


LIB E IZJTNIIVERSITY
MICHIGAN STAT

EAST LANSING, MICI-I 48824-1048

r
-
r

This is to certify that the

thesis entitled

DEVELOPMENT OF ELECTRONIC NOSE METHOD FOR

EVALUATION OF RESIDUAL SOLVENTS IN LOW DENSITY

POLYETHYLENE

presented by

ISINAY EBRU YUZAY

has been accepted towards fulfillment

of the requirements for the

MS. degree in School of Packaging
  

/" 17" 4

Major Professor’s Signature

10%. g, 270M

 

 

Date

MSU is an Affirmative Action/Equal Opportunity Institution



PLACE IN RETURN BOX to remove this checkout from your record.

TO AVOID FINES return on or before date due.

MAY BE RECALLED with earlier due date if requested.

 

DATE DUE DATE DUE DATE DUE

 

memo?
 

 

 

 

 

 

 

 

     
6/01 cJCIRC/DateOue.p65-p.15

 



DEVELOPMENT OF ELECTRONIC NOSE METHOD FOR EVALUATION OF

RESIDUAL SOLVENTS IN LOW DENSITY POLYETHYLENE

By

Isinay Ebru Yuzay

A THESIS

Submitted to

Michigan State University

In partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

School of Packaging

2004



ABSTRACT

DEVELOPMENT OF ELECTRONIC NOSE METHOD FOR EVALUATION OF

RESIDUAL SOLVENTS IN LOW DENSITY POLYETHYLENE

By

Isinay Ebru Yuzay

High levels of residual volatile organic compounds (VOCs) in packaging films

can be a threat to the quality of food products. Currently, a wide range of

techniques are available for assessing the residual VOCs in packaging films. An

electronic nose (e-nose) system appears to be a viable alternative to traditional

techniques, providing simplicity and objectivity. In this study, an objective method

has been developed for assessing the residual VOCs from low density

polyethylene films. Three VOCs, ethyl acetate, ethyl alcohol, and toluene, were

chosen as model solvents. An Alpha Mos Fox 3000 e-nose system was used for

qualitative and quantitative analysis of residual solvents. Once the optimum e-

nose parameters were determined for all of the model solvent samples, the

measurements were made for single and binary solvent mixtures. The responses

obtained from the e-nose were processed with multivariate statistical analysis

methods (PCA, DFA, and PLS) and compared with gas chromatography, which

is currently used for determining the amounts of residual VOCs in packaging

films. The results indicated that there was good agreement between the e-nose

responses and gas chromatography results. Both single and binary solvent

mixture concentrations were successfully predicted with the proposed method.
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I. INTRODUCTION

Quality control of packaging films can be considered as a critical issue in the

food industry due to the possibility of migration of substances from packaging

films into food products (Robertson, 1993). Particularly, the volatile organic

compounds (VOCs) released from printing inks, adhesives, and polymers

present in flexible food packaging may give off-odor or taste and significantly

alter the quality of food products (Van Deventer and Mallikarjunan, 2002).

Therefore, it is highly desirable to have simple and effective quality control

methods for qualitatively assessing the volatile compounds as well as to

determine the level of residual VOCs in the packaging films. Currently, there are

several methods available for analyzing VOCs from plastic packaging film and

their printing inks. Gas chromatography (GC), gas chromatography-mass

spectroscopy (GCIMS), multiple headspace solid-phase microextraction (HS-

SPME) and sensory evaluation are extensively used for this purpose (Robertson,

1993)

The chromatographic techniques are used to provide quantitative and

qualitative information about the volatile compounds that are present in

packaging films. These techniques allow accurate and objective analysis of

volatile compounds. However, they require high levels of expertise and time

(Pearce et al., 2003). In recent years, use of gas chromatography has become a

standard method of quantifying the level of residual VOCs in packaging film.

ASTM F1884, standard test method for determining residual solvents in



packaging films, is used to assess the VOCs from packaging films in the facilities

manufacturing packaging materials.

Sensory evaluation can also be an effective tool in terms of qualitative

analysis of VOCs in packaging films. Although it requires extensive time to train

sensory panelists, well-trained sensory panelists are consistent in their

evaluations. On the other hand, untrained (consumer) panelists can be subjective

in their evaluations. Hence, obtaining a consistent evaluation can be difficult

(Pearce et al., 2003).

While all these techniques can help in the process of assessing and

controlling the amount of VOCs in food packaging materials, each technique has

its own limitations. Therefore, there is a need for an objective tool that can rapidly

provide results for quality control purposes. The electronic nose (e-nose)

systems appear to be a viable alternative to traditional techniques, providing

operational simplicity for assessing VOCs in packaging films (Suman et al.,

2003). The e-nose is capable of detecting/recognizing and discriminating

volatiles emitted from liquid or solid samples, using sensor arrays. Moreover, it

can predict the amount of volatiles from a large range of materials (Alpha MOS

Fox 3000 manual, 2001). To the best of our knowledge, the majority of the

literature on the e-nose has been focused on identification of VOCs. But, there

are limited amounts of information about quantification of VOCs by using the e-

nose. Therefore, of particular interest to us is not only qualitative identification of

the residual solvents, but also the prediction of the total amount of residual

solvents. Quantification of residual solvents can be very desirable in real life, and



it is much more challenging to predict concentration levels of single solvents or

mixtures than qualification of different residual solvents. As a result, in this

research, a considerable amount of effort was made to develop a standard

method for the quantitative determination of VOCs in low density polyethylene

films, that can be extremely advantageous in quality control of packaging

materials.

The objectives of this study are:

1. Develop a standard method, by using the e-nose, to assess VOCs from low

density polyethylene films.

2. To correlate e-nose results with gas chromatography, which is currently the

standard method for determining the amounts of VOCs in packaging film.

It is assumed that the results of this study would enable better and faster

quality control of packaging materials, where quality is associated with total

amount of residual VOCs, since this new method offers operational simplicity

and reproducibility.



2. BACKGROUND AND MOTIVATION

It is well known that the use of plastic films for food packaging may cause off-

odor and off-flavor problems which alter the quality of the food product. In most

cases, the migration of residual volatile organic compounds (VOCs) from the film

into the food is responsible for the off-odor and flavor (Maneesin, 2001; Das,

2003). VOCs can be defined as volatile compounds whose vapor pressure at

20°C (293.15°F) is 0.01 kPa or greater (Wypych, 2001).

The sources of VOCs in plastic films can be classified as follows: solvents in

the printing inks; solvents in the lamination adhesives; additives in polymers;

possible residuals that form during manufacturing of the films (Ezquerro et al.,

2003)

2.1 Residual Solvents from Printing Inks and Adhesives

Printing inks and adhesives composed of solvent-based systems are well

known for being a contributor to off-odor and off-flavor. The residual solvent in

solvent-based printing inks and adhesives that are used in lamination of

packaging films can be absorbed by the food and can impact the taste and

aroma of many food products, particularly chocolate, confections, snacks, coffee,

and tea (Lin, 1995). Therefore, the packaging film materials are subject to strict

quality control requirements. The FDA has issued a guidance which sets limits on

the level of VOCs in food contact packaging materials. The European Union also

has published regulations on this issue (Robertson, 1993; Williams, 2001;

Begley, 1997). Since regulations become more restrictive for the residual



solvents, there is a growing tendency among converters to reduce and control

the amounts of VOCs in the printing inks and adhesives.

Most of the flexible packaging material used for food products is printed.

During the printing process, the inks and adhesives can be diluted with solvents

which are removed by evaporation as the printed substrates are passed through

the dryers. Flexography and roto-gravure are the main printing techniques used

by converters. It is estimated that about 60% of printed packaging in the USA is

printed by the flexographic process and less than 20% is printed by roto-gravure

(Savastotano, 2003). Flexography is a relief printing process which is widely

used in food packaging due to its high printing speed. In the flexographic printing

process, ink is collected from an ink duct by a rubber roller and transferred on an

anilox roller, which is made of ceramic and is etched with small cells that collect

ink from the rubber roller and deliver it to the photopolymer plates (cliché). A

design on the photopolymer plates is put on the printing substrates. Gravure is

also used in food packaging. It is an intaglio printing process particularly suited to

very long print runs and where very high print quality is required. In the gravure

printing process, a design is mechanically engraved onto the surface of a copper

cylinder. This cylinder is submerged in ink and then the excess amount of ink on

the cylinder is removed by a doctor blade. The ink contained in the engraved

cells is transferred from the cylinder to the printing substrate due to the high

surface energy of printing materials (Robertson, 2003).

In many cases, solvent-based inks are used for both printing processes. A

typical solvent-based ink consists of four essential ingredients. The first is



pigments which provide color. The second is binders whose function is to bind

the pigment to the printing surface. The third ingredient is additives which are

used for special purposes such as improving adhesion, controlling the viscosity,

etc. The forth ingredient is solvents. There are two basic functions of solvents: (1)

to dissolve a wide variety of binders such as nitrocellulose, cellulose ethers and

esters, polyamides, and acrylics and to carry the pigment and other components

to the surface of the substrate, and (2) to cause the drying of the printed ink film

(Soroka, 1995). The great majority of solvent-based inks are based on solvent

mixtures, usually alcohol, ester, aliphatic and aromatic hydrocarbon and ether

mixtures. There seems to be an almost infinite number of solvents possible for

formulating printing inks. However, there are several important factors to

consider in selecting a suitable combination from among these solvents; boiling

range, flash point, evaporation rate, solvency (solvent power), chemical stability,

and toxicity (Apps, 1958). In this research, only the effect of evaporation rate was

covered.

The evaporation rate is one of the properties of solvents that is vital in printing

inks. A wide range of solvent-based printing inks dry by evaporation of solvents.

The evaporation rate is a function of the vapor pressure, heat of vaporization at

the liquid temperature, the speed of the air stream above the liquid, the thermal

conductivity of the air, the area of the surface, and the differences of temperature

of the evaporating liquid and the air. The rate of evaporation of the solvents is

often given as a numerical value relative to the some other solvent as a standard.

There are two solvents which are normally used as standards, diethyl ether and



n-butyl acetate (Apps, 1958: Thompson, 1998). It is interesting to note that for

unknown reasons, n-butyl acetate was chosen as the standard in the US, but

diethyl ether was used in Europe. Table 2.1 gives evaporation rates for some

solvents commonly used in flexo and gravure printing inks.

Table 2.1 Evaporation rate for the solvents commonly used in printing inks

(Wypych. 2001)

Evaporation Rate

Solvent Name (n-butyl acetate:1.0)
 

Ethyl acetate 6.2

Butyl acetate 1.0

N-propyl acetate 2.76

Ethyl alcohol 3.2

lsopropyl alcohol 3.0

Acetone 10.0

Methyl ethyl ketone 5.7

Hexane 9.0

Benzene 6.1

N-butanol 0.45

Diethanolamine 0.001

Ethylene glycol 0.004

Water 1 .8

 

In addition, some resins (binders) and pigments used in printing inks are

solvent retentive, which can affect the evaporation rate of the solvents.

Generally, soft resins are apt to hold the solvents more than hard resins due to

their chemical structure (Apps, 1958; Thompson, 2001). A higher solid content in

hard binders reduces the amount of solvent that has to be evaporated and

therefore increases the drying speed. Conversely, the soft resins, having

relatively less solids content, tend to retain solvent. As a result, the printing
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solvents that are retained on the packaging film might migrate into food or the

headspace of the package and cause off-odor or flavor. Hence, determining/

controlling the amount of residual solvents left in packaging film is of primary

interest in the food packaging industry.

2.2 Residual Solvents from the Film Manufacturing Process

VOCs such as hydrocarbons, alcohols, aldehydes, ketones, and carboxylic

acids in packaging materials can also be formed by thermo-oxidative degradation

of polyolefins during the extrusion coating process. Extrusion parameters such as

temperature and speed have an enormous impact on VOC formation (Ezquerro

et al., 2003). Therefore, it is necessary to develop an effective method to control

the process parameters. Further discussion of this subject is beyond the scope

of this research.

2.3 Flexible Packaging Materials

There are a considerable number of different single and multilayer polymer

films used as food packaging materials. The polymer of interest in this study is

low density polyethylene (LDPE), because it is the most used polymer film in the

food industry (Robertson, 1993). LDPE offers the advantages of inertness, good

barrier to water, heatsealability, and chemical resistance. However, due to its

polyolefinic nature, LDPE tends to retain non-polar compounds (Lopez-Rubio,

2003). Therefore, it is worthwhile to explore the residual solvents in LDPEs.



2.4 Packaging Migration

Packaging migration is important in the food industry since it can change the

organoleptic properties of the food. As explained by Van Deventer and

Mallikarjunan (2001), the migration of compounds from polymer film is controlled

by diffusion. In most cases the molecular transport obeys Fick’s laws of diffusion.

Fick’s first law is F = - Dp * (de/dx). Further, if the diffusion coefficient is

independent of concentration, Fick’s second law is de/dt = D,* (dZCp/dxz).

F is the rate of transport per unit area of the polymer, Dp is the diffusion

coefficient of the migrant in the polymer, Cp is the migrant concentration in the

polymer, x is the thickness of the film, and t is the elapsed time. There is much

information available about packaging migration, but it is beyond the scope of

this research.

2.5 Analysis of VOCs from Packaging Materials

There is a vast amount of scientific literature available regarding the use of

chromatographic methods (objective) and sensory panels (subjective) in

determining the residual solvents in packaging materials.

ASTM F 1884-98, standard test method for determining residual solvents in

packaging films, and ASTM F151-86, test method for residual solvents in flexible

barrier films, have been developed to determine residual solvent levels. They are

used for evaluation of flexible barrier films in the facilities manufacturing

packaging materials. These methods are based on gas chromatography. The

known amount of specimen is enclosed in a container and heated to vaporize the

residual solvents into the headspace. Then, the headspace sample is analyzed



using gas chromatography. The studies of Kolb and Ettre (1997) and Leland et

al. (2001) represent up-to date reviews of different 60 techniques for

determination of residual solvents. For further discussion, these references are

recommended.

Another common method used for analyzing the residual solvents in

packaging materials is a sniff test (Huber, 2002). About 1000 cm2 of plastic

packaging material is placed into a clean 1 liter glass jar, which is then sealed.

After storage for a pre-determined time and temperature, evaluation of odor can

be made by sensory evaluation panels. This method is an effective tool in terms

of qualitative analysis of VOCs in packaging films. Although it requires extensive

time and money to train sensory panelists, well-trained sensory panelists can

give precise and consistent results. On the other hand, untrained (consumer)

panelists can be subjective in their evaluations since they tend to fatigue. Hence,

obtaining a consistent evaluation can be difficult (Pearce et al., 2003). In addition,

residual VOCs ,due to their toxicity effects, can pose a threat to sensory

panelists.

For these reasons, it is desirable to use an objective and consistent as well as

less labor intensive method. An electronic nose (e-nose) which uses special

sensors to mimic the human nose has been developed for this purpose. It

generates a characteristic fingerprint of an odor which can be compared to data

from different samples, batches and mixtures (Alpha MOS Fox 3000 manual,

2001). Most publications deal with e-nose applications to food, cosmetics, and

environmental analysis (Schaller, 1998). However, there are a limited number of

10



publications referring to packaging applications. Benali et al. (1995) found that an

e-nose using multiple discriminate analysis could discriminate between cakes

wrapped in various qualities of film, although a sensory panel did not find

differences. Bohatier et al. (1995) used the e-nose to analyze off odors in

polypropylene samples. Polypropylene samples with off odor could easily be

distinguished from an undefective one. Van Deventer and Mallikarjunan (2002)

compared and optimized three electronic nose systems. The performance

analyses showed that based on discriminatory power and practical features, the

Fox 3000 and Cyronose 320 were superior. Suman et al. (2003) used an

electronic nose for qualifying the residual solvent from a wide range of single

layer and laminated substrates. But, the e-nose could not easily discriminate

between polyethylene (PE) samples with methoxyproponal and methoxypropyl

acetate and reference PE samples.

11



3. MATERIALS AND METHODS

3.1 Materials

The following items and equipment were used in this study;

A. Film Samples

The packaging material tested during the study was 1.5 mil thick low density

polyethylene (LDPE) supplied by Cello-Foil Products, Inc. (Battle Creek, MI).

LDPE was selected since it is one of the most often used flexible packaging

materials.

B. Solvents

Three volatile organic compounds, ethyl acetate (esters), ethyl alcohol

(alcohols), and toluene (aromatic hydrocarbons), representing three different

solvent categories, were chosen as models for solvents of interest in flexible food

packaging analysis. Ethyl acetate of 99.8% purity, ethyl alcohol of 95% purity,

and toluene of 100% purity were obtained from Aldrich Chemical Co. (Milwaukee,

WI). These solvents are commonly used in printing ink and adhesive

formulations. The typical physical and chemical properties of the representative

solvents are shown in Appendix A.

C. Equipment

. The Fox 3000 electronic nose (E-nose) system (Alpha M.O.S. SA, Toulouse,

France), HS100 Headspace auto sampler (Alpha M.O.S. SA, Toulouse,

France), Fox 3000 software (Alpha M.O.S. SA, Toulouse, France)

12



An Alpha MOS Fox 3000 E-nose system with two metal oxide sensor arrays

(consisting of 12 sensors) was used for qualitative and quantitative analysis of

residual solvents. Figure 3.1 shows the Alpha MOS Fox 3000 e-nose system. It

consists of three main components: an agitator, a headspace auto sampler, and

sensor arrays. The agitator is the place where the vials are heated up in order to

generate the headspace vapor from the samples. The auto sampler collects the

headspace vapor and injects it into the sensor array. The sensor array consists

of 12 metal oxide sensors. Each sensor has different sensitivity and selectivity to

various chemical compounds. Therefore, a combination of several sensors

provides a unique fingerprint of the samples. This allows to track any variation in

the headspace of the samples. Figure 3.2 shows an example of sensor

responses as a function of time for one of the model solvents. In this figure the

sensor responses are represented by the relative resistance change, (R0 -R) / Re,

where R0 is the minimum of the resistance reading during the baseline purge

and R is the maximum resistance reading during the vapor exposure. The data

extracted from sensor responses can be used to detect, characterize, identify,

and eventually quantify the volatiles.

The optimized e-nose set up parameters are shown in Table 3.3. The detailed

optimization procedure is explained in section 3.2.3.

13
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Figure 3.2: Typical e-nose sensor response curves for ethyl acetate samples

[A: ethyl acetate samples (1 pl), B: ethyl acetate samples (10pl)]
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0 An HP 6890 gas chromatograph (Hewlett- Packard, Avondale, PA),

equipped with a gas flame ionization detector and interfaced with

Empower-Waters software was used for quantitative analysis of the

residual solvents in LDPE films. All the data were recorded as peak area

response.

The column used in this study was Supelcowax 10 fused silica capillary column

(60 m, 0.25 mm ID, 0.25 pm film thickness) (Supelco Inc., Bellefonte, PA). A

detailed summary of the GC conditions employed in this study is presented in

Appendix B.

3.2 Statistical Analysis

The responses obtained from the sensor arrays were processed using

principle component analysis (PCA), discriminate factorial analysis (DFA), and

partial least squares regression analysis (PLS) in order to qualify and quantify the

residual solvents. The models obtained from DFA and PLS analysis were

validated by means of the partial cross-validation (leave-one-out) method. In this

validation method, the data sets obtained during measurements were randomly

divided into a training set, used for building up the model (learning process), and

a validation set, used for validation purposes. Finally, unknown samples were

used to check the performance of the new model.

3.3 Method Development

The method development for assessing the residual solvents from LDPE

using an electronic nose consists of four main steps which are representative

15



VOC selection, sample preparation, e-nose parameter optimization, and building

a model. Figure 3.3 illustrates the main steps of the method development.

 

 

Representative VOC Selection

I
Sample Preparation

E-nose Parameter Optimization

0 Head-space and sensor parameters

I
Building a Model and Validation

0 Analyzing the training and validation sample sets.

  
 

 

  
 

 

  
 

 

- Recognition of the validation and unknown samples (DFA)

0 Prediction of the validation and unknown samples (PLS)

0 Correlation between the e-nose and GC-FID

  
   
 

Figure 3.3: The steps of method development

3.3.1 Representative VOC Selection

In this study, ethyl acetate, ethyl alcohol, and toluene were chosen to

represent different solvent categories used in printing ink and adhesive

formulations.
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3.3.2 Sample Preparation

LDPE film samples were prepared by the method described by Suman et al.

(2003). The samples were cut into 2 x 25 cm strips and then placed into glass

jars. Filter paper inserted into each jar lid was injected with 1.0, 2.5, 5.0, 7.5, or

10 pl of the solvent. Then, the jars were tightly closed. The sealed jars were kept

at 50°C for three hours, and then at room temperature for one day in order to

equilibrate the solvent in the headspace of the jar. After this treatment, the films

were used to prepare headspace vials for the e-nose and GC analysis. A

diagram summarizing the sample preparation and experimental steps is shown in

Figure 3.4.

 

2 x 25 cm Film
   

  

Placed into 1L Jar

   

  

 

"Spiked" with the solvent

  

 V 

Equilibrate

 

@ 50 °C, 3 hrs T room, 1 day

 
 

  

 

Put the film into head-space vials

 
 

V 

/—®_\
 

E-nose Analysis

   

  

DFA

Identification

   

 

 

GC-FID Analysis

 

SJ

 

 

PLS

Quantification

   

Figure 3.4: Sample preparation and experimental steps.
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3.3.3 E-nose Parameter Optimization

The aim of method development is to select operating conditions for an e-

nose analysis which are consistent and reliable. There are several important

parameters that need to be optimized to obtain the maximum performance from

the e-nose (Alpha MOS Fox 3000 Manual, 2001). Therefore, before taking the

real measurements, a number of preliminary tests were made in order to find

optimum analysis conditions which were acceptable for all of the solvent

samples.

There were thirteen variables that could be controlled directly in the system:

incubation time, incubation temperature, syringe temperature, syringe type, filling

speed, flushing time, injection volume, injection speed, vial size, acquisition time,

acquisition period, agitation speed, and delay. To minimize unnecessary

complexity, all efforts were directed towards only the two most important

parameters, incubation temperature and vial size (Deventer and Mallikarjunan,

2002; Alpha MOS Fox 3000 Manual, 2001). The rest of the parameters were set

up as shown in Table 3.3.

Incubation Temperature:

The incubation temperature can be considered one of the salient parameters

that must be controlled since the generation of head-space volatiles varies with

the temperature. Any variation in the temperature may result in changes in

volatile concentrations in the head-space (Van Deventer and Mallikarjunan,

2002). Consequently, the changes in volatile concentrations would directly affect
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the sensor responses. Table 3.1 shows how the temperature affects the e-nose

analysis results.

Table 3.1: Effect of incubation temperature on discrimination indexes for ethyl

acetate, ethyl alcohol, and toluene.

 

 

Incubation Discrimination Index

Trial Temperature, °C PCA

1 50 82

2 60 93

3 75 87

 

The Alpha MOS Fox 3000 Manual (2001) recommended that the incubation

temperature should be set between 40 and 50°C for highly volatile compounds

and between 80 and 100°C for less volatile compounds.

Van Deventer and Mallikarjunan (2002) compared the performance of three

commercial e-nose systems in terms of detection of volatiles from printed plastic

packaging films. In this study, the volatile compounds of interest were not

specifically named due to a confidentiality disclosure agreement with the

manufacturer; however, the setting parameters for the Fox 3000 e-nose were

reported. The optimum incubation temperature that was chosen for this study

was 75°C.

Suman et al. (2003) also analyzed six different solvents in order to identify

and control the retained solvents in printed films. In this study, an incubation

temperature of 60°C was used.

Consequently, on the basis of previous studies, the incubation temperature

was studied within the range of 50 — 75°C. Figures 3.5, 3.6, and 3.7 illustrate the
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plots of PCA for LDPE film samples with three solvents at three different

temperatures. As can be seen, the film samples were easily discriminated at 50,

60 and 75°C using principle component analysis (PCA). Since there was no

intersection among three sample groups, high discrimination indices were

obtained (82 for 50°C, 93 for 60°C, and 87 for 75°C). Generally, the higher the

discrimination index, the better is the discrimination between the groups (Alpha

MOS Fox 3000 Manual, 2001). In this study, increasing the incubation

temperature from 50°C to 60°C did give us a higher discrimination index,

whereas increasing the incubation temperature from 60°C to 75°C did not

provide us any significant differences in discrimination index and sensor

responses. Therefore, the incubation temperature was optimized at 60°C.
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Figure 3.5: LDPE film samples with three solvents at 50°C incubation

temperature in 10 ml vials.
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Figure 3.6: LDPE film samples with three solvents at 60°C incubation

temperature in 10 ml vials.
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Vial size:

Another important parameter that must be controlled is the vial size. The

literature review showed that there is a discrepancy in reported literature values

for vial size. The ASTM standard D1884-98 (Test Method for Determining

Residual Solvents in Packaging Materials) suggests using 20 ml head—space

vials for the gas chromatographic analysis. Suman et al. (2002) also preferred

using 20 ml vials in their research. However, Van Deventer et al. (2002) chose 10

ml vials for the e-nose analysis. Therefore, it was necessary to examine the

differences between the two vial sizes in terms of discrimination index. Using

PCA, discrimination of the three solvents from each other was excellent with the

10 ml vials, while discrimination failed with the 20 ml vials. It is well known that

the sensor responses depend on the incubation temperature. The solvent

concentration in the headspace of the vial also increases with the increase of

incubation temperature. Consequently, a high discrimination index can be

obtained. But, in the case of 20 ml vials, incubation temperature or time was

evidently not enough to get maximum sensor responses due to the large vial

volume. The effect of vial size on discrimination indices is shown in Table 2.2.

As a result, 10 ml headspace vials were found to be ideal for this study.
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Table 3.2: Effect of vial size on discrimination indices.

 

 

Incubation Vial Size, ml Discrimination

Trial Temperature, °C Index PCA

1 60 10 93

2 60 20 O

 

On the basis of these preliminary tests, the incubation temperature of 60°C

and 10 ml vial size were found to be perfect for this study. These conditions gave

the highest discrimination index, which was also evidence of higher sensor

responses. After optimization of e-nose parameters, in order to control the

repeatability of the sample preparation and e-nose data acquisition parameters,

the LDPE films were spiked with the solvents by the method described in section

3.3.2 and then analyzed by using PCA. We obtained exactly the same

discrimination index value as in previous measurements, which is evidence of the

repeatability of the method (Figure 3.8).
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Figure 3.8: LDPE film samples with three solvents at 60°C incubation

temperature in 10ml vials (Repeated procedure)
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Table 3.3 : Optimized data acquisition parameters.

 

 

PARAMETERS SETTINGS

Incubation Time, sec 300

Incubation Temperature, °C 60

Syringe Temperature, °C 65

Syringe Type, ml 5

Filling Speed, ul/sec 500

Flushing Time, sec 120

Injection Volume, ul 2000

Injection Speed, ul 2000

Vial Size, ml 10

Acquisition Time, sec 600

Acquisition Period, sec 0.5

Agitation Speed, rpm 500

Delay, sec 900

 

3.3.4. Building a Model and Validation

(Preparing and Analyzing the Training and Validation Sets)

Once the optimum parameters were set for the samples, measurements with

the e-nose using 12 metal oxide sensors were made for single (individual)

solvents, and binary mixtures of the three solvents. The single solvent groups

were composed of three solvents; ethyl acetate, ethyl alcohol, and toluene. The

data sets for the single solvents were prepared by using different injection

amounts (1.0, 2.5, 5.0, 7.5, and 10 ul). Five replicates were used for each single

solvent and their varying injection amounts. The data sets for the binary mixtures

were prepared for the three different solvent combinations using varying injection
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amounts (1.0, 2.5, and 7.5 ul). Three replicates were used for the binary

mixtures. Table 3.4 shows the injection amounts of the single and binary solvents

at different concentrations.

The data matrix for one injection amount was constructed with 180 data

points, which were the responses from 12 sensors for three single solvent

samples with the five replicates (12 X 3 X 5 = 180). As can be seen, the data sets

for the e-nose are multivariate and difficult to interpret. Therefore, it is necessary

to employ multivariate statistics in order to assess the classification and

quantification of the solvents in the LDPE films. The most common multivariate

statistical techniques, principle component analysis (PCA), discriminate factorial

analysis (DFA), and partial least squares analysis (PLS), were used for

qualification and quantification of the samples.

PCA is an unsupervised learning technique which allows reduction of multi-

dimensional data to two dimensions while simplifying the interpretation of the

data (Delpha et al., 2001). For instance, the responses from 12 sensors (12

dimensions) can be processed and displayed in two dimensions. This allows us

to interpret the data easily. In addition, the samples can be classified without

prior information on the nature of the samples. Conversely, DFA and PLS require

prior knowledge about the samples. DFA is a supervised learning technique

which classifies the samples by developing a model and then identifies the

unknown samples in qualitative analysis. PLS is an algorithm based on linear

regression techniques. It is also used to build a model that is able to predict the

quantitative information for the samples (Alpha MOS Fox 3000 Manual, 2001).
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Table 3.4: The combination of ethyl acetate, ethyl alcohol, and toluene at varying

injection amounts.

 

 

 

 

 

 

 

 

 

Percent Concentration Amounts of Injection

(leI (In)

ETAC ETOH TOL 1.0 2.5 5.0 7.5 1 0

(A) (B) (C)

3 100 0 0 J J J J J

:g 0 100 0 V V V V J

6

°‘ 0 o 100 J J J J J
In

30 70 0 V J J

50 50 0 V J J

70 30 0 V V V

g 30 0 70 V V V

35 50 o 50 J J J
D.

0

0‘ 70 o 30 J J J

0

0 30 70 V V V

0 50 50 V V V

0 70 30 V J J     
 

In general, these algorithms can only be considered as valid when the data

(sensor response pattern) is well distributed in their domain. However, in many

cases the patterns from different classes can overlap. The overlapping groups

could lead us to believe that there is no difference between the samples

(Goodner, 2001). Thus, it is necessary to detect and remove outliers from the

data sets. The data sets were studied using PCA ,which is the best way to

detect rapidly the outliers (Alpha MOS Fox 3000 Manual, 2001). Among all the
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measurements, only one sample was found to be an outlier and discarded from

the data set. A new sample was added to the data set. The outlier detection

method based on comparing the cluster shapes in PCA and analyzing the sensor

profiles is described in Appendix C.

After eliminating the outliers, the next step was a training phase. During this

phase, the algorithm is trained by the samples whose classifications are known,

and then this algorithm can be used to classify the unknown samples. It is clear

that the algorithm can only classify the unknown samples if they exhibit the same

behavior as the training samples (Carmel et al., 2003). As in all quantitative

methods, it is important to use training samples containing all expected ranges of

the future unknown samples (Vlasov and Legin, 1998). Therefore, in this study,

varying injection amounts for the single and binary solvents were used. The data

(the sensory response patterns) were divided into a training set and a validation

set. For the samples with five replicates, three replicates were randomly selected

for training the algorithm, and the remaining two replicates were used for the

validation. For the samples with three replicates, two replicates were selected for

the training set, and one replicate for the validation set. The validation data sets

were used to validate the algorithm.

When the identification and validation were achieved on the DFA model,

estimation of the sample quantity was done by PLS analysis. The PLS analysis

was applied to the samples in order to assess the relationship between predicted

and experimental values for the concentration of the single and binary solvents.

For building the calibration curves for the single and binary solvent mixtures, pre-
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determined GC area responses were used as a concentration value. Validation

of the PLS model was done by evaluating the correlation coefficient and using a

modified leave-one out method where one randomly chosen sample was

removed from the dataset and considered as an “unknown“ sample.

In the traditional, leave-one out method (cross validation method), each data

point in turn is removed from the data set and tested as unknown using the

remaining data points. In this research, in order to minimize the unnecessary

complexity, a modified leave-one out method which omitting only one data point

was used.

Finally, in order to test the performance of the model, unknown test samples

were projected on the PLS model.
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4. RESULTS AND DISCUSSION

4.1 Identification of the Single Solvents

Figure 4.1, 4.2, and 4.3 illustrate the DFA plots of ethyl acetate, ethyl alcohol,

and toluene with different injection amounts, respectively. In these figures, the

data clusters which belong to different injection amounts were separated from

each other. It is interesting to note that the separation for all model solvents

followed similar patterns.

Figure 4.4 shows the DFA plots combining ethyl acetate, ethyl alcohol, and

toluene training sets at different injection amounts. The model developed by the

training sets was applied to the validation data set (“unknown samples”). Figure

4.5 shows the identification of single solvent validation sets. As can be seen, the

validation data sets (so called “unknown” samples) were mostly placed into the

correct solvent category. The validation data set scores are listed in Table 4.1.

The first column gives the codes of the validation data sets. The second column

indicates whether or not the validation data sets were recognized. The third

column also indicates the solvent categories (groups) and the last column shows

the percentage of recognition of the samples. Using this percentage, we can

understand how far the validation samples are from their recognized groups. If

the validation samples are in the group, the percentage is 100%. The overall

percentage correct identification rates for the validation data sets are also

presented in Table 4.2. All ethyl alcohol and toluene samples were identified

correctly (100% correct recognition). Out of 10 ethyl acetate samples, only one

sample - ethyl acetate (1pl) - was misidentified as ethyl alcohol. However, the
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overall percentage of correct identification for ethyl acetate was found to be 90%

(Table 4.2). Hence, we can conclude that the e-nose is capable of clear

recognition of “unknown” single solvent samples.
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Figure 4.1: DFA plot of ethyl acetate with five different injectiorfamounts
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Figure 4.2: DFA plot of ethyl alcohol with five different injection amounts
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Figure 4.3: DFA plot of toluene with five different injection amounts
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Table 4.1: Validation data set “unknown” scores for single solvents

(A: Ethyl acetate, B: Ethyl alcohol, C: Toluene)

 

 

  

Sample Code Recognized Group % of Recagnition

A101_3 Yes A 100.0

A101_7 Yes A 100.0

A11__3 Yes B 82.8

A11_7 Yes A 100.0

A2.51_3 Yes A 100.0

A2.51_7 Yes A 100.0

A51_19 Yes A 100.0

A51_7 Yes A 70.8

A7.51_15 Yes A 100.0

A751 19 Yes A 100.0

B101_4 Yes B 100.0

B101_8 Yes B 83.7

B11_4 Yes B 100.0

B11_8 Yes B 100.0

32 51_4 Yes B 100.0

32 51_8 Yes B 100.0

B51_20 Yes B 100.0

B51_8 Yes B 100.0

B7 51_4 Yes B 100.0

37.51 8 Yes B 100.0

C101_5 Yes C 99.5

C101_9 Yes C 98.7

C11_5 Yes C 100.0

C11_9 Yes C 100.0

CZ.51_5 Yes C 97.9

CZ.51_9 Yes C 100.0

051_5 Yes C 100.0

C51_9 Yes C 100.0

C7.51_5 Yes C 99.2

C7 51 9 Yes C 100 0
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Table 4.2: Identification results of the DFA for single solvents validation data set.

(A: Ethyl acetate, B: Ethyl alcohol, C: Toluene)

 

% Correct

 

Code A B

Idenfificaflon

A 9 1 0 90

B 0 1 0 0 100

C 0 0 1 0 100

 

4.2 Identification of the Binary Solvents

Figure 4.6, 4.7, and 4.8 illustrate the DFA plots of toluenezethyl alcohol, ethyl

acetatezethyl alcohol, and ethyl acetateztoluene mixtures with different

combinations (30:70, 50:50, 70:30, 100:0 (vlv)), respectively. In these figures, the

data sets for different solvent combinations were clearly separated from each

other.

Figure 4.9 shows the DFA plots of binary solvent training sets at d'rfferent

injection amounts. The model developed by the training sets was applied to

validation data sets (“unknown samples”). Figure 4.10 shows the identification of

binary solvent validation sets. The validation data set scores are listed in Table

4.3. The first column gives the codes of the validation data sets. The second

column indicates whether or not the validation data sets were recognized. The

third column indicates the solvent categories (groups) and the last column shows

the percentage of recognition of the samples. Using this percentage, we can

understand how far the validation samples are from their recognized groups. If

the samples are in the group, the percentage is 100%. The overall percentage

correct identification rates for the validation data sets are presented in Table 4.4.
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ETAC/ETOH with all its combinations was identified correctly (100% correct

recognition). However, ETAC/TOL, TOUETOH and their combinations were

misidentified. Out of 9 ETAC/TOL samples, one sample was misidentified as

TOUETOH. Out of 9 TOUETOH samples, three samples were misidentified as

ETAC/TOL. The overall percentage of correct identification for ETAC/1'OL and

TOUETOH were found to be 88% and 66%, respectively. As can be seen, the e-

nose was able to recognize ETAC/ETOH solvent mixtures whereas it can only

partially recognize ETAC/1'OL and TOUETOH samples. It is important to note

that when we considered the DFA analysis just within the same solventmixture

groups, a perfect separation was observed (Figures 4.6 - 4.8). But, when we

performed the DFA analysis for all binary solvent mixtures, some of the data

slightly overlapped (Figures 4.9 and 4.10). Consequently, this led to the

misclassification on the DFA plots. Another reason for the misclassification might

be the differences in solvents’ polarity. Ethyl acetate and ethyl alcohol are polar

solvents whereas toluene is a non-polar solvent. Therefore, non-polar LDPE film

samples might be attracted to the non-polar toluene and tend to retain toluene

molecules relatively more than ethyl acetate and ethyl alcohol molecules. This

problem may be overcome by changing the e-nose setup parameters.
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Figure 4.6: DFA plot of toluene and ethyl alcohol mixtures with different

combinations ( 30:70 , 50:50, 70:30, 100:0 vlv) - injection amount 1pl.
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combinations ( 30:70 , 50:50, 70:30, 100:0 v/v) - injection amount 1ul.
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Table 4.3: Validation data set “unknown” scores for binary solvents.

 

 

Sample Code Recognized Group % of Recgcmition

ETAC_ETOH3070_1 uL Yes ETAC / ETOH 100.0

ETAC_ETOH3070_2.5 pL Yes ETAC I ETOH 100.0

ETAC_ETOH3070_7.5 uL Yes ETAC / ETOH 100.0

ETAC_ETOH5050_1 pL Yes ETAC / ETOH 100.0

ETAC_ETOH5050_2.5 uL Yes ETAC / ETOH 100.0

ETAC_ETOH5050_7.5 pL Yes ETAC / ETOH 100.0

ETAC_ETOH7030_1 pL Yes ETAC I ETOH 1 00.0

ETAC_ETOH7030_2.5 uL Yes ETAC / ETOH 99.4

ETAC_ETOH7030_7.5 pL Yes ETAC / ETOH 99.3

     

ETAC_OTL3070__1 uL if ’ ’ es ETA TLo " 000. ”"— '

ETAC_TOL3070_2.5 pL Yes ETAC ITOL 100.0

ETAC_TOL3070_7.5 pL Yes TOL / ETOH 100.0

ETAC_TOL5050_1 pL Yes ETAC ITOL 100.0

ETAC_TOL5050_2.5 uL Yes ETAC ITOL 100.0

ETAC_TOL5050_7.5 pL Yes ETAC ITOL 100.0

ETAC_TOL7030_1 uL Yes ETAC ITOL 100.0

ETAC_TOL7030_2.5 pL Yes ETAC ITOL 100.0

ETAC_TOL7030_7.5 uL Yes ETAC ITOL 100.0

TOL_ETOH3070_1 uL Yes ETAC ITOL 100.0

TOL_ETOH3070_2.5 pL Yes ETAC ITOL 100.0

TOL_ETOH3070_7.5 uL Yes TOL / ETOH 100.0

TOL_ETOH5050_1 pL Yes ETAC ITOL 100.0

TOL_ETOH5050_2.5 pL Yes TOL / ETOH 100.0

TOL_ETOH5050_7.5 pL Yes TOL I ETOH 100.0

TOL__ETOH7030_1uL Yes TOL / ETOH 81.1

TOL_ETOH7030_2.5 uL Yes TOL / ETOH 100.0

TOL_ETOH7030_7.5 pL Yes TOL l ETOH 100.0
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Table 4.4: Identification results of the DFA for binary solvents validation data set.

( ETAC: Ethyl acetate, ETOH: Ethyl alcohol, TOL: Toluene)

 

 

Code ETAC:ETOH ETAC:TOL TOL:ETOH %Correct

ldenfificafion

ETAC:ETOH 9 0 0 100

ETAC:TOL 0 8 1 88

TOL : ETOH 0 3 6 66

 

4.3 Quantification of the Single Solvents

Figure 4.11 shows a typical PLS calibration curve which was used to predict

the toluene concentrations. When constructing the PLS calibration curves, pre-

determined GC area response values were used as a concentration value. In this

typical calibration curve, the correlation coefficient was found to be 0.9787. The

correlation coefficient between experimental and expected values is the evidence

of how well the new model performed. In general, if the correlation coefficient is

close to one, which indicates a perfect fit, the new model created can correctly

predict the concentration. First, the PLS model was constructed by using training

data sets, then it was validated by using validation data dataset (Figure 4.12),

using the partially leave-one-out method (only one dataset, 5ul) (Figure 4.13),

and running blind samples (unknown samples, 2.5pl) (Figure 4.14). The detailed

experimental and predicted area response values for single solvents are

tabulated in Appendix D.

Table 4.8 summarizes the correlation coefficient values between experimental

and predicted area responses obtained from validation methods I for single

solvents. As can be seen from the results, we obtained correlation coefficient
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values from 0.90 to 0.98 which shows there is a good fit between the

concentration predicted by e-nose and the concentrations determined by GC.

Therefore, the e-nose can be considered to provide accurate information on the

concentration of residual single solvents in the LDPE films.
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Figure 4.11: A typical PLS plot of the toluene samples (5 concentration - 5

replicates)
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Figure 4.12:3The PLS pot of toluene training data set validated by validation data

set ( . the filled circles represent training data set, 0 open circles represent,

validation data set)

Table 4.5: Predicted values for validation data set (for toluene samples)

Experimental Area Predicted Area

Sample Response (Average) Response

Code uV*sec, x10E+06 pV*sec, x10E+06

 

C1.0 13.0 13.4

01.0 13.0 13.9

C2.5 18.0 17.4

02.5 18.0 18.2

05.0 23 20.7

C50 23 20.3

C7.5 25 27.2

C7.5 25 24.0

C10 29 29.9

C10 29 27.7
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Figure 4.13: PLS plot of toluene samples constructed by leave-one-out method

(samples without 5.0 pl), then unknown samples (5.0 pl) were projected onto the

model.

Table 4.6: Predicted values for the unknown toluene samples (5.0 pl)

 

 

 

 

Experimental Area Predicted Area

Sample Response (Average) Response

Code pV*sec, pV*sec, x10E+06

x10E+06i1.1*

C5.0 23.0 19.0

05.0 23.0 19.0

C5.0 23.0 21.1

05.0 23.0 20.6

C50 23.0 19.7

AVERAGE 19.9

STDEV. : 0.9
   

*Mean value x 10E+06 i Standard deviation (three replicates)
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Figure 4.14: PLS model of toluene samples with blind ”unknown” samples

 
O the filled circles represent toluene data set, Othe open circles represent

blind “unknown“ samples

Table 4.7: Predicted values for the blind “unknown “toluene samples (2.5 pl)

 

 

Experimental Area Predicted Area

Sample Response (Average) Response

Code pV*sec, pV*sec, x10E+06

x10E+06i1.3*

02.5 18.0 17.5

02.5 18.0 18.5

02.5 18.0 19.4

02.5 18.0 18.1

_QZé 1&9 12.2  

AVERAGE 18.5
 

 
STDEV. : 0.7

 
 

*Mean value x 10E+06 i Standard deviation (three replicates)
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Table 4.8: Correlation coefficient values obtained from all validation methods for

single solvents.

 

Correlation Coefficient

Using all data sets Using training dataset Using leave one data

set out (5pl)
 

ETAC 0.90 0.90 0.94

ETOH 0.94 0.95 0.95

TOL 0.97 0.97 0.98
 

4.4 Quantification of the Binary Solvents

Figure 4.15 illustrates an example of a typical PLS plot for TOUETOH training

sets at 1 pL injection amount. The correlation coefficients between experimental

and predicted values at varying injection amounts for binary solvent mixtures

were found to be between 0.84 and 0.99 (Table 4.9 and 4.10). The PLS analysis

results showed that the electronic nose can be used satisfactorily in quantitative

analysis of binary solvents.

These almost perfect correlation coefficient values obtained from the model

for single and binary solvents can be used satisfactorily in quantitative analysis.

Moreover, if this new method is capable of predicting the concentrations, even

though there is a poor identification/classification between mixtures, it would be

possible to quantify the total residual solvents in the films without

identifying/classifying them. This would bring a great advantage in quality control

of packaging materials.
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Figure 4.15: A typical PLS plot of TOLzETOH data sets at 1 pL injection amount.

Table 4.9 : Summary of the correlation coefficient values obtained from the PLS

calibration curves for binary solvents.

ETAC : ETOH

30:70, 50:50, 70:30, 100:0

ETAC : TOL

30:70, 50:50, 70:30, 100:0

TOL : ETOH

30:70, 50:50, 70:30, 100:0

 

Correlation Coefficient

1.0 pL 2.5 pL 7.5 pL

0.91 0.92 0.95

0.89 0.96 0.84

0.98 0.96 0.96
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Table 4.10 : Summary of the correlation coefficient values obtained from the

PLS calibration curves for binary solvents.

 

Correlation Coefficient
 

ETAC:ETOH ETAC:TOL TOL:ETOH
 

30:70

1.0, 2.5, 7.5 pl 0.99 0.98 0.99

50:50

1.0, 2.5, 7.5 pl 0.92 0.98 0.99

70:30

1.0, 2.5, 7.5 pl 0.95 0.98 0.98
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5. CONCLUSIONS and RECOMMENDATIONS

A novel electronic nose method for assessing the residual solvents in low

density polyethylene has been established. The proposed method is very useful

for identifying and quantifying the residual solvents. The method presented is

also simple, quick and reliable in predicting the total amount of residual VOCs

present in low density polyethylene and thus useful for controlling the quality of

the process.

It has been found that the electronic nose with the proposed method is capable

of providing, for single and binary mixtures, quantitative analyses of residual

solvents and can also distinguish between similar types of solvents. This is

supported by high correlation coefficient values obtained in PLS analysis.

Further investigation is required to assess the effectiveness of the proposed

method for identification and quantification of different binary and ternary

mixtures of other VOCs. Further research could also involve the adaptation of

this method into a quality control laboratory.

In recent years, with the introduction of new technologies such as

biodegradable polymers, water-based, UV, and EB curable printing inks, the

sources of off-odor started diversifying in the polymer and printing industry. The

methods and residual solvent levels based on solvent-based inks, coatings and

adhesives may not be applicable to these new technologies. Therefore, the

electronic nose could also be used to establish standards for low odor with these

new technologies.
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APPENDIX A

Table A1 : Properties of the representative solvents (Wypych, 2001)

 

 

 

 

 

 

 

 

 

ALCOHOLS ESTERS AROMATIC

HYDROCARBONS

Ethyl Alcohol Ethyl Acetate Toluene

Formula C2H5OH CH3COOC2H5 CaHsCH3

Density ( glcm 3) 0.789 0.901 0.867

Molecular Weight 46.1 88.1 92.1

_Lglmol )

Evaporation Rate 3.2 6.2 2.1

(BuAc=1 1

Boiling Point (° C) 78.3 77.2 110.8

Vapor Pressure 44 73 21

(mm Hg, 20 °C )

Polarity Index 5.2 4.3 2.3

Miscibility 14 19 23

Number
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APPENDIX B

GC Analysis Conditions

Gas chromatographic analysis was performed using an HP 6890 (Hewlett-

Packard, Avondale, PA) gas chromatograph, equipped with flame ionization

detector (FID) and interfaced with Empower-Waters software. Gas

chromatographic conditions used for single and binary solvent mixtures were as

follows:

Column : Supelcowax 10 ( Supelco lnc., Bellefonte, PA)

(60 m, 0.25 mm |.D., 0.25pm film thickness)

Carrier gas : Helium at 30ml/min

Temperature : Injector temperature - 250 °C, Detector temperature - 250 °C

lnitial oven temperature- 40 °C isothermal

Initial time —10 min

First, 10 ml headspace vials were prepared using the method described in

section 3.3.2. Second, the vials were heated in the oven at 60 °C for 20 min in

order to equilibrate the solvent in the headspace of the vial with the sample.

Then, a 100 pl portion of headspace created in the vial was injected manually

into the gas chromatograph using a gas tight syringe. Since the solvent

concentration in the headspace is a function of the concentration in the film, the

recorded area response values are also proportional to the solvent concentration

in the film samples. Therefore, all recorded area response values were used to

build calibration curves for the e-nose analysis.
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APPENDIX C

Outlier Detection

The outlier detection and rejection from the data set was one of the most vexing

issues in this study. But the time spent for this part lead us to build a concrete

model. First, it was necessary to have a valid reason for rejecting the point from

the data set. For this purpose, two methods were used to find outliers.

1) Using PCA (Alpha MOS Fox 3000, Manual, 2001):

-Perform the group labeling in a way that repeats of each individual

sample are clustered together.

Build the PCA.

-Compare the cluster shape of all the groups.

The cluster shape must be quite similar, otherwise there is a good chance of

having one or several outliers in the dataset.

2) Using sensor responses

By analyzing the sensor profiles, it can be visually seen if there is a significant

difference between the replicates of each sample for each sensor.

53



APPENDIX D

Experimental and Predicted Area Response Values for Solvents

The following tables show the experimental and predicted area response values

obtained from using three validation methods for ethyl acetate and ethyl alcohol.

Table D1: Experimental and predicted values for ethyl acetate samples.

 

Using Training Data Set
  

 

Experimental Area Predicted Area

Sample Response (Average) Response

Code pV*sec, x10E+06 pV*sec, x10E+06

A1.0 21.0 19.5

A1.0 21.0 21.6

A2.5 24.0 27.3

A2.5 24.0 27.4

A5.0 27.0 24.1

A5.0 27.0 26.0

A7.5 31.0 32.7

A7.5 31.0 33.0

A10.0 34.0 32.1

A10.0 34.0 33.0
 

Table 0.2: Experimental and predicted values for ethyl alcohol samples.

 

 

 

Using TraininLData Set

Experimental Area Predicted Area

Sample Response (Average) Response

Code pV*sec, x10E+06 pV*sec, x10E+06

B1.0 9.0 8.9

B1.0 9.0 9.8

B2.5 10.0 9.5

B2.5 10.0 10.3

B5.0 13.0 11.3

35.0 13.0 16.6

87.5 18.0 21.0

B7.5 18.0 16.9

B10.0 21.0 15.0

810.0 21.0 16.8
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Table D3: Experimental and predicted values for “unknown” ethyl acetate

samples (5ul)

 

Using Leave One out Method
 

 

 

 

Experimental Area Predicted Area

Sample Response (Average) Response

Code pV*sec, pV*sec, x10E+06

x10E+06:t0.7*

A5.0 27.0 26.3

A5.0 27.0 26.2

A5.0 27.0 26.4

A5.0 27.0 25.3

A5.0 27.0 25.7

AVERAGE: 25.9

STDEV. : 0.5
  
 

*Mean value x 10E+06 1: Standard deviation (three replicates)

Table 0.4: Experimental and predicted values for “unknown” ethyl alcohol

samples (5pl)

 

Using Leave One out Method
 

 

 

 

Experimental Area Predicted Area

Sample Response (Average) Response

Code pV*sec, pV*sec, x10E+06

x10E+0610.9*

B5.0 13.0 12.0

B5.0 13.0 12.5

B5.0 13.0 13.2

B5.0 13.0 13.2

B5.0 13.0 10.3

AVERAGE: 12.2

STDEV. : 1 .1

 

  
 

*Mean value x 10E+06 i Standard deviation (three replicates)
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Table 0.5: Experimental and predicted values for blind “unknown” ethyl acetate

samples (2.5pl)

 

RunnirLg Blind Samples

 

 

 
  

 

Experimental Area Predicted Area

Sample Response (Average) Response

Code pV*sec, pV*sec, x1 0E+06

x10E+06i0.9*

A2.5 24.0 24.1

A2.5 24.0 25.9

A2.5 24.0 24.8

A2.5 24.0 24.0

_AZé 2.4.9 J93

AVERAGE: 25.1

STDEV. : 1.2
  
 

*Mean value x 10E+06 : Standard deviation (three replicates)

Table 0.6: Experimental and predicted values for blind “unknown” ethyl alcohol

samples (2.5pl)

 

Runnigg Blind Samples
 

 

 

 

Experimental Area Predicted Area

Sample Response (Average) Response

Code pV*sec, pV*sec, x10E+06

x10E+06i0.5*

82.5 10.0 9.9

82.5 10.0 10.5

82.5 10.0 9.6

B2.5 10.0 10.9

32,5 10,9 1 1 .6

AVERAGE: 10.5

STDEV. : 0.8
  
 

*Mean value x 10E+06 i Standard deviation (three replicates)
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