

TRESIS

LIBRARY Michigan State University PLACE IN RETURN BOX to remove this checkout from your record.

TO AVOID FINES return on or before date due.

MAY BE RECALLED with earlier due date if requested.

DATE DUE	DATE DUE	DATE DUE

2/05 c:/CIRC/DateDue.indd-p.15

THE DEFICIENCIES OF CURRENT UA DEFINITION

AND

REMOTE SENSING TECHNIQUES

by

Shwu-Fen Yiin

A PLAN B PAPER

Submitted to

Michigan State University
in partial fulfillment of the requirements
for the degree of

MASTER OF URBAN PLANNING

Urban Planning Program
1990

ACKNOWLEDGEMENTS

This paper has arisen from my three years of involvement in class courses in Urban Planning Program at Michigan State University, and my two years' working experience as a research assistant for the census research project in the Center for Urban Affair. During this time I have received assistance, advice and encouragement from many professors. Special thanks are to Dr. Michael Chubb, Dr. Frank Zinn, Dr. Tom Lyons, Dr. Shamistha Bagchi-Sen, and Dr. Mahammad Kamier. I would like to thank Dr. Chubb for his ideas and instructions in the knowledge of remote sensing techniques. I thank Dr. Zinn, my Plan B adviser, who have helped me crystallize my ideas. I appreciate Dr. Bagchi-Sen and Dr. Kamier helped me to present my thoughts and stimulate my interest in statistic methodologies. I also wish to express my great thank Lyon who read and edited my draft, and suggested improvements. Finally, my thanks and appreciation to my sister, Shu-Min, who has not only took care of my newborn baby to let me finish paper but also give me psychological support encouragement.

ABSTRACT

This paper focuses on the deficiencies of current Urbanized Area (UA) definition. There are four specific objectives. first one is a discussion of the background and the conceptual context in which this investigation is being carried out. second one is to identify the problems of 1980 UA definition and the problems caused by the UA definition. The third covers a case study in Lansing/E. Lansing UA in Michigan, and develops a methodology to analyze the UA problem; and identify the possible solutions. The last one examines the feasibility in applying remote sensing-based techniques to the UA delineation. It reveals the insufficient variables used in 1980 UA criteria, and finds that a multivariate approach is more appropriate. Remote sensing-based methods can probably be a surrogate, but the high cost of imagery obstructs its feasibility politically.

,
1
i
ì
1
)
'
1
,
1
!

TABLE OF CONTENTS

LIST	OF FIGURES	Lii
LIST	OF MAPS	iv
ı.	INTRODUCTION	1
ıı.	BACKGROUND OF UA DEFINITION AND CONCEPTUAL PERSPECTIVE	3
	Background of Official UA Definition	3
	Historical Conceptual Perspective	6
III.	PROBLEMS OF URBAN BOUNDARY DELINEATION	10
	Purpose of Defining Urbanized Area(UA) and	
	an Extended City	11
	Definition and Current Boundary Criteria of UA	12
	Definition of an Extended City	13
	Procedures Used in Delineating 1980 UA's	
	Problems of 1980 UA Definition	
	Other General Problems	20
IV.	CASE STUDY IN LANSING/E. LANSING UA	22
	Samples and Sites Selected	23
	Variables Specifications	26
	Analysis Methodology	28
	Statistics, Results, and Conclusion	29
٧.	POSSIBLE SOLUTIONS FOR UA DEFINITION PROBLEMS	33
	Integrating Other Variables into UA Criteria	33

		11
	Government Consolidation	34
	Other Methods	36
VI.	REMOTE SENSING-BASED TECHNIQUES APPLIED TO US	
	DELINEATION	38
	Airphoto-Based	
	Landsat-Based	42
	SLAR/SAR-Based	48
	The Feasibility of Remote Sensing-Based Techniques	51
VII.	CONCLUSION	54
refei	RENCE	55
APPEI	NDICES	
I.	DATA LISTING OF THE 14 CENSUS VARIABLES FOR THE	
	LANSING/E. LANSING SAMPLE AREA	
II.	CLUSTER ANALYSIS IN LANSING/E. LANSING UA	
III.	RANK OF CENSUS TRACTS BY SOCIO-ECONOMIC INDICATORS	
IV.	1950 TO 1980 UA CRITERIA	

-

LIST OF FIGURES

igures Page
1. The Inner and Outer Lines Established for Existing and P-1 Potential UA's
2. Urban Development with Rural Census Block 19
3. Feature-Spacing Algorithm 43
4. Shuttle Imaging Radar-A Image of Baoding Area 52
5. Shuttle Imaging Radar-A Image of Dexhou Area 53

LIST OF MAPS

Maps	Page
1. Study Area	24
2. Current Lansing/E. Lansing UA	25
3. Potential UA 1: Results through Cluster Analysis	31
4. Potential UA 2: Results through Ranking Census Tracts by Socio-Economic Indicators	32

I. INTRODUCTION

The main purpose in defining urban boundaries today is to use them in determining the distribution of federal grants-in-aid and federal programs. People who live in a defined urbanized area benefit from government services such as schools, hospitals, parks and libraries, etc. Because the urban boundaries are so important, there always exists an argument about the appropriateness of this Urbanized Area (UA) definition since the first census and first UA criteria.

Every 10 years, the U.S. Bureau of Census conducts a census of population and housing. Before this census is taken, the Geographic Division of the Census Bureau should delineate the potential extent of the UA by a new UA definition. The methodology and definition they adopted is mainly based on 2 statistic figures -population size and population density. Whether or not those two figures present the whole UA has been argued and discussed by researchers and experts for a long time. In the past, the Census Bureau typically used aerial photography to identify the urban fringe to perform this job. However, due to the timely airphotos were not available for each of more than 300 Standard Metropolitan Statistical Areas (SMSA's), other data such as land use maps were used as a replacement. Nevertheless, the potential problems and deficiencies of the UA definition still exist. Because of the rapid changes of social and economic structures in recent decades, it's irrational to define perfect UA boundaries without considering the socio-economic status. Nowadays, the growth and expansion of population and economic activities around major urban areas, and penetrating into the periphery, make it difficult for the UA definition to distinguish the purely urban and purely rural.

II.BACKGROUND OF UA DEFINITION AND CONCEPTUAL PERSPECTIVE

Background of Official UA Definition

In 1790, Congress provided statutory authorization for taking a census, and population censuses have been conducted every 10 years since then. At that time, the growth in the areas adjacent to the limits of incorporated places had been apparent, but were still relatively limited before the early 19th century. During the latter half of 19th century and the earlier 20th century, the rapid growth adjacent to the industrial city increased the demand for a statistical definition to define an area encompassing the urban centers and their suburbs. Before this time, the city could generally represent the extent of urban development but became less representative after then.

After 1900, some state laws were enacted to increase the ability of municipalities to annex the developing suburban areas. However, because the suburban dwellers preferred services provided by a county or a minor civil division (MCD) government rather than annex to a city or incorporate as places, the Census Bureau increasingly failed to measure accurately the urban territory by using its primary geographic unit to measure the urban population. The first attempt to define a statistical area encompassing the industrial city and its suburban area occurred in the 1905 census. For the 1910 census, the Census Bureau planned a more restrictive criterion for defining large urban cluster based on MCD rather than

counties. These areas were known as "metropolitan districts," this definition concept was continuously used until the 1940 census with minor changes. There are some inadequacies by using the density of MCD as a measure of the urban area around large cities. Many MCD's, the building-blocks of the districts, were too large to serve as a unit for precisely measuring the urban population. Most of the districts include significant amounts of rural population and rural area. The other problem was that the MCD data were not available for most states. Also, some MCD boundaries did not remain stable over time, the was comparability therefore questionable. Moreover, this metropolitan district definition did not improve its definition of urban and rural until the 1950 UA (urbanized area) definition.

To improve the urban-rural classification, for the 1950 census, two new geographic statistical entities were developed - one to identify the metropolitan area, the other one to identify the urban area around the largest cities. This was the first attempt to provide a precise separation between urban and rural population around large metropolitan areas. In this census, the Census Bureau introduced the UA as a statistical area and added population and area of the UA to the definition to better delimit the urban population. Another statistical area, "unincorporated places" (now called "census designed area" or CDP), were also introduced at this census. This definition provided a statistical area for which a wide range of socio-economic data were available, also, boundaries of SMA's followed the county boundaries (except

for New England areas) instead of MCD boundaries which presented a more stable geographic unit over time. One of the problems of 1950 UA criteria is that it used previous census data to delineate the UA boundary and was somewhat out of date. The selection of central cities, also based on the previous census, would result in an inconsistent and incomplete identification of UA's. This 1950 UA criterion excluded adjacent areas of slightly lower density that have suburban population also oriented toward the major urban core.

For the 1960 census, the qualification of UA's was changed to have its basis the current census, rather than the previous census, by using enumeration districts (ED's) as the unit of density measurement. The Census Bureau also enabled the delineation of unincorporated places within the UA fringe. That allowed the population living in the UA to include persons living within unincorporated places as well as incorporated places.

In the delineation of UA's for the 1970 census, there were two major changes: introduction of the concept of extend cities, and the use of blocks instead of ED's as the measure of density. For the 1980 census, the Census Bureau employed a number of modifications to the UA criteria designed to deal with the following problems: the central city requirement, contiguous nonresidential urban land use, and developed areas separated from the main body of the UA by "undevelopable" area that will be discussed latter.¹

¹U.S. Bureau of the Census, <u>Geographic Areas Reference Manual</u>, 1987, CH.15

Historical Conceptual Perspective

Historically, the concepts of "rural" and "urban" used in the census have been based mainly on one criteria - size of population. In some countries, including the United States, political organization has sometimes been used as a secondary criterion. The initial U.S. census report to differentiate between urban and rural population was after the 1880 Decennial census, the criterion used to identity the urban place was the concentration of 8,000 or more population in a community. Even then, it was considered that this 8,000 minimum population was too high to truly represent the urban population and places that were really urban in character. Hence, from the 1880 to the 1900 census report, the population size criterion was lowered to 4,000. In these reports, the "semi-urban" had also been classified for inhabitants living in all incorporated places of less than 4,000.2 In 1900, the 2,500 population threshold was first used in identifying the urban population. But there was no explanation or a conceptual basis for proving its adoption at that time. In 1940, Truesdell set forth a conceptual basis for differentiating urban and rural population and place in censuses. He suggested several factors in differentiating urban from rural conditions - population size, population density, land use type, political organization, and the presence of agricultural occupa-

²Truesdell, L.E. "The Development of the Urban-Rural Classification in the United States: 1874 to 1949," <u>Current Population Report Population Characteristics</u> (Series No.1) 1949, pp.4

tion.³ Accordingly, The differentiation between urban places and rural places could become very straightforward when the above criteria reach certain levels.

In the past, it might be appropriate to categorize the people as rural who are living in places below 2,500 threshold upon U.S. Census's urban definition criteria and were mainly employed in agriculture or other primary economic activities. However, the economy and lifestyles of Americans have changed widely in recent year. Not only has the proportion of the labor force in agriculture and other primary activities decreased, but the labor force in manufacturing and the actual number living on farms has decreased also. These conditions combined with the changing socio-cultural lifestyles of the American population make it more difficult to discriminate the difference between urban and rural. Shevky and Bell used social characteristics - "societal scale" in the social area analysis to examine the urban life. It included three constructs by using six variables - economic status (occupation and education), family status (fertility, woman at home, and single family detached dwelling units) and Ethnic status(ethnic groups). They supposed that (1) with the increasing division of labor, an occupational status system develops, (2) family becomes

³Truesdell, 1949

Freudreis, J.P. "The Information Revolution and Urban Life," Journal of Urban Affairs, Vol.11, pp. 327-337

⁵Shevky, E., and W. Bell, <u>Social Area Analysis</u> (Standford University Press, Stanford, California, 1955), p.4

less important as an individual economic unit, and a weakening of traditional organization of family after higher urbanization, and (3) the improved transportation results in higher mobility, and that leads the resorting of the population and the segregation of different ethnic and racial groups.⁶

In Western urban theory, the key parameters used in the classification method were population size, population density, and social heterogeneity. Wirth suggested that the technological development in transportation and communication, and the rapid dispersal and impact of assimilation had tremendously extended the urban mode of living beyond the city's boundary. Even at that time, Wirth had determined that urbanism, as a way of life, crossed the boundaries of the physical city and the landscape to become the dominant way of life among rural dwellers.

From a sociological and economic viewpoint, there is no longer a dividing line between purely urban and purely rural under the expansion of the influence of urban life in American society. Friedmann and Miller introduced a new ecological unit termed "the urban field" replacing the traditional concept of city and metropolis. While urban living extends far beyond existing metropolitan cores and penetrates into the periphery, the older

⁶Cadwallader, M.T. "Urban Social Areas," in <u>Analytical Urban Geography - Spatial Patterns and Theories</u>, (New Jersey: Prentice-Hall, 1985), pp.125

⁷Wirth, L., "Urbanism As a Way of Life," <u>American Journal of Sociology</u>, Vol.44, 1938, pp.1-23

⁸Wirth, L. 1938

urban centers together with the intermetropolitan peripheries will constitute this new ecological unit. From each point of view, it is becoming nearly impossible to trace a sharp dividing line to distinguish urban and rural, town and countryside.

Friedmann, I., & Miller, J. "The urban field," <u>Journal of the American Institute of Planners</u>, Vol.31, 1965, pp.312-319.

III. PROBLEMS OF URBAN BOUNDARY DELINEATION

Different federal grants-in-aid and federal programs to states and local governments are based on the population size and whether a place is rural or urban. An urbanized area boundary is therefore important because it becomes an influential line to determine who are the beneficiaries for certain kinds of services and grants. Also, various types of economic development programs, community development programs and differing focuses are also applied to different areas, according to whether the place is defined as an urbanized area or rural area. An example is the Urban Development Action Grant (UDAG) program, designed to help alleviate physical and economic deterioration in severely distressed cities and urban counties only. In fiscal year 1987, the funding under UDAG was \$255 million. 10 On the other hand, various developments of economic, agriculture/nature resources, infrastructure and human resources were assigned to rural areas. In fiscal year 1987, about \$6.4 billion in grants and payments, \$1.6 billion of loan, and the expenditures of about \$3.1 billion were provided by infrastructure programs. 11 Thus, in order to let the proper dwellers get the appropriate services, a reasonable and acceptable definition of

¹⁰U.S. Feneral Accounting Office, <u>Urban Action Grants: an Analysis of Eligibility and Selection Criteria, and Program Results</u>, P.3

¹¹U.S. General Accounting Office, <u>Rural Development:Federal Program that focus on Rural America and Its Economic Development</u>." pp. 39

urbanized area and rural area is needed. In 1980 UA criteria, some potential problems were revealed, such as the 2,500 minimum population requirement, jumping area problem, and the relationship of UA boundaries to the census blocks. The other general problems that are caused by urban definition, such as local government fragmentation, should also be considered prudently. Before getting into the discussion of UA problems, the way UA boundaries were delineated is revealed below.

Purpose of Defining Urbanized Area(UA) and an Extended City

There are two major proposes in defining UA's and extended cities. One is setting up a better separation of urban and rural population and area around the large cities. The other is providing a measure of the urban population, and extent of urban area. Since the first UA definition in the 1950 census, the UA's definition criteria has been slightly adjusted with each subsequent decennial census in order to accurately represent the extent of urban development and delimit the National large urban clusters. Moreover, urban area definition has been used as a basis of distribution of government budgets and resources, redefining of UA will result in the redistribution of budgets and beneficiaries.

The purpose of defining an extended city is to alleviate the classification problem which classifies the rural territory as part of urban land area. While cities extend their boundaries, some

¹²U.S. Bureau of the Census,

territory essentially in rural character was also classified as part of the urban area. Therefore, in the 1970 census, the Census Bureau used the concept of the extended city to define the rural part of those incorporated places within UA's and exclude these areas from the UA.

Definition and Current Boundary Criteria of UA

According to 1980 UA criteria, an urbanized area consists of an incorporated central city or cities and adjacent densely settled surrounding area with a minimum population of 50,000. The densely settled surrounding areas consist of:¹³

- 1. Contiguous incorporated places or census designated places having:
 - a) at least 2,500 population, or
 - b) having a population density of 1,000 person per square mile, a closely settled area with a minimum of 50 percent of the population, or a cluster of minimum 100 housing units.
- 2. Contiguous unincorporated area that is connected by roads and with a population density of no less than 1,000 persons per square mile.
- 3. Other contiguous unincorporated area having a density of less that 1,000 persons per square mile, but together with some other characteristics as listed in the criteria.

¹³U.S. Bureau of Census, 1980 Census of Population and Housing,

4. Large concentrations of nonresidential urban area (such as major airport, office areas, industrial parks), which is contiguous to an urbanized area with at least 1/4 of its boundary.

Definition of an Extended City

An extended city consists of an urban part and a rural part. This kind of city is an incorporated place that contains one or more areas, with each area being at least 5 square miles in extent with a population density of less than 1,000 persons per square mile. The area or areas must have at least 25 square miles or minimum 25 percent of the land area of the city. All population of these areas will be classified as rural, and these areas are excluded from the UA. Only the urban part is considered to be the central city of an UA.

Procedures Used in Delineating 1980 UA's 14

The delineation of UA reflects some subjective decisions, such as separating one UA into two or more, or combining two or more UA's into one. The procedures used in 1980 were similar to the one used in 1970. It included 5 major steps: 1)determining potential UA's, 2)establishing the outer line, inter line and measurement units(MU), 3)measuring the land area and obtaining the population count for each MU, 4) determining the area of continuous residential development, and 5)determining and adding additional

¹⁴U.S. Bureau of the Census, <u>Geographic Areas Reference Manual</u>, 1987

area to the UA.

Determining Potential UA'a

In step 1, the Census Bureau reviewed total UA's including potential new UA's, and classified the potential UA's into P-1 and P-2 groups according to the possibility of qualification. P-1 areas were the most likely to achieve the required minimum 50,000 population. The less likely areas to achieve the above requirement were classified into P-2 areas, which were evaluated from enumeration districts(EDs) by using 1980 census maps. Then, a density evaluation was made based on group block(called measurement units or MUs) for each P-1 potential UA and 1970 existing UA.¹⁵

Establishing the Outer Line, Inner Line and MU's

Step 2, the census Bureau delineated an inner line and outer line for each existing UA and P-1 potential UA as shown in figure 1. 16 The inner line was an approximation of 1970 UA and the outer line represented the estimated maximum extent of the 1980 UA. The Census Bureau determined the location of the outer line by observing the density of the street pattern shown on the current maps, the examination of recent aerial photography, and data from the last census. The area between the inner line and outer line

¹⁵Those block were delineated on the MMS sheet or VMS sheet.

¹⁶Source from Geography Division, Bureau of Census

was subdivided into MUs for population density examination. 17

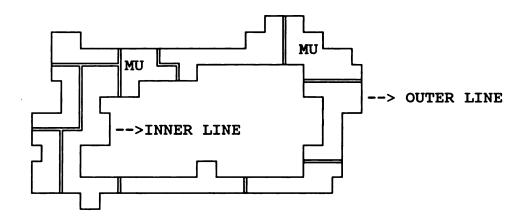


Figure 1: The inner and outer lines established for existing and P-1 potential UA'S

Measuring the Land Area and Obtaining the Population for Each MU, and determining the Area of Continuous Residential Development

After the inner line, outer line, and MU's boundaries were built, the Census Bureau started to obtain the land area and population count for each MU. In land area measurement, the area of water and nonresidential land use had been subtracted from the total MU area. Then, the Bureau went to step 4 to determine whether the area is continuous residential development or not? All qualifying places that added to the UA had followed the two condition as below:

¹⁷Boundaries of the MUs were obtained by using the information about street pattern provided by census map and by reference to the latest U.S.G.S. topographic quadrangles and areal photography.

- 1. All places should have a population of 2,500 or more, or a density of more than 1,000 persons per square mile.
- 2. All MUs are contiguous to the inner line or adjacent to qualifying places.

Determining and Adding Additional Area to the UA

Beside above qualifying areas, in step 5, the Census Bureau added other qualifying area on the basis of criteria of the 1980 UA other than minimum population, density and contiguity. Therefore, more qualifying areas might be added to the UA, such as places having a density less than 1,000 persons per square mile or total population of 2,500 but having a cluster of more than 100 housing units adjacent to or not more than 1.5 miles from the previous defined UA core. The result is that such means of qualification might cause some special scenario, such as jumping area.

Problems of 1980 UA Definition

Before every Decennial Census, the Census Bureau had tried to improve the deficiency of urban definition to more accurately classify urban population for the coming census. Therefore, since first revision of UA criteria in 1950 till now, UA criteria has been revised 5 times (1960, 1970, 1974, 1980) based on statistical geographic entity, in an attempt to remove any regional bias and to measure more precisely the changing settlement pattern of the Nation. However, the UA boundaries today still have certain

limitations, and the criteria used today still have exist some deficiencies.

Minimum Population and Population Density

"A contiguous incorporated place having 2,500 minimum population" has been used in UA criteria since 1950, and "a minimum population density of 1,000 persons per square mile" has also been employed by the Census Bureau since 1960. There is a question as to whether those two figures(2,500 and 1,000) can fully represent the different characteristic between urban life and rural life? Doubtlessly, the socio-economic characteristics and the cultural characteristics have been widely changed in the three decades. Hence, a place with less than 2,500 inhabitants might had a rural scenario 30 years ago, but not now. Similarly, a territory with population density less than 1,000 persons per square mile might also present an urban life at present. Accordingly, The requirements of 2,500 minimum population and population density of 1,000 persons no longer provide an appropriate border for the urban and rural division.

Another risk that may also arise when using those two criteria is the undercount or overcount problem of every decennial census. Because the Census Bureau uses the census data as a basis to define the urbanized area, the data are supposed to be very accurate. In fact, this data could never be precise enough. After every census, argument always occurs regarding the overcount or undercount problem which would affect the distribution of federal expenditures

or revenue programs. For example, under the estimation by the Census Bureau, approximately 2.2% of the overall population was missed in 1970 census, roughly 8% of all blacks went uncounted. Therefore, if those two figures will are to be used as criteria, allowances for this error must be make.

Jumping Areas

Jumping areas were allowed based on the criteria of 1980, which had a population density less than 1,000 persons per square mile in a contiguous unincorporated area. The Census Bureau examined and measured the jumping area by connecting road, and accepted it if the area is connected by a road and 1) no more than 1-1/2 miles from the main body of urbanized area, or 2) separated from the main body of the UA by water or other undevelopable area, but less than 5 miles away from the main body of UA. This criteria will make the same error as above. What is the meaning of 1-1/2 miles and 5 miles? What is the social distance of 1-1/2 miles and 5 miles? What is difference between 5 miles and 4 miles?

Relationship of UA Boundaries to Census Blocks

Each UA structure is based on the geographic unit used by the census - census block. Hence, the census block must be identifiable and correspond to recognizable features. However, a par-

¹⁸<u>Harvard Law Review</u>, Feb. 1981, Vol 94, pp.841-863. "Demography and Distrust:Constitutional Issue of the Federal Census."

ticular census block may include both a sizable urban and a rural population, or population density. Urban development will not always have close boundaries on physical features, and the UA boundary cannot separate the different internal areas according to the census block as shown on figure 2. Therefore, the configuration of census blocks constrains the shape and position of the UA boundary, especially when the census maps are not updated fast enough, and the non-updated maps still hold old urban street patterns in a large block with sizable area. The UA boundaries will be criticized as not accurate enough because they are based on the old street pattern map.

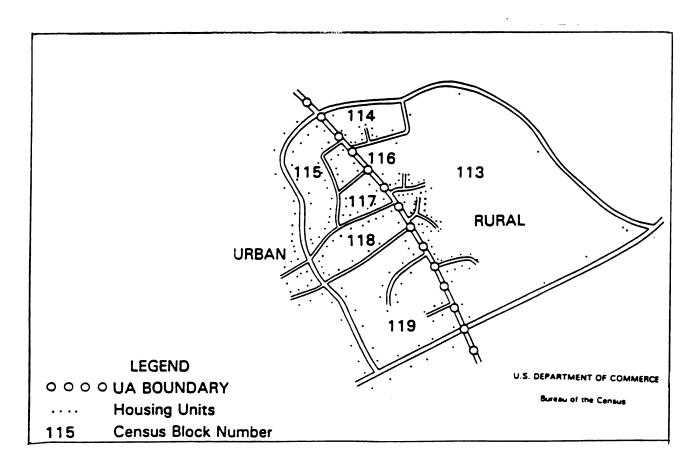


Figure 2: Urban development with rural census block

Other General Problems

While it has been decided which settlements are urban, there might exist one spatial extent problem of those settlements. Because the corporate boundary may not truly represent the real extent of that city, this legal definition will lead to an underbounded city or overbounded city. This underbounded city occurs when the legal city inside the real or physical city is designated. Today, urbanism as a way of life predominates the boundaries of the physical city and the way of life among rural dwellers. Most cities in the United States are underbounded cities, which are usually surrounded by suburbs. Those suburbs use the facilities of the central cities, such as schools and hospitals, that lead to the severe problems of fiscal imbalance in central city and local government fragmentation.

Local Government Fragmentation

As the suburb population grew, and the industrial and commercial activities increased, a whole range of government services were required to serve the settlements. Those services usually came to be supplied by local government rather than by the corporate city. Hence, the local government units increased rapidly and created local government fragmentation. This fragmented pattern of local government makes for a situation in which many districts administer overlapping programs of social

¹⁹Cadwallder, 1985, Ch.1

service which are supposed to be unifunctional, but came to function individually. It became difficult to coordinate other individual policies and interests, such as water, sewage, gas, parks, and libraries. Consequently, some large issues in urban areas, such as conservation and land use planning, are ignored because of the incapability of coordinating the policy decisions made at each local level of government.²⁰ Fiscal imbalance is another critical problem in these underbounded cities. people and industries have been moving out to the suburbs, the tax base in the central city has been eroding. Even the central cities lost the huge tax bases and revenues, but there are still increased expenditures and demand for social service. Because of the old and dilapidated buildings, there needs more fire protection. Because of the higher crime rates, more police protection is needed. Also because the suburbanites work downtown, they use the downtown facilities, such as parking lots, hospitals, and libraries, that create another burden on the central city. 21 Compared to the high revenue/expenditure ratio characteristic of most suburban municipalities, the above burden causes the central cities to tend to have a giant deviation between revenues and expenditures.

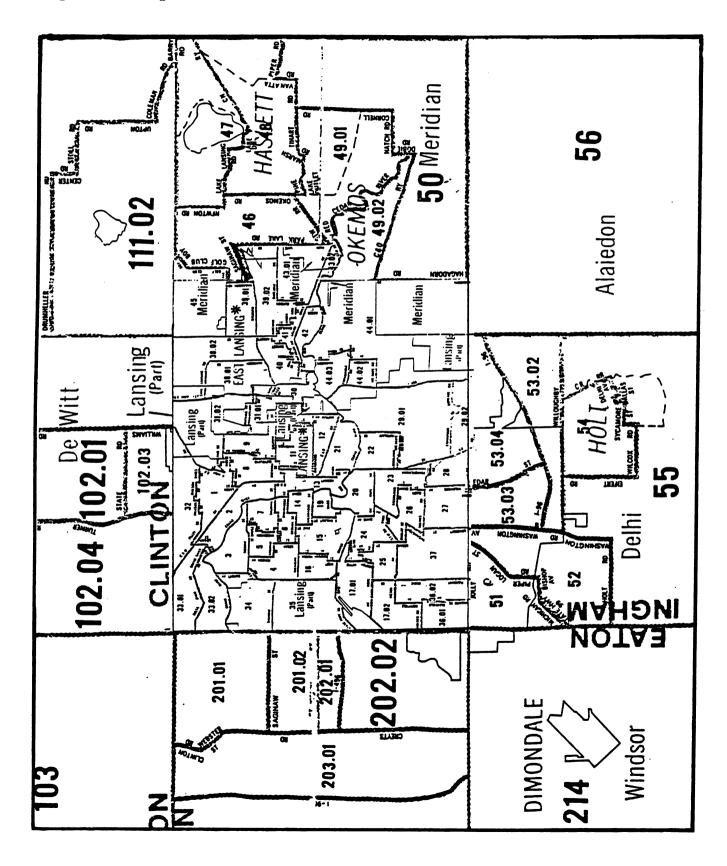
²⁰Cadwallader, 1985, Ch.1

²¹Paul Knox, "Spatial Organization and Locational Conflict," <u>Urban Social Geography</u>, 2nd. ed. (New York: John Wilely & Sons, 1987), pp.266

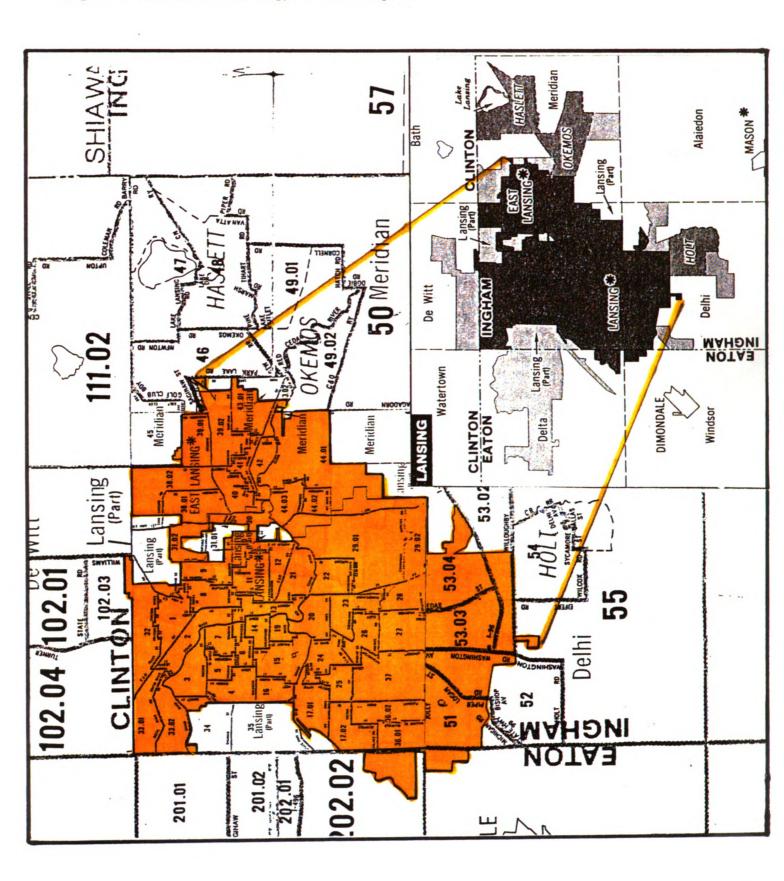
IV. CASE STUDY IN LANSING/E. LANSING UA

Up-to-date, most cities in the United States are underbounded cities and do not represent the real extent of the city. Not only was the city located inside the real physical city, some sites inside the city had been rejected for incorporation into the UA. The intention of this section is to try to test one urbanized area to see if the UA boundary should be extended or not? Should the sites surrounded by the UA, but excluded from the UA definition, be redefined as being incorporated into the UA? Because of the 1980 UA criteria's deficiencies as mentioned previously, the urbanism can not be presented only by those criteria but together with some other variables. Sjoberg and others²² also have exhibited several prominent characteristics to distinguish the urban places from non-urban places, such as water system for household, nonagricultural labor force, etc. Accordingly, this section is going to use some other census variables (such as socio-economic status, personal characteristics, housing structure characteristics), which can present the urban characteristics more, to reveal the potential problem of current boundary and redefine a possible boundary in the Lansing/ E.Lansing urbanized area.

²²G. Sjoberg, <u>The Preindustrial City</u> (New York: The Free Press, 1960)


Samples and Sites Selected

Because it is difficult to get census block data, in this study, census tract data are used instead of block data. In total, 102 census tracts were selected in Lansing city, East Lansing city and some adjacent area located in Michigan as shown in map 1. Those target samples consist of all urbanized area (map 2) and some sites within Lansing/E.Lansing city, but not defined as urbanized area (such as census tracts N30, N30.01, N31.02 N34, etc,) 23 and the neighboring sites (including Holt CDP, tracts 54 and 55, etc). Because the SPSSX Cluster analysis excluded the samples with missing values, only 81 samples with complete data sets will be included in the final analysis. The samples with missing values have 3 kinds of circumstances. One is the census tracts with zero population, where the commercial areas are located, such as parts of tract 30 and 31.01 including Frandor Mall, Sears, Kroger, were defined as urbanized area. Another one is the places with low population size. The other one is because the area is on the University campus (census tract 42, 43.01, 43.02, 44.01). course, the fertility, rent, mortgage and housing value can hardly present the truth of the variables.


In the analysis, " N " was put in front of the census tract number of the sites not defined as UA in order to distinguish them from the ones defined as being include in the UA.

²³Some area in one census tract is divided into two parts. One part is incorporated in the UA, another is not. In order to easily distinguish of them, the census tract numbers followed after an "N" present the areas not incorporated in the UA.

Map 1 : Study Area

Map 2 : Current Lansing/E. Lansing UA

Variable Specifications

There are 14 variables used in this study. Total population shows the general characteristic. Total Housing units is used to calculate the percentage of housing units connected with public water, sewer and gas utility. The other 12 variables with socioeconomic and housing characteristics and assumed hypotheses are listed as below:

Mean Travel Time to Work.

This variable is the average time in minutes spent traveling from home to work. In a more urban place, the higher proportion of work force results in more traffic jams which, in turn, causes increased travel time.

Fertility and Women at Home.

The fertility variable is the number of children born of 1,000 women in the age bracket between 35 and 44. Women at home is the percent of women in the labor force who are unemployed. In a more urban place, the family becomes less important as an individual economic unit; hence, the traditional organization of the family is weakened²⁴. More independent working women, more single parent families lead to fewer women staying at home. Also because of the high-stress urban life style, people tend to have fewer children, leading to a lower fertility rate.

²⁴Martin T. Cadwallader, 1985, pp.125

Percentage of School Completed with High School Graduates.

Usually, experts assume that more urban places have a higher proportion of high school educated population. This assumption will have little problem while applying to compare different countries. However, while applying this assumption to the UA in the United States, it may run into some risk because of the higher proportion of poorly educated minority individuals in most American metropolitan areas. But for the sites in a whole urbanized area, they may have similar results for the education characteristic.

Percentage of Population Employed in Agriculture, and in Craft & Operative.

Doubtlessly, a lower percentage of agricultural labor force exists in more urban places. With the increasing division of the labor force in urban areas, the occupational status system develops and results in a larger percentage of employment involved in the craft and operative sectors.

Percentage of Housing with Public Water, Sewer, Gas Utility.

An urban site becomes has a higher proportion of its housing units connected to a public water supply system, a public sewer system and utility gas system. The gas system may be provided by either a private company or a public utility.

Median Rent, Median Mortgage and Mean Value of Housing Units.

Characteristically, places with higher rent, and a higher mortgage, higher value of housing units are more urban than those with lower ones. Rent and mortgage, here, consist of monthly payment by tenants or houseowner. Housing unit values, here, are presented in thousands of dollars. Because of the greater demand for housing in an urban place, housing costs are greater. Consequently, the rents and the mortgages will be increased to match the higher housing costs.

Analysis Methodology

This analysis include two parts. One is using cluster analysis in SPSSX program on Michigan State University's IBM 3090 mainframe computer. Another one is ranking the census tracts by the urbanism index. Both of these two parts of the analysis are based on Z-score data transformed from the raw data sets to avoid the disadvantage of different scale.

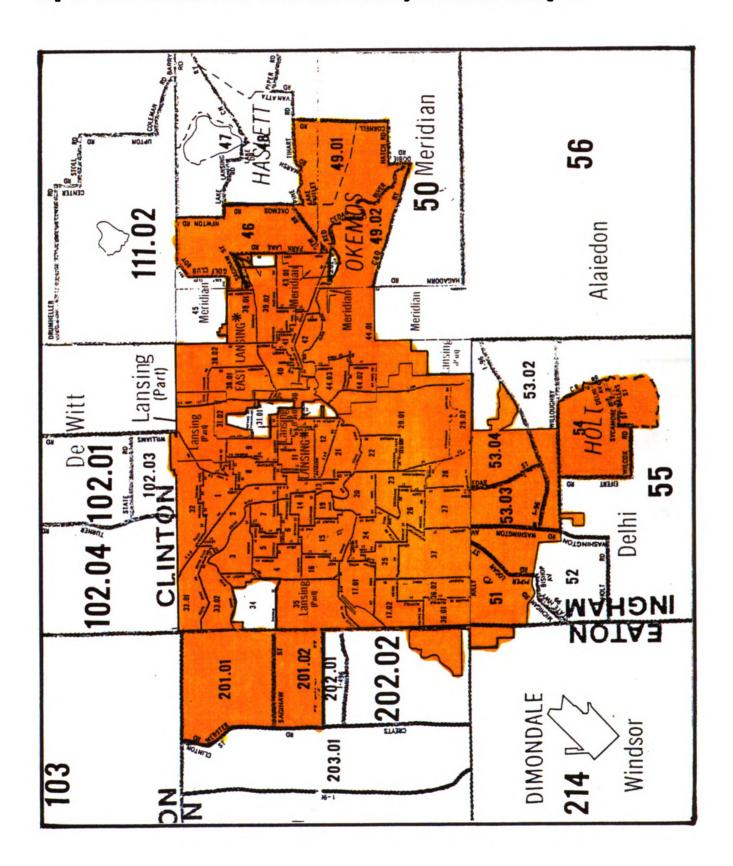
Cluster analysis classifies the census tracts into categories based on distance and similarities. The distance used here is squared Euclidean distance. The less the distance between the census tracts means higher similarities between them, and they will be group together.

In the part II ranking procedure, 3 variables - fertility, percent of women at home, and percent of agricultural employment

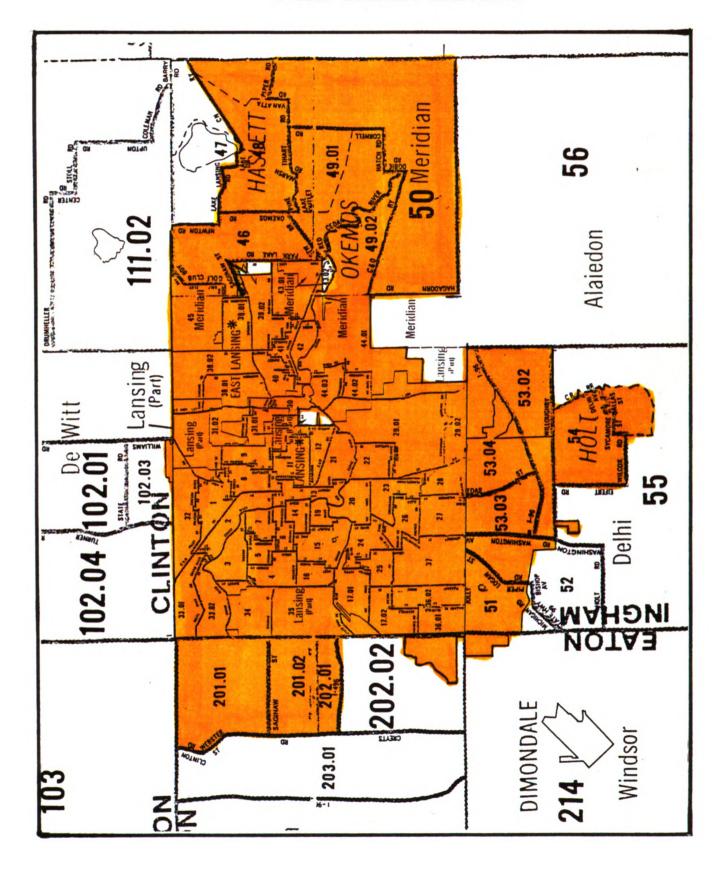
use negative values to show lower levels of urbanism, 25 because a more urban place will have lesser fertility and a lower percentage of women at home, and a lower percentage of agricultural employment. The summation of the 12 Z-scores for 12 variables (except population and housing units) for each census tract provides combined information for its level of urbanization. Larger positive composite values indicate a more urban place, and larger negative values indicate the less urban.

Statistics, Results, and Conclusion

In cluster analysis, an Hierarchical Icicle Plot provides the case similarity and group information. Based on this information, census tract N201.01(not incorporated into UA) and 31.02(part of UA) have the most similarity and are clustered together with dissimilarity coefficient 2.84(Appendix ii). This means census tract N201.01 owns urban characteristics as well as tract 31.02, but was excluded from UA by current UA definition. On a basis of urban socio-economic characteristics, N201.01 should be incorporated into the urbanized area. Analogously, tract N46.00 groups with 40.00; 41.00 groups with 39.02 and N43.01; N49.02 groups with 38.01; 17.01 groups with 33.02, N201.02 and N201.01; 38.02 groups with N49.01 and N31.02; 21.00 groups with N35.00; 54 groups with 33.01; and 55 groups with 53.03. Thus, based on this cluster analysis, at least


²⁵M.S. Kamiar & J.T.Darden, "Socio-Economic Development of Black Ghetto Tracts in Michigan: The Microcosm Model Reconsidered," The East Lakes Geographer, Vol.23, 1988, pp.71-84

another 10 census tracts (N46.00, N43.01, N49.02, N201.02, N201.01, N49.01, N31.02, N35.00 and 2 tracts of Holt CDP -tracts 54 and 55) should also have been included in the Lansing/E. lansing urbanized area (see map 3).


Through the ranking procedure, the higher composite values possess the more urban characteristics. As show in appendix iii, the UA census tracts and non-UA census tracts are mixed together. This demonstrates that not all the UA census tracts own more urban characteristics than the non-UA census tracts. From the cluster analysis, it can be seen that another 10 census tracts should be parts of the UA. The lowest composite value of those 10 census tracts is -.81 in tract N35.00. Thus, using the census tract N35.00 as a borderline, the rank higher than the tract N35.00 will be considered as more urbanized areas and be qualified to the UA. In totally, 17 census tracts²⁶, including the above 10 census tracts, are qualified to be in the UA, according to their socioeconomic indices (see map 4). As a result, the Lansing/E. Lansing urbanized area presents an underbounded city and the boundary of this UA should be extended.

 $^{^{26} \}rm They\ are\ census\ tracts\ N202.01,\ N46,\ N49.01,\ N31.02,\ N31.01,\ N201.01,\ N49.02,\ N45.00,\ N48.00,\ N201.02,\ 55,\ N34,\ N53.02,\ N43.01,\ N50,\ 54,\ AND\ N35.$

Map 3 : Potential UA 1 : Results through Cluster Analysis

Map 4 : Potential UA 2 : Result through Ranking Census Tracts by Social Economic Indicators

V. POSSIBLE SOLUTION FOR UN DEFINITION PROBLEM

The potential problems of the UA definition have been revealed since the first definition. To find a method or another criterion to delineate the urban boundary flawlessly is rarely possible. But it is possible to incorporate some other methods into the current UA definition and make the UA boundary more feasible and more reasonable.

Integrating Other Variables into UA criteria

To use only population size and/or population density as the predominant indices to define UA has some shortcomings in presenting the whole urbanism. In some countries, administrative jurisdiction or local government status are the major criteria for urban classification.²⁷ In some other countries, the urban characteristics, such as the existence of public water and sewage systems and the predominance of non-agricultural employment, are used as prominent secondary urban definition criteria.²⁸ Doubtlessly, no matter how large the population, urban characteristics always present the true urbanism. Places with a high proportion of agricultural employment will never be considered as urban.

²⁷Department of International Economic and Social Affairs, Statistical Office. "Urban and Total Population by Sex: 1977-1986," in <u>1986 Demographic Yearbook</u>, (New York: United Nations, 1988), pp. 186-189

²⁸Department of International Economic and Social Affair, Statistical Office, 1988

Public water and sewage systems are usually connected to housing units in urbanized area. Thus, to present the actual extent of UA, integrating such socio-economic variables into the UA definition criteria can better mitigate the UA problems definition. While based on socio-economic variables, in the Lansing/E. Lansing urbanized area, the census tracts N31.01 and N31.02 will positively be part of the urbanized area.

Government Consolidation

As to the fiscal imbalance problem in central cities, revenue sharing can be one of the solutions to this problem. While the central cities receive an increasing amount in grant money from federal, state, and provincial government to balance the fiscal situation, the suburban local governments are also developing additional sources of revenue. In response to the government fragmentation problem, different types of government consolidation are being attempted, such as city-county consolidation, the Atlanta model. In Atlanta, there is a Atlanta Regional Commission, which functions as an umbrella government, governing the operation of local government within the area. This commission can construct something that the individual local government unit lacks the jurisdiction to build, such as a rapid transit system. 29 commission even has its own power regarding zoning. It is responsible for coordinating the region's overall zoning policy.

²⁹Martin T. Cadwallader, 1985, pp.22

Generally, in strengthening the role of government at the metropolitan level, in an effect to remove the fiscal problem and government fragmentation problem, federal government should provide revenue sharing, develop more powerful regional agencies, and institute a national land use planning policy(This situation is not politically likely in U.S. because of the fear of centralized government power). The state government, such as in California and Florida, should then put efforts on making local government participation in regional planning obligatory, providing financial assistance for metropolitan government, and cooperating in the organization of multistate metropolitan areas. 30 Consequently, the Urbandale neighborhood (census tract N30) in Lansing/E. Lansing UA will get better treatment and may result in its incorporation into the current UA after the government consolidation. At present, because the Urbandale neighborhood is in a flooding area and excluded from the UA, the housing value is very low and developers This area seems to have been are reluctant to redevelop it. abandoned by local and metropolitan government. If the governments can cooperate together, this area will get more attention and better treatment. The flooding problem in this area will also be solved earlier. Moreover, the place might be incorporated into the

³⁰R.D. Honey, "Metropolitan Governance," in <u>Urban Policy making</u> and <u>Metropolitan Dynamics: A Comparative Geographical Analysis</u>, ed. J.S. Adams, (Mass.: Ballinger, 1976), pp.425-462

UA because of its socio-economic urban characteristics³¹. This may result in increased land value and new development. With the new development will come a better built environment and increased housing value that will bring higher rent tenants or higher income house owners, and accordingly change other socio-economic characteristics (such as education status, fertility, and % of women at home). All those possible changes in Urbandale will make this area became a complete urbanized area. The less fortune after those changes will be the people who can not afford the higher housing costs and must move.

Other Methods

Some other new techniques were recently introduced to define urban boundaries, such us remote sensing techniques and GIS techniques. The remote sensing imagery, such as airphoto and satellite imagery, can present the ground truth and define the urban boundary in physical rather than in conceptual terms. That physical definition can make up for some deficiencies in the conceptual definition. Through this method, the UA boundary can separate the different internal areas according to the census block, and the configuration of census blocks. Non-updated maps will not constrain the shape and position of the UA boundaries. Also, instead of sending people to do site observation or check in

³¹From the Case Study section, census tract N30 has 4.83% agriculture employment, 100% public sewer, 100% public water and 88% utility gas connected

the traditional way, interpreting airphoto or satellite imagery may save more time and labor, with higher accuracy.

Nowadays, Geographic Information Systems (GIS) is very welcome in every field of study. Remote sensing imagery currently can be transformed into GIS raster data and census data, are also put into most of the GIS packages that make GIS more and more desirable to planners. The advantage of this technique is that it can overlay different layers of socio-economic data and land use data, and present data in spatial patterns. With the integration of GIS and remote sensing data, the results can be presented in spatial patterns and can own the ground truth character. The urban boundaries, therefore, will be outlined both conceptually and physically.

VI. REMOTE SENSING-BASED TECHNIQUES APPLIED TO UA DELINEATION

The use of remote sensing in the urban environment is concerned with recording and interpreting an image procedure by radiant flux, which exists from a ground source toward the sensor. The most commonly used approach in remote sensing to aid in understanding and interpreting urban features is spectral reflectance statistics. In the last two decades, this powerful technology has been magnificently used in urban analysis, such as land use, population/ housing estimation, transportation system, industry and commerce, and recreation. Since urban activities are so dynamic, aerial photography and other remote sensing imagery can provide useful information quickly and economically to the planner, developer, etc. through correct interpretation and classification. Particularly, in defining urban boundaries, remote sensing techniques can provide more advantages than other solutions.

Airphoto - based

Aerial photography (AP) is the principal remote sensing medium used in urban application. It includes panchromatic AP, multiband AP, color AP and color-infrared AP. Among all AP media, color aerial photography is the most often used in urban/suburban

³²Spectral signature of a feature is a set of values for the reflectance of this feature measured at specific wavelength intervals.

application because of its true color advantage that makes it easier to identify the urban/suburban features than other aerial photography media. Compared to the color AP, the color-infrared aerial photography is less preferred in urban application because of some drawbacks such as loss of shadow information, odd color present familiar urban features, etc.

Criteria

This aerial photography method uses visual and manual identification on Black-and-White panchromatic or color aerial photographys to delineate urban fringe and urban boundary. In order to fulfill the intent of the study, initiating a series of aerial photo samples to determine various land use proportions at periodic intervals is needed. Based on the varying size of study areas and the different scale of aerial photographs, the aerial photographs might need to be arranged in the form of a mosaic to present a whole area, especially with very large scale aerial photographs.

Advantages

Aerial photography carries some useful information such as shadow and texture that provide valuable aid in identifying urban features further enhanced interpretation. Moreover, Interpretation of color aerial photography is more straightforward because the color balances with the real-world experience. Especially in

suburban applications, aerial photography is more effective.³³ The other advantage is its high accuracy through large scale to small scale.

Disadvantages

Even though aerial photography has distinct advantages, some disadvantages cause researchers to look for more effective methods. First, it is manual interpretation. Hence, it needs a professional and skillful interpreter to effectively do this job. Second, it costs more than other remote sensing methods, and it is hard to obtain up-to-date photography on a large scale due to the limitation of time and funding.³⁴ Third, the non-digital nature of photographs will take more time to process than other digital images which can be processed by using a computer.

In the last decade, some researchers have digitized aerial photographs and then performed digital image processing to classify urban features. As stated by Jensen, that was a drawback only because it still required accurate interpretation of every feature before it can be programmed to computer. Not only was more time spent in this double work, all of the features cannot be programmed to the computer in as much detail as required by the interpreter. Thus, manual interpretation is still the main stream in handling

³³John R. Jensen, "Urban/Suburban Land Use Analysis," in <u>Manual of Remote Sensing</u>, 2nd. ed., Ch.30.

³⁴N.C. Gautam, "Aerial Photo-Interpretation Techniques for Classifying Urban Land Use," <u>Photogrammetric Engineering and Remote Sensing</u>, Vol.42, No.6, June 1976, pp.815-822

aerial photography information and data.

Accuracy

High accuracy can be achieved through this manually - interpreted aerial photography, whether it is a low altitude image, high altitude image, or satellite platform image. Even the SKYLAB color photography interpretation was 83 percent correct(1:970,000). The SKYLAB S-190B sensor system can also provide adequate spectral and spatial information to classify Level III categories of urban features.³⁵

Application

Falkner³⁶ used periodic photography in determining short range physical land use changes in the Parkway School District in Missouri. The sampled land use data he used was coupled with the information obtained from the school superintendent, and then compared over time, Falkner concluded that the development of this school district was changed from a rural setting to a typical suburban community.(figure) McCoy and Metivier³⁷ used photos as an effective method for measuring house density in an analysis of urban housing, but the temporal and regional elements of the socio-

³⁵Jensen, 1985, pp.1573-1578

³⁶Edgar Falkner, "Land Use Changes in Parkway School District," Photogrammetric Engineer & Remote Sensing, Vol.34, No.1, 1970, pp.52-57

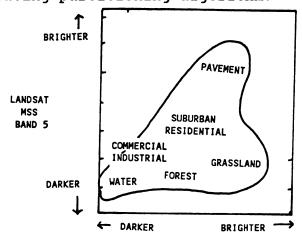
³⁷Roger M. McCoy, "House Density vs. Socioeconomic Conditions," <u>Protogrammetric Engineering & Remote Sensing</u>, Vol.39, No.1, 1973, pp.43-47

economic correlation need to be understand better. Dennis M. Richter³⁸ also utilized sequential photography to detect the urban change and showed that information useful to urban planning can be obtained from the aerial photographs.

LANDSAT-based

Prior to the advent of satellite data as a tool for remote sensing, interpretation of aerial photography could serve to map urban land use. In 1975, the Geography Program of Survey initiated discussion on a land cover change assessment methodology by including Landsat data. In 1977, the Census Bureau had to do a similar experiment to use satellite data to update an urban land use map and monitor urban growth that had to serve as a surrogate for population density or other ground collected information. Since then, Landsat data has been used to examine land use change and urban growth. The principle of the Landsat based method can be condensed into two criteria as below.

Criteria 1


Use visual identification on Landsat image enhancements and classification overlays to define UA.

In outer liner delineation, image enhancement by using

³⁸Dennis M. Richter, "Sequential Urban Change," <u>Photogrammetric</u> <u>Engineering & Remote Sensing</u>, Vol.35, No.8, 1971, pp.764-770

³⁹John R. Jensen, "Urban Change Detection Mapping Using Landsat Digital Data", <u>American Cartographer</u>, Vol 8, No.2, Oct 1981, pp.127-147

stepwise linear contrast stretch is needed because of the insufficient tonal contrast between non-urban and urban features on the Landsat image. Moreover, the computer-aided classification of Landsat multispectral digital data is training on known areas of urban growth to produce thematic maps for urban land cover by a feature-spacing partitioning algorithm.⁴⁰

LANDSAT MSS BAND 7

Figure 3: Feature-spacing algorithm

Criteria 2

The other Landsat-based criteria is using digital change detection procedures to delineate UA. It is using spectral signatures on multitemporal Landsat data to detect non-urban to urban cover change on the urban fringe.⁴¹

Some consideration should be addressed in affecting change detection, such as temporal characteristics and environmental characteristics. Usually, the anniversary dates of the image are

⁴⁰ Jensen, pp.1611-1612

⁴¹Jensen, Ibid.,

recommended for use because they minimize the difference in reflectance caused by seasonal vegetation change, or sun angle difference, etc. Furthermore, an August date can provide better results. In reducing adverse effects from environmental factors (eg. different atmospheric conditions, sun angles, or surface-cover moisture) which will affect the radiance changes between dates, the data transformation and principal-component transformation are also useful for urban change detection.

Change Detection Algorithms

Three change detection approaches have been used in criteria 2 - image differencing, image regression, and classification comparison. Image differencing technology is based on differencing two Landsat images obtained on two different dates to get information on urban land cover change. It is the simplest one, and an efficient change-detection processing approach. Its accuracy of classification could reach 77 percent. Some results suggested that this image differencing procedure is too simple to deal with all types of change in a complex residential scene. However, this situation could be improved in conjunction with other change detection methods. Image regression is using a least squares transformation between dates to reduce the effect of environmental and system multiplicative factors. An advantage of using image regression instead of image differencing is that image regression

⁴²Jensen, Ibid.,

can adjust for between-date environmental difference in variance. Recently, this technology was criticized as being a statistically invalid method due to the non-Gaussian, bimodal distribution it is based upon. 43

The other change detection technology, classification comparison, evaluates the classification of Landsat data for two or more dates. This technique includes five alternatives -post-classification comparison; spectral/temporal change classification; layered spectral/temporal classification and clustering comparison; but is useful only if accurate land use classification can be obtained.

Generally speaking, digital change detection must be familiar with the environment under study, and the quality of the data set. It must also focus on identifying the optimum algorithm for the specific study area. Image differencing or image regression of spectral data are more practical, but may be too simple to identify the various changes in the urban scene. One possible way to improve the change detection accuracy is using textural data together with Landsat spectral data in identifying urban change. "

Advantages

⁴³J.W. Robinson, "Critical Review of the Change Detection and Urban Classification Literature", <u>Technical Memorandum 79/6235</u>, Computer Sciences Corp., Silver Springs, Md., 1979, pp.90

⁴⁴John R. Jensen, and David L. Toll, "Detecting Residential Land-Use Development at the Urban Fringe," <u>Photogrammetric Engineer & Remote Sensing</u>, Vol.48, No.4, April 19 82, pp. 629-643

Landsat images can cover a larger area and are less expensive than manual aerial photography. By using visual identification, a Landsat image could develop the boundaries similar to those obtained with aerial photographs. Computer-aided classification can reduce interpretation time by 50 percent. Furthermore, it uses physical, visual variables rather than two figures (population or density size) to define urbanized areas and give a more unbiased UA boundary.

Disadvantages and Accuracy

Landsat itself is not able to identify all various ground categories by unique spectral signature. Low density suburban housing and small villages may be misclassified as large gardens or high vegetation content. A Rural areas of bare soils, harvested field, dry heath land, sand bank may also be misclassified to the urban area. Because the spectral signature of those areas are close to urban area, single date multispectral classification is not sufficient to distinguish them. Moreover, while analyzing a Landsat image by spectral signature, the researcher not only needs to be familiar with the environment of the study area, but he also needs to spend much more effort to develop and select the optimum algorithms for each type of environment. Even using visual identi-

⁴⁵ Jensen, Ibid.,

⁴⁶This type of error is called Omission. The other type of error is called Commission which is the misclassification of rural area as urban area.

fication on a Landsat image could produce a similar boundary to those obtained with aerial photography, with its accuracy still less than manual airphoto interpretation with large scale aerial photographs.

Application

Jensen and Toll⁴⁷ detected residential land-use development at the urban fringe in Denver, Colorado by using band 5 Landsat spectral data and derived texture data, with approximately 81 percent of change detection accuracy. Ellefsen and Peruzzi⁴⁸ proposed a method for delimiting the boundary of an urbanized area by using computer-aided analysis of Landsat digital data. The general rules in determining delimitation they adopted were from the U.S. Census to encompass exclaves and to close embayments.⁴⁹ Haack⁵⁰ also used computer processing and utilized Landsat digital data to differentiate urban and near-urban land covers around Miami, Florida. Moreover, some other researchers (Davis and Friedman, 1974, Effefsen and Davidson, 1980, Welch and Pannell,

⁴⁷Jensen and Toll, 1982

⁴⁸Richard Ellefsen and Duilio Peruzzi, "A Suggested Method for Delimiting Urbanized Area Using Landsat Data," <u>American Society of Photogrammetry</u>, Proc, Fall Technical Meeting, Albuquerque, NM, Oct 1978, pp.176-183

⁴⁹Enclaves could be brought into the urban mass if they were within a distance of a mile and a half, embayment could be closed into the urban mass too if the mouths were less than a mile wide.

⁵⁰Barry Haack, "An Assessment of Landsat MSS and TM data for Urban and Near-Urban Land-Cover Digital Classification," Remote Sensing of Environment, Vol.21, No.2, 1987, pp.201-213

1975, etc.) used digital imagery and image processing technology for the mapping of urban land expansion.

SLAR/SAR-Based (Radar-Based)

Aerial photography and Landsat imagery have received the most attention and are more widely employed than other techniques in urban analysis. Unfortunately, those data will become useless while the study areas are covered in cloud or bad weather conditions. Under those situations, all-weather radar imagery can be an appropriate medium to be employed. Unlike other sensor systems, radar records' signatures on film are the result of interaction between terrain features(surface roughness) and actively produced microwave energy, rather than spectral natures of urban and suburban feature. It therefore can overcome the limitation of bad weather conditions.

Criteria

One example of this methodology is hiring visual identification on radar imagery. Henderson and Anuta(1980) used images produced by X band or K band radar from different areas, with different scales of the United State for settlement detection. After that, manual interpretation by using a Baush & Lomb 240Z stereoscope in mono-mode was conducted to examine the imagery. 51

⁵¹Floyd M. Henderson and Michael A. Anuta, "Effects of radar system parameters, population, and environmental modulation on settlement visibility," <u>Int. J. Remote Sensing</u>, 1980 Vol. 1, No.2, pp.137-151

Another approach is employing digitally processed SAR L-band images for mapping urban land-cover. Data obtained from digital processing could then be used to delineate urban-rural fringe.⁵²

Advantages

The main advantages of using radar imagery are its all-weather capability and its high accuracy. In urban analysis, all level II and most level III categories of the urban land cover are identifiable with a radar system, such as residential (including older and newer housing), commercial core and large strip developments, and major transportation networks(including smaller residential streets.) Henderson and Anuta detected all settlements over 1,000 population on X - band imagery at a scale of 1:200,000 through manual interpretation. By employing digital enlargement of SAR imagery at Denver, Colorado (Henderson, 1980), the accuracy of urban land-cover classification was from 77% in the inner city zones to 94% in the new residential areas and urban fringe zones at a scale of 1:410,000. The most identifiable land-cover categories were residential, industrial-commercial, open space, and water; those categories could also be obtained with an accuracy of 87.9% at a scale of 1:131,000.53

⁵²Jensen, Ibid.,

⁵³Jensen, Ibid.,

Disadvantages

Radar imagery may not be available for the entire United States. Thus, for analysis of an entire nation, radar imagery might need to include various scales, different wavelengths and different systems. Its accuracy will be decreased with a small scale. Settlement size, radar azimuth or look direction will also influence the settlement detectability and visibility. Using manual interpretation in settlement detection would have the same shortcomings as manual airphoto interpretation: time-consuming and lower efficiency.

Accuracy

Larger scale radar imagery could provide higher accuracy. Detection of settlements with population of 1,000 and more can get 100% accuracy at a scale of 1:200,000. For all the K-band imagery and scales, the type of error was omission not commission. The maximum error of commission was less than 1 percent.⁵⁴

Application

As mentioned above, Henderson and Anuta used radar imagery for population settlement detection with high accuracy. Lo⁵⁵ also employed Shuttle Imaging Radar-A(SIR-A) in detecting Chinese

⁵⁴Henderson and Anuta, Ibid.,

⁵⁵C.P. Lo, "Chinese Settle Pattern Analysis Using Shuttle Imaging Radar-A Data," <u>Int. J. Remote Sensing</u>, Vol.5, No.6, 1984, pp.959-967

settlement patterns and population. These settlements reflect strongly the radar beam and against a dark background. Each individual settlement stands out against the dark background and therefore the sizes of the settlements can be differentiated. (see figure 4 in Baoding area and figure 5 in Dezhou area)

The Feasibility of Remote Sensing-Based Techniques

In general, remote sensing-based methods are very welcome in many fields of study because they can provide relatively high accuracy in testing the ground truth. In a private or an individual research, remote sensing techniques have always been considered perfect solutions in providing accurate physical data, high accuracy and high efficiency. Many researchers, even the Census Bureau, have conducted studies of the UA delineation by using remote sensing technique. Unfortunately, those highly efficient remote-sensing techniques have been rejected by the Census Bureau to use as a methodology in defining UA boundaries for the entire nation because of the budget constraint. For the entire country, the cost of reproducing images will cost the Census Bureau millions of dollar. Even those techniques can save labor and time; compared to the cost of imagery, the cost(from the view of the Census Bureau) is still far above the benefit. Hence, remote sensingbased methods become infeasible because of the imbalance of cost and benefit.

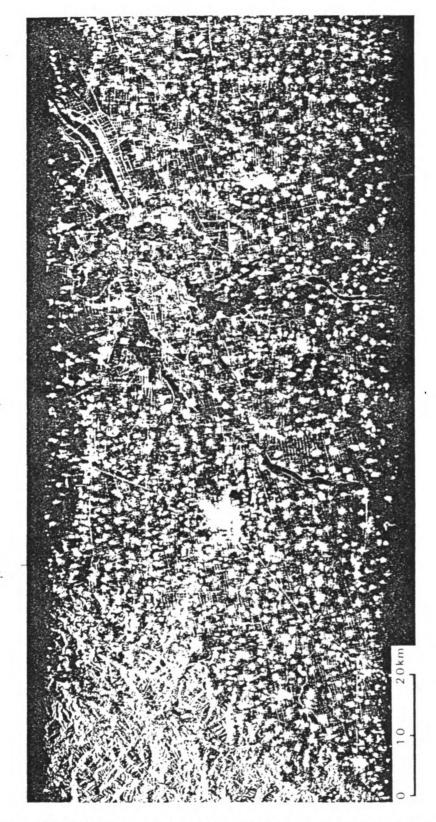


Figure 4: Shuttle Imaging Radar-A Image of Boading Area (Source: Lo, 1984)

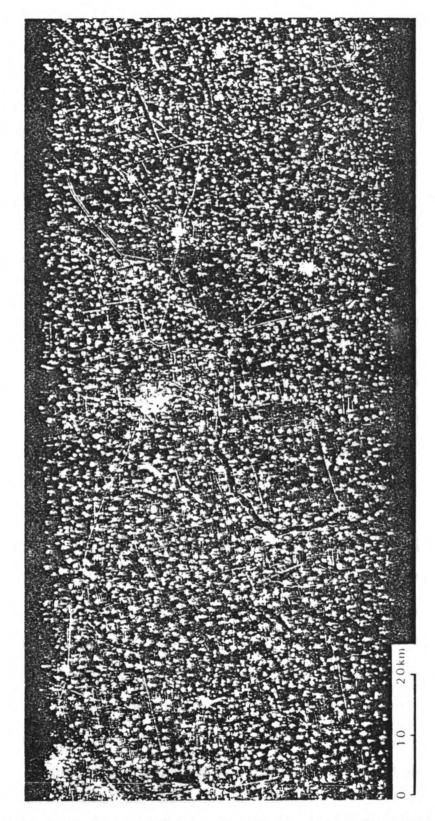


Figure 4: Shuttle Imaging Radar-A Image of Boading Area (Source: Lo, 1984)

VI. CONCLUSION

Either from the conceptual view, or the potential problem of UA, it is appropriate to consider a multivariate approach for defining urban population and place. Also, using census data is the easiest and cheapest way to improve the UA definition because of the ease of getting existing census data. Some industrialized countries use the presence and utilization of public utilities and/or public services as indicators of urbanism. The employment of non-agricultural activities has been used frequently too. Even government consolidation can relieve some UA definition problems. A more appropriate definition using more variables can reduce the problems to the lowest level. The case study in the Lansing/E. Lansing urbanized area, reveals that the 1980 UA definition produces an underbounded city without considering the socioeconomic urban character. Only population size can not present the socio-economic characteristics or lifestyle of inhibitants. Recently, some researchers and the Census Bureau have tried to conduct some projects by using Landsat data to define the UA's. If one does not consider the high cost of satellite imagery, the remote sensing technique can probably be another surrogate in defining urban boundaries because it provides great savings in labor and time involved in defining boundaries physically. If one uses another technique, Geographic Information System (GIS), the urban boundaries can be presented physically, and the socioeconomic characteristics can be intergrated into the results.

REFERENCE

- Adeniyi, Peter O. "Land-Use Change Analysis Using Sequential Aerial Photography and computer Techniques." <u>Photogrammetric Engineering and Remote Sensing</u>. Vol. 46, No.11, Nov. 1980, pp.1447-1464
- Alig, Ralph J. and Healy, Robert G. "Urban and Built-Up Land Area Changes in the United States: An Empirical Investigation of Determinants." <u>Land Economics</u>. Vol.63, No.3, August 1987, pp.215-226.
- Cadwallader, M.T. "Urban Social Areas." in <u>Analytical Urban</u>
 <u>Geography Spatial Patterns and Theories</u>, pp.125. New Jersey:
 Prentice-Hall, 1985.
- Carter, P. and Jackson, M J. "The Elimination Approach to Monitoring Urban Growth from Landsat Data." <u>Int. Sym. on Remote</u> <u>Sensing of Environment</u>. April 1975, pp.1609-1617.
- Christenson, Jerrold W. et., al. "Landsat Urban Area Delineation."

 <u>Interlab Project 75-3</u>. Geographic Reference and Resource
 Center. Dec. 1977.
- Davis, James B. "Assessing Urbanized Area Expansion through the Integration of Landsat and Conventional Data." <u>Proceeding of ASP-ACSM</u>, 45th Annual Meeting. March 1974, pp.776-791.
- Department of International Economic and Social Affairs, Statisticcal office. "Urban and Total Population by Sex: 1977-1986." in 1986 Demographic Yearbook, pp.186-189. New York: United Nations, 1988.
- Ellefsen, Richard and Peruzzi, Duillio. "Urbanized Area Using Digital Landsat Data." <u>American Society of Photogrammetry, Proc., Fall Technical Meeting</u>. Oct. 1978, pp.175-183.
- Falkner, Edgar. "Land Use Change in Parkway School District."

 <u>Photogrammetric Engineering and Remote Sensing</u>. Vol.34, No.1,
 1970, pp.52-57.
- Friedmann, I., & Miller, J. "The Urban Field." <u>Journal of the American Institute of Planners</u>, Vol.31, 1965, pp.312-319.
- Freudreis, J.P. "The Information Revolution and Urban Life."

 Journal of Urban Affairs, Vol.11, pp.327-337.
- Gautam, N.C. "Aerial Photo-Interpretation Techniques for Classifying Urban Land Use." <u>Photogrammetric Engineering and Remote Sensing</u>. Vol.42, No.6, June 1976, pp.815-822.

- Haack, Barry. "An Assessment of Landsat MSS and TM data for Urban and Near-Urban Land-Cover Digital Classification." Remote Sensing of Environment. Vol.21, No.2, 1987, pp.201-213.
- Handerson, Floyd M. and Anuta, Michael A. "Settlement Detection with Radar Imagery." <u>Journal Proceeding of the ASP-ACSM, Fall Meeting</u>. 1979, pp.89-104.
- Handerson, Floyd M. and Anuta, Michael A. "Effects of Radar System Parameters, Population, and Environmental Modulation on Settlement Visibility." <u>Int. J. Remote Sensing</u>. Vol 1, No.2, 1980, pp.137-151.
- Harvard Law Review, "Demography and Distrust: Constitutional Issue of the Federal Census." Feb. 1981, pp.841-863.
- Honey, R.D. "Metropolitan Governance." in <u>Urban Policy Making and Metropolitan Dynamics: A Comparative Geographical Analysis</u>, pp.425-462. ed. by J.S. Adams. Massachusetts: Ballinger, 1976.
- Jensen, John R. and Toll, David L. "Detecting Residential Land-Use Development at the Urban Fringe." <u>Photogrammetric Engineer & Remote Sensing</u>. Vol.48, No.4, April 1982, pp.629-643.
- Jensen, John R. "Urban Change Detection Mapping Using Landsat Digital Data." <u>American Cartographer</u>, Vol.8, No2, Oct 1981, pp.127-147.
- Jensen, John R. "Urban/Suburban Land Use Analysis." In <u>Manual</u> of Remote Sensing. 2nd. ed., Ch.30.
- Kamiar, M.S. & Darden, J.T. "Socio-Economic Development of Black Ghetto Tracts in Michigan: The Microcosm Model Reconsidered." The East Lakes Geographer, Vol.23, 1988, pp.71-84.
- Knox, Paul. "Spatial Organization and Locational Conflict." in <u>Urban Social Geography</u>, pp. 266. 2nd. ed. New York: John Wilely & Sons, 1987.
- Lo, C.P. "Chinese Settle Pattern Analysis Using Shuttle Imaging Radar-A Data." <u>Int. J. Remote Sensing</u>, Vol.5, No.6, 1984, pp.959-967.
- McCoy, Roger M. "House Density vs. Socio-economic Conditions."

 <u>Photogrammetric Engineer & Remote Sensing</u>. Vol.39, No.1, 1973, pp.43-47.

- Richter, Dennis M. "Sequential Urban Change." <u>Photogrammetric</u>
 <u>Engineer & Remote Sensing</u>. Vol.35, No.8, 1971, pp.764-770.
- Robinson, J.W. "Critical Review of the Change Detection and Urban Classification Literature." <u>Technical Memorandum 79/6235</u>. Computer Sciences Corp., Silver Springs, Md., 1979, pp.90.
- Shevky, E. and Bell, W. <u>Social Area Analysis</u>. pp.4. California: Stanford University Press, 1955.
- Sjoberg, G. The Preindustrial City. New York: The Free Press, 1960
- Toll, David L. "Analysis of Digital LANDSAT MASS and SEASAT SAR Data for use in discriminating land cover at the urban fringe of Denver, Colorado." <u>Int. J. Remote Sensing</u>. Vol.6, No.7, 1985, pp.1209-1229.
- Truesdell, L.E. "The Development of the Urban-Rural Classification in the United States: 1874 to 1949." <u>Current Population Report Population Characteristics</u> (Series No.1) 1949, pp.4
- Wirth, L. "Urbanism As a Way of Life." American Journal of Sociology, Vol.44, 1938, pp.1-23.
- U.S. Accounting Office. <u>Rural Development: Federal Program</u>
 <u>that Focus on Rural America and Its Economic Development</u>.
 1989, pp.39.
- U.S. Accounting Office. <u>Urban Action Grants: An Analysis of</u>
 <u>Eligibility and Selection Criteria, and Program Results</u>. 1989, pp.3.
- U.S. Bureau of the Census. 1980 Census of Population and Housing.
- U.S. Bureau of the Census. <u>Geographic Areas Reference</u>
 <u>Manual</u>. 1987, Ch.15

APPENDIX I

DATA LISTING OF THE 14 CENSUS VARIABLES FOR THE LANSING/E. LANSING SAMPLE AREA

192.03	Census	v01	VO2 HS	VO3 TRVL	V04	VO5 SCHL	VO6 WOMAN	v07	VO8 CRAFT	V09	V10	V11	V12	V13	V14 HS
102.02	Tract		UNIT	TIME		CMPLD	HOME	AGR I	OPRAT						VALUE
202.00 364 1184 17.8 2559 85.1 5.9 0.41 26.60 99.8 100.0 92.6 297 361 42.6 38.01 4323 1625 16.1 2991 96.1 4.9 0.42 8.05 100.0 100.0 83.8 275 652 73.7 38.02 2002 977 18.5 3633 93.9 34.0 0.00 5.29 98.2 98.1 81.7 302 505 53.9 31.3 38.02 2002 977 18.5 3633 93.9 34.0 0.00 5.29 98.2 98.1 81.7 302 505 53.9 31.9 31.0 3776 1701 719 719 719 5.3 2514 93.4 0.00 0.65 7.00 100.0 100.0 82.6 383 888 124.1 39.02 3377 1700 13.9 2126 98.1 2.4 0.26 6.01 89.9 89.9 72.9 252 512 68.1 41.00 4822 1379 13.6 2115 94.3 4.6 1.16 8.37 7.00 100.0 100.0 73.7 292 447 45.6 43.01 4253 1517 15.3 2121 94.8 34.4 0.36 9.59 100.0 100.0 50.0 180 44.02 3825 1537 13.8 1872 98.0 37.2 27.7 97.0 100.0 100.0 64.7 386 44.02 3825 1537 13.8 1872 98.0 6.6 0.00 7.59 101.3 99.5 99.6 29.1 164 389 55.0 46.00 269 126 37.5 99.0 100.0 49.2 2303 37.6 38.6 37.0 38.0 43.3 4.0 4.9 2.30 13.22 100.0 99.7 81.5 39.5 43.3 43.3 4.0 4.9 2.30 13.22 100.0 99.7 81.5 43.3 43.3 4.0 4.9 2.30 13.22 100.0 99.7 81.5 43.3 43.3 4.0 4.9 2.30 13.22 100.0 99.7 81.2 37.7 38.9 52.1 4.5 50.0				=====	******	=====	*****			22223	******	22323	******		
214.00		_	-	17 8	2550	85 1	5 0	0 41	26 60	00 R	100.0	02 4	207	361	42.4
38.01 4322 16.52 16.1 2297 9.7.4 9.0.4 8.0.5 100.0 100.0 83.8 275 652 73.7 302 505 61.5 39.01 1791 719 719 15.3 254.1 93.4 0.0 0.55 7.00 100.0 82.6 38.3 868 124.1 39.0 3989 1576 13.2 22107 96.6 2.6 1.28 8.53 99.8 100.0 73.7 272 45.6 45.2 40.00 376 1700 13.9 2126 98.1 2.4 0.26 6.01 89.9 72.9 252 512 68.1 45.0 40.01 36.5 180.0 180.0 73.7 29.0 100.0 73.7 29.2 447 45.6 45.6 44.00 182.2 172.7 98.0 100.0 100.0 100.0 162.5 180.0 162.5 45.6 45.0 180.2 180.2 180.2 180.2 180.2 180.															
38.0 02 2002 977 18.5 1633 97.9 3.4 0.00 5.26 98.1 81.7 30.2 505 61.5 39.01 1791 719 15.3 2524 93.4 0.0 0.56 7.0 1010.0 0.0 73.0 272 475 65.2 40.00 37.6 170 1700 13.9 2126 98.1 2.4 0.26 6.01 89.9 89.9 72.9 252 512 68.2 44.00 35.6 2115 94.3 4.6 1.16 8.37 100.0 100.0 57.7 72.9 252 512 45.6 4.0 2.0 99.0 100.0 99.7 81.2 372 43.6 51.3 43.6 11.6 8.37 100.0 100.0 68.1 65.2 44.0 2053 13.2 100.0 100.0 66.2 40.0 26.0 13.5 89.0 10.0 8.7 38.3 43.5 51.3 40.0 4.9 2.30<															
39.01 1791 719 1719 15.3 2541 93.4 0.0 0.65 7.00 100.0 100.0 02.6 388 868 124.1 39.0 1276 1372 2307 96.6 2.6 1.26 8.53 99.8 100.0 73.0 272 475 65.2 40.00 3776 1700 13.9 2126 98.1 2.4 0.26 6.01 89.9 89.9 72.9 252 512 68.1 41.00 4882 1379 13.6 2115 94.3 4.6 1.16 8.37 100.0 100.0 73.7 292 447 45.6 43.01 4253 1517 15.3 2121 94.8 3.4 0.36 9.5 100.0 100.0 97.7 31.2 272 43.6 13.0 2277 883 14.5 100.0 100.0 0.0 73.7 7 95.0 100.0 100.0 97.7 386 14.0 14.3 188 7.9 667 100.0 8.7 2.77 9.6 100.0 100.0 97.7 386 14.0 14.0 1483 188 7.9 667 100.0 8.7 2.77 9.6 100.0 100.0 97.7 386 14.0 24.0 114.3 188 7.9 667 100.0 8.7 2.21 7.27 93.6 93.6 16.0 240 44.02 3852 1537 13.8 1872 98.0 6.6 0.00 7.93 101.3 99.6 38.6 103 44.03 2993 1312 12.0 2241 97.9 1.9 0.00 6.40 99.5 99.6 29.1 164 389 50.4 40.0 3894 2899 18.3 2889 77.4 7.0 0.8 32.5 90.2 90.3 72.0 268 36.0 40.2 55.00 2713 895 21.4 2570 81.3 4.0 0.00 29.1 69.3 72.0 268 36.0 40.2 55.00 2713 895 21.4 2570 81.3 4.0 0.00 29.1 99.5 99.6 29.1 164 389 55.4 40.0 3894 1403 14.2 381 56.5 20.0 0.5 94.6 100.0 98.7 81.6 183 300 28.5 30.0 2894 170.7 14.4 381 56.5 20.0 0.5 94.6 100.0 98.7 81.6 183 300 28.5 30.0 2894 170.7 14.4 381 56.5 20.0 0.5 94.6 100.0 98.7 81.6 183 300 28.5 30.0 2894 170.7 12.5 3603 68.0 9.9 0.00 38.2 100.0															
39.0 (2) 3989 1576 (13.2) 2307 96.6 2.6 1.28 8.53 99.8 100.0 73.0 272 475 65.2 63.1 41.00 4882 1379 13.6 2115 96.3 4.6 1.16 8.37 100.0 100.0 73.7 292 447 45.6 44.2 8.1 100.0 10.6 2.33 7.82 100.0 50.0 180 45.6 44.2 8.1 100.0 3.7 2.77 96.0 100.0 90.0 6.6 100.0 90.0 6.6 100.0 90.0 6.6 100.0 8.7 2.21 7.27 95.6 95.6 10.0 240 4.6 4.0 289 11.0 2.0 6.6 0.0 7.9 10.0 0.0 6.4 9.9 95.0 2.1 16.4 3.0 3.0 289 13.2 180 3.0 289 1.0 2.0 2.0 3.3 3.2 10.0 289 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>															
40.00 3776 1700 13.9 2126 98.1 2.4 0.26 6.01 89.9 89.9 72.9 25.2 512 68.1 1.00 482 1379 13.6 2115 94.8 3.4 6.6 1.16 8.37 100.0 100.0 75.7 292 447 45.6 42.00 5656 44 8.1 100.0 10.6 2.33 7.82 100.0 100.0 50.0 180 143.0 1253 171 15.3 2121 94.8 3.4 0.36 9.5 100.0 190.0 100.0 50.0 180 143.0 1253 171 15.3 2121 94.8 3.4 0.36 9.5 100.0 190.0 100.0 64.7 386 14.5 100.0 0.3.7 2.77 9.60 100.0 100.0 64.7 386 14.5 100.0 114.36 188 7.9 667 100.0 8.7 2.21 7.7 95.6 100.0 190.0 64.7 386 162.5 1637 13.8 1872 98.0 6.6 0.00 7.93 101.3 99.6 38.6 103 144.03 2993 1312 12.0 2241 97.9 1.9 0.00 6.40 99.5 99.6 29.1 164 389 50.4 14.5 10.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0															
42.00 4882 1379 13.6 2115 94.3 4.6 1.16 8.37 100.0 100.0 73.7 292 447 45.6 42.00 5656 44 8.1 100.0 10.6 10.6 2.33 7.82 100.0 100.0 10.0 50.0 180 43.01 4253 1517 15.3 2121 94.8 3.4 0.36 9.59 100.0 99.7 81.2 372 434 51.3 43.02 2877 883 14.5 100.0 8.7 2.77 9.60 100.0 100.0 64.7 386 162.5 44.01 11436 188 7.9 667 100.0 8.7 2.21 7.27 93.6 93.6 16.0 240 44.02 3852 1537 13.8 1872 98.0 6.6 0.00 7.93 101.0 10.0 64.7 386 103 44.03 2933 1312 12.0 2241 97.9 1.9 0.00 6.40 99.5 99.6 38.6 103 45.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0															
42.00 5656 44 8.1 100.0 10.6 2.33 7.82 100.0 100.0 50.0 180 43.01 4253 1517 15.3 2121 94.8 3.4 0.36 9.59 100.0 99.7 81.2 372 434 51.3 43.02 2877 883 14.5 100.0 3.7 2.77 9.60 100.0 100.0 64.7 386 162.5 44.01 11436 188 7.9 667 100.0 8.7 2.21 7.27 93.6 93.6 16.0 240 44.02 3852 1537 13.8 1872 98.0 6.6 0.00 7.93 101.3 99.6 38.6 103 44.03 2993 1312 12.0 2241 97.9 1.9 0.00 6.40 99.5 99.6 29.1 164 389 50.4 45.00 0 0 46.00 269 126 13.5 909 100.0 4.9 2.30 13.22 100.0 100.0 93.7 343 88.0 55.00 2713 895 21.4 2570 81.3 4.0 0.00 29.16 95.3 97.0 94.5 230 387 433.1 1.00 2466 874 15.0 3271 51.3 6.4 0.00 29.16 95.3 97.0 94.5 230 387 433.1 1.00 2466 874 15.0 3271 51.3 6.4 0.00 29.16 95.3 97.0 94.5 230 387 433.1 1.00 2466 1874 15.2 3009 53.9 17.4 0.96 31.26 100.0 98.7 81.6 183 300 28.5 3.00 2894 1072 14.4 3481 56.5 20.0 0.59 45.69 100.0 99.6 83.1 268 296 22.4 4.00 3684 1403 14.2 3503 75.5 9.3 0.15 24.60 100.0 100.0 16.3 268 326 326 33.0 5.00 2185 772 12.5 3403 68.0 9.9 0.00 38.24 100.0 100.0 90.3 275 277 24.1 7.00 3129 1697 1343 12.2 1000 83.0 13.8 01.38 24 100.0 100.0 96.3 275 277 24.1 7.00 3129 1697 1343 12.2 1000 83.0 13.8 01.2 9.4 100.0 100.0 76.3 218 365 23.1 10.00 2701 110 17.4 1972 77.9 6.7 2.22 22.96 100.0 99.6 88.1 286 2267 21.2 9.00 1803 715 14.1 3653 72.9 8.8 0.00 29.83 100.0 100.0 85.6 291 309 30.6 10.00 2701 1100 74.6 364 365 57.5 5.0 1.0 14.2 94.2 100.0 99.6 88.1 296 322 22.0 14.00 229 200 11.3 58.6 50.0 0.00 0.00 100.0 10.0 10.0 15.5 27.9 12.2 15.00 2271 1007 13.8 8.6 50.0 0.00 0.00 100.0 100.0 86.7 300 370 44.2 17.01 1007 460 20.8 2630 89.9 7.5 5.0 1.0 0.00 99.4 89.0 266 282 21.3 14.00 229 200 11.3 58.6 50.0 0.00 0.00 100.0 100.0 86.7 300 370 44.2 17.01 1007 460 20.8 2630 89.9 7.5 5.0 1.0 0.00 100.0 99.4 89.0 266 282 21.3 14.00 229 200 11.3 58.6 50.0 0.00 0.00 100.0 100.0 86.7 300 370 44.2 17.01 1007 460 20.8 2630 89.9 7.5 5.0 0.00 2.8 10.0 0.00 0.0 10.0 10.0 0.0 3.2 22.0 29.0 93 15.1 14.2 2520 73.3 6.1 0.00 0.00 0.00 100.0 100.0 86.7 30.0 30.0 30.0 30.0 370 44.2 17.01 1007 460 20.8 2630 89.9 7.5 5.0 0.00 2.8 10.0															
43.02 2877 883 14.5 19.3 211 94.8 3.4 0.36 9.59 100.0 99.7 81.2 372 434 51.3 43.02 2877 883 14.5 100.0 3.7 2.77 9.60 100.0 100.0 4.7 385 16.5 44.01 11436 188 7.9 667 100.0 8.7 2.21 7.27 93.6 93.6 16.0 240 44.02 3852 1375 13.8 1872 98.0 6.6 0.00 7.97 91.9 99.6 38.6 103 45.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	42.00	5656	44	8.1		100.0	10.6	2.33				50.0			
44.02 3852 1537 13.8 1872 99.0 6.6 0.00 7.93 101.3 99.6 38.6 10.0 240 44.03 2993 1312 12.0 2241 97.9 1.9 0.00 6.40 99.5 99.6 38.6 103 44.03 2993 1312 12.0 2241 97.9 1.9 0.00 6.40 99.5 99.6 29.1 144 389 50.4 45.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	43.01	4253	1517	15.3	2121	94.8		0.36	9.59	100.0	99.7	81.2	372	434	51.3
44.03 2993 1312 12.0 2241 97.9 1.0 1.0 10.0 10.0 99.5 99.6 29.1 164 389 50.4 46.03 2993 1312 12.0 2241 97.9 1.0 1.0 10.0 10.0 10.0 10.0 10.0 93.7 343 80.0 265.0 7384 2899 18.3 2689 77.4 7.0 0.84 32.55 90.2 96.3 72.0 268 360 40.2 55.00 2713 895 21.4 2570 81.3 4.0 0.00 22.16 95.3 97.0 94.5 230 337 43.3 43.3 11.0 2466 874 15.0 3271 51.3 6.4 0.0 0.00 22.16 95.3 97.0 94.5 230 337 43.3 30.0 2894 1072 14.4 3481 56.5 20.0 0.05 40.0 10.0 10.0 10.0 19.2 277 259 22.7 2.0 1561 684 12.2 3009 53.9 17.4 0.96 31.26 100.0 100.0 98.7 81.6 183 300 28.5 3.0 2894 1072 14.4 3481 56.5 20.0 0.59 45.69 100.0 99.6 83.1 268 296 22.4 40.0 3484 1403 12.2 1000 83.0 13.8 4100.0 100.0 10.0 16.3 268 326 33.0 5.0 2185 772 12.5 3403 68.0 9.9 0.00 38.24 100.0 100.0 10.0 16.3 268 326 33.0 5.0 2185 772 12.5 3403 68.0 9.9 0.00 38.24 100.0 100.0 100.0 76.3 218 365 27.3 7.0 3129 1659 13.9 2889 74.4 8.4 0.90 27.44 100.0 100.0 100.0 76.3 218 365 27.3 7.0 3129 1659 13.9 2889 74.4 8.4 0.90 27.44 100.0 98.9 76.9 266 327 23.6 8.00 3966 1441 16.0 3844 56.1 11.6 0.14 29.42 100.0 99.6 83.1 296 308 29.5 10.0 2701 1108 17.4 1972 77.9 6.7 2.22 22.96 100.0 99.6 83.1 296 308 29.5 11.0 41.7 1934 14.8 2474 77.3 5.8 0.00 29.33 100.0 100.0 85.6 291 309 30.6 10.0 10.0 2701 1108 17.4 1972 77.9 6.7 2.22 22.96 100.0 99.5 88.1 296 308 29.5 11.0 41.0 10.0 10.0 10.0 85.6 291 309 30.6 16.0 1567 488 15.5 1761 78.3 2.7 0.00 2571 100.0 100.0 85.6 291 309 30.6 16.0 1567 488 15.5 1761 78.3 2.7 0.00 2589 100.0 100.0 84.6 255 422 21.3 11.0 13.0 1629 824 16.6 3650 57.5 5.0 1.64 36.99 100.0 100.0 85.6 291 309 30.6 16.0 1567 488 15.5 1761 78.3 2.7 0.00 25.89 100.0 100.0 86.5 231 303 30.6 20.0 2271 100.0 378 1497 15.4 2125 87.7 18. 0.00 25.89 100.0 100.0 86.5 231 303 30.6 25.0 10.0 2589 100.0 100.0 86.5 231 303 30.6 25.0 258 14.6 0.3 258 67.0 0.0 258 100.0 100.0 86.5 231 330 30.6 25.0 258 14.0 258 88.0 1 1.8 0.00 16.10 10.0 99.6 85.5 231 330 30.6 25.0 258 14.0 258 88.0 1 1.8 0.00 16.10 100.0 99.6 85.5 231 330 30.6 25.0 258 14.0 258 88.0 1 1.8 0.00 16.10 100.0 99.6 85.5 231 330 30.6 25.0	43.02	2877	883	14.5		100.0	3.7	2.77	9.60	100.0	100.0	64.7	386		162.5
44.03 2993 1312 12.0 2241 97.9 1.9 0.00 6.40 99.5 99.6 29.1 164 389 50.4 45.00 0 0 0 0 0 0.00 29.5 90.6 29.1 164 389 50.4 45.00 0 0 0 0 0.00 29.6 20.0 100.0 93.7 343 80.0 80.0 7384 2899 18.3 2689 77.4 7.0 0.84 32.55 90.2 96.3 72.0 268 360 40.2 55.00 2713 895 21.4 2570 81.3 4.0 0.00 29.16 95.3 97.0 94.5 230 387 43.3 1.00 2466 874 15.0 3271 51.3 6.4 0.00 24.24 100.0 100.0 79.2 277 259 22.7 2.00 1561 684 15.2 3009 53.9 17.4 0.96 31.26 100.0 99.6 83.1 268 266 22.4 4.00 3684 1403 14.2 3503 75.5 93. 0.57 24.60 100.0 99.6 83.1 268 266 22.4 4.00 3684 1403 14.2 3503 75.5 93. 0.51 24.60 100.0 100.0 10.3 268 326 33.0 2894 1072 14.4 3481 56.5 20.0 0.59 45.69 100.0 99.6 83.1 268 326 33.0 2894 1072 14.6 3881 56.5 20.0 0.59 45.69 100.0 99.6 83.1 268 326 33.0 2894 1072 14.6 3881 56.5 20.0 0.59 45.69 100.0 99.6 83.1 268 326 33.0 30.0 25.0 2185 772 12.5 3403 68.0 9.9 0.00 38.24 100.0 100.0 90.3 275 277 24.1 6.00 2547 1343 12.2 1000 83.0 13.8 0.47 21.04 100.0 100.0 90.3 275 277 24.1 6.00 2547 1343 12.2 1000 83.0 13.8 0.47 21.04 100.0 100.0 90.3 275 277 24.1 6.00 2547 1343 14.1 3653 72.9 88.8 0.00 29.83 100.0 100.0 97.6 80.8 242 267 21.2 9.00 1803 715 14.1 3653 72.9 88.8 0.00 29.83 100.0 100.0 85.6 291 309 30.6 10.00 2701 1108 17.4 1972 77.9 6.7 2.22 22.04 100.0 99.6 80.8 242 267 21.2 10.00 2600 99.6 15.9 3520 60.2 14.6 28.5 26.5 100.0 100.0 85.6 291 309 30.6 10.00 2701 1108 17.4 1972 77.9 6.7 2.22 22.04 100.0 99.4 89.0 266 228 21.3 13.0 1629 824 16.6 3650 57.5 5.0 1.64 36.99 100.0 99.4 89.0 266 228 21.3 14.00 100.0 229 200 11.3 58.6 10.00 200.0 100.0 100.0 85.7 76 12.00 2600 99.7 8 15.4 310.3 56.5 9.3 10.00 100.0 100.0 84.6 265 422 59.8 19.00 100.0 273 78 189 292 20.3 11.00 100.0 10	44.01	11436	188	7.9	667	100.0	8.7	2.21	7.27	93.6		16.0	240		
45.00	44.02	3852	1537	13.8	1872	98.0	6.6	0.00	7.93	101.3	99.6	38.6	103		
64.00 269 126 13.5 999 100.0 4.9 2.30 13.22 100.0 93.7 23.7 24.8 80.0 40.2 55.00 2713 895 21.4 2570 81.3 4.0 0.00 29.16 95.3 97.0 94.5 230 387 43.3 1.00 2466 874 15.0 3271 51.3 6.4 0.00 29.16 95.3 97.0 94.5 230 387 43.3 1.00 2466 874 15.0 35.9 17.4 0.96 13.26 100.0 99.6 83.1 268 296 22.4 4.00 3681 1403 14.2 3503 75.5 9.3 0.51 24.6 0.00 99.6 83.1 268 296 22.4 4.00 3841 334 12.2 1000 83.0 13.8 0.47 21.0 268 22.2 24.0 25.2 22.9 20.0	44.03	2993	1312	12.0	2241	97.9	1.9	0.00	6.40	99.5	99.6	29.1	164	389	50.4
56.00 7384 2899 18.3 2689 77.4 7.0 0.84 32.55 90.2 96.3 72.0 268 360 40.2 55.00 2713 895 21.4 2770 81.3 4.0 0.00 22.42 100.0 79.2 2277 259 22.7 2.00 1561 684 15.2 3009 53.9 17.4 0.96 31.26 100.0 98.7 81.6 183 300 285 3.00 2894 1072 14.4 3481 56.5 20.0 0.59 45.69 100.0 99.6 83.1 268 266 22.4 4.00 3684 1403 14.2 3503 38.0 38.0 13.8 0.67 10.00 99.3 275 277 24.1 5.00 3129 1859 13.9 2889 74.4 8.4 0.90 27.44 100.0 99.3 26 227 21.6 8			_												
55.00 2713 895 21.4 2570 81.3 4.0 0.00 29.16 95.3 97.0 94.5 230 387 43.3 1.00 2466 874 15.0 3271 51.3 6.4 0.00 42.42 100.0 79.2 277 259 22.7 3.00 2894 1072 14.4 3481 56.5 20.0 0.59 45.69 100.0 99.6 83.1 268 296 22.4 4.00 3684 1403 14.2 3503 75.5 9.3 0.51 24.60 100.0 90.3 268 326 33.0 5.00 2185 772 12.5 3403 68.0 9.9 9.0 0.0 276 6.3 288 326 33.2 287 72.4 24.1 6.0 9.0 8.8 29.2 206 227 23.6 28.2 12.2 28.8 100.0 2701 1108 14.1 16.0 18.2 100.0 2071 <td></td>															
1.00 2466 874 15.0 3271 51.3 6.4 0.00 42.42 100.0 100.0 79.2 277 259 22.7 2.00 1561 684 15.2 30.99 53.9 17.4 0.96 31.26 100.0 98.6 81.6 183 300 28.5 3.00 2894 1072 14.4 3481 56.5 20.0 0.59 45.69 100.0 10.0 26.3 226 32.0 4.00 3684 1403 14.2 3503 75.5 9.3 0.51 24.60 100.0 0.0 32.2 23.2 24.2 26.7 21.2 20.0 32.8 21.00 100.0 76.7 25.0 20.0 32.8 21.00 100.0 76.7 29.0 27.3 27.3 24.1 28.2 20.7 31.0 28.2 26.7 23.7 21.2 29.0 100.0 99.6 88.8 24.2 26.7 21.2 26.															
2.00 1561 684 15.2 3009 53.9 17.4 0.96 31.26 100.0 98.7 81.6 183 300 28.5 3.00 2894 1072 14.4 3481 55.5 20.0 0.59 45.69 100.0 99.6 83.1 268 226 23.0 4.00 3684 1403 14.2 3503 75.5 9.3 0.51 24.60 100.0 100.0 16.3 268 326 33.0 5.00 2185 772 12.5 3403 68.0 9.9 0.00 38.24 100.0 100.0 16.3 268 326 33.0 5.00 2185 772 12.5 3403 68.0 9.9 0.00 38.24 100.0 100.0 90.3 275 277 24.1 6.00 2547 1343 12.2 1000 83.0 13.8 0.47 21.04 100.0 100.0 76.3 218 365 27.3 7.00 3129 1659 13.9 2889 74.4 8.4 0.90 27.44 100.0 98.9 76.9 206 327 23.6 8.00 3966 1441 16.0 3844 56.1 11.6 0.14 29.42 100.0 99.6 80.8 242 267 21.2 9.0 1803 715 14.1 3653 72.9 8.8 0.00 29.83 100.0 100.0 85.6 291 309 30.6 10.00 2701 1108 17.4 1972 77.9 6.7 2.22 22.96 100.0 99.5 88.1 296 308 29.5 11.00 4167 1934 14.8 2474 77.3 5.8 0.83 25.65 100.0 100.0 85.6 291 309 30.6 10.00 2701 1108 17.4 1972 77.9 6.7 2.22 22.96 100.0 99.4 89.0 266 282 21.3 13.00 1629 824 16.6 3650 57.5 5.0 1.64 36.99 100.0 100.0 81.5 217 291 26.7 11.00 17.0 1007 460 20.8 2630 89.9 3.1 0.00 0.00 100.0 100.0 73.7 189 292 20.3 14.00 229 200 11.3 58.6 0.00 0.00 100.0 100.0 99.4 89.5 212 280 24.4 16.00 1567 488 15.5 1761 78.3 27.7 0.00 23.17 100.0 100.0 86.7 300 370 44.2 17.01 1007 460 20.8 2630 89.9 3.1 0.00 5.89 100.0 100.0 86.7 306 370 44.2 17.01 1007 460 20.8 2630 89.9 3.1 0.00 5.89 100.0 100.0 86.7 306 370 44.2 17.01 1007 460 20.8 2438 80.1 1.8 0.24 18.39 99.6 100.0 86.5 213 30.3 284 21.0 22.0 2609 978 15.4 3103 56.5 9.3 0.28 39.70 100.0 99.4 89.5 213 284 21.0 22.0 2609 978 15.4 3103 56.5 9.3 0.28 39.70 100.0 99.4 89.5 213 284 21.0 22.0 2609 978 15.4 3103 56.5 9.3 0.28 39.70 100.0 99.6 80.5 231 303 30.6 25.0 260 2452 1085 12.3 2862 26.4 4.1 0.32 25.9 9.7 99.7 84.1 285 341 39.5 26.0 2452 1085 12.3 2862 27.3 3 6.1 0.92 27.2 100.0 100.0 86.5 231 303 30.6 25.0 260 2452 1085 12.3 2862 27.3 36.0 0.34 27.60 100.0 100.0 86.5 231 303 30.6 25.0 260 2452 1085 12.3 2862 27.3 36.0 0.34 27.2 100.0 100.0 86.5 231 303 30.6 25.0 260 2452 1085 12.3 2862 27.3 36.0 0.34 27.2 100.0 100.0 97.8 80.5 231 303 30.6 25.7 27.0 2															
3.00 2894 1072 14.4 3481 56.5 20.0 0.59 45.69 100.0 99.6 83.1 268 296 22.4 4.00 3684 1403 14.2 3503 75.5 9.3 0.51 24.60 100.0 100.0 100.0 3 275 277 24.1 6.00 2547 1343 12.2 1000 83.0 13.8 0.47 21.04 100.0 100.0 90.3 275 277 24.1 7.00 3129 1659 13.9 2889 74.4 8.4 0.90 27.44 100.0 98.9 76.9 206 327 23.6 8.00 3966 1441 16.0 3844 56.1 11.6 0.14 29.42 100.0 99.6 80.8 242 267 21.2 9.00 1803 715 14.1 3653 72.9 8.8 0.00 29.83 100.0 100.0 \$8.6 22 267 21.2 9.00 1803 715 14.1 3653 72.9 8.8 0.00 29.83 100.0 100.0 \$8.6 22 267 21.2 9.00 1803 715 14.1 3653 72.9 8.8 0.83 25.65 100.0 100.0 \$8.1 296 308 29.5 11.00 4167 1934 14.8 2474 77.3 5.8 0.83 25.65 100.0 100.0 \$8.1 296 308 29.5 11.00 4167 1934 14.8 2474 77.3 5.8 0.83 25.65 100.0 100.0 73.7 189 292 20.3 14.00 229 200 11.3 58.6 0.00 0.00 100.0 100.0 73.7 189 292 20.3 14.00 229 200 11.3 58.6 0.00 0.00 100.0 100.0 73.7 189 292 20.3 14.00 229 200 11.3 58.6 0.00 0.00 100.0 100.0 86.7 306 370 44.4 16.00 1567 488 15.5 1761 78.3 2.7 0.00 23.17 100.0 99.4 69.5 212 280 24.4 16.00 1567 488 15.5 1761 78.3 2.7 0.00 23.17 100.0 99.4 69.5 212 280 24.4 16.00 1567 488 15.5 1761 78.3 2.7 0.00 23.17 100.0 100.0 86.7 306 370 44.2 17.01 1007 460 20.8 2630 89.9 3.1 0.00 5.89 100.0 99.4 69.5 212 280 24.4 16.00 1567 488 15.5 1761 78.3 2.7 0.00 23.17 100.0 100.0 86.7 306 370 44.2 17.01 1007 460 20.8 2630 89.9 3.1 0.00 5.89 100.0 100.0 86.7 306 370 44.2 17.01 1007 460 20.8 2630 89.9 3.1 0.00 24.8 19.0 10.0 86.7 306 370 44.2 12.0 24.0 12.0 24															
4.00 3684 1403 14.2 3503 75.5 9.3 0.512 £.60 100.0 100.0 16.3 288 326 33.0 6.00 2547 1343 12.2 1000 83.0 13.8 0.47 21.04 100.0 100.0 90.3 275 277 24.1 6.00 2547 1343 12.2 1000 83.0 13.8 0.47 21.04 100.0 100.0 76.3 218 365 27.3 7.00 3129 1659 13.9 2889 74.4 8.4 0.90 27.44 100.0 99.6 80.8 222 267 21.2 9.00 1803 715 14.1 3653 72.9 8.8 0.00 29.83 100.0 99.6 80.8 242 267 212 267 212 267 212 227 217 291 26.7 212 226 308 29.5 100.0 99.6 80.8 2217 210.0 28.															
5.00 2185 772 12.5 3403 68.0 9.9 0.00 38.2 t 100.0 100.0 90.3 275 277 24.1 6.00 2547 1343 12.2 1000 83.0 13.8 0.47 21.04 100.0 100.0 76.9 206 327 23.6 8.00 3966 1441 16.0 3844 56.1 11.6 0.14 29.42 100.0 99.6 80.8 242 267 21.2 9.00 1803 715 14.1 3653 72.9 8.8 0.00 29.33 100.0 100.0 85.6 291 309 30.6 10.00 2701 1108 17.4 1972 77.9 6.7 2222 22.96 100.0 99.6 88.1 296 30.8 29.5 11.00 4167 1934 14.8 2474 77.3 5.8 0.83 25.65 100.0 100.0 81.5 217 291 26.7 12.00 2660 99 15.9 3520 60.2<															
6.00 2547 1343 12.2 1000 83.0 13.8 0.47 21.04 100.0 100.0 76.3 218 365 27.3 7.00 3129 1659 13.9 2889 74.4 8.4 0.90 27.44 100.0 98.9 76.9 266 327 23.6 8.00 3966 1441 16.0 3844 56.1 11.6 0.14 29.42 100.0 99.6 80.8 242 267 21.2 9.00 1803 715 14.1 3653 72.9 8.8 0.00 29.83 100.0 100.0 85.6 291 309 30.6 10.00 2701 1108 17.4 1972 77.9 6.7 2.22 22.96 100.0 99.5 88.1 296 308 29.5 11.00 4167 1934 14.8 247 77.3 5.8 0.83 25.65 100.0 100.0 81.5 217 291 26.7 12.00 2660 996 15.9 3520 60.2 14.6 2.85 26.93 100.0 99.4 89.0 266 282 21.3 13.00 1629 824 16.6 3650 57.5 5.0 1.64 36.99 100.0 100.0 73.7 189 292 20.3 14.00 229 200 11.3 58.6															
7.00 3129 1659 13.9 2889 74.4 8.4 0.90 27.44 100.0 98.9 76.9 206 327 23.6 8.00 3966 1441 16.0 3844 56.1 11.6 0.14 29.42 100.0 99.6 80.8 242 267 21.2 9.00 1803 715 14.1 3653 72.9 8.8 0.00 29.83 100.0 100.0 85.6 291 309 30.6 11.00 4167 1944 14.8 2474 77.3 5.8 0.83 25.55 100.0 100.0 81.5 296 308 29.5 11.00 2660 996 15.9 3520 60.2 14.6 2.85 26.93 100.0 90.0 480.0 26.6 282 21.3 13.00 1629 824 16.6 3650 57.5 5.0 1.64 36.99 100.0 100.0 40.0 7.0 18.0 24.0 48.1 1.8 10.0 100.0 100.0 90.0 <															
8.00 3966 1441 16.0 3844 56.1 11.6 0.14 29.42 100.0 99.6 80.8 242 267 21.2 9.00 1803 715 14.1 3653 77.2 8.8 0.00 29.83 100.0 100.0 85.6 291 309 30.6 10.00 2701 1108 17.4 1972 77.9 8.8 0.00 29.83 100.0 100.0 85.6 291 309 30.6 10.00 2701 1108 17.4 1972 77.9 5.8 0.83 25.65 100.0 100.0 95.6 88.1 296 308 29.5 11.00 2660 996 15.9 3520 60.2 14.6 2.85 26.93 100.0 100.0 81.5 217 291 26.7 12.00 2660 996 15.9 3520 60.2 14.6 2.85 26.93 100.0 99.4 89.0 266 282 21.3 13.00 1629 824 16.6 3650 57.5 5.0 1.64 36.99 100.0 100.0 73.7 189 292 20.3 14.00 229 200 11.3 58.6 0.00 0.00 100.0 100.0 42.0 76 15.00 2271 1007 13.8 3710 49.4 21.8 1.50 30.07 100.0 99.4 69.5 212 280 24.4 16.00 1567 488 15.5 1761 78.3 2.7 0.00 23.17 100.0 100.0 46.7 306 370 44.2 17.01 1007 460 20.8 2630 89.9 3.1 0.00 5.89 100.0 100.0 96.7 380 580 78.0 17.01 1007 460 20.8 2630 89.9 3.1 0.00 5.89 100.0 100.0 96.7 380 580 78.0 17.01 1007 460 20.8 2630 89.9 3.1 0.00 5.89 100.0 100.0 96.7 380 580 78.0 17.02 3978 1497 15.4 2125 87.7 1.8 0.24 18.39 99.6 100.0 84.6 265 422 59.8 19.00 743 516 12.0 2438 80.1 1.8 0.20 16.10 100.0 98.8 63.4 211 163 35.0 20.00 4815 2053 15.6 3141 60.3 16.8 0.37 36.86 100.0 99.1 80.5 213 284 21.0 21.00 2609 978 15.4 3103 56.5 9.3 0.28 39.70 100.0 99.4 83.0 273 267 22.1 22.00 1835 776 12.7 2379 82.8 4.6 0.80 20.45 100.0 100.0 86.5 231 303 30.6 25.00 2518 1120 13.6 2163 81.5 244 0.03 22.29 99.7 99.7 84.1 285 341 39.5 26.00 2518 1120 13.6 2163 81.5 244 0.02 22.29 99.7 99.7 84.1 285 341 39.5 26.00 2518 1120 13.6 2163 81.5 24.0 0.38 21.26 100.0 90.0 86.5 231 303 30.6 25.0 2500 2518 1100 13.6 2681 84.4 4.7 0.43 14.35 100.0 99.8 84.1 282 342 283 23.6 33.01 3398 1375 15.4 302 273. 400 0.28 27.99 100.0 100.0 86.5 231 303 30.6 25.7 30.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0															
9.00 1803 715 14.1 3653 72.9 8.8 0.00 29.83 100.0 05.86 291 309 30.6 10.00 2701 1108 17.4 1972 77.9 6.7 2.22 22.96 100.0 99.5 88.1 296 308 29.5 11.00 2660 996 15.9 3520 60.2 14.6 2.85 26.93 100.0 99.4 89.0 266 282 21.3 13.00 1629 824 16.6 3650 57.5 5.0 1.64 36.99 100.0 100.0 100.0 73.7 189 292 20.3 14.00 229 200 11.3 58.6 0.00 0.00 100.0 100.0 73.7 189 292 20.3 14.00 229 200 11.3 58.6 0.00 0.00 100.0 100.0 40.0 20.0 26.0 26.0 24.2 27.8															
10.00 2701 1108 17.4 1972 77.9 6.7 2.22 22.96 100.0 99.5 88.1 296 308 29.5 11.00 4167 1934 14.8 2474 77.3 5.8 0.83 25.65 100.0 100.0 81.5 217 291 26.7 12.00 2660 996 15.9 3520 60.2 14.6 2.85 26.93 100.0 90.0 73.7 189 292 20.3 13.00 1629 824 16.6 3650 57.5 5.0 1.64 36.99 100.0 100.0 73.7 189 292 20.3 14.00 229 200 11.3 58.6 0.00 0.00 100.0 100.0 42.0 76 15.00 2271 1007 13.8 3710 49.4 21.8 1.50 30.07 100.0 99.4 49.5 212 280 24.4 16.00 1567 488 15.5 1761 78.3 2.7 0.00 23.17 100.0 100.0 86.7 306 370 44.2 17.01 1007 460 20.8 2630 89.9 3.1 0.00 5.89 100.0 100.0 86.7 306 370 44.2 17.02 3978 1497 15.4 2125 87.7 1.8 0.24 18.39 99.6 100.0 84.6 265 422 59.8 19.00 743 516 12.0 2438 80.1 1.8 0.00 16.10 100.0 98.6 63.4 211 133 35.0 20.00 4815 2053 15.6 3141 60.3 16.8 0.37 36.86 100.0 99.1 80.5 213 284 21.0 21.00 2609 978 15.4 3103 56.5 9.3 0.28 39.70 100.0 99.4 83.0 273 267 22.1 22.00 1835 776 12.7 2379 82.8 46.0 0.80 20.45 100.0 100.0 86.5 231 334 38.3 23.00 3774 1460 13.9 2558 73.3 6.1 0.98 21.26 100.0 99.6 90.7 256 312 33.1 24.00 3809 1511 14.2 2520 73.3 6.1 0.98 21.26 100.0 99.6 90.7 256 312 33.1 25.00 2518 1120 13.6 2163 81.5 2.4 0.00 22.22 99.7 99.7 84.1 285 341 39.5 26.00 26.52 1085 12.3 2982 69.4 4.1 0.32 22.59 100.0 99.6 90.7 256 312 33.1 27.00 3588 1034 17.3 2780 73.2 4.0 0.28 27.49 100.0 100.0 80.3 245 284 33.7 29.01 2572 2609 934 16.0 2435 86.1 4.3 0.46 17.82 100.0 100.0 86.5 331 30.3 30.6 29.02 2090 934 16.0 243															
11.00 4167 1934 14.8 2474 77.3 5.8 0.83 25.65 100.0 100.0 81.5 217 291 26.7 12.00 2660 996 15.9 3520 60.2 14.6 2.85 26.93 100.0 99.4 89.0 266 282 21.3 13.00 1629 824 16.6 3650 57.5 5.0 1.64 36.99 100.0 100.0 73.7 189 292 20.3 14.00 229 200 11.3 58.6 0.00 0.00 100.0 100.0 42.0 76 15.00 2271 1007 13.8 3710 49.4 21.8 1.50 30.07 100.0 99.4 69.5 212 280 24.4 16.00 1567 488 15.5 1761 78.3 2.7 0.00 23.17 100.0 99.4 69.5 212 280 24.4 17.01 1007 460 20.8 89.3 11.0 0.0 58.9 100.0 9															
12.00 2660 996 15.9 3520 60.2 14.6 2.85 26.93 100.0 99.4 89.0 266 282 21.3 13.00 1629 824 16.6 3650 57.5 5.0 1.64 36.99 100.0 100.0 100.0 73.7 189 292 20.3 15.00 2271 1007 13.8 3710 49.4 21.8 1.50 30.07 100.0 99.4 69.5 212 280 24.4 16.00 1567 488 15.5 1761 78.3 2.7 0.00 23.17 100.0 100.0 86.7 306 370 44.2 17.01 1007 460 20.8 2630 89.9 3.1 0.00 5.89 100.0 100.0 86.7 306 370 44.2 17.02 3978 1497 15.4 2125 87.7 1.8 0.24 18.39 99.6 100.0 86.6 213 284 21.0 2.00 4815 253 15.6 3															
13.00 1629 824 16.6 3650 57.5 5.0 1.64 36.99 100.0 100.0 73.7 189 292 20.3 14.00 229 200 11.3 58.6 0.00 0.00 100.0 100.0 76 212 280 24.4 15.00 2271 1007 13.8 3710 49.4 21.8 1.50 30.07 100.0 99.4 69.5 212 280 24.4 16.00 1567 488 15.5 1761 78.3 2.7 0.00 23.17 100.0 36.7 306 370 44.2 17.01 1007 460 20.8 2630 89.9 3.1 0.00 5.89 100.0 100.0 96.7 380 580 78.0 17.02 3978 1497 15.4 2125 87.7 1.8 0.24 18.39 99.6 100.0 96.7 380 580 78.0 20.00 4815 2533 15.6 3141 60.3 316.8 0.33 36.															
14.00 229 200 11.3 58.6 0.00 0.00 100.0 100.0 42.0 76 15.00 2271 1007 13.8 3710 49.4 21.8 1.50 30.07 100.0 99.4 69.5 212 280 24.4 16.00 1567 488 15.5 1761 78.3 2.7 0.00 23.17 100.0 100.0 86.7 380 580 78.0 17.01 1007 460 20.8 2630 89.9 3.1 0.00 5.89 100.0 100.0 86.7 380 580 78.0 17.02 3978 1497 15.4 2125 87.7 1.8 0.24 18.39 99.6 100.0 84.6 265 422 59.8 19.00 743 516 12.0 2438 80.1 1.8 0.00 16.10 100.0 98.8 63.4 211 163 35.0 21.00 2609 978 15.4 3103 56.5 9.3 0.28 39.70 100.															
15.00 2271 1007 13.8 3710 49.4 21.8 1.50 30.07 100.0 99.4 69.5 212 280 24.4 16.00 1567 488 15.5 1761 78.3 2.7 0.00 23.17 100.0 100.0 86.7 380 570 44.2 17.01 1007 460 20.8 2630 89.9 3.1 0.00 5.89 100.0 100.0 96.7 380 580 78.0 17.02 3978 1497 15.4 2125 87.7 1.8 0.24 18.39 99.6 100.0 94.6 265 422 59.8 19.00 743 516 12.0 2438 80.1 1.8 0.00 16.10 100.0 98.8 63.4 211 163 35.0 20.00 4815 2053 15.6 3141 60.3 16.8 0.37 36.86 100.0 99.1 80.5 213 284 21.0 22.00 1835 776 12.7 2379 82					3030		3.0								20.5
16.00 1567 488 15.5 1761 78.3 2.7 0.00 23.17 100.0 100.0 86.7 306 370 44.2 17.01 1007 460 20.8 2630 89.9 3.1 0.00 5.89 100.0 100.0 96.7 380 580 78.0 17.02 3978 1497 15.4 2125 87.7 1.8 0.24 18.39 99.6 100.0 84.6 265 422 59.8 19.00 743 516 12.0 2438 80.1 1.8 0.00 16.10 100.0 98.8 63.4 211 163 35.0 20.00 4815 2053 15.6 3141 60.3 16.8 0.37 36.86 100.0 99.1 80.5 213 284 21.0 21.00 1835 776 12.7 2379 82.8 4.6 0.80 20.45 100.0 99.4 83.0 273 267 22.1 24.00 3809 1511 14.2 2520 73.					3710		21.8							280	24.4
17.01 1007 460 20.8 2630 89.9 3.1 0.00 5.89 100.0 100.0 96.7 380 580 78.0 17.02 3978 1497 15.4 2125 87.7 1.8 0.24 18.39 99.6 100.0 84.6 265 422 59.8 19.00 743 516 12.0 2438 80.1 1.8 0.00 16.10 100.0 98.8 63.4 211 163 35.0 20.00 2609 978 15.4 3103 56.5 9.3 0.28 39.70 100.0 99.4 83.0 273 267 22.1 22.00 1835 776 12.7 2379 82.8 4.6 0.80 20.45 100.0 100.0 88.1 241 334 38.3 23.00 3774 1640 13.9 2558 73.3 6.1 0.98 21.26 100.0 100.0 88.1 241 334 38.3 25.00 2518 1120 13.6 2163 81.															
17.02 3978 1497 15.4 2125 87.7 1.8 0.24 18.39 99.6 100.0 84.6 265 422 59.8 19.00 743 516 12.0 2438 80.1 1.8 0.00 16.10 100.0 98.8 63.4 211 163 35.0 20.00 4815 2053 15.6 3141 60.3 16.8 0.37 36.86 100.0 99.1 80.5 213 284 21.0 21.00 2609 978 15.4 3103 56.5 9.3 0.28 39.70 100.0 99.4 83.0 273 267 22.1 22.00 1835 776 12.7 2379 82.8 4.6 0.80 20.45 100.0 100.0 88.1 241 334 38.3 23.00 3774 1640 13.9 2558 73.3 6.1 0.98 21.26 100.0 100.0 86.5 231 303 30.6 25.00 2518 1120 13.6 2163 8															
19.00 743 516 12.0 2438 80.1 1.8 0.00 16.10 100.0 98.8 63.4 211 163 35.0 20.00 4815 2053 15.6 3141 60.3 16.8 0.37 36.86 100.0 99.1 80.5 213 284 21.0 21.00 2609 978 15.4 3103 56.5 9.3 0.28 39.70 100.0 99.4 83.0 273 267 22.1 22.00 1835 776 12.7 2379 82.8 4.6 0.80 20.45 100.0 100.0 86.1 241 334 38.3 23.00 3774 1640 13.9 2558 73.3 6.1 0.98 21.26 100.0 99.6 90.7 256 312 333.1 30.6 25.20 73.3 6.0 0.34 27.60 100.0 99.6 90.7 256 312 333.1 30.6 25.20 73.3 6.0 0.34 27.60 100.0 100.0 86.1 231 <														422	
20.00 4815 2053 15.6 3141 60.3 16.8 0.37 36.86 100.0 99.1 80.5 213 284 21.0 21.00 2609 978 15.4 3103 56.5 9.3 0.28 39.70 100.0 99.4 83.0 273 267 22.1 22.00 1835 776 12.7 2379 82.8 4.6 0.80 20.45 100.0 100.0 88.1 241 334 38.3 23.00 3774 1640 13.9 2558 73.3 6.1 0.98 21.26 100.0 100.0 86.5 231 333 30.6 25.00 2518 1120 13.6 2163 81.5 2.4 0.00 22.22 99.7 99.7 84.1 2285 341 39.5 26.00 2452 1085 12.3 2982 69.4 4.1 0.32 22.99.7 99.7 84.1 232 304 29.0 27.00 3588 1034 17.3 2780 73.2 4.0 <t< td=""><td></td><td>743</td><td>516</td><td>12.0</td><td>2438</td><td>80.1</td><td></td><td>0.00</td><td>16.10</td><td>100.0</td><td>98.8</td><td>63.4</td><td>211</td><td>163</td><td>35.0</td></t<>		743	516	12.0	2438	80.1		0.00	16.10	100.0	98.8	63.4	211	163	35.0
22.00 1835 776 12.7 2379 82.8 4.6 0.80 20.45 100.0 100.0 88.1 241 334 38.3 23.00 3774 1640 13.9 2558 73.3 6.1 0.98 21.26 100.0 99.6 90.7 256 312 33.1 24.00 3809 1511 14.2 2520 73.3 6.0 0.34 27.60 100.0 100.0 86.5 231 303 30.6 25.00 2518 1120 13.6 2163 81.5 2.4 0.00 22.22 99.7 99.7 84.1 285 341 39.5 26.00 2452 1085 12.3 2982 69.4 4.1 0.32 32.59 100.0 99.8 84.1 232 304 29.0 27.00 3588 1034 17.3 2780 73.2 4.0 0.28 27.49 100.0 100.0 97.8 280 301 32.2 28.00 3110 1271 17.8 2520 <td< td=""><td></td><td>4815</td><td></td><td>15.6</td><td>3141</td><td>60.3</td><td></td><td>0.37</td><td>36.86</td><td>100.0</td><td>99.1</td><td>80.5</td><td>213</td><td>284</td><td></td></td<>		4815		15.6	3141	60.3		0.37	36.86	100.0	99.1	80.5	213	284	
23.00 3774 1640 13.9 2558 73.3 6.1 0.98 21.26 100.0 99.6 90.7 256 312 33.1 24.00 3809 1511 14.2 2520 73.3 6.0 0.34 27.60 100.0 100.0 86.5 231 303 30.6 25.00 2518 1120 13.6 2163 81.5 2.4 0.00 22.22 99.7 99.7 84.1 285 341 39.5 26.00 2452 1085 12.3 2982 69.4 4.1 0.32 32.59 100.0 99.8 84.1 232 304 29.0 27.00 3588 1034 17.3 2780 73.2 4.0 0.28 27.49 100.0 100.0 97.8 280 301 32.2 28.00 3110 1271 17.8 2520 75.5 2.9 0.00 27.29 100.0 100.0 80.3 245 284 33.7 29.02 2090 934 16.0 2435 <td< td=""><td>21.00</td><td>2609</td><td>978</td><td>15.4</td><td>3103</td><td>56.5</td><td>9.3</td><td>0.28</td><td>39.70</td><td>100.0</td><td>99.4</td><td>83.0</td><td>273</td><td>267</td><td>22.1</td></td<>	21.00	2609	978	15.4	3103	56.5	9.3	0.28	39.70	100.0	99.4	83.0	273	267	22.1
24.00 3809 1511 14.2 2520 73.3 6.0 0.34 27.60 100.0 100.0 86.5 231 303 30.6 25.00 2518 1120 13.6 2163 81.5 2.4 0.00 22.22 99.7 99.7 84.1 285 341 39.5 26.00 2452 1085 12.3 2982 69.4 4.1 0.32 32.59 100.0 99.8 84.1 232 304 29.0 27.00 3588 1034 17.3 2780 73.2 4.0 0.28 27.49 100.0 100.0 97.8 280 301 32.2 28.00 3110 1271 17.8 2520 75.5 2.9 0.00 27.29 100.0 100.0 80.3 245 284 33.7 29.01 2572 840 14.5 3015 75.8 6.7 0.60 24.57 97.0 92.5 86.9 335 401 45.2 29.02 2900 934 16.0 2681 8	22.00	1835	776	12.7	2379	82.8	4.6	0.80	20.45	100.0	100.0	88.1	241	334	38.3
25.00 2518 1120 13.6 2163 81.5 2.4 0.00 22.22 99.7 99.7 84.1 285 341 39.5 26.00 2452 1085 12.3 2982 69.4 4.1 0.32 32.59 100.0 99.8 84.1 232 304 29.0 27.00 3588 1034 17.3 2780 73.2 4.0 0.28 27.49 100.0 100.0 97.8 280 301 32.2 28.00 3110 1271 17.8 2520 75.5 2.9 0.00 27.29 100.0 100.0 80.3 245 284 33.7 29.01 2572 840 14.5 3015 75.8 6.7 0.60 24.57 97.0 92.5 86.9 335 401 45.2 29.02 2090 934 16.0 2435 86.1 4.3 0.46 17.82 100.0 100.0 69.0 308 320 25.7 30.00 0 0 0 0 0	23.00	3774	1640	13.9	2558	73.3	6.1	0.98	21.26	100.0	99.6	90.7	256	312	33.1
26.00 2452 1085 12.3 2982 69.4 4.1 0.32 32.59 100.0 99.8 84.1 232 304 29.0 27.00 3588 1034 17.3 2780 73.2 4.0 0.28 27.49 100.0 100.0 97.8 280 301 32.2 28.00 3110 1271 17.8 2520 75.5 2.9 0.00 27.29 100.0 100.0 80.3 245 284 33.7 29.01 2572 840 14.5 3015 75.8 6.7 0.60 24.57 97.0 92.5 86.9 335 401 45.2 29.02 2090 934 16.0 2435 86.1 4.3 0.46 17.82 100.0 100.0 69.0 308 320 25.7 30.00 0 0 0 0 0 0 31.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td></td> <td></td> <td>1511</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>231</td> <td></td> <td>30.6</td>			1511										231		30.6
27.00 3588 1034 17.3 2780 73.2 4.0 0.28 27.49 100.0 100.0 97.8 280 301 32.2 28.00 3110 1271 17.8 2520 75.5 2.9 0.00 27.29 100.0 100.0 80.3 245 284 33.7 29.01 2572 840 14.5 3015 75.8 6.7 0.60 24.57 97.0 92.5 86.9 335 401 45.2 29.02 2090 934 16.0 2435 86.1 4.3 0.46 17.82 100.0 100.0 69.0 308 320 25.7 30.00 0 0 0 0 0 0 0 30.0 100.0 69.0 308 320 25.7 31.01 0 0 0 0 0 0 2485 742 16.0 2681 84.4 4.7 0.43 14.35 100.0 99.1 95.3 247 458 67.0 32.02 2669							2.4								
28.00 3110 1271 17.8 2520 75.5 2.9 0.00 27.29 100.0 100.0 80.3 245 284 33.7 29.01 2572 840 14.5 3015 75.8 6.7 0.60 24.57 97.0 92.5 86.9 335 401 45.2 29.02 2090 934 16.0 2435 86.1 4.3 0.46 17.82 100.0 100.0 69.0 308 320 25.7 30.00 0															
29.01 2572 840 14.5 3015 75.8 6.7 0.60 24.57 97.0 92.5 86.9 335 401 45.2 29.02 2090 934 16.0 2435 86.1 4.3 0.46 17.82 100.0 100.0 69.0 308 320 25.7 30.00 0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>															
29.02 2090 934 16.0 2435 86.1 4.3 0.46 17.82 100.0 100.0 69.0 308 320 25.7 30.00 0															
30.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0															
31.01 0 0 31.02 2485 742 16.0 2681 84.4 4.7 0.43 14.35 100.0 99.1 95.3 247 458 67.0 32.00 2669 925 13.7 3610 49.4 17.6 0.00 38.54 100.0 96.8 82.5 232 283 23.6 33.01 3398 1375 15.4 3082 73.4 3.0 1.00 28.06 99.5 100.0 81.4 253 343 37.1 33.02 2780 965 16.0 2449 89.0 0.9 0.00 19.01 100.0 100.0 86.0 288 412 54.0 34.00 109 37 8.5 4353 100.0 0.0 0.00 100.0 100.0 100.0 263 475 80.9 35.00 0 0 0 0 0.00 0.00 100.0 100.0 100.0 263 475 80.9 36.01 4695 1368 20.0 2922 <td< td=""><td></td><td>_</td><td></td><td>16.0</td><td>2435</td><td>86.1</td><td>4.3</td><td>0.46</td><td>17.82</td><td>100.0</td><td>100.0</td><td>69.0</td><td>308</td><td>320</td><td>25.7</td></td<>		_		16.0	2435	86.1	4.3	0.46	17.82	100.0	100.0	69.0	308	320	25.7
31.02 2485 742 16.0 2681 84.4 4.7 0.43 14.35 100.0 99.1 95.3 247 458 67.0 32.00 2669 925 13.7 3610 49.4 17.6 0.00 38.54 100.0 96.8 82.5 232 283 23.6 33.01 3398 1375 15.4 3082 73.4 3.0 1.00 28.06 99.5 100.0 81.4 253 343 37.1 33.02 2780 965 16.0 2449 89.0 0.9 0.00 19.01 100.0 100.0 86.0 288 412 54.0 34.00 109 37 8.5 4353 100.0 0.0 0.00 100.0 100.0 100.0 263 475 80.9 35.00 0 0 0 0 0.00 0.00 100.0 100.0 100.0 263 475 80.9 36.01 4695 1368 20.0 2922 81.8 6.5 0.78 33.38															
32.00 2669 925 13.7 3610 49.4 17.6 0.00 38.54 100.0 96.8 82.5 232 283 23.6 33.01 3398 1375 15.4 3082 73.4 3.0 1.00 28.06 99.5 100.0 81.4 253 343 37.1 33.02 2780 965 16.0 2449 89.0 0.9 0.00 19.01 100.0 100.0 86.0 288 412 54.0 34.00 109 37 8.5 4353 100.0 0.0 0.00 100.0 100.0 100.0 263 475 80.9 35.00 0 0 0 0 0 0.00 100.0 100.0 100.0 263 475 80.9 36.01 4695 1368 20.0 2922 81.8 6.5 0.78 33.38 99.2 100.0 96.1 213 330 37.5 36.02 4344 1443 20.7 3133 69.0 6.6 0.17 36.71			-	44 -						400 0					4
33.01 3398 1375 15.4 3082 73.4 3.0 1.00 28.06 99.5 100.0 81.4 253 343 37.1 33.02 2780 965 16.0 2449 89.0 0.9 0.00 19.01 100.0 100.0 86.0 288 412 54.0 34.00 109 37 8.5 4353 100.0 0.0 0.00 100.0 100.0 100.0 263 475 80.9 35.00 0 <td></td>															
33.02 2780 965 16.0 2449 89.0 0.9 0.00 19.01 100.0 100.0 86.0 288 412 54.0 34.00 109 37 8.5 4353 100.0 0.0 0.00 100.0 100.0 100.0 263 475 80.9 35.00 0															
34.00 109 37 8.5 4353 100.0 0.0 0.00 100.0 100.0 100.0 100.0 263 475 80.9 35.00 0															
35.00 0 0 36.01 4695 1368 20.0 2922 81.8 6.5 0.78 33.38 99.2 100.0 96.1 213 330 37.5 36.02 4344 1443 20.7 3133 69.0 6.6 0.17 36.71 100.0 99.4 86.7 223 315 30.2 37.00 6366 2525 15.8 2556 66.0 8.0 0.35 34.01 99.7 100.0 82.4 239 310 34.5															
36.01 4695 1368 20.0 2922 81.8 6.5 0.78 33.38 99.2 100.0 96.1 213 330 37.5 36.02 4344 1443 20.7 3133 69.0 6.6 0.17 36.71 100.0 99.4 86.7 223 315 30.2 37.00 6366 2525 15.8 2556 66.0 8.0 0.35 34.01 99.7 100.0 82.4 239 310 34.5				8.5	4555	100.0	U.U	U.U0	U.00	100.0	100.0	100.0	263	4/5	80.9
36.02 4344 1443 20.7 3133 69.0 6.6 0.17 36.71 100.0 99.4 86.7 223 315 30.2 37.00 6366 2525 15.8 2556 66.0 8.0 0.35 34.01 99.7 100.0 82.4 239 310 34.5				20.0	2022	01 0	4 =	0.70	77 70	~ ~	100.0	04 4	247	770	77 5
37.00 6366 2525 15.8 2556 66.0 8.0 0.35 34.01 99.7 100.0 82.4 239 310 34.5															
אור 200 ביים פול פייל ואורא שניה שיב שיחם אורב ויהה בחחו החור החיר החור החיר החור החיר החור החיר אור אור החור החיר החור החור החור החור החור החור החור החו															
	J1.00	3 130	1003	20.1	3174	00.2	٦.٤	v.52	→1.41	71.0	73.3	01.0	230	330	31./

_	V01	V02	V03	V04			V07	V08	V09	V10	V11	V12	V13	V14
Census Tract	POP	HS Unit	TRVL TIME	EDTI TV	SCHL CMPLD	WOMAN		CRAFT	III IA TED	SEWAGE	CAC	RENT	MORTG	HS
=======						_								
52.00	5387	1921	18.4	2904	75.4	6.9		30.08	95.5	95.3	89.2	219	310	31.6
53.02	2887	1308	19.1	2463	84.9	7.1	0.36	26.23	91.2	91.2	58.0	352	325	35.1
53.03	4624	2009	20.6	2240	74.3	4.1	0.09	29.56	98.9	96.5	85.1	243	360	41.4
53.04	3452	1451	16.9	2804	74.4	3.4	1.30	30.43	99.6	98.0	75.7	279	355	42.4
N101.02	1953	747	16.9	2406	74.1	5.0		41.21	40.2	48.9	65.3	216	394	48.5
N102.01	2697	890	16.3	2566	78.2	2.6		33.45	9.7	92.0	80.3	232	394	48.4
N102.03	1971	809	14.8	2837	58.3	8.6		43.46	63.8	98.4	88.5	264	288	27.8
N102.04	1308	426	21.6	2551	73.6	6.6		38.15	15.0	73.9	72.3	218	405	43.0
N103.00	3062	1180	21.4	2873	79.1	2.1		31.36	3.3	4.2	46.2	219	450	57.9
N111.02	2730	965	23.4	3396	64.2	7.5		43.44	18.8	59.3	65.1	201	289	31.0
N201.01	6742	2376	16.2	2813	87.4	2.3		19.43	92.9	94.4	77.7	242	539	71.4
N201.02	6267	2659	13.8	2436	87.6	3.0		18.55		100.0	77.1	307	389	49.2
N202.01	2693	922	15.4	2623	91.0	1.6			100.0		87.2	321	474	68.1
N202.02	1158	403	14.1	2857	75.8	1.3		29.89	11.9	3.0	63.5	262	355	39.8
N214.00	6078	2068	18.0	2217	79.7	5.2		30.79	62.7	62.7	76.5	231	433	51.0
N17.01	180	72	7.9	1833	68.1	0.0		23.76	8.3	86.1	84.7		636	80.7
N30.00	410	158	11.5	2000	45.9	18.7			100.0		88.0	316		19.4
N31.01	1559	918	11.5	1160	85.1	1.5	0.00		100.0		78.5	248	372	47.1
N31.02	1558	614	16.7	1527	89.2	3.6	0.00	14.67	90.7	93.2	71.3	288	416	51.5
N32.00	0	0												
N34.00	2828	1112	13.3	2508	86.4	5.7		19.42		99.4	83.3	252	333	46.6
N35.00	3410	1521	12.6	3016	63.7	8.9	0.00	41.77	100.0	97.0	75.0	275	308	27.7
N38.01	27							=						
N38.02	68	33	59.0	1200	81.0	60.0	0.00	46.43			66.7		303	43.8
N39.02	292	704	44.0	4005	61.8		4 40		00 /			27.		
N43.01	1763	701	16.0	1925	96.1	4.6	1.12			96.6	66.6	236	436	60.5
N43.02	568	288	11.5		65.5	10.2	4.08	7.82	100.0	100.0	14.6	293		
N44.01	35	4543	40 5	22//	05.0	7.0		44 34	00.0	00.7	07.3	700	/00	/F /
N45.00	3321	1512	18.5	2264 2505	85.0	3.9		14.26	92.8	98.3	87.2	309	499	45.6
N46.00	1477	494	15.4		96.2	1.4		10.58	72.3	78.7	84.0 53.8	272 209	581	77.0
N47.00	2369 5112	1125 2364	24.9 18.8	2407 2407	65.9 94.0	7.1 1.9		24.91 12.92	58.4 85.2	91.1 93.1	75.6	312	370 401	40.0 51.5
N48.00 N49.01	5450	1097	16.4	2052	94.0	4.1	0.18		82.3	98.2	76.5	301	524	70.8
N49.01	3634	1390	15.8	2392	97.3	4.7	1.56	4.05	78.7	98.1	76.5	305	594	77.6
N50.00	4760	1644	20.1	2397	90.8	2.4	2.16	7.89	57.4	66.4	78.3	303	582	81.0
N51.00	128	45	14.3	2371	63.9	۷.4		31.11	0.0	84.4	68.9	303	375	34.4
N51.00	1159	449	21.5	2963	69.4	5.2		34.98	46.3	85.1	80.8	259	390	43.3
N53.02	1702	575	20.5	2492	83.1	1.9		24.74	23.7	84.7	80.0	297	452	56.0
N53.02	50	17	2.0	2472	89.1	1.7		44.19	41.2	0.0	70.6	671	325	30.0
N55.00	4008	1333	23.4	2535	75.7	4.7		35.15	33.3	38.9	54.5	304	468	53.0
N56.00	2845	935	18.9	2991	83.8	3.7		25.74	3.0	5.2	16.6	325	431	53.0
U0.00	2043	733	10.7	6771	33.0	3.7	4.61	23.14	5.0	٦.٤	10.0	رعد	731	<i>)</i>

Blank = Missing Vlaue.

APPENDIX II

CLUSTER ANALYSIS IN LANSING/E. LANSING UA

```
1 0 FILE HANDLE URBANFAS / NAME = 'LANSING DATA A'
2 0 DATA LIST FILE = URBANFAS RECORDS = 1
3 0 /1 TRACT (A7) V01 9-13 V02 15-19 V03 21-25 V04 27-31 V05 33-37
4 0 V06 39-43 V07 45-49 V08 51-55 V09 57-61 V10 63-67 V11 69-73 V12 75-79
5 0 V13 81-85 V14 87-92
6 0
```

81-85 V14 87-92	ll read 1 records from LANSING DATA A1	Start End Format	1 7 A7	9 13 F5.0			31	37	43		55	19	29	ĸ	62	81 85 F5.0		LE LABELS	'TOTAL POPULATION IN 1980'	'TOTAL HOUSING UNITS IN 1980'	"MEAN TRAVEL TIME TO WORK"	TILTIY'		WOMAN AT HOME	POP. EMPLOYED IN AGRICULT	PCT POP. EMPLOYED IN CRAFT & OPERATIVE.	HOUSING DINITS WITH	IAN RENT IN DOLLARS'	MORTG	MEDIAN VALUE OF HOUSING UNITS!		DESCRIPTIVES VO3 TO V14/SAVE
V13 81-	command will read	Rec St	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	VARIABLE LABELS	101 100		_	-	-			V08 - PC				V14 'MED		DESCRIPTIV
\$ 0 9	OThis comm	Ovariable	TRACT	101	V02	V03	۷04	V05	90/	707	800	60/	V10	117	V12	V13	V14	7 0	8					13 0		٠ د د			_	21 0	22 0	0

Label	MEAN TRAVEL TIME TO WORK FERTILLIY PCT SCHOOL COMPLETED WITH HIGH SCHOOL GR PCT WOMAN AT HOME PCT WOMAN AT HOME PCT POP. EMPLOYED IN AGRICULTURE PCT POP. EMPLOYED IN CRAFT & OPERATIVE PCT HOUSING UNITS WITH PUBLIC WATER PCT HOUSING UNITS WITH SEWER PCT HOUSING UNITS WITH UTILITY GAS MEDIAN RENT IN DOLLARS MEDIAN WORGAGE IN DOLLARS MEDIAN VALUE OF HOUSING UNITS	Veighted Valid N 11111 STALUE OF 81ALUE OF	
alid N	222222222222	active ICULTUR FT & OP UBLIC W EWER TILITY RS	
Maximum Valid N	25 4353 100 22 46 46 100 100 100 124	VEG ON YOUR IME TO WORK IMPLETED WIT HOME OYED IN AGR OYED IN AGR OYED IN CRA OYED IN CRA	
Minimum	1000 49 0 0 0 3 3 3 164 163	have been saved on your active MEAN TRAVEL TIME TO WORK FERTILITY PCT SCHOOL COMPLETED WITH HIGH PCT WOMAN AT HOME PCT POP. EMPLOYED IN AGRICULTUR PCT POP. EMPLOYED IN CRAFT & OP PCT HOUSING UNITS WITH PUBLIC W PCT HOUSING UNITS WITH SEWER PCT HOUSING UNITS WITH UTILITY MEDIAN RENT IN DOLLARS MEDIAN VALUE OF HOUSING UNITS	
Std Dev	3.073 589.958 13.064 4.397 .789 11.381 27.053 20.677 15.063 44.181 107.287	Label Label 2 Score: ME 2 Score: PC	TO 2V14 JULE PLETE LE
Mean	16.328 2644,642 78.370 5.751 .696 24.459 91.301 77.685 262.753 385.556 44.542	-The following Z-Score variables have been saved on your active file: -From Variable Z-Score Label	CLUSTER ZVO3 TO ZV14 /ID=TRACT /PRINT=SCHEDULE /METHOD=COMPLETE /PLOT=HICICLE
Ovariable	V03 V06 V06 V07 V07 V10 V11 V11	The follow-from Variable V03 V04 V05 V06 V07 V08 V09 V10 V11 V11	25 0 0 2 2 3 0 0 2 3 0 0 0 0 0 0 0 0 0 0 0

Data Information

81 unweighted cases accepted.

Squared Euclidean measure used. 1 Agglomeration method specified.

Agglomeration Schedule using Complete Linkage

Next	Stage	13	16	18	34	34	13	53	23	07	35	56	43	31	36	33	54	97	1,	21	45	77	45	39	07	22	87	37	27	36	87	77	9	75	20	41	20	75	2	53	52	\$	22	9,4	. v	3 2	*
1st Appears	Cluster 2	0	0	0	0	0	0	0	0	0	0	0	0	9	0	0	0	0	0	0	0	19	0	æ	0	0	0	0	0	0	0	0	0	0	'n	0	53	27	0	0	54	35	37		, <u>F</u>	ה ה	N 7
Stage Cluster	Cluster 1	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	7	0	M	0	0	0	0	0	16	0	11	0	0	7	0	13	0	15	7	2	14	0	0	23	•	18	33	12	: 7	- 66	77
	Coefficient	.821913	.871551	.953935	1.172177	1.192643	1.211413	1.250440	1.253963	1.310256	1.637828	1.754190	1.776819	1.986008	2.104812	2.141928	2.307381	2.350105	2.404857	2.817415	2.836611	3.000111	3.097726	3.159822	3.200413	3.241568	3.246586	3,415353	3.788434	3.905653	3.922592	4.059260	4.061964	4.186225	4.286482	4.455862	4.812362	5.155076	5.784764	6.030714	6.099318	6.106804	6,106817	6.240144	6 251068	6.717.10	•
Combined	Cluster 2	35	45	32	51	20	34	53	24	36	21	80	31	33	38	52	62	43	69	67	61	37	22	77	63	92	2	7.2	78	39	92	89	52	29	48	20	12	7	62	07	62	17	۰	, 5 26	27	3 5	74
Clusters	Cluster 1	23	53	13	25	87	33	12	77	27	17	9	14	23	-	4	53	15	13	37	75	19	7	Ξ	59	55	9	7	58	12	M	23	41	7	25	17	-	٥	99	=	27	13	7	14	. 5	`	•
	Stage	-	7	M	4	2	9	7	∞	٥	5	=	12	5	7	5	5	17	8	9	2	7	25	23	57	52	8	27	58	62	30	3	32	33	34	35	%	37	38	36	70	۲٦	27	<u>.</u> 27	77	† u	Ç

Agglomeration Schedule using Complete Linkage (CONT.)

Next	Stage	92	26	24	28	75	26	88	9	63	29	62	9	92	29	8	22	2	2	ĸ	ĸ	7.	7	Σ.	92	11	2	2	2	ĸ	8	20	82	2	8	0
1st Appears	Cluster 2	17	0	92	0	34	0	0,7	0	45	0	0	0	0	0	32	0	29	0	41	28	0	55	09	0	38	8	0	59	8	0	69	2	92	22	К
Stage Cluster	Cluster 1	43	28	30	0	36	0	75	39	87	77	27	22	67	51	53	0	25	54	20	9,	0	29	52	0	62	29	61	z	63	2	7	ĸ	11	78	62
	Coefficient	6.745536	8.003086	8.154741	8.384402	9.825518	10.450663	10.555255	10.648429	10.684379	11.269794	11.675501	12.047439	12.127471	12.456859	12.920809	12.980795	17.174728	17.415680	18.081390	18.468658	18.626984	19.049820	20.349335	21.307907	24.602554	28.816696	31.795898	40.802475	42.652023	43.090881	43.640015	58.524429	65.872192	111.076736	121.532486
Combined	Cluster 2	15	K.	9	25	25	99	27	22	^	30	09	80	25	18	41	81	58	22	13	54	28	19	=	16	26	4	3	14	2	97	10	55	7	59	~
Clusters	Cluster 1	14	58	ĸ	57	-	7	7	=	m	19	58	55	57	7	1	59	55	m	-	14	5	7	7	10	55	2	29	-	m	m	2	-	-	-	-
	Stage	97	25	84	67	20	51	25	23	24	22	28	23	28	26	9	19	9	63	79	9	99	29	89	69	2	7	22	ĸ	2	52	92	22	78	2	80

Horizontal Icicle Plot Using Complete Linkage

Number of Clusters

111111111111222222222233333333444444445555555556 666666667777777777 8 12345678901234567890123456789012345678901234567890123456789012345678901234567890	***************************************	XXXXXX XXXXXX	KXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXX	KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK	KXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	<i>mannakakakakakakakakakakakakakakakakakak</i>	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	KKXKXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK	KXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	ARTIONAL PROTOCOLOGICAL PROTOCOLOGICA PROTOC		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
•			28 XXXX	XXXX	2 XXXX	XXX	77 XXXX	XXXX	61 XXXX	XXXX	XXXX		-	ZZ XXXX	XXXX				70 XXXX	XXXX	8 XXXX	XXXX		XXXX o		76 XXXX	XXX	3 XXXX	××	XXXX 79	XXXX
SE	9		17.01		39.01						7 60 12						40.00				41.00			39.02				38.01			
ပ A -	34)	17.		36		N50.00		N201.01		2	5		N46.00		,	9		N43.01		41		í	Š		N49.02		38.		N202.02	

11111111122222222333333333344444455555555666666667777777778 12345678901234567890123456789012345678901234567890123456789012345678901234567890 ++++++++++++++++++++++++++++++++++++	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	AAAAAAAXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	ARAKKAKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	AKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK	AKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK	AKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK	AKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK	AKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	ARAKKAKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK	AKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
11111111122222222 1234567890123456789012345678 ************************************	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	**************************************	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK	KKKKKKKKKKKKKKKK KKKKKKKKKKKKKKKKK KKKKK	KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK	KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK	KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Seq	8	29	9	5	25	2	22	40	24	3	=	8	65	45	8
C A S E Label	N56.00	N103.00	7.00	44.03	53.02	29.02	10.00	29.01	53.04	33.01	24.00	N202.01	N201.02	33.02	17.02

1111111112222222233333333344444445555555555	KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK	KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK	KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
•															
Seq	36	27	72	7	•	29	ĸ	4	30	8	34	33	35	8	64
C A S Label	25.00	16.00	N48.00	N45.00	43.01	N31.02	N49.01	38.02	19.00	N34.00	23.00	22.00	24.00	11.00	37.00

******HIERARCHICAL CLUSTER

1111111111222222222222333333334444444445555555555	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	AKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	AKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX							
1234567	XXXXXXX	XXXXXXX	XXXXXXX	XXXXXXX	XXXXXXX XXX	XXXXXXXX	XXXXXXXX	XXXXXXX	XXXXXXX	XXXXXXX	XXXXXXXX XXXXXXXXX	XXXXXXXX XXXXXXXX	XXXXXXX	XXXX	XXXXXXX
Seq	37	5	8	8	8	8	26	8	ĸ	82	28	8	\$	55	\$2
C A S E Label	26.00	7.00	9.00	N31.01	214.00	N53.02	N102.01	N111.02	N47.00	N52.00	N102.04	N55.00	N214.00	N101.02	13.00

111111111111222222222233333333334444445555555556666666666	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	KAKAKAKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK	AKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK	AKKAKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
-															
Seq	57	77	43	15	92	31	14	20	27	17	%	32	13	22	84
C A S Label	N102.03	12.00	32.00	3.00	15.00	20.00	2.00	8.00	9.00	5.00	N35.00	21.00	1.00	51.00	36.02

1 0 PROXIMITIES 2V03 TO 2V14/ 2 0 VIEW=CASE/ 5 0 MEASURE=SEUCLID/ 6 0 MATRIX=CUT(*) 5 0

Data Information

81 unweighted cases accepted.

Squared Euclidean measure used.

Squared Euclidean Dissimilarity Coefficient Matrix

80		5.0569 20.4824 11.1473 17.8016 30.9765	28.0400 24.6428 15.2845	31.3921 19.0580 10.1819 11.0531 30.8965 31.7064 45.3107 7.6497 19.5195 4.6666	56.6260 26.4409 5.9035 8.5751 12.2019 6.4460
7	4.7007	9.8160 15.5188 17.0009 18.1270 40.2069	54.7491 34.8258 33.5378 21.4646	40.0840 26.4881 23.3347 17.5263 48.7185 41.0552 58.8549 11.4284 18.2484 4.0316 18.7612	41.%us 36.6174 10.7787 16.2072 17.5601 10.1034 22.0541
9	2.6037	8.1046 18.6064 14.2010 19.7411 36.6683	49.0833 31.1539 30.0451 21.5343	36.8824 23.3982 15.4928 14.6856 34.3096 51.4217 11.3028 19.2560 4.5400	35.4570 32.4801 8.1182 12.2003 15.8899 9.5682
S	31.7137 30.9141 39.9110	32.8420 74.9984 60.0630 61.4725 91.7401	86.8825 85.1092 82.7065	96.0968 71.3144 67.8176 76.1185 98.2705 100.2370 119.4641 49.0146 18.6270 38.3435 86.2954	103.8225 89.0666 60.1939 65.2548 72.3408 53.7680 76.0879
4	30.7480 7.9949 5.2085 6.8812	5.3807 29.2333 16.5668 14.3066 40.6562	55.9641 43.6400 36.5258 22.7075	42.4909 28.7155 19.3550 20.8467 50.5988 47.6653 65.3421 7.4869 8.9032 4.8445	44,2504 36,2813 14,9348 18,0611 20,0460 10,4134 27,8267
м	5.0484 18.9001 5.8038 3.9755 8.1547	10.7102 29.6323 19.5701 18.5753 45.0929	54.8793 54.2773 37.5793 28.0127	43.6091 29.3000 25.6624 24.4137 48.8895 46.5471 61.4005 10.2664 7.1198 33.6012	45.0480 40.3719 16.7371 20.8249 23.5020 15.9030 28.9395
2	11.1241 10.2323 49.4785 8.6286 8.6149 8.5505	17.0472 21.7529 8.8766 9.6828 30.5523	40.726 35.4085 27.0702 12.4569	33.7299 24.7678 13.1966 9.6528 36.9742 27.8656 47.6161 9.1875 5.0634 19.0498	28.7063 25.9799 8.2032 11.9039 10.9804 9.5891
-	9.5607 14.6324 10.4367 51.4167 12.0971 14.0368 8.7432	8.4588 36.1358 3.5312 4.3894 14.2245	23.9672 31.5749 10.7379 18.8391	16.1106 7.4260 7.5377 6.5894 22.5435 20.7245 35.6163 3.7608 16.4311 4.6002 16.8623	18.1570 10.8702 5.3141 4.5144 5.3069 3.9010 8.9115
Case	0 M 4 W 40 ≻ 80	0 0 T 2 E 3	± 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	3 2 2 2 2 2 2 2 2 2 2 3 2 3 2 3 2 3	388888

Squared Euclidean Dissimilarity Coefficient Matrix (Cont.)

€	14.4120	9,2201	5.5385	7.6493	42.0929	10.9422	5.8234	28.2329	19.1575	25.4236	16.2466	27.7632	16.3040	12.7087	15.4385	9.5786	26.6697	22.7493	27.1426	31.3587	60.5172	50.5371	9.3145	2.6708	7.7455	42.1243	14.5170	7.8457	5.1279	6.3466	22.4254	3.2466	4.7477	10.6844	29.4021	6.1682	4.4436	6.7327	17.0645	23.4145	19.7947	35.3792	72.1381
7	20.8338	16.0670	13.2906	6.1271	51.5180	16.9950	6.0153	22.3063	23.4594	30.0589	22.2552	33.0750	22.6594	20.7749	17.5360	16.6734	26.0277	20.8639	40.0792	31.8531	59.1848	24.4990	4.2977	6.5833	6.9590	40.8673	14.0341	8.0192	5.3749	8.2479	30.3696	3.3205	8.8859	3.0977	32.7719	7.0517	2.5673	6.2764	15.5218	27.8905	17.1866	37,2050	79.1957
9	18.5930	12,3963	10.6886	6.3037	48.5596	12.7309	6.4369	21.9370	21.3714	29.0927	20.2901	30.9178	19.3885	18.4745	18.4020	11.5825	27.2589	23.2354	31.8256	33.1734	58.0832	53.3391	6.5499	4.3712	7.0090	43.2616	15.2979	9.8519	7.5459	8.1851	27.5161	2.5746	7.1035	7.3684	32.1214	7.8430	3.6709	4.1457	13.9315	25.4155	20.7814	36.9174	71.7736
ĸ	65.7200	45.3315	59.6956	36.3046	109.5012	61.4535	38.7684	43.0909	73.2587	81.9073	74.0668	79.8834	75.6387	59.2036	62.6855	55.7472	75.5129	66.2670	89.6416	79.7506	101.2910	113.3962	30.0982	41.0078	26.8611	91.5363	56.8824	55.9442	43.2522	55.0431	80.6785	42.6520	35.4145	22.8391	83.4874	39.3715	24.1570	19.3147	27.3902	67.0873	47.3599	67.5449	112.0896
7	17.8578	15.5624	11.8286	8.0144	55.1340	20.3493	5.5986	36.2962	22.7208	28.0517	22.8680	31.7101	23.5238	15.5294	13.1812	17.4625	32.9702	25.6156	42.3991	33.1689	69.4935	57.6452	8.8259	7.9256	6.4897	51.9916	16.8561	10.2994	2.8694	11.7109	33.5699	6.8214	4.5850	7.1240	30.2177	4.0671	2.1419	8.5777	15.8861	26.7517	14.6236	35.8705	89.8486
м	23.3913	16.3369	19.0700	5.9328	54.1514	21.0740	8.6248	24.5471	24.6262	31.8544	26.4410	33.8966	25.8106	24.3747	19.6595	19.5736	33.9682	27.2801	43.5915	35.8450	29567	60.8820	4.6659	10.5373	6.6356	54.2878	18.3900	16.8515	9.9483	14.0382	35.5209	7.8572	7.1230	3.7336	36.2522	9.8800	2.7022	3.9226	13.3160	28.9063	19.2377	39.6648	89.2377
٧	15.1478	17,1105	12.6030	8.6019	41.2424	12.2303	8.3642	43.8096	11.5532	17.8006	12.4839	19.6041	12.0469	18.0424	8.3291	10.3284	17.0730	16.9554	25.2643	20.2970	53.7671	39.3238	8.0582	9.2912	12.0707	43.1758	7.5920	10.4507	6.3952	8.8848	22.5779	4.5139	8.9128	13.2874	20.6627	11.0286	9.7051	14.9998	21.0739	18.0236	17.8218	30.5696	79.4290
-	2.1048	3.5638	4.6014	5.4514	25.0682	4.8682	3.3050	33.3826	5.3755	7.8447	5.8137	9.8255	5.5927	7.6662	3.9816	4.0767	21.0323	15.7299	15.8289	20.6192	62.4037	33.8528	9.4303	4.0280	5.6824	41.0836	10.2508	15.4851	7.6802	4.3652	11.1700	11.6815	4.0923	14.9573	22.1772	5.1656	10.6337	17.5022	23.5491	11.3327	12.3243	29.5726	84.5665
Case	8 8 8	70	41	75	43	77	45	94	25	87	67	20	51	25	53	24	55	2 6	22	28	26	9	61	3	63	E	92	8	29	8	69	2	7	22	ĸ	7.2	73	92	4	78	62	80	8

16	27.1308 37.2727 19.8574 22.9364 22.2257 36.1105	26.1934 35.8329 25.0433 28.4961 34.7391 39.4176 33.2164	21.5454 26.3194 24.8345 28.7704 28.0613 25.9665	28.8803 24.3406 33.5566 25.2189 26.3805 19.1454 37.2058	22.4269 32.4269 37.9530 35.5573 23.9043 31.7056 28.6917 18.0528 32.3142 21.1960	37.1215 34.6619 38.0814 62.8775 40.0366 30.7954
15	31.5518 7.730 30.9818 14.8244 7.1165 11.165	20.4876 12.9375 18.1971 6.3225 33.9962 63.5758	36.8176 3.3769 6.9564 26.4344 19.6510 18.0252	30.7177 17.4746 21.1925 24.9738 20.3341 29.093 35.2347 2.3501	2.7920 38.7024 68.1332 21.6699 16.9597 16.7088 17.5953 22.4700 34.4017	37.2449 13.4824 35.2080 84.3200 35.1487 41.6119
14	6.7455 30.2170 11.9254 20.5001 7.4911 6.9814 14.889	11.2767 11.2767 11.2767 10.9091 4.3792 30.1350 63.0405 31.2173	25.4999 1.7768 9.1273 18.4016 13.5158	26.3929 13.3850 18.9613 18.6956 23.0816 26.5282 26.1486 4.6235	1.02.5 33.59413 33.5907 62.3424 12.8127 8.4376 13.2844 10.5666 31.8621 20.3126 18.9083	30.6211 12.6917 27.5031 71.4502 28.8901 32.8398
13	13.7415 10.7610 25.1291 3.6332 31.1096 9.9284 4.5704 5.4363	20.5321 11.0898 19.6575 9.7747 20.4170 17.4843 48.7899 23.6319	18.8161 8.7851 .9539 15.7783 10.7917 8.0788	14.5838 5.5481 8.1476 9.2120 12.0982 15.7497 24.6938 8.2968	6.2798 21.2618 53.4582 14.4775 7.8062 5.0859 6.3116 10.7388 18.4939 13.6963	23.1498 10.3266 27.4162 73.9429 29.1736
12	17.5249 23.0106 30.4105 38.5868 17.1227 24.2497 11.9719 18.0814 13.9161	14.7902 8.5718 30.4944 19.0706 40.8025 9.2894 7.8475	20.0226 19.6266 14.7741 10.3751 9.8270 7.6894	9.7175 12.0504 4.8124 3.9057 12.8875 11.9194 7.4255	7.2501 7.2432 41.6400 2.5834 3.9616 7.3690 6.1956 4.8579 15.5647 1.2504 8.2358	14.2288 21.0613 15.4321 58.7752 26.7498 9.7766
11	5.9346 10.2151 15.1334 18.7262 10.3656 17.9568 5.6285 7.7539 7.6018	24.8662 7.9892 7.9892 26.5513 8.2374	14.6338 12.1087 7.4997 6.9465 5.3707 4.9395	7.2619 7.4024 5.0560 3.7075 6.0307 5.2342 9.5981	5.2984 42.4674 42.4674 4.9506 5.0579 3.3010 5.7914 3.2926 5.9449 3.7884 1.6094	12.1223 10.0015 11.9938 46.3726 20.1968 10.3562
10	29.1664 36.7749 49.0480 47.1921 65.8722 21.3079 46.1621 27.9487 25.0858 46.9241 40.564	24.2039 63.8479 42.0409 60.0857 31.5081 22.2235	14.1266 47.1456 47.3873 23.4325 30.8062 27.3880	25.1809 29.6906 40.4835 26.8141 39.4844 24.0558 28.5525 58.1758	28.8671 25.7916 45.1117 41.5203 32.4486 46.6892 35.1127 34.1827 32.8443 30.6154	35.4342 55.5480 45.3908 69.8962 61.1320 21.6802
92,9603	15.6639 20.3022 33.5242 47.7552 47.9864 37.4665 26.3814 25.9440 37.6120 20.6130	2.0533 42.0524 45.5062 60.2509 6.4939 9.3822 7.1851	25.1913 42.5278 30.0650 13.3993 15.0397 19.1697	7.9022 23.9388 15.0348 17.0460 8.0463 7.1109 11.4913 50.0626	25.7565 31.1722 25.7365 30.2026 32.3376 32.8514 24.4593 9.9171 18.0718 14.1627	28.2137 35.6384 39.1573 74.2998 60.8603 13.6065
Case 10	22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2828288	3 4 3 3 3 3 3	77 77 77 77 77 77 77 77 77 77 77 77 77	7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	58 59 59 6 6 1 6 9 9 9 9 9 9 9 9 9 9

Squared Euclidean Dissimilarity Coefficient Matrix (Cont.)

16	24.6454 36.3787 47.9233 31.5662 40.3767 31.2821 25.3694 19.8111 28.3988 35.6739 44.1726 28.2853 30.1443 36.7646 41.9400 52.5173 33.1394 40.4317 40.6077	24 12.1275 10.1398 34.3328 57.1035 36.0547 35.9402 13.0824 14.1444 21.4551 19.0854 30.782 19.8524 20.0190
15	33.2252 42.1991 59.0372 32.2765 51.9796 44.3930 26.4708 8.7423 46.8394 38.1499 57.6837 37.7869 44.1464 51.4675 58.2932 67.4067 56.8379 46.0691 52.3894	17.1337 9.4811 23.8444 8.7629 38.6973 6.6047 10.7199 8.0815 1.6971 1.6971 5.4135 5.0087 3.0935
14	29.9837 40.7056 53.7496 23.4426 38.7805 36.2885 20.4184 11.8930 33.0217 32.6903 48.8743 42.9216 39.3387 43.3871 49.5462 56.8759 52.3822 42.2203	8.0840 13.6619 19.8494 33.1099 10.2744 31.2294 13.0536 22.3963 16.0349 8.3046 5.8090 10.1281 11.1078 15.1503 9.1653
13	19.2415 26.3623 44.0121 22.5345 33.5560 28.8801 15.8053 26.0116 26.1138 42.2693 28.6941 27.3748 38.8839 49.5162 55.8463 17.6116 29.4385 41.8967	21 8.8183 16.8871 13.8007 20.1380 13.9015 32.9431 15.6983 16.3633 9.3842 4.0708 9.5976 6.6998 6.1711 9.7477 4.8774 5.3654
12	12.2569 12.1247 43.4039 9.0384 20.8367 11.8824 9.1214 17.0350 15.1052 8.9247 17.5417 15.7685 9.4453 16.4840 25.4825 27.3151 9.5882 11.9130 29.2949 92.9608	20 4.3161 23.6530 11.2528 13.3353 8.1897 10.2540 24.921 49.9877 26.9707 20.4284 3.9084 3.9084 3.2537 16.8117 11.2772 9.3950 19.7442 8.0518 10.6520
=	6.8041 11.6312 32.8774 6.1424 19.4040 10.0333 6.7966 7.7022 11.2414 7.6171 19.4496 11.1500 8.5504 14.5134 20.3358 23.6207 5.7897 12.2823 19.9240 65.6217	7.5995 7.2550 11.7252 13.102 14.2187 15.9740 14.2187 15.9740 14.0590 44.2187 13.1041 6.8511 6.8511 6.8511 7.2863 7.8891 7.8891
10	23.3294 32.5943 53.4763 29.6775 18.8616 20.9189 20.4424 38.4618 13.8262 34.3855 28.0997 37.1307 26.5792 25.5556 32.4012 46.6956 40.9962 56.2748 87.0877	13.3562 31.3004 26.8620 17.3179 11.4280 34.7437 35.2708 34.5071 14.9700 50.414 17.1659 18.4627 20.6027 24.3591 11.3593 13.3109 12.0295 14.2376 19.0046 22.1979
٥	3.9188 4.6220 49.0668 21.6622 13.4227 6.1068 10.8414 26.4816 11.8574 5.1551 11.8563 39.0979 4.2806 5.1335 10.1324 20.0028 28.0696 17.6176 37.8551 83.3867	24.5748 6.9772 4.4559 1.6378 19.6718 8.6486 16.8857 13.2444 17.8771 16.2081 44.3771 20.0388 17.4965 6.6858 2.3429 10.6963 7.4641 5.7920 11.7574 3.9247 7.0298
Case	333335388255555555555555555555555555555	Case 19 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Squared Euclidean Dissimilarity Coefficient Matrix (Cont.)

54	19.2185 25.4755 30.1669 16.5961 15.4493	36.2146 60.6575 18.7573 20.2132 16.6898 18.6335	29.7431 28.2543 15.8095 34.1032 38.2238 8.3844	53.1415 64.2679 31.4614 39.2487 40.9823 53.8848	29.1107 49.1764 42.8842 27.5680 19.4911 36.3283 28.6886 53.5058	30.3050 38.7346 44.5198 43.0905 46.4499 20.3391 45.0425 77.4407
23	10.4320 6.4274 10.2304 18.1661 2.8937	9.7142 39.1988 5.4622 7.2387 2.4902 8.9333	15.1011 6.3834 4.8442 16.9548 15.4123 10.9294	58.8976 58.8473 14.3319 8.2034 16.8686 37.7052	10.3440 12.7940 12.4552 4.0593 8.0099 11.5907 12.4651	19.0801 14.0925 19.8219 27.0559 34.6511 14.0031 22.0287 36.3728
23	10.6484 8.4362 15.2523 32.2693 8.8016	14.0719 52.9891 11.6100 16.4524 16.6449 8.2830	12.9208 11.4880 5.9396 23.6531 24.1516 10.9504	55.7092 34.6245 34.6245 22.3083 10.3746 18.9120 43.5023	14, 0379 19, 3972 14, 2021 13, 0833 13, 7953 8, 3654 29, 1978	20.8954 14.4095 18.7447 24.5532 23.6538 30.0490 69.8248
21	4.7423 9.6083 14.0017 9.8973 5.5282	12.6855 30.8269 10.8122 8.5194 5.8815 9.7342 8.4298	13.6479 13.1480 8.2390 26.0926 21.0258 13.7419	72.8030 33.8478 17.7803 10.634 15.2780 42.3117	19.7311 27.6290 21.8035 7.8191 3.6726 25.3582 17.0178	31.3057 17.1771 25.4881 32.7225 42.7023 17.3354 23.7563 41.2085
20	14.1771 18.0846 23.0173 3.6372 9.7758	24.8197 47.4332 12.6974 7.2408 6.9300 7.9588	22.1645 16.5076 13.5811 28.4419 26.7540 13.4753	27.1920 27.1920 27.8280 22.7329 30.5815 48.0106	24.5581 39.0006 33.1583 16.1794 6.1068 34.9144 27.5260	26.5979 29.3526 39.6684 47.7765 55.1724 18.6258 33.1861 45.6088
19	11.3326 9.3813 12.7757 12.4546 3.6443	14.1069 39.1300 6.9512 7.6346 3.0001 8.8503	17.7146 10.0200 6.4072 17.2619 17.4047	58.5613 27.0868 16.0432 11.4056 20.8392 38.0617	12.2618 18.7405 17.8803 6.2510 6.3396 15.0646 16.3362 27.6664	20.127 18.9902 24.1175 29.9438 38.5257 14.9756 26.1133 37.8932
18	23.9382 16.8181 21.5578 30.8085 22.0024	21.9158 61.8200 23.2953 27.3240 13.8844 31.0236	25.0357 19.2527 22.0820 29.0724 29.447 27.3830	26.8759 17.8815 28.8167 28.8167 54.6802	20.0110 10.9342 13.9593 12.4584 20.7671 15.2699 21.9543	33.3908 25.7189 23.6614 32.8328 46.3709 34.1940 36.2412 52.0379
17	8.4076 13.8157 19.0779 6.6133 7.6857	17.8399 39.7349 12.3695 9.6377 5.1016 10.1128	19.0195 15.5262 11.1350 26.6586 22.7717 11.0759	24.1601 15.1685 21.6168 24.8550	22.1416 29.5044 26.6769 10.2028 1.8608 31.3081 23.2663	35.9039 24.8545 33.5145 42.2726 53.0583 20.6245 29.9931 47.5434 101.5207
Case	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	20 64 64 64 62 62 62 62 62 62 62 62 62 62 62 62 62	2282823	8882888	\$ 353 82521	254252525

Squared Euclidean Dissimilarity Coefficient Matrix (Cont.)

32		12.5469 7.6183 5.7592 12.9094 4.9477 6.3025 7.9786 9.8128	5.9466 5.9466 6.9678 19.4189 52.3230	6.0862 2.9443 5.4557 7.3238 16.0023 11.4247 8.6148 22.6855 21.8326 70.7822 27.1459 25.7275 16.9406 24.25461 43.2892 19.1815 13.0093	31.1277
31	28785	17.5284 12.5638 9.6231 22.3773 10.6590 14.8818 18.8818	25.7371 2.2197 13.9732 29.5197 60.4547 12.7826	5.18% 6.1893 10.3324 24.9969 17.2680 16.7474 25.9710 28.0448 12.3033 26.3045 74.3803 27.7000 31.4098 36.4490 51.6694 52.7796 37.9564 33.1599 17.5344 6.9910	33.7551
30	23.3966	7.4100 9.6635 7.2401 8.3138 8.0147 14.3020 7.8657 19.7352	18.3559 30.0396 10.6282 13.9730 38.0761 19.050	19.1820 22.8706 14.7188 20.7829 15.9287 13.9490 22.4004 26.5788 33.7279 70.6592 43.0961 22.4284 41.1444 20.551 11.1112 15.2329 6.7990	15.4175
59	13.0359 29.0745 21.0526	4.3800 7.1814 7.6677 2.7476 11.4031 8.0653 6.5795 6.5795	2.5422 37.3915 7.6844 .8716 25.6214 11.7568	10.1491 10.4827 11.6993 11.6993 13.6042 6.8035 7.3694 15.2322 25.4326 25.0186 61.9255 44.2020 2.3074 2.9907 40.7579 9.8711 5.9907 17.9505	4.7344
28	15.7687 49.6597 58.3980 45.3164	50.1793 30.5260 35.4228 23.1237 41.5707 24.6349 29.4673 17.1908	14.3174 65.0445 29.6152 13.0521 33.9546 32.5024	50. 98.28 36. 36.60 38. 36.60 37. 37.00 22. 51.87 25. 66.59 49. 44.62 38. 17.12 45. 76.98 45. 76.98 45. 76.98 16. 94.03 16. 94.03 16. 94.03 17. 63.03 44. 63.15	23.6467
27	18.5793 3.0197 14.0441 26.1005 15.3814	5.7041 6.4081 6.6803 1.3103 10.6551 5.5497 6.7435	8.0466 33.1410 8.7230 2.9536 38.2955 13.770	15.5784 16.7064 12.5653 9.737 6.0427 7.5172 23.3639 17.2589 21.5900 26.6120 69.4748 45.0906 11.0669 3.2190 5.8645 42.1081 12.3755 6.5285 3.3788 4.7553	11.0650
56	46.6219 78.0977 48.1486 38.0040 6.2401 15.559	24.222 24.1712 24.1712 41.1220 23.8531 32.0458 33.2297 36.5671	41.0922 6.0824 25.7853 49.5967 72.1792 28.8586	24.9223 24.8118 21.8773 39.5867 37.1076 28.5017 39.0680 45.5520 18.4687 40.3029 79.5013 36.3316 47.7776 41.7601 55.3483 63.1381 37.9526 58.0826 53.3277 18.2964	47.4312
52	16.6354 28.9028 60.7018 27.9282 20.4578 11.2001 9.0658	10.0530 11.1300 23.4974 8.7151 14.6063 13.3149 21.2987	25.6827 15.1857 7.4323 27.8620 54.3609 11.0887	6.2938 6.8885 28.56381 17.1589 10.3035 21.5975 24.8064 9.3285 22.8216 55.1578 19.6312 27.8942	31.3895
Case	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	7	777474	3 4 6 7 7 18 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 	02

Squared Euclidean Dissimilarity Coefficient Matrix (Cont.)

32	22.0697 39.3738 25.3945 24.6836 34.6910 44.1665 50.7151 15.1297 27.7022 39.2132	07	6.0907 8.0810 21.5150 5.3893 6.2475 27.6123 12.8356 13.6509 8.2208 11.2191 4.8113 22.5209 18.6637 14.4177 25.6991 61.5997 37.5694 11.1606 5.1069
31	30.4805 46.9970 25.6769 34.6165 41.8566 50.3062 58.6692 20.7993 37.6351 46.8792	39	9.2923 5.0473 9.4254 21.7621 3.5302 5.8498 39.9081 4.2951 6.2784 6.2784 6.2784 19.3312 1.9958 4.4800 17.7574 13.7649 15.8766 11.7558 12.380 12.1205
30	23.9928 28.9758 30.4068 18.1050 25.1942 35.9522 47.1967 29.0427 30.2243	38	2.4495 6.4835 8.5167 19.7814 3.3132 6.2060 35.8639 4.9476 4.0107 11.9514 4.4978 22.1630 16.0805 12.5091 21.8626 66.6139 31.3063 10.6902
59	4.4449 6.5557 25.9052 4.0449 4.3028 10.7735 18.8992 18.1173 12.8258 33.8677 85.6227	37	5.0905 4.7384 8.8999 9.6785 12.4797 13.7031 2.6822 11.0519 33.4733 8.9175 8.1372 5.8258 18.6608 9.9772 6.2720 19.2418 15.8926 10.7037 24.8142 66.6255 32.4031 16.6183
28	9.7002 12.4834 45.3506 10.6888 9.4072 12.5286 17.4473 32.3432 19.2163 41.6935	5.9807	4.5511 3.9181 5.7916 3.4802 7.1173 28.5441 5.6178 2.4264 30.4561 12.118 13.8411 6.2979 10.2777 10.6517 7.0623 6.2959 21.9294 15.5922 19.6169 26.8832 68.4181 43.1380 9.8034 1.9097
27	5.5858 14.4478 27.5162 5.8892 9.2104 18.8370 26.8279 14.0922 34.6604	35 3.7488 1.4976	3.2251 8.0827 6.7156 8.9329 15.1264 2.8500 8.1610 36.3082 5.8039 7.7895 1.2659 7.7895 1.2659 14.8850 17.8510 11.1080 21.2730 64.4894 31.2502 14.2441 38.3649
56	45.5020 65.9306 35.9630 53.8663 58.2679 61.1182 69.8283 32.8664 58.0547 96.8723	34 1.4063 3.9242 3.3158	3.2119 4.6060 5.7867 7.4511 18.1612 2.3975 7.1111 9.5186 10.2951 14.2690 7.7076 7.7076 4.0008 19.9905 16.5971 16.5971 13.3742 5.5530 12.6684 38.0838
25	28.9766 45.5992 19.7910 33.2334 43.0845 47.1247 49.3056 14.3958 35.7928 35.7928	1.2114 1.9754 2.6045 4.0717	5.4732 5.2171 7.4185 5.8469 5.8702 24.3387 3.6365 5.5279 27.9204 6.1704 15.9041 8.7096 5.5589 19.9722 15.7311 14.6210 25.0320 62.8904 38.7878 10.2750
Case	12677878381	Case 34 35 35 37	\$ 6 7 7 7 7 7 7 7 8 7 8 7 8 7 8 7 8 7 8 7

Squared Euclidean Dissimilarity Coefficient Matrix (Cont.)

*

* * * *

* * * *

13.6830 19.4537 12.1510 6.5021 8.5056 15.6069 15.6069 17.386 17.38606 17.38606 17.38606 17.3881 18.6496 18.6496 18.6496 18.6496 18.6496 18.6496 18.6496 18.6496 18.6496 18.6496 18.6496 19.649 4.0299 1.1926 2.7078 16.4567 3.9560 7.6062 117.3804 117.3 10.2017 13.7584 9.2631 4.4729 8.6253 113.4119 110.3576 20.9432 116.7795 116.7795 11.7795 11.78833 33.3484 11.8684 11.8 2.4380 5.3664 4.2865 1.1722 18.0274 4.0249 6.5755 118.5960 116.1370 116.1370 117.1963 117.1963 143.9611 117.1963 117.1963 117.1963 117.1963 117.1963 117.1963 117.1963 12.9333 18.0699 13.0167 5.7150 8.3570 18.1840 8.7069 22.8951 10.1007 11.5360 11.5360 11.5360 11.5360 11.5360 11.5360 11.5360 49. 5208 44. 2926 52. 0179 42. 1224 42. 1224 42. 1224 44. 5931 59. 6384 66. 6380 66. 6280 66. 6280 66. 6280 66. 6280 14.6105 17.2248 18.1676 5.2448 3.5470 17.4362 26.3030 22.9757 18.5096 25.1595 33.2867 42.1598 42.1458 91.8742 23.5038 11.5277 14.7719 10.9530 16.8975 11.2320 6.7928 6.7928 6.9289 25.732 26.0244 26.1739 43.9661 43.3661 1.6887 1.6687 1.6687 9.0415 7.0325 30.5380 5.448 6.2409 3.5973 5.9749 3.0083 112.6285 6.5350 11.240 14.0184 9.3473 19.1165 5.9123 11.2638 34.5268 10.1291 12.3444 5.7792 4.8770 1.8263 10.1138 10.1138 10.1849 7.3518 14.433 10.5553 19.6276 19.1135 15.8419 37.5049 10.9357 12.2368 12.0139 2.8785 5.3108 112.3044 12.325908 22.3579 12.7480 13.7480 14.6437 14.6437 14.6437 14.6437 14.6437 14.6437 14.6437 14.6437 14.6437 14.6437 14.6437 19.0515 36.7556 61.3633 21.0378 14.7724 110.8470 116.6107 25.6410 25.6410 37.729 37.72 32.5182 7.9012 3.4003 19.2500 9.5625 11.2718 16.4936 10.1481 16.4936 16.4936 17.0571 24.8486 25.2359 42.4304 2.8366 5.6638 4.5589 43.8755 11.1301 11.5828 12.2774 11.8702 3.4369 7.8907 12.1452 8.9733 23.6443 12.3117 12.3117 12.3117 14.1355 20.0750 83.7588 29.1408 6.1958 5.4954 37.4498 13.0348 13.7587 8.6246 10.0647 4.0620 5.2227 23.1076 19.2640 19. 7.6537 9.0413 1.6226 10.5477 8.9482 16.4251 26.7447 10.7191 13.0504 18.8501 28.6692 20.5282 39.3981 85.5650 Case Case

Squared Euclidean Dissimilarity Coefficient Matrix (Cont.)

87	21.3547 12.3674 9.6930 23.9896 16.8846 30.8606 14.6233 17.9994 28.6910 38.0340 40.2365 19.6359 32.0208	3 5	6.3067 39.4217 18.777 18.777 15.1048 17.1519 19.638 22.5860 7.7735 24.4456 17.7386 17.
25	18.1815 9.6255 13.8321 17.1448 12.5569 24.6906 16.3551 14.9800 22.6298 29.1195 31.6996 8.7169 18.5788 32.2413	55	8.6653 17.0229 17.0229 19.334 11.3617 19.8597 22.5340 28.0181 30.7117 21.8634 21.0632 20.6281 22.1264 23.7332 24.8341 15.0492 27.4605 32.5362
97	40.0233 24.2924 45.5417 33.4278 33.7077 20.2024 75.5910 31.0451 27.777 27.777 27.777 27.1440 44.4541 78.7025	14.7862	14.6164 9.2135 16.9305 47.8762 25.1155 10.2411 5.1809 10.1303 33.5934 8.3812 11.4584 7.1200 8.8536 11.3983 6.9451 19.3135 15.6885 14.6249
57	4.2149 3.4098 16.7596 7.7534 4.0830 7.1597 27.6490 2.5717 5.4011 12.4445 17.6232 11.5115 33.7432 86.9890	5.8134 16.4850	13.9727 17.8120 14.8001 56.8206 25.9660 10.6188 9.9814 12.1507 40.6364 7.6583 16.5603 8.6668 13.2672 13.2139 8.1489 19.0454 12.7900 8.6501 15.5924 25.4735
77	13.9449 5.2487 7.0618 13.1747 9.3895 19.2459 11.1920 17.2944 22.0746 27.6248 9.4471 17.5103 30.2683	11.3975 8.3032 22.3288	22.1455 23.0460 22.7757 55.4099 32.9606 18.5571 8.2254 13.2964 37.4915 15.0666 23.2245 9.4828 12.8385 14.9029 16.2714 10.0997 23.7912 19.4810 6.8453 15.1556
43	43.3006 23.628 7.6332 45.8090 39.3948 54.7435 36.7830 43.6735 51.2631 60.1032 69.7711 27.8940 45.3240 56.0390 111.0767	51 15.5380 4.6176 4.1884 15.2674	14.8010 8.7244 14.3088 51.5877 19.6064 14.5880 12.1715 18.0996 37.2905 8.7983 22.9302 17.1051 8.1720 10.0765 15.6006 12.0030 25.4794 14.0393 14.0393
75	3.8111 4.6200 19.6559 7.2645 5.3969 6.4174 26.6644 7.3497 6.0239 9.9220 17.4157 16.9321 14.8932 36.2796	50 3.7605 18.8417 5.5304 6.9377	17.2014 10.4088 15.1575 56.3016 17.8507 18.9981 22.3842 41.1410 12.7437 33.3261 24.4363 15.4275 9.2398 27.1636 17.8962 32.4784 15.3005 33.1742
41	6.0715 5.0174 11.7585 9.9054 6.6797 19.0133 22.1803 4.9040 11.8008 19.2422 27.7020 16.9559 16.4419 30.9539 74.2468	49 4.5505 3.1053 13.2462 4.6012 4.7437 15.9300	14.8410 8.5115 17.9836 61.8625 25.9378 14.0289 16.4187 39.1052 10.3517 17.5458 14.1593 5.7751 3.4856 17.0890 13.7108 26.2407 18.0388 15.9026 22.0270
Case	883 8777778888	Case 50 51 53 54 55	%7

Squared Euclidean Dissimilarity Coefficient Matrix (Cont.)

26	26.5517 8.4750 5.7848 22.2161 66.8274	2		17.7019 48.4481 39.6656 39.1291	39.7083 42.0131 41.5188 36.4362 38.5134 37.3241	44,0643 47,7218 34,7499 26,0501 26,3619 17,3343 31,7959	72 35.5194 7.8874 3.6462
55	25.4091 8.9388 14.4022 10.7566 42.9226	63	!	44.6030 15.5010 14.1765 7.1395 7.0688	20.5406 10.9837 5.2904 5.6407 34.9928 4.2517	4.6244 9.7984 18.4675 21.2715 12.7680 35.0810 87.5573	9.3815 21.4961 3.4154 4.3605
24	22.1162 7.4994 15.0567 23.0897 65.0269	62	3.2004	57.7400 12.3015 8.2481 4.4606 2.8629	13.2998 6.7032 4.5547 10.0813 28.1608 3.8389	5.7854 11.0845 20.7474 18.3375 14.6415 32.6719 76.4258	70 7.5976 9.8560 21.5790 7.4007 4.7337
53	27.6290 9.1209 12.0840 26.4871 86.8817	61	6.8958	58.9442 9.8741 15.3049 8.8234 7.5644	21.6874 7.0784 7.5212 3.5221 24.8023	5.3947 9.0511 15.4591 17.1716 12.3044 30.1883 79.2082	27.3953 21.9311 33.7840 29.7437 22.9201 30.5199
52	27.0600 15.3420 14.5065 21.0854 62.9930	09	40.3396	24.4552 17.1747 62.3475 45.6444 40.6192	32.1414 44.4938 40.1141 51.325 11.6755 39.7368	52.0631 56.6297 42.8038 8.6424 24.6026 15.2470 48.4039	9.8590 7.9943 9.0418 12.8242 27.4697 7.6530
51	30.6514 7.3657 18.9017 29.2948 79.2337	59	22.6435 53.8469 61.8705 68.2495	16.2135 27.5714 78.0587 60.0615 66.8208	70.6647 51.9547 55.8042 54.2824 33.0677	59.1026 54.8838 31.4895 30.6177 40.0803 12.5797 12.9808	67 6.6109 22.0093 4.9225 5.5385 9.6084 23.3569 3.4787 4.1862
20	39.2849 7.3536 20.3726 29.3548 87.3095	28	23.8711 5.9701 22.8649 27.3978 31.2893	21.3865 6.2748 38.7544 24.9081 25.7889	26.2215 25.9893 22.4893 28.7317 8.0000 23.0368	28.8681 33.8927 25.2879 3.7884 9.4792 10.4022 50.7378	5.2676 7.4636 25.3732 8.6442 14.2969 16.4177 38.0623 13.3799
67	37.6393 11.5445 20.1070 33.5822 87.7773	25	17.3141 51.6822 20.3187 30.2733 21.3424 30.7973	36.163348 16.3348 35.7308 31.0984 20.0653	10.3212 31.1994 23.2771 42.1081 23.3303 30.3358	36.6612 39.7681 40.758 10.0906 27.3527 31.5103 70.4019	65 19.0551 10.6319 11.6225 17.9810 10.9818 10.6804 13.4739 12.1052 11.6350
Case	77 87 80 80	Case	58 60 60 60 60 60 60 60 60 60 60 60 60 60	\$ 5 3 2 3	1433338	£ 5 5 7 5 8 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Case 68 65 65 65 65 65 65 65 65 65 65 65 65 65

Squared Euclidean Dissimilarity Coefficient Matrix (Cont.)

22	6.6244 11.4919 24.7583 11.7258 31.8984 77.6802	80	24.7406
7.	7.6484 11.9721 13.3808 10.8290 25.5981 73.7067	&	14.9686 63.2153
02	7.5991 14.9993 21.8611 19.0221 31.7711 69.7429	78	8.5572 11.3955 53.8013
69	39.9242 49.6479 18.5853 27.1267 39.9542 90.4737	12	20.0947 15.7134 17.3477 44.8037
89	18.1091 29.3657 19.1814 17.5468 39.3562 89.9475	92	6.2040 26.3465 18.8945 32.6500 66.1604
29	12.6808 19.7461 21.0113 12.2030 29.5946 78.8260	ĸ	2.9858 10.3676 22.9242 12.2823 31.0053 75.4203
99	21.1210 33.7637 34.7477 25.9834 50.8809 100.3892	7.2	4.1449 10.5045 15.0031 15.9367 7.9600 25.1288
92	18.9620 15.4428 6.3623 8.7523 12.0474 52.5794	22	22.2570 28.9959 34.3467 27.8553 8.0031 18.0949 15.3286 55.8606
Case	75 77 79 80 81 81	Case	75 75 77 78 80 80 81

APPENDIX III

RANK OF CENSUS TRACTS BY SOCIO-ECONOMIC INDICATORS

35-3/ 9-73 V12 75-79																																			
/1 IKACI (A/) VUI 9-13 VUZ 13-19 VU3 21-25 VU4 27-31 VU3 53-3/ VO6 39-43 VO7 45-49 VO8 51-55 VO9 57-61 V10 63-67 V11 69-73 V12 V13 81-85 V14 87-92	V																						OC GRADUATES!			rive '									
8 51-55 VOS 57-61	from LANSING DATA	Format	74	F5.0	F5.0	F5.0	F5.0	F5.0	F5.0	F5.0	F5.0	F5.0	F5.0	F5.0	F5.0	F5.0	F6.0		N 1980	S IN 1980	O WORK		SCHOOL COMPLETED WITH HIGH SCHOOL		IN AGRICULTURE	IN CRAFT & OPERATIVE	HOUSING UNITS WITH PUBLIC WATER	HOUSING UNITS WITH SEVER!	HOUSING UNITS WITH UTILITY GAS	LARS	DOLLARS!	HOUSING UNITS		AVE	
vol y-15 v 17 45-49 v0 14 87-92	records	End	7	13	19	52	31	37	73	67	22	61	29	ይ	62	82	35	"	TOTAL POPULATION IN	TOTAL HOUSING UNITS	MEAN TRAVEL TIME TO	١,٠	OU COMPLET	MOMAN AT HOME!	POP. EMPLOYED	. EMPLOYED	SING UNITS	STING UNITS	SING UNITS	MEDIAN RENT IN DOLLARS.				DESCRIPTIVES VO3 TO V14/SAVE	
ACI (A7) VC 39-43 V07 81-85 V14	ll read 1	Start	-	6	5	21	27	33	33	45	51	22	63	69	23	81	87	VARIABLE LABELS	TOTAL PC	TOTAL H	MEAN TR	· FERTILTIY •		PCT NOW				PCT HOUS	PCT HOUS	MEDIAN F	MEDIAN P	MEDIAN VALUE OF		PIIVES V(
71 80 743 813	mand wi	Rec	-	-	-	-	-	_	_	-	_	_	_	-	-	-	_	VARIAB	707	V02	V03	V 04	V05	%	V07	708	8	V10	11	V12	V13	V14		DESCRI	
4 4 7 4 4 0 0 0 0	OThis command will read 1	Ovariable	TRACT	107	V 02	V03	1 07	V 05	904	707	808	60/	V10	111	V12	۷13	۷14	7 0	8	0 6			12 0				16 0		18 0				22 0	24 0	

ONumber of valid observations (listwise) =

81.00

```
COMPUTE T2SUM = SUM(T2V04,2V05,T2V06,T2V07, 2V08, 2V09, 2V10, 2V11,2V12,2V13,2V14)
                                                                                                                                                                                                                                                                                                     Label
                                                                                                                                                                                                                                                                                                     Maximum Valid N
                                                                                                                                                                                                                                                                                                                                                  8
                                                                                                                                                                                                                                                        81.00
                                                                                                                                                                                                                                                                                                                                               13.88
                                                                                                                                                                                                                                                                                                     Minimum
                                                                                                                                                                                                                                                                                                                                                 -13.06
                                                                                                                                                                                                                                                        ONumber of valid observations (listwise) =
                                                                                                                                                                                   DESCRIPTIVES VARIABLES = TZSUM
                                                                                                                                                                                                                                                                                                                                                                                          SORT CASE BY TZSUM(D)
LIST VARIABLES = TRACT TZSUM
COMPUTE T2V04 = 2V04 * -1.0
COMPUTE T2V06 = 2V06 * -1.0
COMPUTE T2V07 = 2V07 * -1.0
                                                                                                                                                                                                                                                                                                                                             4.878
                                                                                                                                                                                                                                                                                                     Std Dev
                                                                                                                                                                                                                                                                                                     Mean
                                                                                                                                                                                                                                                                                                                                               900.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  OVariable
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                39.01
38.01
38.01
38.01
38.01
38.02
43.01
16.00
17.02
14.00
17.02
14.00
17.02
14.00
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
17.02
 000000000
                                                                                                                                                                                                                                                                                                                                                                                              000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     TRACT
                                                                                                                                                                                                                                                                                                                                                  T2SUM
                                                                                                                                                                                                                                                                                                                                                                                            38
 27
28
28
33
33
34
35
35
36
```

```
N53.02 1.93
27.00 1.28
N50.00 1.28
28.00 .94
53.02 .90
22.00 .94
53.02 .90
22.00 .94
53.04 .37
6.00 .01
24.00 .23
35.04 .33
35.04 .33
35.00 .23
35.00 .23
35.00 .98
35.00 .98
35.00 .98
35.00 .23
36.00 .98
36.00 .23
36.00 .98
36.00 .98
N102.01 .98
N102.01 .98
N102.01 .98
N102.01 .98
N102.02 .98
N102.03 .4.12
N102.03 .4.13
N102.04 .4.39
32.00 .5.49
8.00 .5.49
8.00 .5.49
8.00 .5.49
8.00 .5.49
13.00 .6.40
4.00 .6.40
12.00 .7.21
12.00 .7.88
N103.00 .10.98
N56.00 .11.05
N56.00 .11.05
```

APPENDIX IV

1950 TO 1980 UA CRITERIA

The Urbanized Area Criteria: 1950-1980

I. The 1950 Urbanized Area Criteria

An urbanized area is an area that includes at least one city with 50,000 inhabitants or more in 1940 or later according to a special census taken prior to 1950 and also the surrounding closely settled incorporated places and unincorporated areas that meet the criteria listed below: ...

The urban fringe of an urbanized area is that part that is outside the central city or cities. The following types of areas are embraced if they are contiguous to the central city or cities, or if they are contiguous to any area already included in the urban fringe:

- 1. Incorporated places with 2,500 inhabitants or more in 1940 or at a subsequent special census conducted prior to 1950.
- 2. Incorporated places with fewer than 2,500 inhabitants containing an area with a concentration of 100 dwelling units or more with a density in this concentration of 500 units or more per square mile. This density represents approximately 2,000 persons per square mile and normally is the minimum found associated with a closely spaced street pattern.
- 3. Unincorporated territory with at least 500 dwelling units per square mile.
- 4. Territory devoted to commercial, industrial, transportational, recreational, and other purposes functionally related to the central city.

Also included are outlying noncontiguous areas with the required dwelling unit density located within 1 1/2 miles of the main contiguous urbanized part, measured along the shortest connecting highway, and other outlying areas within one-half mile of such noncontiguous areas that meet the minimum residential density rule.

Although an urbanized area may contain more than one city of 50,000 or more, not all cities of this size are necessarily central cities. The largest city of an area is always a central city. In addition, the second and third most populous cities in the area may qualify as central cities provided they have a population at least one-third that of the largest city in the area and a minimum of 25,000 inhabitants. The names of the individual urbanized areas indicate the central cities of the areas. 1

¹An exception to the above central city rule was the inclusion of additional central cities in the regional UA's, such as the 1950 New York Northeastern New Jersey UA.

II. The 1960 Urbanized Area Criteria

An urbanized area is an area that includes at least one city with 50,000 inhabitants or more in 1960, as well as the surrounding closely settled incorporated places and unincorporated areas that meet the criteria listed below. 1

In addition to its central city or cities, an urbanized area contains the following types of contiguous areas, which together constitute its urban fringe.

- 1. Incorporated places with 2,500 inhabitants or more.
- 2. Incorporated places with less than 2,500 inhabitants, provided each has a closely settled area of 100 housing units or more.
- 3. Towns in the New England States, townships in New Jersey and Pennsylvania, and counties elsewhere that are classified as urban.
- 4. Enumeration districts in unincorporated territory with a population density of 1,000 inhabitants or more per square mile. (The areas of large nonresidential tracts devoted to such urban land uses as rail-road yards, factories, and cemeteries were excluded in computing the population density of an enumeration district.)
- 5. Other enumeration districts in unincorporated territory with lower population density provided that they served one of the following purposes:
 - a. To eliminate enclaves.
 - b. To close indentations in the urbanized areas of one mile or less across the open end.
 - c. To link outlying enumeration districts of qualifying density that were no more than 1 1/2 miles from the main body of the urbanized area.

A single urbanized area was established for cities in the same standard metropolitan statistical area (SMSA) if their fringes adjoin. Urbanized areas with areas with central cities in different standard metropolitan statistical areas are not combined, except that a single urbanized area was established in the New York, NY-Northeastern New Jersey Standard Consolidated Area and in the Chicago-Northwestern Indiana Standard Consolidated Area.

There are a few urbanized areas composed of twin central cities. These twin central cities must have contiguous boundaries and constitute, for general economic and social purposes, a single community with a combined population of at least 50,000, the smaller of which must have a population of at least 15,000.

With two exceptions, the names of the central cities appear in the titles of urbanized areas. The central cities of the two regional urbanized areas appear in the title of their respective standard metropolitan statistical areas.²

²The central cities of the New York, NY-Northeastern New Jersey urbanized area are the central cities of the New York, Newark, Jersey City, and Paterson-Clifton-Passaic Standard Metropolitan Statistical Areas. Likewise, the central cities of the Chicago, IL-Northwestern Indiana urbanized area are the central cities of the Chicago and Gary-Hammond-East Chicago Standard Metropolitan Statistical Areas.

III. The 1970 Urbanized Area Criteria

The major objective of the Census Bureau in delineating urbanized areas is to provide a better separation of urban and rural population in the vicinity of the larger cities. An urbanized area consists of a central city, or cities, and surrounding closely settled territory. The specific criteria for the delineation of an urbanized area are as follows:

- 1a. A central city of 50,000 inhabitants or more in 1960, in a special census conducted by the Census Bureau since 1960, or in the 1970 census.
- b. Twin cities; i.e., cities with contiguous boundaries and constituting, for general social and economic purposes, a single community with a combined population of at least 50,000, and with the smaller of the twin cities having a population of at least 15,000.
- 2. Surrounding closely settled territory, including the following (but excluding the rural portions of extended cities, ...):
 - a. Incorporated place of 2,500 inhabitants or more.
 - b. Incorporated places with fewer than 2,500 inhabitants, provided that each has a closely settled area of 100 housing units or more.
 - c. Small parcels of land normally less than 1 square mile in area having a population density of 1,000 inhabitants or more per square mile. The areas of large nonresidential tracts devoted to such urban land uses as railroad yards, airports, factories, parks, golf courses, and cemeteries are excluded in computing the population density.
 - d. Other similar small areas in unincorporated territory with lower population density provided that they serve
 - to eliminate enclaves.
 - to close indentations in the urbanized areas of 1 mile or less across the open end,
 - to link outlying enumeration districts of qualifying density that are not more than 1 1/2 miles from the main body of the urbanized area.

The central city category consists of the population of the cities named in the title of the urbanized area. The title is limited to three names and normally lists the largest city first and the other qualifying cities in size order. This order is, in many cases, based on 1960 population because most names were fixed before the 1970 counts were available. For other cities to be listed in the title, they must have:

- 1. 250,000 inhabitants or more.
- 2. At least one-third the population of the largest city and a population of 25,000 or more (except in the case of the small twin cities).

The four exceptions are: New York, NY-Northeastern New Jersey, which includes New York, Newark, Jersey City, Paterson, Clifton, and Passaic; Chicago, IL-Northwestern Indiana, which includes Chicago, Gary, Hammond, and East Chicago; Los Angeles-Long Beach, CA, which includes Los Angeles, Long Beach, Anaheim, Santa Ana, and Garden Grove; and San Francisco-Oakland, CA, which includes San Francisco, Oakland, and Vallejo.

IV. The 1974 Urbanized Area Criteria

The major objective of the Bureau of the Census in delineating urbanized areas is to provide a better separation of urban and rural populations in the vicinity of the larger cities. A UA includes a central city or cities that qualify under one of the criteria listed below. All population criteria refer to 1970 census population counts (except as specified in criterion la).

- 1a. A city of 50,000 inhabitants or more according to the 1970 census, a special census taken between 1960 and 1970, or the 1960 census, provided that the city is located in an SMSA and is not included in an existing UA,
 - b. A city with at least 25,000 inhabitants which, together with those contiguous places (incorporated or unincorporated having population densities of at least 1,000 persons per square mile, has a combined population of 50,000 and constitutes for general economic and social purposes a single community, provided that the city is located within an SMSA and is not included in an existing UA.
- 2. In addition to a central city or cities, a UA includes contiguous territory meeting the following criteria:
 - a. Incorporated places of 2,500 inhabitants or more but excluding the rural portions of extended cities.
 - b. Incorporated places with fewer than 2,500 inhabitants, provided that each has a closely settled area of 100 housing units or more; and all unincorporated places recognized in the 1970 census.
- c. Contiguous small parcels of unincorporated land determined to have a 1970 census population density of 1,000 inhabitants or more per square mile. The areas of large nonresidential tracts devote to such urban land uses as railroad yards, airports, factories, parks, golf courses, and cemeteries are excluded in computing the population density.
- d. Other similar small areas in unincorporated territory without regard to population density provided that they serve:
 - to eliminate enclaves, or
 - to close indentations of one mile or less in width across the open end of the UA's in order to eliminate narrow fingers of "rural" areas.
 - to link outlying areas of qualifying density provided that these are not more than 1 1/2 miles from the main body of the UA.

¹Unincorporated places as identified and defined for the 1970 census by the Census Bureau.

- 3. Urbanized Area Title. The title is limited to three names and normally lists the largest cities in descending order of size. For other cities to be listed in the title of a UA with a central city of 50,000 or more, such cities-
 - a. Must have at least one-third the population of the largest city and a population of 25,000.
 - b. Must have 250,000 inhabitants or more.

For those areas in which the largest city has a population of at least 25,000 but less than 50,000 (criterion 1b), any named city or cities must have a population equal to one-third or more of that of the largest city and a minimum population of 15,000.

Area titles that include the names of more than one city start with the largest city and list other cities in descending order of size according to the most recent census, except that cities that qualify the area under criterion 1b are listed prior to the names of any other qualifying city.

V. The 1980 Urbanized Area Criteria

The following criteria are used to determine the eligibility and the definition of 1980 urbanized areas. 1

Urbanized Area Criteria

An urbanized area comprises an incorporated place² and adjacent densely settled surrounding area that together has a minimum population of 50,000.³ The densely settled surrounding area consists of:

- 1. Contiguous incorporated or census designated places having:
 - a. A population of 2,500 or more.
 - b. A population of less than 2,500, but having either a population density of 1,000 persons per square mile, a closely settled area containing a minimum of 50 percent of the population, or a cluster of at least 100 housing units.
- 2. Contiguous unincorporated area that is connected by roads and has a population density of at least 1,000 persons per square mile.⁴
- 3. Other contiguous unincorporated area with a density of less than 1,000 persons per square mile, provided that it:
 - a. Eliminates an enclave of less than 5 square miles that is surrounded by built-up area.
 - b. Closes an indentation in the boundary of the densely settled area that is not more than 1 mile across the open end and encompasses no more than 5 square miles.

¹All reference to population counts and densities relate to date from the 1980 Census of Population and Housing.

²In Hawaii and Puerto Rico, incorporated places do not occur in the sense of functioning local governmental units. In Hawaii, census designated places are used in defining a central place and for applying urbanized area criteria; in Puerto Rico, zonas urbanas and aldeas are used.

³The rural portions of extended cities, as defined in the Census Bureau's extended city criteria, are excluded from the urbanized area. In addition, in order for an urbanized area to be recognized, it must include a population of at least 25,0000 that does not reside on a military base.

⁴The area of extensive nonresidential urban land uses, such as railroad yards, airports, factories, parks, golf courses, and cemeteries, is excluded in computing the population density.

- c. Links an outlying area of qualifying density, provided that the outlying area is:
 - Connected by road to, and is not more than 1 1/2 miles from, the main body of the urbanized area.
 - Separated from the main body of the urbanized area by water or other undevelopable area; is connected by road to the main body of the urbanized area; and is not more than 5 miles from the main body of the urbanized area.
- 4. Large concentrations of nonresidential urban area (such as industrial parks, office areas, and major airports), which have at least one-fourth of their boundary contiguous to an urbanized area, will also be included.

Urbanized Area Title

The title of an urbanized area includes:

- 1. The name of the incorporated place with the largest population in the urbanized area.
- 2. The titles of new urbanized areas qualifying as the result of the 1980 census are determined as follows:
 - a. The name of the incorporated place with the largest population in the urbanized area is always listed.
 - b. The names of up to two additional incorporated places may be listed, with eligibility determined as follows:
 - Those with a population of at least 250,000.
 - Those with a population of 15,000 to 250,000, provided that they are at least one-third the population of the largest place in the urbanized area.
- 3. Area titles that include the names of more than one incorporated place will start with the name of the largest and list the others in descending order of their population.
- 4. In addition to incorporated place names, the area title contains the name of each State into which the urbanized area extends.
- 5. Regional titles may be used to identify urbanized areas with populations over 1 million, in which case only the largest city of the urbanized area is included in the title.

Central Cities

Central cities will be those named in the titles except where regional titles are used.⁵ In such cases, the central cities will be those that would have met the title criteria under items 1 and 2 above.

⁵Only Newark and Jersey City, NJ qualify under this provision.

The Extended City Criteria of 1970 (and 1980)

An extended city is an incorporated place that includes essentially rural territory. A separation of the inhabitants into urban and rural is made by an examination of population density under the following criteria:

- 1. The incorporated place, to be designated as an extended city, must contain one or more sparsely settled areas, each of at least 5 square miles in extent with a population density of less than 100 persons per square mile.
- 2. The sparsely settled area or areas meeting criterion 1 must total at least 25 percent of the land area of the legal city, or be greater than 25 square miles.
- 3. The delineation of extended cities is limited to incorporated places within urbanized areas.

Source: U.S. Bureau of the Census, Geographic Areas Reference Manual, 1987 Ch.15

