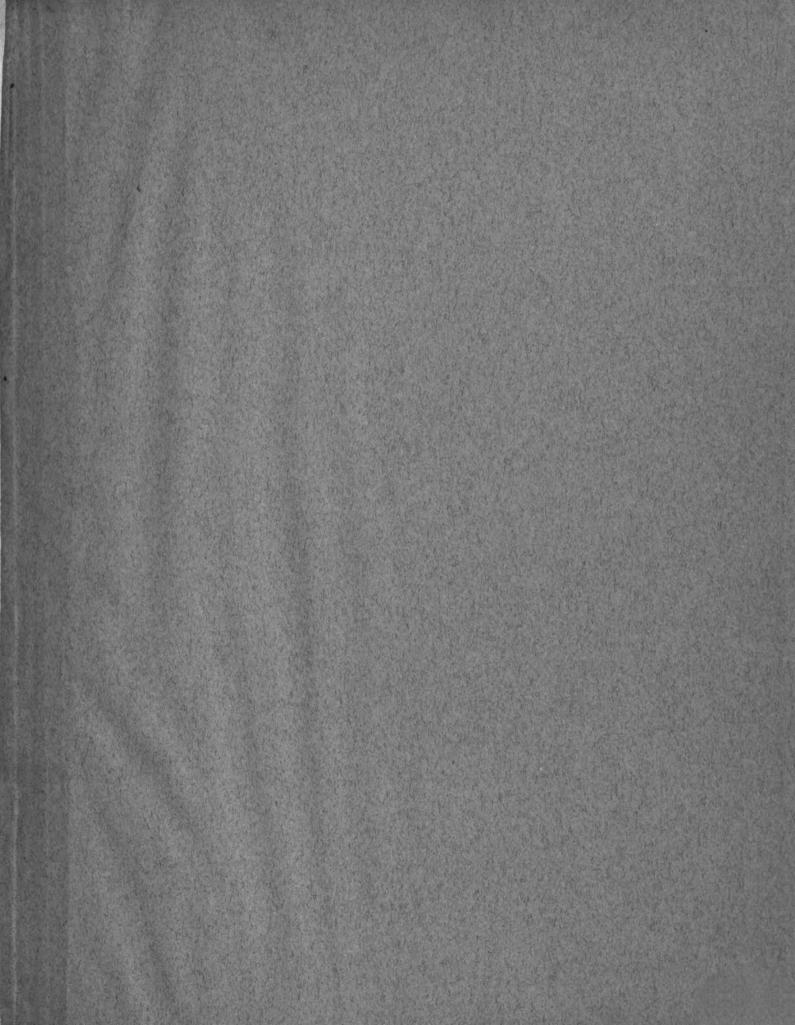
A STUDY TO DETERMINE A SUITABLE WAY TO MAKE THE RED CEDAR GOLF COURSE AVAILABLE FOR USE DURING THE EARLY SPRING MONTHS

THESIS FOR THE DEGREE OF B. S.


R. B. Johnson R. M. Lickly
Hammerschmidt
1933

Earthwork

Dikes (Engineering)
Tule Red adar foly course

copil

Wagenword & Co.

A STUDY TO DETERMINE A SUITABLE WAY TO MAKE THE RED CEDAR GOLF COURSE AVAILABLE FOR USE DURING THE EARLY SPRING MONTHS .

A Thesis Submitted to

The Faculty of

MICHIGAN STATE COLLEGE

o.c

AGRICULTURE AND APPLIED SCIENCE

Бу

R. B. Johnson

R: C. Hammerschmidt

Candidates for the Degree of Bachelor of Science

THESIS

60p.1

We wish to express our gratitude to Professor C. L. Allen and the Civil Engineering Department of Michigan State College for the kind cooperation and guidance which has been shown us in the preparation of this thesis. We are also grateful for the use of the College-owned instruments, without which we would have been unable to complete the thesis.

A study to determine a suitable way to make the Red Geder Golf Course available for use during the spring months.

This thesis problem was chosen by us because of several favorable conditions:

- 1. The City of Lansing had no topographical map of the Red Ceder Golf Course.
- 2. This gave us an opportunity to get on the course to study the effects of flood water and rainfall while we were making a topographical map. Our thesis work occurs during the months of April, May and June, fortunately the months when the Golf Course is most frequently inundated.
- 3. The City of Lensing is concerned about making the course available for use because the regular crew of workmen must be maintained to care for the greens and fairways that are not inundated.
- 4. The City has already made a payment of about 16% of the total cost of a pump for its use this spring. This money already paid will go towards the total payment of the pump when it is bought by the City. The pump is satisfactory for the use our design will demand, but it is not practical under the present dyke and tile system. The present dyke is not sufficient to prevent the usual yearly flooding, and the tile system is not properly arranged to concentrate the water at the pump.
- 5. We find that the elevation of the Golf Course is lower than the usual Red Cedar River level during the months of April and May.

 This necessitates
 - a. A dyke to keep out the river water.
 - b. A tile system to concentrate the water at the pump.

- c. A pump to lift the water about six feet over dyke to river.

 The problem is divided up into five parts:
- 1. Happing of Golf Course.
- 2. Determining past flood stages so as to determine a reasonable dyke elevation.
- 3. Earthwork and sod on dyka.
- 4. Tile system. (County drain)
- 5. Cost and cost distribution.

Part I

MAPPING OF GOLF CUTISE

Part II

DUNEE ILIUN PIET FLOOD STAMMS

The object of the following data is to obtain the height of water in the Red Ceder River adjoining the Red Ceder Golf Course during the past years (1922 to 1986; 1929 to 1933). The data which I have gathered is as follows:

- 1. Gage height readings for the month of April from 3 gages:
 - a. United States Geological Survey gage located about 200 feet east of Ferm Lane.
 - b. United States Weather Bureau gage located on the bridge next to M. S. C. Gymnesium Building.
 - c. Our gage located adjacent to the Red Cedar Golf Course.
- 2. United States Geological Survey gage height readings, measured cubic feet per second flow, and velocity of water, taken at 29 different times.
- 3. United States Weather Eureau station high water readings from their gage during the past years (March, April and May of 1922 to 1926 and 1929 to 1933).

The problem which presents itself now is to transfer the high water readings from the United States Weather Europa gage to what the gage would have read at the Golf Course during the past years. This gives me a sound basis upon which to base the height of dyle to be designed to withhold normal flood waters so that the Golf Course would be available for use much earlier each Spring. The following paragraphs explain how the United States Weather Europa gage height readings for the past years were transferred to gage height readings at the Golf Course.

1. I have data of the maximum and minimum Weather Eureau gage readings for the years 1922 to 1925 and 1930 to 1933 for the months of Larch, April and May.

- 2. I have 29 readings from United States Geological Survey giving gage height, velocity of water, and quantity.
 - a. Average velocity is less than 1.9 feet per second, and is therefore useless to me as a source of power.
 - b. If I make a graph gage height to quantity, I can obtain the quantity for any gage height
 - (1) Assuming the quentity passing all three gages is the same on any day.
 - (2) Take the quantity for each day of April from the graph and record it (quantity) for each corresponding day for the other two gages. Then draw two more curves (gage height to quantity) for the other two gages.
 - (3) Using the old maximum gage heights I can get the cuantities for those heights (United States Weather Eureau data).
 - (4) Then using these quantities on my Golf Course gage curve, I can get the maximum water elevations for the years past as they probably were adjacent to the Golf Course.

Dota	Culvert Gage	Weather Bureau Gym Fridge Cage	United States Stream Control & M.S.C. Gage E. of College Lane
Date	CEFG	dy a li ideo velo	E Madeo Gold He of College Dans
1933			
1933 Mar. 28 29 30 31 Apr. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	117.9 117.8 117.5 117.3 117.3 117.6 117.55	4.6 8.8 7.5 6.1 5.6 5.4 4.1 5.8 4.1 5.8	7.02 5.0 5.3 5.2 5.0 4.8 4.55 4.3 4.1 4.07 3.95 3.9 4.0 4.15 4.1
20 21 22 23 24 25 26 27 28 29 30 82 30 10	117.7 115.1 114.9 115.5 116.2 117.2	5.5 4.0 3.5 3.0 2.9 2.8 2.7 2.7	
9 10	118.4		

PLOTTED POINTS TO OBEALT PAST HIGH WATER READING

U.S. Weather Bureau Gage Reading				Probable Height at Golf Course Gage			
Year	Merch	Apr 11	<u>Lay</u>	Feb.	Merch	April	Hey
1922	6.3	8. 5	3.1		119.2	•	
1923	8.2	2.4	4.7				
1924	7.9	5.6	6.1		120.2	120.5	
1925	5•5	2.6	1.0				
1926	9.7	8.0	2.3		120.8	120.3	
1927	(See bo	ound copy	of				
1928	(1006 for missing						
1929	(record	ls et Lan	sing.				
1930	5.7	5.4	4.7	120.6			
1931	2.6	2.3	2.2				
1932	6.3	4.7	6.2		119.2		119.0
1933	1 * 1 †		6.2			120.4	119.0

Extreme flood May 15, 1915. Weather Eureau gage read 12 feet.

Probable height at Golf Course - 125. This is the elevation of Michigan Avenue, and water up to Michigan Avenue

Part III

MARGETTES \mathbf{K} . Although on Dymin

EARTHWORK FOR DYKE

- 1. Elevations carefully taken along proposed dyke centerline.
- 2. Distances between elevations cerefully taken.
- 3. The shape of the dyke cross section drawn for each elevation.
- 4. Area of the cross sections taken with a planimeter.
- 5. Cubic yards figured by

Area A + Area B x distance Cubic yards

6. Sod to be placed upon the river side of the dyke.

VOLUMES

EARTH AND SOD

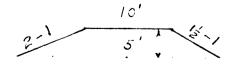
For dyke top elevation of 123 feet

	Borrow	<u>sod</u>
A to B	610 cu. yds.	273 eq. yd.
B to C	827 * *	298 * *
C to D	390 " "	176 * *
D to E	259 " "	93 * *
E to F	107 " "	66 * *
F to G	252 * *	147 " "
G to H	321 " "	149 * *
H to I	58 * *	30 " "
I to J	15 # #	15 * *
	2839 • •	1217 " "

DYXT INVESTIGATION

Borrow samples were tested from several hills close to the Golf Course to see if the earth was suitable for dyke fill. The one closest at hand is the high parking lot that touches the west side of the Golf Course. This sample tested as follows, and is considered suitable for a dyke fill.

Report on Subgrade Soil


Percentage of sand	6.6
Percentage of material retained on a #10 sieve	16.3
Percentage of silt	35.0
Percentage of clay	10.0
Moisture equivalent (percent)	7.4
Volumetric shrinkage (in percent)	0.0
Capillary moisture (in percent)	20.0
Licuid limit (in percent)	16.4

Plastic limit (in percent)

The dyke was designed to have a top width of ten feet. This would furnish a tractor road if one were needed to drive the tractor over, from the west side of the county drain to the east of the county drain.

A wide dyke was recommended by the City Forester and head of the Park and Cemetery Department for this purpose.

Checking the Sefety of Investigation of Dyte for Slipping

Consider the rectangular section only.

Water pressure on the side $= \frac{1}{2} wh^2$ * * * \frac{1}{2} x 62.5 x 9 = 281

* * * u = \frac{1}{2} 500 x .5 * 2.250\frac{2}{2} can be resisted.

Sefety factor $= \frac{2250}{281} = 8$

COST FOR DYKE

Total volume of earth 2839 cu. yds.

\$.30 per cu. yds. to place dyke (ingineering News Record prices)

\$.30 x 2839 **x** \$851.70

Total amount of sod 1217 sq. yds.

\$.10 per sq. yd. for sod

\$.10 x 1217 = \$121.70

Total Cost for Dyke \$973.40

Labor cost being so uncertain, the unit price was made rather high to cover for reasonably priced labor.

Part IV

TILT SYSTEM

TILE SYSTEM

Ey accurate survey the existing tile system was located and found to be entirely inadequate to drain the course in a satisfactory manner. With the new system which we have investigated, designed and laid out on the map it was found that the old tile could be salvaged and used in this new layout. The new system was designed to carry off all spring runoff and rain water. By locating the system as shown on map the laterals drain into the almost natural sump near river bank. These mains have manholes every so far and can therefore be washed out when necessary. This system which might seem rather elaborate, is sufficient to drain the course thoroughly in the wettest weather, thereby making the course available in early spring. The tile quantities have been cut down to the very minimum for excellent drainage, and by having the course available so early in the season, this system would pay for itself in the next two years.

COST FOR TILE

jin jiu	Tile Selvage	5716 300		
		Total	5416	lineal feet
6п	Tile	1260		
Pu	Salvage	250		
		Total	1010	lineal feet
811	Tile	810		
84	Salvage	500		
		Total	310	lineal feet
		Total amount of tile	6736	lineal feet

Tile cost according to Engineering News Record prices - \$40 per 1000 feet.

Total cost 6736 x \$40 = \$269.44

Part V

ocen 4 D LUCT DI MELDACICH

COST ANALYSIS

Dyke Work Cost	\$ 973.40
Tile System Cost	269.44
Total Estimated Cost	\$1242.84

This Golf Course opens approximately fifty days later per year than other golf courses in this vicinity. Assuming fifty people would play per day at \$.25 each, the added income with no other cost except for the dyke and tile would be

50 x 50 x \$.25 = \$625.00 per year

more income due only to spring playing. Playing time would also be increased during the summer and fall because of the quick removal of rainfall.

The dyke and tile system should pay for itself in two years.

This dyke end tile system should last over a period of twenty years or more.

Not only would this proposed system pay large profits to the City.
but the system would prevent the adjoining property owners! lots and
besements from becoming inundated.

2 BLUE PRINTS

1. MAP OF REDCE

2. GRAPH OF RUSS

