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ABSTRACT 

REPROGRAMMING TO THE NERVOUS SYSTEM: A COMPUTATIONAL AND 

CANDIDATE GENE APPROACH 

By 

Bradly John Alicea 

The creation of stem-like cells, neuronal cells, and skeletal muscle fibers from a 

generic somatic precursor phenotype has many potential applications. These uses 

range from cell therapy to disease modeling. The enabling methodology for these 

applications is known as direct cellular reprogramming. While the biological 

underpinnings of cellular reprogramming go back to the work of Gurdon and other 

developmental biologists, the direct approach is a rather recent development. 

Therefore, our understanding of the reprogramming process is largely based on isolated 

findings and interesting results. A true synthesis, particularly from a systems 

perspective, is lacking. In this dissertation, I will attempt to build toward an intellectual 

synthesis of direct reprogramming by critically examining four types of phenotypic 

conversion that result in production of nervous system components: induced 

pluripotency (iPS), induced neuronal (iN), induced skeletal muscle (iSM), and induced 

cardiomyocyte (iCM). Since potential applications range from tools for basic science to 

disease modeling and bionic technologies, the need for a common context is essential. 

This intellectual synthesis will be defined through several research endeavors. 

The first investigation introduces a set of experiments in which multiple fibroblast cell 

lines are converted to two terminal phenotypes: iN and iSM. The efficiency and 

infectability of cells subjected to each reprogramming regimen are then compared both 

statistically and quantitatively. This set of experiments also resulted in the development 



 
 

of novel analytical methods for measuring reprogramming efficiency and infectability. 

The second investigation features a critical review and statistical analysis of iPS 

reprogramming, specifically when compared to indirect reprogramming (SCNT-ES) and 

related stem-like cells. The third investigation is a review and theoretical synthesis 

which stakes out new directions in our understanding of the direct reprogramming 

process, including recent computational modeling endeavors and results from the iPS, 

iN and induced cardiomyocyte (iCM) experiments.  

To further unify the outcomes of these studies, additional results related to 

Chapter 2 and directions for future research will be presented. The additional results will 

allow for further interpretation and insight into the role of diversity in direct 

reprogramming. These future directions include both experimental approaches (a 

technique called mechanism disruption) and computational approaches (preliminary 

results for an agent-based population-level approximation of direct reprogramming). The 

insights provided here will hopefully provide a framework for theoretical development 

and a guide for traditional biologists and systems biologists alike.
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CHAPTER 1: TOWARDS THE UNIFIED PRINCIPLES OF DIRECT CELLULAR 
REPROGRAMMING

 

1.0 Introduction 

 Cellular reprogramming via direct means, such as the virally-mediated induction 

of a generic somatic cell to a desired phenotype, is a potentially powerful but partially 

understood process. As a biological technique, cellular reprogramming has created 

opportunities for medical and biotechnological applications, particularly in the field of 

neuroscience. However, there are several aspects of the reprogramming process that 

are not well understood from a systems perspective. These aspects include 

reprogramming efficiency, input cell diversity, and the role of biological dynamics. While 

this dissertation will not provide a unified theory of reprogramming, each of these issues 

will be examined in detail. The second chapter will focus on reprogramming efficiency 

and input cell diversity. The third chapter will focus on comparing direct reprogramming 

with indirect reprogramming, in addition to understanding what these differences mean 

in the context of other stem-like cells. The fourth chapter will focus on reprogramming 

efficiency and biological dynamics. The final chapter will summarize these results and 

spell out directions for future research. By utilizing a variety of approaches, this 

dissertation will hopefully provide much needed context for understanding direct 

reprogramming at the systems-level. 

1.1 Research Aims 

 The focus of this dissertation is on the basic biology of different types of induced 

cells, from pluriponent to neuronal.  This dissertation will break ground in two ways. 

First, it will provide an informal comparison between different induced cell phenotypes 
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that may be used in the nervous system. These include induced pluripotent (iPS), 

induced neuron (iN), and induced skeletal muscle (iSM) cells. Second, it will provide a 

theoretical context for the large body of research on induced cell types that already 

exists. This will be accomplished in part by addressing three aims: 

1) To examine the process of phenotypic respecification to two different destination 

phenotypes (iNC, iSMC), which provides novel information about the “architecture” of 

cellular reprogramming. 

2) Through the use of novel comparisons and bioinformatics techniques, to examine the 

process of phenotypic respecification to the same phenotype using different methods 

(SCNT, direct reprogramming), which can place specific reprogramming regimens into a 

generalized context. 

3) Re-interpret cellular reprogramming as a complex, dynamical system through the use 

of dynamic and population-level models that capture the underlying structure of large-

scale phenotypic change. 

 These aims lead to three hypotheses that focus the work presented here around 

three general themes: the role of biological diversity in the reprogramming process, an 

evaluation of direct reprogramming with respect to indirect methods (e.g. SCNT), and 

the potential of dynamic and population-level models to elucidate the reprogramming 

process. The hypotheses are as follows: 

H1) A comparison of reprogramming regimens that result in the production of induced 

neurons (iNCs) and induced skeletal muscle (iSM) fibers will allow us to better 

understand the role of biological diversity in the reprogramming process. 
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H2) Novel comparisons and bioinformatics techniques will allow us to uncover subtle yet 

important differences between cells reprogrammed to the same phenotype 

(pluripotency) using different methods (SCNT, direct reprogramming). 

H3) Tested over time, dynamic and population-level models will allow for robust theories 

that characterize possibilities and limitations afforded by the underlying structure of the 

reprogramming process. 

 This dissertation consists of three papers, which are Chapters 2, 3, and 4, each 

of which provide a different perspective on direct reprogramming, and provide support 

for each stated aim. These chapters will deal with the following themes: the role of 

diversity in cellular reprogramming, comparing indirect and direct reprogramming, and 

new directions in direct reprogramming. 

1.1.1 Role of diversity in cellular reprogramming. Chapter 2, entitled “Defining 

phenotypic respecification diversity using multiple cell lines and reprogramming 

regimens”, includes a comparison between cell lines and reprogramming regimens (in 

this case, the creation of iN cells with the creation of iSM cells). A quantification method 

for the reprogramming efficiency and infectability variables used in the first paper will 

also be introduced. The findings in this paper support Aim #1, and make a contribution 

towards uncovering this fundamental architecture.  

1.1.2 Comparing indirect and direct reprogramming. The second paper is entitled 

“Comparing indirect-derived ES cells and directly-derived iPS cells”, and is a book 

chapter that both compares pluripotent cells created using indirect means (SCNT-

ESCs) with iPS cells and places observed differences between these cell types in a 

statistical context. The comparison between indirect and direct reprogramming, along 
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with the meta-comparison between stem-like cell lines, contributes towards the second 

aim.  

1.1.3 New directions in direct reprogramming. The third paper (an invited review) is 

entitled “New Directions in Cellular Reprogramming”, and provides a one-of-a-kind 

review of systems biology and computational modeling approaches relevant to direct 

reprogramming. This paper provides a view of direct reprogramming as one of a 

complex, dynamical system. Such a viewpoint has the potential to provide insight into 

some of the mysteries surrounding the timing and overall kinetics of direct 

reprogramming, even in the absence of direct experimental observation. 

1.2 Direct Reprogramming: diversity in a general mechanism 

 Direct cellular reprogramming has a brief but high-profile history (Jaenisch, 

2012). Vierbuchen and Wernig (2012) discuss this history in detail, along with the 

variety of cell types that are possible using the direct reprogramming method. By using 

a relatively straightforward approach (delivery of a few key transcription factors and 

phenotype-specific culture medium), many different types of cell can be made from any 

given somatic cell type. To demonstrate this, a comparison of selected attributes 

amongst four major induced cell types (iPS, iN, iSM, and induced cardiomyocyte - iCM) 

can also be seen in Table 1.1. The direct reprogramming of readily cultured and 

maintained cell types such as fibroblasts to clinically important tissue types such as 

neurons, cardiac and skeletal muscle, hepatocytes, and pluripotent stem cells has 

tremendous promise in the understanding, diagnosis, and future treatment of many 

currently intractable human diseases (Patel and Yang, 2010; Kiskinis and Eggan, 2010). 

Despite the fact that many advances have been made into understanding how to 
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convert cells to alternate phenotypes (Caiazzo et al., 2011; Yoo et al., 2011), very little 

is known about which properties of input cell lines and underlying biochemical process 

contribute to the efficiency of this process. This is especially true of the parallels 

between different instances of reprogramming.  

Table 1.1. Comparison of different attributes amongst different induced cell types. 
  

iPS 
 

 

iN 
 

iSM 
 

iCM 

 

Factors 
 

Oct4, Sox2, 

Klf4, c-Myc
1 

 

 

Ascl1, Pou3f, 
Zic1, Myt1L 

 

MyoD, Myf5, 
Myogenin, Myf6 

 

Gata4, Mef2C, 

Tbx5, Hand2
2
 

 

First Reported 
 

 

2007 
 

2011 
 

1987
3
 

 

2010 

 

Reprogrammed 
in vivo 

 

 

No 
 

No 
 

No 
 

Yes 

 

Self-renewing 
(immortalization) 

 

 

Yes 
 

No 
 

No 
 

No 

 

Excitable 
(action potentials) 

 

 

No 
 

Yes 
 

Partial 
 

Yes 

 

Exhibit functional 
integration 

 

 

Yes 
 

Partial 
 

N/A 
 

Yes 

 

1 
Not essential. 

2
 Greatly enhances efficiency. 

3
 Done with a single factor (MyoD). 

 
The initial condition of the input cells can introduce a great degree of variation in 

both the overall efficiency and other outcomes of the reprogramming process. Prior 

studies (Hanna et al., 2009) have highlighted how initial population size and the nature 

of input cellular material can affect the timing of key events and overall rate in the 

reprogramming process. Related to these outcomes is the inherent stochasticity of the 

direct reprogramming process, particularly with regard to fluctuations. High levels of 

variation can either occur independently or interact with large-scale phenotypic 

remodeling (Samoilov, Price, and Arkin, 2006). Of particular interest are the stochastic 



6 
 

effects of cell cycle and proliferation (Raj and van Oudenaarden, 2008) on the resulting 

infection and reprogramming efficiency of cells.  

The research presented here will contribute to the existing literature by unifying 

work done on several induced cell types. While the factors used to directly reprogram 

somatic cells to a specific phenotype act to induce changes in different gene regulatory 

networks, the overall process of reprogramming is thought to be similar across contexts. 

We will now review the essentials of iPS, iN, and iSM phenotype creation, with an 

emphasis on the parallels of the different instances of direct reprogramming. 

1.2.1 Short overview of iPS cells. The creation of pluripotent cells from somatic cells 

involves a resetting of the original cellular state. This has its roots in indirect 

reprogramming, starting with the experiments of John Gurdon (Gurdon and Byrne, 

2003; Jaenisch, 2012). Attempts at achieving greater control over this process finally 

bore fruit in the mid-2000s, with the successes of the Thomson (Yu et al., 2007) and 

Yamanaka (Takahashi et al., 2007) groups. In these experiments, four to five 

transcription factors were delivered to somatic cells using virally-mediated techniques.  

 The transcription factors that enable iPS reprogramming act in a manner similar 

to master regulators (Khan et al., 2012) in the sense that a few key transcription factors 

may trigger a large number of gene expression, epigenetic, and other regulatory 

changes. This is also generally true for other types of direct reprogramming (e.g. iN, 

iSM, iCM). In fully reprogrammed cells (a fraction of the original population), continuous 

endogenous experession of these factors these lead to wholesale changes in cell 

phenotype. This has been understood in terms of regulatory network architectures that 
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also apply to the direct reprogramming of iN cells and iSMs (Artyomov, Meissner, and 

Chakraborty, 2010; MacArthur, Maayan, and Lemischka, 2009; Buganim et al., 2012). 

1.2.2 Short overview of iN cells. The origins of creating neuronal cells from a somatic 

cell also involve resetting the original cellular state. Previous to direct techniques (see 

Zhang et al., 2001), neural precursors were required to create mature neural cells (e.g. 

neurons, astrocytes, and glia). However, using a combination of transcription factors 

that have been identified as diagnostic markers of neural precursor cells (Lujan et al., 

2012) and genetic screens (Vierbuchen et al., 2010), it became possible by 2010 

(Vierbuchen et al., 2010; Pang et al., 2011; Yang et al., 2011) to create inducible neural 

cells. As with iPS cells and iSMs, the delivery of transcription factors stimulates their 

endogenous upregulation (Soufi, Donahue, and Zaret, 2012). Sustained endogenous 

regulation of these key factors is the hallmark of a fully-reprogrammed cell. Unlike iPS 

cells, iNs do not form tightly-integrated colonies, although their true functional 

requirements are far from known at this point.  

 In the case of our experimentation (see Chapter 2), iN cells are mostly 

glutamitergic neurons with generic processes. More generally, the direct reprogramming 

approach allows us to create iN cells with many different neural attributes (see 

Vierbuchen and Wernig, 2012). This diversity of target phenotypes is made possible 

through the combinatorial use of key neuron-related transcription factors. These cell 

types include: dopaminergic neurons (using 6 factors), motor neurons (using 5 factors), 

Glutamitergic + GABAergic (using 3 factors), and neural progenitors (using 3 factors). 

Furthermore, the production and transplantation of dopaminergic iN cells under defined 

conditions is also possible (Kim et al., 2011; Caiazzo et al., 2011).  
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1.2.3 Short overview of iSM cells. The direct production of skeletal muscle is actually 

the first successful attempt at direct reprogramming. The work of Lassar (1987) 

demonstrated that MyoD delivered using cDNA molecules is sufficient to respecify 

somatic cells to skeletal muscle fibers. This experiment can be replicated using four 

transcription factors delivered via viral-mediation (see Chapter 2). While these fibers are 

not always contractile, they are phenotypically identifiable as skeletal muscle fibers. 

Other experiments circa 2010 (Ieda et al., 2010) and 2012 (Qian et al., 2012) show how 

iCM cells can also be produced using a 3-4 transcription factor combination. The 

effectiveness (and lack of effectiveness) of these factors have been demonstrated using 

genetic screens (Ieda et al., 2010) and in vivo validation (Qian et al., 2012; Song et al., 

2012). This has potential for transplantation and other applications (Park et al., 2008a; 

Soldner and Jaenisch, 2012). 

1.3 Applications to Nervous Systems: from transplantation to models  
 
 The direct reprogramming approach can be used to the better understand and 

perhaps even repair nervous systems. These applications can range from disease 

models (Kiskinis and Eggan, 2010) to transplantation (Chambers and Studer, 2011). 

Personalized, reprogrammed cell-based disease models (for concept, see Wieland and 

Fussenegger, 2012) can be created from abundant source of patient-specific somatic 

cells such as fibroblasts. The ability to derive cells with the same genetic background as 

a disease sufferer can allow us to observe the development and progression of disease 

phenotypes and regenerative processes both in context and in vitro. With the advent of 

next-generation sequencing techniques such as whole-genome RNA sequencing (RNA-

seq, see Grabherr et al., 2011), exonuclease chromatin immunoprecipitation (ChIP-Exo, 
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see Rhee and Pugh, 2011), and whole-genome bisulfite sequencing (BS-seq, see 

Varley and Mitra, 2010), these cell populations can be understood as never before.  

 While cell therapy has a checkered history, there are also opportunities for using 

directly reprogrammed cells to restore function through the transplantation of cells with 

a respecified phenotype. While this has obvious medical applications, it may also help 

us understand how cells with a respecified phenotype integrate themselves into 

functional tissues and existing neuronal networks. 

 For proper application of directly reprogrammed cells to the nervous system, 

direct reprogramming must be better understood as a process. This can be done 

through the use of more precise quantitative measurements, large-scale and meta-

analyses, and simulation-based approaches. We will now turn to the regulatory and 

biochemical processes of reprogramming, particularly as they relate to the mechanisms 

that trigger a respecified phenotype. 

1.4 Mechanisms behind phenotypic conversion 
 

This dissertation will focus on the potential differences between different types of 

input cell, different types of reprogrammed cell, and the mechanisms behind these 

differences. There are three themes in the literature that not only suggest differences in 

reprogramming capacity do exist between cellular populations, but also point to the 

existence of a complex mechanism. One is work from the 1970s and 1980s on the 

preferential conversion of 3T3 cells to an adipose cell fate (Green and Kehinde, 1976; 

Nixon and Green, 1983). In these experiments, the spontaneous conversion of 3T3 cells 

in culture was found to be highly variable and exhibited a preference for some cells over 

others. Later work also in 3T3 cells isolated the mechanism of adipose differentiation to 
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the differential expression of growth hormone receptors between isolated cell 

populations (Morikawa, 1986; Corin, Guller, Wu, and Sonenberg, 1990). In the case of 

reprogramming to the induced pluripotent stem (iPS) cell type using a retroviral 

approach, Polo et al. (2010) demonstrated that mouse cells from different sources 

(fibroblast, hematopoietic, and myogenic) will exhibit differential potentials for embryoid 

body formation and differentiation. This “differential potential” was largely found to be 

transient (e.g. disappeared with regard to time spent in the iPS state), but was based on 

indicators such as transcriptional and epigenetic similarity. More recent work suggests 

that successful phenotypic respecification is a rare event (Brambrink et al., 2008; Hanna 

et al., 2008) that involves the combined effects of cell line-specific behavior driven by 

stochastic processes. 

1.4.1 Viral-mediated approaches. Although direct reprogramming can be done in a 

number of ways (RNA, etc), the most traditional (and reliable) technique is viral 

mediation (Bouard, Alazard-Dany, and Cosset, 2009). Figure 1.1 shows an example of 

the viral vector used in this method. Briefly, a series of transcription factors are included 

on a cassette which is then packaged on a retroviral vector. The in vitro cell population 

is exposed to a concentration of viral particles which infect the cells in culture. Upon 

exposure, individual cells may or may not take up the virus. The efficiency of this 

process is called the infectability of a cell population (Centlivre et al., 2011). In turn, cells 

that take up the viral particles and initially express high levels of the delivered 

transcription factors may or may not endogenously express the delivered factors. This 

fraction of the population (that exhibit endogenous expression and related phenotypic 

changes) contributes to the reprogramming efficiency of a cell population. Each regimen 
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involves the delivery of factors identified to be most critical in conversion to the desired 

phenotype. For example, conversion to iPS cells involves delivery of Oct4, Sox2, Klf4, 

and c-Myc (Stadtfeld and Hochedlinger, 2010). Although a four-factor recipe is shown in 

Figure 1.1 for each type of conversion, the actual number of factors used may be 

variable. 

 
Figure 1.1. Generalized polycistronic vector with a cassette (labeled factor) that is 
interchangable with three four-factor regimens. 
 
1.5  Direct cellular reprogramming as a stochastic, complex system.  
 
 To pursue systems-level computational modeling and simulation work, we must 

better understand the structure of direct cellular reprogramming. These structural 

underpinnings consist of an unpredictable process which is embedded within the 

complexity of the cell. Evidence of this can be seen in how slow kinetic (Lin et al., 2009) 

and stochastic mechanisms (Alfano, 1998) are used to characterize cellular 

reprogramming (Allen, 2003; Wilkinson, 2006) resemble a critical process (Bak, Tang, 

and Weisenfeld, 1988). Unlike protein folding, which exhibits fast kinetics and operates 

on a timescale of femto- to nano-seconds (Didiera et al., 2008; Karplus, 1999), 

reprogramming from one cellular state to another involves processes that occur at 

timescales ranging from that of protein folding  to hours and even days (Brambrink et 

al., 2008; Stadtfeld et al., 2008). Because of this structure, cellular reprogramming can 
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be considered a course-grained phenomenon (Riniker, Allison, and van Gunsteren, 

2012).   

One consequence of this complexity at multiple scales is that large-scale 

phenotypic changes are initiated but not controlled by a small number of specific 

manipulations. These manipulations result in the initiation of hierarchical regulatory 

cascades (Erwin and Davidson, 2009), the propagation of which require changes above 

a given threshold and occur in bursts (Watts, 2002). This not only results in avalanche-

like changes, but also implies that reprogramming to any one cell type (e.g. iPS) can 

occur through a large number of possible pathways (see Artyomov, Meissner, and 

Chakraborty, 2010). As an example, Loh and Lim (2011) have proposed that the 

delivered transcription factors (e.g. Oct4, Sox2, Klf4, c-Myc) often act in a combinatorial 

fashion to produce a mosaic of outcomes, from fully-reprogrammed cells to partially 

reprogrammed cellular phenotypes and apoptotic cells. This explains observations of 

low rates of conversion efficiency and a highly-variable response across replicates. 

The known biochemical bases of direct cellular reprogramming demonstrate that 

that there are many potential questions regarding the complexity of direct cellular 

reprogramming that are only beginning to be defined. To better understand the role of 

complexity in the direct reprogramming process, we will now review three interrelated 

issues: the measurement of critical events at many levels of cellular regulation and the 

direct reprogramming process, the acquisition of cellular state as a critical point in the 

reprogramming process, and the treatment of critical changes in the cell due to cellular 

reprogramming as cellular switches.  
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1.5.1 Measurement of critical events and the direct reprogramming process. Chan et al. 

(2009), Mikkelsen et al. (2008), Liu et al. (2007), and Wadhwa, Kaul, and Mitsui (1999) 

have shown that the state of a reprogrammed cell observed at any one timepoint is the 

product of large number of undefined events that can be approximated by 

measurements of microRNA activity (Xu et al., 2009), immunohistochemistry (Chan et 

al., 2009), gene expression (Tang, 2008), and population dynamics (Mantzaris, 2006). 

In the literature on iPS direct reprogramming, these are characterized as discrete 

barriers, whether they involve changes in the expression of single genes (Hong et al., 

2009), specific epigenetic changes (Maherali et al., 2007; Pasini et al., 2010), or the 

activation of an extended transcriptional network (Kim et al., 2008). 

Yet not all mechanisms are created equal. Some candidate mechanisms that 

enable or enhance direct reprogramming have a global effect on phenotypic state, while 

the effect of others is limited to specific points in the reprogramming process. Maherali 

et al. (2007) and Theunissen et al. (2010) provide one example of a global mechanism 

by suggesting that Nanog expression alters the activation of Oct4 and Sox2 as well as 

the speed of reprogramming independently of proliferation rate. Evidence from single-

cell analysis also suggests that the reprogramming process is marked by different 

phases (early vs. late) which can be identified by distinct regulatory regimes (Buganim 

et al., 2012). 

1.5.2 Acquisition of cellular state as a critical point in reprogramming. One example of a 

critical point in the iPS reprogramming process is the acquisition of stemness. Parallel 

processes in iN and iSM reprogramming might be the extension of neuronal processes 

and cell body fusion, respectively. Properties of the mature iPS phenotype and other 
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stem-like cells are collectively referred to in the literature as stemness (Mikkers and 

Frisen, 2005; Orford and Scadden, 2008; Gokhale and Andrews, 2008; Spivakov and 

Fisher, 2007). Zipori (2004) argue that these properties define a cellular state, 

comparable to fibroblast-ness, neuron-ness, or muscle-ness. Stemness has traditionally 

been defined in terms of embryonic stem cells (ESCs) and 8-cell embryos. While there 

are many differences between different types of stem-like cell (see Chapter 3 for more 

information), stemness defines what properties make them distinct from somatic cells.  

Given the great diversity among cells of a particular state (Sridharan et al., 2009; 

Fleming et al., 2008; Xie et al., 2010), it may appear difficult to find commonalities that 

define the boundaries of cellular state. In the case of stemness, there are indeed 

several overarching features of pluripotency. In Mikkers and Frisen (2005), stemness is 

defined as the stable suspension of cells in a specific developmental stage where cells 

do not leave the cell cycle. The stage is marked by expression and upregulation of Oct4 

and Nanog (Mikkers and Frisen, 2005). In Orford and Scadden (2008), stemness is 

defined as the continuation of the cell cycle caused by the downregulation of proteins of 

the Rb family and results in the global downregulation of cell specific genes. In Mikkers 

and Frisen (2005) and Gokhale and Andrews (2008), stemness is defined as by cells 

within a definable niche. It is interaction with the local environment that is thought to be 

critical for the maintenance of stemness (Mikkers and Frisen, 2005). The work of 

Ramalho-Santos (2004), Zipori (2004), Ivanova et al. (2006), and Azuara et al. (2006) 

provide us with other views on stemness and what unites stem-like cells as a single cell 

type. 
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  These observations also apply to iPS cells, with the exception that the acquisition 

of stemness requires a reprogramming process where thresholds must be overcome on 

the way to acquiring these hallmarks. In this sense, a fully reprogrammed iPS cell is 

subject to several rounds of selection, each round having selected for cells with the 

capacity to reacquire stemness (for an evolutionary view on stem cell biology, see 

Mangell and Bonsall, 2008). 

1.5.3 Critical changes in direct reprogramming as cellular switches. Another way to 

understand the occurrence of critical changes in the direct reprogramming process is to 

model the events that define a reprogramming cell as a series of switches that 

experience linear feedback. This approach best characterizes cellular differentiation and 

reprogramming as a series of parameters which can be tuned. Linear feedback is based 

on internal and external stimuli, and governed by improvements from a baseline rate. 

This was done in Mangell and Bonsall (2008) by applying a steady-state approach to 

this problem. As selected internal or external inputs are introduced, a linear feedback 

mechanism drives forward changes in reprogramming efficacy. In Park and Daley 

(2007), an example of a linear feedback mechanism (Fbx15) is given. In particular, 

Fbx15 is identified as something that defines stemness, but is not required in the 

transformation of a cell to pluripotency. Biological switches can be defined as genes that 

are modulated in a way that ultimately leads to large-scale phenotypic changes. The 

dynamics of a biological switch can range from all-on-none (Ferrell and Machleder, 

1998) to high-dimensional (Cinquin and Demongeot, 2005), depending on the nature of 

the linear feedback. As the conductor of phenotypic changes, switches allow for the 
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movement of cellular phenotypes from one state to another (Huang, Eichler, Bar-Yam, 

and Ingber, 1998). 

1.6 Conclusions 
 

While relatively new, the science of direct cellular reprogramming has far-

reaching applications. For specific applications to the nervous system, this area of 

research will herald advances in fields such as personalized medicine and tissue 

regeneration. In terms of basic science and theoretical synthesis, advances in the field 

of direct cellular reprogramming have broader relevance to our understanding of 

physiological adaptation/plasticity, cellular transformation (e.g. cancer), and 

developmental biology. In turn, systems biology and the complex system models can 

provide novel and needed perspectives to problems that are only beginning to be 

understood. Understanding cellular reprogramming as a dynamic, population-based 

process is essential to building a theory of direct reprogramming, and has applications 

to many other cellular and physiological processes. 

The rest of this dissertation will feature case studies involving iN and iSM cells 

(Chapter 2) and iPS cells (Chapter 3). Chapter 4 will present literature review and 

theoretical synthesis that spans iPS, iN, iSM, and iCM cells. Chapter 5 will feature a 

summary of results from these chapters in addition to future research directions. This 

includes advances in experimental investigation and in silico modeling. 
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CHAPTER 2: DEFINING PHENOTYPIC RESPECIFICATION DIVERSITY USING 
MULTIPLE CELL LINES AND REPROGRAMMING REGIMENS 

 
 

2.0 Abstract 

 To better understand the basis of variation in cellular reprogramming, 

experiments were performed that had two primary objectives: first, to determine the 

degree of difference, if any, in reprogramming efficiency among cells lines of similar 

type after accounting for technical variables, and second, to compare the efficiency of 

conversion of multiple similar cell lines to two separate reprogramming regimens – 

induced neurons and induced skeletal muscle. Using two reprogramming regimens it 

could be determined if converted cells likely are derived from a distinct subpopulation 

generally susceptible to reprogramming or are derived from cells with independent 

capacity for respecification to a given phenotype. Our results indicated that when 

technical components of the reprogramming regimen were accounted for, 

reprogramming efficiency was reproducible within a given primary fibroblast line but 

varied dramatically between lines. The disparity in reprogramming efficiency between 

lines was of sufficient magnitude to account for some discrepancies with results 

reported in the existing literature. We also found that the efficiency of conversion to one 

phenotype was not predictive of reprogramming to the alternate phenotype, suggesting 

that capacity for reprogramming does not arise from a specific subpopulation with a 

generally "weak grip" on cellular identity. Our findings suggest that parallel testing of 

multiple cell lines from several sources may be needed to accurately assess the 

efficiency of direct reprogramming procedures, and that testing a larger number of 
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fibroblast lines -- even lines with similar origins -- is likely the most direct means of 

improving reprogramming efficiency. 

2.1 Introduction 

 Cellular reprogramming, when accomplished by either direct or indirect methods, 

is an inefficient process with many potential sources of variability. Several cellular 

characteristics, including cell type, species of origin, and age of the donor subject, are 

known influence reprogramming efficiency. There is an emerging awareness, however, 

thatholding these general cellular properties and technical aspects of the 

reprogramming regimen constant does little to hold results constant. This is observed in 

reprogramming experiments using either indirect means such as somatic cell nuclear 

transfer (SCNT – Campbell et al. 1996; Cibelli et al., 1998; Siripattarapravat et al., 2009; 

Wakayama et al., 1998), or direct methods such as plasmid transduction or infection 

with recombinant retroviruses expressing transcription factors (Davis, Weintraub, and 

Lassar, 1987; Takahashi and Yamanaka, 2006; Vierbuchen et al., 2010; Ieda et al., 

2010; Huang et al., 2011). One of the earliest studies of direct reprogramming, 

describing the conversion of mouse fibroblasts to skeletal muscle myotubes by 

transduction of the myogenic transcription factor MyoD1, found that reprogramming was 

not uniform across all cell lines. This was true even within a single cell type isolated 

from a single species (Davis, Weintraub, and Lassar, 1987). Comparison of five mouse 

fibroblast cell lines C3H10T1/2, NIH3T3, Swiss 3T3, Swiss 3T3 clone 2, and L Cells, 

transfected with a MyoD expression plasmid and selected to produce colonies of stably 

transduced cells yielded colonies of both the input and the conversion phenotype. The 

conversion efficiency varied dramatically from a maximum of 53% myoblastic colonies 
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in C3H10T1/2 cells to a minimum of 3% myoblastic colonies in L cells. Similarly, a 

report from Lattanzi et al. (1998) comparing the myogenic conversion of fibroblasts from 

different tissue sources infected with a high-titer (MOI 2,000) MyoD adenovirus vector 

found that murine dermis, muscle-, and bone marrow-derived fibroblasts converted at 

efficiencies of 59%, 43%, and 7% respectively, and human fibroblasts derived from the 

same tissues at respective efficiencies of 54%, 36%, and 6%. Together, these reports 

indicate that reprogramming variation may be observed regardless of whether vector 

delivery is relatively inefficient (plasmid transduction) or highly efficient (adenoviral 

infection). More recently, variation in the input cell population was postulated to account 

for reprogramming disparity in the conversion of fibroblasts to functional cardiomyocytes 

reported by several groups (Ieda et al., 2010; Yoshida and Yamanaka, 2012; Song et 

al., 2012; Chen et al., 2012). 

 Although variation in reprogramming efficiency may be frequently observed and 

reported, it remains unknown whether the observed variation arises from technical 

differences or from undefined differences intrinsic to the target cell lines used. If 

variation is still observed when technical elements are tightly controlled and factored 

into the calculation of reprogramming efficiency, it suggests that line-intrinsic 

characteristics play an important role in line-to-line variation.  

 Line-intrinsic variation in the number of cells amenable to respecification could 

arise through two hypothetical mechanisms. In the first, reprogrammed cells would have 

their origin in a subset of cells with general susceptibility to identity change. Like stem 

cells, these cells would be receptive to adoption of alternate fates, but might lack the 

active determinants associated with canonical stem cells. Alternatively, reprogrammed 
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cells could arise through chance reprogramming of cells to a specific alternate fate, but 

with no overall enhanced capacity for respecification. 

 Within cell lines of the same general type, are line-dependent differences in 

reprogramming capacity observed? If this is the case, then it is unclear whether 

reprogrammed cells arise from a subpopulation with a generally “weak grip" on identity, 

or from cells with independent capacity for respecification to a given phenotype If 

significant line-to-line differences are observed and cells with general lability of identity 

are the source, we hypothesized that we should observe a correlation in reprogramming 

efficiency using two separate conversion regimens applied to multiple target cell lines. 

Conversely, if cells with independent capacity for respecification are the source of 

converted cells, we would observe no significant correlation between conversion 

regimens.  To test this hypothesis we used a rigorous measure of reprogramming 

efficiency that was robust across replicates within a specific reprogramming regimen. A 

parallel analysis was conducted consisting of 19 primary fibroblast cell lines converted 

to two alternate and disparate identities – induced neural cells (iN cells) and induced 

skeletal muscle cells (iSM cells). The results presented below provide insight into the 

nature of biological diversity as it is relevant to phenotypicconversion using direct 

cellular reprogramming methods. 

2.2 Materials and Methods 

2.2.1 Fibroblast lines. Human primary fibroblasts were obtained from skin-punch 

biopsies or gingival explants under MSU-approved IRB protocols (ADF, E2F, EAF and 

HSK) or were obtained from commercial sources including the ATCC (FET and HDNF) 

and The Coriell Institute (RET, SAF, and AUT). Additional information on these lines is 



21 
 

provided in Appendix B, Table 1. Mouse fibroblast lines were harvested from a single 5-

month-old nu/nu mouse sacrificed by CO2 overdose, the carcass disinfected with 

ethanol, and multiple tissues removed for dissection. 125mm
3
 fragments of each target 

organ were removed, minced, and individual pieces placed in one well of a 6-well plate 

for outgrowth. Primary outgrowths were plated in fibroblast medium (DMEM, 10% FBS, 

1X antibiotic/antimycotic (Invitrogen, Carlsbad, CA) and left undisturbed except for 

medium changes for two weeks and then passaged 1:1 to a new well. After an 

additional week of growth, the lines were passaged 1:2. This process was repeated to 

passage 5 when the wells were compared to identify those with typical fibroblast 

morphology, an absence of obviously non-fibroblastic cells, and similar growth 

characteristics. Thirteen mouse fibroblast lines were selected for two additional rounds 

of passage and expansion and then frozen as multiple aliquots for use in experiments. 

2.2.2  Fibroblast characterization. Fibroblast RNAs from the mouse lines at passage 6-7 

and the human lines at passages 8-10 were purified using Trizol (Invitrogen, Carlsbad, 

CA) or the RNeasy kit (Qiagen, Valencia, CA) and 2ug of purified RNA converted to 

cDNA using Superscript II (Invitrogen, Carlsbad, CA), following manufacturers 

guidelines. qPCR was performed on an ABI Prism 7000 analyzer using 1µl of cDNA and 

normalizing against nuclear lamin A or ARHGAP mRNAs as internal controls.  Other 

genes used as internal controls (RPL27A, EED, and GR) gave similar results.  Primers 

for qPCR analysis are shown in Appendix B, Table B.1.   

 Processing of human and mouse fibroblasts for immunocytochemical analysis to 

examine marker expression at the level of individual cells was performed as described 

below for iNC and iSMC analysis using primary antibodies as follows: anti-vimentin 



22 
 

1:1250 (Millipore AB5733), anti-fibronectin 1:750 (BD, 610077), anti-nestin 1:250 (Santa 

Cruz Biotechnologies, H-85), anti-Sox2 1:250 (Santa Cruz Biotechnologies, Y-17).  

Multiple images of each immunostained line were captured and approximately 1X10
3
 

cells were examined at high magnification for the presence or absence of markers 

consistent with stem cell (Sox-2/nestin) or fibroblast identity (vimentin/fibronectin). NPCs 

used for comparison were fixed in parallel with fibroblasts and were generated as 

described below for iNC studies.  

  Relative infectivity for "Factor Expression Early" (FEE) was calculated by 

infecting 1X10
5 actively growing cells with concentrated NITSC-NLS-YFP retrovirus at 

an MOI of approximately 0.5 and then counting the YFP-positive cells as a fraction of all 

cells at day 4 post-infection over three replicates. Since the precise cellular age of each 

line was unknown, to ensure that none of the lines analyzed was approaching cellular 

senescence that could influence reprogramming, each line was continuously passaged 

and counted for four rounds at the end of experiments to determine that all lines were 

still proliferative. One of the 13 mouse lines, LU3, failed by the third trial passage and 

was removed from the final analysis. Two human lines, AUT and HSK, produced iN 

cells and iSM cells and were partially characterized, but were not included in the final 

analysis because the matching frozen stocks were lost before the completion of some 

experiments due to freezer failure. Mouse lines TA6, KI2, and LU6 were not included in 

the experiments for the same reason. 

2.2.3 iNC induction: plasmids and virus production. cDNAs encoding human ASCL1, 

POU3F2, and ZIC1 were obtained from Open Biosystems (Huntsville, AL). Myt1L and 

NeuroD1 ORFs were obtained from cDNA produced from human brain reference RNA 
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(Applied Biosystems, Carlsbad, CA). NITSC was produced by introducing the BstEII-

ClaI fragment containing Neo-IRES-TTA-TetO from NIT (Genbank Acc# AF311318) into 

BstEII-ClaI cut pMSCVneo (Clontech, Mountain View, CA) and a polylinker for 

transgene expression, SfiI-MluI-PmeI-ClaI. Primers used for cloning of factors into 

NITSC are shown in Appendix B, Table B.2. The amplified YFP ORF with an MluI site 

inserted immediately before the stop codon was digested SfiI-PmeI and introduced into 

NITSC to produce the control vector NITSC-YFP. Remaining factor ORFs were PCR 

amplified with compatible MluI or Asc1 sites at the 5' end and ClaI at the 3' end for 

cloning into NITSC-YFP to produce the fusion protein constructs. NITSC recombinant 

MMLV particles were produced by three-way calcium phosphate transfection of HEK 

cells with gag-pol and VSV encoding plasmids to produce replication defective virus 

particles. Two days after transfection, viral supernatants were harvested, filtered, and 

introduced into fibroblast cultures using the carrier polybrene (8ug/ml) to improve 

infection efficiency essentially as described for lentiviral vectors in Suhr et al. (2009). 

Viral supernantants were frozen as aliquots and tested on MEFs to provide a rough titer 

and to establish the competence of viral preparations to produce iN cells prior to use 

with target cells. As indicated in the text, the YZIC/YASCL/YPOU3F (ZAP) combination 

appeared most potent on both mouse and human fibroblasts in preliminary experiments 

and was used for conversion unless otherwise noted. Equal volumes of each viral 

supernatant were used (e.g. for ZAP, typically 5ml of each viral supernatant for a total of 

15ml infectious medium/10-cm plate). 

2.2.4 iNC induction: infection and iNC conversion. For preliminary studies to determine 

the optimal timing and conditions for iNC conversion, approximately 1X10
6
 growing 
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mouse or human fibroblasts in fibroblast medium at equal confluency were infected with 

viral medium and kept overnight to allow infection. The next day, virus-infected cultures 

were passaged by trypsin treatment to 6-well, 12-well, or 35mm tissue culture plates 

and allowed to remain 12-24 additional hours in fibroblast growth medium to attach and 

expand. After this time, the fibroblast medium was aspirated and replaced with iNC 

medium (DMEMF12 with N2 supplement and penicillin/streptomycin at 50u/ml) 

(Invitrogen, Carlsbad, CA). iNC medium was changed at 4-5 day intervals for the 

experimental duration, and the cells were kept in a 5% CO2 environment at 37
o
C. Cell 

culture plates coated with polyornithine/laminin (PORN/lam) or with no coating were 

used for pilot experiments interchangeably with little noticeable impact on iNC 

formation. To determine the optimal time for counting of iN cells, factor-infected MEFs 

and adult mouse and human fibroblast cultures were fixed and immunostained with the 

neural TUJ1 antibody (see below) at 5-6 day intervals post-infection. 

 iNC conversion for determination of reprogramming efficiency across mouse and 

human cells lines was performed essentially as described above except that 1X10
5
 

target cells in one well of a 6-well plate were infected with 3 mls of the iNC (ZAP) viral 

cocktail and 24-hours later passaged to 3 wells of a 12-well plate. The passaged cells 

were allowed to rest an additional day and were then shifted to iNC medium with 

medium changes every 3-4 days until fixation and immunoprocessing on day 12 for 

mouse iN cells and day 24 for human iN cells. Experiments for quantification of 

reprogramming efficiency were performed in three separate replicates. 

2.2.5 iNC induction: immunohistochemistry and imaging. Cells were fixed using 4% 

paraformaldehyde for 10 minutes followed by 3X PBS washes for 10 minutes each. 
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PBST (PBS with 0.3% Triton X-100) with 3% donkey serum (DS) was used for 30-60 

minutes at room temperature to block, and was then replaced with PBST+1% DS with 

added primary antibody overnight at 4
o
C. Primary antibodies were used at the following 

dilutions: TUJ1 - 1:3000 (Santa Cruz, Cat# sc-58888), MAP2ab -1:300 (Sigma, 

Cat#M1406), Synapsin 1 – 1:400 (Millipore, Cat#AB1543P), pan-neurofilament – 1:1000 

(Covance, SMI311), Doublecortin – 1:400 (Santa Cruz, Cat#sc-8066), GAD – 1:250 

(Santa Cruz, Cat#sc-7513), PSD95 – 1:250 (NeuromAb), GABAR3 – 1:250 

(NeuromAb). After overnight incubation with primary antibody, wells were washed with 

PBST+1%DS 3X10 minutes and incubated with PBST+1% DS with the appropriate 

secondary antibody (Jackson ImmunoResearch, West Grove, PA) for 30-60 minutes.  

Wells were then washed with PBS 3X10 minutes to remove excess secondary, stained 

briefly with PBS+1ug/ml bis-benzamide to label nuclear DNA, and rinsed again. All 

plates and wells were stored at 4
o
C in the dark until imaging. Imaging was performed 

on a Nikon Eclipse TE2000 inverted stage fluorescence microscope. 

2.2.6 Electrophysiology. For electrophysiological recordings, infected NPC-neurons (see 

below) or iN cells were cultured on PORN/lam coated 35mm plates at low density 

(2.5X105 cells/35mm plate) as described above. All recordings were made using the 

whole-cell configuration of the patch-clamp technique (Hammill et al., 1981). Patch 

glass pipet electrodes were double-pulled and heat-polished. The electrode was 

brought into contact with visually identified iNC targets to produce a high-resistance seal 

between electrode tip and cell membrane, and the whole-cell configuration was 

achieved by applying suction to the back of the electrode. For voltage clamp 

experiments, electrode capacitance was compensated prior to achieving the whole-cell 
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configuration, and membrane capacitance and series resistance were compensated 

after achieving this configuration. Membrane current and potential signals were 

amplified (List Electronic EPC-7), digitized (Digidata 14140A, Molecular Devices), and 

stored on a computer. Voltage steps and current injection pulses were generated and 

potential and current signals were analyzed using software written by Dr. John 

Dempster (Dept. Physiology, University of Strathclyde). In all voltage clamp recordings, 

the holding potential (Vh) was -80mV. Presence and properties of voltage-gated current 

was examined during positive voltage steps (30ms to 250ms depending on the 

experiment) to test potentials (Vtest) between -75mV and +50mV. To examine voltage-

dependent, steady-state inactivation of voltage gated Na
+
 channels, a double voltage 

step was used: a step to a conditioning potential (Vcon, -130mV - +40mV, 50ms) was 

applied immediately prior the step to the test potential (0mV). To examine whether cells 

had the capacity to generate action potentials, membrane potential was measured 

under current clamp. 

 The extracellular solution contained NaCl 135mM, KCl 5mM, glucose 10mM, 

MgCl2.6H2O 1mM, CacCl2.2H2O 2mM, and HEPES 20mM (pH 7.3). For recordings of 

isolated voltage-gated Na
+
 current, the electrode solution contained CsCl 20mM, 

cesium methanesulfonate 130mM, MgCl2.6H2O 2mM, glucose 10mM, EGTA 10mM, 

and HEPES 10mM (pH 7.3). For recordings of mixed voltage-gated Na
+
 and K

+
 current, 

and for recordings of membrane potential and action potentials, the electrode solution 

contained KCl 20mM, potassium methansulfonate 130mM, MgCl2.6H2O 2mM, glucose 

10mM, EGTA 0.01mM, and HEPES 10mM (pH 7.3).  
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2.2.7 Human NPC culture and neuron derivation. For the control human neurons in 

Alicea et al. 2013 (see Supplemental Figure 5), H9 human ES cells were differentiated 

to NPCs as described (Chang et al., 2009).  H9-NPCs were propagated to passage 5 in 

iNC medium supplemented with 20ng/ml FGF-2. For differentiation, NPCs were plated 

on PORN/lam plates and FGF-2 was progressively withdrawn to a final concentration of 

2ng/ml by day 20-24, when the cells were processed for immunostaining to confirm 

neuronal identity and subjected to electrophysiological analysis. Undifferentiated NPCs 

at 30-50% confluency were fixed and used as controls in the experiments shown in 

Alicea et al. 2013 (see Supplemental Figure 3). 

2.2.8 iSMC conversion: plasmids and virus production. All factors for iSMC conversion 

were cloned from cDNAs produced from a piece the donor mouse skeletal muscle not 

used for fibroblast derivation in culture. The primers for cloning of the full-length MyoD, 

MYF5, MYF6, and myogenin ORFs by the same YFP-fusion strategy as the iNC factors 

are shown in Appendix B, Table B.3. Equal volumes (0.75 ml) of viral supernatant for 

each of the four myogenic factors was used to infect target fibroblasts, iSM cells were 

induced using iSMC medium ((DMEM, 0.1% FBS, 1X antibiotic/antimycotic (Invitrogen, 

Carlsbad, CA)), and all iSM cells were generated on uncoated plates, but otherwise 

virus production, infection, and conversion was performed as with iN cells. 

2.2.9 iSMC induction: immunohistochemistry and imaging. All procedures were 

performed as with iN cells except for use of skeletal muscle-specific antibodies 

sarcomeric anti-α actinin used at 1:1000 (Sigma, A7811) and anti-sarcomeric myosin 

used at 1:500 (DSHB at University of Iowa). 

2.2.10 Quantification of phenotypic conversion. Quantification of iNC/iSMC conversion 
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was done using Hoechst33342 staining for nuclei/DNA (blue), YFP fluorescence of the 

tagged proteins to indicate relative factor expression (green), and β-IIITubulin/TUJ1 (iN 

cells) or sarcomeric α-actinin (iSM cells) immunostaining to indicate phenotypic 

conversion (red). Relative reprogramming efficiency was calculated either by dividing 

the red fluorescence value by the blue fluorescence or dividing the red/blue value by the 

green fluorescence value to include a factor-expression component in the calculation. 

For iSM cells, total sarcomeric α-actinin fluorescence was taken as the red value, 

whereas iNC conversion was measured as the number of red fluorescent cells that also 

had fibers of at least three soma lengths. For each well, five fields -- one in the center of 

each well and one at each compass point approx 1-cm from the well-edge -- were 

imaged at 100X-magnification for each separate channel and stored as a merged RGB 

image. For measurement of fluorescence, the RGB image was split into individual black 

and white channels and quantified using NIH ImageJ. For the graphs, the highest 

relative conversion value for iN cells or iSM cells for each group was set at 100 and the 

remaining values calculated as a fraction of that maximum.  Calculation of correlation, 

significance, and ANOVA were performed using SigmaPlot 12 software. 

2.3  Results 

  We sought to control external variables in the reprogramming process to promote 

better measurement of relative reprogramming efficiency. In keeping with this concept, 

all procedures and analyses were performed in parallel on all cell lines within a group 

and in at least three separate experiments. Fibroblasts were selected as the input cell 

type because they have been used extensively as the raw material for most 

reprogramming studies, are easily established and expanded for many passages 
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(without the need of cellular transformation), are adherent, and can be efficiently 

cryogenically preserved. Fibroblast lines were obtained from two species – human and 

mouse. Human fibroblasts were selected for study because they are of the most direct 

clinical relevance and mouse fibroblasts were selected because they have been shown 

capable of reprogramming to several output cell types and because we were able to 

establish multiple isogenic fibroblast lines from a single donor animal under highly 

controlled conditions. Using both groups of cells, we were able to compare fibroblast 

lines with similar morphological properties from multiple individuals with fibroblast lines 

of variable morphology and tissue-of-origin, but from a single subject. We chose to work 

primarily with non-embryonic cells to better relate our findings to applications in human 

or veterinary medicine, since older subjects are more likely to be the primary target of 

reprogramming-based therapy for cellular replacement or transplantation.   

2.3.1 Establishment of input lines. Human fibroblast lines used for analysis are shown in 

Appendix B, Table B.3 (top panel). Lines for analysis were selected based on several 

general criteria. The lines needed to display robust growth in culture, be well-

established (>passage 8 (P8)), display a homogenous morphology (Alicea et al. 2013; 

see Supplemental Figure 1, panel A), and be at least four passages from mitotic 

senescence. Most of the lines were from donor subjects with no known disease, but two 

were included from individuals with diagnosed neurological disorders – Rett syndrome 

and schizophrenia. Seven human fibroblast lines were subject to complete 

characterization and analysis with two additional lines only subjected to partial analysis 

because they did not satisfy all criteria for inclusion.   
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 To examine the impact of genetic homogeneity on reprogramming efficiency, 

mouse fibroblast lines were generated from a single donor animal Appendix B, Table 

B.3 (bottom panel). To ensure that the individual mouse lines did not functionally 

approximate secondary lines or subclones that could occur if all lines were derived from 

a single explant, we harvested eight different mouse organs for establishment of 

fibroblast lines (Alicea et al. 2013; see Supplemental Figure 1, panel B) and then 

selected only those lines that displayed no evident non-fibroblastic cells and a 

consistently uniform fibroblastic morphology (Alicea et al. 2013; see Supplemental 

Figure 1, panel C). Lines also had to display a similar capacity for growth, passage, and 

survival of freeze/thaw that allowed them to be maintained side-by-side with other lines. 

In this way, approximately 50 lines were progressively winnowed to 12 lines that were 

the most representative of criteria such asgrowth characteristics and morphology. 

Unlike the human lines, the mouse lines were generated and maintained identically from 

their first day in culture – passaged, fed, frozen, thawed, and in every other respect 

cultured side-by-side. Ultimately, these lines, derived from seven different tissue 

sources (brain tissue did not give rise to robust fibroblast cultures), were frozen in 

multiple aliquots at P8 for use in experiments.   

 The phenotype of human and mouse fibroblast lines was further established by 

quantitative RT-PCR analysis to confirm an abundance of fibroblast-associated mRNAs 

and the absence of significant signal for indicators of other differentiated or progenitor 

cell types. All but two fibroblast lines displayed an abundance of the fibroblast-

associated markers collagen type 1α2, vimentin, fibronectin, fibrillin I, and fibulin V. The   

two exceptions were mouse lines HE4 and KI3, which repeatedly tested negative for 
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mouse collagen type 1α2. HE4 also displayed weak vimentin immunopositivity (see 

below). However, both HE4 lines were positive for some fibroblast markers and were 

negative for indicators of stem cell types, so both lines were kept in the study. mRNAs 

for other common contaminating cell types (e.g. keratinocytes - keratin 14 and 

endothelial cells - PECAM) or for myogenic or neurogenic progenitor-type cells (e.g. 

MyoD, Myf5 and FoxG1, Sox2, respectively) were not detected Alicea et al. 2013 (see 

Supplemental Figure 2). 

 To further characterize our lines at the level of individual cells each line was 

examined for the expression of fibroblast-associated markers or markers of stem cell 

types by fluorescent immunocytochemistry. Sox2 and nestin were selected as stem cell 

markers because these markers label multiple classes of stem cell including pluripotent 

stem cells, neural stem cells, and muscle precursors such as mesenchymal stem cells 

and satellite cells, but are not expressed at significant levels in fibroblasts (Day, Shefer, 

and Yablonka-Reuveni, 2010; Day et al., 2007; Ellis et al., 2004; D'Amour and Gage, 

2003; Vogel et al., 2003; Avilion et al., 2003; Zimmerman et al., 1994). The results 

revealed that essentially all cells appeared immunopositive for the fibroblast-associated 

markers vimentin and fibronectin and no cells appeared positive for the stem cell 

markers nestin and Sox-2 that were readily observed in control cultures of human 

neural stem cells (Alicea et al. 2013; see Supplemental Figure 3, panel A and B). 

Parallel analysis of selected mouse lines (Alicea et al. 2013; see Supplemental Figure 

3, panels C and D) showed a result similar to the human lines, with the exception of 

HE4 that displayed weak vimentin staining. Additional RT-PCR and immuncytochemical 

analysis of lines such as ADF and AUT examining other markers of stem and progenitor 
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cell types including neural crest-derived cells and pluripotent cell types did not reveal 

any indication of other progenitor cell types within our fibroblast lines. 

2.3.2 Conversion to induced neural cells. iN cells were selected as a conversion cell 

type to test comparative direct reprogramming efficiency for several reasons. The first 

was because several independent laboratories had confirmed the production of iN cells 

using similar methodologies (Vierbuchen et al., 2010; Pfistetrer, et al., 2011; Pang et al., 

2011; Caiazzo et al., 2011). The second was that iN cells should display a distinct set of 

markers of neuronal phenotype and changes in cellular morphology that would allow 

them to be readily distinguished from input fibroblasts. Third, evidence-to-date 

suggested that, because they were produced directly from input cells without generation 

of an intermediate cell type or the requirement for cell division and formation of a 

progenitor colony, each iNC represented an individual reprogramming event.   

 For iNC conversion, human and mouse fibroblast cultures were infected with 

combinations of an MMLV-based retroviral vector encoding the neurogenic factors 

ASCL1, POU3F2, ZIC1, MYT1L or NeuroD1 (Vierbuchen et al., 2010; Caiazzo et al., 

2011) of human origin fused to YFP as shown schematically in Alicea et al. 2013 

(Supplemental Figure 4). As predicted, all of the YFP-fusion proteins localized primarily 

to the nucleus, some presenting a mottled appearance and others appearing more 

diffuse (Figure 2.1, panel A). ASCL1-YFP generally presented as weak diffuse nuclear 

fluorescence with one or two bright punctuate bodies. Pilot studies indicated that ASCL1 

and POU3F2 combined with either ZIC1 or MYT1L/ND produced many TUJ1-positive iN 

cells in both human and mouse cultures using either fetal or adult fibroblasts, whereas 

cells infected with each neurogenic factor alone produced very few iN cells (Figure 2.1, 
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panel B). Mock-infected cells or cells infected with a YFP vector only and cultured under 

identical conditions produced no strongly immunoreactive TUJ1-positive cells with 

neuron-like morphology (Alicea et al. 2013; see Supplemental Figure 3, panel A). As 

described previously, the primary difference between the generation of mouse and 

human iN cells was the maturation rate (Vierbuchen et al., 2010; Pfistetrer, et al., 2011; 

Pang et al., 2011; Caiazzo et al., 2011). While mouse iN cells with relatively mature 

morphology were sometimes observed as early as day 4-5 and reached maximal 

differentiation by day 10-12 post-infection, human iNC maturation appeared more 

progressive, with cells at days 8-12 displaying a rounded cell soma and very short 

processes of 7-10µm, longer processes at day 18-20, and long processes with more 

complex branching and spine-like projections by day 24-30 (Alicea et al. 2013; see 

Supplemental Figure 5, frames B and C). Mature iN cells that displayed elongated 

processes (>3 soma lengths), were positive for multiple markers of mature neurons in 

addition to TUJ1, including MAP2a/b, synapsin 1, doublecortin, neurofilament 300kD, 

and others as shown in Figure 2.1, panels C and D. iN cells also displayed 

electrophysiological properties such as TTX-sensitive Na+ currents and action 

potentials that were essentially indistinguishable from human neurons generated under 

identical conditions from human ES cell-derived human neural progenitor cells (NPCs - 

Alicea et al. 2013; see Supplemental Figure 5, panel D).   

 To determine if, and to what degree, variation was observed in the 

reprogramming of primary fibroblast lines to neural cells, all lines were thawed, 

passaged, and plated at the same density for side-by-side infection and culture. On day 

12 for mouse cells and day 24 for human cells, transduced and control cultures were 
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harvested in parallel for immunochemical staining and quantification of converted cells.  

iN cells with morphological characteristics and processes, essentially indistinguishable 

from neurons generated side-by-side from human ES-derived NPCs, were observed in 

all mouse and human fibroblast lines tested (Alicea et al. 2013; see Supplemental 

Figure 6, panels A and B), although in some lines they were rare or sometimes 

displayed shorter, less mature processes (e.g. SAF, LU6, TE5). Conversion efficiencies 

calculated as a simple percentage of output cells versus unconverted cells were in line 

with published reports of iNC conversion using methods similar to those in this report. 

Maximum conversion efficiency to iN cells was 0.72±0.08% for adult mouse fibroblasts 

(TA4), and 1.07±0.18% for human cells (RET)). 

2.3.3 Induced neural cells: reprogramming efficiency. As shown in Figure 2.2, relative 

reprogramming efficiency could be calculated by dividing the red fluorescence value 

indicative of reprogrammed cells in each line by the Hoechst 33342 fluorescence value 

indicative of total cells present at the time of harvest (See Appendix A.1 for equation). 

Calculated in this way, our relative reprogramming measure reveals dramatic 

differences between cell lines of both mouse and human origin. The limitation of this 

method of determining conversion efficiency is that an unknown degree of the disparity 

may be caused by differences in factor delivery and production. Viral transduction and 

factor expression was included in the calculation of reprogramming efficiency in two 

ways. The first, referred to as "factor expression early" (FEE), was essentially a 

determination of relative infection efficiency. Each line used in the analysis was infected 

with a nuclear-localized YFP virus at an MOI of approximately 0.5 and then counted to 

determine the number of cells with yellow fluorescent nuclei as a fraction of all cells on 



35 
 

day 4 post-infection. The relative capacity of each line to take up and express virus at 

levels sufficient to be scored as positive relatively early after infection could then used 

as one means of including factor transduction efficiency into the calculation of 

reprogramming efficiency.  

 Factor expression late (FEL) was an alternate method of measuring factor 

expression that was determined by the level of YFP fluorescence produced by the 

transgenes at the time of harvest. The fluorescent signal at this stage was less uniform 

than in cells used in the calculation of FEE. By the time of harvest, the YFP signal in 

iNC cultures was often punctuate or faint and could not be quantified accurately as a 

percentage of positive cells, so FEL was measured as the overall intensity of YFP signal 

at the time of harvest instead of as a percentage of positive cells. Both FEE and FEL 

have their own individual merits, but both were included in our analysis to address the 

possibility that factor expression measured at different stages of the reprogramming 

process might influence the final determination of reprogramming efficiency. 

2.3.4 Line-to-line variation and between-regimen correlations. As shown in Figure 2.2, 

after factoring factor expression into the calculation of reprogramming efficiency, clear 

line-to-line variation in the reprogramming capacity of cells of both mouse and human 

origin was still observed, irrespective of how transgene expression was factored into the 

calculation of efficiency. There was a strong and significant correlation between the iNC 

reprogramming efficiency calculated using both standards in the mouse cell lines 

(r=0.975, P < 0.0001), and a similar trend was observed in the human lines (r=0.664, 

P=0.104).  
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Figure 2.1.  iNC conversion of mouse and human fibroblast lines.  A) HEK cells transfected with YFP fusion protein for 
iNC conversion, as labeled.  Phase- contrast images are in the upper panels and corresponding fluorescent images in the 
lower panels.  B)  Mouse embryonic fibroblasts infected with the individual factors (as labeled) and stained for β-III- 
tubulin/TUJ1 in red (upper panels). Mouse (MEFs) or human fibroblasts (FET) infected with combinations of  
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Figure 2.1 (con’t). Zic1/Ascl1/Pou3f2 (ZAP) or Myt1L/Ascl1/Pou3f2 (MAP) + NeuroD1 (MAPN) (lower panels).  Green 
fluorescence indicates expression of reprogramming factor(s). Blue color is bis-benzimide nuclear staining of DNA. Insets 
have the blue channel removed and the green channel intensified to show YFP-factor expression in the nucleus of all iN 
cells.  C) Mouse iN cells produced from MEFs by day 10-15 post-infection immunopositive for multiple neural markers 
(red), including MAP2, pan-neurofilament (NF), doublecortin (DCX), or synapsin I (SYN). iN cells produced from adult 
mouse fibroblast lines (as labeled) with typical iNC morphology immunostained for β-III-tubulin/TUJ1(red). D) Human iN 
cells with typical morphology at day 24-30 post-infection and immunostained for multiple neuronal markers as in (C) in 
addition to PSD95, GABA receptor β 3 (GABAR-B3), and GAD1 (as labeled). GABAR-B3 and GAD1 iN cells were labeled 
using immunoperoxidase secondary antibody coupled with DAB staining. Scale bars are 10 µm unless otherwise labeled. 
For interpretation of the references to color in this and all other figures, the reader is referred to the electronic version of 
this dissertation. 
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Figure 2.1 (con’t). 
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Figure 2.2. Data analysis for iNC conversion of mouse and human fibroblast lines. A) Relative conversion of mouse 
fibroblast lines to iN cells calculated as a function of cell number at the time of harvest. The highest efficiency of   
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Figure 2.2 (con’t). conversion within each group was set to a value of 100. Bars 
indicate standard error of the mean (SEM). B) As in E, for the human fibroblast lines. C) 
As in E, but showing relative conversion of mouse fibroblast lines factoring in factor 
expression early (FEE) or late (FEL). D) As in G, for the human fibroblast lines. Y-axis 
label convention is as follows: X/Y = number of conversions/number of cells, X/Y/Z = 
number of conversions/number of cells/number of cells positive for factor. 
 
 More importantly, analysis of variance within human iNC cultures revealed that 

the differences in median reprogramming among lines using either FEE or FEL were 

significantly greater than would be expected by chance (FEE P=0.005, FEL P=0.006). 

Differences among iNC reprogramming efficiencies in the mouse lines were only 

significant to P= 0.150 (FEE) and P=0.108 (FEL), but appeared to be trending in the 

same direction. It was noted that although including factor expression into the 

calculation of reprogramming efficiency did not dramatically change the values for the 

best and worst converters, lines in the middle of the pack were more dramatically 

affected. Likewise, lines with intermediate conversion efficiencies also displayed more 

variation depending on the use of either FEE or FEL.   

2.3.5 Conversion to induced skeletal muscle cells. A second reprogramming regimen 

was used for two reasons: to determine whether or not line-to-line variation observed 

with iNC reprogramming would also be observed using an alternate regimen, and to 

determine if the lines most amenable to iNC respecification were also those most 

reprogrammable to a second fate.  

 Reprogramming to iSM cells was performed using four myogenic factors known 

to promote skeletal muscle identity and expressed as YFP fusion proteins as with 

neurogenic factors (Figure 2.3, panel A). One factor was MyoD1, shown in multiple 

studies to induce the conversion of fibroblastic cells to myotube-like cells (Davis, 

Weintraub, and Lassar, 1987; Lattanzi et al., 1998). A second factor was the myogenic 
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transcription factor myogenin (Edmondson and Olson, 1989) that in our pilot studies 

also displayed some capacity to induce muscle marker expression and a shift to 

myotube-like morphology, though to a lesser extent than MyoD (Figure 2.3, panel B).  

We also included two additional factors -- MYF6 (Miner and Wold, 1990) and MYF5 

(Braun et al., 1989) – that displayed minimal capacity to induce conversion on their own, 

but are known to support skeletal muscle maturation. Recombinant virus stocks for each 

of these four myogenic factors were combined in equal quantity and used as a multi-

factor mix for iSMC conversion. 

 A shift of virus-transduced cultures from fibroblast growth medium to iSMC 

medium (DMEM+0.1% FBS) 3-4 days post-infection was found to best support 

conversion and maintenance of the iSMC phenotype. Uninfected fibroblasts (or cells 

infected with YFP only) showed no indication of conversion of cells to a myotube-like 

morphology under iSMC growth conditions. However, both mouse and human cells 

transduced with the iSMC virus cocktail showed abundant evidence of cell fusion and 

myotube formation by 6-8 days post-infection, and appeared to complete morphological 

maturation by 10-12 days of culture for mouse cells and approximately 18-20 days for 

human cultures (Figure 2.3, panels C and D). Immunocytochemical analysis of control 

and myogenic-factor infected fibroblasts confirmed that no cells immunopositive for 

markers of skeletal muscle myotubes were observed in control cultures (Figure 2.3, 

panel E), whereas factor-transduced cultures in some test lines displayed numerous 

elongated, tube-like cells positive for the muscle markers sarcomeric myosin and α-

actinin (Figure 2.2, panel E). These data indicated that the viral reagents and culture 

regimen we used for iSMC reprogramming produced cells with multiple strong indicators 
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of the conversion cell phenotype that were essentially identical to induced skeletal 

muscle myotubes or myotubes produced from cultured myoblasts previously reported 

(Davis, Weintraub, and Lassar, 1987; Lattanzi et al., 1998; Lassar, Paterson, and 

Weintraub, 1986; Macpherson, Suhr, and Goldman, 2004). 

2.3.6 Comparison of iSM cells to iN cells. The experimental design for the analysis of 

iSM cells was essentially identical to the process used above for iN cells. Maximum 

conversion efficiency calculated as a percentage of iSM cells to unconverted cells was 

similar to other published conversion rates of mouse and human fibroblasts to iSM cells 

(Davis, Weintraub, and Lassar, 1987; Vierbuchen et al., 2010; Lattanzi et al., 1998; 

Pang et al., 2011). Maximum iSMC conversion for adult mouse fibroblasts was 20.3±3% 

(KI6) and 60.4±6% for human fibroblasts (FET).  

 iSM cells, identified as elongated cells with strong α-actinin immunopositive 

fluorescence, were observed in ten of twelve mouse fibroblast lines tested. Lines such 

as KI6 and TA6 produced an abundance of iSM cells, while lines such as HE4, SM1, 

and LU6 produced only rare cells. Lines LI6 and TE4 produced no cells with the 

morphology and marker expression consistent with the output phenotype (Alicea et al. 

2013; see Supplemental Figure 7, panel A). iSM cells were observed in all transduced 

human cultures (including the AUT and HSK lines not included in the full analysis), 

although immunopositive iSM cells were rare in the EAF and E2F lines derived from 

elderly donor subjects (Alicea et al. 2013; see Supplemental Figure 7, panel B). 
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Figure 2.3. iSMC factors and induction of iSMC phenotype in mouse and human fibroblast lines. A) HEK cells transfected 
with YFP fusion protein vectors for iSMC conversion, as labeled. Green fluorescence is the nuclear-localized myogenic 
factors and blue is bis-benzimide staining. B) KI6 mouse fibroblasts infected with the four separate myogenic factor 
viruses (as labeled) and immunostained for sarcomeric α-actinin. C) Example of the morphological change observed in 
human NWB or mouse KI6 fibroblasts after infection and expression of iSMC factors (as labeled). D) Magnified image 
(400X) of phase contrast (upper) and fluorescent (lower) image of bis-benzimide stained KI6 iSMC myotubes. Arrows 
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Figure 2.3 (con’t). indicate multiple nuclei within the fiber. E) Control or iSMC-factor infected mouse and human cells 
stained for skeletal muscle antigens sarcomeric α-actinin (α-ACT) or sarcomeric myosin (SMYO). Mouse cells were 
processed at Day 12 and human cells at day 24 post- infection. Scale bars are 10 µm. 
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Figure 2.3 (con’t). 
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Figure 2.4. Data analysis for induction of iSMC factors and iSMC phenotype in mouse and human fibroblast lines. A-D) 
Relative conversion of mouse and human fibroblast lines to iSM cells as labeled (after Figure 2.2, A-D).   
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 As with iN cells, iSMC reprogramming efficiency calculates only the number of 

converted cells relative to all cells at the time of harvest (Figure 2.4, panels A and B). 

Alternatively, both infectability and reprogramming efficiency can be calculated using 

either FEE or FEL (Figure 2.4, panels C and D) in lieu of transgene expression. Either 

way, our measures revealed substantial differences among the cell lines of both 

species. There was a strong and significant positive correlation between the 

reprogramming efficiencies calculated using both FEE and FEL for mouse lines 

(r=0.969, P = <0.001) and human lines (r=0.837, P=0.019). More importantly, analysis 

of variance indicated differences in median iSMC reprogramming efficiencies 

significantly greater than would be expected by chance for both mouse (P<0.001) and 

human fibroblast cell lines (P<0.05) (Figure 2.4, panels C and D). These results confirm 

that although there are some differences in calculated reprogramming efficiencies 

depending on how or when factor transduction levels are measured, the overall results 

are similar and support the notion that there are substantial differences in the 

reprogramming capacity of individual lines, even of the same general type. 

2.3.7 iNC vs iSMC reprogramming and factors involved in reprogramming efficiency. 

The reprogramming efficiencies for all cell lines and conversion regimens are combined 

in Figure 2.5 (panels A-D). Analysis of the correlation between iNC and iSMC 

conversion normalizing with either FEE or FEL revealed no significant correlation, 

indicating that efficiency of conversion to one phenotype is not predictive of 

reprogramming to another identity. 

 Since successful infection with MMLV-based vectors requires active cell division, 

and both reprogramming regimens produce a non-dividing, growth-arrested cell 
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phenotype, we sought to determine if growth-related cellular characteristics – infectivity 

and mitotic index – correlated with conversion efficiency. As shown in Figure 2.6 (panels 

A and B), comparing the reprogramming values without correction by FEE or FEL with 

relative growth and infectivity revealed no correlation with iNC conversion efficiencies. 

However, there was a significant positive correlation between infectivity/growth and 

conversion to iSM cells in both the human and mouse lines. Despite this correlation, 

there was still striking variability in the reprogramming efficiency of different lines, 

suggesting that multiple factors in addition to those regulating the cell cycle likely impact 

the reprogramming process. 

2.4 Discussion 

 The initial impetus for this report arose from several observations in our 

laboratory. One observation was that cell lines of similar origin and properties often 

appeared to differ significantly in their capacity to reprogram to an alternate phenotype, 

and, while this difference was generally attributed to technical variables, this attribution 

was rarely, if ever, systematically investigated. Another was that reprogramming 

regimens described in the literature were sometimes not as efficient as reported, even 

when components such as viral vectors, media formulations, and culture conditions 

were very similar or even identical. Though it is recognized that properties of the input 

cell such as species of origin, cellular age, and cell phenotype can have a dramatic 

impact on reprogramming efficiency, our own observations and published studies where 

differences in reprogramming efficiency were observed even where the potential for 

technical variation was minimal (Davis, Weintraub, and Lassar, 1987; Lattanzi et al., 

1998), led us question to what extent reprogramming efficiency could be expected to 
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vary among cell lines of the same type when methodological and technical issues were 

deliberately controlled.  

 The comparison of two conversion regimens over a large number of cell lines 

also permitted us to determine if converting cells resulted from a specific population of 

reprogramming-susceptible cells or if they likely derived from a "main" population of 

cells, each with their own independent capacity for adoption of a new identity. It was 

long thought likely that reprogrammed cells arose from cryptic populations of canonical 

stem cells of varying potency contaminating the main population, but direct 

reprogramming experiments from many sources to produce induced pluripotent stem 

cells (Takahashi and Yamanaka, 2006; Luo et al., 2011; Esteban et al., 2009; Ezashi et 

al., 2009; Liao et al., 2009; Takahashi et al., 2007; Yu et al., 2007), neurons 

(Vierbuchen et al., 2010; Pfisterer et al., 2011; Pang et al., 2011; Caiazzo et al., 2011; 

Ambasudhan et al., 2011; Yang et al., 2011; Son et al., 2011), hepatocytes (Huang et 

al., 2011; Sekiya and Suzuki, 2011), cardiomyocytes (Ieda et al., 2010; Chen et al., 

2012; Efe et al., 2011) and other induced cell types have since largely disproved this 

proposition.   

 In our own study, it is unlikely that contaminating non-fibroblasts contribute 

significantly to the converted cell pool, considering the efficiency of reprogramming that 

we observed coupled with the probability of uptake of sufficient viral copies for 

conversion (particularly in the case of iN cells) and an absence of evidence of non-

fibroblasts at the level of individual cells by immunocytochemical analysis. Therefore, if 

converted cells do arise through a specific "susceptible" population, it is likely that this 

population is a subpopulation of the fibroblasts themselves. Such cells could be a 
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purposeful biological variant, but they may also be "defective" cells that lack the 

determinants that allow them to maintain a fixed identity when challenged with a 

stronger competing program. These lacking determinants may be genetic in nature, 

arising from point-mutations that alter gene expression or function; epigenetic, arising 

from alterations in methylation or modification of histones that regulate gene silencing; 

or contextual, arising from some cellular characteristic that is determined by the cell's 

interaction with other cells (perhaps akin to something like side-population cells – 

Challen and Little, 2006). 

2.4.1 General susceptibility explanation. Our results are at odds with the idea that 

converted cells arise from a fixed subpopulation of cells with general susceptibility to 

identity respecification. When subjected to two separate reprogramming regimens the 

efficiency of conversion to one phenotype did not predict reprogramming efficiency to a 

second phenotype. Although only two conversion regimens were tested, this result 

suggests that a mechanism such as a genome-wide failure of some aspect of the 

molecular machinery controlling cellular identity does not underlie phenotypic lability; 

but instead, that the process is likely to be stochastic, falling by chance on genes that 

permit the cell to respond only to specific transcription factors and to respecify only to 

some phenotypes.  
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Figure 2.5. Comparative conversion of mouse and human fibroblasts to iN cells and iSM cells. A) Comparative 
conversion of human fibroblast lines to iN cells (black bars) and iSM cells (white bars) calculated as a function of FEE or 
B) as a function of FEL. C) As in (A) for mouse fibroblast lines. D) As in (B) for mouse fibroblast lines. 
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Figure 2.6. Data analysis for comparative conversion of mouse and human fibroblasts 
to iN cells and iSM cells A) Line graph of mean relative iNC conversion (iNC), iSMC 
conversion (iSMC), mitotic rate (GROWTH), and infection efficiency (INFECTION) for 
each of the human fibroblast lines sorted by increasing infection efficiency. At the right 
is a plot of the trend lines.  
 
 Our result also implies that the fraction of reprogramming-receptive cells in any 

given population may arise from any of a number of discrete genetic or epigenetic 

mutations (possibly even single-base changes) in critical determinants in or around the 

control regions of genes or classes of gene critical to the maintenance of a specific cell 
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phenotype. These mutations would also only be present in a fraction of the population – 

child cells of the cell harboring the mutation – and would be heritable and account for 

the apparent "stability" of reprogramming to a given phenotype within most lines. 

Whether these alterations are epigenetic, genetic, or some combination of both remains 

to be elucidated. If only tiny changes in the genome or epigenome are responsible for 

susceptibility to conversion, it may be difficult to isolate or even identify individual cells 

that are "good reprogrammers" a priori. Very sensitive methods that combine 

sequencing with quantification, such as whole genome sequencing, genome-wide 

bisulfite sequencing, or RNAseq may be able to identify even single-base changes that 

correlate with reprogramming efficiency and provide insight into gene targets and 

pathways that could be manipulated to improve phenotype-specific conversion. 

2.4.2 Replicability and the tissue-of-origin explanation. Our results further indicated that, 

when technical components were held constant, the direct reprogramming capacity of 

independent primary fibroblast cell lines was reproducible within a single line from 

experiment-to-experiment, but varied dramatically from line-to-line irrespective of 

whether the lines were derived from different donors or from a single subject. It was 

notable that the disparity in reprogramming efficiency between different lines -- that in 

some instances differed by orders-of-magnitude -- was more than sufficient to account 

for discrepancies in reproducing published reprogramming regimens if the target cells 

were not of very similar type. Indeed, our results suggest that the production of primary 

lines of "very similar" type for use in reprogramming experiments by independent 

laboratories may, in itself, be a very challenging proposition. Fibroblasts cultured from 

different body regions are known to have distinct differences in gene expression for 
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transcription factors such as members of HOX gene clusters (Chang et al., 2002) 

despite sharing general characteristics and a common phenotype. It may be that 

propagation of tissue explants and repeated passage of resulting cells magnifies 

intrinsic differences such as those seen with HOX genes, even in lines derived from the 

same general tissue source. This would explain our results with cell lines like KI2, KI3, 

KI5, and KI6 that displayed dramatic differences in reprogrammability despite having 

originated from proximal tissue fragments from a single kidney harvested from a single 

mouse.  

 Along these same lines, we observed clear reprogramming differences in 

fibroblasts derived from different tissue sources, but cannot conclude that specific 

tissues repeatedly give rise to cells with superior or inferior reprogramming capacity 

until a larger number of samples can be assayed. In our hands, skeletal muscle-derived 

fibroblasts were poor converters to iSMC identity, indicating that in at least some cases, 

tissue of origin does not predict relative capacity to reprogram to that same tissue. A 

larger number of lines derived from more subjects will be needed to begin to see 

patterns in the reprogrammability of fibroblasts from different tissue sources. 

2.4.3 Neurological disease confers a special phenotype explanation. Similarly, we 

observed that our two human cell lines isolated from patients with neurological disease 

(RET and SAF) displayed reprogramming efficiencies that were at opposite ends of the 

spectrum with regard to iNC conversion, but were very similar with regard to iSMC 

conversion. While it is tempting to speculate that iNC conversion was in some way 

influenced by the determinants of disease, the variability in efficiency that we observed 

between other human and mouse lines suggests that until a much higher number of 
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lines from multiple patients are compared directly, these differences as likely to arise by 

chance as from the determinants responsible for neural dysfunction. It will be interesting 

to determine in future experiments if "qualitative" measures of converted cells display as 

much variability as the number of cells converted. For example, if converted neurons, 

regardless of their total numbers, display an essentially equivalent level of maturation 

and electrophysiological response, it may be that lines from a lower number of donor 

subjects would be sufficient to produce meaningful results.  

2.4.4 Final conclusions. Our results comparing the cell growth characteristics of 

individual lines and reprogramming efficiency suggest that there may be gross physical 

properties that either modulate or "predict" reprogramming efficiency. We expected and 

observed some correlation between either infection efficiency nd reprogramming or 

mitosis and reprogramming. However, a significant correlation was only observed with 

iSM cells and not with iN cells. With more cell lines and more detailed analysis of 

characteristics such as cell growth, the molecular determinants that account for this 

difference may be identifiable and may provide us with insight into the primary forces 

that govern phenotypic conversion. 

 Ultimately, our findings suggest that parallel testing of multiple cell lines from 

several sources may be needed to accurately determine the efficiency of direct 

reprogramming procedures, and by extension, that the most direct means of improving 

reprogramming efficiency for a given regimen may be to simply test more fibroblast 

lines, even if these lines are from a single source. 
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CHAPTER 3: COMPARING INDIRECT-DERIVED ES CELLS AND DIRECTLY-
DERIVED IPS CELLS 

 
 
 

3.0 Abstract 
 
 Comparing two types of reprogramming (somatic cell nuclear transfer and direct) 

to a single, pluripotent phenotype can reveal much about the underlying architecture of 

the reprogramming process. Unfortunately, existing comparisons are limited. To 

address this, two comparisons were made: a literature review that established what is 

known about such comparisons, and a quantitative analysis of secondary microarray 

data. Our analysis contributes to the existing literature by using the 8 cell embryo as the 

standard for comparing a range of ES and iPS cells. The goal of these comparisons 

was to establish differences between cell types of the same cellular state (pluripotency). 

Using a criterion independent of previous studies, it was found that iPS cells are 

transcriptionally closer to 8 cell embryos than are ES cells. However, when comparing 

both ES cells and 8 cell embryos with iPS, the same genes tend to be identified as 

different. Annotation using gene ontology terms revealed about half of these 

significantly different genes were ribosomal proteins. These results were confirmed in 

two ways. One of these was through a mutual information analysis that revealed 

elevated mutual information for all gene expression in iPS cells. The other was through 

an indirectly reconstructed gene network analysis, which revealed diistinct networks for 

genes that were different between the iPS-ES/iPS-8 cell and ES-8 cell comparisons. 

This information can be used to improve our choice of reprogramming approach (SCNT 

vs. direct) in future endeavors, as well as identifying groups of supportive (but not 
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essential) genes that might be used to augment efficiency in the reprogramming 

process. 

3.1 Introduction 

Cellular reprogramming for the derivation of pluripotent cells comes in two 

complementary forms. Indirect reprogramming involves a regulatory respecification of 

the nuclear genome by moving the nucleus a cell into another cell. The most commonly 

used technique involves transplanting the nucleus of a somatic cell into the cytosol of an 

enucleated oocyte (Hochedlinger and Plath, 2009), also called somatic cell nuclear 

transfer (SCNT). Direct reprogramming involves exogenous factor-driven (e.g. viral 

vectors, RNA, small molecules) respecification of phenotype (Hanna, Saha, and 

Jaenisch, 2010). This is done by delivering key factors (e.g. transcription factors) to a 

population of cells, and results in an induced-new phenotype, e.g. induced pluripotent 

stem cells (iPSC). Both techniques are effective at generating cells that resemble 

embryonic stem cells (ESC). The mechanisms underlying such dramatic transformation 

are poorly understood. In many ways, the science of direct and indirect cellular 

reprogramming is like poking a wild animal with a stick. Like the animal, a cell has a 

complex internal state (Sharov, 2012) that responds to external perturbations in a highly 

nonlinear fashion. In fact, predicting the response of a poked bear is far easier than 

predicting the response of a cell undergoing reprogramming, largely because the bear’s 

behavior is better characterized. In the context of reprogramming practice, the analogy 

suggests that although we know how to kick-start the reprogramming process, we can 

do very little to control its outcome. However, our analogy also suggests that if we can 

better understand the molecular mechanisms (in this case, the distinguishing features of 
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gene expression) that underlie the stemness state, this information will allow us to better 

steer a reprogrammed cell in the desired direction. 

3.2 Direct vs. Indirect Reprogramming 

While both direct and indirect reprogramming can produce a similar cellular 

phenotype, there are a number of features which distinguish the two methods. Direct 

reprogramming has allowed for the creation of pluripotent cell types at a much higher 

throughput than with indirect methods. In this case, throughput refers to the number of 

cells that can be introduced to the reprogramming regimen in a single experiment rather 

than a measurement of efficiency. This is an important distinction, as estimates for 

efficiencies not only range widely, but are rather low as well. The most optimistic 

estimates of efficiency provided by Colman and Dressen (see Takahashi et al., 2007) 

are 3.4% for embryonic stem cells (ESCs) derived via indirect methods and 1-3% for 

pluripotent cells derived via direct methods. The focus of direct reprogramming (e.g. 

viral-mediated reprogramming (Sul, Kim, Lee, and Eberwine, 2012), RNA- (Li, Yang, 

Nakashima, and Rana, 2011) and miRNA- (Munsie et al., 2000) mediated 

reprogramming is at the level of population. By contrast, the focus of indirect 

reprogramming (e.g. SCNT (Hochedlinger and Jaenisch, 2006), cell fusion (Hansis, 

Barreto, Maltry, and Niehrs, 2004), and cell/protein extract (Hochedlinger et al., 2004) is 

at the scale of individual cells. In addition, direct reprogramming involves multiple, 

coordinated changes to the cell’s genetic regulatory network. Ideally, the response to 

the direct reprogramming cocktail (e.g. introduction of Oct4, Sox2, Klf4, and c-Myc) 

involves a transcriptional regulatory cascade, or the successive activation transcription 

factors and downstream genes. This process uses many of the same genes and gene 
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regulatory networks that are upregulated or otherwise involved in regenerative 

processes and stem cells (Bolouri and Davidson, 2003), and should result in a new 

cellular phenotype. By contrast, SCNT acts by resetting the epigenetic landscape of the 

original cellular state without introducing large-scale genetic changes (Lathia and Rich, 

2012).  

While the final outcome for both procedures is similar (e.g. a pluripotent cell-

broadly defined) at the onset of the reprogramming process, both techniques are 

fundamentally different, and therefore it is reasonable to expect both quantitative and 

qualitative differences in the ESCs produced using indirect methods (SCNT-ES) and 

direct methods (Figure 3.1).  

Studies comparing iPSC and SCNT-ESC derived from the same original somatic 

cell line are scarce. However by performing statistical assessment of previously-

collected microarray data and a thorough analysis of available data that compares 

SCNT-ESC and iPSCs against a common reference (ESC produced from fertilized 

embryos) we hope to convey the message that while SCNT-ES and iPSCs are mostly 

identical, there are however, key differences that have relevance when considering 

improving current approaches to the reprogramming process. 

3.3 Known Differences between SCNT-ESCs and iPSCs.  
 

Using the less sophisticated but most commonly cited methods for determining 

pluripotency, the signature of both SCNT-derived ESCs and directly reprogrammed 

iPSCs is one of a fully pluripotent cell, including the upregulation of Oct4, self-renewal, 

induction of teratoma formation, and the ability to be differentiated into cell types such 

as neurons and beating muscle (Hochedlinger and Jaenisch, 2006; Chin, Mason, Xie, 



60 
 

Volinia, and Singer, 2009; Guenther et al., 2010). Bock et al. (2011) took into account 

multiple iPSC and ESC lines and confirmed the result established in previous studies 

(Krause and Scadden, 2012), of a highly characteristic “pluripotency” program 

consisting of common gene expression patterns also called “stemness”. 

Even differences in the regulatory program may not be due to intrinsic 

differences in a hypothetical gene expression or epigenetic program. Differences 

observed between ESCs and iPSCs might be due to a microenvironmental niche 

(Byrne, Pedersen, and Clepper, 2007). Particularly, it is the existence of a functional 

hierarchy among signaling molecules, which contribute to either the initiation of large-

scale phenotypic change or maintenance of the current state. When a cell is in the 

proper niche, a particular cellular state is reinforced. This requires interactions with 

neighboring cells as well as the extracellular milieu, which makes this contribution hard 

to account for (Yoon and Seger, 2006). 

3.4 Different but Complementary Processes 
 

The literature on direct comparisons between SCNT-ES and iPSCs suggests that 

SCNT-ESCs are closer to ESCs than are iPSCs (Stadtfeld et al., 2010; Byrne, 2011; 

Kim et al., 2010). Side- by-side comparisons of iPSCs and SCNT-ESC derived from the 

cell animal have shown specific differences. The source of that variation however is 

difficult to determine. One hypothesis suggests that the developmental context of a 

given cell is essential for determining how completely and successfully it reprograms. 

One example of this involves iPSC nuclei that have never been exposed to maternal 

reprogramming factors. In a study by Stadtfeld et al. (2010), transcriptional comparisons 

between genetically-identical mouse ESC and iPSCs revealed no significant differences 
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except for those of the Dlk1-Dio3 gene cluster, which are maternally-inherited and 

dysregulated during development to enable developmentally-related epigenetic 

silencing.  

 
Figure 3.1. Overview of process for direct (via viral mediation, left) and indirect (via 
SCNT, right) reprogramming. LEFT: directly-reprogrammed cell morphology transforms 
along with the incorporation of reprogramming factors into genome and active 
expression of these genes. RIGHT: indirectly-reprogrammed cell morphology 
transformation that occurs in tandem with regulatory respecification of the cell’s 
genome. Shaded boxes represent microenvironmental changes: for both processes, top 
box is supportive of fibroblasts, middle box is a transitional milieu, and bottom box is 
supportive of pluripotency. 
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3.4.1 Different but complementary processes: kinetics. There are also a number of 

overarching comparisons that can be made in the service of understanding these two 

types of reprogramming. This is based on a number of features common to both 

processes in different species and at different levels of genomic regulation, and may 

suggest that a re-interpretation of the stemness concept is needed.  

The first example involves a comparison of the processes that distinguish direct 

and indirect reprogramming. This comparison is hypothetically-oriented (Takahashi et 

al., 2007), and focuses on the biochemistry of SCNT-ESCs. One of these processes 

involves the kinetics of genetic regulation in the service of phenotypic remodeling. The 

kinetics of the reprogramming process is fast in SCNT-ESC (Liu et al., 2008), and slow 

(Colman and Dreesen, 2009) and stochastic in iPSCs (e.g. involve multiple levels of 

genetic regulation - Takahashi et al., 2007). These differences may also be explained 

by the interactions between the nucleus and cytoplasm component during the process. 

In indirect reprogramming, this usually tight relationship is decoupled, whereas in direct 

reprogramming this is not the case (Takahashi et al., 2007). A study by Paull et al. 

(2013) suggests that even though the percentage of mitochondrial DNA transferred with 

the nucleus during indirect reprogramming is small (< 1%), it still enables subsequent 

development in an efficient manner.  

There are also differences in mechanism with regard to chromatin remodeling 

complexes (Orkin and Hochedlinger, 2011), which are in an open state before 

pluripotency genes are activated in the oocyte but not in iPSCs (Awe and Byrne, 2013). 

According to the chromatin opening/fate transformative model of pluripotency (Chin et 

al., 2010), this should result in more complete reprogramming among SCNT-ESCs. 
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3.4.2 Different but complementary processes: cross-species. Another way to look at the 

differences between direct and indirect reprogramming involves the use of animal 

models representing two different species: rhesus monkey (Macaca mulatta) and 

mouse (Mus musculus). In a global transcriptome analysis of cell lines from rhesus 

monkey (Byrne, 2011), not only were SCNT-ESCs found to be closer to the ESCs 

standard than iPSCs, but SCNT-ESCs were deemed to be more completely 

reprogrammed. This same phenomenon was observed the mouse with regards to the 

epigenetic memory of the donor cell (e.g. SCNT-ESCs) were more completely 

reprogrammed (Kim et al., 2010). In the rhesus monkey study a cluster analysis of gene 

expression was used to determine "transcriptional closeness". In their analysis, the 500 

significantly upregulated genes in ESCs lines are both central (Oct3/4) and peripheral 

(NR5A2) to the reprogramming process. In addition, a fair percentage of these genes 

are involved in biological processes such as cellular maintenance (16%) and 

metabolism (10%). A mouse study based on a genome-wide methylation assay clearly 

shows that there exists a difference between SCNT-ES and iPSCs in terms of 

epigenetic memory. Specifically, direct reprogramming does not involve a direct 

resetting of the cell's epigenetic markers and the potential exists for methylation marks 

indicative of the previous cellular state to survive the reprogramming process. According 

to Kim et al. (2010), differences due to epigenetic factors are substantial. This can be 

seen in the case of differentiation potential of neurally-derived iPSCs, which are more 

resistant to the conversion into blood whereas iPSCs derived from leukocytes are more 

prone to do so. It is worth mentioning that none of the original four transcription factors 

used by Yamanaka and collaborators has ‘chromatin regulation’ as primary function. 
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 Using data from rhesus monkey, Byrne (2011) suggests that oocytes (e.g. SCNT-

ESCs) contain factors that enable more complete reprogramming to the native ESC 

state. Yet we can also see that "supplemental factors" can also help iPSCs overcome 

the biological shortcomings of the direct reprogramming process. While the existence of 

an optimal set of enhancement conditions is debatable, these experimental outcomes 

raise the issue as to what contributes to this observed advantage. Perhaps we can 

uncover this reprogramming-favorable gene expression background using a quantitative 

analysis of secondary data. 

3.5 Quantitative analysis of secondary data 
 
 The most common comparison at the gene expression level is done by looking at 

the transcriptome of the cells, and by comparing gene expression profiles. In one study, 

the genomic and epigenetic profiles of multiple iPSCs lines were shown to become both 

more like each other and to become more like ESCs over time (Chin et al., 2010). While 

both within- and between-species studies suggest that there are very few gene 

expression differences between SCNT-ESC and iPSCs, the question becomes whether 

or not these differences are due the methods themselves, developmental (SCNT-ES) 

vs. non-developmental (iPSC). It is also difficult to rule out the possibility that the 

differences found in the final product – a pluripotent cell – are due to natural 

variationthat defines distinct pluripotent cell lines. Furthermore, while the typical 

approach is to reveal significant differences that arise from essential changes to the 

transcriptome, a supportive environment must also exist in order for phenotypic 

remodeling to take place. In the SCNT-ESC/iPS comparison, we have two techniques 
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that result in the same cellular state (pluripotency). Yet while the resulting cells are of 

the same state, their supportive transcriptional milieu might be very different. 

 A related issue involves transcriptionally homogeneity of the pluripotent state 

itself. By looking at intra-state transcriptomic diversity, we might be able to uncover 

these supportive factors. However there is a need for a control cell type that has uniform 

cellular composition. We put forward the notion that the human 8-cell preimplantation 

embryo represents the ideal control. Its equivalent in the mouse, the four cell embryo, 

has demonstrated totipotency in multiple studies recorded in a strong body of literature 

that spans two decades (Kiessling et al., 2009; Telford, Watson, and Schultz, 1990). 

Our premise is that supportive genes can be revealed through an unconventional re-

analysis of 15 microarrays that represent four sets of experiments and three cell types 

(iPS, ES, and 8-cell embryo). While not directly related to SCNT-ESC methodology 

(human SCNT-ESC are not available), these data can provide an objective perspective 

on what characteristics pluripotency confers on cells. Therefore, we used previously 

collected microarray data and two statistical models (mutual information and an 

objective distance metric) to better understand these differences.  

 Each comparison was made between multiple iPSCs, ESCs (Avery et al., 2008, 

and 8-cell embryos (Xie, Chen, He, Cao, and Zhong, 2007). In this case, fertilization-

derived ESCs were used, assuming that their gene expression is mostly identical to an 

indirectly-reprogrammed (e.g. SCNT-ES) pluripotent cell. We used two sources of 

iPSCs: iPSC lines from our own laboratory (Cellular Reprogramming Laboratory, 

Michigan State University) and iPSC lines obtained from Gene Expression Omnibus 
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(GEO) (Masaki et al., 2007). The 8-cell embryo samples were included to demonstrate 

how both types of pluripotent cell compared to a totipotent gene expression signature. 

3.5.1 Cell line information and methods. All analytical work is done using MATLAB, 

Excel, and R. Thirty-one (31) previously acquired human microarray studies that 

encompass fibroblast and pluripotent cell type diversity, and embryo time-series 

diversity. Pre-processing of microarray data is done using the AMP (automated 

microarray pipeline) tool located at http://compbio.dfci.harvard.edu/amp/. Microarray 

data are normalized using the RMA (robust multi-chip average) method. n-fold 

expression values are derived by dividing the individual values for each probe into the 

mean of the dataset. z-score transformations are also used to normalize each set of 

probes, and serve as an alternative to the n-fold expression criterion. Eighteen (18) 

previously acquired human microarray assays from five (5) experiments were used. 

These data encompassed fibroblast and pluripotent cell type diversity, and are shown in 

Table 3.1. 

 For ES cells (GEO database accession numbers: GSM194307, GSM194308, 

GSM194309) lines from Avery et al. (2008) are used. These samples are derived from 

human tissue, and used the Affymetrix Human Genome U133 Plus 2.0 platform. For 

one set of iPS cell lines (GEO database accession numbers: GSM245339, 

GSM245341, GSM245442, GSM257520, GSM257339, GSM257524) lines from Masaki 

et al. (2007) are used. These samples are derived from human tissue, and used the 

Affymetrix Human Genome U133 Plus 2.0 platform. For the set of 8 cell embryonic 

samples (GEO database accession numbers: GSM456652, GSM456653, GSM456654) 

lines from Xie et al. (2011) are used. These samples are derived from human tissue, 

http://compbio.dfci.harvard.edu/amp/
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and used the Affymetrix Human Genome U133 Plus 2.0 platform. The iPS lines (104, 

21010, 2555) each consisted of microarrays collected at the Cellular Reprogramming 

Laboratory, Michigan State University. These samples are derived from human tissue, 

and used the Affymetrix Human Genome U133 Plus 2.0 platform. For skin fibroblasts 

(GEO database accession numbers: GSM301264, GSM301265, GSM301266), the 

control condition from Duarte, Cooke, and Jones (2009) are used. These samples are 

derived from human tissue, and used the Affymetrix Human Genome U133 Plus 2.0 

platform.  

3.5.2 Parameteric description of microarray analyses. For the microarray analyses, 

each set of i
th

 replicates for j
th

 cell types were averaged to yield a mean expression 

value. Each resulting vector was filtered for all common genes that also scored above 

the 50th percentile. Common genes were found by finding the intersection between nth 

vectors (common identity based on probe ID). Pairwise comparisons were done by 

evaluating every k
th

 element between each vector m and n. 

3.5.3 Discovery of potentially supportive genes. To demonstrate the actual difference 

between reprogrammed iPSC and ESCs, we used microarray data to establish an 

absolute distance in terms of fold-change between cell lines (see Figure 2). After 

normalizing for differences in platform types and technical variation, we analyzed 5,595 

genes. The fold-change was then calculated for each sample, and the median of all 

replicates for a given gene, cell line combination was used for purposes of comparing 

absolute differences (e.g. distance). Only distances in the 50th percentile and above 

were considered for direct comparison. The goal of this analysis was to find the most 

different genes as characterized by our pairwise distance metric within the defined 
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intersection among the cellular states being compared (e.g. iPSC-ESC). Those lists 

were then annotated and subject to further analysis. 

Table 3.1. Source data for secondary analyses. 
 

Tissue Origin 
 

 

Number of Microarrays 
 

 

Organism 
 

 

Skin 
 

 

3 
 

 

Human 
 

 

ES cell culture 
 

 

3 
 

 

Human 
 

 

iPS cell culture 
 

 

6 
 

 

Human 
 

 

iPS cell culture (CRL lab) 
 

 

3 
 

 

Human 
 

 

8 cell embryo 
 

 

3 
 

 

Human 
 

 
 Figure 3.2 shows us the result of this methodology. When comparing iPSCs and 

ESCs lines, 105 genes were selected as different using our criteria. A comparison of 

iPSCs and 8-cell embryo lines shows a similar result (106 genes). Comparisons 

between the 8-cell embryo and ESCs lines show a slightly larger set of genes with 

above threshold different expression (173 genes). Annotation of these genes using 

gene ontology (GO) showed that most of these genes are involved in either remodeling 

the cell or building structural components. This is to be expected in development (e.g. 

the ESC and 8-cell embryo samples), but should also be expected in conversion to an 

iPSC phenotype. Of particular note are the disproportionate representation of ribosomal 

proteins (roughly 1% of total genes assayed) in these lists, constituting 52% (iPSC-ES 

comparison), 51% (iPSC-8 cell embryo comparison), and 39% (ES-8 cell embryo 

comparison), respectively. 
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Figure 3.2. Gene expression differences between cell lines representing different types 
of pluripotent cells. 
 
3.5.4 Further analysis using IPA Ingenuity. Further analysis using the IPA Knowledge 

Base (Ingenuity Systems Inc., Redwood City, CA) confirmed the GO annotations. Both 

comparisons with iPSCs yielded virtually the same genes, while the ES-8 cell 

comparison yielded a longer list with different constituent genes. Yet across all lists, the 

proportion of genes classified by Ingenuity as possessing a unique identity (64-65%) 

and proportion of genes whose expression is localized to the cytoplasm and nucleus 

(72-78% for cytoplasm, 9-15% for nucleus) is similar. For a list of the top 25 gene 

identities for each pairwise comparison, see Table 3.2. The IPA core analysis also 

provided information on indirect gene network reconstruction (Ideker, Oxier, 

Schwikowski, and Siegel, 2002) for each cell type comparison.  
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 Genes associated with our iPSC-8 cell and iPSC-ESC comparisons yielded 

significant scores for the following gene network functions: protein synthesis, 

neurological/immunological diseases, and cancer. Genes associated with our ESC-8 

cell comparison yielded significant scores for a different set of network functions: 

cellular development, cell death and survival, post-transcriptional modifications, and 

DNA replication/cellular assembly. This again shows that while functional differences 

exist between iPSCs and fertilization-derived ESC, these distinctions may not involve 

genes and pathways not typically associated with the core pluripotency process. 

3.5.5 Mutual Information within and between pluripotent cell lines. To demonstrate that 

these iPSCs and ESCs lines share a common variance structures, and thus many of the 

same features important to defining the pluripotent phenotype, we measured the Mutual 

Information (MI) within and between cell types (see Figure 3.3). MI is an information-

theoretic measurement of variance structure shared between two datasets (Steuer, 

Kurths, Daub, Weise, and Selbig, 2002). In the case of our pluripotent cell types, the 

greater the MI observed, the greater likelihood of similarity between cell lines.  

Comparisons of MI content can be made within a cell type (among iPSCs 

replicates) and between cell types (a comparison of iPSCs and ESCs). Our limited 

analysis of 12,000 genes in Figure 3 demonstrates that there exists a greater amount of 

mutual information among replicates of the same cell lines (Figure 3, Part A) than there 

is between different cell lines (Figure 3, Part B). However, there are no large-scale 

differences between cell lines, nor are there large differences when compared to the 

within cell lines case. Focusing on the iPSC-ESC comparison, there is a greater amount 

of mutual information among ESCs lines than among iPSCs lines. As with result from 
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the literature, using SCNT-ESCs, this may be due to epigenetic memory among iPSC 

samples depending on the tissue source of the original donor cell. While this is a 

course-grained analysis, it does suggest that there is a core regulatory program shared 

by all pluripotent cell types. This program may vary slightly due to transcriptional noise. 

It also suggests a potential mechanism for initiating the changes required for phenotypic 

respecification. 

Table 3.2. Top 25 genes resulting from pairwise distance comparisons for iPSC-8 cell, 
ESC-8 cell, and iPSC-ESC. Genes with no annontation were not included in this table. 
RANK represents position of gene in rank order for that comparison. 

 

ES-8 cell 
 

 

RANK 
 

iPS-8 cell 
 

RANK 
 

iPS-ES 
 

RANK 

NLRP4 1 CNOT6L 1 CNOT6L 1 

KHDC1/RP11-
257K9.7 

2 DNAH5 3 DNAH5 2 

PLAC1L 3 OR5H1 8 OR5H1 5 

FOXR1 4 PER3 9 PER3 9 

ZSCAN4 5 CFTR 13 CMTM6 13 

ZNF280A 6 CMTM6 14 CFTR 14 

FIGLA 7 GLS2 15 GLS2 15 

UNC13C 8 SLC26A7 17 SLC26A7 17 

MBD3L2 9 LOC283432 20 LOC283432 20 

ZSCAN4 10 PDE6C 22 LOC441666 21 

TRIM49 11 TPTE 23 HERC1 24 

NLRP11 12 PDE8B 24 DNAJA4 25 

LOC643224 13 LOC100127974 25 CCDC102B 26 

PRAMEF12 14 TRPM1 26 LOC339260 27 

BCAR4 15 TEX12 27 TLR4 29 

RFPL1 16 SMAD4 31 GART 34 

TRIM43 17 ATM 33 RXFP1 37 

DPPA3/STELLAR 18 TRDN 35 NKTR 38 

MAGEA2/A2B/A3/A6 19 CBLN4 36 PDE8B 39 

TKTL1 20 OR2H1 37 TPTE 41 

SYCP3 21 OR5J2 40 PSMA8 42 

MAGEA3 22 C21orf109 43 SLC8A1 44 

UNC13C 23 C14orf48 44 TLR4 46 

HHLA2 24 PSMA8 45 LOC730092 47 

NR2E1 25 RXFP1 46 TEX12 48 
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Figure 3.3. Mutual Information measurements within (A) and between (B) selected pluripotent cell lines. Outlined boxes 
(black, labeled control) represent the range of values for comparisons between comparisons of skin fibroblast microarray 
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Figure 3.3 (con’t). data and all stem-like cell lines for the genes defined in this study. Data IDs are: A1 (iPS), A2 (iPS-
CRL), A3 (ES), A4 (8cell), B1 (iPS, iPS-CRL), B2 (iPS, ES), B3 (iPS, 8cell), B4 (iPS-CRL, ES), B5 (iPS-CRL, 8cell), B6 
(ES, 8cell). 
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3.6 Conclusions 
 
The first and most obvious difference between iPSCs and SCNT-ESC is at their 

origin. Depending on the method chosen, chromatin remodeling takes place either the 

moment the cell is fused to the enucleated oocyte (indirect reprogramming) or 

immediately after acquisition of a novel gene expression profile via viral vectors, mRNA, 

microRNA and/or small molecules. This novel pattern of gene expression is aided by 

changes in the extracellular environment trigger the process of phenotypic 

transformation that culminates in four distinctly different cellular stages: 1) no change; 2) 

cell death; 3) Pre-iPSCs and 4) iPSCs.  

Despite the blind and oftentimes unpredictable nature of the reprogramming 

process, there are some insights that provide clues to future research directions. The 

first such difference involves phenotypic changes due to the reprogramming process. 

Cell reprogramming is said to exhibit slow kinetics (Stadtfeld, Maherali, Breault, and 

Hochedlinger, 2008). During this process, a reprogrammed cell must make multiple 

structural changes, many of which are indirectly tied to the changes in gene expression 

measured in most studies. Among these changes are translational mechanisms and the 

production of structural proteins. This is demonstrated by our quantitative result, and 

may explain why differences exist despite minor tweaks to the pluripotency program.  

 The second difference is related to feedback and other regulatory mechanisms 

associated with triggering and maintaining these phenotypic changes. The maintenance 

of the new stem-like state, perhaps better characterized as molecular reinforcement, is 

observed over time in cells reprogrammed to pluripotency. Under culture conditions that 

favor such cell type maintenance, molecular reinforcement might also serve as a 
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selection mechanism, favoring the survival of cells that are able to become more 

uniformly pluripotent over time.  

In conclusion, the differences between directly-derived iPSCs and indirectly-

derived ESCs may have little to do with the mode of reprogramming. When the mode of 

reprogramming is successful, there is almost no difference in the core regulatory 

program initiated by the cell. Perhaps more important are the consequences of 

reprogramming, and the variable kinetics this entails. From the utilitarian point of view, 

given this general lack of functional difference, Gurdon and Murdoch (2008) have 

suggested that nuclear transfer and direct reprogramming can be used to complement 

each other in a number of applications. However, to address the question of how 

pluripotency can be achieved by chromatin remodeling in a more predictable kinetics, 

SCNT can be a more reliable tool. 
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CHAPTER 4: NEW DIRECTIONS IN CELLULAR REPROGRAMMING 
 

4.0 Abstract 

While advances in cellular reprogramming techniques have been recognized by 

the Nobel committee (Nobel Prize Committee, 2012), the underlying systems biology of 

the reprogramming process is not well understood. In order to move from 

characterization to substantive theory, this review will focus on completing pieces of the 

reprogramming puzzle. These include modeling, population thinking, and natural 

variation in the reprogramming process. Initially, we will discuss the use of predictive 

and phenomenological models to characterize changes in cellular phenotype. While 

phenomenological models have dominated the literature, models that characterize the 

dynamics of the reprogramming process are also possible. Conceptual and 

computational models will be shown to provide context that experimental investigation 

cannot. Understanding the outcomes and constraints related to direct cellular 

reprogramming is to engage in population thinking. To this end, the concept of direct 

reprogramming as a population-level process will be presented in terms of potentially 

relevant models and the role of overall reprogramming efficiency in the process. Finally, 

we will discuss the role of variability in reprogramming, as there are several sources and 

effects that influence the efficiency and outcomes of the reprogramming endeavor. 

These include, but are not limited to: the combinatorial action of transcription factor 

activity, experimental replication, and effects of source variation on desired outcomes. 

This will be presented in the context of efforts to created induced cardiomyocyte (iCM) 

cells. We will conclude with a discussion of variability and reprogramming efficiency in a 
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broader context, and how this in turn might be used to shine light on the fundamental 

principles of direct cellular reprogramming. 

4.1 Introduction 

The conversion of one cell type to another via forced gene expression changes 

presents a biological paradox. On the one hand, the mechanisms of change are highly 

unpredictable. On the other hand, reprogramming is clearly not an epiphenomenon, as 

it can be done for multiple cell types that originate from different developmental germ 

layers. A cell has a complex internal state (Gianchandani et al., 2008) that responds to 

external perturbations in a highly nonlinear fashion. However, it is still the case that the 

conversion of fibroblasts to an array of cellular states is a largely blind process of trial-

and-error. As such, failure in one lab might mean success in another, yet the reason 

behind the discrepancy never becomes clear. Although there have been attempts to 

improve the reprogramming process using drug treatments and small molecules (Feng 

et al., 2009), these attempts at process optimization obscure a larger set of issues. 

Through the development of better measurements, focusing on statistical structure of 

the reprogramming process, and understanding reprogramming as an emergent 

property, we can minimize the uncertainty when we challenge our cells with a 

reprogramming stimulus. The schematic in Figure 4.1 shows the “black box” nature of 

direct cellular reprogramming, and how convergent approaches might aid in a better 

understanding of the process. 

Direct reprogramming is defined as the conversion of somatic cell types such as 

fibroblasts (Yamanaka and Blau, 2010) or pancreatic beta-cells (Stadtfeld, Brennard, 

and Hochedlinger, 2008) into another phenotype using a cocktail of transcription factors. 
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This cocktail is typically delivered to a population of cells in culture using a retroviral 

vector (e.g. infection), although alternate delivery strategies (e.g. using mRNAs or other 

small molecules) may be possible. While the number of transcription factors used is 

relatively small, the effects of direct reprogramming on cellular phenotype are 

widespread. This is because direct reprogramming takes advantage of the hierarchical 

structure and synergistic nature of genetic regulatory networks (Carter et al., 2002; 

MacArthur, Ma, and Lemischka, 2009) while retaining the genome of the host cell. 

Direct reprogramming has also been characterized as a slow kinetic process (taking 

days to weeks), with the generation of phenotypic changes being stochastic (and hence 

variable) with regard to time and across individual cells (Hockemeyer et al., 2008). This 

differs from indirect reprogramming, in which the chromatin state of the host cell is reset 

in order to mimic a desired cell type (Yamanaka and Blau, 2010). This triggers large-

scale gene expression changes without directly manipulating hubs in genetic regulatory 

networks (Morgan et al., 2005), which is fundamentally different from what happens 

during direct reprogramming. While this difference leads to subtle changes in the 

resulting phenotypic, these features also suggest that there specific combinations of 

molecular mechanism states, microenvironmental conditions, and sets of induced 

transcription factors that provide maximal efficiency of conversion and a more controlled 

set of outcomes? 

4.1.1 Direct reprogramming in context. To frame this question in context, we will now 

review what can be accomplished using direct reprogramming techniques. The first 

successful demonstration of direct reprogramming was in 1987, when Davis, Weintraub, 

and Lassar used a single transcription factor (MyoD) to create skeletal muscle fiber 
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(iSM) cells from fibroblasts. The next milestone in direct reprogramming research did 

not occur until the 2000s, when the five-factor approach of Jamie Thompson’s group 

(Yu et al., 2007) and the four-factor approach of Shima Yamanaka’s group (Takahashi 

et al., 2007) were used to convert fibroblasts into pluripotent stem (iPS) cells. Since this 

time, the creation of induced pluripotent (iPS) cells has become commonplace (Park et 

al., 2008; Patel and Yang, 2010). Even more recently, a series of papers have 

described the successful conversion of fibroblasts to a neuronal (iN) phenotype using a 

four-factor approach (Pang, 2011; Yang et al., 2011) and the conversion of fibroblasts to 

cardiomyocytes using three to four factors (Qian et al., 2012).  

 The direct reprogramming of readily cultured and maintained cell types such as 

fibroblasts to clinically important tissue types such as neurons, cardiac and skeletal 

muscle, hepatocytes, and pluripotent stem cells has tremendous promise in the 

understanding, diagnosis, and future treatment of many currently intractable human 

diseases (Egli, Birkhoff, and Egan, 2008; Kiskinis and Eggan, 2010). Specifically, these 

specialized cells can be created from a patient's own fibroblasts, providing a new 

window into diseases such as autism or diabetes (Park et al., 2008b; Ruder, Lu, and 

Collins, 2011). Direct reprogramming can also be used to enable innovative applications 

to regenerative medicine. In Song et al. (2012), six core myocardial transcription factors 

(Gata4, Hand2, Mef2C, Mesp1, Nkx2-5, and Tbx5) were used to convert mouse tail-tip 

fibroblasts into cardiomyocytes. These cells were then injected into mouse myocardium, 

and the over-expression of all factors was enforced. This led to the localized repair of 

cardiac scar tissue, and may lead to even more promising approaches in the future
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Figure 4.1. Example of how complementary cell biology experiments, modeling, and theory might be used to converge on 
the contents of the “black box” that defines direct cellular reprogramming. 
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4.1.2 Contributions of systems approach to cellular reprogramming literature. The goal 

of this review is to establish how modeling and systems biology approaches can 

advance the study of direct cellular reprogramming, and how they may ultimately 

improve upon the current state of the field. This includes a mix of review and 

introduction of allied theory and methods into the cellular reprogramming literature, and 

will span the existing literature on induced pluripotent stem cells (iPSCs), induced 

neuronal cells (iNCs), and induced muscle cells (skeletal  iSMCs and cardiac  iCMCs). 

In a recent review by Vierbuchen and Wernig (2012), the molecular mechanisms for a 

range of reprogramming regimens are reviewed and proposed as a series of key events 

in the reprogramming process. We will also do this in a way that highlights major 

challenges and issues across different regimens. However, unlike the Vierbuchen and 

Wernig review (2012), we will focus on both population-level processes and systems-

level models. The first section will cover two distinct types of models relevant to the 

reprogramming process: phenomenological (descriptive and structural) models and 

predictive (probabilistic and functional) models. We will briefly touch on a number of 

models, including various dynamical models and a model that characterizes 

reprogramming as a slow kinetic process. The next section will introduce population 

thinking to the reprogramming community, and frame the issues of dynamics and 

efficiency in the context of cell populations. The final section will survey the existence 

and effects of variation in the reprogramming of cell populations, using the process of 

iCMC induction as an example. In the end, it should be apparent that theseexplanatory 

factors, which are novel to the field, provide an avenue to new research opportunities.
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Figure 4.2. Current thinking about source of variation and the reprogramming process. A) Figure 1 taken in part from 
Sridharan and Plath (2008), and describes the rle of variation across biology and over time; B) and C) are the 
deterministic and stochastic scenarios, respectively, taken from Hanna et al. (2009), Figure 1. Legend for schematic 
functions in B) and C): D – democratic, E – elite. 
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4.2  Reprogramming in terms of models 

To characterize the potential of cells to reprogram, there are two possible classes 

of model that can be used to simulate this biological system: predictive and 

phenomenological. While the relative advantages and disadvantages of each model 

type may depend on the input cell type, desired cell type, and even experimental 

context, models can be used to guide scientific practice and ultimately improve our 

control over the process.  

4.2.1  Predictive Models. Direct reprogramming is neither highly controllable nor a highly 

efficient process. The diagrams shown in Figure 4.2 demonstrate current thinking about 

these issues. The top panel is based in part on the work of Sridharan and Plath (2008) 

that features a model focusing on reprogramming as an “ordered” process. In this 

model, variation in reprogramming outcomes is seen as a function of input cellular 

diversity and the relative rarity of reprogramming as an outcome when transcription 

factors are delivered to a cell population. Despite these sources of variation acting as 

perturbations, “order” in the reprogramming process can be maintained in many 

scenarios. The degree of orderliness in the reprogramming process is thought to have a 

direct influence on reprogramming efficiency. This can be compared to the model of 

Hanna et al. (2009), in which the outcome of direct reprogramming is constrained by 

both the degree of determinism (whether or not the process unfolds the same way every 

time) and democracy (whether or not all cells in the population have the ability to 

successfully reprogram) in the reprogramming process (see Figure 4.2, bottom panel).  

One example of this disconnect can be found in the literature regarding general 

conception of stochastic processes relevant to phenotypic change. In general, existing 
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models for stem cell differentiation typically use rate constants and equations to 

characterize kinetics and cellular noise. In several instances (Tang, 2008; Wilkinson, 

2008), these models focused on either a deterministic conceptualization of binding and 

degradation of proteins or specific pathways with discrete outputs. However, there also 

exist general models of chaotic noise-driven dynamics (Furusawa and Kaneko, 2009; 

Raj and van Oudenaarden, 2008) and population-level models (d’Inverno, Tiese, and 

Prophet, 2006) that are even more relevant to reprogramming. Given that our 

understanding of cellular reprogramming is coarse-grained with respect to more 

traditional models of cellular noise and kinetics, population-based models might provide 

alternative information (e.g. the role of natural diversity) about the reprogramming 

process. Viswanthan and Zandstra (2004) introduce a model of discrete dynamics for 

stem cell conversion in vivo that can be adapted to the reprogramming problem. In this 

model, simple rules govern the behavior of neighboring cells as they convert from stem 

cells to differentiated cells (Table 4.1). This results in the interaction of cellular colonies 

and populations over short distances and time intervals. What is interesting about this 

model of cellular conversion is that changes in cellular state can be triggered by a 

number of small-scale events. The Viswanthan and Zandstra model (2004) also makes 

the connection between cell cycle, cell immortality, and discrete dynamics. Collectively, 

these are important aspects of how reprogramming to a fully pluripotent state is an 

emergent phenomenon governed by a series of thresholds. Taken together, these 

features of real and simulated cell conversion suggest that a general theory is needed 

that focuses on the kinetics of the single cell, the cell culture environment, and local 

cellular populations. 
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4.2.2 Phenomenological Models. While predictive models help us select which events 

are most likely to occur, phenomenological models help us understand all possibilities 

that result from the dynamics of a biological process. One type of phenomenological 

approach is the phase space model (Ghosh et al., 2011). Phase spaces (or 

hyperspaces) are a concept originally from physics used to describe the state of n-

dimensional systems as a surface. As phenomenological models of the reprogramming 

process, phase space representations are heuristic tools that help us understand 

reprogramming as a continuous, dynamic process.   

 The phase space approach has been used to model changes associated 

with transitions from stem cells to differentiated cells (MacArthur, Ma, and Lemischka, 

2009; Cinquin and Demongeot, 2005), and bears a resemblance to the epigenetic 

landscapes of Waddington (Bhattacharya, Zhang, and Andersen, 2011). The advantage 

of the phase space approach, however, is that it treats reprogramming and the 

transition between cellular phenotypes as a continuous process. This allows us to trace 

possible paths from one cell type (e.g. fibroblast) to another (e.g. induced pluripotent 

cell) in the context of genotypic and/or phenotypic changes, in addition to inferring 

possible pathways members of a cell population might take towards an apoptotic or 

partially-reprogrammed state. Understanding the reprogramming process in the phase 

space phenomenological framework might also allow us to assess bistability (e.g. when 

a system is strategically poised between two stable states) in a manner not yet applied 

to direct cellular reprogramming.  

In general, a phenomenological model is most useful in assessing the distribution 

of outcomes related to a single reprogramming event. The utility of phase space and 
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related models will be more explored at a deeper level during our discussion of 

population dynamics, as representing biological processes with regard to the 

demographics of a specific population is perhaps the greatest strength of a 

phenomenological approach. Related approaches such as graphs and trees might also 

be used to characterize the complex system of a reprogramming cell. This may assist in 

experimental design and ultimately enrich the interpretation of results. While these 

models may seem to be pure conjecture, they serve as an example of the design 

challenges for future experiments and therapeutic applications.  

What both diagrams in Figure 4.2 show is a clear need to understand the 

sources of variation inherent in direct reprogramming. Whether this is possible at the 

level of principles or as a set of mechanisms is yet to be seen. However, direct 

reprogramming is a highly versatile and simple process that can be used for a variety of 

technical applications. While the biological mechanisms responsible for direct 

reprogramming may still be mostly unknown (Sridharan and Plath, 2009), there is also 

much potential promise for future applications. 

4.2.3 Hybrid Models: Slow kinetics of reprogramming. Let us return to the concept of 

slow kinetics to better understand how predictive and phenomenological features of the 

reprogramming process might be combined in a single modeled. For this section, we 

will focus on conversion to iPS phenotypes, but the principles discussed here are 

applicable to all types of reprogramming regimen. Chan et al. (2009) demonstrates that 

for iPS cells there are three phases to the reprogramming process. The first is the 

global downregulation of somatic genes (Sridharan, 2009). The second phase involves 

a corresponding upregulation of pluripotent genes (Mikkelsen et al., 2008). The final 
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phase involves the acquisition of immortality by individual cells. As a hallmark of the 

pluripotent cellular state, acquiring immortality can be defined by the ability of a cell to 

escape senescence and upregulate genes and pathways such as p53, Ink, Ras, and 

MAP Kinase (Liu et al., 2007). Table 4.2 shows the role of various markers and their 

status during different stages in the process of reprogramming to an iPS phenotype.  

Table 4.1. Example of a Computation Model for Cellular Differentiation: rules for cellular 
conversion in a small neighborhood of adjacent cells (Game of Life model). The 

ruleset
1
has two major components: a clock representing time, and a series of different 

states for each cell in an array representing part of a cell culturing substrate.  

Rule class First if condition Operator Second if 
condition 

Then condition 

Differentiated 
cells 

internal clock = N1   cell leaves its 
niche, reset clock 

to 0 

 internal clock > N1   increment internal 
clock by 1 

Stem cells 
 

counter at a stem 

cell location ≤ N2 

AND all neighbors are 
also stem cells 

do nothing and 
leave clock 
unchanged 

 counter of a stem 

cell = N2 

NAND all neighbors are 
stem cells 

do nothing and 
leave clock 
unchanged 

 counter > N2   increment internal 
clock by 1 

Empty 
spaces 

counter at an 

empty space ≤ N3 

AND there is a single 
stem cell neighbor 

give birth to new 
stem cell and reset 

the clock to 0 

 counter at an 

empty space > N3 

AND there is a single 
stem cell neighbor 

increment internal 
clock by 1 

 no stem-cell 
neighbors 

  reset clock to 0 

 

1
 The counter consists of three constants: N1, N2, and N3. N1 represents the time taken 

for a differentiated cell to leave a niche, N2 represents the cycling phase of a cell, and 

N3 represents the amount of time for empty spaces to be populated by a descendent 

cell. 
 

It has also been shown that the state of a reprogrammed cell observed at any 

one timepoint is the product of large number of undefined events that can be 
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approximated by the measurement of epigenetic, immunohistochemical, and gene 

expression phenomena (Chan et al., 2009; Liu et al., 2007; Wadhwa, Kaul, and Mitsui, 

1999; Karplus, 1999). In the literature, these are characterized as discrete barriers, 

whether they involve changes in the expression of single genes (Hong et al., 2009), or 

specific epigenetic changes (Maherali et al., 2007; Pasini et al., 2010). The morphology 

of induced pluripotent cell colonies can likewise be classified into three categories which 

may correspond to the proposed phases of reprogramming (Marson et al., 2008). In 

addition, there are mechanisms that are global rather than phasic. For example, in 

Maherali et al. (2007), it is suggested that the expression of Nanog alters 

reprogramming kinetics in a way that is independent of proliferation rate. The existence 

of both global and phasic responses to the reprogramming stimulus may ultimately 

suggest both bottom-up and top-down mechanisms that are essential for regulating the 

speed and extent of pluripotency acquisition.  

One example of top-down mechanisms that regulate pluripotency acquisition 

involves epigenetic factors. For example, the current debate on stemness (Lander, 

2009) can inform the phenomenological model by providing a model concerning the 

presence and timing of bivalent chromatin during the acquisition of pluripotency. In 

general, this epigenetic mechanism confers a dynamic stability to stem cells. 

Contemporary findings and thinking suggest that promoters for highly conserved genes 

across the genome are enriched for both active (e.g. H3K4) and repressive (e.g. 

H3K27) transcriptional states (Spivakov and Fisher, 2007). In the reprogramming 

process, this has also been observed by Sridharan et al. (2009) and Liu et al. (2007) as 
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a weak binding affinity for both H3K4 and H3K27 during the middle phase of iPS 

reprogramming.  

Table 4.2. Various markers and mechanisms in the three-step kinetics of cellular 
reprogramming for cells converted to pluripotency (iPS phenotype). 

 

Indicator 
 

 

Stage I (< 6d) 
 

Stage II (6-12d) 
 

Stage II (> 12d) 

 

Viral vector 
 

 

Must be active 
 

Can be inactive 
 

Can be inactive 

 

miR-145 
 

Strongly 
Expressed 

 

Expressed or weakly 
expressed 

 

Weakly expressed 
or absent 

 

 

HeMeK 
 

 

Strong Binding 
 

Weak Binding 
 

Strong binding 

 

HeMeK27 
 

 

Lack of binding 
 

Weak Binding 
 

Strong binding 

 

GDF3 
 

 

Lack of expression 
 

Weak expression 
 

Strong expression 

 

Nanog 
 

 

Co-expresssion 
 

Lack of expression 
 

Co-expression 

 

TRA-1-60 
 

 

Weak expression 
 

Expression 
 

Expression 

 

PRC complexes 
 

PRC II associates 
with JARID 

 

PRC II activates 
pluripotentcy-

associated functions 
 

 

Pluripotency 
maintained 

 
Another key event in conversion to iPS phenotypes is the acquisition of 

immortality. This milestone seems to be a key event in the transition to a fully pluripotent 

phenotype. Properties of the fully pluripotent phenotype are collectively referred to in the 

literature as stemness (Mikkers and Frisen, 2005; Orford and Scadden, 2008; Gokhale 

and Andrews, 2008). Stemness has traditionally been defined in stem cells in terms of 

what makes stem cells functionally distinct from differentiated cells. Given the great 

diversity of stem cells, there are but a few overarching features of pluripotency. In 

Mikkers and Frisen (2005), stemness is defined as the stable suspension of cells in a 

specific developmental stage where cells do not leave the cell cycle. The stage is 
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marked by expression and upregulation of Oct4 and Nanog (Mikkers and Frisen, 2005). 

In Orford and Scadden (2008), stemness is defined as the continuation of the cell cycle. 

This is caused by the downregulation of Rb family proteins, and results in the global 

downregulation of cell specific genes. In at least two studies (Mikkers and Firsen, 2005; 

Gokhale and Andrews, 2008), stemness is defined as by cells within a definable niche. 

Particularly, Mikkers and Frisen (2005) propose that interaction with the local 

environment is critical for the maintenance of stemness, which is a critical feature of the 

pluripotent cellular state. The acquisition of immortality is not a requirement of 

conversion to iN or iSM/iCM phenotypes. Whether the acquisition of coherent action 

potential generation serves as a comparable milestone for these reprogramming 

regimes is an interesting question that deserves further investigation. 

4.3 Population dynamics 

The study of reprogramming kinetics, which has focused exclusively on 

conversion to iPS phenotypes, is a property of individual cells. While up to this point the 

study of cellular reprogramming has largely focused on the aggregate potential of 

certain cell types, the overall reprogramming efficiency and the relative survivability of a 

cell population are also important factors in determining how direct cellular 

reprogramming unfolds. While reprogramming efficiency and survivability can be 

assessed in a number of ways, it may also be that they contribute to highly informative 

cellular population dynamics. Compared to biochemical kinetics, population dynamics 

are a bit slower but may ultimately have almost as much influence on the 

reprogramming process.  



91 
 

4.3.1 Interaction models. It is imperative that any good model of reprogramming should 

involve a characterization of population dynamics. In the case of both cell culture and in 

vivo models of reprogramming, cell populations undergo a number of processes 

including demographic stochasticity, environmental selection, and effects related to 

initial population size (Nisbet and Gurney, 1982). If intrinsic properties of various cell 

populations are responsible for differences in reprogramming efficiency, they may be 

augmented by these processes. Of course, without extensive characterization, it is hard 

to establish a link between differences in reprogramming efficiency and a population's 

intrinsic properties.  

Aside from understanding biological variation as a by-product of population 

process, we can also examine population dynamics using experimentally-tractable 

models. This will allow us to investigate the variation among cell populations in terms of 

their response to environmental challenges (Angka, Geddes, and Kablar, 2008). This 

can be accomplished by putting each cell population under growth and survival 

conditions independently. These populations are then counted to examine their 

demographics over several days. These results can be put together using mathematical 

modeling techniques, and will allow us to examine phenomena such as cell death and 

cell survivability (Palmer and Feldman, 2011), which are factors that indirectly influence 

differences in reprogramming efficiency.  

To characterize growth and survival as an integrated process, we can use an 

additive population model of birth and death processes (Abrams, 2000). This results in a 

net growth rate measurement which characterizes the overall expansion of a given 

population in the first few days of infection. While this is not a direct measurement, it 
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does serve as a model that allows us to establish a population-specific baseline for 

cellular survivability. This may yield informativecorrelations with reprogramming 

efficiency and/or cell infection rate measured for these same populations, but in a 

different context. The application to cell reprogramming would involve coupling the rate 

of birth (e.g. cell division) with the rate of death (e.g. apoptosis, toxicity) in a single, 

idealized population. The output of such a model would demonstrate how population 

size fluctuates, particularly during the critical periods of the reprogramming process. 

4.3.2 Dynamical models. Another way to capture the population dynamics of a 

reprogramming cell population is to use a dynamical model. Two examples of dynamical 

models are shown in Figure 4.3. The top of Figure 4.3 shows an example of a phase 

space representation discussed earlier (Bernew and Straubb, 1997). While meant to 

model all relevant dimensions of a complex system, phase space models are typically 

reduced to three-dimensional (x, y, z) surfaces for visualization purposes. As shown in 

the cartoon, the maxima and minima (movement along the z axis) of the phase space 

surface represents stable phenotypic states (e.g. neuron, fibroblast, iPS). Each cell in 

the population must move (in a metaphoric sense) towards these stable states 

(movement along the x and y axes) over time. The extent to which these cells cluster at 

or near these extreme values determines the relative rate of efficiency and extent of 

reprogramming.  

A similar approach is the bistablity model, shown in cartoon form on the bottom 

of Figure 4.3 (Kelso, 2008). The bistability model is a two-dimensional model that 

approximates bistable phenomena. Unlike the phase space model, bistability models 

use a single dimension representing cellular state and another dimension representing 
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a potential for change. When the cell is in a stable state (center) it sits in the middle of 

two wells, and movement of a cell or population into one of these wells is characterized 

by its potential (y-axis). Originally applied to research ranging from bimanual 

performance (human cognition) to symmetry breaking (physics), bistability models might 

be well-suited to characterizing bistable phenomena in the reprogramming process such 

as histone binding and partial reprogramming. 

4.4 Stochastic threshold model 

 It could be argued that direct cellular reprogramming is a critical process during 

which many cumulative changes trigger large-scale changes at random and uneven 

intervals (due to a stochastic process), much like what happens during an avalanche. 

This type of behavior has been observed in physical and neuronal systems alike (Bak, 

Tang, and Weisenfeld, 1987; Beggs and Plenz, 2003), and is a classic statistical 

signature of self-organization. The stochastic threshold model (STM) is useful for 

understanding these changes as they occur across a population of cells. Rather than 

independently monitoring the reprogramming process in every cell, we can use 

population-wide probability distributions to better understand the commonalities and 

rarities in reprogramming behavior among cells in their specific population. 

 There are four parameters (Table 4.3) that describe distributions and features in 

the stochastic threshold model (STM). The first of these is XT, which describes a 

threshold value along the x-axis (e.g. a value for the proportion of cells in culture). The 

second of these is YT, which describes a threshold value along the y-axis (e.g. a value 

for the proportion of cells positive for one or more biochemical indicators).  
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Figure 4.3. An example of a direct reprogramming hyperspace with stable states for 
iPS, iN, and fibroblast cells. LEFT: an exemplified n-dimensional hyperspace. RIGHT: 
an exemplified two-dimensional hyperspace demonstrating the potential bistability of 
cellular state (see Kelso, 2008 for HKB model example). 
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 Taken together, these thresholds define a bounding box that enclose different 

fractions of our cell population representing fully reprogrammed cells, partially 

reprogrammed cells, and non-affected cells. These are defined by A, B, and C, 

respectively (see Figure 4.4). The other two parameters (a and α) are directly related to 

the statistical signature of the data. The distribution of reprogramming efficiency in a 

population should fit a power function, as shown in Figure 4.4. A power law signature 

direct reprogramming-related population dynamics is a non-uniform process 

characterized by a statistical signature in which only a few fully reprogrammed cells 

exist against a background population of non-converted cells (Reed and Hughes, 2002). 

Parameters a and α describe the slope and exponent (e.g. shape) of this curve, 

respectively (see Table 4.3).  

Table 4.3. List of parameters that describe changes in the STM. 

 
Parameter 

 
Definition 

 
Significance 

 

XT 

 

 
Proportion of cells in 

culture of a certain state 

 
Define transitions between 
fractions of the population 

 

 

YT 

 

 
Fraction of indicator-

positive cells in 
population 

 
Define transitions between 
fractions of the population 

 

 
a 

 
Shape of curve 

 

 
Slope component of the 
power function model for 

the data 
 

 
α 

 
Shape of curve 

 

 
Exponent of the power 

function model for the data 
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4.4.1 Scenarios under the STM. In an ideal situation, a small proportion of cells in the 

population should express the hallmarks of a reprogrammed cell as completely as 

possible. This includes phenotypic conversion in addition to the expression of all key 

biochemical indicators (category A). A larger proportion of cells (category B) feature 

partially-reprogrammed cells, which exhibit either cryptic phenotypes or only a subset of 

key biochemical indicators. A comparable or even larger proportion of cells define 

category C, and do not respond to the reprogramming stimulus, and do not express any 

of the hallmarks of a reprogrammed cell. Changes in the empirical distribution 

correspondingly contribute to changes in the XT and YT parameter values.   

 For a given observation, the fewer the number of cells reprogrammed, the 

greater number of regulatory events must occur inside each cell before conversion is 

assured. While this threshold is variable for each cell in the population, the STM 

describes the mean behavior across all cells in a way that captures the non-uniform 

responses at the population level. While the STM can account for the state of a cellular 

population at different points in the reprogramming process, it does not explicitly 

account for cells that die during the course of reprogramming. Nor does this model 

directly account for the underlying genomic mechanisms. However, the STM is a good 

heuristic approximation for comparing how the outcomes of the reprogramming process 

are distributed between input cell lines and different target phenotypes. 

4.5 Role of variability in cellular reprogramming 

There are a number of issues that constrain the use of direct reprogramming as a 

biotechnological tool. These include both the phenotypic stability of a converted cell and 

the overall efficiency of viral transduction. Phenotypic stability can be assessed in many 
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ways, but the most common is the retention of a converted state after the removal of 

enhanced transcription factor activity. In the case of iPS cells, over-expression of the 

four factors is turned off after a period of time. The ability of fledgling iPS cell to retain a 

gene expression pattern typical of a pluripotent cell is an indicator of how complete the 

reprogramming process has transformed the cell (Duinsbergen et al., 2008). Since the 

reprogramming process is not uniform in every cell, many of cells initially infected by the 

retroviral vector either apoptose, differentiate, or remain in a partial-iPS state (Chan et 

al., 2009). A similar situation likely exists during conversion to any given cellular 

phenotype, as non-uniformity of process may result from combinatorial activity of the 

reprogramming factors on the cell’s biochemistry. This can be problematic for 

applications such as cell therapy, as it can trigger inflammatory or carcinogenic 

responses. Considering variability from a systems perspective also enables us to 

understand both the potential causes and effects of variability in context. These include 

overall reprogramming efficiency, the combinatorial action of transcription factors, and 

the replication of experimental results. 

4.5.1 Variability and efficiency. One outstanding problem in the reprogramming 

literature, and an issue that is characterized but not explained by the STM, is the high 

degree of variability in terms of efficiency. A comprehensive understanding of the 

mechanisms controlling reprogramming efficiency is compounded by two issues. The 

first is the way in which efficiency is measured. In most studies (Wernig et al., 2008; 

Stadtfeld et al., 2008), the efficiency is estimated from the number of colonies derived 

from an input cell population. More sophisticated methods (such as FACS sorting) can 

also be used to obtain the number of cells before infection and after mature colonies 
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appear. While these techniques serve their purpose as first-pass approximations, they 

do not account for variation in colony composition nor the population dynamics (e.g. 

growth and death rates) of cells from first infection to final count. This likely contributes 

to a significant amount of measurement noise within and between different cell types. 

The second component is appropriately characterizing the variability that does exist in 

the reprogramming process. One of the problems with current studies on 

reprogramming is that they do not provide estimates of variability between experiments, 

even replicates performed on clonal lines. What is needed is a series of estimators for 

expected variability within and between cell lines.  

Due to the inherent complexity of the reprogramming process, there exists large 

variability in terms of reprogramming efficiency. Efficiency is generally defined as the 

fraction of input cells successfully converted to the desired phenotype. In a survey of the 

literature on efficiencies for converting somatic cells to iPS cells, Artyomov, Meissner, 

and Chakraborty (2010) report that the efficiency rate can vary from 0.001% to 29%. 

While the highest possible efficiency is most desirable, it is often the case that efficiency 

is highly variable across cell types and instances of reprogramming (e.g. independent 

infections). The underpinnings of this variation are largely unknown, and may pose a 

significant problem for the further development of this technology. Assessing efficiency 

is not simply a matter of better measurement and approximation, however. In the case 

of conversion to iPS cells, the resulting pluripotent cells are not created equal. 

Successfully converted cells can be further fractionated by their degree of conversion. 

So-called partial-iPS cells (Chan et al., 2009; Sridharan et al., 2009) are known to exist 

in iPS cell cultures, and demonstrate a high degree of phenotypic diversity. However, 
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partial-iPS cells are generally identified by their inability to express the reprogramming 

transcription factors independent of their transgene (Sridharan et al., 2009). Bearing a 

superficially pluripotent phenotype, however, they represent a transitional state which is 

neither truly pluripiotent nor unaffected by the reprogramming process. While it has not 

been demonstrated, there are likely such “partial” states in induced neuron (iN), muscle 

fiber (iSM), and cardiomyocyte (iCM) cultures as well. Such partially-converted states, if 

properly characterized, might also allow for statements about reprogramming process 

efficiency. 

4.5.2 Combinatorial action of transcription factors and experimental replication. As a 

general phenomenon, cellular reprogramming is a repeatable process, even though 

overall efficiencies from experiment to experiment are highly variable. What might 

account for this paradox? By taking a systems-level view of cellular reprogramming, we 

can see that combinatorial transcription factor activity and experimental conditions 

between labs and context may play a bigger role than previous studies indicate. The 

optimal transcription factor combination for a desired cell type is generally selected 

using a series of screening experiments. For an example from cardiomyocytes, see 

Srivastava and Ieda (2012), although Chang et al. (2011) has worked out an algorithmic 

approach. Selective siRNA knockdown of downstream genes (Hong et al., 2009), 

selective inducement of delivered factors (Maherali et al., 2008; Markoulaki et al., 2009), 

and the addition of supplemental factors (Qian et al., 2012; Srivastava and Ieda, 2012), 

have also been used to improve efficiency. This is consistent with phenomenological 

model-based computational experiments looking at the reprogramming of fibroblasts to 

pluripotent cell fates have demonstrated that there are many potential pathways to the 
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successful induction (Artyomov, Meissner, and Chakraborty, 2010). It should also be 

kept in mind that transcription factors can act synergistically or in combinatorial fashion 

to result in a number of outcomes that are not easy to predict a priori (Loh and Lim, 

2011). 

. 
Figure 4.4. Schematic showing the details of the stochastic threshold model as it 
captures the dynamics of a reprogramming cell culture. Example shows hypothetical 
cell population being converted to iPS phenotype. Categories are components of a 
population's probability distribution, and are as follows: A) cells that sre fully converted 
during the reprogramming process, share a stable and hard-to-reverse phenotype, B) 
cells that are partially converted during the reprogramming process, sharing only some 
traits with category A, C) cells that are exposed to reprogramming stimulus but fail to 
convert to a new phenotype. 
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Another outstanding problem is the lack of experimental replication across 

experiments and laboratories. From a philosophy of science standpoint (Kuhn, 1962), 

the inability to replicate results is considered a violation of scientific method. There have 

been several recent papers citing the problems with reproducing well-known results in 

Psychology (Yong, 2012) and Medical Science (Ioannidis, 2005). In Yong (2012), 

interviews with a number of scientists revealed that most prestigious journals focus on 

positive results only. This may lead to articles that present parlor tricks, or one-time 

occurrences in which the experiment happened to work as expected (Yong, 2012). In 

light of this, perhaps an unfair standard (e.g. using the benchmark reproducible results 

as a good science standard) obfuscates our ability to truly understand the natural 

phenomenon (Buganim et al., 2012). In the case of cellular reprogramming in particular, 

perhaps replication should not be the primary goal. Instead, we should look at higher-

order metrics (e.g. the variance structure over multiple replicates) rather than average 

outcomes. This might involve adapting principle component analysis (PCA) or a 

statistical learning technique in a problem-specific manner.  

But why would this be preferable in terms of interpreting results? To understand 

this, recall that when we convert a cell from one phenotype to another, a few 

transcription factors trigger many changes in the cell that lead to a change in state. 

Therefore, it should not be assumed that this process always utilizes the same set of 

mechanisms. At least three papers (Artyomov, Meissner, and Chakraborty, 2010; Loh 

and Lim, 2011; Lee, 2011) have proposed that reprogramming is a combinatorial 

process triggered by initiating factors and having a mosaic effect on the cell’s 

biochemical milieu. This suggests that there are multiple pathways for the successful 
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conversion of a phenotype, and that any endpoint measurement of this process will 

yield a multimodal statistical distribution. This outcome is not adequately characterized 

by either traditional clustering techniques or traditional parametric statistical analyses. 

4.5.3 Effect of variability on desired outcomes. Since cellular reprogramming is in part a 

bioengineering technique, we must also consider cellular reprogramming as a series of 

design principles. To achieve this, we can leverage the potential cause and effects 

featured in previous sections. Design principles characterize the nature of a system for 

purposes of good engineering design (e.g. functionality, reliability, etc.). In another 

context, I have argued that the design principles for a “living” system must be 

fundamentally different than those for a mechanical or electrical system (Alicea, 2009). 

This is because living (e.g. biological) systems exhibit much more variation than non-

living systems. Therefore, the design principles that govern direct cellular 

reprogramming should not focus on standardization and optimization, but rather on 

things such as customization and designing to take advantage of a living system’s 

inherent variability. This might be especially helpful when using direct reprogramming to 

produce converted cells from disease- or patient-specific cell lines (Park et al., 2008a; 

Patel and Yang, 2010; Kiskinis and Eggan, 2010). One might imagine that cells could 

be classified not only by their tissue of origin and phenotypic characteristics, but also by 

their genotype or other biochemical profiles. Such approaches (e.g. personal 

pharmacogenomics) are already becoming commonplace in other areas of biological 

research, and should be a part of direct cellular reprogramming as well (Feala et al., 

2010). 
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4.6 Variability example: enduced cardiomyocyte cells 

We will now focus on specific methods and results from the cardiomyocyte 

literature. In this case, we can show that biological variation may be related to technical 

variation, but that overall significant variability exists even within a specific target 

phenotype. The first report of successful cardiomyocyte induction is from Ieda et al. 

(2010). This study is built around the observation that, unlike in the case of skeletal 

muscle fibers (MyoD) or pluripotency (Oct4), there is no "master regulator" transcription 

factor for cardiac muscle (Davis, Weintraub, and Lassar, 1987; Takahashi et al., 2007). 

To conduct their screening of appropriate factors, key developmental cardiac regulators 

were used in a reprogramming context. Fourteen (14) candidate genes were identified 

using a microarray of cardiomyocytes and fibroblasts, and were delivered individually 

and collectively into cultured cells. Ultimately, a cocktail containing Gata4, Mef2c, and 

Tbx5 (GMT) was used to reprogram a fibroblast population. This resulted in successful 

reprogramming to a functional cardiomyocyte phenotype in a manner similar to other 

target phenotypes (e.g. iPS). 

While the GMT factors provide the potential for reprogramming, it still may not be 

the best possible method. On the one hand, the reprogramming potential of GMT is not 

simply an artifact of the Ieda et al. (2010) methodology. Qian et al. (2012) found that in 

vivo delivery of GMT cocktail decreases infarct size and convert cells to a phenotype 

that fire action potentials, beat when stimulated, and exhibit cardiomyocyte-like gene 

expression. Moreover, the forced expression of four factors (Gata4, Hand2, Mef2C and 

Tbx5 -- GMTH) in non-cardiomyocytes in vivo in mice results in functional 

cardiomyocyte-like cells and overall improves the rate of regeneration after injury (Song 
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et al., 2012). A cocktail containing all 14 factors resulted in 1.7% of cells providing a 

GFP+ signal (Ieda et al., 2010). Ultimately, the combination of Gata4, Mef2c, Mesp1, 

and Tbx5 increased reporting activity of alpha-MHC to over 20%. The combination of 

Gata4, Mef2c, and Tbx5 (GMT) were considered "sufficient", as adding Tbx5 did not 

improve efficiency. As will be demonstrated in the next section, just because a given 

factor does not immediately add to the overall efficiency of the reprogramming process 

does not mean it is dispensable. 

4.6.1 Cause and effect of variation in context. In a previous section, we proposed that 

the combinatorial action of transcription factors and the replication of results contribute 

to variability. This seems to hold true in the case of iCM cells, as there are a number of 

factors mentioned in the existing literature that could account for a lack of experimental 

replication. For example, the Ieda et al. (2010) study used the most common cell type in 

the heart (cardiac fibroblasts), but do not account for their diversity. A review by 

Srivastava and Ieda (2012) provides a good indicator of how important accounting for 

variation is to three studies using the GMT and GMHT cocktails. In Ieda et al. (2010), 

GMT factor expression was roughly 6- to 8-fold greater than in uninfected 

cardiomyocytes, while in Chen et al. (2012), GMT expression was 18- to 1000-fold 

greater than in uninfected fibroblasts. Perhaps the forced overexpression of 

transcription factors only plays a tangential role in successfully converting cells to the 

target phenotype, and perhaps there is variablity across contexts. For example, the 

approach of Ieda et al. (2010) yielded 15% of cells with cardiomyocyte-like expression 

patterns, but only 0.5% of cells became fully reprogrammed with the functional 
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attributes of cardiomyocytes. By contrast, the Chen et al. (2012) study reports difficulty 

in producing any cells that are fully reprogrammed. 

From these induced cardiomycyte examples, we can clearly see that a host of 

mechanisms influence reprogramming efficiency. While some of these can be written off 

as technical variation, others are likely to be related to natural variation. One factor that 

might account for discrepancies across experiments is microenvironment. In Ieda et al. 

(2010) it is suggested that cardiac fibroblasts might reprogram more readily in vivo, 

where the presence of a cardiac microenvironment could reinforce the full conversion of 

otherwise partially-converted cells. But findings such as this consistently lead to the 

assumption that once we control for all known sources of variation, direct cellular 

reprogramming should become routine and highly precise (Srivastava and Ieda, 2012). 

We propose that this is not necessarily the case. We will now turn more explicitly to the 

potential of natural variation to influence the outcomes of direct cellular reprogramming. 

4.7 Role of natural variability in cellular reprogramming 

 Since much of the modeling and population-level experimental work focuses on 

changes in state and overall efficiency, we must inquire as to the underlying 

mechanisms of direct cellular reprogramming. When our experiments involve a single 

cellular population reprogramming to a single target phenotype (e.g. iPS), the 

discussion is limited to sets of pathways and candidate biochemical markers. However, 

when we examine multiple cell populations reprogramming to multiple target 

phenotypes (e.g. iN and iSM), a set of mechanisms related to natural variation (e.g. 

genomic variants and innate differences between cell lines) must be considered.  
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4.7.1 Inherent preferences for reprogramming. Perhaps even more informative are 

experiments that demonstrate clear preferences of various cell lines for reprogramming 

to a single target phenotype (Alicea et al., 2013; see also Chapter 2). This preference 

has been demonstrated to be a property of fibroblasts populations with neither 

progenitor cell influence nor cells which are primed for gene expression reflecting the 

destination phenotype. This phenomenon can be shown in a contingency table (Table 

4.4), in which all possible outcomes are featured for a set of populations exposed to 

both the muscle and neuronal reprogramming factors. 

Table 4.4. All possible outcomes for experiments reprogramming cells to induced 
neuron (iN) and induced skeletal muscle fiber (iSM) phenotypes. (+) is equivalent to 
above-average reprogramming efficiency, while (-) is equivalent to below-average 
reprogramming efficiency. 
 

  
iN phenotype (+) 

 

 
iN phenotype (-) 

 

 
iSM phenotype (+) 

 

 
Generalized plasticity 

 
iSM Bias 

 
iSM phenotype (-) 

 

 
iN Bias 

 
Active 

suppression/buffering 
 

 
In this hypothetical set of experiments, cell lines that exhibit high reprogramming 

efficiency for both iSM and iN phenotypes are said to exhibit a generalized plasticity 

mechanism. This may involve changes in cell cycle timing or other changes to 

generalized cellular mechanisms (Egli, Birkhoff, and Eggan, 2008; Cox and Rizzinio, 

2010). When a cellular population exhibits low reprogramming efficiency for both iSM 

and iN phenotypes (the diagonal cells in Table 4.4), this suggests active suppression of 

phenotypic change related to developmental buffering mechanisms (Chipev and Simon, 
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2002; Blasi et al., 2011). However, when a cell population exhibits a high 

reprogramming efficiency for one phenotype (e.g. iN) but not another (e.g. iSM), it is 

proposed that these cells exhibit reprogramming bias. 

4.7.2 Potential driving mechanisms of reprogramming bias. The driving mechanism 

behind reprogramming bias is a preference towards changes specific to the genetic 

regulatory network of a given type. When a cell is exposed to the reprogramming 

factors, there is a reordering of the cell biochemistry that allows for major phenotypic 

changes to occur. Reprogramming bias is simply a functional directionality in these 

changes. For example, iSM bias will involve a preference for changes specific to the 

skeletal muscle regulatory network (Bismuth and Relaix, 2010). By contrast, iN bias will 

involve changes to specific types (e.g. glutamitergic) of neuronal regulatory network 

(Hobert, 2008). In terms of cellular populations, biased cells are non-progenitor cells 

that favor one specific phenotype (e.g. iSM) over another (e.g. iN). If enough individual 

cells in the population meet this criterion, the population can be said to exhibit strong 

bias. Previous studies suggest that determination of this bias may be highly centralized, 

as Nanog fluctuations may control this bias in iPS and other stem-like cells (Kalmar et 

al., 2009). 

4.7.3 Potential effects of reprogramming bias. Reprogramming bias can also be 

understood in conjunction with the stochastic threshold model (STM) shown in Figure 

4.4. At the population level, the thresholds and distribution function will differ for the 

same input cell population reprogrammed to different target phenotypes (Figure 4.5, 

left). In terms of a regulatory-specific process, the introduction of cell type-specific 

transcription factors will trigger an immediate response in a core set of genes, or a first-
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order genetic regulatory network. This may correspond to genes most strongly 

associated with a specific phenotype. Changes in this network will trigger subsequent 

changes in a secondary set of genes, or a second-order genetic regulatory network. 

This may include genes that support but do not determine the target phenotype. If bias 

is demonstrated by the final phenotype, coordinated changes (e.g. changes that are 

significantly different from random occurrences) that enable the phenotype in question 

will characterize both networks.  

 Figure 4.5 also demonstrates that as a cell line exhibits bias (in this case, for an 

iSM phenotype), two features of the population emerge. One is that a greater number of 

cells both within and between replicates exhibit a higher reprogramming efficiency for 

the target phenotype under bias. Secondly, a greater number of cells both within and 

between replicates also exhibit partially reprogrammed phenotypes. While we are not 

isolating and identifying specific mechanisms for this bias, we are proposing that natural 

variation (rather than technical) may also contribute to the myriad results seen in the 

reprogramming literature, particularly when reprogramming to different target 

phenotypes. 

4.8 Conclusions 

To understand the variation and replication problems of the reprogramming 

process in context, Hanna et al. (2009) have proposed a model of latency and efficiency 

(Yamanaka, 2009). In terms of latency, all cells in a population can either reprogram at 

the same rate (deterministically) or at variable rates (stochastically). In terms of 

efficiency, either all cells in a population can reprogram given the right conditions, or 

only a few cells (e.g. an elite population) have this ability. As this model (shown in 
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Figure 4.2, right) features a continuum based on timing of the reprogramming event, it 

suggests that there is some set of mechanisms focused on the regulation and 

perturbation of cell cycle (Ding and Wang, 2011). Could a mechanism of this kind be 

variable across cell lines or even reprogramming contexts, and could this in turn 

account for the high degree of variation observed in efficiency across experiments and 

cell lines? A review by Kitada, Wakao, and Dezawa (2012) critically assesses the 

Hanna et al. model in the context of generating iPS cells from Muse and non-Muse cell 

lines. Their work suggests that the source of cells and other population-level properties 

determine whether or not reprogramming can be observed as being dominated by 

stochastic and elitist outcomes.  

Another possibility is that the reprogramming ability of cells is affected by the 

physical environment. Cells in a population may become spatially restricted during the 

reprogramming process, by using a series of intracellular signals that resembles the 

process of pattern morphogenesis during development. In this case, all cells would have 

the same capacity to reprogram, but local microenvironmental restrictions would prevent 

most cells from becoming fully reprogrammed. Many of these candidate mechanisms 

involve a fair amount of speculation, so more models such as the one presented by 

Hanna et al. (2009) are needed in the field. Future developments in this direction may 

provide us with as-of-yet unknown dimensions to the reprogramming process. 
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Figure 4.5. Reprogramming bias as a population-level effect. TOP: shape of function changes (shown by arrows) with 
bias for iSM as compared to iN, averaged across population (adapted from Figure 4.4). BOTTOM: proposed process 
during reprogramming that may potentially result in bias. 
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One theme that has been hinted at in the literature but not formally proposed is 

that cellular reprogramming is an emergent property of a cell’s biochemistry. This refers 

to the coordination of changes associated with phenotypic conversion. These changes 

are either coordinated in time, or as a sequence of events (Subramanyam and Blelloch, 

2009). In any case, the degree of change in phenotype is often greater than the sum of 

all changes responsible. Such a multiplicative response is suggested by Levin (2009) as 

playing a key role in the process of bodily regeneration. Yet this multiplicative response 

could also be a product of highly-complex regulatory mechanisms. Judson et al. (2009) 

found that adding a combination of miRNA molecules [91] to three iPS reprogramming 

factors (Oct4, Sox2, and Klf4) improved efficiency over both OKSM cocktail alone or the 

OKSM cocktail plus the same miRNA combination. The key outcome of this result 

involves the ability of c-Myc to negate the regulatory enhancement that miRNAs 

(particularly miR-145, see Appasani, 2008 for more information) provide to the Oct4, 

Sox2, Klf4 pathway. This idea is followed up on in a paper by Shenoy and Blelloch 

(2012): in this case, it is suggested that the conversion to new cell fates may be driven 

by a double suppression mechanism. In this case, the delivered miRNAs suppress a 

repressor, which in turn activates a new cellular phenotype (Xu et al., 2009).  

When we reprogram a population of cells, we are in reality perturbing a black box 

mechanism. Some ideas of what constitutes the direct cellular reprogramming black box 

are featured in Sridharan and Plath (2008). According to these authors, direct cellular 

reprogramming is described as an ordered yet inefficient process. Inefficiencies 

observed among fibroblast, liver, and stomach source cells as they are reprogrammed 

to an iPS state can be defined as differences in transcriptional regulation, epigenetic 
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regulation, and viral integration site location. Conversion of intermediate cell types to an 

iPS phenotype proceeds at low efficiency (Shenoy and Blelloch, 2012). So how are 

these inefficiencies to be overcome? Concrete solutions in form of a more traditional 

protocol (e.g. drug treatments of large effect or small molecule treatments) are 

somewhat useless: we are nowhere near being able to do this in any meaningful way, 

and hopefully this review has demonstrated why such a worldview will not produce what 

is intended. In the end, the direct reprogramming community must recognize that the 

black box mechanism is actually a problem best solved by accounting for multiple 

scales simulatenously. This involves an accounting of both complex phenotypic 

changes at the level of cellular phenotype and many individual changes at the level of 

genotype. Therefore, it is being proposed that future research in the area of cellular 

reprogramming include building models of the reprogramming process that account for 

diversity, using the appropriate statistical techniques (including customizing techniques 

used in other fields), and understanding the regulatory mechanisms that underlie the 

changes being initiated.  
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CHAPTER 5: CONCLUSIONS AND FUTURE DIRECTIONS 
 

5.0 Introduction 
 
 In this dissertation, I have presented a broad overview of direct cellular 

reprogramming as applicable to the nervous system. This includes an analysis of the 

role of diversity in direct reprogramming (Chapter 2), insights into mechanism through 

comparison of direct and indirect reprogramming (Chapter 3), and how iN and iSM cells 

fit into the cellular reprogramming literature (Chapter 4). For the work presented in 

Chapter 2, an extended set of results will also be presented with details featured in 

Appendices C and D. 

5.1 Review of Results 
 
 While each chapter provides its own insight into the reprogramming process, 

there are some overarching themes that provide directions for the further development 

of experimental investigations and approaches. Chapter 2 provides a purely 

experimental investigation using primary data. The comparison between iN and iSM 

reprogramming set up Chapter 3, which allows us to explore potential differences that 

emerge when alternate approaches to reprogramming (e.g. iPS and SCNT-ES) are 

used to reach the same phenotype (e.g. pluripotent cell). The coupling of computational 

analytical methods and secondary, high-throughput data set up Chapter 4, which 

frames all of these results and related insights into a common theoretical framework. 

5.1.1 Role of diversity in cellular reprogramming. While Chapter 2 features a rigorous 

comparison of two reprogramming regimens, there are also a number of unexpected 

results and questions still unanswered. These unanswered questions revolve around a 

single issue: that a significant amount of variation exists in reprogramming efficiency 
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regardless of the target phenotype, even though there was weak correlative support for 

reprogramming performance between iN and iSM reprogramming.  

 Recall that the rigor of the Chapter 2 investigation relied in part on two novel 

measures of cellular reprogramming. The first of these was infectability (Appendix 

A.1.1), defined as the proportion of cells able to uptake the viral vector. The second of 

these was reprogramming efficiency (Appendix A.1.2), defined as the proportion of cells 

that express an immunocytochemical marker corresponding to the target phenotype of 

interest. Calculation of these two measures is conceptually related: infectability is the 

subset of all quantified cells that also express the YFP element, and reprogramming 

efficiency is the subset of all infected cells (as characterized by the infectability 

measure) that also expresses a marker gene of interest. Yet because the quantification 

of reprogrammed cells does not always involve a straightforward cell count (in the case 

of iSM quantification, positive area above a threshold value is used), reprogramming 

efficiency and infectability are not nested nor can they be characterized in the same 

metric space.  

 Despite the close relationship between the infectability and reprogramming 

efficiency measures, there appears to be a weak empirical correspondance between 

infectability and reprogramming efficiency. This correspondance is in fact highly cell 

line- and target phenotype-dependent (Table 5.1). When regression coefficiencts are 

calculated for all mouse cell lines for iSM and iN conversion, most cases provide no 

signal. Notably, however, a few lines (HE4, KI6, TA4, and TE4) exhibit one for 

conversion to the iSM phenotype. This generally supports the hypothesis that 

infectability of cell lines does not predict their reprogramming efficiency. 
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Table 5.1. Regression coefficients (R
2
) that characterize the relationship between the 

reprogramming efficiency and infectability measures for all 13 cell types. R
2 values 

calculated for cell lines converted to both neuron (iN) and muscle (iSM). Regression 
coefficients based on immunocytochemistry data. 

 

Cell type 
 

R
2
 (iSM) 

 

 

R
2
 (iN) 

 

 

HE4 
 

 

.74 
 

.35 

 

KI6 
 

 

.77 
 

.04 

 

KI2 
 

 

.05 
 

.50 

 

LI6 
 

 

.62 
 

.00 

 

KI3 
 

 

.08 
 

.09 

 

LU3 
 

 

.29 
 

.36 

 

KI5 
 

 

.03 
 

.00 

 

TA4 
 

 

.91 
 

.36 

 

LU6 
 

 

.02 
 

.01 

 

TE4 
 

 

.99 
 

.00 

 

SM1 
 

 

.66 
 

.24 

 

TE5 
 

 

.42 
 

.14 

 

TA6 
 

 

.41 
 

.08 

 
 Another finding in Chapter 2 deserving of more study involves the existance of 

larger effects between cells from the same genetic background than those from different 

genetic backgrounds. While mouse cell line reprogramming exhibits little preference for 

tissue type of origin, there are nonetheless many-fold differences between the best 

performing lines and the average performers. This many-fold difference is less 

pronounced among thehuman cell lines. Furthermore, the gene expression assays in 
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Chapter 2 do not replicate previous reports that fibroblasts exhibit variation with respect 

to anatomical position (Chang et al., 2002; Rinn et al., 2006).  

 There are two possible explanations for this type of result that might be help 

guide future work. One possibility involves differences that are only detectable after 

reprogramming. This could involve context-dependent gene expression or regulatory 

changes induced by the reprogramming process. However, these types of changes 

(e.g. epigenetic modifications) would likely have a multiplicative effect on cells from 

different genetic backgrounds, which does not correspond with our findings. There may 

also be a role for genomic variants, although during respecification to the iPS phenotype 

the expression of many allele-specific variants remains consistent (Lee et al., 2009). An 

alternate hypothesis for large-scale differences in the same genetic background 

involves the dynamics of cell populations, specifically contributions from both stochastic 

effects and the differential survival capacity of some cell lines over others in times of 

reprogramming-related stress. In addition, there is some evidence that differences due 

to cellular age exist. This lack of correlation between reprogramming regimens and lack 

of definitive trends provide an opportunity for future work.  

5.1.2 Comparing indirect and direct reprogramming. In this chapter, we demonstrated 

that different techniques (direct vs. indirect) yield subtle differences that have no 

significant functional distinction. This was done by coupling literature review with high-

throughput analysis. There may be a lesson in these results for understanding the 

genetic regulatory networks that control changes in cellular state. Specifically, various 

trigger points for initiating the changes involved in reprogramming contribute to only 

superficial outcomes. More informative are the potential “supportive” mechanisms that 
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may underlie but not determine successful cellular reprogramming, and might only be 

uncovered by comparing cell lines within a particular cellular state.  

 Given the evolutionary conservation among mammals for the early stages of 

development, pluripotent cell phenotype, and the nature of our selected genes (mostly 

involved with the ribosome and cellular structure), we should expect a high degree of 

similarity when conducting this analysis on data from different species. However, we 

should also be cognizent of surprises. In the case of functional gene expression 

associated with the onset and progression of sepsis, Seok et al. (2013) found large-

scale differences between mouse and human. Recall that we find almost identical sets 

of genes in our lists which involve iPS cell lines (see Table 3.1). Due to their association 

with a process related to establishing a new cellular identity (rather than generic 

developmental processes), the composition of these lists might very well change when 

replication is attempted in other species.   

5.1.3 New directions in direct reprogramming. In this review, we synthesize many of the 

non-iPS direct reprogramming results (e.g. iN, iSM, and iCM) with more traditional iPS 

findings in a framework of conceptual models and quantification. The focus in this 

chapter was on the various modeling techniques that might shine light on how to better 

predict and control the reprogramming process. This involves both the application of 

existing models with great potential (e.g. predictive, phenomenological, and dynamical) 

and advocacy of using a population perspective to understand the reprogramming 

process. We also introduce the stochastic threshold model (STM) and the concept of 

reprogramming bias, which is related to understanding differences in efficiency within 

and between reprogramming regimens. 
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 To better understand the correlates and potential causes of bias requires a two-

pronged approach: a measurement of a gene's expression after reprogramming 

normalized by the same gene's expression before reprogramming, and indirect gene 

network reconstruction that allows us to evaluate expression within and between local 

neighborhoods. Recall that in Chapter 2, the evaluation of a cell line's potential for 

differential reprogramming capacity was done by measuring gene expression prior to 

reprogramming. By constrast, measuring reprogramming bias will require 

measurements taken both before and after the reprogramming factors have been 

delivered. Normalizing gene expression after reprogramming by the "prior to 

reprogramming" measurement will allow us to target only those genes that change their 

expression due to the effect of our reprogrmming stimulus and not other potential 

sources of variation. The other analytical component involves defining local 

neighborhoods in an indirectly-reconstructed network topology. Neighborhood discovery 

has been applied to identify and understand the genetic background of disease-causing 

genes by Nitsch et al. (2009). Explicitly identifying local neighborhoods allows us to 

dissect the role of local versus global effects on a genetic regulatory network. Using this 

technique, higher-order effects of gene expression variation and gene-gene intetactions 

such as pleiotropy can likewise be better understood (Tyler et al., 2009). 

5.2 Advanced results for role of diversity in cellular reprogramming 
 
 In Chapter 2, we presented results for a set of experiments in which a variety of 

cells were reprogrammed to both iN and iSM phenotypes. In the human case, the cells 

were of a variety of ages from different genetic backgrounds. In the mouse case, the 

cells were from a variety of locations in the body, but of a single genetic background. 



119 
 

Despite these differences, variability was actually greater in the mouse experiments. To 

better understand these results (in mouse data only), we can characterize these data as 

a Poisson process. This involves a) fitting our data to an exponential function (e.g. a 

Poisson process – Figure 5.1, part A), and b) treating our raw data as cell counts over 

time, from which we can derive rates for each cell line (Figure 5.1, part B). In addition 

more extensive details regarding all measurements, including an automated means to 

make more specific measurements of reprogramming (e.g. “yellow” channel 

quantification – see Table A.1), are provided in Appendix A. 

5.2.1 Direct reprogramming as stochastic Poisson process. From the concepts 

advanced in Chapters 2 and 4, we can say that direct reprogramming proceeds as a 

stochastic Poisson process. Poisson processes (see Consul, 1989) can be defined as 

events that are distributed across time and occur at a variable rate. The direct 

reprogramming process is also stochastic in that the exact timing of these events is 

never truly predictable. Ultimately, our aggregate and uncorrected counts of 

reprogrammed cells can be used to infer the distribution of these reprogramming events 

in a population over time. While this information is not precise, models such as this 

allow us to move towards cell-line and condition specific predictive models of 

reprogramming efficiency. In conjunction with time-series data, we may also be able to 

correlate bursts of reprogramming (e.g. time intervals during which many 

reprogramming events tend to occur) with the expression of key genes or activity of key 

pathways. Future work might clarify if these bursts are due to collective regularities 

related to the gene regulatory network function of specific cell lines or random effects 

related that emerge at the level of cell population. 
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Figure 5.1. Rate-based information extracted from reprogrammed cell lines. Results of a Poisson exact test for iSM 
mouse cells (A) and iN mouse cells (B).  
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Figure 5.1 (con’t). 
 

 



122 
 

 If these bursts are due to genetic regulatory network function, then 

reprogramming efficiency should be repeatable across experimental replicates. Figure 

5.2 shows how this can be characterized using a histogram. Figure 5.2 demonstrates 

how many times a particular cell line end up in a given position, stated in the form of a 

frequency distribution. This can be thought of as a within and between cell line 

comparison that characterizes anomalies and trends among observed data. We will now 

test this using two examples. Two example of good performing cell lines are a mouse 

kidney cell line (Figure 5.2, Mouse) and a human IMR90 cell line (Figure 5.2, Human). 

The mouse kidney cells were the very best performing cell lines (mean performers) 

while also exhibiting high repeatability across replicates. 

Theoretically, this suggests an innate mechanism is responsible, although our 

data suggest that population processes might also be responsible. This can be 

contrasted with the latter example, in which line #1 of human IMR90 cells are among 

the top performers (mean performance), but were highly variable across replicates. This 

suggests that the alternate hypothesis (emergent random effects) is more applicable 

here. 

5.2.2 Potential measurements of reprogramming bias. We may also use our rank-order 

frequency distributions shown in Figure 5.2 to test for reprogramming bias as described 

in Chapter 4. This may be done by measuring the degree to which these distributions 

overlap for cells of the same line converted to muscle and neurons. While this 

resembles a joint distribution, the irregular nature of our distributions requires a 

specialized measure. This measure is taken by finding the difference in performance 

between each target phenotype for each histogram bin, with this being summed across 
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all bins. This results in an index that ranges from 0.0 (no overlap) to 1.0 (complete 

overlap). Bias can then be assessed by calculating 1 minus the overlap, and is 

consistent for distributions of any shape. 

 While this approach has the potential to enable us to uncover differential 

reprogramming performance between reprogramming regimens from replicates of 

reprogramming performance within single regimens, its robustness rests upon two 

assumptions. The first is that consistent performance across reprogramming regimens 

is expected to be directly proportional. A given cell line should have a similar rank when 

comparing the same cell lines destined for two different target phenotypes. The second 

is that bias occurs when reprogramming performance deviates from being directly 

proportional. In this way, we can quantify repeatability with respect to reprogramming 

performance. This quantification provides insights that can be applied both within and 

between reprogramming regimens. 

5.2.3 Conceptual models for characterizing diversity in direct reprogramming. With few 

exceptions (Chang et al., 2002; Poss, 2010; Polo et al., 2010), the role of diversity in 

cellular function is generally treated as something to be minimized. In other cases, the 

massive complexity associated with genotype-phenotype interactions have been 

characterized using simple models, which are often incomplete in the face of an ever-

expanding body of experimental results (Bhattacharya, Zhang, and Andersen, 2011). 

The results presented in chapters 2, 3, and 4 are an attempt to make sense of the 

diversity of cell types and phenotypic outcomes encountered in the study of cellular 

reprogramming. While in one way it makes sense to speak of reprogramming in terms 

of efficiency and phenotypic change, it also makes sense to interpret the results based 
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on what is happening at the level of cellular population processes. In Figure 5.3, two 

competing scenarios are introduced that presume the processes between different 

empirical outcomes.  

 

 
Figure 5.2. Rank-order frequency method for characterizing reprogramming efficiency 
performance and repeatability between experiments. Graphs with frequency’ represents 
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Figure 5.2 (con’t). the frequency of a given rank-order position across all replicates 
tested, while the graphs with the frequency y-axis represents frequency of each rank 
normalized by the inverse of each rank position and summed across all rank positions. 
 

 
 

The isolation and diffusion scenario (Figure 5.3, top) explains what may cause 

consistently high reprogramming among a few clonal cell lines across experimental 

replicates. This process, analogous to genetic drift in population biology, relies on the 

existence of nominal advantages for certain cell types (such as kidney or liver cells). As 

cell lines of these types are isolated and cloned, some of the clonal lines exhibited an 
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amplified capacity for reprogramming. Whether these differences are due to 

microenvironment or innate factors is not clear. However, this scenario does suggest 

that high reprogramming efficiency has a real biological cause. 

By contrast, the 1/f roulette scenario (Figure 5.3, top) suggests that observed 

differences in reprogramming across cell lines are primarily a product of statistical 

sampling. This scenario may explain cases where high levels of reprogramming 

efficiency occur across a variety of cell lines across experimental replicates. This 

scenario also suggests that 1/f noise (or so-called pink noise) drives this process at 

multiple time-scales (Hausdorff and Peng, 1996). According to this scenario, all cell 

lines will exhibit a small number of replicates for which the level of reprogramming 

efficiency is high. These replicates are distributed randomly in time, so that over a 

series of observations, no single cell line will perform consistently with respect to 

reprogramming efficiency. This scenario does not suggest that high reprogramming 

efficiency has a real biological cause. 

5.3 Future directions: in vitro 
 
 There are two potentially significant future directions for experimentally 

uncovering the systems-level complexity of direct cellular reprogramming. One direction 

involves assaying an actively reprogramming cell population at multiple timepoints. This 

experimental design would allow for transient features of the reprogramming process to 

be uncovered, particularly in the early phases of the reprogramming process. The other 

direction involves comparisons across a diversity of cell types using next-generation 

sequencing. 
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5.3.1 Time-series in direct reprogramming. A time-series experimental design that 

samples actively reprogramming cells at different time points may help us identify both 

critical points and transient events in the reprogramming process. This might involve the 

exopression of unique genes, or the assistive role of pathways and other factors not 

essential to the reprogramming process (e.g. Oct4 or NANOG). 

 
Figure 5.3. Hypothetical scenarios for preferential reprogramming capacity across cell 
line diversity. TOP: Isolation and diffusion scenario, BOTTOM: 1/f Roulette scenario. 
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 It might even be possible to detect the early-onset signatures of critical events 

(e.g. sudden, large-scale changes to the cell) in the reprogramming process (for a non-

reprogramming example, see Lade and Gross, 2012). This was demonstrated in a static 

context among pluripotent cells in Chapter 3, and this result might be improved upon 

using a time-series experimental design. Creating time-series datasets also allow us to 

compare and contrast the same events occurring dependently in time, such as general 

tendencies for gene expression during different phases of the reprogramming process.  

Another application of the time-series design in the study of direct 

reprogramming is to use a reprogramming analogue. A reprogramming analogue 

involves treating uninfected cell lines with a compound that is known to have a 

disruptive effect (e.g. protein synthesis, transcription) to cell function. Taking 

measurements over a post-treatment timecourse allows us to characterize the role of 

RNA decay and aggregation mechanisms during this disruption. This ultimately fatal 

disruption may mimic the disruption to cellular processes and phenotype caused by 

direct reprogramming. To further evaluate this observation, I have developed an 

approach called mechanism alteration, which is introduced and demonstrated in 

Appendix C. 

5.3.2 Direct reprogramming via next-generation sequencing. While the high-throughput 

gene expression of reprogrammed cells (e.g. iPS cells) has been characterized, the 

characterization of a multiple related cell lines is less well-known. This is especially true 

in terms of next-generation sequencing technologies. Next-generation sequencing 

combines whole-genome sequencing with a functional assay (e.g. gene expression 

levels) in an integrated fashion. Future directions might include combining RNA-seq 
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(gene expression) and BS-seq (methylation) to better understand gene expression in an 

epigenetic context at the systems level.   

5.4 Future directions: in silico 
 
 In silico approaches are useful for simulating the possible behaviors of a 

reprogramming cell culture. I have done several presentations on the use of excitable 

cellular automata for purposes of modeling the infection dynamics, genomics, and 

phenotypic remodeling inherent in the reprogramming process. This represents a 

promising direction for future work, as a complex, agent-based model of direct 

reprogramming at the population level could resolve many mysteries of colony 

formation, cytotoxicity, and reprogramming efficiency. 

5.4.1 Artificial life approximation of direct reprogramming. One highly suitable model for 

approximating reprogramming cell populations is the cellular automaton. Cellular 

automata are agent-based models of artificial life that allow for the exploration of 

spatially-explicit propagation behaviors (e.g. phenomena that traval from cell-to-cell) 

and emergent properties in these populations. For purposes of representing cellular 

reprogramming, cellular reprogramming can be combined with genetic algorithms to 

provide us with autonomous units that can be arrayed in parallel. More technical detail 

can be found in Appendix D. 

5.5 Conclusions 

 In conclusion, what lessons have we learned from these experiments, analyses, 

and future directions that may be applied to repairing, modeling, or otherwise 

reconstructing the nervous system? Here we have explored three types of direct cellular 

reprogramming that produces cell types most relevant to the nervous system: iPS, iN, 
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and iSM/iCM cells. While conversion to each cell type requires a different set of 

transcription factors and operates at different efficiencies, there are also four lessons 

that apply to all cell types derived via direct reprogramming.  

 Two of these lessons are directly related to the potential transience of the direct 

reprogramming phenomenon. The first of these, perhaps not surprisingly, is that each 

type of reprogramming is unique. This uniqueness is manifest in the form of distinct 

regulatory mechanisms, and in some cases a mosaic response. Secondly, differences 

in efficiency demonstrate that even within cell types, there is no uniformity in the 

process. These results confirm the hypothesis that there is no single, dedicated 

pathway to a successfully reprogrammed cell, even within a specific cell type. One 

consequence of this non-uniformity is variability that is hard to control or compensate for 

across replicates or experimental settings. Yet non-uniformity of process does not imply 

that reprogramming is an epiphenomenon, as the induction of reprogramming is quite 

distinct from spontaneous phenotypic conversion. 

 The additional two lessons involve the contribution of multiple mechanisms at 

different scales to the direct reprogramming process. Thus, our third lesson is that 

population approaches require new conceptualizations of roles for individual genomes 

and population processes. In many cases, the outcomes of genetic regulation and the 

context of cellular phenotype are treated as disconnected processes. Perhaps this is not 

an acceptable strategy, particularly as the reprogramming efficiency of a population is 

implicitly linked to changes in gene expression. The final lesson of these studies 

involves a more fundamental understanding of within- and between-cell type differences 

in efficiency. This focus on biological diversity is a unique approach in cell and 
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molecular biology, and requires a movement towards systems-level and hybrid 

population/process models.  
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APPENDIX A: TECHNIQUES FOR MEASURING REPROGRAMMING 

 
A.1 MEASURES: 
 

In the course of conducting the experiments in the Chapter 2, we developed 

several measures that provide a systematic, in situ assessment of reprogramming 

efficiency and infectability of reprogrammed cell lines. These include independent 

metrics of reprogramming efficiency (RE) and infectability (I), in addition to a yellow 

channel measurement that can differentiate between infected cells and cells which are 

both infected and reprogrammed. Image segmentation and pixel counts were done 

using Image J and MATLAB. 

A.1.1 INFECTABILITY MEASURE.  

Infectability (I) was developed to quantify the proportion of cells that have 

successfully taken up the virus and expressed the transgenic elements related to 

cellular reprogramming. Infectability can be defined by the following equation 

 
 

   
   

    
 

[1] 

 
where YFP represents the green channel and DAPI represents the blue channel in a 

r,g,b color scheme. 

A.1.2 REPROGRAMMING EFFICIENCY MEASURE.  

Reprogramming efficiency (RE) was developed as a way to quantify all those 

cells or particles in an image that represent a successfully converted cell. 

Reprogramming efficiency can be defined by the following equation 
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[2] 

 
where RED represents the red channel, YFP represents the green channel and DAPI 

represents the blue channel in a r,g,b color scheme. 

A.1.3 TOWARDS GREATER SPECIFICITY IN MEASURING INFECTABILITY.  

Because the reprogramming efficiency measure is more systematic than many 

others used in the literature it has the potential to directly differentiate between cells that 

are merely infected and cells that have been infected and express the genes most 

indicative of successful reprogramming. The yellow channel can be mathematically 

defined as the intersection of the red and green channels. 

  

       
 

 
[3] 

 
In the context of digitized images, this information can be provided by the red and 

blue color channels (in an r, g ,b color scheme). All color channels can be represented 

as an m-by-n matrix. To extract useful information, however, we must incorporate two 

additional pieces of information: conversion of each color channel into a binary matrix 

determined by a threshold intensity, and correction for background noise. Given these 

two constraints, the yellow channel (in matrix form) can be defined by the following 

equation. 

  

                      

 

where       

 

 
 

[4] 

where t is an arbitrary threshold value. 
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A.1.4 MATLAB FUNCTION FOR YELLOW CHANNEL AND AUTOMATED ANALYSIS 
 
Table A.1. MATLAB code for yellow channel segmentation. 

 
function [YM] = yellowchannel(t, 'import') 
%% 
% creates yellow channel (true positive green signal) for further analysis. t = threshold 
value % between -1 and 254. 'import' is a rasterized graphic file (e.g. .tif, .jpg). 
%% 
x = image('import') 
%% 
% import images as x-by-y-by-z matrices. 
%% 
r = x(:,:,1); 
g = x(:,:,2); 
b = x(:,:,3); 
rn = r/(r+g+b); 
gn = g/(r+g+b); 
bn = b/(r+g+b); 
%% 
% extract and normalize color channels. red = 255,0,0; green = 0,255,0; blue = 0,0,255. 
%% 
r2 = rn > t; 
g2 = gn > t; 
b2 = bn > t; 
%% 
% further normalize all channels relative to numeric threshold. 
%% 
y1 = r2 - g2; 
b3 = b2 * -1; 
y2 = b3 + y1; 
%% 
% generates a yellow-only channel without noise (low-intensity overlap of red and 
green).  
%% 
[YM] = image(y2) 
%% 
% generate a binary color map (YM = yellow map). This output can be used to calculate 
yellow channel statistics. 
%% 
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APPENDIX B: SUPPLEMENTAL TABLES FOR CHAPTER 2 
 

Table B.1. Primers using in cloning (primers used in the amplification of cDNAs or 
plasmid DNA for construction of retroviral vectors) analysis.  

Sequences Used for Cloning 

PRIMER 5'-3' SEQUENCE SPECIES 

ASCL1 F GAGAGAACGCGTGGCATGGAAAGCTCTGCC Human 

ASCL1 R ACACACATCGATTCAGAACCAGTTGGTGAAGTCG Human 

MYF5 F GAGAGAACGCGTATGGACGTGATGGATGGCTGCC Mouse 

MYF5 R GTGTGTAATCGATTCATAGCACATGATAGATAAGCC Mouse 

MYF6 F GAGAGAACGCGTATGATGATGGACCTTTTTGAAACTG
G 

Mouse 

MYF6 R GTGTGAATCGATTTACTTCTCCACCACTTCCTCCACGC Mouse 

MYOD F GAGAGAACGCGTGGTATGGAGCTTCTATCGCCGCCA
C 

Mouse 

MYOD R ACACACATCGATTCAAAGCACCTGATAAATCGC Mouse 

MYOG F GAGAGAACGCGTATGGAGCTGTATGAGAC Mouse 

MYOG R GTGTGTAATCGATTCAGTTGGGCATGGTTTCATC Mouse 

MYT1L F GAGAGAGGCGCGCCCGATGGAGGTGGACACCGAGG Human 

MYT1L R CACACAATCGATTCAGACCTGAATTCCTCTCACAGCC Human 

NEUROD1 F GAGAGAACGCGTGGTATGACCAAATCGTACAGCG Human 

NEUROD1 R GTGTGTGTTTAAACCTAATCATGAAATATGGCATTGAG
CTG 

Human 

POU3F2 F GAGAGAGGCGCGCCCAATGGCGACCGCAGCGTCTAA
CC 

Human 

POU3F2 R ACACACTATCGATTCAACGCGTCTGGACGGGCGTCTG
CAC 

Human 

YFP F CACAGGCCGCCTGGGCCATGGTGAGCAAGGGCG Other 

YFP R AAACTTAACGCGTCTTGTACAGCTCGTCCATG Other 

ZIC1 F GAGAGAGGCGCGCCCGGGAATGCTCCTGGACGCCG
G 

Human 

ZIC1 R ACACACATCGATTAAACGTACCATTCGTTAAAATTGGA
AGAGAGCGCAC 

Human 
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Table B.2. Primers using in Quantitative PCR (primers used in qRT-PCR quantification 
of gene expression) analysis.  

Sequences Used for Quantitative PCR 

PRIMER 5'-3' SEQUENCE SPECIES 

PANL27 F CCATCCAGACTGAGGAAGACCCGGAAAC Human/Mouse 

PANL27 R GGGCAGAAGCTCTGGTTCCTC Hu/Mo 

ARHGAP1 F TGCTGTGGGCCAAGGATGCG Human 

ARHGAP1 R GGTCCGGGCTTGGGAACAGC Human 

COL1A2 F CAGGGGCTCTGCGACACAAGG Human 

COL1A2 R TCCGGCTGGGCCCTTTCTTAC Human 

EED F GGAAGGAGCCAGGAAGCCGC Human 

EED R ACTGTCGCAAATCGCGCCCA Human 

FIBR1 F AGGAAACCAGAGCCAGTCGGG Human 

FIBR1 R GGAATGCCGGCAAATGGGGACA Human 

FIBU5 F GTGTGTGAACCAGCCCGGCA Human 

FIBU5 R ACGTCTGCTGCAGGTTGCACG Human 

FNECTIN F CGCCCTGGTGTCACAGAGGCTA Human 

FNECTIN R TGGGGTGTGGAAGGGTTACCAG Human 

FOXG1 F ACGGGGAGATCCCGTACGCC Human 

FOXG1 R CCGCGAGCAGGTTGACGGAG Human 

KER14 F GCAGCGGCCTGCTGAGATCAA Human 

KER14 R CATTGGCATTGTCCACTGTGGCT Human 

LAMIN F GTGCGCTCAGTGACTGTGGTTGA Human 

LAMINR CGAGCGCAGGTTGTACTCAGCG Human 

MYF5 F TCTCCCCATCCCTCTCGCTGC Human 

MYF5 R CCACTCGCGGCACAAACTCGT Human 

MYOD F CTCCAACTGCTCCGACGGCA Human 

MYOD R TCGACACCGCCGCACTCTTC Human 

PECAM F TCCACATCAGCCCCACCGGA Human 

PECAM R TGGGCCACAATCGCCTTGTCC Human 

SOX2 F GGGGGAAAGTAGTTTGCTGCCTC Human 

SOX2 R CTGCCGCCGCCGATGATTGT Human 

VIMENTIN F GAGCAGGATTTCTCTGCCTCTTCC Human 

VIMENTIN R TCGTGATGCTGAGAAGTTTCGTTGA Human 

ARHGAP1 F TTTGCCGAGCTTTGACAGGCG Mouse 

ARHGAP1 R AATGGAGGCCAGCTTCAACTGG Mouse 

COL1A2 F CAGGGGCTCTGCGACACAAGG Human 

COL1A2 R TCCGGCTGGGCCCTTTCTTAC Human 

EED F GGAAGGAGCCAGGAAGCCGC Human 

EED R ACTGTCGCAAATCGCGCCCA Human 

FIBR1 F AGGAAACCAGAGCCAGTCGGG Human 

FIBR1 R GGAATGCCGGCAAATGGGGACA Human 

FIBU5 F GTGTGTGAACCAGCCCGGCA Human 

FIBU5 R ACGTCTGCTGCAGGTTGCACG Human 
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Table B.2 (con’t).  
 

Sequences Used for Quantitative PCR 

PRIMER 5'-3' SEQUENCE SPECIES 

FNECTIN F CGCCCTGGTGTCACAGAGGCTA Human 

FNECTIN R TGGGGTGTGGAAGGGTTACCAG Human 

FOXG1 F ACGGGGAGATCCCGTACGCC Human 

FOXG1 R CCGCGAGCAGGTTGACGGAG Human 

KER14 F GCAGCGGCCTGCTGAGATCAA Human 

KER14 R CATTGGCATTGTCCACTGTGGCT Human 

LAMIN F GTGCGCTCAGTGACTGTGGTTGA Human 

LAMINR CGAGCGCAGGTTGTACTCAGCG Human 

MYF5 F TCTCCCCATCCCTCTCGCTGC Human 

MYF5 R CCACTCGCGGCACAAACTCGT Human 

MYOD F CTCCAACTGCTCCGACGGCA Human 

MYOD R TCGACACCGCCGCACTCTTC Human 

PECAM F TCCACATCAGCCCCACCGGA Human 

PECAM R TGGGCCACAATCGCCTTGTCC Human 

SOX2 F GGGGGAAAGTAGTTTGCTGCCTC Human 

SOX2 R CTGCCGCCGCCGATGATTGT Human 

VIMENTIN F GAGCAGGATTTCTCTGCCTCTTCC Human 

VIMENTIN R TCGTGATGCTGAGAAGTTTCGTTGA Human 

ARHGAP1 F TTTGCCGAGCTTTGACAGGCG Mouse 

ARHGAP1 R AATGGAGGCCAGCTTCAACTGG Mouse 

COL1A2 F CTCATACAGCCGCGCCCAGG Mouse 

COL1A2 R CGGTTGGCTAGCAGGCGCAT Mouse 

EED F CGCCGGCGGGAACAGACATG Mouse 

EED R TATTTGTGGGCGTGTCCGGGC Mouse 

FIBR1 F AGGCCCCCTGCAGTTACGGT Mouse 

FIBR1 R CCTCGGCCCATGCCCATTCC Mouse 

FIBU5 F ACAACCCGATACCCTGGTGCCT Mouse 

FIBU5 R CGAGGCCCTTTGATGGGGCG Mouse 

FNECTIN F GAGCGACATGCTCTACAAAGTGCT Mouse 

FNECTIN R CTGGGGGTGAGTCTGCGGTTG Mouse 

FOXG1 F CGATCGCGGCTACCGGCTTC Mouse 

FOXG1 R CACTCCCAGAGTCGCGCTCAC Mouse 

KER14 F ACAGCCCCTACTTCAAGACCATCG Mouse 

KER14 R CGCAGGCTCTGCTCCGTCTC Mouse 

LAMIN F GCCTTCGCACCGCTCTCATC Mouse 

LAMINR GCCGCTGCAGTGGGAACC Mouse 

MYF5 F CCCCAACCTCAGCCACTGACC Mouse 

MYF5 R GCCAGCAAATCCAGGCGGAGC Mouse 

MYOD F GGAGATCCTGCGCAACGCCA Mouse 

MYOD R GCAGCGGTCCAGGTGCGTAG Mouse 
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Table B.2 (con’t). 
  

Sequences Used for Quantitative PCR 

PRIMER 5'-3' SEQUENCE SPECIES 

PECAM F ACGAGAGCCACAGAGACGGTG MOUSE 

PECAM R AGGGACGTGCACTGCCTTGAC MOUSE 

SOX2 F GCTGCCTCTTTAAGACTAGGGCTG MOUSE 

SOX2 R GCCGCCGCGATTGTTGTGAT MOUSE 

VIMENTIN F GTCGAGGTGGAGCGGGACAAC MOUSE 

VIMENTIN R CCGTTCAAGGTCAAGACGTGCCA MOUSE 
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Table B.3.  Properties of human and mouse fibroblast lines. 

 
Human Fibroblast Lines 

 

 
STUDY ID 

 

 
LINE ID 

 
DONOR 

 
SEX 

 
AGE 

 
TISSUE 

FET IMR90 Healthy F E16 wk Lung 

NWB HDNF Healthy M Newborn Skin 

ADF MSU-HUMGM Healthy M 44 Gingiva 

RET GM17880 Rett syndrome F 5 Skin 

E2F MSU-HUMAG10 Healthy M 73 Skin 

EAF MSU-HUMAG07 Healthy M 71 Skin 

SAF GM01792 Schizophrenia M 26 Skin 

AUT GM07992 idic(15) autism F 3 Skin 

HSK MSU-HUMSK Healthy M 41 Skin 

 
Mouse Fibroblast Lines 

 

 
STUDY ID 

 

 
LINE ID 

 
DONOR 

 
SEX 

 
AGE 

 
TISSUE 

HE4 N/A nude mouse M 5 mo Heart 

SM1 N/A nude mouse M 5 mo Skeletal Muscle 

KI2 N/A nude mouse M 5 mo Kidney 

KI3 N/A nude mouse M 5 mo Kidney 

KI5 N/A nude mouse M 5 mo Kidney 

KI6 N/A nude mouse M 5 mo Kidney 

LI6 N/A nude mouse M 5 mo Liver 

LU6 N/A nude mouse M 5 mo Lung 

TA4 N/A nude mouse M 5 mo Tail Skin 

TA6 N/A nude mouse M 5 mo Tail Skin 

TE4 N/A nude mouse M 5 mo Testis 

TE5 N/A nude mouse M 5 mo Testis 

LU3 N/A nude mouse M 5 mo Lung 

MEF N/A mouse F/M E13 day Embryo 
 

LABELS: STUDY ID – Abbreviated line designation used this report.; LINE ID – Line 
common name.; DONOR – donor health status or strain; SEX – sex of donor (Male, 
Female, or of mixed sex); AGE – Age of donor (years, unless otherwise noted); TISSUE 
– fibroblast tissue of origin.  mRNA Expression: results of quantitative PCR analysis  of 
multiple markers.  COL1A2 – fibroblast marker collagen type I alpha 2; FNECTIN -  
fibroblast marker fibronectin; FIBR1 – fibroblast marker fibrillin I, FIBU5 – fibroblast 
marker fibulin V; VIM – fibroblast marker vimentin; KER14 – keratinocyte marker keratin 
14; PECAM – endothelial cell marker Platelet endothelial cell adhesion molecule/CD31; 
FOXG1 – neural progenitor marker Forkhead box protein G1; SOX2 – neural progenitor 
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marker SRY (sex determining region Y)-box 2, MYOD – myogenic progenitor marker 
MyoD1; MYF5 – myogenic progenitor marker myogenic  factor 5.  
Immunocytochemistry: summary of immunocytochemical analysis of fibroblast-
associated (fibronectin, vimentin) and stem cell-associated markers (Sox-2, nestin) in 
fibroblast lines.   N/A – not applicable; ND – not done; + = positive; +/- = weakly 
positive, - = negative. 
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APPENDIX C: MECHANISM DISRUPTION TECHNIQUE 
 

C.1 INTRODUCTION 
Mechanism alteration can be defined as disruption of a key cellular process that 

does not result in immediate cell death. The biochemical milieu of a cell can reveal 

much information about changes in its phenotype (for example, see Jarosz, Taipale, 

and Lindquist, 2010). Using several forms of mechanism alteration (cell cycle, protein 

synthesis, and ribosomal degradation), ways to better understand the dynamics of 

cellular information processing during a transformational process will be identified 

(Figure A.1). Mechanism alteration initiated by treatment with drug compounds will 

reveal adaptive responses in both the translatome (e.g mRNA associated with 

translation) and transcriptome (e.g. mRNA associated with transcription). These data 

can likewise be modeled to demonstrate regulatory features that lie between 

transcriptional and translation-associated RNA such as feedback and delays. The 

resulting data can also provide insight into how genes behave during transformation, 

and may lead us to a new view of how cells can convert from one phenotype to another. 

From these findings, the adaptive capacity of a group of genes or cellular population 

given environmental challenges may be inferred.  

What dynamics can tell us about the control of cellular processes.  

Due to the relative efficiency and accuracy of translation and transcription 

(Kirkwood, Rosenberger, and Galas, 1986), capturing the dynamics of RNA molecules 

associated with these processes can provide a window into changes associated with 

cell morphology, protein expression, and other outcomes (Rabani et al., 2011; Chechik 

and Koller, 2009; Barenco et al., 2009). The artificial manipulation of cellular RNA by 

exposing a cell population to specific compounds can yield insight into changes that 



143 
 

represent shifts in gene regulation due to aging or environmental stress.  Simulated 

conditions of mass arrest of cell cycle, protein synthesis, and ribosomal degradation will 

be combined with a previously described method of assaying translational-associated 

RNA to build a model of RNA decay and regulation in adult human fibroblast 

populations. Changes over time due to the disruption of key cellular processes result in 

fluctuations that provide clues as to how cells process information. Information 

processing is a multivariate process that sets up adaptive responses, determines 

changes in mRNA levels, and ultimately affects the phenotypic state and long-term 

viability of a cell (Balazsi, van Oudenaarden, and Collins, 2011). 

What decay can tell us about the control of cellular processes.  

As complex systems and biological factories, cells produce, transform, and 

recycle materials using many different pathways (Garneau, Wilusz, and Wilusz, 2007). 

This results in biochemical fluctuations that can be observed through gene expression 

trends over time (Shalem et al., 2008). Therefore, while the manipulation of specific 

pathways can provide more explicit insights into cellular processes relative to 

specialized functions of a cell type, the manipulation of general mechanisms is superior 

in terms of understanding global functions associated with cellular transformation (e.g. 

cellular reprogramming). 

C.2 INDUCTION OF MECHANISM DISRUPTION 
 

Mass arrest of major features of a cellular phenotype, such as cell cycle, 

transcription, and protein synthesis, can be accomplished using either drug treatment or 

transgenic knockdowns. Drug treatments have been done on selected cell lines to 

assess the time course of mRNA decay after exposure to a drug stimulus. Drug 
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treatments can be uneven and its effects related to decay are unknown for many cell 

lines, but a generalized effect of gene expression can be observed. In previous studies 

this effect has proven to be a mosaic, as genes with different functions respond 

differentially to the drug stimulus (Perez-Ortin, 2008; Garneau, Wilusz, and Wilusz, 

2007). Knockdowns of specific genes have also resulted in shutting down expression 

using a transgenic construct and measuring the remaining mRNA (Archer et al., 2008). 

While knockdown-decay studies are more focused on a specific gene and more 

completely knocks down a gene’s expression, the focus in only on a single gene. While 

both methods can be leaky, there is a tradeoff between capturing a generalized decay 

response across many types of genes and capturing decay of a single gene.  

Components of RNA Dynamics  

To address the time-dependent and diversity-related properties of cell 

populations, measurements of mRNA half-life (e.g. decay, sequestration) will be 

induced as a way to investigate mechanism alteration. This forms the basis for a model  

with which to assess changes to a cell population in response to a stimulus. We 

propose that drug treatments can be used to interfere with normal cellular processes 

through mass arrest of RNA synthesis and other normal processes. It has been shown 

that drug treatments are a blunt instrument for examining RNA decay (Grunwald, 

Singer, and Czaplinski, 2008; Archer et al., 2008), and stands in contrast to transgenic 

approaches which shut off specific genes (Chen, Ezzeddine, and Shyu, 2008). Yet drug 

treatments allow for multiple genes to be examined in the context of a single stimulus, 

and can thus reveal features relevant to early reprogramming and cellular diversity. 
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C.3 UNCOVERING THE COMPLEXITY OF A DIRECT REPROGRAMMING 
ANALOGUE 
 

Treatment using drug compounds produce dynamics that are much more 

complex than simple decay. There are several contemporary examples of how RNA 

dynamics are studied that place our results in context. Barenco et al. (2011) has 

examined RNA dynamics by examining the DNA-damage response in the MOLT4 

pathway, which acts in a cell-line and context specific manner. Using this model, they 

are able to use a hidden variable dynamical model to partition out variance associated 

with decay and other signatures over time from time-series microarray data. By 

contrast, our model does not explicitly partition variance related to different cellular 

processes. However, in holding certain mechanisms constant, we can gain insight into 

adaptive responses on a longer time-scale than do Barenco et al. (2011) or Sharova et 

al. (2009). In this way, we can observe several potential nonlinear control mechanisms. 

What we do not know is whether these signatures are caused by previous gene 

expression patterns, a generalized adaptive response, or an indicator of pure decay. 

Role of Degradation in Mechanism Alteration 

Rabani et al. (2011) test the varying degradation hypothesis, which posits that 

changes in RNA level over time are strongly affected by changes in degradation rate. 

This can be characterized by either a single or continuous shift in RNA profiles, which 

tend to be gene specific. Likewise, we observe this gene-independent activity, which 

can be characterized either by a single shift (understood through nonlinear curve fitting) 

or a continuous shift (consistent with linear aggregation or decay response). These 

authors also use a technique called 4sU labeling to separate newly transcribed RNA 

from the total pool (Rabani et al., 2011). In doing so, it appears that the processing of 
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mRNA at the site of transcription plays a role in shaping longer-term temporal functions. 

This is also consistent with the impulse model of Chechik and Koller (2009), who 

suggest that RNA dynamics are characterized by an abrupt early response coupled to a 

later transition towards a steady state. This regulatory output may be due to the pre-

mRNA processing observed by Rabani et al. (2011) or ribosomal functions (Chechik 

and Koller, 2009). This is also consistent with the complex responses observed in our 

data, particularly across different functional classes of gene. 

Role of Noise in Mechanism Disruption 

In addition, we also propose that drug treatments are a way to hold constant the 

effects of intrinsic cellular noise (Isaacs et al., 2005; Ozbudak et al., 2002). Mitomycin C 

(see Sharova et al., 2009), Actinomycin D, and Saporin can be used to affect cell 

division, RNA synthesis, and ribosomal survival (integrity), respectively. Manipulating 

these pathways and then sampling transcriptome and translatome at 24 hours after 

initial treatment should allow us to approximate the nature of RNA turnover and 

aggregation which plays a key role in processes such as cellular transformation. 

Patterns of decay across three or four samples across time can be assessed using 

linear and nonlinear statistical curve-fitting techniques (Sharova et al., 2009; Larsson, 

Sander, and Marks, 2010), which when applied in tandem at a time-scale of days can 

reveal finer-scale fluctuations not due to intrinsic noise. We further propose that the 

effects of such a manipulation will be gene-specific. For example, cell-type specific 

genes should be affected differently than housekeeping genes. To explain the pulsatile 

nature of this response, we may turn to a simple control model (see D’Haeseleer et al., 

1999; Bay et al., 2004; MacDonald, 1989) that explain aggregation, decay, and 
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feedback mechanisms that affect RNA measurements over time in response to a 

stimulus. 

Towards a General Mathematical Model 

  To better understand exactly what the observed nonlinear responses mean in 

terms of regulatory mechanism, we may turn insights discrete dynamical equations 

(DDEs). DDEs have been used to better understand network-level control and stability 

in cellular systems (Orosz, Moehlis, and Murray, 2010; MacDonald, 1989). In this case, 

we propose that a DDE with conditions that represent second-order responses (see 

Figure A.2) will model delays, which in turn serve as signatures of delays in transcription 

and translation. For example, a delay in transcription will result in an observed 

aggregation of RNA in either the transcriptome or translatome. By contrast, a delay in 

transcription will lead to steep decay with later recovery of RNA in the transcriptome. 

This could also be true of a similar response in the translatome, but it cannot be 

distinguished from an increase in the speed of translation. It is of note that this response 

was not observed in the translatome for any of the assayed genes. The DDE model 

may serve as a gateway to future studies involving dynamic processes such as direct 

cellular reprogramming. 
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Figure A.1. The mechanism disruption approach. Images at top show in vitro cell culture before (left) and after (right) 
treatment with compound, which disrupts a major cellular mechanism. Measurements taken at time intervals specified on 
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Figure A.1 (con’t).  the scale at center. Graphs at bottom show generalized decay dynamics for several genes, which can 
be measured as associated with transcriptional and translational processes. 
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C.4 CONCLUSION 
 

The systems modeling results reveal gene- and treatment-dependent fluctuations 

in course-grained control mechanisms with respect to time. We stress that these are 

course-grained because they are inferential in nature. While decay mechanisms are 

mostly responsible for controlling the rate of degradation, it has been found that at least 

one other pathway (miRNAs and siRNAs) also control and stabilize translation 

(Valencia-Sanchez et al., 2006; Fabian, Sonenberg, Filipowicz, 2010). This can occur 

either in tandem or independently, which makes the comparison of transcriptome and 

translatome a useful tool for understanding the nature and progression of mRNA 

dynamics. 

 
Figure A.2. Schematic demonstrating the concept of delays as it relates to 
transcriptional and translational processes. A) the delay model, expressed as a  
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Figure A.2 (con’t). conditional discrete dynamical equation (DDE). B) pseudo-data 
demonstrating the dynamics of linear decay, aggregation, and nonlinear decay. C) 
interpreting the observed nonlinearities as a signature of delays in specific biological 
mechanism (in this case, transcription and translation). 
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Figure A.2 (con’t). 
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APPENDIX D: ADVANCES IN THE ARTIFICIAL LIFE OF DIRECT CELLULAR 

REPROGRAMMING  
 
 One future direction for direct cellular reprogramming research, particularly as it 

relates to the nervous system, is to use artificial life approaches to model “possible” 

scenarios. This has been summarized in the form of a cellular automata model 

presented as short presentations at the Dynamics Days conference in 2010 (Appendix 

D.1, “Dynamical Cellular Reprogramming Using Excitable Cellular Automata”) and 2012 

(Appendix D.2, “Dynamical Cellular Encodings for Exploring Cellular Reprogramming”). 

D.1 DYNAMICAL CELLULAR REPROGRAMMING USING EXCITABLE CELLULAR 
AUTOMATA 
 

Cellular reprogramming is a process by which differentiated cells such as 

fibroblasts are converted into pluripotent cells that possess many characteristics of 

embryonic stem cells. This process occurs on the time scale of days to weeks, and 

involves phenotypic conversion given transgenic delivery of four transcription factors. 

Induced pluripotent cells, like naturally-occurring stem cells, can become any of the 

endoderm, mesoderm, or ectoderm-derived tissue types. 

Reprogramming is spatially heterogeneous. One open problem in this area 

concerns how some cells are more reprogrammable than others. For example, 

reprogramming efficacy in response to a transgenic signal has been limited to 10% of 

cells in culture (Wernig et al., 2007), with various environmental manipulations and 

knockouts of key genes yielding up to 100% efficiency (Utikal et al., 2009). These 

findings suggest an underlying critical process within the cell reliant on population 

dynamics. Spatial heterogeneity is related to kinetics. The in silico approach presented 

here takes into account an intermediate scale of analysis, that of colony formation and 
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functional populations that might form in vitro. In order to approximate cellular 

reprogramming, we must consider a discrete model that approximates critically-

organized biological kinetics, with cellular components that exhibit both transformational 

ability and considerable complexity in both space and time. Cellular automata (CA) 

models meet these requirements and have been used previously to model living 

systems (Ermentrout and Edelstein-Keshet, 1993; D’Inverno, 2006). 

From Cell Culture to CA Model 
 

An abstraction of reprogramming cells in culture to a series of heuristics (since 

many factors in reprogramming are empirically unexplored) requires two rules and two 

parametric constraints. Instances of each will be provided. These rules and constraints 

are attributes of a 2-D cellular automata model that treats the biological problem as a 

discrete, collective phenomenon that unfolds on a surface. 

Parametric constraints vs. rules 

This model utilizes a combination of rule-based and parameter-related constraint-

based techniques. Simple rule-based models have previously been used to model the 

dynamics of stem cells in vivo (see Meissner, Wernig, and Jaenisch, 2002). However, 

processes in natural systems such as cellular reprogramming operate by satisfying a 

finite set of constraints (Wolfram, 2002): 

Constraint #1: Infectability. How many cells of a specific cell type are infected 

under certain conditions? 

Constraint #2: Autonomous factors. Are some cells in a population more likely to 

reprogram based on genetic or other internal factors? 
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Rule #1: Contact inhibition. If cells are packed together and unable to divide 

freely prior to infection, will the number of cells reprogrammed be reduced? 

Rule #2: Substrate. What is the nature of the local cell population and surface on 

which cells are growing? 

Constraint #1 (infectability), reprogramming in vitro as excitable media 

 A modified form of the Fitzhugh-Nagumo (Ilachinski, 2001; Izhikevich and 

Fitzhugh, 2009) model, used in this case to simulate discrete excitability, can be used to 

understand reprogramming of cells in parallel. 

 cells in a culture are “infected” in waves (reprogramming factors are introduced to 

x,y locations). 

 peaks of those waves = instances of successful infection. Stochastic process 

(Hanna et al., 2009), or subpopulation of cells spontaneously emerge above 

threshold (1/n cells at every timestep). 

 interactions with neighboring cells, shifts in CA substrate = cells that remain alive, 

replicate to form colony or form colony with neighboring cells (cascading 

behavior). 

Constraint #2 (autonomous factors), determining “stemness” using a secondary 
stimulus 
 

One issue in induced pluripotent and stem cell biology research is “stemness” 

(Mikkers and Frisen, 2005), or what makes a cell pluripotent. There are multiple 

attributes of the internal cellular state which can be approximated using a dynamical 

representation of the molecular mechanisms behind pluripotency. In MacArthur et al. 

(2008), the internal state determines the pluripotency of the cell by using a secondary 

stimulus to induce transcriptional noise in key genes related to pluripotency. This is 
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thought to drive cell conversion, as chemicals like alkaline phosphotase can affect 

conversion rates in biological contexts.  

The dynamics of a secondary stimulus is similar to those characterized by the 

Fitzhugh-Nagumo model, except that secondary stimuli act only on previously infected 

cells. Secondary stimuli act on compact genotypic representations in every automaton 

cell. This representation approximates key genes for pluripotency. Stimulating elements 

in the genotypic representation cause small- and large-magnitude outputs, mimicking 

the critical organization of genetic circuits in the biological reprogramming of cells (e.g. 

four factors activate many downstream genes). 

In the CA model, introduction of the secondary stimulus operates in tandem with 

infectability to determine how likely an individual cell is to form a colony. The goal is to 

form structures typical of CA environments (e.g. gliders, see Ilachinski, 2001) to 

characterize the great diversity of colony morphologies found in actual cell cultures. 

Needed for further work are a better characterization of the underlying expression 

profile of pluripotency genes during reprogramming and a better working knowledge of 

differential response by cells in culture to drug inducement and paracrine signaling. 

Rule #1 (contact inhibition), “game of life”-style rules 
 

In both D’Inverno (2006) and Adimy (2006), a general set of rules regarding the 

maintenance and stability of pluripotency are derived. These rules are based on the 

following biological properties: 

1) cell density as a function of cell division, death, and paracrine signaling. 

2) phases of cell cycle as a function of stability (cells in S phase more likely to 

change state than those in G phase). 
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The state of these attributes in neighboring cells largely determines the state of a 

focal cell (position 0, 0) in a neighborhood. They also act in a feedforward manner with 

regard to infection and the secondary stimulus. For example, while the parametric 

constraints set up what the states are, the CA rules produce the emergent output. This 

is especially important for colony formation, as cells must act collectively to form viable 

colonies. 

Rule #2 (substrate), higher-dimensional approximation 
 

Unique to this CA approach is the use of “sliding” Von Neumann and Moore 

neighborhoods (Adimy, 2006) for purposes of simulating an adaptive and transformative 

surface. A “sliding” neighborhood involves the fusion and/or fission of cellular units that 

behave similar to a change in state and modify the local neighborhood accordingly. The 

“sliding” neighborhoods account for some in vitro idiosyncrasies in addition to a finite 

time window. Based on specific rates of infection and conversion in biological cells, it is 

hypothesized that cellular reprogramming is partially governed by collective 

environmental factors. In these examples, we have only considered a monolayer of 

cells. However, reprogramming cell cultures can form bilayers or even exhibit folding. 

Nevertheless, the excitable CA models presented here may provide “building blocks” 

(Schiff, 2007) for novel applications and reprogramming in novel conditions. 

Details of Fitzhugh-Nagamo Model 
 

A typical application of the Fitzhugh-Nagamo model is to characterize the 

electrical coupling of neurons. The model consists of coupled equations that have been 

adapted for potentials cellular behaviors that govern the respecification of phenotype 
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during cellular reprogramming. In this application, the potential is not electrical but the 

production of a changed phenotype.  

 

    
        

 
       

 

                      

 
 

[5] 

 
The symbolic variables are as follows: V is the cellular potential, W is the recovery 

variable, I is the magnitude of stimulus, C1 and C2 are constants related to the cellular 

potential, m and n are neighboring cells, and d is the dimensionality of cell culture (for 

most applications, either 2 or 3).  

D.2 DYNAMICAL CELLULAR ENCODINGS FOR EXPLORING CELLULAR 
REPROGRAMMING 
 

In cell biology, the concept of stemness is a heuristic used to characterize the 

properties that allow a stem-like cell to differentiate into multiple cell types. There have 

been attempts to define stemness using transcriptional, nuclear receptor (Chang and 

Stanford, 2008; Jeong and Mangelsdorf, 2009), and other types of data. However, the 

excitability inherent in this process (Kalmar et al., 2009) has not been addressed 

extensively at the population level. Recently, a process called cellular reprogramming 

(Meissner, Wernig, and Jaenisch, 2007; Ludwig et al., 2006) has allowed us to 

transform cells from a differentiated to a pluripotent state. The delivery of just four 

transcription factors to a population of differentiated cells results in a small 

subpopulation of these cells being transformed into pluripotent cell types and the 

formation of viable colonies (Meissner, Wernig, and Jaenisch, 2007). 
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Recent attempts to capture the underlying dynamics of cellular reprogramming 

have utilized cellular automata, stochastic dynamical (Hanna et al., 2009), and hybrid 

Cayley tree-dynamical models (Artyomov, Meissner, and Chakraborty, 2010). What is 

missing from this research is a model that can describe how self-organization 

contributes to the ability of a cell to transform both at the single-cell genomic level and 

the level of intercellular interactions within a cell population. 

Dynamical Cellular Encodings 
 

Dynamical cellular encodings may be a way to characterize the complex set of 

interactions and regulatory cascades that characterize differentiation, reprogramming, 

and the maintenance of stemness (Bilodeau and Savageau, 2006). The dynamical 

cellular encoding is an abstraction at the level of both a cell’s genotype and a cell 

population. Incorporating elements of cellular automata (Dobrushin, Kryukov, and 

Toom, 1990), genetic algorithms (GAs), and epidemiological models, dynamical cellular 

encodings are proposed as a novel solution to the stochastic nature of reprogramming 

and a way to demonstrate how stemness is maintained despite environmental 

challenges. The hybrid algorithm and other details are shown in Figure A.1. Briefly, a 

population of automata (approximations of cells) is infected. A proportion of these 

automata become carriers of the virus. In these carriers, the viral element becomes a 

trigger for additional changes in the cell. 

In this way, each cell’s genotype is expressed in accordance with empirically 

observed slow kinetics (Hanna et al., 2009). This self-transformative process also 

allows for derivative effects such as both transient and longer-lasting responses. Each 

functional unit is analogous to a gene on a chromosome used in genetic algorithm 
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design (Vose, 1999). Each automata can have any number of functional units, each of 

which are switched on and off by the presence or absence of a viral element. The main 

features of each functional unit involve the combinatorial expression of gene products 

and the existence of a switch and integrator element downstream from the initial switch. 

The switch and integrator operates on the response profile given recombination of the 

functional unit using a series of simple calculus operations. There are also paracrine 

signaling effects that are transmitted from one automaton to another. These signals can 

be approximated using nearest-neighbor interaction rules on a two-dimensional 

topology. This reinforces the establishment and/or maintenance of pluripotency. 
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