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ABSTRACT

AN ANALYSIS OF OVERLAND FLOW

by Cheng-lung Chen

The differential equations of continuity and of motion of a some-

what simplified version of the overland flow problem have been arranged

to permit computation of particular solutions by means of a digital com-

puter. Approximate evaluations of some of the terms in the equation of

motion were necessary, however, the results of the computations would

indicate that except for the resistance to flow these terms have only a

minor influence on the phenomenon.

The simplified overland flow problem investigated consisted of

the flow on an impervious sloping plane with a vertical wall at the up-

stream end and a free overfall at the lower end due to a constant rain.

The approach could easily be modified to accommodate variable rain

and surface characteristics and different controls.

The particular conditions for which computations have been carried

out demonstrate how the various factors can be studied to find their

effect on the flow. The results of the computations which have been

made tend to confirm the unit hydrograph concept, and even suggest

that a universal dimensionless hydrograph might be a practical

ii



Cheng-lung Chen

approximation. More computations are needed to explore this possi-

bility and to provide the auxiliary time relationship needed to make it

a workable tool.
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STATEMENT OF THE PROBLEM

The general overland flow problem is the case of flow resulting

from a rainfall varying in space and time falling on a pervious surface

of large areal extent which varies in slope, roughness, and infiltration

rate. The overland flow which results from the net rain, moreover,

would be unsteady and non-uniform even if these elementary quantities

were not variables. If the rain falls for a very long time period at a

constant rate, the flow approaches a limiting state which is steady, but

non-uniform, with the rate of flow at every point equal to the integral

of the rain falling upstream from the point. Before this limit is

reached, storage is occurring so that the depth of flow and the rate of

flow are changing with time as well as space.

Overland flow is important in a variety of situations; firstly, it

is an important element in surface runoff and, therefore, the flood

flow of streams. In particular, highway and airport engineers are

interested because the overland flow phenomenon determines the depth

of water on the pavement and the required drainage facilities to accept

the flow from operational areas. The agricultural engineer is par-

ticularly interested in a variation of this problem in irrigation flooding

where infiltration is equivalent to a negative rain, as well as in respect

to drainage and erosion problems.



The analysis presented herein represents a simpler version of

the general problem in that the flow is two-dimensional, the surface is

impervious, the rainfall is constant both spatially and temporally, and

the slope and resistance to flow (as represented by the Manning's n

value) are constant. However, the procedure, or computer program,

evolved would need only additional simple sub-routines to accept vari-

able slope, roughness, and rainfall, without any change in the basic

program. If the infiltration could be considered as a function of space

and time and independent of the depth of flow, this factor could be in-

cluded simply as modifying the rainfall rate.

A schematic sketch of overland flow is shown in Fig. 1. If critical

depth occurs at the downstream end all of the time, the flow everywhere

must be subcritical; otherwise, a mixed condition with subcritical flow

upstream and supercritical flow downstream of a critical channel con-

trol can be expected. The position of the critical section for the mixed

flow is a function of the slope, the roughness, and the rate of flow, and

therefore, of space and time. The critical depth has been taken as one

of the controlling conditions of the flow in this study. Other comparable

controls would be possible, for example, a pool could form at the down-

stream end of a sub—critical slope -- the controlling water surface

elevation would then depend on the geometry of the pool and the outflow

from the pool. The free overfall was chosen as being simpler in



concept because the critical control is dependent only on the rate of

flow and the channel properties. Given any other comparable control

the routine of computation could easily be modified.

For the computations, the initial condition has been taken as a

dry surface; any arbitrary, but possible, flow could have been used.

Although the routine could accept various initial conditions, this con-

sideration would seem to needlessly add complexity at this time.

Another condition that has been used is a velocity of zero at the

beginning of the slope. Physically this implies that there is a vertical

wall at the beginning of the slope or a symmetrical watershed divide.

Again other possibilities exist, such as an arbitrary inflow, but this

would seem to be a needless complication that could be added later.

The flow is subject to forces such as gravity, pressure, drop

impact, and boundary shear. Considering the fluid elementabcd as

shown in Fig. 2, the resultant of these forces in the x direction must

equal the increase of momentum flux within the element plus the net

flux of momentum out of the element in unit time.

8P
Mdt +21!" dx — prv sec <j> sin (9+?) = WsinG dx - — dx -' ‘rdx (1}
at 3x 3x

where

M = momentum flux of the element in the x-direction,

W = weight of the element per unit length,

P 2 pressure force on a normal section of the element,
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Fig. 1. General sketch of overland flow problem.
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Fig. 2. The diagram of the fluid element abcd under external forces and

' momentum fluxes.



'r = boundary shear on the element per unit length,

p = density of fluid,

r = intensity of rainfall,

v = velocity of raindrops in y direction,

4) = angle of rainfall with respect to the vertical, and

G = angle of inclination of the surface.

The equation of continuity, which must also be satisfied, can be written

for this case as

2): Q3:

8t+8X r (2)

where y is the depth of flow and q is the discharge per unit width.

The companion problem of routing floods through river channels

has received considerable attention over the years [2, 3]. Less atten-

tion has been paid to the overland flow problem, but the work of Izzard

[4], Iwagaki [5], and Liggett [6] can be cited as examples of attempts to

solve this problem. In some respects the river is a simpler problem

than overland flow because the inflow is at one or, at the most, a few

points although the geometry can be more complex. The many flood

routing procedures can be classified as hydrologic (those utilizing the

equation of continuity and a relationship between the storage and the

discharge) and hydraulic (those utilizing the equation of continuity and

an equation of motion, usually the energy equation). Both procedures



can be questioned on fundamental grounds because of the assumptions

that are necessary to obtain solutions [7]; nevertheless, if the assump-

tions are based on measurements of what happens to the river during

flood, they can provide acceptable results.

The weak point of the hydrologic procedures, of course, is the

substitution of a storage-discharge relagionship for the equation of

motion. Such a relationship must be a product of the conditions im-

posed on the flow, and if a reasonably simple expression is to be a

useful approximation, the factors controlling or governing the flow

cannot be too variable. Using assumptions based on his experimental

measurements, Izzard achieved an analysis which can be classified as

hydrologic, and which provides a useful solution within the range of

the conditions of his experiments.

The difficulty of solving the hydraulic equations has led various

investigators to make various simplifying assumptions. The technique

termed the method of characteristics, for example, implicitly assumed

that the flood wave travels in respect to the flow at the velocity of a

shallow water wave. Iwagaki found the method of characteristics too

laborious for general use in the overland flow problem and resorted to

two approximate methods that appear to check the more strict solution,

at least for very steep slopes. Liggett, basing his analysis on the

theory of characteristics, evolved a method of solution which is partly



exact (except for the usual approximations describing the flow) and

partly approximate, and which leans heavily on graphical aids.



FORMULATION OF THE PROBLEM

The flow equations. As shown in Fig. 1, when the rain falls with
 

an intensity r, a velocity of the raindrops v, and an angle q> (positive if

in the same direction as the flow) on the impervious surface of a long

and wide plane having a principal slope SO and length L, an unsteady,

non-uniform flow will occur in the direction of the principal slope with

depth y, velocity u, and boundary shear T variable with the distance x

and the time t. To insure two-dimensionality not only must the surface

be plane and the x direction taken in the direction of maximum slope,

but the rain cannot have a cross component to the direction of

flow.

Considering the net flow into element abcd in Fig. 3, and the

change in storage, a continuity equation can easily be expressed. The

quantity of fluid flowing into the element of unit width in the differential

time dt is

l 89
- — d +(q 2 8x x) dt rdtdx

and the amount flowing out is

The difference between the flow in and out must equal the amount of

storage in the time dt

EX dtdx

8 t



Simplifying and dividing each term by dtdx will give the continuity

equation, hence

§X+
at _ r (2)a

s I

Since q = uy, Eq. (2) can be written as

2x ‘21 9.x:

3t+y3x+u8x r (3)

As expressed by Eq. (1), the resultant force in the x direction

must equal the time rate of increase of momentum within the element

abcd plus the net flux of momentum out in unit time.

The resultant force on the element is, for the unit width,

P

Wsinedx - de - de

fix

The first term is simply the component of the weight of the fluid in the

direction of motion

Wsinedx = szinde

Making the usual assumption concerning resistance, that the shear is

equal to that of a uniform flow of the same depth and velocity on a suf-

face having the required slope of Sf, the last term can be expressed as

de = YySfdx

In addition to the usual assumption of a hydrostatic pressure force %Yy ,

the pressure term P is assumed to contain the effect of a uniform pres-

sure intensity due to impact from raindrops, so that there is a
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Water surface after dt_./ . .

Pressure distribu-

tion due to the

impact of rainfall

Initial wate r s urfac e

   
Hydrostatic pre 5 sure

distribution

Fig. 3. Segment of flow under rainfall intensity r.

supplementary pressure force \(éy. The value of f; is assumed to be

constant everywhere and throughout the rain, and can be estimated on

the assumption that the overpressure is equal to the vertical component

of the momentum flux of the rain, hence

g=fl22
(4)

Pg 8

Now the pressure force P can be written as

2

P = pgcose (1/2 y + gy)

both portions of pressure distribution being shown in Fig. 3. In order

to evaluate this assumed effect of the rain, or g, the fall velocity v of

the raindrops must be known.
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The resultant force on the element is thus

8 2

pg sineydx - pg cos 9 8—x(1/Zy + gy) dx - pgSfydx

The excess of momentum per unit time leaving cd over that entering

ab is

58; (fl puzy)dx = {Spu2 g—E dx + ZBpuy -g—:dx

where 5 = momentum coefficient, which is dependent on the velocity

distribution.

The time rate of increase of momentum within abcd is given by

a fix au
_ : d + _
at(Puy)dx puat X Pyatdx

The rain entering the element will contribute a momentum flux term

due to its velocity component in the direction of flow

prv sec 4) sin(6 +42) dx

Assembling the force and momentum terms, dividing out dx and

py, there results

u§y+8u+ 1122): +2tsua—u viseccpsinW-f-CP)

y’at 3t 5 y 3x 8x y '

. E 21
= 9 - 9 +— -gSIn g cos (1 y) 3x gSf (5)

Substituting from Eq. (3)

2.

u
g—

Y

Li
”

=5
11.

X Y

-22- :92» z :_
(r at Yax) fiuy fi

0
9

for the third term on the left in Eq. (5), finally, there results
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Bu Bu

57+l3u-EE-(F3 -l)

12
’

9; 8y
+ 6 +—gcos (l y) 8x

~
<
|
s
=

Q
:

t

= g(sin6 - Sf) + [vsec¢sin(8 +¢) - Eu] (6).1;

Y

Equation (6) is a general momentum equation which, together with the

equation of continuity, Eq. (3), must be solved for y and u as functions

of x and t.

To continue, several of the quantities must be evaluated by means

of reasonable approximations. For mathematical simplicity, 8 has

been assumed to be unity in most previous studies. Since the flow is

assumed to be turbulent, the average value of the usual range from 1. O3

to l. 07 for fully developed, steady, uniform open channel flow, namely,

1. 05 will be employed in this analysis.

Although the Manning formula was developed empirically for steady,

uniform flow, it is a usual and a reasonable approximation for the un-

steady, non-uniform flow, if changes are gradual. It is usually felt

that any deviation from the steady, uniform shear can be compensated

for by a judicious choice of the n value. In this case the choice of the n

value should also compensate for any effect of the rain on the boundary

shear. The ”friction" slope is assumed to be that of a wide channel,

2 2

_ n u

Sf ‘ (1. 49) W? (7)
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If 9 is very small, sine approaches 50' and

cosO-bl

and sec 4) sin (9 + ct) ——-- tancp

Meteorologists have found that the size and shape of raindrops,

the intensity of rain, and the fall velocity of the drops are interrelated.

Measurements by Laws [1], for an intensity of rainfall equal to 2

inches per hour, would indicate an average size of raindrop of 0.1 inch

in diameter and a fall velocity of approximately 26 feet per second.

This is the value of v which has been used.

Equation (6) can now be written as follows:

.32 5'22 22>: s 2):
8t+fiu8x-(‘3-l)y3t+g(l+y)3x

: g(S — S) + (tan¢V - (3U) E
(8)

o f y

Bu Bu ugy rv 2y

-— . ——-0. — . —or at+lO5uax 05y8t+(322+y)8x

232.2(5 -S)+(26tan¢>-l.05u)£ (9)
o f y

where Sf is expressed as in Eq. (7). The equation used by Liggett

could be obtained by assuming (3 =1, é, .: O, and tancpv = u.

The boundary values and controls. Although there are many
 

possible variations of the boundary conditions, the scope of the

problem had to be limited for this study. Therefore, specific
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boundary conditions are treated herein with the purpose of developing

general principles and indicating a method of solution. The same

problem with other boundary conditions may be attacked by the same

methods using obvious extensions of the general theory.

Since Eqs. (3) and (8) are a pair of the first order nonlinear and

non-homogeneous partial differential equations in two dependent varia-

bles, y and u, to obtain a solution four condition-statements are neces-

sary. These conditions will be concerned with

(1) y = y(t) or u = u(t) at x = 0.

(2) y' =y(x) att =0.

(3) u=u(x)att =0.

(4) The fourth condition may take several forms, involving one or

both dependent variables at x = xC or x = L in order to uniquely determine

a solution.

The initial conditions, the second and the third, could be taken

as any possible known flow. The case which has been treated is that of

noflow atall, i.e., y=0andu=0att=0.

The first condition has been taken as u = 0 at x = 0 for all t. This

is physically equivalent to saying that there is a vertical wall at x = O or

a symmetrical peak.

The last boundary condition is probably the most crucial. To

obtain a well—defined solution it has been assumed to be a critical flow
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condition. However, the position of the critical section is dependent

on whether the flow is generally sub-critical, super-critical, or mixed.

The definition of critical condition is also of concern. The usual defini-

tion a Froude number of unity is

u = '\/-g_y = c (10)

where c = celerity of a shallow water gravity wave.

With the effect of rainfall, the conditions at the critical section

are more complex than implied by Eq. (10); not only is the velocity

not uniform but the pressure is not hydrostatic. A better approximation

of the criterion for critical flow would be

 

u=vg<y+§>/B (11)

For simplicity one could approximate Eq. (11) by Eq. (10) because (3

is close to unity, g is relatively small for the larger depths of flow,

and the two effects tend to be compensating. Similarly, in curvilinear

flow where the pressure distribution is non-hydrostatic, the critical

depth as given by Eq. (10) may not be a good approximation of the

critical depth as defined by minimum energy. Such an effect is fortu-

nately local and can usually be ignored.

Various boundary conditions could be considered for each of the

flow cases as follows:

Subcritical flow. If the bed slope is very small, the flow will be

subcritical and the following conditions of interest:
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(a) u = w/E? = c at x = L, where the slope terminates in a free over—

fall at x = L.

(b) y = yn at x = L, where the rainfall terminates at x = L but the

slope continues and yn is the normal depth of flow on the slope.

(c) y = y(t) at x = L, where the flow is pooled at x = L. The first

condition, the free overfall, has been considered herein.

Supercritical flow. It is difficult to imagine a supercritical flow

everywhere unless there is a critical or supercritical inflow at x = 0.

For a very steep slope and no inflow, critical conditions at x = 0

(u = 0, y = 0) may be an acceptable approximation, but strictly there

will be a mixed flow. Iwagaki used this assumption. If the rain ter-

minates at L, but the slope continues, there will be a "backwater"

curve approaching the normal depth. If the flow is pooled at x = L,

and the pool elevation is greater than the sequent depth a jump will

occur somewhere on the slope. The control for all of these possibili-

ties, however, would be at x = 0.

Mixed flow. The mixed flow of greatest interest is subcritical

at the beginning and supercritical at the lower end. At the beginning of

the rain, the rate of flow is extremely small and must be subcritical

throughout. In time, if the rate of flow becomes large enough (depend-

ing on the slope, the length, and the resistance) the condition u = '\/g_y

at x = L cannot be satisfied and the critical section moves gradually
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upstream from the free overfall. A boundary condition can still be

written at the point of critical section, namely

u=‘\/gy =catx=xc

In order to locate the critical section on the slope, it is necessary

to describe, or assume, some hydraulic characteristics of the flow. At

the critical section, it is understood that Sf = SC, y = yC, u = u , and

q = qc. Therefore, from Eq. (7), we have

2

2u
n_ c

SC"(1.49) 473

yC

 

likewise, from Eq. (10),

Combining these two equations will give S in terms of ye, u , or q

c c c

respectively as follows:

_ n

Sc"(1.49) 173 (12)

 

 

__ n

Sc ‘(1.49) u 273
(13)

C

2 10/9
__ n

Sc ’ (1.49) 279
(14)

qC

 

For the given channel slope SO and resistance coefficient n, we

have the maximum critical depth y*, maximum critical velocity u*

c c
’
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and maximum critical discharge qii‘c. Replacing SC by S0 in Eqs. (12),

(13), and (14)

 

 

 

n 6 3

yxc : (1. 49) 3 (15)
So

n 3 Z

”Kc : (1. 49) s 3/2 (16)
o

n 9 5

q:.<C : (1. 49) —-g7—S9 Z
(17)

0

Now considering a channel with the given So and n under a rain-

fall intensity r, there will be a subcritical flow with a critical section

at the overfall when the rain has just begun. As time goes on, it is of

interest to note the change in Sc' which decreases from infinity when

q = 0, to some finite value as q at the overfall increases, and finally

approaches a limiting value as the flow approaches a steady state. If

this limiting value of SC is larger than SO, the flow is always every-

where subcritical except at the overfall. If as q increases at the overfall,

Sc becomes equal to So’ the critical depth of flow is the normal depth of

flow, and q at the overfall equals q’i‘c. A greater q at the overfall can-

not naturally exist under critical conditions and so the control will shift

upstream to where q = q=:‘C. At this time, the condition So = Sc enables

us to locate the critical section, that is, to determine x = Xc which
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approaches to LC as a limit as the flow approaches its steady state. At

this limiting steady state the maximum discharge, at the overfall, must

be rL. Whether we will have a partially supercritical flow can be

determined simply by comparing rL with q‘3< . If

c

:i: > L

q c 1‘ (18)

then the flow will be subcritical. If

q* < rL (19)

c

supercritical flow will occur for some distance upstream of the over-

fall. If only rainfall intensity r is known, then we can calculate LC by

 

setting

q’i‘C = rLC (20)

Hence

5

Lc :i—C :i (1:93:57: (21)
0

From this point of view the flow is everywhere subcritical if L < L ,

c

is mixed if L > L and, approaches being everywhere supercritical if

c

L > > L .

c

The typical flow of the mixed condition is sketched in Fig. 4 and

for convenience, the relating curves among r, Lc’ q* , n, and SO are

c

plotted in Fig. 5. If any three of the quantities of r, Lc’ n, and SO

are known, then the remaining value can be obtained from either Eq.

(21) or Fig. 5.
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PROCEDURE OF SOLUTION

Finite-difference scheme. The overland flow problem as posed
 

by Eqs. (3) and (8) with specific initial and boundary conditions is the

propagation problem in the continuous system in which solutions are

desired for the two dependent variables y and u as functions of the two

independent variables x and t. The solution domain has an open shape,

therefore, initial or boundary conditions are specified along the open

boundary and the governing set of partial differential equations must

be satisfied within the solution domain.

Solving Eqs. (3) and (8) simultaneously for gig, gives

 

 

2X : 1 8(5 ‘5 )Y'Hvtandp - 2f3u) r +(2f3-1’)u§X - yfl (22)

ax g(y+§)- 13112 O f at at

8u

and for —8_x— ,

Z

3’3 - 1 3:2 2. 2): 2.2
3x _g(y+g)_5u2 'g(SO-Sf)u-(Vtan¢- flu) Y +gr - [g+(f3-1) y ]3t +u8t (23)

8 8

Note that l and —E8 8 for the limiting steady-state condition can be

x x

obtained by dropping the 2% and 3;:- terms in Eqs. (22) and (23) since

8 8

5% and 5-:- approach zero as t approaches infinity.

In the finite-difference technique used in this analysis the solution

is marched forward on a fixed rectangular grid or network made up of

22
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xi and tj lines for i and j equal to 0, l, 2, . . . . The basic computa-

tional operation consists in applying recurrence formulas, derived from

Eqs. (3) and (22), to obtain solution values at a new point from pre-

viously obtained values. A single application of the recurrence for-

mulas equates a linear combination of four unknown values in the j + 1

row to a linear combination of four known values in the j row. A pair

of recurrence formulas derived from Eqs. (3) and (22) may be written

as follow 5:

l

 

  

u. . =——— (ZrAx+u. .y. .+u.. y. . -
+ .

1+l,j l yi+1,j+1 i,j i,j i,j+l 1,j+l

(24)

) —AX( + )
ui+l,jyi+l,j At yi,j+l-yi,j y1+1,j+1' yi+1,j

+ AXy. . =y. .
1+l,j+l 1,J+l 2

+ -

2(U. . )i2

s (——“)—97—1'+1 +(t¢2p )
g o g 1.49 4 3 yi,j+l “V an ' ui,j+1-r

yi,j+1

y. . y. . u. . -u. .
1,j+l- i,j 1,j+l i,j+ _ - 25

(2‘3 1)ui,j+l[ At ] yi,j+l[ At ( )

fori=0,l,2,...,n-l.

andj=0,l, 2,.

where the subscript i,j denotes the upstream section at tj = jAt; the



24

: (j+1)At; the subscriptsubscript i,j+l the upstream section at tJ,+1

i+l,j the downstream section at ti; and the subscript i+l, j+l the

downstream section at t.. .

j+l

The initial and boundary conditions for the subcritical case are

Y. = O and u. I: O for i .: 0’ 1, 2, , n_1

1, 0 1, o

uo,j : 0 and un,j : VBYn’j for j *- 0, l, 2,

Note that theoretically at the critical section, the slope of water surface

must be infinite so that the denominator of Eq. (25) must be set to zero,

that is

. Z
+ .. : ' :g(yn,j é) (un,j) O forj O, l, 2,

Hence, a better approximation of the criterion for critical flow would be

 

: + ' :umj W<Yn,j {HE forj 0, l, 2,

The definition sketches are shown as in Figs. 6 and 7.

Equations (24) and (25) with the given boundary condition at the

critical section form implicitly a set of 2n+l simultaneous equations

when 0, l, 2, . . . , n-l are substituted in the subscript i. There are

2n+2 unknowns in this set of equations, but since u0,J'+1: 0 is known,

there remains only 2n+l unknown values in the j+l row presuming all

values in the j row are known from the previous computation.

Thus, in general, starting at any time t : tj with known values

1 fyi' j' ui, j' yi+1, j’ and ui+1, j, the va ues o yi, j +1, ui, j +1,
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, and u. could be determined by simultaneously solving

yi+1,j+1 1+1,j+1

the set of 2n+l recurrence formulas. However, the easiest way to

solve this set of equations is to assume a value of yo,j+l and then

methodically correct the assumed value until the boundary condition

at the critical section is satisfied; the repetitious computations being

performed by a digital computer.

Digital computer routines. In Eqs. (24) and (25), if y n
 o,j+1ca

be determined, then y1,j+1, u1,j+1, y2,j+l' u2,j+1' . . . , yn,j+l'

un j+1 can be solved by successive application of Eqs. (24) and (25).

A trial-and-error method is introduced to determine yO ,+1. It is

:J'

readily apparent that yO .J+1 will be between yO , and y , + rAt, there-

J 0 J’ ,

fore, it can be written as

_ 2 _ k
yo’j+1 ~ y0,j + [cl(1/2)rAt + c2(l/2) rAt +. . . + ck(l/2) rAt] (26)

where the coefficients c1, c2, . . . , Ck can be either 1 or 0 depending

on the boundary value of the downstream end obtained from successive

substitution of y, in Eqs. (24) and (25). The value of k

1,j+1and “i ,j+l

in Eq. (26) should be taken large enough to assure, within the required

accuracy,

,2 , k

rAt = c1(l/2)rAt + c2(l/2__) rAt +. , . + ck(l/2) rAt

'f . . . , .1 c1, c2, ck are all assumed one



27

Values for yO j+l for successive trials are obtained as follows:

(1)
-- + 2 A

yo,j+1 yo,j C1(1/ )r t

(2)
2

y y . + c1(l/2)rAt + c2(l/2) rAt

o,j+l o,j

(1;) + ZA' 122A+ +12kAyo,j+l yo,j c1(l/ )r t+c2(/)r t.. . . ck(/)r t

(1)

Then, for the first trial, we take yo j+1 with c1 = l and check how

(1) ’

yn,j+l satisfies the boundary condition

ng (27)
un,j+1 : n,j+l

(3)

. ' etc. until the

o,j+l ’

2

If it does not, then y0( .) is tried, then y

j+l

boundary condition is satisfied with prescribed precision. Once

yo j+1 is determined, values of y and u for each section xi will also

have been computed.

The generalized computer routine was arranged in such a way

that a satisfactory value of y0 1+1 could be reached for both subcritical

and mixed flows. Presuming the value of y0(rji)l for the mth trial.

(m): +12’A+(122A1

3,0,,1'+1Y0j'C],(/-)
rt CZ./)r t

’

+c (1/2)m'1rAt+c (l/2)mrAt
m-l m

if c , c , . . . , c are all known (either 0 or 1) from the lst, 2nd, . . . ,

l 2 m-l
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and (m-l)th trials of y0 j Then, to determine the value of cm(0 or

+1'

I), as a rule, the following conditions must be checked at every section

x, , namely,

1

>

ui,j+12 “gyi,j+1 (28)

2 >1 2
qi,j+12 qc ( 9)

Five possible cases can be encountered during the computation.

Case I. If u.(m) < gy,(r_n) , then the computation willcontinue until

1, j+l 1, 3+1

the downstream end is reached except,

(m)
- ' <I 1. 1f yi,j+l 0, the assumed value of yo,j+ l was far smaller than

the correct one, therefore, c =1 and y . is reassumed.

m c,j+l

I-2. if y(m) > y + rAt the assumed value of y was far larger

1, j+l i,j ’ o, j+l

than the correct one, therefore, c = 0 and y , is reassumed.

m o,j+l

. . (m) m
I-3. if neither I-l or I-2 and at the overfall u , < gy , ,

n,j+l n,j+l

the assumed value of yo was apparently too large, therefore,

,j+l

c = 0 and , is reassumed.

m YO,_]+1

Case II. If uihfjl > gyi(r;:)1 one should check Eq. (29) for a mixed

flow, and
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11-1. if (1:11.31 < q’i‘c, then the flow could be subcritical or a mixed flow

with the assumed value of y , too small, therefore, c =1 and

o,ji-l m

yo,j+l lS reassumed.

. fin) ,. . .
II-2. 1f qi j+1> q‘c, then the flow should be a mixed. It IS apparent that

the assumed value of y was too large to meet exactly two

o,j+l

conditions, at the critical section,

: “M (

ui.j+1 gygj+1
.30)

and

= ’5‘- 31

qi,j“tl q c
i )

therefore, c '-'-‘ 0 and y , is reassumed.

m o,j+l

For illustration, as shown in Fig. 8, a depth ofo—a is assumed

for the first trial.

—= (1) z + 12 Atoa Yo,_j+l yo,j (/ )1“

But the resulting profile curve 23 as shown in the figure is not satis-

factory (Case I-1) and it is apparent that 35 is too small a depth. For

the next trial a depth of o—c- is tried.

_ . .2
oc = 7- y . +(1/2) rAt + (1/2) rAt(

' o,j-+1 'O,_]

The resulting profile curve a is not satisfactory either (Case I-2),

and o_c is obviously too large. Using a depth o—e in the next trial,

—: (3) r: -12‘; A in 213A
06 Yo’j+1 YOJ +(./ ,r t/ . r t

The resulting profile curve ET is slightly shallow (Case II-l), hence BE

is assumed as the depth for the fourth trial.
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— (4) . 3 4
= = + 2 A . Z A + Aog yo,j+l yo,j (l/ )r t +(1/ ) r t (1/2) r t

The resulting profile curve ER is high (Case 1-3) and for the fifth trial

a is taken as the depth.

._, 5 3 5

01 = yofj)+1 : yo,j + (l/2)rAt + (1/2) rAt + (1/2) rAt

The resulting profile curve—i-j is finally close enough. Note that in the

final equation of y0 j+1’ c1: c3 = c5 =1 and c2 = c4 = 0, and that the

exact solution can be approached as closely as desired. In the case of

mixed flow, Cases II—l and II-Z are used not only to determine the value

of y but also to obtain approximately the position of the critical

o,j+l

section at t, .

j+l

For the recession stage of overland flow, since r = 0 an assump-

tion scheme similar to Eq. (26) is necessary.

2 ..k
= 2 + 1 2 +. . . + 2 32YOJH 01(1/ )YOJ CZ(/ ) YOJ ck(1/ ) Yo’j ( l

where, in the same manner, c1, c2, . . .. , ck will be either 1 or 0.

The procedure otherwise follows the same pattern as described before.



RESU LTS AND DISCUSSION

A total of eight computations were made with the flow in the sub-

critical regime. In the first run the surface was horizontal with a

length of 30 feet and an n value of 0. 01, and the rainfall was vertical

at 2 inches per hour. In each of the subsequent runs one factor was

changed in order to assess its effect —- the values being as shown in

Table l. A Ax of 1 foot and a At of 10 seconds were used in all the

computations.

Table l. Subcritical runs.

 

Factor Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8

 

n 0.01 0.1 0.01 0.01 0.01 0.01 0.01 0

so 0 0 0.001 0 o 0 o o

L ft 30 30 60 30 30 30 30 30

r in/hr 2 2 2 2 20 2 2 2

4) degree 0 0 0 0 0 +45 -45 0

 

For illustration, the whole scheme of results of Run 5 is pre-

sented to show the completeness of the picture obtainable from the

computational procedure. Figures 9, 10, and 11 show the variation of

depth with respect to distance and time, Figs. 12, 13, and 14 the variation

32
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of velocity with respect to distance and time, and Figs. 15, 16 and 17

the variation of discharge with respect to distance and time.

Figures 9 and 10 show the profiles of water depth, with time as

a parameter, during and after rainfall. At the beginning of rainfall

the profile is very flat for almost the entire length of the channel

suddenly dropping near the overfall. As time goes on, the effect of the

downstream control is increasingly noticeable upstream and the profile

becomes steeper approaching the limit of the steady state. At the

beginning the phenomenon is primarily one of storage; the rate of

increase of depth being almost equal to the rate of rainfall. At the

steady state limit, of course, no more storage is possible. Figure 11

shows the stage-hydrographs for different positions on the slope. All ;,

of the rising limbs are assymptotic to a straight line corresponding to

the rate of rainfall and to horizontal assymptotes corresponding to

the steady state. On the falling stage, if the discharge were to con-

tinue to be a straight line variation with distance (as it is at the steady

state and almost is at 330 seconds), then the depth would have to de-

crease at the same rate everywhere, since release from storage is

the only source of discharge. That the profile becomes flatter with

time is readily apparent in Fig. 10, and that the decrease in depth

over a given time is greater for upstream than for downstream sections

is emphasized in Fig. 11. The initial condition for the receding stage
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was taken as the profile at the cessation of rainfall; the limit is zero

flow and zero depth everywhere.

Figures 12 and 13 show the profiles of the mean-velocity along

the surface, with time as a parameter, during and after rainfall. The

two families of curves appear very similar; the velocity for each curve

being zero at the upstream end and increasing in a concave upward

curve to a maximum value at the overfall where the partial derivative

of velocity with respect to distance is theoretically infinite as indicated

by Eq. (23). Figure 14 shows the velocity-hydrographs with distance

as a parameter. It is interesting to note that there seems to be an abrupt

increase in velocity everywhere at the moment of cessation of rainfall,

though the magnitude of the change is different for different x. The

conditions on the rising stage at the time the rainfall ceased were as-

sumed to be the condition at the beginning of the recession. For some

of the upstream sections, the computed velocity was greater 10 seconds

after the rain ceased than at the moment of cessation. Extrapolating

the recession curves back, an increase in velocity would be indicated at

all stations except at the beginning of the surface where the velocity is

always zero and possibly at the overfall where the velocity is always

critical. There are several ways in which the rainfall enters the equa-

tions describing the flow; continuity, acceleration of the rain to the

velocity of the ambient flow, the vertical pressure distribution (or E,
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value), and in the resistance to flow (or n value). The relative impor-

tance of these various effects could be tested by special computational

runs if ever desired. Such runs have not been included in this study

because other questions seemed to be of greater importance.

Figures 15 and 16 show the discharge-profiles, with time as a

parameter, during rainfall and in the receding stage, respectively.

The discharge, of course, is the product of the depth times the velocity,

and the curves, therefore, combine the curves of the appropriate pre-

vious figures. During the rainfall, the family of curves describing

the discharge are similar to those of the velocity, but the curvature,

while still concave upward, is less than for the velocity because the

depth curves are concave downward. The discharge profile curve be-

comes less concave as time goes on and at the steady state limit is a

straight line q = rx. On the receding stage, the discharge-profile is

slightly concave downward but otherwise the family of curves is basi-

cally similar to those of the velocity. On the rising stages, Fig. 15,

the concave upward curves show that the rate of storage is greater up-

stream than downstream. On the falling stages, Fig. 16, the concave

downward curves show that the release from storage is greater upstream

than downstream. Figure 17 shows the discharge-hydrographs for

various distances along the surface. Although the discharge 10 seconds

after the rain had stopped did not show an increase at any station,
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projecting the recession curve back would indicate that shorter time

intervals might indicate an increase in discharge immediately after

the rain.

In Figs. 18 and 19 the relationships between velocity and depth,

and discharge and depth with distance and time as parameters are

shown. A network of x = constant and t = constant lines in the u-y

plane or in the q-y plane describes the complete solution of the over-

land flow problem. As shown in the figures, the area described by

a curve OX (downstream boundary condition), a curve OB (upstream

boundary condition), and a curve AB— (steady-state condition) forms

the domain of the whole solution. The original point 0 is the initial

condition where velocity or discharge is zero when the depth equals

zero. It is interesting to note that velocity or discharge at any loca-

tion on the surface during rainfall (solid lines) is less than that after

rainfall (dotted lines), except at the overfall where velocity or discharge

after rainfall is slightly less than that during rainfall. The control, or

critical, criterion differs during and after rainfall by the g factor.

Since the qu curves are nonlinear and different on rising and falling

stages the assumption of linearity in the method of hydrologic flood

routing would not appear to be an acceptable approximation for this

problem. In fact, a simple relationship between discharge and stage,

or storage, does not appear likely.
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The results of the other computations showed basically the same

patterns illustrated in Figs. 9-19, and are not, therefore, presented in

as great detail. Instead, these results are presented as comparisons to

illustrate the effect of the different variable factors.

In Fig. 20, the discharge-hydrographs for a 20—in/hr and a 2-in/hr

rain are shown. The time scale for both hydrographs is the same, but

the discharge scale is ten times as great for the 20-in/hr rain as for the

2-in/hr rain. Although there is a difference in these two hydrographs,

they are sufficiently similar so that they tend to confirm the concept of

the unit hydrograph as a workable approximation in real situations. Of

the many further calculations that should be made, a series to check

unit-hydrograph theory would be among the most interesting.

To test the effect of roughness, n values of 0, 0. 01, 0. l were used

with all other factors the same (Runs 8, l, 2). Figures 21 and 22 show

the effect of “roughness" on the discharge-hydrograph and the stage-

hydrograph, respectively. It is apparent that the larger the resistance,

the more the flow is retarded; this retarding effect is shown in Fig. 22

by the greater depths for larger 11, and in Fig. 21 by the greater time

required to achieve the same discharge on the rising stage. The same

effect, retardation, is shown on the falling stage as the discharge is

maintained for a longer period of time (possible because of the greater

storage). As shown in Fig. 22, the storage at the steady state on the
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"rough" surface is about double that on the ”smooth” surfaces. It is

interesting to note that if the time scale in Fig. 21 were made dimen-

sionless by using as the unit of time, the time to reach one-half of the

steady-state discharges, the discharge hydrographs would collapse

almost to a single curve.

The effect of the two surface slopes used (S0 = 0 in Run 1,

S0 = 0. 001 in Run 3) on the discharge-hydrograph is very small as

shown in Fig. 23. The discharge for S0 = 0 is always slightly smaller

than that for S0 = 0. 001 during rainfall, and larger in the receding

stage. This effect is similar to that of resistance.

The effect of the slanting rain is also a retardation effect as

shown in Fig. 24 where the normal component of the rain, as are all

other factors, is kept the same, but the inclination of the rain is ver-

tical (Run 1) or .145 degrees from the vertical (positive in Run 6 and

negative in Run 7). Within the range of probable values, the retarda-

tion effect for the angle and velocity of the raindrops, is probably less

than that of roughness, but more than that of slope -- at least for

lengths as short as those studied and if only the subcritical flow regime

is considered.

In Figs. 25 and 26 the discharge-hydrographs and depth-hydro-

graphs are shown for a station 30 feet from the beginning of the surface

where one surface is 30 feet long (Run 1) and the other is 60 feet long
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(Run 3). This is equivalent to specifying different controls at .30 feet.

At any time on the rising stage, the discharge is less and the depth is

greater for the 60 feet surface than for the 30 feet surface -- indicating

greater storage as might be expected. It is apparent, however, that

the discharge hydrographs would tend to collapse again if the time to

reach one-half of the steady state discharge were used as the unit of

time.

The possibility of a single approximate overland flow discharge-

hydrograph is demonstrated by Figs. 27 and 38. In Fig. 27, the

dimensionless discharge at the overfall q/rL is plotted against the

dimensionless time t/tl/2 for the standard run and for the runs with

larger n, larger rainfall, and larger length. The collapse could be

improved by using a zero time when one quarter of the discharge is

reached and as the unit of time, the time to change from one quarter

to three-quarters of the steady stage discharge. This later definition

of time might also be preferable for field conditions where the zero

time is not conducive to precise interpretation.

Figure 28 is a similar dimensionless plot of discharge q/rx

against t/tl/2 for x = 10, 20, 30 of the standard run, x = 10, 30 on the

longer surface and x = 10 for the larger rainfall and the greater rough-

ness. The fact that the hydrographs for different x do not collapse as

well as those for the overfall indicates the importance of the type of
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control. However, the collapse of these hydrographs would also be

improved by the t1/4, t3/4 expedients.

One computation was attempted which resulted in the mixed flow

condition; all factors being the same except for the slope which had a

value of 0. 01. The flow was subcritical throughout up to 90 seconds,

and the depth profiles, Fig. 29, up to this time are essentially similar

to those of Fig. 9. After 90 seconds the control shifted upstream and

storage was released downstream from the control although upstream

the depth continued to increase slowly.

The full story of the mixed flow could not be depicted in Fig. 29,

however, and in Fig. 30 it is seen that the stage hydrograph at the over-

fall was very erratic after the control shifted upstream -- a discharge

hydrograph would display the same behavior. The actual flow may well

be unstable, but there is no obvious reason why the real instability

should show up in these computations. It is possible that a faster

machine permitting the use of a floating-point system in the computation

procedure would allow more precision and thereby eliminate the apparent

surging. It is also possible that smaller increments of distance and

time are required, but again a larger, faster machine would be needed.

The plot of the position of the critical control in Fig. 30 matches

the surging at the overfall and leads to the suspicion that the trouble is

not the release from and build up of storage in this area, but in the



41

shifting control itself. A slightly high assumption of the depth at x = 0

results in too much storage along the slope, reducing the discharge

and thus shifting the control downstream -— similarly a low as sump-

tion of the starting depth shifts the control upstream. Therefore, it

would seem that more significant figures in the computation are needed.

There may be other possible explanations for this erratic behavior,

but no obvious errors in the computational procedure have been

discovered, and it has been noted that a change in the last significant

figure in yo , can have this sort of effect.

2



CONCLUSIONS

It would be premature to claim that the analysis of overland flow

presented herein is complete, and it would be inaccurate to claim that

it is rigorous. It is not complete because the general problem was

simplified at the outset, and because the differential equations de-

scribing the phenomenon have not been solved except for a few particu-

lar sets of conditions. However, the results of those computations

that have been made appear to be entirely reasonable, and, with minor

modifications of the procedure to take into account such considerations

as variable rain and slope, and different controls, more computations

should give a rather complete picture of the overland flow problem.

The lack of rigor can be laid to the deficiency in knowledge con-

cerning certain of the subsidiary phenomena; e. g. , the resistance to

flow under these conditions of a flow which is not only unsteady and

non-uniform but disturbed by the rain penetrating the free surface. The

computation procedure, however, provides the means by which the

effect and importance of many of these imperfectly known phenomana

can be assessed; e. g. , the overpressure due to the normal component

of momentum flux of the rain.

The results of the computations which have been made tend to

confirm the unit-hydrograph concept. In fact, in the subcritical flow

42
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regime, it would seem that a single dimensionless unit hydrograph

could be a practical possibility. Many more computations are needed

to confirm this suggestion, especially to extend the range of variables,

to include rain variable in time and space, and to assess the effect of

controls other than the free overfall. The unit of discharge for such

a universal hydrograph (or hydrographs) would obviously be based on

the rainfall; but many factors, those already studied and certainly

others, must enter into the time base.

Although the problem becomes much larger, requiring a faster,

bigger machine for the computations, there seems to be no reason why

the attack used here for the overland flow problem cannot be extended

to the watershed problem. The real geometry of watersheds would

probably be overwhelming, but an investigation of schematic watersheds

should provide guideliness to the interpretation of field data by sorting

out the effect of the many factors.
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APPENDIX

Nomenclature

Celerity of a shallow water gravity wave = '\/g—y

Gravity acceleration

Channel length

Critical channel length = q’i‘C/r

Momentum flux of the fluid element in the x-direction

Manning's number

Pressure force on a normal section of the fluid element

Discharge per unit width

9 5

- - . . . _ n

Critical discharge per un1t w1dth (——1049) —%72

9 5

Maximum critical discharge per unit width = (-n—-) —g7—

l. 49 S 9 2

0

Discharge per unit width at x = iAx and t = jAt

Critical discharge per unit width at x = xC and t = jAt

Intensity of rainfall

Critical slope

 
Friction slope as defined by Manning's formula = (l

Slope of the channel surface

time = jAt
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At

t1/ 2

68

Infinitesimal time increment

Time to reach one-half of the steady state discharge used as

the unit of time

Time to reach one-quarter of the steady state discharge

Time to reach three-quarters of the steady state discharge

Mean velocity in the direction of x axis

 

3 2

Critical flow velocity in x-direction =( n )

1.49 S 3 2

c

Maximum critical flow velocity in x-direction = (1—29

Velocity at x = iAx and t = jA t

Critical velocity at x = Xc and t =- jAt

Fall velocity of raindrops in y--direction

Weight of the fluid element per unit length

Distance from the origin in the longitudinal direction of the flow

Infinite simal length increment

Distance = iAx

Channel length at the critical section from the origin which equals

the critical channel length, LC when the flow reaches its steady

 

state

Flow depth

6 3

Critical depth at the critical section = ( n ) g

l. 49 S 3

c
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6 3

. . . _ n__

Max1mum critical depth — (1. 49 ) "g—3

S

Normal depth of flow on the surface

Flow depth at x = iAx and t = jAt

Critical depth at x = xC and t = jAt

Momentum coefficient

Specific weight of water = pg

Angle of inclination of the surface

Angle of rainfall with respect to the vertical

Density of fluid

Coefficient of the supplementary pressure force due to the impact

of rainfall

Boundary shear on the fluid element per unit length
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