0_ Lflo t3 ..;. .V~. Eve ”Eve ."’ 8 I .ép‘ u" U -‘ 00.00....OUIOOOICOOOOOIOOOO'OOO 00......000.....6000000000 OCOOCODOCOOOOOOO.QOOI08.00 far: ‘ \ Tl) INT R0 DU CT I 0:! One of the objectives of nitrogen fertilization of grasses is to maintain plant growth. This growth is a result of the interaction between nitrogen taken up from the soil and reserve food materials already avail- able to the plant. The utilization of nutrients, primarily nitrogen, absorbed from the soil solution requires metabolic energy and a supply of carbon skeletons, Specifically organic acids. The major storage forms of this energy and organic acids are the soluble sugars, which are re- ferred to as the carbohydrate reserve, or more generally, reserve food material. The objectives of this study were; 1) to determine the nit- rogen treatments at which the carbohydrate reserve in the leaves became a grouth~limiting factor, and 2) to determine the quantitative effects of various nitrOgen treatments on these individual leaf sugars under greenhouse and field environments. REVIEN 0? THE LITERATURE The importance of the sugars and sugar polymers, which are referred to as reserve or storage carbohydrates, to the utilization of available nitrogen by the plant is most easily elucidated by consulting a general textbook of bioctemistry. Carbohydrates can be broken down via the glycolytic (Enbden, Hyertmfi; Parnas) pathway and the citric acid (Krebs) cycle to various organic acids such as pyruvic, (X.-ketoglutaric, fumaric and oxaloacetic acids. These organic acids may combine by well Y“: established enzymatic reactions with ammonia, AT: and in the presence of magnesium ions form the corresponding amino acids. Chlorophyll synthesis from glycine and succinic acid is another reaction which uses organic acids. ATP, which stores the energy for these synthetic reactions, is also a product of this carbohydrate catabolism. Without either the carbo- hydrate to supply the energy and organic acids or a supply of available nitrOgen, the plant is in an unfavorable position to carry out the syn» thesis of new materials. Thomas (cited by Troughton, 23) defizes a reserve food material as a substance that has a preliminary period of accumulation followed by a period in which the substance is maintained in_§i£2_at a relatively high concentration, and that later, in association with physiological processes taking place in the immediate vicinity or elsewhere, the concentration diminishes. According to Weinman (cited by Troughton, 23) certain groups of carbohydrates viz. sugars, fructosans, dextrins and starch are the most important reserve substances in grasses. Pentosans, hemicellusose and true cellulose were considered structural materials and not further utilizable as food reserve by the plant. McCarty, Brown, (both cited by Troughton, 23) and Sullivan and Sprague (22) hold similar opinions. The dominant form of reserve carbohydrate in cool season grasses according to De Cugnac's 1931 (a) classification are fructosans. Chemically the type of fructosan in grasses for the most part is the phlein structure, that is with a carbon 2, 6 linkage as contrasted to inulin's carbon 1 to carbon 2 linkage (9). Archhold's (l) exhaustive review of fructosans in monocotyledons cov- ers research prior to 1953. Troughton's (23) 1957 review of the under- ground organs of herbage grasses cites three workers, McCarty and Weinman, Mollvanie, and Aldous, who studied seasonal affects on food reserve material. They noted a decrease in concentration of reserve carbohydrates in the roots concurrent with early shoot growth and then a gradual in— crease during the late spring and summer followed by a decrease at the time of secondary herbage growth. Mollvanie associated maximum reducing sugars with rapid vegetative growth, maximum sucrose with differentiation and greatest quantities of "reserve polysaccharide" with the brief rest per- iod prior to secondary growth. These three authors plus Bews and Bayer, (23) and Arber (23) all noted carbohydrates are accumulated in the roots during the autumn. Sprague and Sullivan (21) noted in orchard grass that high-nitrogen fertilisation tended to reduce the percentage of fructan and low-nitrOgen fertilization tended to increase it. They also noted that the stubble and lower 2/3 of leaf blades contained the highest weights of fructan. The roots and upper 1/3 of the leaves were much lower in fructan. Sucrose was highest in the upper 1/3 of the leaves, and next highest in the roots. An inverse sucrose-fructan relationship existed. Sullivan and Sprague (22) also noted the regularity of loss of fructosan with temperature in- crease was similar in both stubble and roots. Baker (23) working with Lolium perenne also observed that the per- centage of total soluble carbohydrates was always greater in the stubble than in leaves or roots. Shara and Tanaka (6) noted the fructosan con- tents of each organ of Italian ryegrass, Timothy, Bermuda grass and Bahia grass decreased as temperature rose, the concentration of fructosan in all four grasses being higher in stubble than in other plant organs. Hansen, 3£;_§l;, (9) refer to Waite and Boyd's observation that the stems of growing plants commonly contain much higher levels of fructose polymers than do the leaves. A direct method to measure organic food reserves in relation to growth of alfalfa was develOped by Graber, 33:.Ei;9 (8). They transplanted alfalfa plants into pots which were placed in a dark growth room. Before and after dark regrowth values were recorded for dry matter, total sugar, dextrins and soluble carbohydrates, and total nitrogen. They concluded no very specific conclusions could be made from these studies £33153) but that these procedures might be useful when interpreting results from chem- ical determinations for plant food reserves. Harrison, (10) and Juska (12) have used this method for evaluating bluegrass food reserves. Jordan (ll),used a modified version of the McPary and Slattery (18) Seliwanoff test for ketoses to study the effect of environmental factors on the carbohydrate reserves in the leaves of bentgrass (Agrostis 2alust~is). He concluded fructan (phlein type fructosan) to be the best indicator of reserve carbohydrate in bentgrass, total fructose next in order of reliability, with free fructose and fructose from sucrose of least importance. A constant temperature of 70 degrees Farhenheit produced the optimal growth response with the corresponding negative effect on reserve carbohydrates. The discovery of paper chromatonraphy by Martin and Synge (15) and its subsequent application to carbohydrates provided a technique whereby the individual fractions of the carbohydrate reserve could be studied. Using these techniques as adopted by Laidlaw and Reid (13), Lopatecki SE; al;_(15) followed the quantitative changes of soluble carbohydrates in the stems of three wheat varieties during two growing seasons. They noted the presence of glucose, fructose, sucrose, oligosaccharide and fructosan (phlein type). The oligosaccharides (a number of low molecu- lar weight nmnoglucopolyfructans) soluble in 80 percent ethanol were the dominant form of carbohydrate stored in the stems prior to ripening of the grain. Glucose showed maximum accumulation around heading and pro- gressively decreased towards maturity. Fructose showed two peaks of accumulation, the first at heading and second during the dough stage. Sucrose concentration was appreciable at heading and gradually increased throughout the milk stage when monosaccharides were decreasing. Accumu- lation of fructosan in stems occurred after the initial build-up of sucrose. Oligosaccharide trends paralleled fructosan but in much greater quantities. These references illustrate that the relationships between nitrogen availability and total soluble carbohydrate levels have long been estab- lished. They also indicate a lack of information regarding the effect of nitrogen on the carbohydrate fractions of which this soluble carbo- hydrate or food reserve is composed. SECTION I THE INFLUENCE OF NITROGEN TREATMENTS ON THE SOLUBLE CARBOHYDRATES IN LEAVES OF LOLIUM PERENNE, AGROSTIS PALUSTPIS AND POA PRATENSIS UNDER GREENHOUSE CONDITIONS The objects of this experiment were; 1) to develop a suitable tech- nique for analyzing large numbers of samples for soluble carbohydrates, and 2) to observe the quantitative effect of varying nitronen treatments on these carbohydrates under greenhouse conditions MATERIALS AND METHODS Plant Culture Methods Pure stands of bentgrass (Agrostis palustris, var. Toronto), bluegrass (Poa pratensis, var. Eerion) and ryegrass (Lolium‘perenne9 var. common) were planted October 15, 1962. The seeding rate used for the bluegrass and ryegrass provided 2,500,000 yerminatable seeds per thousand square feet. The bentgrass was vegetatively planted. A randomized block experimental design was used with three replications. The flats were 8 inches deep by 9 inches by 2“ inches containing a soil mixture of 50 percent sand, #0 percent loam soil and 10 percent vermiculite by volune. Approximately u pounds of 15-15-15 per thousand square feet (.6 pounds actual nitrozen, phosphorous and potassium) was mixed into the tap 2 inches of soil in the flat prior to planting. The grasses were cut weekly to 1 inch height of cut with hand clippers. Water and fungicides (weekly application of Hildex from December 15 to May 27) were applied as needed. The plants received no artificial illumination during the course of the experiment. No additional fertilizer was added to the treatment flats between Oct- ober 15, 1962 and Harch 2S, 1963. On March 25 a complete harvest was taken for chemical analysi . Treatments totalling 0, 3, 6, 9, and 12 pounds of actual nitrogen per thousand square feet using ammonium nitrate dissolved in two litres of water as the nitrogenous material were then applied in one application. Subsequent harvests were taken April 6, April 13, May 1, and Hay 27. Analytical Methods The selection of a suitable analytical technique was governed by the number of samples to be analyzed and the degree of accuracy required for following seasonal variations in soluble carbohydrates in a realistic fasnion. “he analytical procedures employed by Lepatecki §£:-§fl:_(15) were based largely upon methods previously reported by Laidlaw and Reid (13). Laidlaw and Reid’s (1H) extraction and elution technique was com- bined with Dubois EELuiiL (5) phenol-sulphuric acid colorimetric deter— mination and consistently accurate results were obtained. A more expedient method combined Laidlaw and Reid's extraction and separation on descending paper chromatograms with the utilization of a direct photometric reading as described by McFarren, Brand and Rutkowski (17), but without a record- ing integrator. This method eliminated the time required to locate and elute the sugars from the paper for colorimetric determination. A procedure evaluation using D-xylose showed an average recovery for eight replications of 87.32 percent with a variation of 8 percent. These values were judged to be satisfactory for seasonal carbohydrate studies. A comparison of extraction methods using a Soxhlet apparatus versxs ‘ extraction over a suction :iltrr 3rd Buohner vacuum flask produced results i. .m c I. féVDFififi the Huchuer'wothod (Aposniix Tthlm VI). fie firxtlot tufhod, due to its refluu action. vernittei the use c" less salvent to attain the $.. '“ - ‘ s- '. ..- . . yo < r"; - a ..1 '., .. ... ‘ .- , .‘ .‘ sous tclrfifi or GKtFéCtlnu. dossvei, the nae 3f 1he inc oer d171u.mv?nt v ' ". a ». V ~ 5 x ‘ ‘ o , :" ~ ‘ q. . *‘ “. P .v ‘ ... . - r" n rwqdived moan lens extractlnn tlvu. of u3}nn a ilamq shipcraior at re- 0- s a‘ 1 V o ' - I .- ; U. -, ~ «. .v ‘1‘ . - —' ‘3‘ .. dune} ?rn sure sea a reviereture or 03 metres: C., the tiltotvtlcxu ea- .4 ,1. «1.,. .1 . ... “..-‘I "53} ... i' .31.”, ,.__... *\, 5““. ..,.,.'-. ...J ‘lfl 'WI’-"..-:'J"6 '41: .. :,-- ,1.L0ru' '71.; 3b.! 3:..- .uiali 41,-! I..- -‘:(_. a nus“... -= N" it; e. ’ (.1 .| 5 Twat“ * ~31 l m”m~»~n.“mm A. "firv'lns 1) Hand :15: ed 17 grams ?;:sh seirht leaf tissue at % a.m. on Clear Bars. 1") I:"'..'"r.r::avi in 14’.) ml. toiling 29".} :TifiI-kagrlt write-.1313). for ‘3 minutes. P‘ -.-I q .1 0 ,0 .d‘, I ~ ‘ ,> , . 0 ,: ~ ~ ’. ‘ a '- .’ O r. ‘ o) ntw barns and stored is re rtaeiitnr (tarneoature «Q :.1. 3'1. ' "*2?“ to 1;»: torrid-at ion 1) fiifed nrfrfixirately 3 trams fge’h weight to a tired icr, and placed in oven at 183 degrees C. for 2% hours to determine onrcent moisture¢ Tfifig Duxvlese to denatured sea is (A-B) as a re. }-’ \J '3’ (:4 fir” L": O 9 »r {in f) "3 ’3 cover? a:QCk. - " ‘ ,' .’ ‘ '1’. .1. '~ ,.~ '0 "b u' ;- "a n . "9 " H-‘ ’ ' $.v1x..t‘:m.i'.r£e £3.) p‘f‘t‘hs ably/.1: Li)!“ 3 F7 .‘lzlifl‘fi .11"! fl u-TZI‘L‘J? Lixl'i'li‘i. \ I \v’ ?ssrei Cal through nuchnsr funnv u) ‘ul ‘5 {.4 (J O 3 P 3 “3 H: r r": t in Q I} O pd A y—a .‘G 6 H- -v . " ..-. .. a. .. .. l." 9+. ”our.an no. 2 iiltsr ?3 er) Connected to a racism -1uin. Aden -. ,' , :9 _ t.- ‘.." . . 3‘ . . ,.-. fit; fiuymyi slut xxuutl lm-Iinl. w31$.*h? n3 herwsnét eifnnrol. e) 4) m v 6) 3) P3 alcohol fraction contained mono-, di- and oligoeaccharidee. If tissue moistures w thin one grass variety varied more than 1 per- cent between treatments, calculated percent moisture and adfiusted to a final 80 1e rcent ethanol concentration in the filtr te. Water fraction. Extracted with 150 ml. boiling water the filter reeidue from C-2. This water fm ion contained the polvsaccrlarides. Rade alcohol fraction to 230 31., sampled 50 ml. aliquot and evap- orated in Flash Ev Mp meter at reduced pressure and 65 deqreee C. to 10 ml. Similarly made water fraction to 150 31., sampled 30 ml. aliquot and evep ratei to 10 ml. Hydrolysis. Divived alcohol fraction into two 5 ml. volunes. Nade one 5 ml. volune 1 normal with HCL. Similarly divided 10 31. W3ter fraction int 2 equal volu3cs and hydrolyzed one fraction as ahove. ration Prefiared No. l Whatran (18-1/4 inch by 22-1/2 inch) as follows; drew lines at 1 inch, 2-1/2 inches, and a inches from tap of paper. Labelled paper and spots (kept 1 inch min inm separation between Folded paper and placed hair drier (cold air) on Opposite ends of origin line. Us ng l :1mb d3 pipette 3 Spotted 50 lambda volumes of alcohol and water fractions from C-S to labelled origin. Similarly spotted 3tan {ards (19, SO. and 100 micrograms glucose , fructose, 1 sucrose, and D‘xvloee). Clipped paper to antisiphon rod and lowered into dry solvent trough in Chronatocab. Placed sapport bar in trough. Adde ed solvent 10 h) 5) 6) 7) Percent Dry %.' (7) to trough and removed antisiphon rod clips (solvent used; n-propanol, benzyl alcohol, 85 percent ormic acid and water 50/72/20/20 v/v). DevelOPed paper for 30 hours. Removed paper by fastening clips to paper and antisiphon rod and placed in drying hood (room temperature) for one hour. {1) prayed with p-anisidine indicator (1 gram p—anisidlne in 40 ml. n-butanol, plus 2 ml. 19 percent HCL). Dried 1 hour in hood. Color was developed by placing paper 3-5 minutes in oven at 95-100 degrees C. Rcanned spots under Photovolt Densitometer (model 52~d) using a ”45 mm. filter, and recoriea maximum optical density. Con- structcd graph with Optical density as the ordinate and concen- tretion as the abscissa using readinqs from the standard spots. Converted optical density readings of unknowns directly to sugar weights per 50 microlitrea. m€rrozrams sugar x 100 = micrOgrame sugar 2 percent dry 10,000 tines percent moisture moisture weight 11 "N‘;‘c" .‘v- J- ...A _ I ... ,- .Or .9. ...—ya, ~. . ulna. .t’z“..;’2‘~ law-8 not 3:!e.:.en1. in 4.545;; t2.m.!”*.‘;.C.C.. v.1! ”.... the -'3'L~3(’.::‘z..ru‘ad gamma-1“ 3.4- ‘ g :3 '1’ O 2‘ . E, 0.. ‘1‘. J U‘ 33 .“ in 1.. D ’1 ('3 " I 3 t H p} t1 2‘. ,‘fi “1 w 1 '9 ‘. .1. ,V O. L! 1': -... ‘1 v4 .3 final f w . N a ’3 Q 5 3d 3 J on» - :r~ fi5‘. \. L .7. ”0;. kill. 4 . 8 3" Cut-J at“: . r J". r 4.“? ..P.‘ “tot“.xfd ;. '13 . -.Y ‘- m v"4-~~ ~. ‘un—- ~. .mluw ‘.'<‘-“° 97:. m n<-- Van... 3-,. ’J-m . vu-h 'I‘E: ‘IJ: J 81.. & f (2‘:"":: X}. ertr‘ "e. s. .3 a 1.3“ --‘; .Q 'r' 3- I‘d. {j“.( ...: J - r‘v'l t L’.‘ 0 I11- A D‘,£‘$) tr o ~~‘ 9 u ‘ \v, . 5 -.p' ... , .-._ .~ a a; "i 9 ...v P'(‘ r- u, -\ ~ -- V... . *u ..- ' q.‘ NW) . n'~ i: K" 'I‘Q- -~‘ ‘f ‘0 - 0‘ Ir .- 1'.‘ ‘g‘.‘ -vv ,' 6- 1 uKJt awn-‘2 0V} ’..-t-'.-L-G“.o ~~'.U...‘!"-..‘.;E’. tr, g'tzcx. J x t") ..w? L-u «.. ('1. '1:«-~'_€3'- a": {cwkl '. r L n - ‘ s ' o 0 ~. I x . -~ |* ‘ - ' ‘ . ’ . ‘ t ' " I ‘ 1 . r‘ luc‘ 01": Pt 1’ .~ t wt .‘ .tr‘v'fl'n 1' m1 ~31” .' * 11’s; fan's. ,‘ ..w‘ m’. I.» . I3“. 1 fl - .‘8 arm . ~ ‘-..‘ 9 ~ - .2— s - ufll -‘\(- b) 6-? (“Riv/3" C” "b5"."\ * (7‘? H C? {"93 kw}?! 3.3"33‘3'4 .l._""' “N 2-. I393“. \‘w 5"" n. a 1 LI. 13 g ‘- v . I.” .\. r . - ..., -. ,. .- . ' _ " I ~‘w. .Jule 1. Les. car chzdrate oe:ceute_es nétcr' wed on a drv Wei. t on - 9 . # ... _ I- . ..- .. ‘ ..- , . -,. .C' . . ’ . ,3 ..z., r. ‘. bnfith. occurrtnh in Eericn xentuehy Llue-rfics gudcr ,lve LLLra,ua tgfift‘ rants. 1153. .7: 1“ 3‘1 :4 i "3"" fl": I'I m , ,‘, . .~ 3: .houzd-l arral 331"” 7' r». FEM. Elgrwrg-T-e 7'3"*'-"Mfl T'Wir‘t we! E‘?‘=‘u':t0'~'=:-ur‘-. Ca z’.’*::-'::rvr‘:r::" e fidu-a- ... “mo-I'Ohi-o-Qm out Mam «I‘m-w ~— '- L —‘ A “ ‘” o— . o”. “‘4- “my- 3'.. A v N) f)" ‘ qr- . ,A‘ .!07.?.r-:l \J 0‘. ‘8'. . 'u': . C} 2 . ~‘ ’> S .1‘3 F 23 W“: - I '9 0'5 r 3 l.-= .43 .4H ..»1 4.75 ‘ d‘fi my“ 1 A fl w hi" 5’ L. ‘~a fla‘ ..‘-‘J ‘ . )3 L}°r.’ ‘3 Q t '\ 7")“, r, C'- 1‘. h a } -0 . I3 0": In“; “0,3 -" fl ', ’° 1. r r .. r r. 14- J. . ,.., 0‘77 ...‘) 16 ”'4 \;.\)l ‘. ‘ n n ‘ ..r L‘ -.i a. .— u- 0 i‘ d 3 -. 3 ’..!:'} 1.1.. ti. t“o 1.“? , o -. fl ,- - 9 "fi ‘0 .Lo ’7 t7“. f... .53 ...CJ) . § I I I“ 9 lgific} -2 0 ’3 V g .37 1. EJ- ‘5 9‘ .. 1 , v- 1‘- }.QL‘J t ‘. 1:?“ T7”. ,t.£.) fi- v i 1 I) ... "' "‘ “' " q w L3. “ ‘ f“ + 1 2 5 «L» g§l f r. W .T‘. .#a £3 ' H. t .,., Q 1 {,1 I.“ .7” 3 ‘. 3". to t x g 1.. a“; " " ‘. . ’5 ’fifi g A g ' J t- 0 ‘ tr. a O J ‘ A A § I.‘ fl it. 1.1:? t1. "’ my. 0.0:?) 3 3.3% tr. .2- .?? u.?7 ‘3 @303: {P5 '53”. .33 :J9;O 9 3.”? t'. tin. ' 0:3 32:? 1': “.13 t“. .21 tr. ”M?“ rJ f ~J - ‘4 (I H O ‘ ~ r4 0 “.1 J C c; H C 1 'd O “'2 .C‘ 3 .1937 91‘: 0‘5" .623 20'?" 5 1.9% .27 .3? .11 ?.RN ‘} 3.93 .31 92.5 .17 $0.7" 12 1.3“ .3? F. .13 ?.]W Soluble carbohydrate percent of dry weights for Toronto creeping bentgrass are in Table 2. Glucose and fructose levels were similar re- gardless of nitrogen availability. However, between Ray 1 and 27 Fructose in the O nitrOgen treatment showed a significant increase. Fructosan treatments showed an initially Wide divergence on April 6, but by April 13 the 3, 6, 9, and 12 pound treatnents had formed one group while the O treatnent maintained a greater value. fay 27 the 3 pound treatment also increased in value. The increase in fructose corresponds to the increase in fructosan, the fructose increase showing a lag in response relative to higher fructosan levels. Sucrose, the dominant carbohydrate did not show a consistent response to the nitrogen treatments. As with the Marion kcntucky bluegrass, sucrose trends in the bentgrass paralleled the check treatment. Total carbohydrate with the exception of the April 6 harvest was high- est in the G nitrogen treatment throughoat the course of the experiment. Traces of oligosaccharide were noted in all bentgrass plots prior to fertilization March 25. Ray 1 the 0 treatment and May 27 the O and 3 pound treatnents contained oligosaccharide. Environmental factors in ddition m to applied nitrogen eftected the oligosaccharide fraction. May 27 the 3 pound treatment again contained oligosaccharide, presumably an indication of depletion of available nitrogen. The disappearance of oligosaccharide in the 0 treatment on April 6 and 13 is attributed to environmental factors. Table 3 represents soluble carbohydrates for common perennial ryegrass, under conditions identical to the Marion kentucky bluegrass and Toronto creeping bentgrass. No oligosaccharide was present in leaf extracts. Fructose and fructosan values were very low in all nitrogen treatments. 14 Table 2. Leaf carbohvurate nercantarafi deterfiinefl an n drv weicht hasia occurring in Toronto creeping beuttrags unier five ni€rnren treat» manta. IQBS. ?oundfi fiitrovnn n tr: . a a“ tar .Anumana: zfitnl P=tn fl~ncre Vast 2;:“msa ”3u*v79 T?m¢tcne F‘:ct:rtn Qarfififir4rata — A “ A “‘- m om ~ ~ Man-no. “m-Mwm ’ - \ Q Q, n ' f" flarcr‘ I.‘ 1981. .70 0'0 10”“ ti. .0 25 3 1.51 .85 .13 .95 3.?9 § 1.98 .?B .39 .53 %.35 I? 1.1? .59 .35 .3“ ?,35 Avril c 2.21 .22 .11 .93 zoufi 13 E 1.?% tr. .fiu 035 1,55 9 1-8..) 02-3 1’35. g::) 2.?“ 12 1.50 .13 tr. .93 1.37 May 0 1.9? tr. tr. 3.5% ?.53 l 3 1.“? 1:, fr. C". 1.“.1 6 1.9% tr. Tr. Tr. 1.26 Q 1.3? tr. ‘v. *r. 1.?” Raw 0 2.30 .23 1.;8 lufiu fi,u3 27 3 ..,S tr. .11 .l‘ 3,°u a 2.?4 .13 .13 fr. ?.°” 3 ”.23 .21 .13 tr. “.87 12 2.85 .11 tr. tr. 3.9% D nshla 3. Lea? cerhchvfirata parcantares fiaterW1nQd on a dry weight occurring in common perennial rvahrazs unier five nirvancn treat- 1 . .L 1* ‘ z r’ , .. A 69.” I"! ultra-*1?! ’ "“2, , ‘. 1 .ar .qouuauu Total P . O- . -‘ t , 1 I . -\ I ‘ ~. I. 4. w.¢s in ‘. T ‘ .- .v‘ F " 4. u- 5.33. ‘ ‘3- ‘.1‘? .9.) it . urr‘r .f- . Adv/3.x: s g: _'.‘,‘- h-"- ‘r. .31" _::1_‘ ._, “ ‘ _. firrr' «yaw—so ‘-‘ ‘ .. “ —-- mm- “ ‘m‘ ““ ‘-‘ -‘ L- ...... “‘4- Varch O 1.§? .53 .33 tr. ?.33 25 3 l.h? .hJ .?3 tr. 2.?1 b 2.14:: .u::- ..3 t.. .35 9 2.139 . 1 tr. tr. 2071 l? 2.23 .3 tr. tr. ?.S% xvr_i 0 1.33 .ou .11 ..5 2.2% 3 .87 .15 tru r". 1.83 C .75, .433 152‘. 1‘1“. .3? fi .ua .G“ fr. tr. .53 17 .71 .11 fr, tr. .82 i‘nli‘l‘il 0 o- »- u .. ... 13 6 3""? tr. "" "' 101*? ‘3 2.“? ti“. "" " 2. 17 l? 3.1: tr. "' "' 7.13 Fa? b 1.3% tr. tr. tr. 1.9? l 3 10;):' tr. "' "" 9-1..) 8 1.?; tr}. "‘ "' 1‘7? 9 2.7: tr. - — 1.73 I? 1.,» tr. w - 1.7% tag a 1,u3 tr. tr. ~ 1.xm '1 5-: O C s H H U C v‘ k.‘ \1} ‘4- C 0 g IJ N) .... .‘2 I"? 2‘? '5 ”1 0 i l S w s..- . O 5 . L «'3' 5.. M H o .3 ~a) C ...; L r3 r1 "5 O I {‘J C ‘3 54 The 0 treatment recorded slighly higher fructose and fructosan levals. Glucose values, while greater than fructose and fructosan did not illus- trate a varying response to nitrogen. Sucrose was the dominant carbo- hydrate in ryegrass under grennhouse coaditions. However, a poor correlation existed between soil nitragcn levels and carbohydrate values. 17 “Ian-v; :r-f’r 33¢ *al carbohydrate valuaa for all nitrocen truatnants peanrally were lo'e* tian the cane .k treat!¢nt in all three :r33389. ho confl’ tent d1”- fercnces bgtueen nitrogen tPGQtT ant; occuzre d (exclu$2nz chagk tcwatwent). ”xxtv-t.fies days Pfter nl trc,:. a plication the 3 sound treatwent values for fetal Carbohyflrata weie interwefiiata betx¢en the 6, 9, ahi 12 group- ing an! 0 treatment for Tfironto cremginn bentwrama (T4315 2). Hitwcgan '\pIetian in the 3 pound treat/tut is aviiencad lalirectly Lv thifi accuvu- _I latic a CF car no‘;3rate. W1 :9 3.1513 nitrcxen 3:;licativn .33 d,,-3rk to prev vice «news; nitrtgca fcr plant uptake in all trqat eats aufi hat can anPSfan trnetmcnt (.xclu fim my the Check), diFCUrunceg fllL no: Cflfid". Sucrasa was the dominant sugar in the thrua firnfilfifi (T films 1, 2, ani 3). Tchtwssn Far Varzun kentuckv bluvfrun; and Twrfinto cree5115 rant- ...~..',. \- .-'. .,.. . . ’ . ',’. , ‘ ._ ‘V'fl ..., .. q 1 ... '. ' gfdflfl were k“:A\. ul.__.1‘:.;i‘t (\(C-il'it ut‘3136t‘4). 1-.{36‘3 le‘WUL‘s-i «11‘3 {I “m'l;u .UT‘t d1':h ...: ~ 3' ..I. w.- ....-1.,-'. ,r .-., .... ... ..--gr .. ...- 4.157.- m 0:! . ‘J‘J14..'.V'-'." 3 (9'; 3) '1.” .-Lgn‘ILw C OY‘Cu‘s-J‘s: .- 1'3'332 ( ~’ ' .3; t 1 u 2‘ l 1.)." n‘} 'l .3). Tuvy o sarved tucraae :0 be aw3r9x7mntaly QUU71 ta Fructu _nwn in the uyrar two«thirdn of lea? blxdae, hut far all lower leaf and 3tunble 'srfq Fructomm wait: -."‘!o:-3r;2-3;'-t over r'xcr-c 59 «1:11 t‘e other 1m 3:3 r-t‘enent. Can- Siamrlngt 19; rang! "i”s‘fir-nt tram; 0F art-1; .:«~.‘:1.::c-dz.v1'ri«ice 1m, in {‘Lmt'2, Hanna” 0?. 31. (3) T0 it cut tfimt marrow: in the "0 t 1 .P““t" , Iatfi in Quantlt“ and In impurtance, to filsrt fifltxzfilinm. There is evi Race that fiucrqu 13 utilizfid in the Forwaticn of Fructwnn by trflqs“ructezvlnt§mw. 3:1 lemi’ ti.;~:s::.;-a, :;- . rm 3 value": T‘mue cont: 302'21‘103’5 era ‘M’l‘. “4 way m as {#:3231th 1:31;!) Fructfivusn were? LllrtTafiiiifz‘A ...: DJ Jordan's studies based on leaf tissue of Agoetisgpaluetriq indicated fructan to he a much better indicator of reserve carbohyflrate in bent— grass than sucrose. Peach and Tracey (20) pointed out that the FcVary and Slattery method for analysis of fructonans can be used only when 80 percent ethanol insoluble fructosans are present. Jordan used the shove method on material extracted with water (90 degrees C. for 30 to 60 min- utes). This extract would contain 80 percent ethanol soluble sugars. The possibility exists than Jordan's values for sucrose are low. Oligosaocharides were noted in the Toronto creeping benterase on March 75, May 1 and May 27, and also in Marion bluegrass in preliminary investigations, but not between March 25 and Way 27. No oligosaccharide and only low values were recorded for fructosan in ryegrass. Bacon (2) also reported the presence of fructosans in Lolinm‘perenne but little oligosacoharile. He also noted raffinose to be present in green rverrass leaves. Paf€inone was not observed in any grass during greenhouse studies. The low values for oligosaccharide are attributei to environmental factors other than nitrogen treatrents. 19 SECTION II THE IfiFLUENCE OF NITFM .W TREATHEKTS ON THE SOLUBLE CAR THEDRITE fl4nCTIONS IN LZAVES OF A.3 P0 ”IS PARLSTPIS, FESTZCA PUBRA VD DOA Poiteqstg UNDER FIELD CO-NDITIQ The olmjc ives oft is experinental series were; 1) to improve the ana ‘.ytical methods used in section 1 for determining fructosan, 2) to observe the quantitative eff eat of varyinr nitrogen treatments on the solitle carbohydrates under environmental conditions, 3) to compare the addition of soluble nitrogen to turf in single seasonal app olic ations versus fractional amounts di:t Mi)ited over a five-month period, and u) to comaare the technique of measuring plant food reserve as inlicated by regrowth in the d31k with carbohydrate reserve values determined by the chemical methods later described. fiATERIALS AND METHODS Plant Culture Methods These eXperinents were located at the Crop Science Farm, I'ir chigan State Univer Sltf. Prior to 3961 the plot area was a low management eras award. This turf was removed with a see cutter and the soil augmentei with coarse sand to produce a sand 7 loam soil to a six to eight inch depth. The area has 3 1/900 foot slooe wifi c1: proviies adeQJa esurfaco drainafe. Toronto creeping bentgrass was dormant planteo November 1951. Penn- 1awn creepinr red fescue, Nerion kentuoky bluegrass and common kentucky bluegrass were seeded at 2,500,000 8 code per thousand square feet (seed and stolen source, Hiram F. Coiwin and Sons, Detroit). The e'perimental design was a randomized block with three replications. Individual plots measured three foot by 2% feet. These areas received four pounds actual nitrogen prior to August 18, 1982. su- D ffsrontial nitrogen treatments of O, 3, 6, 9, and 12 pounds per thousand square feet per season of available nitrogen (ammonium nitrate carrier) were applied with a Scott's 3 foot spreader on August 18 and September in, 1962, (each application 50 percent of seasonal total). The 1083 treatments were applied in one-sixth season's total nitrogen amounts April 18, Kay 15 and 31, June 15, July 16 and August 15. The ammonium ni- trate was watered immediately after arplication to prevent foliar burn to the leaves. Analytical sanmlcs were harvested June 8 and 22, July 8 and 23, August 8 and 22, 1963. In addition, the Marion kentucky bluegrass was sampled Has 11 and 23. Similar methods were used to apply 0, 6, and 12 pounds per thousand Square feet of actual nitrogen in single treatments August 5, 1963. No foliar burn occurod. Samples were obtained August 5, 6, 8, 10, 12 and 16 and analyzed by the methods subsequently described. The bluegrass and fescue areas were mowed at one and one—half inches twice weekly. The bentgrass was mowed four times per week at one quarter inch. Supplemental moisture was supolied by sprinkler irrigation. Other maintenance practices such as herbicide and fungicide treatments were ap- olied as required. Soil temperature data was provided by the Department of Agricultural ,ering's microclimate station located at the Horticulture Farm, 2'1 :5 “’3 ~40 :3 Michigan State University. 21 Analytical hethods A modified version of the analytical technioues descrit ed in Section I 1-:- 11‘: was used for all field samples. Experiments were conducted to determ n the sugar moieties wnich comp03ed the water fraction (polysaccnar ide) i :5 the three grasses. Water fractions of Toronto creeping bent; r-3. and Marion kentucky bluegrass (Section I, analytical nethois can) we} e applied in a 15 inch solid orig in line to Whatman No. l chromatographic filter paper as described in Section I, analytical methods D. The paper was run for 133 hours using descending n—proganol, benzyl alcohol, 85 percent Fortic acid, and water (50/72/20/20 v/v) as the developing: solvent. Parker st pipe 4 1 inch by 22-1/2 inches were developed with p-m 111s id.ine-HCL to locate non-migratory origin lines. The origins were eluted usi.ng th: tet Minion of L? idlaw and Reid (1n),hydr01yzei with l N HCL and tech romatOgraphed. Cltcose and fructose standazds we1 e alr so included. The only super remain» 1mg after this processing wan $ructose. Clucose was not observed. Fructose was concluded to be the dominant sugar moiety in the water fra 3t.on. 1he McR.3rV and Slattery (12 ) WJth:Dd for the colori: wetric determination of fructosan was used to evaluate the water frgaction. This modiric xti1on elim- neted the photometric determinatic n of the hydrolrzed wet or fraction. Determination A. Samples 1) Sampled 10 grams frc h material at 10 a.m. on clear d¢»a s. z: .1) in 'F t f Harvested Fescue and blw 3820 s with a mower set to 1-1/2 inch height of cut; oentgrnas was cut at 1/3 inch. 2) Denatured ”or 5 m1nuto: in boiling 80 percent ethanol. B. C. D. 3) Stoppered and stored in refrigerator (minus 9 degrees F.). Extraction l) A4193 2 microgram per 1 microlitre of D-xvlose to A-3 as a recovery check. 2) Hacerated Aa3 for 3 minutes in a Waring Blender. 3) Alcohol Fraction. Poured B-l through Buckner funnel (1 sheet Nhatman No. I filter paper) connected to a vacuum flask. When dry aided 150 ml. boilin; ." ... ..J 80 percent ethanol. This fraction contained the mono—, di- and oligosaccharides. N) Water fraction. Extracted (Buchner funnel, a second vacuum flask) resifiue from 8—3 with 150 VI. boiling water. This fraction con- tained the polysaccharides. S) The alcohol fraction was made to 250 ml., 100 ml. alicuot sampled and reduced unuer vacuum in a Flash Evaporator to 10 m1. 6) Hydrolysis. he 10 ml. alcohol fraction was equally civided. 7) One 5 ml. sample was made 1 N with “CL and left overnight at room temperature. Both the hydrolyzed and unhydrolyzed samples were spotted as in C. eparation Identical to Section I, analytical mathofls D, only 25 microlitnes Spotted (versus 50 microlltpas in Section I). Percent Dry weight. Iientical to Section I, analytical methods E. Water Fraction 3) .25, .5, l, 2, 3, a, and 5 ml. of water fraction E-u were pipetted into 30 ml. teat tubes and made to 5 ml. Prepared a watar blank. y-la ‘3 ‘3. IV 5.2.. 551 5 wl. G. yarcent alcoho c reaorcinnl (1 Vrac PEHUFCEWOI car 1 litvv 33 oarsaat at anrd). 3) tidied 1": ml. 3-" fror‘wgaxw 'fi. (.1 Vultma 1'? 1.6:: water) to 5 vol- ufiefi of concoztaitafi hob). Jinn! Taur‘tiweq witw stiftiné r05. u) Placed in E) 3yfirfiflfi C. water bath for l7 rinutez. ratical fianrity at Sun mu. (hauach 2‘3 '3 1-8.: 2 ..J . a. 3) waual into cuvcttau 3313. Lori}: “ ' 22c? 7‘01}; (2 '2 "1 ) . E) Th9 raafiinvx wart c0? awed a win t a fitdLLJTQ *u?V- ova tructofl mith known amount; o” irnctosc (l? to lzfi rscro‘zaaa iractnue . 5" ... .. .‘ ., ‘-_-. l.‘ .. . . .. . ‘W-¢_PI t‘ {1'21" J 1‘1. kW’CE“) by tttfl i.47'"..aCL‘J’Jr"§ U'. (3:1 1.? Us'i’; .1 .t {”3 R. 7) ’arcart dry waivdf. ‘ “ *; cz‘Cw=fi\W:-x nil-"57‘ mz. ,lfnwc um .- ...’--.--- mun-us 4. w -5 war.- ‘3 1 fl, , " . ;< ,q . .p .- _ I. (A l '--".;. is In. ' '1'! \. 1.: n1;- a; v lrw z maflnwmh an a. J -. , l ‘._A ‘ ::. , ,V, g l;\, v. .m.~‘;3r ‘ fit»! ~ut..- ..~,‘. ‘,“_-,‘- -..“! ,:»-..'.‘. K ".-_:.ti.—~J (”4; X ...; 1.;T‘r's Wu}. ... "" ---. P. .. ,. ..' , . ‘_s 1L0 th“uni“ua or n.nuuvivx the a cunt 01 r arc an o pzaht "Itorills 6 -’ u’ _ v. ., . _ .... .. «4- 10 total darkn9"a an an infixcatiou n: CPfafilu fined rvaarva er uflJJ to 1 . :_. .. . ... ‘ , . '. . , ,...1‘....:_,,3 t”. _ . -r ,. ,. ....,-. cafliama dutuz‘far C\*HH3r!an walfla reauxi..(muima;ull my c.n:?zc.l (Italyhtaa v.29 . ......1 ..4 ..‘-... . W. ...'- W. t~.~.‘ - .1 ”LL. ...:C'dt‘. bri‘ ..3..‘.€!.‘3 {PL-‘3‘ (.11 '3..i.i'~’.’7"~.,‘.72 tifix‘tvr'fif-‘ff‘fl (z. LYNN.“ 2585:». "931:.“4 Him. "‘~‘r~.«-' ‘ yaw" a ...J. .v i 1" EV!"- -. '1' '3 '2.- ~‘ “'s ‘4 q!” “1 “'3 ‘3 t 1 av"... ‘n‘ '2 3‘3. ’P .‘1'.’ '1: ‘ f "‘3‘ f“‘fi cr.’ 3 |.~‘.m 6 \}.n ‘. ..'\."l If A.” uk ' ‘ . -‘ ’ 51.} ..-‘- ’5 ‘.~ .. “ -. u I ; L: tr“.“" ’..~N L. L' "i- I ' ‘ ‘~' -‘ "' u 1., ks W 5‘ La; p J 1.5.4 (‘1 '1 {.2 ,} J. p .3 ‘ b a he. "7 - 1' if) Q l \ t-J % 1‘ 3 ‘1' H \ J» I r r? ..1. ‘& I: 1- J 3 n u; r I... ‘ U r? ’3 ’ ' ' ‘ " ' ~. . '.. ...... 3.. ,--. .~~ " --.. .. - ultk;n Dflfi~flnflrt%? Iacn or fly cran ,czn; to sa‘nlsm hatsrmfi, uni filnCri in a dark growth chamber at 70 degrees Fahrenheit, June 15, 1963. The plants were watered every second day and fungicide (Kromad) applied week- ly. On July 11, after 26 davs in the dark, the height in inches of re- growth one-quarter inch above the crown was recorded. This leaf material was subsequently removed, dried, and weighed. 25 > r'; ."P\ VT are“ 1" to 1— 1339"t"1te ftr~wuul 1.: :13 a? *3C30"€. :ILreifl. fruc— tm"w :31 fine; »uT 5°, ’ztmfivrxkn find *"”‘51 Cvricfixli*1fo 3n erfitw Ventuc:vg lfiluv ‘*3$d. T75: Ulixwefincvfl:ur€;fig “‘ecii'w: (“wfitfi r1) twiu :w”* :1 u. 16? *9? chain jiucnialv'rutzten" (fiwvfisiei by chr* ate-'apu'e we.erutisn, hgérmui .H3 and a enccni cur-=wvc-r3piae anzliwiw) wee eltiewtei 73 the fiutfiltlfin r“ c»:% e! the newlvaefi ”rectierx, eacldtih. nearese a: this Value was included 34 the aliyv eras-rife freitiau. R11 ?§.4 e nitnuasn treatments 5e11e3 1: Shaw cen:i:t:nt £1? graham; in their afieet on tfie dry .rQ-{s ol.\’ wei ?0r sucrema, gluceae, .p. Crank fruet' 21‘ psi -‘ \.~ aiue3 > ~ "~ I‘ .7" "a , ~ , .Drv n“ . ,- ' . - V , ., .K ... '~ Q‘ 1. excrrezee t...e 3 noun-d recit'ent. . we a, Y , 8!? ? ...? t feather“ hm"; tufl: " é: -- .'. .~ . I: . .- -... .LL)'”{.?Jt . as. «"37er W 1:35. . .3“ Vs'. Lia-.5 ‘. £2 '1\ t 9" \C "r" I? {Hit-4 :‘QJffl‘tJ-iri “ — ~‘. ~ , - a a; 5 la; . 9- ., - w' . a V'r . .4 fig ' .. .‘fl 5 -\ ‘ Q ,‘ . n ? u“! C(J.-‘~'::.5~iv’3~.'.. ts‘ihd fifl’fflf‘hs'u: ti-tatfi' .mrm 15-2."; In 11???? f 4.1,"? ‘C‘HTK‘L‘AM .: ..~ .'.. .g‘._!_ . 1.“ .. ...? '. .1 , '.. . _ .3. -A, . . .. 1 rear .. ‘3’, g I. 2 , n... 1‘ (1 s. ; .01. 1a.". :15“ 3.1} V3151)? ’1 We: {‘92 ff- ‘.~.~;.-’."I-}-'.1 ‘7 1.1;“ HLG 1" ~'~"-"" f: {'- _ . . .. ‘_ .. V 4. .-...t, .3 i, . ....,'..... -‘a 1'; . x... tzr ‘u trvu*'entn. .Loe, oi ,rn aneuri.a we“ the duplhght naiu-ie carhau ' If. , . ’ . .......J- v . " .. o c -, - 'v ' ‘ . T s s . - h? a?) if: "f“. '7: r“: mm. "3‘ hide; I :é 1".- -*.--;‘.?:"7. int! tfitni C..'.‘?“.f 3" ” P H'Vv‘i" " ‘- x n. a . . E~I '." - ’ ‘u r '.-‘n. ’\ldao r, -4. .,. 3 1 I.) -a A ..~‘. rift??? JEN-49 13...?!) ’M'r‘fi “.1 3””??? if? TAR 3 1.’ K’t'.‘~-'-1";-"satg ibil‘efiu wt" J .‘21’1 ’9 “In; \v, ‘ Q . h f r.~ ' r. g '. ‘.‘ ‘ 4 . ' tue * and 12 trn1.eent leseie tue iowt.t. ( 'wr-w w” i av ‘- '6" -' ‘-‘~v ~ ~v-- \ "w:- w n' r~'~-«w '9“: 1. ' '- nr ‘° nun 'uw 71", ' ~1- -, " -~h""“' i ..,'.. £3,153“! f‘ t‘.‘1§,’.1k 4", '7’ ‘p‘,‘._«,.l€“, .' _ fl'fi .a t. i. .. {.4 3 ’,¢t(. fr 3‘. g l ..t'.) 5‘." 3 ‘.-“, _. ..t“ _, '._' 1 " Cl. g. .-- ...ws ' "” . ..- ,9. A r ‘ ..‘ .- -, . . v 9.”. .- .. - ."' . h-~-..p.4.~.' 3F: 3; gaffes 9".1 Jan-x ("‘14. 14"- (~-.;!:xr«:z:t t“ .Fr..~?.1"£~x'n's~-e 57'191133 1"“ --‘t.‘\"$ * o-‘ _ -' ~ ‘ I'. I ,' ,’ .- ~ I I ’~ r a. .. .‘ a» to or .; te hit ’f"fl trzzeteerta cccuwrvi. TCHul as ,vngea MCIn neite ; «ngua_ . ...-_' ,_ _,,. , l ' ..- . -. -... 3 , , .. . J . . . Y ,- . ' i . a. list 7': " 1):. elf-"19:2. ." 11.53 rrq:|j(,1.('§~.}‘§ "531'. ‘3 " -. u ”M"! 0:3“1 ' u:‘..g{«, {Vii .3- 1. 1:1 I: .‘ué; 113‘. g 'I . ,I. v .. 3 '- g o . ' I 3 . _. v- .‘d I '. .- $~ “ -‘ 7,,» . “\-‘\ ’5 ”h. , ', .. . . ' .- a- u . izn to e fiuwv d { wéi- reflGJG‘f nuifi~u “i. awx egr). .ldCl e rJfiA;~<3 in N "' " f"". 'r' ")5 1",“! P‘r- 'l’ 5 ~ vw .4. A 3 a e “-0 W31} {Ilia-:3 [Edam — 1’. 1 333—} t‘ v t‘J‘» \c‘ (44".? t. o ‘1 . slr " ‘ " y " a at}... ' “V ‘L’ .11 ‘ ’3 " 145’? “‘ ’1f‘ 1 ) an .n=< m .usq mm 54:5 a sane an .955 o tend an an: ad an: «a .us< o .u:< an hash r hash «a .356 o 06:6 on but «A 5.: w 4 . . Pilaf. 2L“. E/L II" a .d m u 1 u o '1 mm .- ooouosna n 3 u q 1 2 .9: o .3. 2. 32. o 3... 2 82. u 32. a... as. 3 3. ............f.:...:.: q q u q 3.33850 «38 . o bl 2 .....3 a £3 2 :2. .32, 2 c2. .32. 2.5. 3 5. < d d 4 a II. \“V L « é a// /. ,\ 0| zqflyun Kan ;o auoaqod R 4.3 o .52 S 22. o :2. 2 23.. a .9... 2. .5. 2 a... H 4 q 4 11 11 J .o. 8228.833 . . 2 ...2 a .9: 2 ad... a 3.2, 2. :2. o 23.. 2 an: 3 3. u a m 3 n gin-ob. 3.7.5. m agony-.59 «an nv n. n a 238.2... mi?! ... wanna-059 o |:|||| w. wanna-aha n o.l.| a M. caucuushu . n .aucouuoopu acuosum: opuu o» oven-Ana nooLuoSHn axoaucox cams-r .0 ...-0; on» :w racqucuuauoaOQ cunnohnoauqu .a onnuuu Nixon ha 30 zoom; aquon [an ;o auoaaoa :q’jon Ann 30 sauna-a «a .u=< o .u:< an ads» . ads» an ocsn o oasn an a.: HH an: «a .u=< o .u=< an has» o gas» “a can» a ocna mm .1: AA an: «a onsw a can» an an: «a an: d c 1 .a ‘ ‘ an .u=< a .us< «a hasa . has» r |0II| \ . n .. m 0 u 3 o 1. A a m H 0 v! a An N 1 o I, an .¢s< o .xs< n« has» . Adan «a .csu Juan—“£0298 432. r ........ . ......... 4 + m 1 q . .H In Chou—UPC L n o oasn an an: AA an: 1 1 «a .u=< a .m=< an ads» 14 ‘ o Adan a“ ocsn . gnaw a“ has a“ xq: < q 4 d m m 1H 1 O 1’ LN an I a u‘ 1. 03920000038 ._ n U! an .m=< o .Us< «N >455 a hash um 0:55 u d‘ .838 3 .. o 0:55 nu >1: «4 hi: lullallllUlllnlnln-fllII-Ollutd‘ln. I fluiug HH< unlu-cb. aces-E £352 uconuuoge «conuacna «A o o n o q 1 d ....r-...-......# l d . J 3 m 1 H 1 O '9 L n u" v.) a U. 3 3333.. t n Jun-lug 60-23: 05: 3 2,338. caucus—.3 5.03:8. coloo no .233 on» 5 2.0333038 vulva—.0353 .« 8.5.: 1 ‘ 4 LA 1N 0.953.. ..n who“ Ma go moan-d who“ no ;o mama who“ Ln J0 wowed were near 1v 1d mtical. This would indicate that sucrose almost eyclueivew 1y made up the olinosacch aride fraction. Also, cligosaccharide values For June 8th to August “in :‘eviated vzry 3.ittle from the 2 percent level. Fructosan was present only in trace an arts. Total carbohyflrate leuels decreased ve ry sharplv from Jute 8 unti.l July 2 . This decline paralleled the depletion in the monos cc Wari fractions Figures 3-A to 3-H illustrate dry weights for the solutle carbohy- drates in Toronto creeping ten1:cr% s. Glucose, fructose, and sucrose show definite seasonal var mtion ,but lack differences attributable to the nitrogen applied. Only trace amounts of fructosan were preeent. Progres‘ sively higher oligoeaccharide values resulted with decreasing nitrogen treatments. Total carboh; drate values shoaed two peaks of accumulation; the first in late June and the second in late August. Sucrose, glucose and fructose concentrations in Pennlawn creeping red fescue (Figures u-A, u~c and nut) were independent of the nitrogen treat- ments. Sucrose values maintained approximately 1.5 perce ant dry we i; ht throughout the s 1mmer season. Glucose and fructose decreased from a June 8 peak to trace values in rid-July. As light recover} in fructose w: 15 noted in late Atzgust. Oligosaccharide (Figlre u-D) values shocefi a tenlency to P maintain values near 2 perce at, but lac}:ed a pattern related to the nitro- gen treatments. Total carbohyflrate values produced the most strik ir .r re- su .ts. On May 23 the 0 treatment was o.u to 0.8 perCc ant ill Wher than the 3, 5, 9 and 12 treatments. On June 8 the 6, 9 and 12 treatments recorded a peakv value (1 percent greater than the 0 and 3 treatments), and then do- clined until August 3. The O and 3 treatments showed a lag effect in 29 2 .9: a .92 an 3.... a a?» 2 2.2. o 32. 2 a... 3 3. fl 1 d 1 1 < who; an 30 3mg . «a o: a .3 «a an. o hula «a IS». a 05:. am has dd hi: I q ... a \\. I. .6 It m ,, H C III J H 3 n a m . a m v! w A n 1 nu. one»: a I .9. .3 a n n a q fatalltlonolnng q . J x .I» a u m 4 so 1 H :4 O p n .. . . / m. /// x m a m Ix . u h. u" m .... u 81-38838 L a I 88:8 . a 2. .91 o 62. 2 32. a 32. a... 35.. c 13.. 2 as. 3 as. ..-: In. ILr-uana.-uF.unua-o.ow.u.n--.- H--. - --..~ - 263 .63 23... and... «as...» .25.. nus-:33. < 1 d 1 “’10! ha 30 3mg med 1 11 u 1 a ... w . a Dual...“ #25232 N * wily-9C. 2|.ll J W . a wanna-ta. onl,|.. .. flag 0": wanna-la a III a < .3302... 3.95: .3... 3 .5336- 0,98- »..3008 3.898 no .3 on» 3 clown-3.9.80 3,333.30 .9 '39: «N .u=< o .ua< an Aqua a sash an ocan c cans an us: ”a an: 1 u q d 4 q d . a c. .u=< o .us< an sash . aasn «a cash a can» an an: «a an: 1 o..Ioc‘alolon-u..luaouoloo 4 I! J u. m . ~ a n m . . . O O 1. .. m 1 n m . a H M o ... h. 3 q q ... 16 1 t .I COOUEL . n u . m M 395209.30 ~30... an .u=< c .us< an >~=n o Adan am can» a oasu mm yo: 4“ so: «a .u:< o .us< an has» a has» «a can» a can» an an: «a an: 1 + < 4 fi 4 4 id J n.......... q... ... a A H w . o; m J A) m .... 4 n H m m m 1 S. '5. .A n m. m 8228 8:8 0.00:3 L n UI an .u=< a .u=< «N gas» a has» an cash o onus m“ an: Ad has .u ...~ —~.. m an .u:< o .95 «a :3. o 3.2. an 03:. a use an no: 3 an: m 1 T + 4 4 1 4 1 L m. u m A Hm H so 0 O Sauna-5.2. 37.5.9. # on. I ecu-510.; 2- l.‘ n W m uni-07; a :l .l . a was—wag ol M waging a lllll P fly a k n Jug-5.9:. couch»: c): o» 3.338. 30.... 3 3.7.5 5.1.3:... «o .253 on» 5 «coda-cusses 39.830930 ... 0.5.: reaching their peak concentration on June 22, after which they similarly de- clined. The 3 treatment was intermediate between the O and 6, 9 and 1? treatments June 8 and 22. The results of applying 0, 6 and 12 pounds of actual nitrogen per thousand square feet per season in one application August 5, 1963, are i1- lustrated (Appendix Table VII for Marion kentucky bluegrass. In general, the 0 treatment values for all four carbohydrates were higher than the 6 and 12 treatments. The 12 treatment depressed the concentration of sucrose oligosaccharide and fructosan more rapidly than the 6. Seven days after nitrOgen application, vegetative growth and carbohydrate resoonses were indistinguishable for the 6 and 12 reatments. Common kentucky bluegrass (Appendix Table VIII) maintained relatively stable values for oligosaccharide (predominantly sucrose), irrespective of the nitrogen treatment. Fructosan values were less than o.u percent. Less growth response in terms of green colour and vegetative growth was observed for the common as contrasted to the Marion kentucky bluegrass. Merion contained both sucrose and longer chain oligosaccharides. Common kentucky bluegrass contained only the sucrose oligosaccharide August 5 to lo. Sucrose concentrations for Toronto creeping bentgrass (Appendix Table IX) did not vary more than 0.4 percent between the three UltPOgen treat- ments. The 0 treatment oligosaccharide concentration contained 1 percent more sugar three days after nitrogen application than did the 6 and 12 treatments. This large differential continued for the next nine days (ex— periment then terminated). The highest values observed for fructoee and fructosan were 0.15 percent and 0.09 percent respectively. 32 Sucrose (Appendivaahle X) was the predOminant oligosaccharlde in Pennlawn creeping red fescue August 5 to 16. No differential responses attributable to nitrogen treatments were observed. Glucose concentrations ranged from 0.2 percent to 1.5 percent with an over—ell increase in values from August 5 to August 16. during this period, soil temperatures at the 3 inch depth decreased from 90 to 70 degrees Fahrenheit. No consistent ni- trogen response was observed. Results of the regrowth in the dark experiment (Appendix Table V) for the bluegrasses and bentgrass showed greater height and weight of regrowth occured in the lower nitrOgen treatments. DISCUSSION Glucose, fructose and sucrose are not typical reserve food materials according to Thomas' definition. These sugars are active metabolically as intermediates between the initial products of photosynthesis and storage forms of carbohydrates, specifically oligo- and polysaccharides. Values for glucose, fructose and sucrose (Figures 1, 2, 3 and u) for all four grasses studied under environmental conditions failed to exhibit characteristics directly attributable to the nitrogen treatments. Con~ versely, oligosaccharide, and fructosan when present, were in highest oncentrations in treatments with the least nitrogen applied. Leaf tissue, as Sprague and Sullivan (21), Baker (23), Shara and Tanakea (B), Hansen 33;.El;.(9)9 and others have noted, is lower in fructose polymers than is the stubble. This may account for the low oligosaccharide and fructosan values encountered. Leaves of Toronto creeping bentgrass and Marion kentucky bluegrass contained more sugar polymers than common kentueky bluegrass and Pennlawn creeping red fescue, and also produced more consistent carbohydrate responses attributable to nitrogen treatments. Marion kentucky bluegrass and Toronto creeping bent: grass responded faster in terms of vegetative growth to nitrogen than dim common kentucky bluegrass and Pennlawn creeping red fescue. This possi- bly was due to the availability of leaf oligosaccharide. Carbohydrate differences between treatments during May for Herion and Pennlawn were negligible. Soil leaching and plant growth during autumn of 1352 nulli- fied nitrozen differentials established in August and September. April 15, 34 May 15 and May 31 treatments were necessary to restore these differentials. After June 8 oligosaccharide trends in Merion bluegrass and Toronto bent— grass were consistent, the low nitrogen treatments containing the highest concentrations of oligosaccharide. The single nitrogen applications of 0, 6 and 12 pound treatments August 5, 1963, did not show any relationships between nitrogen treatments for grasses lacking oligosaccharide other than sucrose and fructosan. The 12 treatment oligosaccharido concentrations of bentgrass and Marion ken- tucky bluegrass, plus fructosan in the bluegrass drOpped below the O treat- ment less than 2n hours after nitrogen application. The 6 treatment re- quired more than us hours to produce similar results. No differences could be noted between the 6 and 12 treatments during the balance of the eXperiment. The tendency for the 6 and 12 treatments to parallel one another also occured with 3, 6, 9 and 12 treatments applied in one appli— cation as described in Section I. Nitrogen differentials for an experi- ment conducted over a period of several months should be applied in several applications to prevent the apparent excesses of nitrogen as observed in Section I and during the single-application field experiment. The grasses studied under the glasshouse environment lacked appreciable oligosaccharide in their leaves, hence no rapid carbohydrate-nitrogen interactions similar to those obtained in Marion and Toronto creeping bentgrass could be ex- pected. Jordan's study of Agrostisgpalustris under varying environmental conditions did not record the presence of oligosaccharides, other than sucrose. He concluded that fructan, the specific fructose polymer found in monocotyledons, was the best carbohydrate indicator in bentgrass leaf tissue. This was not the case under the environmental conditions en- countered in this study. Oligosaccharide other than sucrose (Figure 5) was the most reliable indicator of differential carbohydrate reserves. Fructosan levels in leaf tissue were consistently low. Jordan's fail- ure to note the oligosaccharide fraction is likely due to the inability of the nethod he employed to clearly distinguish the several sugars pres- ent in the alcohol extract. Soil temperatures (Figure 5) at the three inch depth increased from 61 degrees F. hay 22 to 83 degrees F. June 8. Sucrose values For Marion dropped from a mean of 3.u8 percent on May 22 to 0.56 percent on June 8. The high nitrogen treatments showed the largest decrease, the O and 3 treatment combination drooping 1.86 percent versus the 9 and 12 combined decrease of 2.53 percent. Soil temperatures (Figure 6) remained in the U.) high seventies and low eightie until August 12. Glucose and fructose . values for Marion and Pennlawn, (Figures 1 and u) in contrast to sucrose, increased in concentration with increased soil temperatures. After June 8 (June 22 for bentgrass) glucose and fructose in the bluegrasses and fescue decreased steadily until mid-August. Oligosaccharide regained values in late June and August which were considerably above the June 8 depression, and maintained these near constant levels regardless of the eightv degree soil temperatures. The advent of warmer soil temperatures (Figure 6) in a, early June produced responses in oligosaccharide similar to those caused P' by nitrogen fertilization. ”his initial heat effect appears to have diminished by late June and July as evidenced by a decrease in hexoses and increases in values for sugar polymers. Higher temperatures appeared «a .uac m .ua< «m.»aaa a man» a“ «as» o.»::» «a an: m an: . . fl d . . q .q . om .ao . on +3 . am he mama .Hm .m=< ou H mm: guano coca-» on» no oasumaoneoa Haom mawua owuno>< ugh .w oaawwm caqauI e 19 aanneaadmai 1103 'OAV to produce an adverse e ‘Eect on perce . total carm ohvdrate val.ues For he ion blue gras s and Fennlawn Fescue, with values decreasing from rid- June until mid-August. Kentucky bluegrass and ore -ep.1.ng red fw cue are cool season grasses. Marion kentucky bluegrass and Toronto creeping bentgrass, while also cool season grasses, generally Show less te endency to become dormant in hot weather. Lopatecki and Mollvanie both noted tr e highest hexose values to be associated with vegetative growth. Lower hexose values were noted during maturation, differentiation and dormancy. Late May and early June results with Marion and Pennlawn produced levels of hexoses which aqreed with these worker's observations. All four grasses produced less vegeta- tive material when 3 inch dept h 8011 temperatures reached the high seven- ties. Herion and Toronto glucose and fructose values.J while .ow, were igher than similar hexose values for canton kentucky bluerress and creco- ing red fescue during; .igh temperature periods. The total carbohydrate reserve generallv includes hexoses, Oligo- saccharides, and polysaccharides. Earlier in this discussion the inclu~ sion of hexoses in the reserve ca_bohydrate cl ssification was questioned due to their active role rat":ojl--‘ll". However, line to their tendency to be most nrOminent in concentration durinp -eriods of maximum vegeta~ 1' r~ , lation- w tive growth and of lowest concentration during rest periods, a ship which suvgests a very direct a3so Hi tion with sugar polymers, they represent an integral component of the total carbohydrate reserve. Total carbohydrate reserve values recorded minimxxs with the l? treat- ment in Marion kentucky bluegrass and Toronto creepirzg bentgrass of 1.u3 percent and 1.02 pence ent respectively. Nitrogen treatmer t3 did not dif— ferentially lower the carbohydrate res epves of common kentucky bluegrass and Pennlawn creeping red fa ' ue. The glucose, fructose and sucrose fractions vane affected little by nitrogen treatncnts. Temperature mav have icon the dorizant iact or. Uligonaccharide other than sucrose (PigUlE S and Appendix Table II), pros en t only in fierion and Toronto Cfieening bentgrass leaves in appreciable co centrations, showed an in— verse relationship between nitrogen t“eatments and Oligocaccharifle ccn~ centraticn. Under no treatuent did oligosacchavidc show much variation. More extrere fluctuations were caused by other environwental factors. Total. caruuuiflrdte values for Pennl1un (Appendix Tat-3.9 X) contained a lag in peaks for the O and 3 treatments elative to E, 9 and 12 treat- ments. Soil temperatures prior to June 8 were considerably below .0 degrees F. L01 1 org1n13 r.1s involved in organic decompociticn ani release of nitrogen may h1ve retpo m1ed to the warmer soil temmn Iatunes arC‘nd June 8. 801m le nit“o en appliei noril 13, Ray 15 and Huy 31 in the b, 9 and 12 .3 .‘23 1+ tznatmente may have overcome thii .POgen 3101t1ce and stimulated plint enzyme Syet;e m3 of produce carbohydrate. The 0 and 3 treetmcnts lacked suf.‘ ic1er t soluble nitrogen to initiate this enzyme activity. Larncr tem— peratures June 8 to 22 appeared to accomplish an effect similar to the 6, 9 and 12 treatments June 8. All treatments steadily dccreaeed in perm cent total carbohydrate as soil tenpe: atures remained near 80 degrees F. Results of the regrowth in t% e cark exveriment lackei the precision and specificity of chemical determinations. The teln iency of values be- tween treatments to overlap (lecreae zed their P lmi ilitv v. T1? ta relat mg 39 Percent of Dry “eight Percent of Dry Weight Figure 5. Oligosaccharide Minus Sucrose Merton Kentucky Bluegrass A. 3 r ______,0 Treatment .. _. - _ 3 Treatment — — 6 Treatment — ----- 9 Treatment ___.__.12 Treatment 2 b .nnun.“511 Treatments Hay ll May 23 June 8 June 22 July 8 July 22 Aug. 8 Aug. 22 Toronto Creeping Bentgraes 1 May 11 May 23 June a June 22 July 8 July 22 Aug. 3 Aug. 22 treatments to height lacked consistency. However, the lower nitrogen treatrer ts produced the most ary matter. 1nl s agrees positively with chemical indications that the lower nitrogen treatweuts generally contained the maxim L173 reserve carbohyirates. Total leaf cer uOH :jydr ate concentrations for all four grasses with 80 degree temperatures and the 12 pOind tr eatmer t only decreased to lev— els one-quarter or greater of tnei r seasonal maximum. Tcte l carbohvdrates did not do Cline to zero This 94.,e3‘o the possibility that carbohydrates are not the only factor whic: mig?ht limit growth under high temperature conditions. Meyer and Anders on' s (13) exhaus tiv e cove ge of tem era- ture ~91 lent relationships exein;)lifies the oeuplexfi vof the problem . A legical explanation could possibly be found by ccneideri1g the relation- ships between teupereture and the reaction rate of n enzyme-catalyzed reac ion. ”LufmJ-Citdljfed reaction rates are temperature d spen ient due to temperature affecting the kinetic energies of the reactants and the protein structure. teroera u as in the 80 F. range and higher appearel to exert an adver3e effect on carbohydrate reserves of the four cool seaeou grasses scuoiefl, and this effect exceeled t1 at attr 3b: itable to the applied nitrOgen t1wetne.-s. Ml SUEEARY AND CONCLUSIONS A technique for quantitative carbohydrate determinations using densitometer readings from paper chromatograms was shown to be prac- tical for analyzing large numbers of samples. The greenhouse environment produced leaf tissue considerably lower :osaccharide than were field samples. I J ‘3 in oli The polysaccharide present in all grasses studied was identified to be a .gluCOpolyfructan and quantitatively analyzed by a simple colorimetric test. Effects attributable to nitrogen treatments were observed in the oligosaccharide and polysaccharide fractions containing more than two hexose moieties. Oligosaccharide concentrations greatly exceed- ed fructosan under field conditions. The di- and monosaccharides did not Show differential concentrations related to nitrogen treat~ ments. The addition of more than one and one-half pounds of actual nitro- gen per thousand square feet produced excess nitrogen conditions, as evidenced by parallel carbohydrate responses. Nitrogen differentials for an experiment in time should be applied peri dicelly to weintain relatively constant treatnent differentials. The technique of measuring plant food reserve as indicated by regrowth in the dark, produced results which, although less specific, a,:eed O with chem.ca11y determined carbohydrate reserve values, particularly rt- :1” (a) O H [~4- ‘3 O ‘\ ”saccharide ani polysaccharide concentrations. 8. Temperatures in the 80 F. range and higher appeared to exert an adverse effect on the carbohydrate reserves of the four cool season grasses studied, and this effect exceeded that attributable to the applied nitrogen treatments. Under the conditions of this study and the nitrogen treatments used, the total carbohydrate level in the leaves of the four grasses did not appear to be Present in concentrations which were inadequate for growth. #3 l. 2. 3. 5. 5. 7. 8. 11. LITERATURE CITED Archbold, H. K. 1940. Fructosans in monocotyledons. A review. New Phytol. 39:185-219. Bacon, J. S. D. 1959. The trisaccharide fraction of some monocotyledons. Biochem. J. 73:507~51u. Brown, 5. M. 1943. Seasonal variations in the growth and chemical composition of kentucky bluegrass. Missouri Exp. Stat. Bull. 380. De Cugnac, A. 1931. Recherches sur les glucides des Graminees. Ann. Sci. Nat. 13:1-129. Dubois, M., Cilles, K. A., Hamilton, J. K., Ribers, P. A. and Smith, Fred. 1956. Colo: unetric method for determination of sugars and related substances. Anal. Chem. 28:350-356. Ehara, Kaoru and Tameka, Shizeyuki. 1961. Effect of temperature on the growth behavior and chemical composition of waii— and cool- season ;?wra ses. Proc. Crop Sci. Soc. Japan. 29:304-306. Giovannozz i-Sermanni, Giovanni. 195 6. A new solvent for quantita- tive paper chromatography of sugars. Nature. 177:586—587. Graber, L. F., Nelson, N. T., Leuke1,W. A. and A1bert, W. B. 1927. Organic food reserves in relation to the growth of alfalfa and other perennial herbaceous plants. Wise. Agr. Elxp. Stat. Bull. 80. Jansen, R. 6., Forbes, R. M. an5 Carlson, Don M.1958. A review of the carbohydrate conawt tuants of routhagss. NCR Pub. 88. Harrison, C. H. 1934. Response of kentucky bluegrass to variations in temperature, light, cutting and fertilizing. Plant. Physiol. 9 3 83-106 0 Jordan, E. E. 1959. The efFect of environment a1 factors on the car— bo1yi rate and nutrient levels of creeping bentgrass (“grostis Palustri.). Purciue University. M. S. thesis (Unpub. 5. Juska, F. J. and Hanson, A. A. 1981. Effects of interval and height of mowing on growth of Marion and common kentucky cluesrass (Poe pratencis L). Agron. J. 53:385-388. v.14 13. in. 15. 17. p... (O O 19. 20. Laidlaw, R. A. and Reid, 8. G. 1952. Analytical studies on the carbohydrates of grasses and clovers. 1. Development of methods for the estimation of the free sugar and fructosan contents. J. Sci. Fd. Agric. 3:19—25. Laidlaw, R. and Reid, 8. G. 1950. Filter paper chromatography: Extraction of sugars from the paper at room temperature. Nature 156:H76-H77. Lopatec11,L. E., Longair, E. L. and Kastinn, R. 1962. Quantita- tive ch11nges of solub.1e cazbo-.ydrates in stems of solid- and hollow-s temmed wne its. Can. J. Bot. MO:1223¢1228. Martin, A. J. P. and $7n.e, R. L. M. 19u1. A new form of chromatogram employing two liquid phases. 1. A t.k o.‘y of chromatography. Biochem. J. 35: 1358~1364. McFarren, E. F., Brand, K., and Rutkowski, H. R. 1951. Quantita- tive determination of sugars on filter paper chronatograms by direct photometry. Anal. Chem. 23:1146-11u9. McFary, W. L. and Slattery, M. C. 1945. The colorimetric deter- mination of fructosan in plant material. J. Biol. Chem. 1572161-187. Meyer, 8. S. and Anderson, D. B. 1952. Plant physiology. D. Van Nostrand Co., Inc. Princeton, New Jersey. Paech, K. and Tracey, M. V. 1955 a. Modern methods of plant analy~ sis. Zeiter Band vol. 2. Sp ringer—Verlag. Sprague, V. C. and Sulliv “a. J. T. 19 50. Reserve carbohydrates in orchard g mass clipp fie} peiiodical-ly. Plant Physiol. 25:92-102. Sullivan, J. T. and Sprague, V. G. 19 49 he effect of tern erau ture on the growth and compos Ht ion of the stubble and roots of perennial ryegrass. Plant Physiol. 24: 706-718. Troughton, A. 1957. The underground organs of herbage grasses. Bull. No. nu. Commonwealth Bureau Pastures and Field Crops, Marley, Berkshire. APPENDIX Table I. Leaf oligosaccharide percentages determined on a dry weight basis for four grasses under five nitrogen treatments June 8 to August 22, 1363. A Marlon kentucky bluegrass June June July July Aug. Aug. Treatfent 8 2? 8 22 8 22 Mean 0 3.86 6.37 6.28 5.63 4.54 4.43 2.60 3 3.47 5.56 5.66 5.04 4.48 4.51 2.39 6 .83 4.66 4.98 4.31 3.79 4.19 1.90 9 1.14 4.57 4.29 3.23 2.70 3.63 1.63 12 1.52 4.23 4.38 3.43 2.42 3.72 1.64 Mean 1.08 2.54 2.56 2.16 1.79 2.05 B Toronto creeping bentgrass Treatwent 0 2.79 1.86 4.72 4.23 4.42 6.21 2.02 3 2.25 1.11 4.24 2.97 3.68 4.81 1.59 6 1.93 .14 3.85 2.56 2.89 4.31 1.31 8 1.61 0 3.41 2.36 ”.39 3.42 1.10 12 .51 0 3.13 2.34 2.03 3.34 1.04 Mean 1.02 .31 1.94 1.45 1.54 2.21 C Pennlawn creeping red fescue TZ’V‘! fitment 0 1.88 4.38 4.92 3.50 2.76 4.52 3.66 3 1.88 3.56 3.42 4.08 2.64 4.08 3.28 6 1.78 3.28 3.22 3.52 2.94 3.28 3.00 9 2.20 3.22 3.16 3.42 3.40 3.20 3.10 12 3.34 2.86 2.94 3.50 2.92 3.50 3.18 Ream 2.22 3.46 3.53 3.60 3.13 3.72 D Common kentucky bluegrass Treatnent 0 3.70 3.78 4.22 3.34 3.30 4.30 3.77 3 1.84 4.78 4.46 3.54 3.84 4.42 3.83 6 3.04 4.84 4.40 3.28 3.46 3.78 3.80 9 4.30 5.46 4.24 3.22 3.88 3.96 4.18 12 2.78 5.46 4.36 3.30 4.16 4.34 3.92 Mean 3.15 4.23 4.34 3.34 3.73 4.16 46 Table II. Leaf Ollgosaccharide minus sucrose percentages determined on a dry weight basis for four grasses under five nitrogen treatnents June 8 to August 22, 1963. A Eerion kentucky bluegrass June June Traatrent 8 92 O .19 .75 3 .08 .37 6 O .07 9 0 0 l2 0 0 Mean .09 .29 B Toronto creeping bentgrass Treatment 0 .07 .66 3 .07 .34 6 O ..07 9 O 0 12 0 0 Mean .03 .21 ; Pennlawn creeping red fescue O O .69 3 0 .35 6 O O 9 O O 12 0 0 Mean 0 .21 D Common kentucky bluegrass Treatwent 0 O .07 3 O .07 6 0 .07 9 0 .08 12 O .08 Kean 0 .07 July 8 1.12 .75 .37 0 0 .05 .80 .46 .13 .11 .05 .31 .70 .110 O (J R.) .31 .31 .11 .08 .07 .18 07 July 22 1.12 .7H .37 .06 .96 .67 .06 .01 .35 00000 1.06 .67 .26 .13 .06 00000 0 00000 O 1.0 .67 .3” .10 .lu .69 .21 00000 .70 .47 .21 .02 .01 .71 .38 .13 .06 .00 0 U! 0 MC.) OOON .06 .06 .03 .03 .03 APPENDIX Table III. Analysis of variance for oligosaccharide concentrations in the leaves of Toronto creeping bentgrass under five nitrogen treat~ ments, June 8 to August 22, 1963 Source BY MS Replication (R) 1 .0052 N treatments (N) 9 1.9352 ** RN, E1 M .0094 Dates (D) 5 4.6011 ** RD, 22 5 .osus ND 20 .0404** END, E, x 20 .011u ** Significant at the 1 percent level * Significant at the 5 percent level Table IV. Analysis of variance for oligosaccharide concentrations in the leaves of Marion kentucky bluegrass under five nitrogen treat- ments, June 8 to August 22, 1963 Source MP MS Replication (R) 1 .1540 N treatments (N) u 2.3u51 an RN, Bl u .0398 Dates (D) 5 3.02u5 he RD. 52 5 .1766 * ND 20 .1200 END, 33 20 .0571 ** Significant at the 1 percent level * Significant at the 5 percent level #8 Table V. Mean values for height (inches) and dry weight (grams) for 1 irowth in oarkness of four grasses under five nitrOgen treatments, Pounis nitrogen Toronto Pennlawn Herion Common per thousand creeping creeping kentuck; lentucky Silive feet A_ bentcrass red fescue bluegrass b1ue*rass Heifiht Weight Height Weight Height weight Height Weight 0 2.63 .28 .63 .09 3.25 .37 2.“, LC 0 b.) O h.) o 1.; u.) o H N) 3 1.63 .32 3.38 .ou 3.75 .45 h) o 0" L.) o .... 0'1 6 1.25 .33 1.13 .09 5.00 .MS 9 .63 .15 1.13 .01 9.38 .30 2.38 .12 12 1.25 .28 1.5 .02 3.38 .21 2.00 .14 Table VI. A comparis extraction using a Soxhlet apparatus versu arrangement. -on of two methods for soluble carbohydrate s a Buchner—flask-funnel ,.. , . T5. . m. 3 ‘- F33‘Cr3flt O 1 LP] “8.1.3“: Vethod Sucrose Glucose Fructose Fructosan Mad“. I “mum Trial A Buchner Flask 1.5 ~ .09 .115 Pea pretensis Soxhlet App. 1.u1 - .08 .035 Trial B Buchner 1.22 - - .09 Pna‘pratensis Soxhlet 1.08 - — .025 #9 Table VII. Leaf carbohydrate percentages determined on a dry weifiht basis occurrinfi in fiarion kentuckv bluazraes under three single applica- ti‘c’n nitr'of‘hn tmatw—ants, Ausfufgt 5, 1"}(‘3 Ca 0 9 :2 3 r< & o 8 £2 +4 '3 44 P 03 m I: :3 "4 if! 973 {J :2 E-d :: :5 LL. a; U I: ":1 0 e e co rt: :3 ;.. C?! .4: E 0) V: O '3 U "... "j 9—4 0 a) +4 C: P H ’3 c I?! #2 U U k. U ‘1‘ ’l a g z c a a 04 z u a C c) c~ :3 r-1' $4 H I». _0 f3 B 31:53 G.- 5-4 0'“ 1‘. (.3 I“ ‘3 L» t‘“ (J 6 l? 6 2.9“ .23 - 3.89 .“3 ".82 Aug. 8 O 2.97 .45 - 3.61 .5 n.53 6 2.28 .HE - 2.53 .37 3.59 12 2‘28 .2 ‘ 2.83 of ‘) Sans A11". 10 O 2.? .21 - Qoffi .Fd 3-53 6 2.7g .31) * 2.7?) .12) 9.13 12 2.0-3 ‘36 - 7.90 .1? 3.38 Aug. 16 0 2.hw - — 3.58 .17 3.95 5 2.30 ~ ~ 2.33 .0 2.31 12 2.33 ‘ - 9.30 .01 2.31 50 a Tania VIII. Ledf aflruohgirata pQICénta:és dutarL13ma on baais occurring in com30n kantucky Liuaaragu u Jar tbrua gin E tiun niaro cu treatzgnts, august 5, laws r‘ C} V3 M c'u ~ in t: .L.‘ 9;} H ’3' E3 I: a 1“ M ‘F;- '..‘ ‘O" i " §>~ c u q "f . :4 4'5 U. {Q C b; . 'U {*4 i. {.o 9 0;“ $‘. d ‘ (1; t.- 0 u A 5:! g h 1 L 3 g cm H t :5 :‘~ I“! 9-1 3.. H L ... 5’» Ni 2" t - L. (x. :0! ‘Id 5-: L’ . . -.,. 4 w, Batu ? P AUX. 5 c.3050 93 0 u: .3 I | :0 C .J .9 O J Aug. 5 a 2.3% - - 2.2% .2. ‘ 5 :.27 - — 2.27 .93 12 1.7a - - 1.7a .93 Aug. 8 e .au - - 1..» .92 a ... - - 1.5% .c: 12 1.7a - - 1.7% .-1 flux. 13 3 1.43 .33 r Aug' 12 O 1-7 * - 1.7 .33 8 1.335 .- .. 1.1)..) .32. 2 1-3“ - - 1.5a .31 Adi, . 13 t 10 7 " " 1 g 7", g 'l...‘ 3 6 1.7) - - 1.73 .31 13 2.15 ~ ~ 2.15 .32 51 ., 1 .0!» '1'. Tabla Ix. Laaf car%chvjrate Pfi?¢fintaffifi daturm 2:223:15; mmmring in 'I'r'mczrto crew-av. ir; 5.: barn: r333 w: imp tion n?t?0'en trfiatrunt$, fiUfUSt 5, 1383. I; Q‘ u 1. L ‘ has 8 ”F: '1‘ . t: M .3 p .1; (9 .43. val {" (Q‘: Ly Q! :3 a la (a U c. c :3 rt 3-“ ...": E It? ;. C Ti- C ; a L c '2‘ I- ») :2 u c a “-1 z 'n; j.‘ P‘- 7*...+ to '5‘“ 0.:— t‘q far: {-1 {A (:2 84;. 5 0 “.37 .13 - 2.37 6 12 Aug. 6 O 1.30 .WM - 2.?0 6 1.3% - ~ 2.3? Aug. 8 a 1.ws .32 - 2.33 6 .5 3 ~ . '3' 3 12 ‘5"? - n 1 . 41;." Ant. )0 0 1.1% - - 2.‘Q 6 l . Of} '. - 1 . 1'! 4:» l“)?. 32 o 1.1:? - ". :‘.1’.“ 6 . (3.3 - - . (:3 1.? . 3F} '. ‘. g ‘1'.“ hum 1!.) 0 1.5“. ~° ..c7 2.5” 12 1.4:. “ '1.) 19““ Cr"! (‘3; 1'1: (it m. 3*) ‘1 d .3? 5.:- ' \J 3 :s ", 9 '.’u. o {J J 'I~ ‘a ’z‘. . .h u. ‘ I 9" _;' '1} -.; r H cl .. ., V f ', 0-! K.) "lulu-u v “Mutant-W “comm-A...” -- n"- 2.37 '7 “r: 0 g~ ’. \ y» . J H o 5...‘ W ?.26 1‘. i“: 1. 94) aux? H C \u) . an .25.) . . .0 mu " U 7 M. x“ . ----. ‘_ -'... \ J K- '.-' La o‘u. KAYo; :. ci‘LL‘t. "Jl‘E’fl {on}; 3. a g .. :- ny a“ .- v¢ . , .’ -, W-..‘— , ... .. ‘.' a .. ', ”Xx." .xh QC“. u:“-"U.'t :1 if. » (in?) .‘riun CT‘.“.;.“‘ Mn," {13? A 7‘" 3-...“ “Mil": r, A. ‘ .‘ 4.” u r: ,-- IT :-_-.7 12": 1:431! “L LI.’(..»'.§.‘..Z L122 C-‘t'fl-‘oa 3t”; ‘ ’35.: 1.1.): J v. 1 la '3 4" 'u’k go L0 7" an L4 C 4‘.) 4; 4a ‘. :2 a; “4 1* II', n: 1"" :3 L.. Q 5' 1 '2 f‘ .’ 1!} U y ‘-' ,1 ‘ “I. as: S? 3. {f} :4". ~, . 5 ... L. r- w ’ o I «_, ,~ ~ -.. a, 1;: a "5 v‘ .9. . ,4 "1 54 . J 4 K v '9 .V' U {'1 ‘ "'- t." l . ~- '. I- ‘ fl c k“ i“ I \z'l L~ . ‘ - ‘— " 9', ‘_ I w 9 :4 "an: a . .r 3 I 113130 ‘v' I o k} 7’ Lo‘ .. f‘ Y'W "f 1'4 (at: 1’. ’j G 1..‘ .‘ .yl ‘2 fi 6“) :1; H o 1“ .3 O k) 3..) . I w u C {i ’4 .f'.) 51-4 9‘ a H 0 1‘." C { A.‘ } .4 ”a 0 C .1'" {5.1“}. JG 1'3 0 3 a) e .n L o | a 3'5 "J u: .. .1" "j . .r .3; .1}, a» . 5 w. "n ,\ ":. ‘ 3'. ."“ OI: - .t'l‘. ‘ - T M .x n» 1) ..,,., FAQ if. an" '4 1-) ‘U 1‘ ..>1.. - }..\.th' " .’ “s a u 1.1. 1..4 - 1.34 ‘W ' " "x"? a": 4‘ Q‘Ho' of" "' a. '- q, .‘f 1? aflf) _' IAN“, . A», q . v4" . '1‘, a 0 \.’ v F‘ ‘2‘: “ i' 0 "Jr Dr . ‘. .nl 54 ’e .34 . be cc [val I I H 8 ft W t. ‘ 1: w "1' ug- .A , (5‘15. A." 0 291/ 134:.) .1) K..-7 .- r~. '.~ ! n A( J L 0.114 .1915 a I”! I. 9 -.4 “J: ,a_ 9 . ¢ .. A «g, .1”; 5.9.1? 1.3“ 3' - alga." H." gap}; 0. 5.1 1.1 yd o w 0—! C'} a 9...; Cr ‘— i b) 6—4 A‘ " bd' : CD .;, 3.9 ‘ \a‘ K. L3 w ‘2 i Pr: ‘3 f HM? ‘ 8' ’bwi U T: '1'-‘_ _.. -.. QU C“ 302585 5598