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Richard Wayne Christensen

AN ABSTRACT

In this thesis, an attempt is made to formulate a rational
method of analysis of the settlement of footings on sand.

Present methods of analysis are reviewed.

The problem undertaken is that of determining the stresses
and settlement under a rigid continuous footing on sand. The method
of settlement analysis developed is a numerical procedure based on
the theory of elasticity.

It is assumed that the sand mass is elastic and isotropic
but not homogeneous. A grid system is established for the sand mass
and the displacement equations from theory of elasticity are written
in finite difference form for each of the grid points. On the basis of
triaxial tests, the modulus of elasticity of sand is taken as a function
of the minor principal stress. The minor principal stress is evaluated
and the values of E for each of the grid points are estimated. The
displacement equations are then solved by the digital computer. The
stresses at the grid points are then determined, also by the digital
computer.

It was found that the contact pressure and settlement
obtained in the numerical method agrees very well with the results

of model tests.
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I. INTRODUCTION

Stresses and Displacements

In 1885, the French mathematician Boussinesq (2) applied the
theory of elasticity to the problem of a concentrated load acting on a

semi-infinite solid. He obtained the following solution for the stresses

(Figure 1).
P
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Figure 1: Diagram illustrating
the symbols of the Boussinesq
equations.

These equations are known as Boussinesq's equations. They indicate,

in a general way, the stress distribution that might be expected in a

soil mass when its depth is large compared to the dimensions of the
loaded area. Experimental evidence indicates that this stress distribution

is approximately correct for most soils. [See for instance Jurgenson(5).]






If the theory of elasticity approach is extended to the case of
a circular, uniformly loaded area of radius r, it is found that the
vertical stress beneath the center of the loaded area is given by

3

A
0, “Pl-l+—=—= 4 (2]
(r +2z)

where p is the intensity of the load.

The settlements produced by the flexible, uniform load on
the surface of a semi-infinite elastic solid have also been computed
by elasticity methods. For a square loaded area, if u is assumed to

be 0.5, the settlement is (9)

fcor = 2 22po 4; b
[3]

/ocen ) 8; b

where /ocor = settlement at the corner of the loaded area

/ocen = settlement at the center of the loaded area

P = intensity of load
b = width of loaded area
E = modulus of elasticity of the solid

The general shape of the settlement profile resulting from the appli-
cation of a uniform load is shown in Figure 2. This is the case if the

load is perfectly flexible.
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Figure 2: Settlement profile for a flexible, uniform load on a
semi-infinite elastic solid.

If a load is applied to a semi-infinite elastic solid by a per-
fectly rigid footing, the pressure on the base of the footing will not
be uniform. The solution of the problem by the theory of elasticity
results in the pressure distribution shown below.
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Figure 3: Pressure distribution on a rigid footing on a
semi-infinite elastic solid.

The settlement of the rigid footing is found to be about 7. 3 per cent
smaller than the average settlement of a flexible footing of the same

area, acted on by an equal intensity of load p.



Limitations of Elastic Theory

The preceding discussion treats the stresses and displacements
in a semi-infinite elastic solid under the application of various types
of loading. This of course assumes that the material subjected to
stress is elastic, homogeneous, and isotropic. It is well known that
such is not the case with soils, particularly sand. If a sample of
elastic material has acting on it the principal stresses 0’1, o'—z, and 0'3
and one of the principal stresses is increased, the resulting strain is
independent of the initial principal stresses. However, for sand, the
strain is dependent to a very large extent on the initial principal
stresses. It decreases as the initial principal stresses are increased.
In a mass of sand, the confining pressure increases with depth due to
the weight of the overburden. It may therefore be concluded that a
mass of sand is elastically nonhomogeneous in the vertical direction.

At great depths in a sand mass, where the confining pressure
is large, the variation in the ratio of applied stress to strain is small.
However, near the surface of a sand stratum, the assumption of
proportionality between stress and strain which does not change with
depth is far from correct.

It should also be noted that Poisson's ratio is not constant for
granular soils. It may increase from 0.2 at low stresses to more
than 0.5 at high stresses.

In light of these facts, it becomes obvious that the elasticity



solutions which are based on the assumption of isotropy and homo-
geneity of the material are not applicable to the problem of the settle-
ment of footings on sand.

Because of the large number of variables and the mathematical
difficulties involved, the approach to the problem of settlement of
footings on sand in the past has been primarily empirical. This
approach has usually consisted of the accumulation of data relating
the observed settlement of footings to some readily measurable soil
property such as the relative density (or resistance to the penetration
test). (10) The results of these data are presented in the form of
design charts. The charts are very conservative and their use generally
results in a safe design. However, in exceptional cases (such as a
very loose sand) they may give results on the unsafe side. It is there-
fore desirable to develop a more fundamental understanding of the
mechanism of settlement.

II. ANALYTICAL METHODS OF PREDICTING
SETTLEMENT

Elastic Analysis

It is assumed that the stress distribution below a uniformly
loaded, flexible footing is close to that computed from the theory of
elasticity. The elastic constants necessary for settlement calculations

can be determined from the triaxial test.



The vertical unit strain in an elastic material is given by

A(Tl
éy=?-%(A0'Z+Aog) [4a]

where E = modulus of elasticity and}.l = Poisson's ratio. In the

triaxial test, <rz = J, so

3
A(Tl A(Té

AC AT AG  AC
€ =— -2 3+ 3. 3 or
vy E ~TE E E
1 2 1
=(— - —_ g -
€y ‘& "E)AU3+E(A1 Ad) | [4c]

Equation [4c] can be expressed as

Ah
=— =C - A AT - A
éy h III G; * CI( 1 C‘-3) (5]
1 1 2
where CI ol and CIII = (E - ﬁ')

h = thickness of layer considered

Ah = change in thickness i. e. settlement of layer considered

The elastic constants CI and CIII can be determined by two sets

of triaxial tests. To determine CI, the lateral pressure is held constant

(AG}, = 0) and the deviator stress (AO’1 - A 0'3) is increased. Then



€
- y . . . .
CI (AO,_l_ AO’3) which is the slope of the deviator stress versus axial
strain curve. To evaluate CIII' the deviator stress is held constant
1

(AO’I- AJ. =0). Then C =

3 m-E which is the slope of the lateral pressure

(0'3) versus axial strain curve.

As was pointed out earlier, fl and E for sand are not constants,
but vary with the confining pressure. In order to account for this fact,
the laboratory specimens should be tested under initial values of 0'1 and
g}’ appropriate for the depth of the points under consideration. The
values of CI and CIII are then representative of that attainable in the
sand at the various depths.

The settlement calculation can be carried out by numerical
summation. The sand mass is divided up into horizontal layers,
throughout which CI and CIII are assumed constant, and the settlement
of each layer is calculated. The total settlement at the centerline

of the footing is then equal to the summation of the settlements of all

the individual layers. That is

p=Zz {CIII . AO’3 + CI(A(H - A%)}h [6]

where /o = settlement of the footing and h = height of each individual layer.
The changes in the principal stresses AO; and A(Ii caused by the

load are determined from Boussinesq's equations.



Plastic Analysis

In a thesis presented in 1956, Bond (1) developed a method,
based on plastic theory, of predicting the settlement of circular footings
on sand.

The state of stress on a vertical line beneath the center of a

circular foundation is expressed as

¢
- 2w, e
= Gtan g3 7]

when ¢e = partially mobilized angle of internal friction.
The value of ¢e at any point beneath the center of the footing
is calculated assuming that potential surfaces of failure develop as

shown below.

Figure 4: Probable shear pattern beneath a rigid, circular footing
on a dry sand. [After Bond (1).]

The value of ¢ is assumed constant along any particular failure

e
surface. The vertical stress along the centerline is calculated by
Boussinesq's equation. Triaxial tests were used to determine the

stress-strain characteristics of a typical sand. The test results
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were expressed in a plot of ¢e versus vertical strain for various values
of q; where ¢, is determined by equation [7].

Having the values of oi and q;e at a particular point, the stress-
strain curves can be used to find the vertical strain € at the point.
Integration of the strain along the centerline gives the settlement of
the footing at that point.

Comparison of Bond's theoretical calculation of ¢e beneath the
center of the footing with experimental results obtained by the
Waterways Experiment Station (13) shows good agreement. However, the
experimental results are not in good agreement with the values of cpe
as determined by Boussinesq's equation and equation [7].

Experimental results obtained by Bond show good agreement
between measured vertical stress and the vertical stress as calculated
by Boussinesq's equation. The settlements determined from these
tests agree with theoretical calculations for dense sand but not for
loose sand. It is obvious that the failure pattern assumed in the plastic

analysis does not develop in the case of loose sand. [See Myerhoff (6).]

Consolidation

Hough (4) has presented a method, based on volume changes
in one-dimensional compression, for predicting settlements of footings
on any type of soil.

In a one-dimensional consolidation test, a relationship between

the void ratio and the applied pressure is obtained. It is usually plotted
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on a semi-log graph. (See Figure 5.)

Ae
se Ce® 4 log P

Void Fm//a, e

ap

P
Lressure, P (log scale)

Figure 5: Compression diagram. [After Hough (4).]
The slope of the pressure-void ratio curve is called the compression
index (C.). The change in void ratio Ae for any increment of pressure

increase Ap is given by the equation

A
Ae = C. log (1 + 5—2) (8]
i

where p; = initial vertical pressure on the element. The change in

thickness Ah of a soil layer with an initial thickness of h is

Ae
ah = hy [9]
where e, = initial void ratio. Equations [8] and [9] may be combined

o

to obtain the following expression for the change in thickness of a soil

layer

- 2p) [10]
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For the purpose of simplifying the notation, the following substitutions

are introduced.

1 + eq

Let < = C = bearing capacity index
c

and Ah =/0 = settlement

Equation [10] may then be expressed as
pC
h

Ap = (107 - 1)p, [11]
By combining the foregoing basic relationships from the consolidation
test, Hough obtained an equation relating the settlement of a footing to
the contact pressure.

LPC
=Y hg 2
P = hg (10 - 1)(hg + 3B) [12]

Y %

where hg is defined as the depth of significant stress and is determined

by
2
2 10B
hg (hg + B) = —~ P [12a]
and B = width of footing, p. = average contact pressure. These

expressions are based on the assumed pressure distribution shown

in Figure 6.
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Figure 6: Variation of stress with depth. [After Hough (4). ]

Observation of the conditions imposed on the sample in the
consolidation test reveals serious shortcomings in this method of
settlement analysis when applied to sands. In the consolidation test,
the sample is compressed under the condition of zero lateral strain,
while in the case of sand beneath a loaded footing, considerable lateral
strain may develop. Therefore this method completely eliminates
that part of the settlement contributed by lateral displacements.
Settlements calculated by this method are apt to be too low, particularly
in the case of loose sand where the effect of lateral strain is significaﬁt.

III. DEVELOPMENT OF THE NUMERICAL
METHOD

Displacement Equations

One considers the case of a continuous, rigid footing acting on
a semi-infinite mass of sand. It is assumed for the present that the

sand is elastic, but not homogeneous.
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/ continuous in the z-
/ Y direction.

Since the footing is continuous in the z-direction the problem can be
treated as one of plane strain (éz = 0). Then from elastic theory,

Hooke's Law is

T, = 2e + 2G éx where A= m}%z-ﬁ)
<1Y=7ﬁe+2G<y [13] e = €x+éy
[xy - Z'yx - Gny - Z(f:+}1)

In the two-dimensional problem éx = ;élxj and éy = g—;’ and ny = %+%),

so that the Hooke's Law equations may be written in the following form.

U
= — = - G—+—-
Tx Ae+2G 2x ny yx (3y 2x

2V
=Ne+2G-— 13a
q, oy [13a]

in which U and V are the displacements in the x and y directions

respectively.
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The equations of equilibrium for the two-dimensional problem in

elasticity are

24, 27

=X + Xy +X=0 where X = body force in x-direction
2x 2y

20. 7. [14]

-—5)-’): + _?_}z +Y=0 Y = body force in y-direction

By taking the partial derivatives of the Hooke's Law equations, the

following expressions are obtained.

9y 2y ZZ_Y(G?;
. [15]
Xy _ 2 2U 2V
2x 2x[G( 2x )]
oL
?U ’&V
5 = G+ 2]
y X

The body forces X and Y are assumed to be zero. Substituting equations

[15] into [14] one obtains the displacement equations for the problem.

ZU ’aV

2 2U @V
- G =
el + Z0] + 2 2 (27 )+ 5, [GET+ 5 =0
2 2U av 2 2U 2V, _
r S l(2+2G) =42 _ay] t oy [G(—2y )= 0 [16a]
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2@+ Y226+ 20 @+ D) -
and [7)( /M)] + Zay(Gay) + ax[G(ay +9x)] =0
229) 4 2U, 2V, _
or o [(7)+2G) ] ™ [G(ay+?x)]°o [16b]

Equations [16a] and [16b] may be written in terms of finite differences.
A grid system as shown in Figure 8 is set up for the soil mass beneath

the loaded footing.

K
& 57’”' /'67/d /w/my
) , | . |
P2y ¢4/ 34/ 2%/ h Rt
he
PN &
ste 412 312 2{2 /Tz
. - J\
513 413 313 213 /73
5 414 314 24 /14

Figure 8: Grid system for the
numerical method.

Y
o
-
o
w
N
N
o
Y
-
mu

For any point o in the grid (Figure 9), the central difference

expressions are as follows,

nw n ne
h
h
+ U /4 o e
Figure 9: Finite difference
notation.
ty
sw S Je
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U -U U -U
W

2 U “w, 0 h O)-ae o( C)h ") 1
7xl(2+2G)52] = — — = -h—z[aw,’ o Uy U (U-U)]
sz-V Vse-Vne
2 - 2 )
2,2V, _ _ 1 . . N
_?;;(»Zy)_ 2h 4h2 [hw(vsw Vnw) %e(vse Vne)]
Similarly,
_(G—) = h— [G o, (US-UO) - Gn, o(Uo'Un)]
: 1
(G ) = h—z[Go,w(Vw-Vo) - Ge, O(Vo-Ve)]

where a =) + 2G
Substitution of the finite difference expressions into equations [16a] and

[16Db] gives

-Z(a -G)U+ (a ta )U +—(G G )U +—(a ta )U +2(G +G)Un

1 1 1 1
- + vV -= + \"A - -—
+4(7sW GS) sw 2 Gs) se+4(7)e+c;n)vne 2(2,*G )V =0 [172a]
1 1 1 1
-2 +G)V+=(G+G )V +=(ea +a )/V+-(G+G )V +=(a +a )V
o o o 2 o w w 2 0O s s 2 e o e 2 n 0 n

1 1 1 1
P20 Q0w g G g A GV g 0 GV = O [170]

These two expressions are the displacement equations from theory of elas-

ticity expressedinfinite difference form. They applyin generalto any point in

the grid.



In order to obtain expressions for points on the boundaries of
the grid, it is necessary to consider the boundary conditions imposed
by the problem. First of all, it is assumed that row 5 and column 5
(Figure 8) are far enough from the applied load so that the U and V

displacements at these points are zero.
In row 1, the following situation exists. The footing is allowed

d bit ttl . Then V = =V .
to undergo an arbitrary settlement, say VD en 1-1 VZ-l o

The soil directly beneath the footing is assumed to adhere to the base

of the footing so that no lateral displacement is possible, or

G..°%,°0

At points 3-1 and 4-1, a;} = >e + 2G éy = 0. So

U, 2V U, 2V

Nax 2y

2x y

Or, in finite difference form, at the point 3-1,

U -U V._-V
A ( 41 21 32 31

31 2h

If/.l = 0.25, then A= %, and

U, - U, +6(V,,-V, ) =0 [17¢]

41 1

Similarly, for point 4-1,

U U, +6(V, -V, ) =0 [174d]

51 42 41

17

)+2G(2Y)=)—+a—=0 [16C]
oy
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At the centerline of the footing, U=0 due to symmetry. It may also
be seen from symmetry that U(right of centerline) N -U(left of centerline)
and V(right of centerline) N V(left of centerline)’

If equations [17] are applied to all points in the grid, a system of
fifty simultaneous equations in U and V results, twenty-three of which
vanish by virtue of the fact that they are identically equal to zero. The
remaining twenty-seven simultaneous equations are shown in tabular

form in Table 1. These equations can be solved by the digital computer

through routine tape L2.

Determination of Stresses at Grid Points

Once the displacements at the grid points have been determined,
the expressions for Hooke's Law can be used to evaluate the stresses

at the grid points. Equations [13] can be written

_ W, oV, E_jou
T ~ [(1+}J)(1—2}1)][2x oyt [(1+}1)]9x
_ pi(l-2u) 92U u 2V
°oF O " [( t(1-2p) (ox) * (L+u)(1-2p) (ay)]E [18a]
i E__2U, oV, E @V
Ty = (L+p)(1-2p) "9x * 2y"  (1+p) oy

_ +(1-2 ) ﬂ ﬁj
T [(1+F)(1‘2P) Gyt (T4m)(1-2) (ox 1E [18b]
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- E 2U 2V
Xy 2(l+)1) 2y ?x

or [xy

{[2(11+P)](——> [2(11+P)]<%x‘—’>} E [18c]

In finite difference form

0, = [k, (U_-U )+ k(V-V)E_ [19a]
= [kz(vs'vn) +k (U -U)]E_ [19b]
= [kl(Us— U)+ (V- ve)]}?.o [19¢]
where k

1 2h(1+}1)(1 2}1)

K, = —pti-zp
2 " 2h(l+p)(1-2p)

In its natural state the sand has vertical and horizontal stresses
i and ¢ acting on it which must be added to the values obtained

o
from equations [19] to obtain the total horizontal and vertical stress

at a point.

The principal stresses (T1 and 0'; can then be obtained from the

formulas
ata /cr -a, 2
_ X 'y X 'y 2
g =—+ /=) + (Txy) [20a]
ata /0' )
- X l _ A X Y 2
T3 2 S () [200]

A program was prepared to perform the operations indicated in

equations [19] and [20] on the digital computer. A copy of this program

is included in the appendix.
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IV. SETTLEMENT ANALYSIS

Description of Soil Studied

The material used in the laboratory investigations was Ottawa
sand which passed a no. 16 sieve and was retained on a no. 30 sieve.
The sand was tested in a loose and a dense state. To achieve the
loose state, the sand was simply poured into the mold with no compaction.
The dense state was obtained by compacting the material in five layers

as it was placed in the mold.

Elastic Method

Triaxial tests. A series of triaxial tests was performed to

determine the constants CI and CIII for loose and dense sands. All
specimens were consolidated under a principal stress ratio of 2.0
(ko = 0. 5) before application of hydrostatic or deviator stress. A
summary of the tests performed is given in Table 2. The stress-
strain curves obtained from these tests are shown in Figures 11 and
12. From the stress-strain curves, the values of CI and CIII were
determined as described in section II. Curves demonstrating the
relationship between the elastic constants and the minor principal

stress (for compacted sand only) are shown in Figures 13.

Settlement calculations. The settlement analysis was carried

out in the following manner. First of all, it was noted that the order

of magnitude of the constant C___is very small compared to C

III I
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The settlement contributed by the term CIII . AO; is therefore negligible
and was omitted in the calculations.

The actual mechanism of settlement is not perfectly reproduced
in the laboratory tests; that is, in the laborabory tests, the stresses
AO; and (AO’l- A G;) are applied in two separate stages, whereas in a

loaded soil mass they occur simultaneously. It is therefore necessary

to determine the value of CI that most nearly represents the true

condition.
g
Pe
cirele 2 —
cirele | circle 3
l ] o
aq
w; }
5, %, G %

Figure 10: Mohr's circle representation of stresses in sand.

In Figure 10, circle 1 represents the initial state of stress in

the sand mass. As the footing load is applied, (]'3 and Gi increase by

AO; and AGi so that the final state of stress is represented by circle 3 .

Circle 2 represents the state of stress in a triaxial specimen consolidated

to the final 03 while the principal stress ratio remains unchanged

(03 = 0. 501). Then the deviator stress is increased and the Mohr's

circle increases in size until it coincides with circle 3 . The increase

in strain under the increasing deviator stress was used to calculate CI.
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CI is chosen as that which corresponds to the value of 03 which exists
at the point under consideration in the sand mass after application of
the footing load. Although this choice of CI most nearly represents
the stress changes taking place in the sand mass, it is not strictly
correct. It omits the additional settlement which takes place before
03 builds up to its final value. However, the error due to this
omission is small.

The settlement of a continuous footing 15 feet wide, supporting
a load of 1 kg/ cm2 was calculated by the method outlined in section II,
using the results of the triaxial tests. The values of AG'l and AG_;) as
determined by means of Boussinesq's equations are given in Table 3.

As calculated by the elastic method, the settlement is 21.8 cm at the

centerline of the footing. (See Table 4.)

Consolidation Method

A standard consolidation test was performed on a sample of
Ottawa sand in the loose state. The load-settlement curve obtained
is shown in Figure 14.

The settlement under a continuous footing 15 feet wide, supporting
a load of 1 ]:<g/cm2 was calculated using equations [12]. The calculated

settlement is 0. 578 cm.

Numerical Method

In order to make use of the equations derived in section III,



23
it is necessary to establish the values of E, 7 and e at each of the
grid points. A rather complete set of triaxial test data has been
published by Chen (3) from which one can plot the variation of the
modulus of elasticity in a sample of sand with the minor principal
stress. Figure 17 shows the E versus 0’3 curves one obtains from
Chen's data.

According to the curves in Figure 15, the relationship between
E and 0'; is practically a straight line for low stresses. This can be
expressed as E = ko; where k is some constant. Actually E_E—:- is not

3
exactly constant, but varies somewhat with the deviator stress.
However, the variation is small and may be ignored for simplicity.
The lower portion of the curves was used to determine the value of k
because this portion represents the range of stresses encountered in
the problem.

The value of k was determined from the curves for a medium
sand. The average value of k for these curves is 2500.

With the value of k established, it remains to obtain an estimate
of 03 so that starting values of E, 2 and @ can be determined for each
of the grid points. A reasonable estimate of 0—3 can be obtained by
the use of Boussinesq's equations. 0"3 was evaluated in this manner
for a load of 1 kg/cm2 acting on the footing. The stresses obtained

and the resultant constants E, A and a for all grid points are given in

Table 3.
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The values of the constants E, 72 and @ from Table 3 were sub-
stituted into the equations given in Table 1. These equations were
solved by the digital computer, giving the values of the displacements
U and V at all points in the grid. Using these values of U and V, the
stresses at the grid points were determined by means of equations
[19] and [20]. This operation was also performed on the digital computer.

After the values of 0; have been computed, new values for E
can be obtained from the relationship E = kOE,’ and the entire procedure
repeated until the values of 0’3 converge. In this manner, all values of
stresses and displacements in the grid system can be evaluated for
the given settlement. However, in this investigation it was not possible
to carry out the successive approximation because of the lack of storage
space. Only the first approximation was obtained.

The investigation was made for a rigid, continuous strip footing
15 feet wide, with a given settlement of 1 cm. It was assumed that
P = 0.25 and E = 2500 0”3.

The distribution of stresses and displacements obtained from

this investigation is shown in Figures 16 and 17.

V. CONCLUSIONS
The settlements calculated by the different theories are listed
in Table 4. It is obvious that the different methods of settlement

analysis give very different results.
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The settlement calculated by the consolidation method is far
too small. Although the sand is very loose the settlement is only
0.578 cm. The answer is unreasonable. As was pointed out, the
conditions of stress and strain in the consolidation test are not con-
sistent with actual conditions. Therefore, the consolidation method
of analysis should not be applied to sands.

The settlement obtained by the elastic analysis is larger than
those commonly observed (10). If one examines the validity of this
method, it is noted that certain inconsistencies exist. Because triaxial
tests, in which 0'2 equals 05, are used in the calculation of settlement,
the assumption that the footing is circular in shape is inherent in the
development. The principal stresses 0’2 and 03 are not equal under a
continuous footing. Rather T, is greater than 0'3, which means that
the application of this method to a continuous footing results in an
overestimation of settlement. This fact was borne out in recent tests
conducted under the direction of Bishop at Imperial College (14).
Bishop has developed an apparatus which is capable of measuring the
stress-strain characteristics of sand under the condition of plane
strain. It has been found that the vertical strain in a sample of sand
is reduced considerably when loaded under plane strain conditions.

Another factor is that the footing is assumed to be perfectly
flexible. For rigid footings, the settlement is much smaller than that

at the center of flexible ones.
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Field observations of the settlement of circular foundations
resting on loose sand at Drammen, Norway ( 7 ) indicate that the
magnitude of settlement obtained in this investigation is quite reasonable.

It may be concluded therefore, that the elastic analysis is
capable of producing good results provided that the stress-strain
conditions of the tests from which the elastic constants are obtained
are the same as those under the actual footing.

The results obtained by the numerical method developed in this
thesis are quite promising. The contact pressure distribution ob-
tained agrees in general with that observed in model tests. [See for
instance, Bond (1)].

To evaluate the calculated settlement, it is necessary to examine
the value of k adopted in the calculations. The constant k is determined
under the condition that o'é equals 03 The error involved is the same
as that for the elastic analysis. To be strictly correct, k should be
determined from the stress-strain characteristics of sand under plane
strain conditions. This necessitates the use of a testing apparatus
similar to that developed by Bishop which is, as yet, not in general use.

The reliability of k equal to 2500 can be examined from another
point. Chen's data, from which this k was obtained can be compared with
the elastic constants from the triaxial tests carried out in this investi-
gation. It is possible to compute, from the results of the triaxial tests,

the values of E and}.x of the sand for various (r3 This was done and
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the results presented in Figures 18 and 19. If one compares the
values of E obtained from these tests with those obtained by Chen,
one finds a rather large discrepancy. There are two reasons for this.

With Chen's data a k of 2500 was obtained by taking the secant
modulus at 0. 50D. Whereas, in the present series of tests these
constants represent the tangent moduli at stresses considerably above
the principal stress ratio of 2. 0. For a ¢ of 300, this principal stress
ratio corresponds to approximately 0. 50D. In order to compare the
moduli at approximately equal shear stresses, k should be taken
from the curve corresponding to 0. 75D in Chen's data. Then one
finds that k = 800 which is in much better agreement with that obtained
in the triaxial tests performed in this investigation. For a k of 800
the settlement is approximately 3 cm for the same contact pressure.
The range in settlement then, is between 1 cm and 3 cm which is in

reasonable agreement with observed results.



TABLE 1

SIMULTANEOUS EQUATIONS IN U AND V
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