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ABSTRACT

VARIATIONAL APPROACHES IN MOLECULAR ELECTROSTATICS,
SURFACE FORMATION, SHOCK CAPTURING AND

NANO-TRANSISTORS

By

Langhua Hu

This dissertation covers several topics in Applied Mathematics, including nonlinear Pois-

son equation(NLPE) with application in electrostatics and solvation analysis for biological

system, partial differential equation(PDE) transform for hyperbolic conservation laws, high

order fractional PDE transform for molecular surface construction and Poisson-Kohn-Sham

equation for modeling geometric, thermal and tunneling effects on nano-transistors.

Electrostatic interactions are ubiquitous in nature and fundamental for chemical, biolog-

ical and material sciences. The Poisson equation is a widely accepted model for electrostatic

analysis. However, the Poisson equation is derived based on electric polarizations in a linear,

isotropic and homogeneous dielectric medium. We introduce a nonlinear Poisson equation

to take into consideration of hyperpolarization effects due to intensive charges and possible

nonlinear, anisotropic and heterogeneous media. Variational principle is utilized to derive

the nonlinear Poisson model from an electrostatic energy functional. The proposed nonlinear

Poisson theory is extensively validated. A good agreement between our results and experi-

mental data as well as theoretical results suggests that the proposed nonlinear Poisson model

is a potentially useful model for electrostatic analysis involving hyperpolarization effects.

In our next work, we introduce the use of the PDE transform, paired with the Fourier

pseudospectral method (FPM), as a new approach for hyperbolic conservation law problems,

which remains an interesting and challenging task due to the diversity of physical origins



and complexity of the physical situations. A variety of standard benchmark test problems of

hyperbolic conservation laws is employed to systematically validate the performance of the

present PDE transform based FPM.

Furthermore, we study the high-order factional PDE transform based on fractional deriva-

tive with application in molecular surface generation. Fractional derivative or fractional cal-

culus plays a significant role in theoretical modeling of scientific and engineering problems.

However, only relatively low order fractional derivatives are used at present. Our work in-

troduces arbitrarily high-order PDEs to describe fractional hyper-diffusions. The fractional

PDEs are constructed via fractional variational principle. The proposed high-order fractional

PDE transform are applied to the surface generation of proteins. Computational efficiency

of the present surface generation method is compared with the MSMS approach in Carte-

sian representation. Extensive numerical experiments and comparison with an established

surface model indicate that the proposed high-order fractional PDEs are robust, stable and

efficient for biomolecular surface generation.

The last part of my work is in the filed of nano-scale electronic transistors. The miniatur-

ization of nano-scale electronic transistors, such as metal oxide semi- conductor field effect

transistors (MOSFETs), has given rise to a pressing demand in the new theoretical un-

derstanding and practical tactic for dealing with quantum mechanical effects in integrated

circuits. We study the effects of geometry of semiconductor-insulator interfaces, phonon-

electron interactions, and quantum tunneling of nano-transistors. Performances of nano-

transistors are explored in terms of current-voltage (I-V) curves and quantized transport

energy profiles in a wide range of device parameters.



To my wife Chen, our kid Steven, parents, grandparents and extended family.

iv



ACKNOWLEDGMENTS

It is a long journey for me to finish my PhD dissertation. When I looked back over the process

of my PhD studies, I further realized how lucky I am since I have got a lot of valuable help

from many people. Within the limited space, I wish to acknowledge those who contribute to

my PhD journey. Before this, I would like to thank all my dissertation committee members,

Dr. Guowei Wei, Dr. Keith Promislow, Dr. Moxun Tang, Dr. Chichia Chiu and Dr. Yiying

Tong for taking their precious time to review and comment on my dissertation.

I’m indebted to my PhD advisor Dr. Guowei Wei, for accepting me as his student and

giving me consistent guidance and direction through my PhD studies. Dr. Wei has given

me step-by-step systematical training in programming and research. Not only he teaches

me knowledgeable in Mathematics, Biology, Physics and Chemistry but also trained me to

think sharply and critically in research. I appreciate him spending a lot of time designing

my projects, teaching me knowledge and skills and revising my manuscripts.

I’d like to thank former students in Dr.Wei’s group, Dr. Zhan Chen and Dr. Duan Chen,

for giving me many practical programming tools and research tips and kept helping me when

I met difficulties in researches. My thanks go to other Dr. Wei’s group alumni, Dr. Weihua

Geng, Dr. Sining Yu, Dr.Yuhui Sun, Dr. Yongcheng Zhou, and Dr. Shan Zhao for their

legacy code and research. Meanwhile, I thank Ms. Qiong Zheng, Dr. Siyang Yang, Dr.

Kelin Xia, Mr. Yin Cao, Ms. Weijuan Zhou and Ms. Jinkuyang Park for their help and

collaboration in my research and teaching.

I met generous faculty at MSU who gave me various kinds of training and help. To name

a few, I thank Dr. Baisheng Yan for the help in my first year, Dr. Peiru Wu for the high

standard training in her class, Dr. Michael Feig for the training of Computational Biology

v



in his class and Dr. Andrew Christlieb for being my comprehensive exam member.

I am grateful to Ms. Barbara Miller, Graduate Secretary in the Department of Mathe-

matics, for her generous assistance throughout my PhD study.

There are numerical colleagues and friends I should thank at MSU. To name a few, I

thank Mr. Shuzhuan Zheng, Mr. Xianfeng Ma, Mr. Li Zhan, Ms. Hong Qian, Mr. Xun

Wang, Mr. Lianzhang Bao, Mr. Junshan Lin, Mr. Jun Lai for their various help at different

time.

Finally I would like to thank my family members, from the old generations of my grand-

parents and parents, to my generation and my son. Life was difficult for the old generations

but they never gave up the hope and constantly made sacrifices for the next generation. I

especially owned my parents Aimin Hu and Qingying Zeng, my sister Fenghua Hu too much

for their long-time sacrifice and support. I utmost thanks go to my wife Chen Li, who gave

me constant support and encouragement and my one year old son Steven Li Hu, who gave

me a lot of joys and sense of responsibility to help me grow mature gradually as a father.

vi



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Chapter 1 Nonlinear Poisson equation for heterogeneous media . . . . . . 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Models and algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Electrostatic free energy functional . . . . . . . . . . . . . . . . . . . 4
1.2.2 Nonlinear Poisson equation . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.3 Nonpolar energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2.4 Numerical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2.4.1 Solution of nonlinear Poisson equation . . . . . . . . . . . . 15
1.2.4.2 Initialization of dielectric profile ε . . . . . . . . . . . . . . 17
1.2.4.3 Evaluation of solvation free energy . . . . . . . . . . . . . . 17
1.2.4.4 Iteration procedure . . . . . . . . . . . . . . . . . . . . . . . 18

1.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3.1 Validation by one atom system . . . . . . . . . . . . . . . . . . . . . 20
1.3.2 Application to a set of 17 small molecules . . . . . . . . . . . . . . . 23
1.3.3 Application to a set of 20 proteins . . . . . . . . . . . . . . . . . . . . 28
1.3.4 Application to temperature effects . . . . . . . . . . . . . . . . . . . 31

1.4 Chapter conclusion remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Chapter 2 PDE transform for hyperbolic conservation laws . . . . . . . . . 35
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2 Theory and algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.2.1 Arbitrarily high order nonlinear PDEs . . . . . . . . . . . . . . . . . 42
2.2.2 PDE transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.2.3 Numerical algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.3 Numerical test and validation . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.3.1 Scalar conservation law systems . . . . . . . . . . . . . . . . . . . . . 53

2.3.1.1 Example 1 (Linear advection equation with Sine-Gaussian
wavepacket) . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.3.1.2 Example 2 (Linear advection equation with wave combination) 58
2.3.1.3 Example 3 (Inviscid Burgers’ equation) . . . . . . . . . . . 62
2.3.1.4 Example 4 (Non-convex flux) . . . . . . . . . . . . . . . . . 64

2.3.2 1D Euler systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.3.2.1 Example 5 (Sod’s and Lax’s problems) . . . . . . . . . . . 68
2.3.2.2 Example 6 (1D Shock-entropy interaction) . . . . . . . . . 71
2.3.2.3 Example 7 (Shu-Osher’s problem) . . . . . . . . . . . . . . 77

vii



2.3.3 2D Euler systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
2.3.3.1 Example 8 (2D Shock-entropy interaction) . . . . . . . . . 80
2.3.3.2 Example 9 (2D Shock-vortex interaction) . . . . . . . . . . 83

2.4 Chapter conclusion remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Chapter 3 High order fractional PDE transform for molecular surface
construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.2 Theory and algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.2.1 Fractional derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.2.2 Fractional finite difference schemes . . . . . . . . . . . . . . . . . . . 93

3.2.2.1 Fractional Fourier schemes . . . . . . . . . . . . . . . . . . 94
3.2.2.2 Integral forms . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.2.3 High-order fractional PDEs and fractional PDE transform . . . . . . 98
3.2.3.1 Variational derivation of high-order fractional PDEs . . . . 98
3.2.3.2 Fractional hyperdiffusions derivation of high-order fractional

PDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
3.2.4 Numerical algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.3 Numerical test and validation . . . . . . . . . . . . . . . . . . . . . . . . . . 104
3.3.1 Initial data for evolution PDEs . . . . . . . . . . . . . . . . . . . . . 104

3.3.1.1 Type I: Piecewise-constant initial values . . . . . . . . . . . 104
3.3.1.2 Type II: Maximum Gaussian initial values . . . . . . . . . . 105
3.3.1.3 Type III: Summation Gaussian initial values . . . . . . . . . 105

3.3.2 Effects of fractional order and propagation time . . . . . . . . . . . . 105
3.3.2.1 Test on a three-atom system . . . . . . . . . . . . . . . . . 108
3.3.2.2 Test on a four-atom system . . . . . . . . . . . . . . . . . . 111
3.3.2.3 Test on two proteins . . . . . . . . . . . . . . . . . . . . . . 114

3.3.3 Computational efficiency . . . . . . . . . . . . . . . . . . . . . . . . . 115
3.3.4 Surface areas and surface enclosed volumes . . . . . . . . . . . . . . . 116

3.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
3.4.1 Electrostatic analysis of 15 proteins . . . . . . . . . . . . . . . . . . 119

3.4.1.1 Electrostatic potential . . . . . . . . . . . . . . . . . . . . . 119
3.4.1.2 Electrostatic solvation free energy . . . . . . . . . . . . . . 121

3.4.2 Solvation analysis of 17 small compounds . . . . . . . . . . . . . . . 121
3.5 Chapter conclusion remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Chapter 4 Modeling of Impact of geometric, thermal and tunneling effects
on nano-transistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
4.2 Theoretical models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.2.1 Free energy of electrons . . . . . . . . . . . . . . . . . . . . . . . . . 131
4.2.1.1 Kinetic energy . . . . . . . . . . . . . . . . . . . . . . . . . 131
4.2.1.2 Potential energy . . . . . . . . . . . . . . . . . . . . . . . . 132

4.2.2 Electrostatic free energy of the system . . . . . . . . . . . . . . . . . 134
4.2.3 Total free energy functional . . . . . . . . . . . . . . . . . . . . . . . 135

viii



4.2.4 The Poisson equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
4.2.5 Generalized Kohn-Sham equation . . . . . . . . . . . . . . . . . . . . 136

4.3 Computational algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
4.3.1 The Poisson equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
4.3.2 Scattering problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
4.3.3 Modeling the phonon-electron interaction . . . . . . . . . . . . . . . . 141
4.3.4 Self-consistent iteration . . . . . . . . . . . . . . . . . . . . . . . . . . 142

4.4 Numerical experiments and discussions . . . . . . . . . . . . . . . . . . . . . 144
4.4.1 A four-gate MOSFET model . . . . . . . . . . . . . . . . . . . . . . . 144
4.4.2 General results of electric field and electron density . . . . . . . . . . 148
4.4.3 Performances of nano-MOSFETs with different channel geometries . 151
4.4.4 Quantum tunneling effects . . . . . . . . . . . . . . . . . . . . . . . . 153
4.4.5 Phonon-electron interactions . . . . . . . . . . . . . . . . . . . . . . . 158

4.5 Chapter conclusion remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

Chapter 5 Thesis achievements and future work . . . . . . . . . . . . . . . . 163
5.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
5.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

ix



LIST OF TABLES

Table 1.1 The convergence of ∆Gp with respect to grid size h for one-atom
system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Table 1.2 Comparison of atomic radii and adjusted values (Å). . . . . . . . . . 23
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Chapter 1

Nonlinear Poisson equation for

heterogeneous media

1.1 Introduction

Electrostatic interactions are ubiquitous in nature and fundamental for chemical, biological

and material sciences. Among the various components of molecular interactions, electrostat-

ic interactions are of special importance [174, 46, 53, 83, 146, 173, 147, 61, 148, 10, 58, 11]

because of their long range and influence on polar or charged molecules – including water,

aqueous ions, proteins, nucleic acids, lipid bilayers, sugars, etc. For example, proteins are

made up of 20 types of amino acids, 11 of which are charged or polar in neutral solution.

Nucleic acids contain long stretches of negative charges from the phosphate groups in nu-

cleotides. In addition, the double-strained DNA chains are found to have an electron charge

density as high as one charge per 1.7 Å. Finally, sugars and related glycosaminoglycans can

possess some of the highest charge densities of any biomolecules because of the presence

of numerous negative functionalities, including carboxylate and sulfate groups. Therefore,

electrostatic interactions are some of the most important aspects that determine the physi-

cal and chemical properties of biomolecules, such as protein folding, protein-DNA binding,

transcription, translation, gene expression, and regulation, etc. As most biological process-

es occur in aquatic environments, electrostatic solute-solvent interactions are of paramount
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importance in the exploration of biological mechanism, the analysis of macromolecular be-

havior, and the modeling of the intramolecular and inter- molecular interactions of biological

complexes.

A wide variety of theoretical approaches, ranging from quantum mechanical ab initio

methods, classic Maxwell’s theory of electromagnetism, generalized Born algorithms, to

phenomenological modifications of Coulomb’s law, has been used for electrostatic analy-

sis. Quantum mechanical methods are generally accurate, but are too expensive to be used

for large chemical and biological systems. Generalized Born algorithms are fast, but depend

on other methods for calibrations. The Poisson equation, derived by using the Gauss’s law

and linear polarization, provides a relatively simple and accurate, while much less expensive

description of electrostatic interactions for a given charge source density. It works quite well

for moderately charged small molecules such as single amino acids [130].

One of most important applications of the Poisson equation is the solvation analysis

in the framework of implicit solvent models [175, 92, 139, 37]. Solvation involves interac-

tions between solute molecules and solvent molecules or ions in the aqueous environment.

Since 65-90% of cellular mass is water, all important biological processes, such as protein

ligand binding, ion transport, signal transduction, gene regulation, transcription, and trans-

lation, occur in aqueous environments under physiological conditions. Therefore, one cannot

overemphasize the importance of solvation analysis to chemical and biological sciences. The

Poisson equation, or the Poisson-Boltzmann equation when the salt is present, is a main

workhorse in the electrostatic free energy estimation of solvation because of its balance of

model accuracy and computational cost.

However, the Poisson equation is strictly valid for the linear polarization in an isotropic

and homogeneous dielectric medium. In contrast, one frequently encounters heavily charged,
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nonlinear, anisotropic and inhomogeneous materials and strong electric fields in real world

problems, for which hyperpolarizations become significant. For example, hyperpolarizability

often manifests itself as the Pockels effect and/or the Kerr effect [25, 87, 72, 117, 122].

Nonlinear dielectric response is important for highly charged molecules such as DNA or in

protein active sites. It has also been found in composite ferroelectric materials [137, 108, 156].

Nevertheless, for most complex material and devices, such as nanofluidics, fuel and solar cells,

electronic transistors, ion channels, molecular motors, etc., the hyperpolarizability is usually

neglected in their electrostatic analysis. Therefore, there is a need to consider the nonlinear

modification of the Poisson model for practical applications.

In the solvation analysis using the Poisson model or the Poisson-Boltzmann model in

the presence of salt, the solute is described in molecular or atomic detail, while the solvent

is described by a dielectric continuum, or a mean field approximation. The media in this

problem are described by variable coefficients and regarded as heterogeneous. The solvent-

solute boundary is often prescribed by solvent accessible, solvent excluded or van der Waals

surfaces, which gives rise to an unphysical sharp jump in the dielectric profile. Various

modifications of the Poisson-Boltzmann model have been considered in the literature, in-

cluding dipolar solvents [7, 1, 63], multipole effects [145, 102], multiple dielectric constants

and multivalent ions [138], solvent-solute interaction [106, 37, 55], and steric effects [24].

Warshel presented a protein-dipole Langevin-dipole (PDLD) model [172], and Freed offered

a Langevin-Debye theory [73].

The emphasis in most earlier work is on the solvent, while nonlinear effects in the vicinity

of the solute boundary, and their impact to heterogeneous and/or anisotropic media have

received relatively less attention. The present work introduces a nonlinear Poisson equation

to model nonlinear effects in solvent-solute systems in the absence of salt.
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1.2 Models and algorithms

1.2.1 Electrostatic free energy functional

Biomolecules are typically dielectric materials which do not conduct electric current, while

their electrons redistributes in response to an applied electric field. The charge redistribution

leads to so called dielectric polarization. The polarization density P is proportional to the

electric field E and can be measured by susceptibility χe

P = ε0χeE, (1.1)

where ε0 is the electric permittivity of free space. The susceptibility of a medium is related

to its relative permittivity ε by χe = ε−1, which is set to 0 at vacuum where there is nothing

to be polarized. The electric displacement D is related to the polarization density P by

D = ε0E + P = ε0(1 + χe)E = ε0εE. (1.2)

By Gauss’s law, one has the Poisson equation

∇ ·D = ∇ · ε0εE = −∇ · ε0ε∇φ(r) = ρ(r), (1.3)

where φ(r) is the electrostatic potential and ρ(r) is the charge density. The relation of

E = −∇φ(r) has been used.

An essential assumption in the above derivation of the Poisson equation is that the

polarization density is linearly proportional to the electric field E. However, this is not true

for highly charged nonlinear materials under a strong electric field or in an inhomogeneous
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medium with a complex interface geometry [87, 72]. Note that according to Coulomb’s law,

the electric field diverges in the close vicinity of a point charge. In general, the polarization

density is of the form

P = ε0χ
(1) �(1) E + ε0χ

(2) �(2) EE

+ ε0χ
(3) �(3) EEE + · · · , (1.4)

where χ(n) is an nth order susceptibility and is an (n+ 1)th order hyperpolarizability tensor

and �(n) is an nth order inner product for appropriate tensorial contraction. The second

order susceptibility describes the second order harmonic generation and Pockels effect, while

the third order susceptibility represents the Kerr effect [25]. As a vector in R3, the compo-

nents of P are given by

Pα = ε0χ
(1)
αβEβ + ε0χ

(2)
αβγEβEγ

+ ε0χ
(3)
αβγδEβEγEδ + · · · , (1.5)

where the Einstein summation convention is used, i.e., repeated indices are summed over

all of its possible values. A major difficulty in the application of Eq. (1.5) is that there

are too many tensorial components in dealing with high order tensors. Symmetry of the

material can be utilized to reduce the number of independent parameters. However, for

complex molecules, such as proteins, their symmetry is normally very low and there is little

simplification.

The polarization density described in Eq. (1.5) suggests that the linear Poisson equation

is a first order approximation. In general, the Poisson equation should be nonlinear in E or
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∇φ(r) so as to partially account for the effect of hyperpolarizations in solvation analysis.

To derive a nonlinear Poisson equation, we consider an energy functional of the form

Gp =

∫
(Λ (∇φ(r)) + g(φ(r)) dr, (1.6)

where g(φ(r)) is a source term and Λ(·) is an appropriate function to represent nonlinear

material properties. Related free energy functionals for electrostatic analysis were discussed

in the literature [146, 71, 180]. Energy functionals and variational approaches are now being

widely used to derive new and more sophisticated models of solvation [180, 37, 38, 39].

In general, one may set Λ(·) as a polynomial of the form

Λ(∇φ(r)) = aj,k|∇kφ(r)|j , j, k = 1, 2, · · · . (1.7)

In this expression, the high order electric field effects are included. However, similar to Eq.

(1.5), to use Eq. (1.7), one faces the difficulty of determining parameters aj,k. The lack of

detailed information about chemical and physical properties of a molecule in solvent limits

the usage of Eq. (1.7).

In the present work, we consider part of the nonlinear polarization effect in the solvation

analysis. To avoid the involvement of susceptibility parameters and maintain the simplicity

of the implicit solvent model, and to still account for the major hyperpolarizability impact

to the solvation, we propose a simple form

Λ(|∇φ(r)|) =
εm
2
|∇φ(r)|2

+
kBT

α
(εs − εm) ln

(
1 +

α

2kBT
|∇φ(r)|2

)
, (1.8)
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and

g(φ(r)) = −ρm(r)φ(r) (1.9)

where εs and εm are the permittivities, i.e. dielectric constants, of the solvent and solute

respectively, kB is the Boltzmann constant, T is the temperature, α is a parameter to adjust

the strength of the hyperpolarizability, and ρm(r) is the molecular charge density

ρm(r) =

Nm∑
i

Qiδ(r− ri), (1.10)

with Qi being the partial charge on an atom located at position ri and Nm is the total

number of atoms in the molecule. The first term in Eq. (2.11) and the choice of g(φ(r))

in Eq. (1.9) are standard for the classic electrostatic theory. Whereas, the second term in

Eq. (2.11) represents the partial effect of the hyperpolarizability near the solvent-solute

boundary.

Certainly, the free energy functional given in Eq. (2.11) is not unique. For example, two

alternative forms are given by

Λ(|∇φ(r)|) =
εm
2
|∇φ(r)|2

− kBT

α
(εs − εm)

[
1

1 + α
2kBT

|∇φ(r)|2
− 1

]
, (1.11)

and

Λ(|∇φ(r)|) =
εm
2
|∇φ(r)|2 − kBT

α
(εs − εm)

e−α |∇φ(r)|2
2kBT − 1

 . (1.12)
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These energy functionals describe the α and temperature dependence of the hyperpolariz-

ability. The impact of the hyperpolarization decays as the temperature increases [117, 122].

1.2.2 Nonlinear Poisson equation

Due to the simple form in Eqs. (2.11), (1.11) and (1.12), the energy functional in Eq. (2.11)

can be optimized with respect to the electrostatic potential φ by using the Euler-Lagrange

equation,

−∇ · ∂Λ

∂∇φ
+
∂g

∂φ
= 0. (1.13)

Based on the energy functionals in Eqs. (2.11) and (1.11) and Euler-Lagrange equation

(1.13), we obtain the nonlinear Poisson equation (NLPE)

−∇ · (ε(|∇φ(r)|)∇φ(r)) = ρm(r), (1.14)

where the nonlinear dielectric function is given by

ε(|∇φ(r)|) = εm +
εs − εm(

1 + α
|∇φ(r)|2

2kBT

)n (1.15)

with n = 1 and 2 for energy functionals in Eqs. (2.11) and (1.11), respectively. For Eq.

(1.12), the nonlinear dielectric function is given by

ε(|∇φ(r)|) = εm + (εs − εm) e
−α |∇φ(r)|2

2kBT . (1.16)
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It has been shown in the literature [122] that the hyperpolarization decays exponentially as

the temperature increases.

The NLPE (1.14) has the same structure as the classic Poisson equation (1.2). However,

the dielectric functions in Eqs. (1.15) and (1.16) are no longer discontinuous. To understand

the behavior of ε(|∇φ|), we first analyze two extreme cases,

lim
|∇φ|→0

ε(|∇φ|)→εs (1.17)

lim
|∇φ|→∞

ε(|∇φ|)→εm. (1.18)

Obviously, Eqs. (1.17) and (1.18) give rise to desirable asymptotic dielectric values in the

solvent and the solute domains, respectively. It is easy to see that εm < ε(|∇φ|) < εs for

intermediate |∇φ| values. In fact, the dielectric functions ε(φ) in Eqs. (1.17) and (1.18)

undergo a continuous transition from εm to εs at the solvent-solute interface when |∇φ| is

continuous. An interesting issue is the transition length scale of ε(|∇φ|). By Coulomb’s law,

the electrostatic potential φ resulting from a point charge, supposed at the origin, decays as

1/r. Therefore, the influence of |∇φ|2 decays as 1/r4, which is much faster than the decay

of the electrostatic potential and leads to a relatively short transition region of the dielectric

function.

Figure 1.1 illustrates the smooth transition of ε(|∇φ|) from εs to εm. Here, εs and εm

are set to their conventional values, i.e., 80 and 1, respectively. To understand the impact of

the hyperpolarizability, we plot ε(|∇φ|) with respect to a few α values in Figure 1.1. Larger

α values lead to a slower transition of ε(|∇φ|) to its asymptotic value εs. When there is

little hyperpolarization, i.e., α → 0, ε(|∇φ|) undergoes a sharp jump from its molecular

value εm to its solvent value εs. We therefore recover the classic Poisson equation model for
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Figure 1.1: The cross section profiles of ε(|∇φ|) along the y-axis at x = 0 and z = 0 at
different α values for one-atom system. For interpretation of the references to color in this
and all other figures, the reader is referred to the electronic version of this dissertation.

the solvation analysis. However, the classic Poisson equation is ill-posed unless appropriate

interface jump conditions are enforced [67]. Mathematically, the classic Poisson equation is

very different from the proposed nonlinear Poisson equation. In fact, physically, it is also very

different as demonstarted in the solvation energy calculation. In general, to provide proper

prediction of experimental data, the nonlinear Poisson equation, as well as other smooth

dielectric Poisson equations, should have its own force field parameters [153, 154, 37]. Note

that it is possible to set α = 1 so as to arrive at a parameter-free NLPE.
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1.2.3 Nonpolar energy

The nonlinear Poisson equation provides a tool for electrostatic analysis. In general, the

electrostatic free energy of solvation is complemented by the nonpolar contribution. In the

present work, we adopt a popular nonpolar solvation model [114, 165, 37]

Gnp = γArea + pVol +

∫
Ωs
ρsU

att(r)dr, (1.19)

where γ is the surface tension, Area represents the surface area of the molecule of interest,

p is the hydrodynamic pressure, Vol represents the volume occupied by the molecule, ρs is

the solvent bulk density, Ωs denotes the solvent accessible region and Uatt(r) is the solute-

solvent van der Waals interaction potential at point ~r. The first term γArea is the surface

energy, which describes the disruption of intermolecular and/or intramolecular bonds that

occurs when the surface of a molecule is created in the solvent. The second term pVol

measures the mechanical work of creating the vacuum of a biomolecular size in the solvent.

The hydrophobic effect in the first two terms are partially compensated by the third term∫
Ωs
ρsU

att(r)dr, which describes the attractive dispersion effects near the solvent-solute

interface.

The nonpolar energy in Eq. (3.44) can be easily computed if the solvent-solute boundary

is explicitly given. However, in the present nonlinear Poisson model, there is no sharp inter-

face between the solvent and the solute, which avoids the surface singularity and numerical

instability. To obtain a solvent-solute boundary, we define a linear mapping

S(ε) =
1

εs − εm
(εs − ε(|∇φ(r)|)) , (1.20)
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where S(ε) is a solute characteristic function such that the solute domain Ωm is defined

by S(ε) ≥ 0. Similarly, 1 − S(ε) is a solvent characteristic function such that the solvent

domain Ωs is defined as 1 − S(ε) ≥ 0. Obviously, in the region εm < ε(|∇φ|) < εs, the

solvent domain Ωs overlaps the solute domain Ωm. Figure 1.2 illustrates the profile of S(ε)

and 1−S(ε) computed from Eq. (1.20). The impact of solvent polarity to the solvent cavity

or volume was discussed by Papazyan and Warshel [132].
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Figure 1.2: The cross line profiles of S and 1 − S along the y-axis at x = 0 and z = 0 for
one-atom system.

In order to evaluate the nonpolar energy according to Eq. (3.44), one still needs to

compute the surface area and its enclosed volume. Once the surface profile S is provided, it

is obvious that the volume of the solute can be expressed as

Vol =

∫
Ωm

dr =

∫
Ω
S(ε)dr, (1.21)
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where Ω is the total domain of the solvation problem. Additionally, we rewrite the surface

energy term as a function of the surface profile S, which embeds a two-dimensional (2D)

surface in the R3. By using the the coarea formula of the geometric measure theory [57, 180],

the surface area can also be expressed as a volume integral

Area =

∫
Ω
|∇S(ε)|dr. (1.22)

It is noted that Area only has contribution from ∇S 6= 0, where there is a transition region of

the solvent-solute boundary. Finally, the van der Waals dispersion term can be reformulated

as ∫
Ωs
ρsU

att(r)dr =

∫
Ω
ρs(1− S(ε))Uatt(r)dr. (1.23)

We adopted the Weeks-Chandler-Andersen (WCA) decomposition based on the original W-

CA theory [176]. Therefore, the nonpolar solvation free energy Gnp can be defined via the

surface profile S(ε) given in Eq. (1.20),

Gnp =

∫
Ω
γ|∇S(ε)|+ pS(ε) + ρs(1− S(ε))Uatt(r)dr. (1.24)

For the attractive dispersion potential Uatt, which describes the solvent-solute coupling,

we have Uatt =
∑
i U

att
i , where Uatt

i accounts for the attractive van der Waals interaction

due to the ith solute atom. The Lennard-Jones (L-J) potential is one way to model the van

der Waals interaction. Here we consider the following 6-12 L-J potential at position r:

ULJ
i (r) = εi

[(
σi + σs
|r− ri|

)12

− 2

(
σi + σs
|r− ri|

)6
]
, (1.25)
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where εi characterizes the well-depth, σi and σs are ith solute atomic and solvent radii,

respectively, It is seen that ULJ
i (r) achieves the minimum −εi at the position r = σi +

σs . There are different ways to decompose L-J potential into attractive and repulsive

components. One is the ”6-12” decomposition, which is :

U
att,6/12
i (r) = −2εi

(
σi + σs
|r− ri|

)6

, (1.26)

U
rep,6/12
i (r) = εi

(
σi + σs
|r− ri|

)12

. (1.27)

Another popular way is the Weeks-Chandler-Andersen(WCA) decomposition based on the

original WCA theory, which has the form of

U
att,WCA
i (r) =


−εi, |r− ri| < σi + σs;

ULJ
i (r), |r− ri| ≥ σi + σs,

(1.28)

U
rep,WCA
i (r) =


ULJ
i (r) + εi, |r− ri| < σi + σs,

0, |r− ri| ≥ σi + σs.

(1.29)

In current work, we adopt the WCA decomposition, i.e. we set Uatt
i (r) = U

att,WCA
i (r).

It is worthwhile to point out that the distance in the present 6-12 Lennard Jones potential

in Eq. (1.25) are not exactly the same as those in the standard version due to the continuum

representation of solvent in our model. As a matter of fact, |r−ri| in Eq. (1.25) is the distance

between a specific position r in the solvent area and the center of a solute atom at ri , which

is no longer the distance between the center of a solute atom and that of a solvent atom in the

standard expression. Consequently, the setting of well depth εi differs from those in popular
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force fields such as from AMBER or OPLS . However the performance of the L-J potential

should be based on the same principle, i.e, the value of the L-J potential in the solvent caused

by a solute atom only depends on the distance from the center of the atom. This implies

that the value of L-J potential caused by a solute atom should be a constant on the van der

Waals surface of the atom. In other words, ULJi (r) = εi

[(
σi+σs
|r−ri|

)12
− 2

(
σi+σs
|r−ri|

)6
]

= Di if r

is on the vdW surface of the ith atom. Theoretically, the constant Di should have different

values for different types of atoms. For simplicity we use a uniform constant D to determine

the value of εi given σs and σi. In the present calculation, we set D = 1.0. Note that WCA

expression is chosen as the attractive van der Waals potential.

Thus, the above expression in Eq. (1.24) provides a practical way to compute the non-

polar solvation free energy based on the proposed NLPE (1.14).

1.2.4 Numerical Methods

1.2.4.1 Solution of nonlinear Poisson equation

Because the nonlinear Poisson equation (NLPE) admits a smooth dielectric profile, it is

convenient to use the standard second order center difference scheme for the spatial dis-

cretization. Denote the position (xi, yj , zk) by the pixel (i, j, k), then the NLPE can be

discretized as

ε(xi +
1

2
h, yj , zk)[φ(i+ 1, j, k)− φ(i, j, k)] + ε(xi −

1

2
h, yj , zk)[φ(i− 1, j, k)− φ(i, j, k)]

+ε(xi, yj +
1

2
h, zk)[φ(i, j + 1, k)− φ(i, j, k)] + ε(xi, yj −

1

2
h, zk)[φ(i, j − 1, k)− φ(i, j, k)]

+ε(xi, yj , zk +
1

2
h)[φ(i, j, k + 1)− φ(i, j, k)] + ε(xi, yj , zk −

1

2
h)[φ(i, j, k − 1)− φ(i, j, k)]

= −4ρm(i, j, k)/h, (1.30)
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where h is the grid step size, φ(i, j, k) and ρm(i, j, k) are the discretized electrostatic potential

and molecular charge at grid point (xi, yj , zk) respectively. In our work, the second order

interpolation (i.e., the trilinear mapping) is used to distribute charge ρm to the grid point

(i, j, k). The profile of permittivity ε is obtained from the discretization as below

{ε(|∇φ|)}ijk = εm +
εs − εm(

1 + α
2kBT

{|∇φ|2}ijk
)n , n = 1, 2, (1.31)

or

{ε(|∇φ|)}ijk = εm + (εs − εm)e
−α
{|∇φ|2}ijk

2kBT , (1.32)

where

{|∇φ|2}ijk = {φ2
x}ijk + {φ2

y}ijk + {φ2
z}ijk, (1.33)

with

{φx}ijk = (φ(i+1)jk − φ(i−1)jk)/2h, (1.34)

{φy}ijk = (φi(j+1)k − φi(j−1)k)/2h, (1.35)

and

{φz}ijk = (φij(k+1) − φij(k−1))/2h. (1.36)

As a result, one attains a system of highly complex and nonlinear equation if |∇φ|2 for

ε is directly discretized. To reduce the computational cost, we solve the system by coupling

Eq. (1.30) and Eq. (1.31) or Eq. (1.32).

The far field condition similar that used in the Poisson-Boltzmann equation [67] is em-

ployed for the nonlinear Poisson equation. As a result, the discretized nonlinear Poisson
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equation can be cast into a linear algebraic equation system based on Eq. (1.30).

1.2.4.2 Initialization of dielectric profile ε

To compute the dielectric profile ε, we first set up an initial value of ε as

ε(x, y, z) =


εm, (x, y, z) ∈ D

εs, otherwise

(1.37)

where the domain D is defined as the region enclosed by the solvent accessible surface, i.e.,

D =
⋃Nm
i=1{r : |r− ri| < ri + rp}. Here rp is the probe radius, ri is the atomic radius

and ri = (xi, yi, zi), i = 1, · · · , Na are the atom centers of the ith atom and Nm is the

total number of the atoms for a given molecule. In the present work, ε(x, y, z) is fixed as

εs outside the solvent accessible surface, and as εm within the van der Waals surface, i.e.,

(x, y, z) ∈
⋃Na
i=1{r : ri < |r− ri| < (ri + rp)}, dielectric profile ε(x, y, z) is determine by Eq.

(1.15) or Eq. (1.16). Although the initial value of ε has a sharp jump at the interface of the

solvent accessible surface, the iteration procedure of the solution of the nonlinear Poisson

equation will generate a smooth ε profile connecting the solvent and the solute regions.

1.2.4.3 Evaluation of solvation free energy

In this subsection, we present the method for the evaluation of solvation free energies. Since

the solvation free energy is the energy released or absorbed when the solute molecule is

transferred from vacuum to the solvent environment, it is computed by

∆G = G−G0, (1.38)
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where G is the free energy calculated from the solvent environment while G0 is from the

vacuum. Typically , solvation free energy consists of polar and nonpolar contributions. Note

that the vacuum environment does not contribute to the nonpolar energy part. Therefore,

we have

∆G = Gp +Gnp −G0 = ∆Gp +Gnp, (1.39)

where ∆Gp = Gp − G0 and Gp and Gnp denote the polar and nonpolar contribution of G.

In the present work, the electrostatic solvation free energy ∆Gp is calculated by

∆Gp = Gp −G0 =
1

2

Nm∑
i=1

Qi(φ(ri)− φ0(ri)), (1.40)

where φ and φ0 are electrostatic potentials in the solvent and the vacuum environment

respectively, and Qi is the partial charge on ith atom located at position ri. Finally, the

nonpolar solvation free energy is computed by Eq. (1.24).

1.2.4.4 Iteration procedure

The solution of the nonlinear Poisson equation requires appropriate iterations. The procedure

of coupling the Poisson equation and dielectric function is follows.

(Step 0): The workflow begins with the initialization of ε.

(Step 1): Then we solve NLPE for the electrostatic potential φ.

(Step 2): Next, the gradient ∇φ and thus ε is computed.

(Step 3): The electrostatic free energy ∆Gp is calculated.

(Step 4): We check the convergence by comparing |∆∆Gp|, which is the difference between

updated electrostatic free energy ∆Gnew
p and previous value ∆Gold

p , with a given tolerance.

If convergence is not reached, go back to (Step 1) until convergence. Otherwise, we stop the
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iteration and compute ∆G, including both polar energy ∆Gp and s non-polar energy Gnp.

An overview of the algorithm is showed in the flowchart in Figure 1.3.

Initialize ε

Solve NLPE for φ

Get ∇φ and ε

Obtain ∆Gp

|∆∆Gp| < τ?

New loop

Output ∆G

no

yes

Figure 1.3: The flowchart for the solution of the nonlinear Poisson equation.

1.3 Results and Discussion

The Poisson equation has been extensively applied in implicit solvent models to the solvation

analysis, which provides a computationally less expensive alternative to the integral equation

theory [18, 127], nonlocal dielectric theories [109] and density functional theory models [200].

In our work, we consider solvation applications of our nonlinear Poisson equation.
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Figure 1.4: The convergence of electrostatic solvation free energies ∆Gp over number of
iteration (N) for one-atom system.

1.3.1 Validation by one atom system

We first consider an atom of unit van der Waals radius and unit charge in the solvent. The

atomic center and the charge are both located at the origin. We set εm = 1 and εs = 80 for

dielectric constants in the solute and the solvent, respectively. A fine mesh size of h = 0.25

Å is used in our computation. The convergence of our computational algorithm with respect

to the number of iteration is shown in Figure 1.4 while the convergence over the grid size h

is validated as in Table 1.1.

Table 1.1: The convergence of ∆Gp with respect to grid size h for one-atom system.

grid size h 0.5 0.25 0.125 0.0625
∆Gp -183.8562 -183.6532 -183.6531 -183.6531

In general, the dielectric function ε has a smooth profile as shown in Figure 1.1. It

is interesting to note that as α → 0, the dielectric profile converges to the discontinuous

dielectric constants of the classic linear Poisson model. It is worthwhile to further explore
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Figure 1.5: The volume of the nonlinear Poisson model at a wide range of α values for
one-atom system with atomic radius 1 Å, εm = 1 and εs = 80.

the impact of the hyperpolarization by using scaling factor α. To this end, we compute the

enclosed volume of the atom by Eq. (1.21) under a wide range of α values. In general,

the enclosed volume is larger than that of the linear Poisson model as shown in Figure 1.5.

Indeed, the volume converges to that of the linear Poisson model asymptotically α → 0.

In fact, the surface area computed with Eq. (1.22) converges to that of the linear Poisson

model as α→ 0.

Having established the recovery of the linear Poisson model in terms of dielectric function,

surface area and enclosed volume, we now investigate polar solvation energy ∆Gp of the

nonlinear Poisson model. Figure 1.6 plots the behavior of ∆Gp for various α values. Unlike

other quantities, the solvation energy does not recover that of the linear Poisson model,
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Figure 1.6: The electrostatic solvation energy of the nonlinear Poisson model at a wide range
of α values for one-atom system with atomic radius 1 Å, εm = 1 and εs = 80.

i.e., the Kirkwood model [105], as α → 0. The plot shows that the Kirkwood model gives

∆Gp = −163.85 kcal/mol, while, the present nonlinear Poisson model predicts −183.65

kcal/mol. This behavior reminds us that the present nonlinear Poisson model is inherently a

smooth-permittivity model. It is well-known that without appropriate reparameterization,

smooth-permittivity or smooth dielectric models lead to an under-estimation of the polar

solvation energy [153, 154, 37]. It has been shown that the solvation energy of sharp dielectric

models can be recovered by reparameterizing atomic radii with a common factor [154, 37].

This in fact defines their own force field parameters. In the present work, we perform a

similar parameter fitting by adjusting the atomic radii so that the ∆Gp of nonlinear Poisson

model is the same as that of the Kirkwood model at the limit of α → 0. In this manner,
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we can systematically determine the radii of commonly used atoms for our model. Table 1.2

lists the result of our radius set. We present both the enlarged radii as wells as the ratios for

the radius enlargement. Here the original radii are from the ZAP-9 force field by Nicholls

etc [129]. It should be noted that values of atomic radius from different models may differ

significantly. For example, the radius for Hydrogen is 1.20 Å from the Bondi’s compilation

but is adjusted to 1.10 Å by Nicholls [129]. Furthermore, since the ratios in Table 1.2 vary

from 1.06 to 1.12, it is more convenient to apply a common ratio to obtain our parameter set.

Figure 1.7 shows that a common ratio of 1.09 fits well with all data. This is consistent with

our earlier finding in the differential geometry based solvation model [37] that a common

scaling factor of 1.1 gives rise to a good parameterization.

Table 1.2: Comparison of atomic radii and adjusted values (Å).

atom-type radius [129] adjusted-radius ratio
H 1.10 1.23 1.12
N 1.40 1.54 1.10
O 1.76 1.88 1.07
Cl 1.82 1.95 1.07
O 1.87 2.00 1.07
S 2.15 2.30 1.07
F 2.40 2.54 1.06

1.3.2 Application to a set of 17 small molecules

To further validate the proposed nonlinear Poisson model, we apply it to the solvation anal-

ysis of a set of 17 small compounds. Various approaches, including quantum mechanics and

Poisson-Boltzmann theory, have been applied to this test set by Nicholls et al [129]. This

test set has also been employed in our earlier work to validate our differential geometry
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Figure 1.7: The rescaled atomic radii for the one-atom system with fixed ε = εm within the
solute domain.

based solvation models (DGSMs) [37, 38]. This test set is frequently used because its exper-

imental data of solvation free energies are available. Furthermore, this set was found to be

quite challenging to theoretical models because of its hyperpolarization and the existence of

polyfunctional or interacting polar groups, which causes strong solvent-solute interactions.

To compare with experimental data of solvation, both polar and nonpolar solvation en-

ergies are required. We utilize the nonlinear Poisson equation (1.14) with the anisotropic

coefficients given in Eqs. (1.15) and (1.16) for the electrostatic analysis. The nonpolar en-

ergy is computed according to Eq. (1.24), which in turn depends on the nonlinear Poisson

model for the evaluation of surface function S, volume, and surface area.

The structure and charge parameters of 17 compounds are taken from those of Nicholls

et al [129]. In particular, atomic charges are adopted from the OpenEye-AM1-BCC v1 pa-

rameters [94]. Atomic coordinates and radii are based on ZAP-9 parameters [129], in which

certain types of radii are revised from Bondi radii to improve the agreement with experimen-

tal free energy. In our computation, we carry out the smooth-dielectric reparameterization of
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Figure 1.8: Correlation of total solvation free energies of 17 compounds between the nonlinear
dielectric model and different data. (a) Nonlinear dielectric model and experimental data;
(b) Nonlinear dielectric model and DGSM.
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atomic radii by using individual radii listed in Table 1.2. Figure 1.8(a) depicts the correlation

between the current results and experimental data. The root mean square error (RMSE) of

computation results is 1.75 kcal/mol and the average error is 1.40 kcal/mol when the radii in

Table 1.2 are used. In comparison, the linear Poisson model offers a RMSE of 1.87 kcal/mol

by Nicholls et al [129]. Their explicit solvent approach, which is much more expensive, re-

duces the RMSE to 1.71± 0.05 kcal/mol [129]. Therefore, present nonlinear Poisson model

provides a relatively good prediction of solvation energies for this set of molecules.

It is interesting to further compare the performance of the present nonlinear Poisson mod-

el with the more complicated DGSM [37], which relies on the Laplace-Beltrami equation to

provide the surface function and dielectric profile. The RMSE of the DGSM is 1.76 kcal/mol,

which is very close to the present result. Indeed, since both models admit smooth dielec-

tric profiles and employ similar nonpolar energy functionals, there is very good correlation

between their solvation predictions as shown in Figure 1.8(b).

Table 1.3 gives a summary of the computation results by the present nonlinear model

with a comparison to the experimental data. From Table 1.3, it is seen that the error for this

set of 17 molecules varies from −2.41 to 3.86 kcal/mol. However, the major errors are from

the calculation of two benzamide molecules. The RMSE will drop from 1.75 kcal/mol to 1.25

kcal/mol without these benzamide compounds. The error with benzamides may be related

to the charges of the carbonyl oxygens and tertiary nitrogens in the OpenEye-AM1-BCC v1.

This issue will be further explored in our future work.

Similar to the linear Poisson model, the proposed nonlinear Poisson model is also capable

of providing surface electrostatic analysis. Figure 1.10 (a) and (b) depict surface electrostatic

potentials of four compounds obtained at a given isosurface value S = 0.5. This information

can be used in various practical applications.
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Table 1.3: Comparison of free energies (kcal/mol) for 17 compounds between nonlinear model
and experimental data.

Compound Gnp ∆Gp ∆G Exptl Error
glycerol triacetate 2.63 -13.02 -10.40 -8.84 -1.56

benzyl bromide 1.61 -5.01 -3.41 -2.38 -1.03
benzyl chloride 1.57 -5.16 -3.59 -1.93 -1.66

m-bis(trifluoromethyl)benzene 2.44 -3.20 -0.76 1.07 -1.83
n,n-dimethyl-p-methoxybenzamide 2.23 -9.57 -7.34 -11.01 3.67

n,n-4-trimethylbenzamide 2.11 -8.01 -5.90 -9.76 3.86
bis-2-chloroethyl ether 1.66 -4.32 -2.66 -4.23 1.57

1,1-diacetoxyethane 1.89 -8.51 -6.62 -4.97 -1.65
1,1-diethoxyethane 1.74 -4.62 -2.88 -3.28 0.40

1,4-dioxane 1.16 -5.71 -4.55 -5.05 0.50
diethyl propanedioate 2.13 -8.23 -6.10 -6.00 -0.10

dimethoxymethane 1.17 -4.67 -3.49 -2.93 -0.56
ethylene glycol diacetate 1.84 -8.86 -7.02 -6.34 -0.68

1,2-diethoxyethane 1.77 -4.37 -2.60 -3.54 0.94
diethyl sulfide 1.52 -2.44 -0.92 -1.43 0.51
phenyl formate 1.55 -8.03 -6.49 -4.08 -2.41

imidazole 0.96 -11.66 -10.70 -9.81 -0.89

Finally, we test the solvation predictions of alternative nonlinear dielectric functions. As

shown in Table 1.4, three nonlinear Poisson models based on different dielectric functions

provide essentially the same prediction of solvation free energies. Therefore, the proposed

nonlinear Poisson models are not sensitive to the functional form of the nonlinear dielectric

profile.

Table 1.4: Errors of solvation free energies for a set of 17 small compounds obtained from 3
nonlinear models based on adjusted radius in Table 1.2.

n = 1 n = 2 exponential
model model model

RMSE (kcal/mol) 1.7505 1.7565 1.7531
Average error (kcal/mol) 1.4011 1.4051 1.4035
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Figure 1.9: Correlation between the results obtained by the MIBPB-III [67] and the nonlinear
dielectric model for electrostatic solvation free energies of 20 proteins.

1.3.3 Application to a set of 20 proteins

After demonstrating the success in the validation and application in small compounds, we

examine our nonlinear Poisson model for the electrostatic solvation of biomolecules. Here

we chose 20 proteins which are frequently used in previous studies [67, 37]. The number of

atoms for this set of proteins ranges from 519 to 2809.

The initial structure data of all proteins are taken from the Protein Data Bank (PDB)

at http://www.pdb.org/. Based on the initial structure data, the hydrogen atoms which are

typically missing from the X-ray data are added to the structures and extra water molecules

that are attached to proteins are excluded so as to obtain full all-atom models. Partial charges
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(a) (b)

(c) (d)

Figure 1.10: Surface electrostatic potentials of four molecules at their isosurface value
S = 0.5. (a) small compound: diethyl propanedioate; (b)small compound: n,n-dimethyl-p-
methoxybenzamide; (c)protein: 1vjw; (d) protein: 2pde.

at atomic sites as well as atomic radii in angstroms are assigned from the CHARMM27 force

field [120]. Note that a common radius scaling factor of 1.1 is used in this computation.

n-polar energy are the same as before.

The results for 20 proteins are summarized in Table 1.5 in the Supporting Information.

The magnitude of electrostatic solvation free energies for these proteins are much larger
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Figure 1.11: Correlation of solvation free energies predicted by the NLPE model and exper-
imental data for 21 compounds.

than that of the previous set of 17 small compounds due to multiple charges. Since the

experimental data for the total solvation free energy for this set of proteins is not available

yet, we compare the electrostatic solvation free energies with those from the DGSM [37] and

from the MIBPB-III [67]. It is seen that the results are close to each other. An illustration

of the correlation between the present nonlinear model and the DGSM is depicted in Figure

1.9. The results of three models are quite close. Figure 1.10 (c) and (d) display the profile of

electrostatic potential on the isosurface value S = 0.50 for two proteins, i.e., 1vjw and 2pde,

which suggests that the present nonlinear Poisson model is also robust for the visualization

of electrostatic surface potentials.
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Table 1.5: Electrostatic solvation free energies (kcal/mol) for 20 proteins by different models.

4Gp (kcal/mol)
PDB-ID No. of atoms MIBPB-III DGSM NLPE

1ajj 519 -1137.2 -1178.5 -1109.8
2erl 573 -948.8 -935.8 -930.7
1bbl 576 -986.8 -965.9 -956.8
1vii 596 -901.5 -892.0 -878.3
2pde 667 -820.9 -843.0 -850.9
1sh1 702 -753.3 -771.8 -797.6
1fca 729 -1200.1 -1200.6 -1223.1
1uxc 809 -1138.7 -1125.7 -1109.4
1fxd 824 -3299.8 -3291.9 -3307.0
1vjw 828 -1237.9 -1226.6 -1233.3
1bor 832 -853.7 -871.4 -872.3
1hpt 858 -811.6 -808.2 -793.0
1mbg 903 -1346.1 -1328.2 -1317.9
1r69 997 -1089.5 -1072.7 -1055.1
1neq 1187 -1730.1 -1713.9 -1694.1
451c 1216 -1024.6 -1020.6 -1019.1
1a2s 1272 -1913.5 -1900.3 -1910.7
1svr 1435 -1711.2 -1704.6 -1682.6
1a63 2065 -2373.5 -2380.5 -2384.5
1a7m 2809 -2155.5 -2179.8 -2201.0

1.3.4 Application to temperature effects

It is well known that solvation free energies are temperature dependent [163]. Although

most implicit solvation models are developed for room temperature, temperature effects

were considered in the SM6T model [30] and by Elcock and McCammon [56]. In this work,

we demonstrate the ability of the NLPE for modeling the temperature effect on solvation

free energies. First, one notes that the NLPE explicitly depends on the temperature as

shown in Eq. (1.15). Additionally, dielectric constants, εm and εs, are known to vary with

temperature [115]. The dielectric constant of water reduces from 80.10 at 298K to 55.58 at

373K, and its values at other temperatures can be well approximated by a cubic polynomial
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[115]. In implicit solvation models, εm is known to increase as the temperature increases

because of atomic fluctuation [164]. In the present model, we set εm = 1 at 298K and εm = 2

at 373K, with a linear interpolation for other temperatures. It should also be noted that

one may need to carefully investigate temperature effects on other parameters, namely, the

atomic radius and charge, in the NLPE to fully explore the present model. For simplicity,

atomic radius and charge are treated as temperature independent since their change with

respect to temperatures is neglectable [30].

To validate the NLPE model for temperature effects, we consider a set of compounds

whose free energies of solvation at different temperatures are available from experimental

measurement [30]. The structural data of these compounds can be computed by using Pub-

Chem (http://pubchem.ncbi.nlm.nih.gov/). However, the corresponding electronic charge

densities are obtained from a quantum approach developed by Chen and Wei [39].

Two different temperatures are considered to illustrate temperature effects on solvation

free energies of 21 compounds. Due to the availability of experimental data, considered tem-

peratures are not the same for all the compounds, as shown in Table 1.7. As the temperature

increases, the average increase in solvation energies is 1.13 kcal/mol in experimental data

while that predicted by the NLPE model is 1.05 kcal/mol. The RMSE of solvation free en-

ergies predicted by the NLPE model is 1.23 kcal/mol at low temperatures and 1.20 kcal/mol

at high temperatures. Figure 1.11 illustrates the correlation between predicted solvation free

energies and experimental data at all temperatures. Obviously, the proposed NLPE model

does a good job in modeling the temperature effect on the solvation free energy.

Note that by adjusting the dielectric constants, the classical Poisson equation can also be

used to model the temperature effect. Table 1.6 shows the RMSE and average ∆∆G of two

models at low and high temperatures for 21 compounds. It is seen that the present NLPE
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Table 1.6: Comparison of RMSE and ∆∆G predicted by the classical Poisson model and the
NLPE model for 21 compounds (The average ∆∆G of experimental data is 1.13 kcal/mol).

Model classical Poisson NLPE (n=1)
RMSE (kcal/mol) at low T 1.56 1.23
RMSE (kcal/mol) at high T 1.65 1.20
Average ∆∆G (kcal/mol) 0.86 1.05

model performs much better than the classical Poisson equation.

1.4 Chapter conclusion remarks

The classic Poisson theory neglects hyperpolarizations, which are important under a strong

electrical field, or involving highly charged nonlinear inhomogeneous media. We propose a

new electrostatic solvation free energy functional to partially account for the effect of hy-

perpolarizations to solvation analysis. A nonlinear Poisson equation is derived from the

Euler-Lagrange equation. The present nonlinear Poisson equation gives rise to a smooth di-

electric function, which by-passes both conceptual and computational difficulty of employing

a sharp solvent-solute boundary. By using geometric measure theory, we also formulate a

nonpolar solvation model based on the dielectric profile obtained from the nonlinear Poisson

model. The proposed solvation models are extensively validated with the Kirkwood model

and experimental measurements of 17 molecules. Our new solvation models out-perform

the classic Poisson equation based solvation model. In fact, its performance is very close to

the explicit solvation model, which is much more computationally expensive. Application of

the proposed nonlinear Poisson model is considered to electrostatic analysis of 20 proteins.

Additionly, the test results for the set of 21 compounds at different temperatures further

validate our model.
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Table 1.7: Temperature effect for 21 compounds between the NLPE model and experimental
results.

∆G at low T ∆G at high T ∆∆G
Compd T Exptl NLPE T Exptl NLPE Exptl NLPE
anthracene 284 -4.14 -4.75 304 -3.45 -3.23 0.69 1.52
phenanthrene 277 -4.29 -5.67 309 -3.54 -4.85 0.75 0.82
1-methylphenanthrene 277 -4.01 -5.51 304 -3.58 -5.08 0.43 0.43
fluoranthene 283 -5.12 -5.04 328 -3.86 -3.33 1.26 1.71
Acetaldehyde 273 -4.03 -3.51 313 -3.06 -3.37 0.97 0.14
1-Methoxypropane 273 -2.35 -2.15 298 -1.64 -1.58 0.71 0.57
tetrahydrofuran 293 -3.58 -2.31 343 -2.72 -1.43 0.86 0.88
2-Methoxypropane 283 -2.32 -2.16 298 -1.90 -1.61 0.42 0.55
ethyl-formate 278 -2.93 -2.86 349 -2.25 -1.80 0.68 1.06
formic-acid 278 -7.09 -5.68 309 -6.74 -5.06 0.35 0.62
1,2-ethanediol 298 -9.35 -8.19 348 -8.39 -7.42 0.96 0.77
naphthalene 277 -3.01 -1.13 309 -2.13 -0.62 0.88 0.50
1-methylnaphthalene 277 -3.08 -5.06 313 -2.06 -4.45 1.02 0.61
acenaphthylene 277 -3.78 -2.71 304 -2.93 -2.15 0.85 0.56
acetone 274 -4.38 -4.64 333 -3.17 -3.58 1.21 1.07
2-Butanone 283 -4.55 -3.61 373 -2.46 -1.68 2.09 1.93
cyclopentanone 273 -5.83 -7.31 364 -4.31 -5.92 1.52 1.40
benzylal 273 -7.61 -5.04 328 -5.89 -3.70 1.72 1.34
cyclohep 293 -5.77 -5.35 364 -3.59 -3.86 2.18 1.48
2methylc 273 -5.47 -6.73 353 -3.04 -4.46 2.43 2.27
cyclohexylm 303 -4.09 -5.30 363 -2.47 -4.03 1.62 1.27
Mean 1.13 1.05
RMSE 1.23 1.20
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Chapter 2

PDE transform for hyperbolic

conservation laws

2.1 Introduction

Hyperbolic systems of nonlinear conservation laws

ut + f(u)x = 0 (2.1)

with an initial condition

u(x, 0) = u0(x) (2.2)

have attracted great attention in the past few decades in mathematical, scientific and en-

gineering communities due to their practical applications in fluid mechanics, aerodynamics,

and nano-bio systems, to mention only a few. The solution to this class of problems may

not exist in the classical sense because of possible discontinuities in the initial condition,

material interface, singularity formation, turbulence, blow-up, etc.

Both global and local methods have been developed for hyperbolic conservation laws.

Many up-to-date local methods have been proposed for shock-capturing, turbulence and
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shock interaction, including weighted essentially non-oscillatory (WENO) scheme [95], cen-

tral schemes [20, 111, 116, 128], arbitrary-order non-oscillatory advection scheme [158], gas

kinetic [187], anisotropic diffusion [131], conjugate filters [86] and image processing based

algorithms [79, 179]. An important factor that contributes to the success of the above men-

tioned local schemes in the shock-capturing is their appropriate amount of intrinsic numerical

dissipation, which is introduced either by explicit artificial viscosity, upwinding, relaxation,

or by local average strategy in non-oscillatory central schemes [98]. Indeed, the characteristic

decomposition based on Roe’s mean matrix can also be considered as a local average of the

Jacobian matrix. The relation between some approximate Riemann solvers and relaxation

schemes was analyzed by LeVeque [113]. Local characteristic decomposition is not neces-

sary in low-order methods because of intrinsic numerical dissipation, while it seems to be

indispensable in high-order methods [135]. In general, local and low order methods perform

well for problems whose Fourier responses of the solution focus predominantly in the low

frequency region. For this class of problems, first order or second order Godunov type of

schemes can be very efficient in balancing accuracy and efficiency. When local and low order

methods are used for resolving shocks in flows with fine structural details or highly oscillatory

patterns, their numerical dissipation is usually too large to offer informative results.

Spectral methods, or global methods, on the contrary, produce little numerical dissipa-

tion and dispersion in principle when applied to approximate spatial derivatives. It is well

known that spectral methods are some of the most accurate and efficient approaches for

solving partial differential equations (PDEs) arising from scientific and engineering applica-

tions [28, 62, 159]. Therefore, it is highly desirable to use spectral methods for the solu-

tion of hyperbolic conservation laws, because the multiscale features, including Kolmogorov

microscales, in the hyperbolic conservation law systems require high resolution methods.
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Nevertheless, when spectral methods are applied to the approximation of spatial derivatives

of a discontinuous function, which often occurs in hyperbolic conservation law problems,

one encounters Gibbs’ oscillations [77]. Most previous investigations are aimed at improving

the rate of convergence away from the discontinuity while recovering smooth solutions from

the contamination of Gibbs’ oscillations. The suppression of Gibbs’ oscillations is necessary

in order to avoid unphysical blow-ups in the time integration. Therefore, it has been of

tremendous interest in modifying spectral methods for hyperbolic conservation law systems

in the past two decades [112, 151]. There are two general types of approaches in spectral

based methods for hyperbolic conservation law systems: (1) explicit artificial viscosity, e.g.

spectral viscosity method proposed by Tadmor [155], and (2) filtering. It is expected that

the appropriate use of spectral methods enables us not merely to capture the shock, but

also to resolve the delicate features, immersed interface, and underlying fine structures of

the flow.

Filters are designed to apply either in the spectral domain, called spectral filters, or in the

physical domain. Typical spectral filters include Lanzos filter, raised cosine filter, sharpened

raised cosine filter, Krasny filter [110] and exponential cutoff filter, as listed by Hussaini

et al. [93]. More sophisticated and effective filters in spectral domain are Vandeven’s pth

order filter [162], and Gottlieb and Tadmor’s regularized Dirichlet function [78]. A filter-

based Reynolds-averaged Navier-Stokes approach was developed to improve the predictive

capability considerably in comparison to the standard k − ε model [101] .

Filters in the physical domain are also commonly used alternatives to spectral filters. In

the framework of spectral methods, it is generally more difficult to design appropriate filters

in the physical domain than in the Fourier domain. A simple procedure is to make use of

numerical dissipation contained in some high-order shock-capturing schemes [27], such as
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the ENO scheme, where, actually, numerical dissipation was introduced both in the Fourier

domain (via an exponential filter) and in the physical domain (via ENO polynomial filter).

Such a strategy was employed by Yee et al. [190] to construct characteristic filters in the

framework of finite difference methods. Gegenbauer polynomials are used to resolve the

oscillatory partial Fourier summation [77]. Promising numerical results were generated by

using filter approaches [51, 52, 75].

About a decade ago, we proposed a conjugate filter oscillation reduction (CFOR) scheme

[85, 181, 205, 206, 151] for hyperbolic conservation laws. This scheme was constructed within

the framework of a local spectral wavelet method, namely, the discrete singular convolution

(DSC) algorithm [167, 177, 183]. Here, ‘conjugate filters’ means that the effective wavenum-

ber range of the low-pass filter is largely overlapped with that of the high-pass filter used

for the approximation of spatial derivatives. In fact, the DSC algorithm is used to behave

as both low-pass filters and high-pass filters. Extensive validation of the CFOR scheme

over a wide range of shock-capturing problems has been carried out [85, 181, 205, 206]. We

demonstrated that CFOR scheme provides some of the highest grid resolution, i.e., 5 points

per wavelength (PPW), for the interaction of shock and entropy waves, and for many other

challenging problems involving natural high frequency oscillations [205, 206, 151].

Despite great effort in the past few decades, the efficient application of filters for hy-

perbolic conservation law systems remains a challenging problem. To design efficient filter

methods, one must control a number of filter properties, such as flatness, ripple, filter length,

effective frequency range and length of transition band, to name only a few. Normally, it

is desirable to utilize filters that are free of dispersion errors, flat while having very smal-

l transition band, short in length while having high resolution. Obviously, some of these

properties are conflicting with each other. Adjustable parameters have to be employed to
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tune filter design properties in the application. In addition to the difficulties in controlling

filter properties, there are intrinsic mathematical challenges in developing filtered spectral

methods. First, the solutions to different hyperbolic conservation law equations may have

different Fourier spectral distributions. Additionally, even for a single conservation law e-

quation, the characteristic of the Fourier spectral distribution may change during the time

integration. Finally, the same conservation law equation can exhibit dramatically different

Fourier spectral distributions when it is applied to different physical problems, i.e., problems

with different initial, interface and boundary conditions. Therefore, an optimal filter has to

be fully adaptive to hyperbolic equations, to initial, interface and boundary conditions, and

to the variation of spectral characteristic during the time integration. Unfortunately, such a

filter approach still does not exist yet. Given the complexity in the hyperbolic conservation

law and in filter properties, it is unlikely that there will be a perfect solution to these chal-

lenges in the near future. Consequently, these challenging and important problems call for

the further study of spectral filter approaches.

To put the matter in perspective, currently, there is no such a method that is perfect

for all of the tasks in hyperbolic conservation law systems. The challenges are due to the

intrinsic mathematical difficulties of hyperbolic conservation law equations and the inherent

limitation in the understanding of the fundamental physics involved in the hyperbolic conser-

vation laws as noticed by Nobel Laureate Richard Feynman. As it is well known, hyperbolic

conservation laws can be formally derived from the (quantum) Boltzmann equation, which

in turn can be derived from the (quantum) Liouville equation equation via the BBGKY hi-

erarchy [179]. Many physical assumptions are built into these derivations and their validities

may not be warranted under certain physical situations. There is a pressing need to revisit

basic assumptions and fundamental physics for the hyperbolic conservation laws for complex

39



physical applications.

Most recently, we have introduced PDE transform as a new approach for the analysis

of signals, images, surfaces and data [171, 169, 203]. The PDE transform is based on a

family of arbitrarily high order nonlinear PDEs first introduced by Wei for edge-preserving

image restoration in 1999 [178] and PDE based high-pass filters proposed by Wei and Jia

in 2002 [182]. Variational models of PDE transform have also been proposed [169]. With

an iterative procedure [170, 171] to incorporate appropriate residues, i.e., initial conditions,

the PDE transform is able to extract functional mode functions (FMFs) and allow perfect

reconstruction. By FMFs, we mean the mode components which share same band of fre-

quency distribution as well as same category of physical functions, i.e., trend, edge, texture,

feature, trait, noise etc. Using the FMFs obtained from the PDE transform, secondary

processing, or post-processing, can be performed to achieve desirable tasks, such as edge

detection, trend estimation, image enhancement, denoising, texture quantification, segmen-

tation, feature extraction, pattern recognition, etc. The PDE transform can perform as

tunable filters. By adjusting the order of the PDE transform, i.e., the highest order of the

PDE, one controls time-frequency localization, while by adjusting the diffusion coefficients

or propagation time, one obtains desirable frequency precision or multiresolution analysis

[203]. The PDE transform can be tuned according to the input data to provide desirable

mode information. The full process of the PDE transform is nonlinear even if linear PDEs

are employed. Unlike the Fourier transform or the wavelet transform, the PDE transform

conserves the data representation. The resulting functional modes are still in the original

data form. The PDE transform has been applied to image analysis [171, 169], signal pro-

cessing [171] and biomolecular surface construction [203]. High order PDE transforms with

their order being much higher than 4 are found to play a vital role in signal analysis, image
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processing and surface generation.

The objective of present work is to explore the utility of the PDE transform for the

solution of hyperbolic conservation laws. In fact, such a utility can be realized in a number

of ways. For simplicity, we make use of a fast PDE transform, i.e., the PDE transform realized

by the fast Fourier transform in a single time stepping. Such a fast algorithm is paired with

the Fourier pseudospectral method (FPM) for solving hyperbolic conservation law equations

and suppressing Gibbs’ oscillations. Therefore, the fast PDE transform implemented in the

present work is essentially a spectral filter approach. Nevertheless, the PDE transform can

be implemented with geometric structures using mean-curvature flow and/or Willmore flow

type of nonlinear PDEs. However, this aspect is beyond the scope of the present work. In

fact, the PDE transform has an adjustable effective wavenumber range that makes it viable to

capture fine flow structures, which is a desirable objective of spectral methods for hyperbolic

conservation law systems. It is this adjustable effective wavenumber range that controls

the resolution of the overall scheme. In our design, this adjustable effective wavenumber

range can be varied by the highest order of the PDE transform and the duration of time

propagation according to the resolution requirement of a hyperbolic conservation equation

and the physical problem of interest. Different orders of the PDE transform have different

magnitude responses and adjustability in the Fourier domain, which in turn influences the

accuracy and resolution of the PDE transform based FPM. It is this flexibility that makes

the present method applicable to a wide variety of hyperbolic conservation law systems. The

performance of the proposed method is extensively validated and compared with those of

other approaches in the literature.

41



2.2 Theory and algorithm

To establish notation and enhance the basic understanding of the proposed PDE transform

strategy for systems of hyperbolic conservation laws, we present a brief introduction of arbi-

trarily high order nonlinear PDEs and PDE transforms. The detailed numerical algorithm

for time integration of evolution equations of hyperbolic conservation laws is described.

2.2.1 Arbitrarily high order nonlinear PDEs

Last two decades have witnessed a dramatical growth in PDE based methods for image

analysis. Using the diffusion equation for image denoising was pioneered by Witkin in 1984

[186]. Although, Witkin’s algorithm is mathematically simple, it provides the foundation

for much later development. Since nonlinear PDEs and variational calculus are attractive

research topics, anisotropic diffusion equation introduced by Perona and Malik [134] and

total variation models pioneered by Rudin, Osher, and Fatemi [141] have had much impact

in the applied mathematical community. These earlier approaches are based on the use of

the second order PDEs for image or surface analysis. In 1999, Wei introduced the first family

of arbitrarily high order nonlinear PDEs for edge-preserving image restoration [178]

∂u(r, τ)

∂τ
=
∑
q

∇ ·
[
dq(u(r, τ), |∇u(r, τ)|, τ)∇∇2qu(r, τ)

]
+ e(u(r, τ), |∇u(r, τ)|, τ), (2.3)

where r ∈ Rn, ∇ = ∂
∂r , u(r, τ) is the processed image function, dq(u(r, τ), |∇u(r, τ)|, τ)

are edge sensitive diffusion coefficients and e(u(r, τ), |∇u(r, τ)|, τ) is enhancement operator.

Equation (2.3) is subject to the initial image data u(r, 0) = X(r) and appropriate boundary

condition. Its construction was motivated by the super flux in the pattern formation in
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alloys, glasses, polymer, combustion, and biological systems and the Perona-Malik equation

[134]. Its essential idea is to accelerate the noise removal by higher order derivatives, which is

more efficient in noise dissipation. An interesting feature is that one can recover the Perona-

Malik equation by setting q = 0 and e(u(r, τ), |∇u(r, τ)|, τ) = 0. Therefore, Eq. (2.3) is also

called generalized Perona-Malik equation. The fourth order version of Eq. (2.3) has been

applied to image denoising and restoration by many researchers [178, 119, 70, 69].

As in the original Perona-Malik equation, one can choose the hyperdiffusion coefficients

dq(u, |∇u|, τ) in Eq. (2.3) in many different ways. One of the popular choices is the Gaussian

form

dq(u(r, τ), |∇u(r, τ)|, τ) = dq0 exp

[
−|∇u|

2

2σ2
q

]
, (2.4)

where the values of constant dq0 depend on the noise level, and σ0 and σ1 were chosen as

the local statistical variance of u and ∇u

σ2
q (r) = |∇qu−∇qu|2 (q = 0, 1). (2.5)

The notation Y (r) above denotes the local average of Y (r) centered at position r. In this

algorithm, the measure based on the local statistical variance is important for discriminat-

ing image features from noise. As such, one can bypass the image preprocessing, i.e., the

convolution of the noise image with a test function or smooth mask in the application of the

PDE operator.

In the past decade, high order nonlinear PDEs, particularly fourth order nonlinear PDEs,

have attracted much attention in image analysis [31, 178, 32, 191, 157, 81, 119, 82, 13]. Unlike
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the classical second order PDEs, higher order PDEs are able to suppress high frequency

oscillations, including noise, at much faster rates. Mathematical analysis of high order

nonlinear PDEs has been a popular research topic in applied mathematics. Bertozzi and

Greer proved the existence and uniqueness of the solution of fourth order edge-preserving

PDEs in Sobolev space with H1 initial data and a regularized operator [19, 81, 82]. A similar

mathematical analysis was carried out by Xu and Zhou [188] for fourth order nonlinear PDEs.

Recently, Jin and Yang have presented an interesting result in which they show that the

mathematical structure of Wei’s fourth order nonlinear PDE differs from other fourth order

PDEs derived from the variational formulation [99]. They have proved the existence of the

strong solution of such a PDE [99]. Because high order PDEs are subject to strict stability

constraints in their numerical solutions, the development of stable and efficient numerical

techniques for higher order PDEs is an important issue, except for digital image processing

where the grid size is normally unit. Witelski and Bowen proposed alternating direction

implicit (ADI) schemes to solve arbitrarily high order nonlinear PDEs [185]. Similar ADI

schemes were also constructed in our work [13].

Recently, another family of arbitrarily high order geometric PDEs was proposed for

surface formation and evolution with application to biomolecular systems [13],

∂S

∂τ
= (−1)q

√
g(|∇∇2qS|)∇ ·

(
∇(∇2qS)√
g(|∇∇2qS|)

)
+ P (S, |∇S|), (2.6)

where S is the hypersurface function, g(|∇∇2qS|) = 1 + |∇∇2qS|2 is the generalized Gram

determinant and P is a generalized potential term, including microscopic potential effect in

biomolecular surface construction. Equation (2.6) was designed as a generalization of other

important geometric PDEs. For example, when q = 0 and P = 0, it reduces to the mean
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curvature flow equation used in our earlier construction of minimal molecular surfaces [16],

while when q = 1 and P = 0, it is a surface diffusion flow [13]. Certainly, Eq. (2.6) can also

be regarded as a variant of Wei’s earlier arbitrarily high order PDE (2.3). It is interesting

to note that the molecular surface generated by Eq. (2.6) has a morphology distinguished

from that generated by using the second order geometric PDEs [13].

Variational approaches provide important theoretical formulations for physical and bio-

logical systems [16, 180, 37, 38]. Variational derivation of molecular surfaces are formulated

in many of our recent work [180, 37, 38, 34]. Similar approaches are commonly used in

image analysis in applied mathematics [140, 16, 14, 49]. Didas et al. discussed the variation

formulation of high order nonlinear PDEs [49]. Here we provide alternative expressions for

the PDE transform by variation. We construct the energy functional as

E(u,∇u,∇2u, · · · ,∇mu) =

∫ Λ

 m∑
q=1

|∇qu|2
+ ε(X − u)2

 dr, (2.7)

where ε is a constant, X is the original data, ε(X − u)2 is the fidelity term and Λ(·) is an

appropriate penalty function. The most commonly used penalty function is the Tikhonov

form

Λ(x2) = x2. (2.8)

Other useful forms include [49, 119]

Λ(x2) =
(
σ2 + x2

)1
2 (2.9)

Λ(x2) = ex
2/2σ2

. (2.10)
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Energy functional (2.7) can be minimized by using the Euler-Lagrange equation,

m∑
q=1

∇q �q Λuq

 m∑
q=1

|∇qu|2
∇qu+ ε(X − u) = 0 (2.11)

where �q is a normal product for even q and an inner product for odd q. Here

Λuq = (−1)q+1∂Λ/∂|∇qu|2. (2.12)

By solving Eq. (2.11), one realizes the energy minimization. A practical way to solve Eq.

(2.11) is to introduce an artificial time τ and convert Eq. (2.11) into a time dependent PDE

∂τu =
m∑
q=1

∇q �q Λuq

 m∑
q=1

|∇qu|2
∇qu+ ε(X − u). (2.13)

Equation (2.13) is essentially equivalent to the earlier PDE transform [169].

2.2.2 PDE transform

One of the important properties of the PDE transform is its ability to extract mode functions

from a given data X. To illustrate this point, we denote the solution of Eq. (2.3) and/or

Eq. (2.13) as X̌(τ) such that

X̌k(r, τ) = LXk(r) (2.14)
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where L is a low-pass PDE transform satisfying Lu(r, 0) = u(r, τ), X̌k(r, τ) are mode func-

tions and Xk(r) is the kth residue function defined by

X1 = X(r) (2.15)

and

Xk = X1 −
k−1∑
j=1

X̌j , ∀k = 2, 3, · · · . (2.16)

Obviously, there is a perfect reconstruction of the original data X in terms of all the mode

functions and the last residue

X =
k−1∑
j=1

X̌j +Xk. (2.17)

Note that the PDE transform given in Eq. (2.14) recursively extracts mode functions based

on the input residue function. This procedure is nonlinear even if a linear PDE operator is

used because the initial value changes during the repeated operations.

The first mode produced by the PDE transform described above is the trend of the

data. The residue of the trend is an edge function, including possible noisy components.

By systematically repeating the low-pass PDE transform (2.14), one can extract all the

desirable higher order mode functions. In our earlier work, high-pass PDE transforms were

also constructed in which the first mode is edge type of information or possible noise; while

the final residue is the trend [171].

Solving arbitrarily high order PDEs, such as Eq. (2.3) and/or Eq. (2.13) in the PDE

transform can be a very difficult issue for some practical application. A main difficulty is
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the stability constraint as the time stepping is normally proportional to the 2mth power of

spatial grid spacing, where 2m is the highest order of the PDE transform. An exception is

digital image processing, in which the spatial grid spacing is usually unit and thus bypasses

the stability constraint. However, spatial grid spacing is normally smaller than one in most

other applications.

There is another way that one can entirely bypass the stability constraint and obtain the

solution in a single time step. This approach relies on the use of the fast Fourier transform

(FFT) for the solution of evolution PDEs [151]. To this end, we linearize Eqs. (2.3) and

(2.13), and assume the form

∂τv =
m∑
j=1

(−1)j+1dj∇2jv + ε(Xk − v), τ ≥ 0, (2.18)

where dj > 0, ε ∼ 0 and Xk ∈ Rn is the kth residue of the data. When Eq. (2.18) is subject

to initial value v(r, 0) = Xk and periodic boundary conditions, it can be easily solved with

the Fourier pseudospectral method. The solution algorithm developed in the above Fourier

domain is called a fast PDE transform. In the present work, we explore the use of the fast

PDE transform for integrating hyperbolic conservation law systems.

2.2.3 Numerical algorithm

Both linear and nonlinear PDE transforms can be used for systems of hyperbolic conservation

laws. For simplicity, we consider only linear PDEs in the present work. The FPM is used

for the basic discretization of hyperbolic conservation law equations, while the fast PDE

transform is implemented as spectral filters.
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The numerical scheme can be expressed as the following two-step procedure:

Ūk+1 = BUk (2.19)

Uk+1 = LŪk+1, (2.20)

where the operator B in Eq. (2.19) is the basic time integration from time k to time k + 1

and the operator L in Eq. (2.20) is a possible application of the PDE transform. Here, Uk

and Uk+1 is the numerical solution of u in Eq. (2.1) at time step k and k + 1, respectively,

while Ūk+1 is the intermediate numerical solution of u after implementing operator B on

Uk.

The operator B in Eq. (2.19) can be defined by a general numerical method for the time

evolution. Here, we use the fourth-order Runge-Kutta scheme. The FPM is utilized for the

spatial discretization of f(u)x in the frequency domain.

Specifically, after carrying out the fast Fourier transform on f , we obtain the frequency

response f̂ , i.e. f̂ = FFT (f). Then iωf̂(ω) is the frequency response of fx, where i =
√
−1

is the imaginary root. By doing the inverse fast Fourier transform on iωf̂(ω), we obtain the

spatial discretization of f(u)x as IFFT (iωf̂(ω)).

For simple and continuous problems, scheme (2.19) works well. However, for hyperbolic

conservation systems involving discontinuity, the accumulation of Gibbs’ oscillations as time

evolves may result in spurious solutions or even numerical blow ups. Thus, we make use of

PDE transform [151] to eliminate the possible Gibbs’ oscillations from basic time integration

(2.19). The application of the PDE transform is controlled (i.e., turned on or turned off) by

an adaptive sensor. The sensor is characterized by a measure of high frequency denoted by

‖ µ ‖ and regulated by a threshold value η. Once the increment in high frequency measure,
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∆µ, exceeds the threshold η, the PDE transform in Eq. (2.20) is implemented. In our test,

we apply a straightforward high frequency measure ‖ M ‖ as the TVD sensor, which is

defined by

‖µ(Ūk+1)‖ =
∑
i

| Ūk+1
i+1 − Ū

k+1
i |, (2.21)

where Ūk+1
i and Ūk+1

i+1 denote the intermediate numerical solution of u at time k+1 on spatial

point i and i+ 1, respectively, while ‖µ(Ūk+1)‖ is the total variation measure of Ūk+1 . As

a result, by checking whether the increment of high frequency ∆µ(Ūk) =‖ µ(Ūk+1) ‖ − ‖

µ(Ūk) ‖ exceeds η or not, we can decide whether to apply the PDE transform.

Equation (2.20) in the second step is given by the PDE transform to suppress Gibbs’

oscillations. We implement the PDE transform in frequency domain, which results in

Ûk+1 = L̂ ˆ̄Uk+1, (2.22)

where Ûk+1 and ˆ̄Uk+1 are the frequency responses of Uk+1 and Ūk+1 respectively, while L̂

is the kernel of the fast PDE transform in the Fourier domain. In this work, we adopt the

simple implementation of PDE transforms of dm = 1 and di = 0, (i = 1, · · · ,m− 1) as well

as ε = 0, as mentioned before. As a result, the design of the PDE transform depends on the

highest order of l = 2m and propagation time τ , whose properties have been analyzed in the

last section.

It should be noted that the FPM is normally associated with periodic boundary condition-

s. However, most conservation law equations admit non-periodic boundary conditions. We

handle non-periodic computation domains by symmetrical extension to an auxiliary domain.
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This approach works well as shown in our previous work [151]. Specifically, the symmetrical

extension of the computation domain in 1D is discussed here. Suppose the original domain

is discretized by N + 1 grid points indicated by i = 1, · · · , N + 1, then the computation

domain is doubled with 2N grid points and f(u) and u are extended by

{f(u)}i = {f(u)}2N+2−i, i = N + 2, · · · , 2N, (2.23)

{u}i = {u}2N+2−i, i = N + 2, · · · , 2N, (2.24)

where {·}i corresponds to the value at the ith pixel. Extensions in 2D and 3D are straight-

forward as shown Eqs. (2.49)-(2.54) in Section 2.3.3.

After the entire time integration has been completed, we adopt a cosmetic post-processing

filter as introduced by Gottlieb et al. [76] to make the solution more presentable. In our

numerical experiments, we employ the Lagrange-4 as the post processing filter. The reader

is referred to our earlier work [152] for its implementation detail.

2.3 Numerical test and validation

The performance of the proposed PDE transform on the solution of hyperbolic conservation

law systems is validated through test examples in this section. A number of standard linear

and nonlinear benchmark problems are studied in the present work, from scalar conserva-

tion law systems including the linear advection equation, Burgers’ equation and problem

with non-convex flux, to one dimensional (1D) and two dimensional (2D) Euler equations,

including shock tube (Sod’s and Lax’s) problems, 1D and 2D shock-entropy interaction, as

well as 2D shock-vortex interaction.
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The proposed PDE transform can be applied directly on those problem with period-

ic boundary conditions. However, for non-periodic boundary conditions, the computation

domain is symmetrically doubled to convert to a periodic one, as in Example 3 (Inviscid

Burgers’ equation), Example 4 (Non-convex flux), Example 5 (Sod’s and Lax’s problems),

Example 6 (1D Shock-entropy interaction), Example 7 (Shu-Osher’s problem), Example 8

(2D Shock-entropy interaction) and Example 9 (2D Shock-vortex interaction).

In our implementation, the wavenumber w is set by wq = (2πq
N )/∆, q = −N2 , · · · , 1, · · · ,

N
2 −

1 where L is the length of computation domain, N is the number of discretized grid points

and ∆ = L/N is the grid spacing. This series of wavenumbers ranges over [−π/∆, π/∆). The

design of PDE transform depends on the order n and propagation time τ . Table 2.1 lists the

order l and propagation time τ used in each test problem. To better interpret the frequency

response, we rescaled the wavenumber w from [−π/∆, π/∆) to [−π, π). Consequently, the

propagation time τ is rescaled to τ∗ = τ/(∆)l correspondingly.

It is noted that the appropriate selection of order l = 2m and propagation time τ of the

PDE transform is quite subtle. On the one hand, the order should not be too high, while the

propagation time should not be too small. Otherwise, the PDE transform has little effect in

suppressing the Gibbs’ oscillation of the solution. On the other hand, the order should not

be too low, while the propagation time should not be too large. Otherwise, they result in

too much dissipation. Owing to diversity of hyperbolic conservation law systems, the best

choices of order and propagation time are problem dependent, which are listed in the table

2.1.

We would like to point out that both the PDE transform and hyperbolic conservation law

systems are time dependent. To avoid possible confusion, we denote “τ” as the propagation

time of the PDE transform and designate “t” as evolution time of the conservation law
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Table 2.1: The order and propagation time of the PDE transform used in test examples.

Example No Case Order Propagation time Rescaled
when w ∈ [− π

∆ ,
π
∆) propagation time

when w ∈ [−π, π)

1
κ = 5, 10 6 1.0E-13 6.8E-03
κ = 20, 25 12 1.0E-20 4.7E-03

2

2 1.0E-05 1.6E-01
4 1.0E-12 2.6E-04
6 1.0E-16 4.4E-04
8 1.0E-20 7.2E-04

3
ul = 1, ur = 0 6 3.0E-15 1.2E-03
ul = 0, ur = 1 6 7.5E-10 5.3E-02

4
4 5.5E-14 1.0E-03
6 6.0E-18 5.9E-05

5
Sod’s 6 1.0E-09 4.4E-03
Lax’s 6 1.0E-10 4.4E-04

6
κ = 18 12 3.0E-27 3.4E-06
κ = 32 12 1.5E-30 7.0E-06

6 5.0E-16 1.0E-03
40 1.0E-95 1.7E-13

κ = 60 12 2.0E-34 3.8E-06
7 10 1.0E-23 1.1E-05

2 5.0E-06 2.0E-02
8 10 3.5E-23 1.2E-05

6 1.0E-14 3.3E-04
9 10 1.0E-24 1.1E-03

system in the rest of the paper.

2.3.1 Scalar conservation law systems

We first consider 1D scalar conservation law systems, whose governing equation is expressed

in the form of

ut + f(u)x = 0, (2.25)
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with f(u) as a function of u. Three types of f(u), including f(u) = u and convex flux 1
2u

2

as well as non-convex flux 1
4(u2 − 1)(u2 − 4), are studied in the present work.

2.3.1.1 Example 1 (Linear advection equation with Sine-Gaussian wavepacket)

. The first test example is the linear advection equation given by

ut + cux = 0, −1 < x < 1,

u(x, 0) = u0(x), periodic,

(2.26)

where u0(x) is the initial value. We set u0(x) as [206]

u0(x) = sin[2πκ(x− x0)]e
− (x−x0)2

2σ2 (2.27)

where the parameter of wavenumber κ can be tuned to produce highly oscillatory wavepacket,

x0 is the initial location of wavepacket center and σ is a constant regularizing the width of the

wave packet. We set x0 = 0 and σ =
√

2/10 such that the tail of wavepacket is constrained

over the computation domain [−1, 1]. It is straightforward to show that the exact solution

is given by u(x, t) = u0(x− t), which is a translation of the initial solution at a unit speed,

resulting in the fact that the initial wavepacket repeats itself every two time units over the

computation domain [−1, 1]. The mesh size is chosen as N = 128 to implement the PDE

transform while the time increment is selected as small as 10−4 to ensure that the time

discretization error is negligible.

We vary wavenumber κ to explore the accuracy and stability of the PDE transform strat-

egy for the wavepacket propagation. For low frequency waves, a low-order method can work

well to obtain accurate solutions. However, as the wavenumber κ increases, the wavepacket
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(a) κ = 5, N = 128
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(b) κ = 10, N = 128

Figure 2.1: Results for κ = 5, 10 from the PDE transform for the advection equation with
the Sine-Gaussian wave packet (t=100, ∆t = 10−4).
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(c) κ = 20, N = 128, before the interpolation
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(d) κ = 20, N = 128, after the interpolation

Figure 2.2: Results for κ = 20 from the PDE transform for the advection equation with the
Sine-Gaussian wave packet (t=100, ∆t = 10−4).
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Table 2.2: L∞ error for long-time integration of the Sine-Gaussian wavepacket.

Time 10 20 50 80 100
PDE transform κ = 20 2.69E-7 5.38E-7 1.34E-6 2.15E-6 2.67E-6

κ = 25 8.10E-7 1.62E-6 4.06E-6 6.50E-6 8.47E-6
CFOR-Hermite κ = 20 2.78E-7 5.56E-7 1.39E-6 2.22E-6 2.78E-6

κ = 25 1.51E-6 3.02E-6 7.55E-6 1.21E-5 1.51E-5

becomes more and more oscillatory. It is challenging for low resolution schemes to resolve

the highly oscillatory advective wavepacket. Therefore, one needs to resort to a high order

method. In our test, we apply the 6th-order PDE transform for low frequency wavepacket-

s, i.e., κ = 5 and 10, and 12th-order PDE transform for high frequency wavepackets, i.e.,

κ = 20 and 25.

Figures 2.1(a), (b) and 2.2(a) show the computational results and exact solutions at

time t = 100 for three different frequencies κ = 5, 10 and 20. It is obvious that there is

no visual difference between the numerical and exact solutions in Figures 2.1(a) and (b).

However, for the case of of κ = 20, the solution does not show the peaks and valleys of

the exact wavepacket. One may regard the solution as being imperfect. In fact, this is not

true. The L∞ error listed in Table 2.2, is as small as 2.67E-6. Therefore the numerical

solution is extremely accurate. The truth is that, because so few grid points are used

in our computation, there are not enough grid points to fully represent the wavepacket.

Nevertheless, the origin information of the wavepacket is perfectly built in the solution. To

illustrate this point, we interpolate the present solution to a denser grid (N = 256) as shown

in Figure 2.2(b) by using our DSC algorithm [167, 177, 183]. Indeed, we are able to fully

restore all extrema in the wavepacket based on the information presented in Figure 2.2(a).

This confirms that our scheme is still able to perform well for high frequency waves under a
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very small ratio of grid points over wavelength.

It is also meaningful to check the long time integration of the numerical method. Table 2.2

lists the numerical L∞-error from t = 10 to t = 100. One can tell that the numerical errors

are under good control during the time integration. As a comparison, we also list in Table

2.2 the results of a CFOR-Hermite method proposed in our earlier work [206]. The CFOR-

Hermite method is based on the local spectral wavelet approach for the spatial discretization

and the conjugate filter method for oscillation reduction. It has been intensively validated

for solving the Navier-Stokes equation and integrating conservation law systems [206].

In the work of [206], the CFOR-Hermite method employs 100 points but takes the same

time step ∆t = 10−4. From Table 2.2, one can notice that the errors from the PDE transform

is slightly smaller than those from the CFOR-Hermite method. We are quite confident that

the results listed in Table 2.2 are some of the best when κ = 25. It can be concluded that the

numerical accuracy and long time stability are well resolved by the proposed PDE transform.

2.3.1.2 Example 2 (Linear advection equation with wave combination)

Another example is also a linear advection equation given by [95]

ut + ux = 0, −1 < x < 1,

u(x, 0) = u0(x), periodic,

(2.28)
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where u0(x) is the initial value given by

u0(x) =



1
6(G(x, β, z − δ) +G(x, β, z + δ) + 4G(x, β, z)), −0.8 ≤ x ≤ −0.6,

1, −0.4 ≤ x ≤ −0.2,

1− |10(x− 0.1)|, 0 ≤ x ≤ 0.2,

1
6(H(x, α, a− δ) +H(x, α, a+ δ) + 4H(x, α, a)), 0.4 ≤ x ≤ 0.6,

0, otherwise.

(2.29)

The functions G and H are set as

G(x, β, z) = e−β(x−z)2 ,

H(x, α, a) =
√

max(1− α2(x− a)2, 0),

(2.30)

where z = −0.7, δ = 0.005, β = log2

36δ2
, a = 0.5, and α = 10.

The initial value of this problem is a smooth but narrow combination of a Gaussian,

a square wave, a sharp triangle wave and a half ellipse. It is easy to show that the exact

solution is given by u(x, t) = u0(x − t), which is a translation of the initial solution at a

unit speed. It is well known that due to the contact discontinuity, the propagation by the

linear advection equation leads to unphysical Gibbs’ oscillations which may be induced by

exponentially small numerical errors and their subsequent amplification. In Figure 2.3, the

numerical results obtained by using the PDE transform of second, fourth, sixth and eighth

orders are demonstrated at t = 8 with 256 grid points. It is interesting to observe that for

this simple problem, not only the second order PDE transform works well, but also many

higher order PDE transforms produce satisfactory results.
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Figure 2.3: Results from the PDE transform of various orders for the advection equation (
t = 8,∆t = 0.001, 256 grid points).
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(b)

Figure 2.4: Results from the 6th-order PDE transform for the inviscid Burgers’ equation at
time t = 2. (a) ul = 1, ur = 0, 257 grid points; (b) ul = 0, ur = 1, 129 grid points;
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2.3.1.3 Example 3 (Inviscid Burgers’ equation)

In this example, we test the performance of the present PDE transform for the most classical

model, inviscid Burgers’ equation with convex flux f(u) = 1
2u

2 and Riemann type of initial

conditions with constant ul on the left and ur on the right.

(3a) First we consider the Riemann initial value with ul > ur as

u(x, 0) =


ul = 1, x ≤ 0,

ur = 0, x > 0.

(2.31)

This problem has been studied by numerous researchers because it is a standard benchmark

problem in hyperbolic conservation laws. The exact solution is given by a shock wave with

a constant velocity σ, i.e.

u(x, t) =


ul,

x
t < σ,

ur,
x
t > σ,

(2.32)

where

σ =
f(ul)− f(ur)

ul − ur
=

1

2
.

It is observed that this problem has a non-periodic boundary condition. Consequently,

the computational domain needs to be symmetrically doubled in the x-direction to obtain

periodic boundary condition when applying the Fourier pseudospectral method [151] pairing

with the PDE transform. Since the initial condition is piecewise constant and exact solution

does not involve large oscillation, a low-order scheme is suitable to render a satisfactory

numerical solution. In this case, we apply second, fourth and sixth order PDE transforms

to resolve the problem. It is found that all the three schemes work well. The numerical
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results from the sixth order PDE transform are plotted in Figure 2.4(a) at time t = 2. It is

demonstrated that the Gibbs’ oscillation is well resolved and the shock front, which moves to

x = 1, is well captured. Although this problem prefers low order shock-capturing methods

[95], it is concluded that the PDE transform based FPM method works well for this problem

too.

(3b) As another example, we check the present method by using the Riemann type initial

value with ul < ur as

u(x, 0) =


ul = 0, x < 0,

ur = 1, x ≥ 0.

(2.33)

The exact solution is given by a rarefaction wave

u(x, t) =


0, x

t < f ′(ul),

G(xt ), f ′(ul) <
x
t < f ′(ur),

1, f ′(ur) < x
t .

(2.34)

with f ′(ul) = ul, f
′(ur) = ur and G(xt ) =

(
f ′
)−1

(xt ) = x
t .

Similar to Case (3a), the computational domain is symmetrically doubled in the x-

direction to obtain periodic boundary condition before applying the PDE transform and

FPM. Furthermore, the piecewise constant initial condition and exact solution imply that

this problem can be well resolved by a low-order shock-capturing scheme. In our approach,

we apply the sixth order PDE transform, paired with the FPM, to solve the equation. The

numerical results from the sixth order PDE transform are plotted in Figure 2.4(b) at time

t = 2. From the figure, it is seen that the rarefaction fan over [0,2] is free of oscillation. The
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feature of the solution is well resolved.

2.3.1.4 Example 4 (Non-convex flux)

We next consider a problem with a non-convex flux to test the convergence to the physically

correct solution. The non-convex flux is given by

f(u) =
1

4
(u2 − 1)(u2 − 4) (2.35)

with a Riemann initial condition

u(x, 0) =


ul = −3, x < 0,

ur = 3, x ≥ 0.

(2.36)

The exact solution is given by

u(x, t) =



ul,
x
t ≤ f ′(ul),

G(xt ), f ′(ul) <
x
t < 0,

−G(−xt ), 0 < x
t < f ′(ur),

ur, f ′(ur) ≤ x
t ,

(2.37)

with f ′(ul) = −19.5, f ′(ur) = 19.5 and G(u) is the solution of f ′(G(u)) = u in the convex

part of f , which is | u |>
√

5/6. It should be noted that the solution is discontinuous at

x = 0 and G(0) =
√

2.5.

The exact solution and more detailed information about this problem are given in [90].

This problem is relatively more complicated than the convex flux case. In the literature,

commonly reported numerical result is at t = 0.04 [95]. The numerical results of the PDE
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(a) The 4th order PDE transform (129 grid points)
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(b) FPM-RSK (129 grid points)

Figure 2.5: Comparison between numerical results from the PDE transform and FPM-RSK
method for the problem with a non-convex flux ( 129 grid points, t = 0.04,∆t = 0.0005).
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(a) The 6th order PDE transform (65 grid points)
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(b) FPM-RSK (65 grid points)

Figure 2.6: Comparison between numerical results from the PDE transform and FPM-RSK
method for the problem with a non-convex flux ( 65 grid points, t = 0.04,∆t = 0.0005).
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transform are showed in Figures 2.5(a) and 2.6(a). It is seen that the shock front at x = 0

is almost exactly captured. Particularly, there is no numerical solution point located on the

discontinuity.

As a comparison, we consider the Fourier pseudospectral method (FPM) with the regu-

larized Shannon kernel (RSK) approach, which was extensively validated in our earlier work

[151]. In Figures 2.5(b) and 2.6(b), this approach is labeled as FPM-RSK. It is obvious

that compared with the FPM-RSK, the present PDE transform yields a more satisfactory

resolution. We believe that our results from the PDE transform based FPM approach are

some of the best ever reported for this classic problem.

2.3.2 1D Euler systems

In this subsection, we carry out numerical experiments by using the proposed PDE transform

scheme for the 1D Euler equation of gas dynamics. In one dimension, the Euler equation

takes the form [95, 151]

Ut + F (U)x = 0 (2.38)

with

U =


ρ

ρu

E

 , F (U) =


ρ

ρu

E

u+


0

p

pu

 , (2.39)
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where ρ, u, p and E denote the density, velocity, pressure and total energy per unit mass

E = ρ[e+
1

2
u2], (2.40)

respectively. Here, e is the specific internal energy. For an ideal gas with the constant specific

heat ratio (γ = 1.4) considered here, one has

e =
p

(γ − 1)ρ
. (2.41)

In the following, we consider two well-known Riemann problems.

2.3.2.1 Example 5 (Sod’s and Lax’s problems)

Here we apply the PDE transform based FPM on two shock tube problems, i.e., Sod’s

problem and Lax’s problem, which are both standard benchmark tests. In fact, due to their

simple profiles, these problems favor low order schemes.

Sod’s problem is a special case of shock tube problem with velocities on both sides of

the discontinuity being set to zero. It is often used as a test case for validation of numerical

shock capturing schemes, because analytical solutions are available. The initial and boundary

conditions in the computation domain and boundary for Sod’s problem are given by

(ρ, u, p)t=0 =


(1, 0, 1), −5 ≤ x < 0,

(0.125, 0, 0.1), 0 ≤ x ≤ 5;

(2.42)
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(a) (b)

Figure 2.7: Numerical results from the 6th-order PDE transform for Sod’s problem (t = 1.5,
∆t = 0.02, 129 grid points). (a) Density; (b) Pressure.

while those for Lax’s problem are given by

(ρ, u, p)t=0 =


(0.445, 0.698, 3.528), −5 ≤ x < 0,

(0.5, 0, 0.571), 0 ≤ x ≤ 5.

(2.43)

Although there are coupled equations in the system, which make it more complicated

than scalar equations, the Sod and Lax problems involve multiple piecewise constant solution

without much oscillation. Therefore, these problems favor low-order numerical methods. In

our study, we utilize the 6th-order PDE transform method with the FPM to integrate these

shock tube equations. Our results of density and pressure for Sod’s problem are depicted

in Figure 2.7. It is perceived that three characteristics of Sod’s problem, including the

rarefaction wave, the contact discontinuity and the shock discontinuity are well resolved and

captured.

Figures 2.8(a) and (b) illustrate the present numerical results for Lax’s problem. Similar
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(c) (d)

Figure 2.8: Comparison of numerical results from the 6th-order PDE transform and the
FPM-RSK for Lax’s problem (t = 1.5, ∆t = 0.02, 129 grid points). (a) Density from the
PDE transform; (b) Pressure from the PDE transform; (c) Density from the FPM-RSK; (d)
Pressure from the FPM-RSK.
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to the Sod’s case, three characteristics of Lax’s problem, including the rarefaction wave, the

contact discontinuity and the shock discontinuity are also well captured. It can be seen that

the present method gives a good resolution in both cases.

As a comparison, we plot the results obtained by the FPM-RSK approach [151] in Fig-

ures 2.8(c) and (d). As discussed earlier, the FPM-RSK scheme is a robust approach for

hyperbolic conservation laws. It is seen from Figure 2.8 that the present PDE transform

performs at least as good as, if it is not better than, the FPM-RSK approach for shock tube

problems.

All of the preceding test examples, except for the high-frequency case in Example 1, favor

low order shock capturing schemes. In such a case, although the present method, as well as

other high-order shock capturing schemes, works extremely well, it does not have a cutting

edge advantage over low order methods. In the next three examples, we consider a class

of problems that require high-order shock capturing methods methods for efficient spatial

discretizations. Whereas, it will be extremely difficult, if it is not impossible, for low order

methods to resolve this class of problems.

2.3.2.2 Example 6 (1D Shock-entropy interaction)

The interaction between a Mach 3 right-moving shock and an entropy wave of small ampli-

tude in a one-dimensional flow, which is a standard test problem [95, 151, 85], is investigated

in this example. This problem is important because of its relevance to the interaction of shock

and turbulence. We take the computation domain over [0,9] and the initial and boundary
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Figure 2.9: The amplitude of entropy waves in the 1D shock-entropy interaction problem for
different frequencies resulting from the 12th-order PDE transform.
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Figure 2.10: The amplitude of entropy waves in the 1D shock-entropy interaction problem for
κ = 32 resulting from PDE transforms of low and extremely high-order. (a) The 6th-order
PDE transform; (b) The 40th-order PDE transform.
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conditions in the computation domain and boundary are given by

(ρ, u, p)t=0 =


(3.85714, 2.629369, 10.33333), 0 ≤ x < 0.5,

(e−εsin(κx), 0, 1.0), 0.5 ≤ x ≤ 9.

(2.44)

The parameters ε and κ are the amplitude and the wave number of the entropy wave before

the shock. In this numerical experiment, the small amplitude of the pre-shock entropy is

kept the same, i.e. ε = 0.01 while the wave number κ is varied. The amplitude of the

amplified wave after the shock can be given by linear analysis [123], which is a constant of

0.08690716.

This problem of shock and entropy interaction becomes more and more challenging as the

frequency κ increases. The difficulty lies in the fact that it is hard to distinguish the amplified

high frequency entropy wave from the spurious oscillations. Low order numerical schemes

may dramatically damp the amplitude of the transmitted high frequency wave. Even some

high order schemes encounter the same numerical difficulty. A satisfactory numerical scheme

should possess the quality of suppressing Gibbs’ oscillation while preserving amplitude of the

entropy wave as well as capturing the shock [151, 95, 85].

In our numerical test, the shock is set to move from x = 0.5 to x = 8.5. For the

convenience of a comparison with previous results, we only display the results at interval

[3.0, 9.0]. Furthermore, for the purpose of discharge transient waves due to the non-numerical

initial shock profile, we plot the length of the amplified entropy waves in the same manner

as that in Ref. [95]. Additionally, we would like to point out two nontrivial details in

the illustration. The first one is that the plotted results are obtained by an interpolation

of our final numerical results from a coarse grid to a denser grid, which has already been

adopted for plotting the high-frequency Sine-Gaussian wavepacket in Example 1. This is

74



necessary because our computational grid is too coarse to show all the peaks and valleys of

our numerical results. The second one is that a post processing filter, which was discussed

in Section 2.2.3, is employed to eliminate the oscillations near the shock when we present

the final result after the completion of the entire time integration.

First, we test the shock capture for a case with relatively low frequency κ = 18. We

set 513 grid points over the computation domain [0, 9] to implement the PDE transform

coupled with the Fourier pseudospectral method. It is difficult for a low-resolution method,

such as a first order or a second order shock capturing method to preserve the amplitude of

high-frequency entropy wave and suppress oscillation [95].

In our numerical test study, we found that the low-order PDE transform does not work

well for this problems, although the FPM is employed. Low order PDE transforms either

damp the amplitude of the high-frequency entropy wave or cannot suppress Gibbs’ oscilla-

tions. In contrast, we found that a moderately high order PDE transforms with suitable prop-

agation time perform much better. Figure 2.9(a) shows the amplitude of the shock entropy

of κ = 18 obtained by using the 12th-order PDE transform. It can be seen that the entropy

waves almost fully span two strips bounded by two analytical solid lines y = 0.08690716 and

y = −0.08690716, which indicates that the amplitude of amplified wave is well preserved. As

the amplified entropy wave is monochromic post the shock, it is appropriate to characterize

the resolution of the present method by points per wavelength (PPW). A further simple

calculation on the amplified entropy wave tells that the resolution is about 5.3 PPW, which

is among the best results for this shock entropy problem, to our best knowledge.

Next we increase the frequency to κ = 32. As there are many more amplified entropy

wave post the shock, it is difficult to use 513 grid points to maintain the amplitude of high-

frequency wave post shock. Instead, we deploy a mesh of 1025 grid points so as to render a
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better result. In this case, we still employ a 12th-order PDE transform but with a different

propagation time from κ = 18. One still needs to be careful to design an appropriate PDE

transform for this more complicated problem. Figure 2.9(b) shows the amplitude of the shock

entropy wave of κ = 32 by a 12th-order PDE transform. It is perceived that the entropy

wave is still able to almost fully span two strips bounded by two solid lines y = 0.08690716

and y = −0.08690716. Furthermore, the waves at shock front are free of oscillation.

Finally, we consider a more challenging situation by setting a larger κ. We use 2049 grid

points in our spatial discretization of the computation domain [0, 9]. Figure 2.9(c) presents

the result of the case for κ = 60. It is clear that the waves post shock are well preserved while

the waves at shock front are free of oscillation and well maintained. It also worthwhile to

mention that the resolution for this case is about 5.9 PPW, which is still the best record at

such a high κ value to our knowledge. Our results indicate that the present PDE transform

is able to distinguish the high-frequency entropy waves from spurious oscillation. The above

test cases of different frequencies imply that the PDE transform can be a powerful tool

for solving hyperbolic conservation law systems involving the interaction of shock and high

frequency entropy waves.

As stated earlier, low order shock capturing schemes will encounter difficulties for the

above test cases. In fact, not all PDE transforms are suitable for these problems. The

inappropriate selections of the PDE transform will either pollute the amplitude of entropy

waves or cannot suppress the oscillation. We illustrate this point by using the setting of

κ = 32 and 1025 grid points. Figure 2.10(a) demonstrates the result from a 6th-order PDE

transform, which illustrates the effect of a low order PDE transform. Although the waves in

the shock front is perfectly kept, the amplitude of the entropy waves post shock is severely

damped. We found that second order and fourth order PDE transforms perform even worse
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Figure 2.11: Solution to the Shu-Osher problem (t = 0.47, ∆t = 0.001, 129 grid points).
(a) Obtained with the 2nd-order PDE transform; (b) Obtained with the 10th-order PDE
transform.

for this problem. As another check, we would like to investigate the performance of a very

high order PDE transform for this problem. Although a high order PDE transform works

well in preserving the high-frequency entropy waves post the shock, it may also pollute the

relatively low frequency waves in the shock front. Figure 2.10(b) shows the result from a

40th-order PDE transform. It is clear that the entropy waves in the shock front are polluted

by Gibbs’ oscillations.

2.3.2.3 Example 7 (Shu-Osher’s problem)

We now examine the performance of the PDE transform on the problem of Shu and Osher,

which is another typical case to test the capability of a numerical method in predicting

shock/entropy interactions. This problem is also initialized by a Mach 3 right-moving shock

and an entropy wave, which is in the sine form. Compared with the last problem, Shu and

Osher problem involves many different frequencies. We consider the computational domain
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of [−1, 1] and the initial and boundary conditions in the computation domain and boundary

are set as

(ρ, u, p)t=0 =


(3.85714, 2.629369, 10.33333), −1 ≤ x < −0.8,

(1.0 + ε sin(κπx), 0, 1.0), −0.8 ≤ x ≤ 1,

(2.45)

where ε = 0.2 is the amplitude and κ = 5 the angular wave number. Although there is no

exact solution to this problem, we took the accurate solution as the result given by the highly

accurate FPM-RSK method [151], which was calibrated by the 5th order WENO scheme [95]

for this problem.

Because of the complicated fluctuation post the shock, it is difficult for low order schemes

to capture various frequencies of wave post shock as well as the sharp shock front [95]. High

order methods, such as the 5th order WENO scheme [95] and the FPM-RSK method perform

extremely well [151].

In the present work, we are interested in the understanding of the performance of the

PDE transform of different orders. In fact, through our numerical tests, we found that

when one uses the second order PDE transform, one cannot obtain a satisfactory numerical

result, no matter what propagation time is chosen. With various choices of the propagation

time, the second order PDE transform either damps the amplitude of high frequency waves

too much or cannot prevent the solution from blowing up as time evolves. Figure 2.11(a)

shows the result of a 2nd-order PDE transform. It is seen that it not only smooths the low

frequency waves but also damps the high frequency components.

By contrast, high order PDE transforms work much better. As an illustration, Figure

2.11(b) presents the result from a 10th order PDE transform. Obviously, the 10th-order

PDE transform is able to well capture the complicated high-frequency waves post the shock.
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Furthermore, the shock front remains sharp in high-order PDE transforms. Although there

is some abnormal oscillation at the on-set of low frequency waves, the 10th order PDE

transform preserves the majority of the low frequency waves. This difficult case further

validates the power of the present PDE transform.

2.3.3 2D Euler systems

In two spatial dimensions, we consider the Euler equation in the conservative form of

Ut + F (U)x +G(U)y = 0 (2.46)

with

U =



ρ

ρu

ρv

E


, F (U) =



ρ

ρu

ρv

E


u+



0

p

0

pu


, G(U) =



ρ

ρu

ρv

E


v +



0

0

p

pv


, (2.47)

where (u, v) is the fluid velocity and p is given by

p = (γ − 1)[E − 1

2
ρ(u2 + v2)]. (2.48)

We discretize the conservative quantities (ρ, ρu, ρv, p) on the mesh and applied the PDE

transform during the time integration.

Like the one dimensional problems, the non-periodic domain in 2D can also be handled

by symmetrical extension to the auxiliary domain. Suppose the original domain is discretized
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by N1 · N2 grid points indicated by (i, j) with i = 1, · · · , N1 + 1 and j = 1, · · · , N2 + 1. If

the 2D domain is non-periodic in only one of the two directions, suppose in x-direction, then

the computation domain is doubled with 2N1 · (N2 + 1) grid points and F (U), G(U) and u

are extended by

{F (U)}i,j,k = {F (U)}2N1+2−i,j,k, i = N1 + 2, · · · , 2N1, (2.49)

{G(U)}i,j,k = {G(U)}2N1+2−i,j,k, i = N1 + 2, · · · , 2N1, (2.50)

{U}i,j,k = {U}2N1+2−i,j,k, i = N1 + 2, · · · , 2N1. (2.51)

If the 2D domain is non-periodic in both two directions, then the computation domain is

doubled with 2N1 · 2N2 grid points and F (U), G(U) and U are extended by

{F (U)}i,j,k =


{F (U)}2N1+2−i,j,k, i = N1 + 2, · · · , 2N1,

{F (U)}i,2N2+2−j,k, j = N2 + 2, · · · , 2N2,

(2.52)

{G(U)}i,j,k =


{G(U)}2N1+2−i,j,k, i = N1 + 2, · · · , 2N1,

{G(U)}i,2N2+2−j,k, j = N2 + 2, · · · , 2N2,

(2.53)

{U}i,j,k =


{U}2N1+2−i,j,k, i = N1 + 2, · · · , 2N1,

{U}i,2N2+2−j,k, j = N2 + 2, · · · , 2N2.

(2.54)

2.3.3.1 Example 8 (2D Shock-entropy interaction)

Having tested the performance of the PDE transform for 1D shock-entropy interactions, we

now consider the case in a 2D setting. The weak entropy wave makes an angle θ ∈ (0, π/2)

against the x-axis. If θ = 0, then this 2D problem essentially degenerates into the 1D shock-
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Figure 2.12: The amplitude of entropy waves in the 2D shock-entropy interaction problem
obtained from PDE transforms of different orders.
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entropy problem studied earlier. Since now the entropy waves are oblique to the shock, this

2D problem is more challenging to resolve. Our objective is to further examine the capability

of the PDE transform for higher dimensional problems.

Given the right state of the shock as (ρr, ur, vr, pr) = (1, 0, 0, 1), a weak entropy is added

by changing the density on the right. Here ρr is modified by

ρ = ρre
−ε sin(κz(θ))/pr , (2.55)

where z(θ) is related to the angle θ by z(θ) = x cos θ+ y sin θ and ε and κ are the amplitude

and wave number of the entropy wave, respectively. In this test, we choose parameters

θ = π/6, ε = 0.1 and κ = 15.

For the computation domain, on the one hand, in order to implement the periodic bound-

ary condition along the y-direction, the computation domain in y is set to be [0, 2π
κ sin θ ] pro-

vided θ 6= 0. On the other hand, the computation domain in x is set as [0, 9]. Since the

boundary condition in the x-direction is non-periodic, we extend the computation domain

in the x-direction symmetrically from [0, 9] to [0, 18] . We deploy 32 points in [0, 2π
κ sin θ ] and

1024 points over [0, 18], which implies 513 points over [0, 9]. In our test, the shock starts at

x = 0.5 and moves up to x = 8.5. As we mentioned in the 1D case, a good numerical scheme

should be able to preserve the amplitude of the high-frequency entropy waves. It needs to

be mentioned that low-order methods do not work well for this problem [95]. Low-order

methods would severely damp the amplitude as pointed out in Ref. [95].

For the PDE transform approach, methods of different PDE orders exhibit sharply d-

ifferent behaviors. Figure 2.12 shows the performance of the 6th-order PDE transform by

checking the maximum amplitude of the amplified waves along the y-direction for grid points
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x ∈ [7.4, 8.4], and furthermore comparing with the amplitude predicted by the linear anal-

ysis, i.e., 0.08744786. It is seen that the 6th-order method has an obvious amplitude loss.

In fact, to preserve the amplitude of the entropy waves, a high order PDE transform is

preferred. We improve the performance by resorting to the 10th-order PDE transform. The

result from the 10th-order PDE transform is also illustrated in Figure 2.12. From this re-

sult, it is obvious that the amplitude of entropy waves is well maintained in the post-shock

region. Although there are small peaks and valleys, such a trivial deficiency appears in other

methods as well [95, 151] and is acceptable. This test further validates the capability of the

present PDE transform for resolving the shock entropy problem in a higher dimension.

2.3.3.2 Example 9 (2D Shock-vortex interaction)

Finally, we consider the problem of the interaction between a stationary shock and vor-

tex. This problem has attracted much attention from numerous researchers because of its

potential applications. This is another problem that poses challenges to low order numer-

ical schemes. High order methods, such as WENO methods [95], spectral methods [151]

and CFOR-Hermite scheme [206] work well for this problem. Here we further examine the

capability of proposed PDE transforms for shock-vortex interactions.

The set up of the problem is as follows. The original computational domain is set to

[0, 1] × [0, 1] with a stationary normal shock at x = 0.5 normal to x-axis. A flow with

Mach number Ms = 1.1 enters at the inlet from the left and the shock is initialized as

(ρl, ul, vl, pl) = (1, 1.1
√
γ, 0, 1) on the left state. A vortex centered at (xc, yc) = (0.25, 0.5)

is generated by introducing a perturbation to the original velocity field (u, v), temperature
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Figure 2.13: The pressure profile of 2D shock-vortex interaction problem from the 10th-order
PDE transform at t = 0.05, 0.2 (20 contours).
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T and entropy S. We denote the perturbation by (u′, v′, T ′, S′) , which is given as

(u′, v′) = ετeα(1−τ2)(sin θ,− cos θ) (2.56)

T ′ = −(γ − 1)

4γα
ε2e2α(1−τ2), (2.57)

S′ = 0, (2.58)

where, τ = r
rc

, r =
√

(x− xc)2 + (y − yc)2 and θ = tan−1[(y−yc)/(x−xc)]. By the relation

of T = p/ρ and S = ln p
ργ

, the perturbation ρ′ and p′ to initial ρ and p can be derived from

T ′ and S′. Here ε and α are the strength and decay rate of the vortex and rc is a parameter

to regulate the strength of the vortex. In our test, we take ε = 0.3, α = 0.204 and rc = 0.05.

The computational domain [0, 1]× [0, 1] is extended to [0, 2]× [0, 2] and discretized with

an even-spacing Cartesian mesh. We use 129 even-spacing grid points in y domain of [0, 1]

and 257 grid points in x domain of [0, 1]. The mesh in the x direction is shifted by the

Robert transformation [5] to deploy more mesh points towards the stationary shock. The

upper and lower boundaries are imposed with the reflective boundary conditions. The time

step in our integration is regulated by the CFL condition (CFL=0.5).

This problem prefers moderately high order PDE transforms because of its complicated

feature. In fact, we cannot find satisfactory results from low-order PDE transforms yet. As

an illustration, Figures 2.13 and 2.14 depicts our results obtained with a 10th-order PDE

transform. We plot the pressure profile with 20 contours at t = 0.05, 0.2, 0.35, 0.6.

From Figures 2.13 and 2.14, it is seen that the solution is essentially free of oscillations.

It can also be observed that the deformation of the vortex at the shock and the bifurcation

after the shock are quite well captured.
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2.4 Chapter conclusion remarks

Systems of hyperbolic conservation laws are of fundamental importance in science and en-

gineering. The construction of accurate, efficient and reliable numerical schemes has been

an active research topic in applied mathematics over the past half a century. Due to a vast

variety of complex problems with extremely diversified physical origins, many hyperbolic

conservation law systems remain a challenge to mathematical methods. Typical examples

include shock-turbulence interactions which involve a wide range of spatial scales and pos-

sible blow ups due to the successive amplification of exponentially small numerical errors

during the time integration.

The present work introduces the use of evolution PDEs as a means to efficiently suppress

Gibbs’ oscillations in the numerical solution of hyperbolic conservation laws. Specifically,

during the time integration of a hyperbolic conservation law system, an intermediate numer-

ical solution at a given time step may be used as an initial data for a special evolution PDE.

Then the solution of such an evolution PDE is accepted as an updated numerical solution

at the given time step. Our approach involves the use of the PDE transform, a technique

developed in our recent work [171, 169] for the mode decomposition of signals, image, and

data. The PDE transform is based on a family of arbitrarily high order nonlinear PDEs

originally introduced by Wei in 1999 [178] and a recursive scheme for reinitializing the input

data [170, 169]. Like the wavelet transform, the PDE transform is able to decompose signals,

images and data into functional modes, such as edges, trend, texture and feature with con-

trollable frequency ranges and time-frequency localizations, which correspond to appropriate

multiresolution analysis in the physical domain. Similarly, the PDE transform also has a

prefect reconstruction of original signals, images and data. The PDE transform has found
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its success in signal processing [171, 169], image analysis [171, 169] and biomolecular surface

construction [203].

It may appear computationally inefficient to suppress Gibbs’ oscillations at a time step

of integrating a hyperbolic conservation law equation by solving another evolution PDE.

However, this is not true. Two techniques are proposed to improve the efficiency of the

present approach. First, we use an adaptive measure of total variations to automatically

determine whether the PDE transform is needed at each time step. Additionally, we utilize a

fast PDE transform, which offers the analytical solution of an arbitrarily high order evolution

PDE in the Fourier representation. This technique bypasses the stability constraint of solving

high order evolution PDEs. Consequently, the present PDE transform algorithm is at least

as efficient as our previous windowed Fourier pseudospectral method (FPM) [151] and is

slightly more efficient than our earlier conjugate filter oscillation reduction (CFOR) scheme

[85, 181, 205, 206].

To be more specific about the efficiency, since the FPM with the fast Fourier transform

(FFT) is utilized as the spatial discretization, the complexity of the present PDE transform

coupled with the FFT is of O(N lnN). This feature endows the proposed method with high

efficiency, which is desirable for large scale problems in scientific and engineering applications.

A variety of benchmark tests are employed in the present work to validate the proposed

approach, ranging from scalar conservation law systems to Euler equations in one and two

spatial dimensions. Among these problems, Examples 2-5 typically prefer low-order shock

capturing schemes; whereas Examples 1, and 6-9 are well known to require high order nu-

merical methods. For example, low order schemes will severely damp the amplitude of the

entropy waves in the shock-entropy interaction described by the Euler equation. The pro-

posed PDE transform based FPM works extremely well for these two types of problems.
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For instance, it provides some of the best results for solving the Burgers’ equation with

non-convex flux. Furthermore, only about 5 points per wavelength (PPW) is needed for the

present approach to handle the interaction of shock-entropy waves and shock-vortex inter-

actions. To our knowledge, the only other shock-capturing schemes that have demonstrated

their ability of operating at 5 PPW are the CFOR scheme [85, 181, 205, 206] and the win-

dowed FPM [151] proposed in our previous work. The performance of the proposed method

is compared with those of the CFOR scheme [206] and the windowed FPM [151].

In order to make the present PDE transform based FPM working well for all of the

above mentioned problems, we adjust two controlling parameters: the highest order of the

PDE transform and the propagation time. In fact, the former is the primary parameter

and the latter is less important although indispensable. It is found that the FPM behaves

as a low order shock capturing scheme when it is coupled with a relatively low order PDE

transform; while it behaves as a high order shock capturing scheme when it is coupled

with a moderately high order PDE transform. The preferred orders of the PDE transform

for these test examples are in a similar range of orders used in our PDE transform based

molecular surface construction [203]. Unlike the signal decomposition, which requires the

use of extremely high order PDE transforms [171, 169], the present systems of hyperbolic

conservation laws do not need extremely high order PDE transforms. In fact, it is found

that the use of extremely high order PDE transforms leads to unphysical oscillations. The

selection of PDE transform parameters for all test examples is summarized in the Appendix,

where the propagation time is optimized for each given order of the PDE transform.

In the present work, we employ the fast PDE transform essentially as a spectral filter

method. However, PDE transform with nonlinear geometric PDEs, such as mean curvature

flows, Willmore flows, surface diffusion flows, and potential driven geometric flows [14, 37, 38],
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can be similarly used. The advantage of geometry flow equation based nonlinear PDE

transform is that it enables the embedding of geometric features. It remains an open question

how geometric structures and other mathematical properties, i.e., surface decreasing and

volume preserving, will impart the solution of the systems of hyperbolic conservation laws.

The investigation of this aspect is beyond the scope of the present work, which serves only

as an introduction to the PDE transform approach for systems of hyperbolic conservation

laws.

The working principle of the PDE transform is similar to the use of PDE for image

analysis, which is an important field. Nonlinear PDEs play a crucial role there. What has

been demonstrated in the present work is that when PDEs are used for conservation law

problems, appropriate high order PDEs are indispensable. What has not been examined

in the present work is the role of nonlinear geometric PDEs for conservation law problems.

This aspect is under our consideration. We hope that our work will lead to new exploration

in the use of PDEs for systems of hyperbolic conservation laws.
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Chapter 3

High order fractional PDE transform

for molecular surface construction

3.1 Motivations

Recently, great interests have been witnessed in fractional calculus modeling in many fields

of sciences and engineering, from geophysics to biology. Fractional derivatives extend the

concept of ordinary derivatives and serves as a good tool for taking into account memory

mechanism in the random walk and anomalous diffusion in physical problems [125, 36]. In

fact, a fractional derivative occurs as common as an exponent. For example, it is well known

that the Kolmogorov scaling exponent that predicts turbulent energy spectrum follows a

power law E(w) ∝ w−p, where w is the wavenumber, p is a real number, and 0 < p < 3.

Such a power law in the wavenumber corresponds to the fractional derivative of order α

in the coordinate space, since the inverse Fourier transform of an exponent gives rise to a

derivative of the same order. Fractional derivative has found its success in physical and

biological modeling [8, 197, 22], financial analysis [74, 136, 142], and image processing [9].

Currently, most attention in the field is paid to the fractional derivatives of order less than

2. high-order fractional derivatives are hardly used, partly due to the limited understanding

of their physical meanings.

In our work, we introduce arbitrarily high-order fractional PDEs and the fractional PDE
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transform for the analysis of molecular surfaces in molecular biosciences. Since arbitrarily

high integer order nonlinear PDEs was originally introduced to account for hyperdiffusion in

physical and biological systems [178], it is natural to consider arbitrarily high-order fractional

PDEs and the fractional PDE transform, which utilizes arbitrarily high-order fractional

derivatives. It is well known that fractional derivatives can be defined in a few different

ways. We discuss the finite difference, the Fourier representation and the integral forms of

fractional derivatives. A variational derivation of fractional PDEs is presented. To avoid the

strict stability constraints of solving high-order fractional PDEs and to achieve the desirable

efficiency in the surface generation, we make use of the fast fractional Fourier transform

(FFFT) algorithm to realize the fractional PDE transform. The present algorithm is of

order O(N lnN). Extensive numerical test and application validate the proposed fractional

PDE transform.

3.2 Theory and algorithm

This section provides theory and algorithm for arbitrarily high-order fractional PDEs and

fractional PDE transform. To establish notations, we first briefly discuss a few approaches

for fractional derivatives. The fractional PDE transform is constructed via a variational

analysis.

3.2.1 Fractional derivatives

There are many different approaches for the definition and understanding of fractional deriva-

tives. Among them, fractional finite difference schemes, fractional Fourier representations

and the integral forms of fractional derivatives are the most popular ones.
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3.2.2 Fractional finite difference schemes

Finite differences provide a natural representation of fractional derivatives. There are three

types of standard finite difference schemes, namely, forward, backward and central finite

differences. As a consequence, three fractional finite difference schemes can be defined ac-

cordingly. For any integer α > 0, the α-th order backward finite difference operator is given

by [125]

∆α
h,bu(x) =

α∑
m=0

(−1)m

 α

m

u(x−mh), h > 0, (3.1)

where the Binomial coefficients

 α

m

 =
α!

m!(α−m)!
. (3.2)

For example, when α = 1 and 2, the first and second order backward finite difference schemes

are

∆h,bu(x)

h
=
u(x)− u(x− h)

h
(3.3)

and

∆2
h,bu(x)

h2
=
u(x)− 2u(x− h) + u(x− 2h)

h2
, (3.4)

respectively.

Equation (3.1) can be generalized to the case for any real number α > 0, in which the
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Binomial coefficients are expressed in terms of Gamma function Γ, i.e.,

 α

m

 =
Γ(α + 1)

Γ(m+ 1)Γ(α−m+ 1)
,

and hence

∆α
h,bu(x) =

a2−a1
h∑

m=0

(−1)m
Γ(α + 1)

Γ(m+ 1)Γ(α−m+ 1)
u(x−mh),

where a1 and a2 are the lower and upper bound of differentiation, respectively. Thus, the

factional derivative of order α can be defined as

u(α) = lim
h→0

∆α
h,bu

hα
. (3.5)

One special property of the fractional finite difference operator in Eq. (3.1) is that it utilizes

all the node points to the left. Similarly, one can define the fractional derivatives of α-th

order by forward and central finite difference operators. Finite difference based fractional

derivatives find their applications in anomalous diffusion [126].

3.2.2.1 Fractional Fourier schemes

It is well known that Fourier transform provides a practical approach for computing in-

teger derivatives and solving differential equations. It can be similarly used for fractional

derivatives [125]. Consider the Fourier transform

û(w) =

∫ ∞
−∞

e−iwxu(x)dx. (3.6)
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The Fourier transform of the backward finite difference operator in Eq. (3.1) is given by

∆̂α
h,bu(w) =

∞∑
m=0

(−1)m

 α

m

 e−imhwû(w) = (1− e−ihw)αû(w). (3.7)

where Binomial coefficients vanish when m > α. Consequently, the corresponding Fourier

transform for (3.5) is

û(α)(w) = lim
h→0

∆̂α
h,bu

hα
= lim
h→0

(
1− e−ihw

h

)α
û(w) = (iw)αû(w), (3.8)

where the last step makes use of the Taylor expansion e−ihw = 1− ihw +O(h2) as h→ 0.

There are many other ways to derive Eq. (3.8). Consider the central finite difference in

the Fourier domain defined as [9]

D̂nu = (eihw/2 − e−ihw/2)D̂n−1u = · · · = (eihw/2 − e−ihw/2)nû, (3.9)

where the nth-order finite difference Dnu is defined by

Dnu(x) = D(Dn−1u) = · · · = Dn−1(Du) = Dn−1
(
u

(
x+

h

2

)
− u

(
x− h

2

))
. (3.10)

As an extension of the Fourier transform of the nth-order finite difference, one has

D̂αu =
(
eihw/2 − e−ihw/2

)α
û. (3.11)
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Consequently, generalized fractional-order derivative is given by

û(α) = lim
h→0

D̂αu

h
= lim
h→0

(
eihw/2 − e−ihw/2

h

)α
û = (iw)αû, (3.12)

where the last step uses Taylor expansion eihw/2 = 1 + ihw/2 + O(h2) and e−ihw/2 =

1− ihw/2 +O(h2) when h→ 0. As a result, Eq. (3.8) is also concluded.

When α is an integer, i.e., α = n, Eq. (3.8) becomes

û(n) = (iw)nû, (3.13)

which is consistent with the classical derivative in the Fourier representation. Moreover,

when α = 2m is an even number, we have

û(2m) = (−1)m(w)2mû. (3.14)

Furthermore, using the Euler’s formula i = exp(iπ/2), Eq. (3.8) can be reformulated as

û(α) = eiαπ/2wαû. (3.15)

The expression in Eq. (3.8) can be numerically computed via Eq. (3.15).

3.2.2.2 Integral forms

For any real number α > 0, the Caputo fractional derivative of order α is defined as [29]

Dαu =
1

Γ(n− α)

∫ x

0

u(n)(t)

(x− t)α+1−ndt, n− 1 < α < n, (3.16)
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where it requires the absolute integrability of u up to the n-th integer derivatives. Meer-

schaert has developed a discrete approximation to integral form of fractional derivative in

Eq. (3.16) based on the shifted Grünwald approximation [126].

Somewhat less restrictive integral definitions have also been given in the literature by

making use of Mittag-Leffler-type functions [121]. For any real number β > 0, denote by

Iβf(x) the Riemann-Liouville integral

I
β
t1,t2

u(x) =
1

Γ(β)

∫ t2

t1

u(t)(x− t)β−1dt. (3.17)

Then the left and right Riemann-Liouville fractional derivatives of order α for a function

u(x) are given by [2]

Dα
l u =

dn

dxn
In−αa,x u(x) (3.18)

and

Dα
r u = (−1)n

dn

dxn
In−αx,b u(x), (3.19)

respectively. In the integral, a and b are the lower and upper bounds, which are typically

taken as −∞ and∞, respectively. The right Riemann-Liouville fractional derivative operates

on the right (or future) state of the function u(x) and thus is less popular in the literature.

However, it is useful in variational formulations.

If α is an integer, these derivatives are defined in the usual sense, namely

Dα
l u =

dα

dxα
u(x), α = 1, 2, · · · , (3.20)
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and

Dα
r u = (−1)α

dα

dxα
u(x), α = 1, 2, · · · . (3.21)

The left Riemann-Liouville fractional derivative is one of the most popular definitions. Some

interesting properties and history of Riemann-Liouville fractional derivatives have been dis-

cussed in Ref [121].

3.2.3 High-order fractional PDEs and fractional PDE transform

3.2.3.1 Variational derivation of high-order fractional PDEs

Motivated by the PDE transform and fractional derivatives, we propose a fractional PDE

transform. A key component of the fractional PDE transform is an arbitrarily high-order

fractional PDE, which is defined via the fractional variational principle. Many authors

have discussed the fractional variational principle [2, 9]. For any α ∈ R and 0 < α < ∞,

denote by ∇α =

(
∂αl
∂xα

,
∂αl
∂yα

,
∂αl
∂zα

)
a gradient vector in R3, where

∂αl
∂xα

is the left Riemann-

Liouville fractional derivative of order α in x, according to Eq. (3.18); similar notations

are adopted for the fractional derivatives in y and z. The adjoint of ∇α is defined as

∇α∗ =

(
∂αr
∂xα

,
∂αr
∂yα

,
∂αr
∂zα

)
, with the right Riemann-Liouville fractional derivative in (3.19).

We now consider the general energy functional

E(u,∇αu,∇α∗u) =

∫
F (u,∇αu,∇α∗u) dr =

∫ [
Λ
(
|∇αu|2, |∇α∗u|2

)
+ ε(X − u)2

]
dr,

(3.22)

where Λ and ε(X − u)2 are similar to the corresponding terms in Eq. (2.7). The Euler-
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Lagrange equation of (3.22) is [2]:

∂F

∂u
+∇α∗ ·

∂F

∂∇αu
+∇α · ∂F

∂∇α∗u
= 0. (3.23)

Applying (3.23) to (3.22), we obtain

1

2
∇α∗ · Λluα +

1

2
∇α · Λruα + ε(X − u) = 0, (3.24)

where

Λluα = −∂Λ/∂∇αu and Λruα = −∂Λ/∂∇α∗u. (3.25)

Note that Eq. (3.24) is in the similar fashion as Eq. (2.11).

Remarks

1. We can introduce an artificial time t and convert Eq. (3.24) into a time-dependent

fractional PDE

∂u

∂t
=

1

2
∇α∗ · Λluα +

1

2
∇α · Λruα + ε(X − u), (3.26)

then the fractional PDE transform is constructed by Eq. (2.14) with the solution operator

L defined via Eq. (3.26).

2. Furthermore, setting Λ = Λ(µ, ν) with µ = |∇αu|2, ν = |∇α∗u|2, we can apply the

chain rule to (3.25), i.e.,

Λluα = −∂Λ

∂µ

∂µ

∂∇αu
= −2

∂Λ

∂µ
∇αu .

= −2Λµ∇αu (3.27)
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and

Λruα = −∂Λ

∂ν

∂ν

∂∇α∗u
= −2

∂Λ

∂ν
∇α∗u

.
= −2Λν∇α∗u. (3.28)

Substituting (3.27)-(3.28) into (3.26), we obtain

∂u

∂t
= −∇α∗ ·

(
Λµ∇αu

)
−∇α · (Λν∇α∗u) + ε(X − u), (3.29)

where Λµ
(
|∇αu|2, |∇α∗u|2

)
,Λν

(
|∇αu|2, |∇α∗u|2

)
can be viewed as anisotropic diffusion co-

efficients.

3. A special case is that when only ∇αu (or ∇α∗u) appears in (3.22) and Λ takes the

simple linear function Λ(µ) = µ, Eq. (3.29) turns into

∂u

∂t
= −∇α∗ · ∇αu+ ε(X − u).

By (3.20) and (3.21), we can recover the simple heat equation
∂u

∂t
= ∇2u+ ε(X − u) for

α = 1.

3.2.3.2 Fractional hyperdiffusions derivation of high-order fractional PDEs

In this section, we derive from Eq. (3.29) an arbitrarily high-order fractional hyperdiffusion

equation which has the similar structure of the hyperdiffusion equation (2.3). Actually,

letting

Λ = Λ(µ), µ =
m∑
q=1

|∇αqu|2,
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where m ∈ N, αq ∈ R, and 0 < α1 < α2 < ... < αm <∞, we have, according to Eq. (3.29),



∂u

∂t
= −

m∑
q=1

∇αq∗ · jαq + e

u, m∑
q=1

|∇αqu|, t

 ,

jαq = dαq(u, |∇αqu|, t)∇αqu,

(3.30)

where e

u, m∑
q=1

|∇αqu|, t

 = ε(X − u) and dαq

u, m∑
q=1

|∇αqu|, t

 = Λµ

 m∑
q=1

|∇αqu|2
.

Setting m = 1, αm = 1, e(u(r, t), |∇u(r, t)|, t) = 0, and recalling (3.20)-(3.21), one can

reproduce the well-known Perona-Malik equation for anisotropic diffusion [134]:

∂u

∂t
= ∇ · [dα(|∇u|, t)∇u] .

In the current work we study the high-order fractional hyperdiffusion equation with the

linear form of Λ, i.e, Λ(µ) = µ, and neglect the term e(u, |∇αqu|, t).

3.2.4 Numerical algorithms

In our previous work, high-order nonlinear evolution PDEs have made vital contributions

to mode decomposition [171], image analysis [169], and molecular surface generation [204].

However, solving high-order PDE in Eq. (3.26) directly in physical domain can be numerical-

ly difficult for some practical applications. A major problem in solving high-order nonlinear

evolution PDEs is their stability constraints: in general, in explicit numerical methods, the

time increment ∆t needs to be proportional to the n-th power of the spatial discretization

h, i.e., ∆t ∼ hn, for an n-th order PDE. Although the constraint has little impact to most

image analysis, in which the spacing h is unit, it does lead to some difficulties in other appli-
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cations. Typically, alternating direction implicit (ADI) methods are implemented to by-pass

the stability constraint in solving high-order PDEs [14]. Another approach used in previous

PDE transform is the Fourier pseudospectral method via the fast Fourier transform (FFT).

These techniques can be analogically applied to the fractional high-order PDE transform. In

such an approach, one has to linearize Eq. (3.30) and then solves original nonlinear equation

by an iterative procedure as shown in the part of PDE transform.

We consider a linearized fractional PDE of (3.30), i.e. Λ(µ) = µ, µ = |∇αu|2, and m = 1,

then

∂u

∂t
= −dq∇α∗ · ∇αu, α ∈ R+, (3.31)

where dq is a coefficient independent of u. Denote by F [u](iw) the discrete Fourier transform

of u(r, t), t ≥ 0.

When Eq. (3.31) is subject to initial value u(r, 0) = Xk and periodic boundary condi-

tions, it can be easily solved in the Fourier representation. The Fourier transform of Eq.

(3.31) is given by

∂F [u](w)

∂t
= −dqF [∇α∗ · ∇αu](w), (3.32)

Because of relations

F [Dα
l u] = (iw)αF [u](w), F [Dα

r u] = (−iw)αF [u](w), (3.33)
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Eq. (3.32) turns into

∂F [u](w)

∂t
= (−1)α+1i2α(w)2αdqF [u](w) t ≥ 0, (3.34)

where i2α is evaulated as i2α = eiαπ. Therefore, we iteratively solve the linearized high-order

fractional PDE until a predesigned accuracy is reached. We can express the solution of the

original nonlinear high-order PDE as [169]

̂̌Xk
(w) = L̂X̂k(w) (3.35)

where ̂̌X and X̂k are the Fourier transforms of X̌k and Xk, respectively. Here Fourier trans-

form of the evolution operator is L̂ = exp
(
(−1)α+1i2α(w)2αdqt

)
. The solution algorithm

developed in the above Fourier domain is called a fast PDE transform.

Given initial value u(r, 0) = Xk, the evolution PDE (3.31) is solved by the fast Fourier

transform (FFT) as shown in Eq. (3.35). Specifically, after computing û = FFT(u) by the

FFT, we apply the fractional PDE transform in the Fourier space given by Eq. (3.35) so as

to obtain ̂̌u = L̂û with corresponding propagation time t. Finally, the inverse FFT (IFFT) is

implemented for ̂̌u to produce ũ = IFFT(̂̌u). As a result, the new value of u after propagation

time t, i.e., u(r, t), will be given by ũ. In our experiments, the FFT is implemented by the

‘fftw’ software package (www.fftw.org).

It is noted that since the fractional PDE transform is implemented in Fourier space, the

term (iw)α will involve the complex number when α is not an even integer. Moreover, the

complex ̂̌u will result in complex ũ. However, the information of the biomolecular surface is

preferably represented by the real number as the isosurface is from the value of u(r, t), which
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should be real. In the practical implementation, one can either take the real component of

Eq. (3.34) (see Ref. [9] for a similar treatment) or the amplitude of the term (iw)α. In this

work, we explore the performance of both approaches.

3.3 Numerical test and validation

In this section, the proposed fractional PDE transform is tested and validated by molecular

surface generation. The initial condition of Eq. (3.31) is set as initial biomolecular surface

data and the isosurface obtained from the solution u(r, t) at time t will be a desired molecular

surface after the PDE transform.

3.3.1 Initial data for evolution PDEs

The initial value of Eq. (3.31) is set to be a molecular hypersurface function, which contains

atomic coordinates and radius of a molecule. In our computation, three types of initial data

are used.

3.3.1.1 Type I: Piecewise-constant initial values

Piecewise-constant initial values are commonly used in our earlier work for molecular surface

generation [15, 16, 37]. In this work, we set the piecewise-constant initial value as

u(r, 0) =


0, r ∈

⋃
iO(ri, ri);

1, otherwise,

(3.36)

where ri and ri are the atomic coordinate and radius of atom i, respectively. The union

of all atomic spheres O(ri, ri) is denoted by
⋃
iO(ri, ri). This type of piecewise-constant
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initial value is different from the initial value in our geometry flow based solvation model

[37], where the two constants 0 and 1 are switched.

3.3.1.2 Type II: Maximum Gaussian initial values

The second type of initial values is defined by the maximum of Gaussian functions [68, 204]

as follows

u(r, 0) = maxi

(
s exp

(
−
‖ r− ri ‖2 −r2

i

r2
e

))
. (3.37)

In this work, we set s = 1 and re = 3 as recommended in the literature [68].

3.3.1.3 Type III: Summation Gaussian initial values

The third type of initial values is taken from the summation of Gaussian functions [21, 80, 64],

u(r, 0) =
∑
i

exp
(
−κ(‖ r− ri ‖2 −r2

i )
)
. (3.38)

In our simulation, we set the decay rate κ = 1 [198].

The initial molecular surface can be obtained as the isosurface by setting u(r, 0) = S,

where S is a pre-designated isovalue of u, for example, u(r, 0) = 1 [198, 204]. Although the

two types of Gaussian initial data are able to offer smoother isosurfaces, they may still result

in isosurfaces with singularities as demonstrated in the following sections.

3.3.2 Effects of fractional order and propagation time

It is noted from the evolution PDE in Eq. (3.31) that, the performance of the proposed

fractional PDE transform depends on the fractional order α, propagation time t, and diffusion
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coefficient dq. In the present work, we mainly focus on the role of fractional order and

propagation time while set dq = 1.

Figure 3.1 shows the Fourier response of the fractional PDE transform, which is equivalent

to the operator L̂ in Eq. (3.35) at different orders. The overall amplitudes of the Fourier

responses of fractional PDE transforms with different orders are given in Figure 3.1(a),

and 3.1(b)-(c) show the corresponding real and imaginary components, respectively. It can

be concluded that the amplitude of Fourier response behaves like classic filters. However,

the real component has unfavorable negative values, and the magnitude of the imaginary

component is relatively small. These results provide an understanding of the behavior of

high-order fractional PDEs.

Figure 3.1(a) also depicts the effects of fractional PDE transform with different orders

(α = 1.5, 5.5, 11.5). With a fixed propagation time t = 102, the fractional PDE transform

of order α = 1.5 offers a low-pass filter for very low frequency components. Whereas,

the fractional PDE transform of order α = 11.5 is able to pass a much larger range of

frequency components. Based on this feature we choose different fractional orders in mode

decompositions and other applications of high-order PDEs.

The effect of propagation time, which is equivalent to the impact of the nonlinear coeffi-

cient in the PDE transform, is shown in Figure 3.2, with fixed fractional orders α ∈ (11, 12)

and different propagation time. From Figure 3.2 (a) to Figure 3.2 (c), there display the real

components of the Fourier response of the fractional PDE transform with order α = 11.2,

α = 11.5 and α = 12.0, respectively. It is concluded that the longer the propagation time is,

the faster is the damping of real component. Thus we can conjecture that in order to obtain

a smoother molecular surface, a longer propagation time is preferred. We also need to keep

in mind that the molecular surface can not be over-smoothed or over-smeared, otherwise it
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Figure 3.1: Frequency response of Eq. (3.34) with t = 102 and different orders. (a) Over all
amplitude; (b) Real component; (c) Imaginary component. Red: α = 1.5; blue: α = 5, 5;
and purple: α = 11.5.
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will become unphysical. It is observed that when the fractional order is closer to an odd

number, the real components become more and more oscillatory with all propagation time.

Furthermore, Figure 3.3(a) shows the visualization of real component of Fourier response in

2D for α = 11.5 and t = 102; Figure 3.3(b) depicts its contours. Since there are negative

oscillations in the Fourier response, there are corresponding oscillations in contours as shown

in Figure 3.3(b).

3.3.2.1 Test on a three-atom system

We start the test cases with a simple three-atom system, in which the initial atomic coordi-

nates are given as (0, 0, 1.8), (0, 0,−1.8), (0, 3.12, 0) with a uniform radius of 1.8. Figure 3.4

shows the isosurface of three-atom system from piecewise constant initial value (Figure 3.4

(a)) and after fractional PDE transform by different fractional orders α = 1.5 (Figure 3.4

(b)), 5.5 (Figure 3.4(c)) and 11.5 (Figure 3.4(d)); the propagation time is t = 102 and the

isovalue is taken as u(r, t) = 1. We conclude that the piecewise constant initial value does

not give an acceptable molecular surface and the low order transform (α = 1.5) over-smears

the molecular surface. Similar problem of a low order PDE transform at α = 2 was also

found by Zheng et al [204]. However, both high-orders transforms (α = 5.5 and α = 11.5)

render satisfying molecular surfaces. In the work of integer PDE transform based biomolec-

ular surface generation [204], although α = 6.0 works well for small molecular systems, it

was found that α = 6.0 over-smears large biomolecules such as proteins. In the following

test cases, we use the fractional order α = 11.5.
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Figure 3.2: Real component of frequency response of Eq. (3.34) in 1D, with different values
of α and t: (a) α = 11.2; (b) α = 11.5; (b) α = 12.0. Red: t = 106; blue: t = 104; and
purple: t = 102.
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Figure 3.3: Real component of Fourier response of Eq. (3.34) in 2D for α = 11.5 and t = 102.
(a) function value view; (b) contour view.
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(a) (b) (c) (d)

Figure 3.4: Isosurfaces of a three-atom system after the fractional PDE transform of different
fractional orders with the piecewise constant initial value. The isovalue is taken as u(r, t) = 1
and propagation time is t = 102. (a) Initial value; (b) α = 1.5; (c) α = 5.5; (d) α = 11.5.

3.3.2.2 Test on a four-atom system

We next test the effects of different propagation time and choices of initial data through a

four-atom system, in which the initial atomic coordinates are given as (0, 0, 1.8), (0, 0,−1.8),

(0, 3.12, 0) and (0,−3.12, 0), with a uniform radius of 1.8. The fractional PDE transforms

of different propagation time with three types of initial data discussed in section 3.3.1, are

illustrated in Figures 3.5, 3.6 and 3.7, respectively, with the isovalue u(r, 0) = 1 and order

α = 11.5. For the initial molecular surfaces, the one from Type I is non-smooth (Figure

3.5(a)); isosurface of Type II has singularities (Figure 3.6(a)); and Type III is smooth (Figure

3.7(a)). However, it should be noted that the three types of initial values have different

ranges: initial data of Type I is restricted within the range [0, 1], while the values of Types II

and III can be greater than one. Although the isosurface of Type III is smooth at u(r, 0) = 1,

the surface from other isovalues may not be. For example, the surface obtained by setting

u(r, 0) = 2, as showed in Figure 3.7(d), has obvious singularities.

It is noted that Type II initial value depends on the parameter re and Type III data

relies on the decay rate κ. Figure 3.8 shows the isosurfaces from Type III initial data at

two different decay rates, κ = 1 and κ = 1/9. It is observed that κ = 1 gives a much
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(a) (b) (c)

Figure 3.5: Isosurface of a four-atom system after fractional PDE transform of order α = 11.5
and different propagation time, with the piecewise constant initial value. The isovalue is
taken as u(r, t) = 1 (a) initial value; (b) t = 1; (c) t = 104.

better resolution of the molecular surface than κ = 1/9 does; this fact is consistent with the

previous results [198].

The results after fractional PDE transform with order α = 11.5 after different propagation

time are illustrated in the rest subfigures of Figures 3.5, 3.6 and 3.7. Although the piecewise

constant (Type I) initial data is non-smooth, it can offer smooth surfaces by the fractional

PDE transform after certain proper propagation time, as noted in Figures 3.6(b) and (c).

On the other hand, the singularities resulting from Type II initial data can also be removed

at a long propagation time t = 104 but not after a short time t = 1. Moreover, it is difficult

to filter the singularities in the isosurface u(r, t) = 2 with Type III initial value. One may

also pay attention to the time cost for generating three types of initial surfaces. Since Types

II and III involving searching the maximum or taking the summation, they require more

CPU time than Type I does. Indeed, for the four-atom system at h = 1, the computational

results show that the CPU cost for surface generation using Type I initial data is about

0.001 seconds, while about 0.2 seconds for using Types II and III initial data.
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(a) (b) (c)

Figure 3.6: Isosurfaces of a four-atom system after fractional PDE transform of order α =
11.5 and different propagation time, with maximum Gaussian initial value. The isovalue is
taken as u(r, t) = 1. (a) Initial value; (b) t = 1; (c) t = 104.

(a) (b) (c)

(d) (e) (f)

Figure 3.7: Isosurfaces of a four-atom system after fractional PDE transform of oder α = 11.5
and different propagation time, with the summation Gaussian initial value. The isovalue is
taken as u(r, t) = 1 for (a)-(c) and u(r, t) = 2 for (d)-(f). (a) Initiale value; (b) t = 1; (c)
t = 104; (d) initial value; (e) t = 1; (f) t = 104.
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(a) (b)

Figure 3.8: Isosurface of a four-atom system with initial value of Type III (Summation
Gaussian initial values) at different κ. The isovalue is taken as u(r, 0) = 1. (a) κ = 1; (b)
κ = 1/9.

3.3.2.3 Test on two proteins

The fractional PDE transform method is further validated on realistic proteins. In our

numerical experiments, the protein data, i.e., atomic coordinates and radii, are obtained

from the PDB bank (www.pdb.org) and prepared with the PDB2PQR package [50]. Two

proteins, PBD IDs 1R69 and 1FCA, are used in our test. The results are depicted in Figures

3.9 and 3.10, respectively. Initial values of Type I are used for both proteins (Figure 3.9(a)

and 3.10(a)). Different orders (α = 1.5, 11.5) and the same propagation time (t = 104)

are applied to the protein 1R69, see Figure 3.9(b)-(c), while different propagation time

(t = 1, 104) and the same order (α = 11.5) are for the protein 1FCA, see Figure 3.10(b)-(c).

It can be concluded that the transform with relatively longer propagation time and higher

order produces better molecular surfaces.

Based on the tests on the model three/four-atom systems and the realistic proteins, we

summarize that even with the simplest Type I initial surface, satisfactory molecular surfaces

can be obtained if the parameters are chosen properly. Specifically, we use order α = 11.5,

propagation time t = 104 and isosurface u(r, t) = 1 for later applications unless other values
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are indicated. The initial values are all of Type one for connivence.

(a) (b) (c)

Figure 3.9: Surface of a protein (PDB code: 1R69) after fractional PDE transform of prop-
agation time t = 104 and different orders. The isovalue is taken as u(r, t) = 1. (a) Initial
value (Type I); (b) α = 1.5; (c) α = 11.5;

(a) (b) (c)

Figure 3.10: Surface of a protein (PDB code: 1FCA) after fractional PDE transform of order
α = 11.5 at different propagation time. The isovalue is taken as u(r, t) = 1. (a) initial value
(Type I); (b) t = 100; (c) t = 104;

3.3.3 Computational efficiency

exit

Computational efficiency is a crucial issue in molecular surface generation. Surface gen-

eration time is a bottleneck for many practical applications such as the Poisson-Boltzmann
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based molecular dynamics [66] and the solution of coupled nonlinear Poisson-Nernst-Planck

equations [202, 201]. Here we examine the computational efficiency of the fractional PDE

transform based biomolecular surface generation. Table 3.1 compares the CPU costs (in

seconds) for surface generation in Cartesian meshes between the fractional PDE transform

(FPDE) with α = 11.5, t = 104 and the MSMS approach [143] at a typical triangle density

10. In the table, Na is the total number of atoms in the protein after the PDB2PQR con-

version. The total time Ttot of the MSMS approach includes the CPU cost from generating

surface in the 2D Lagrangian representation Ts and the time cost of converting it to the

3D Eulerian representation Tc, which is required in many applications [204]. Essentially, the

CPU time used to create a triangular representation of a protein surface, i.e., Ts, is similar to

the total CPU time for the the present fractional PDE transform to generate a 3D Eulerian

representation of the protein surface. However, the additional CPU used in the Eulerian con-

version is quite large, which causes problems in our earlier molecular dynamics simulations

[66]. Moreover, the MSMS method encounters problem in generating the triangular surface

meshes for three relatively large proteins, 2NCD, 1IWO and 2E2J at the designed density

10. The present fractional PDE transform is very stable and robust for large proteins.

It is interesting to note that the computational cost scales essentially linearly with respect-

ed to the number of atoms in proteins for the present fractional PDE transform approach.

3.3.4 Surface areas and surface enclosed volumes

To quantitatively characterize the surface generated by the fractional PDE transform, we

examine the surface areas and their enclosed volumes for a number of proteins. These

quantities are frequently used in biophysical modeling, such as the solvation free energy

estimation.
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h = 1 h = 0.5
PDB-ID Na Ts MSMS FPDE MSMS FPDE

by MSMS Tc Ttot Ttot Tc Ttot Ttot
1R69 596 0.49 2.84 3.33 0.05 2.93 3.42 0.32
1A2S 667 0.43 3.00 3.43 0.06 3.25 3.68 0.53
1SH1 702 0.56 3.13 3.69 0.09 3.27 3.83 0.43
2PDE 729 0.46 2.91 3.37 0.11 3.31 3.77 1.28
1VII 828 0.54 3.03 3.57 0.06 3.82 4.36 0.60
1A7M 858 0.64 3.73 4.37 0.05 3.90 4.54 0.57
1VJW 903 0.65 3.59 4.24 0.08 3.56 4.21 0.67
1FCA 997 0.62 3.52 4.14 0.08 3.72 4.34 0.55
1HPT 1272 0.92 5.11 6.03 0.07 5.21 6.13 1.08
1MBG 1435 0.96 5.15 6.11 0.11 5.34 6.30 1.21
1A63 2065 1.38 7.92 9.30 0.19 8.09 9.47 1.20
1SVR 2809 1.58 8.73 10.31 0.19 9.29 10.87 1.82
2NCD 5665 N/A N/A N/A 0.94 N/A N/A 9.35
1IWO 30870 N/A N/A N/A 3.20 N/A N/A 23.97
2E2J 58046 N/A N/A N/A 3.48 N/A N/A 31.36

Table 3.1: Comparison of CPU costs (in seconds) for surface generation in Cartesian meshes
by the fractional PDE transform (FPDE) with α = 11.5, t = 104 and the MSMS approach.
Na: total number of atoms; Ts: CPU time for MSMS to generate surface in 2D Lagrangian
representation; Tc: CPU time for converting the Lagrangian representation to 3D Eulerian
representation. Ttot: Total CPU cost for FPDE and MSMS; h: grid resolution.

The results of fractional PDE transform are in the Eulerian representation, i.e., a 2D

surface of a biomolecule embedded in a 3D Cartesian grid. One has to extract the surface

area and the enclosed volume by appropriate computational algorithms. A second-order

surface integration scheme has been developed in our earlier work [66]

∫
Γ
f(x, y, z)dS ≈

∑
(i,j,k)∈I

(
f(xo, yj , zk)

| nx |
h

+ f(xi, yo, zk)
| ny |
h

+ f(xi, yj , zo)
| nz |
h

)
h3(3.39)

where h is the grid resolution, (xo, yj , zk) is the intersecting point of the surface Γ and

the meshline that passes through the point (xi, yj , zk), and nx is the x component of the

unit normal vector at (xo, yj , zk). Similar notations are used for y and z directions. The
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FPDE MSMS
PDB-ID Area Volume ∆Gp Area Volume ∆Gp
1VJW 2847.6 7626.1 -1236.0 2785.8 7693.2 -1237.9
1FCA 2723.2 6857.1 -1206.0 2546.9 7028.1 -1200.1
1SH1 2680.7 6418.2 -746.9 2743.8 6400.7 -753.3
1R69 2978.9 8817.1 -1081.9 3054.5 8777.2 -1089.5
1MBG 2980.2 7896.8 -1337.9 3070.7 7843.3 -1346.1
1A2S 4316.1 11629.6 -1902.1 4436.8 11569.7 -1913.5
1SVR 4582.6 11990.2 -1699.0 4644.0 11961.9 -1711.2
1VII 2402.0 5091.7 -888.3 2476.2 5050.7 -901.5
2PDE 2659.2 6080.3 -805.3 2715.9 5994.6 -820.9
1A7M 7514.9 24125.5 -2129.9 7733.6 24025.1 -2155.5
1A63 6884.9 18168.8 -2347.0 6973.7 18121.1 -2373.5
1HPT 3182.9 7706.9 -807.5 3262.9 7660.9 -811.6

Table 3.2: Comparison of surface areas (unit: Å2), surface enclosed volumes (unit: Å3) and
electrostatic free energies of solvation ∆Gp (unit: kcal/mol) with surfaces generated by the
fractional PDE transform (FPDE) and the MSMS approach. The grid resolution is 0.5 Å .

summation involves irregular grid points which are the points with at least one neighbor

from the other side of the surface Γ in the second-order finite difference discretization. Here

I is the set of irregular grid points inside or on the interface [66]. Formula (3.39) is used for

surface area calculation by setting f = 1.

The volume integral of a function f is approximated by

∫
Ωm

f(x, y, z)dr ≈ 1

2

 ∑
(i,j,k)∈J1

f(xi, yj , zk)h3 +
∑

(i,j,k)∈J2

f(xi, yj , zk)h3

 (3.40)

where J1 is the set of the points inside Ωm and J2 = J1
⋃
JIrr, where JIrr indicates the set

of irregular points. The volume is obtained by setting f = 1 in Eq. (3.40).

Table 3.2 lists surface areas and surface enclosed volumes of protein surfaces generated

by both the fractional PDE transform and the MSMS approach. In this test, the fractional

PDE transform is of order 11.5, propagation time t = 104, and the grid resolution is 0.5 Å.

It can be concluded that the present results are quite consistent with those obtained from
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the MSMS package, thus the proposed PDE transform is useful in practical applications.

3.4 Applications

Solvent-solute interface plays a critical role in implicit solvent models for applications to

electrostatic calculation, solvation analysis and molecular dynamics simulations. It is also

important in variational multiscale models for biomolecular systems [180, 184]. In this sec-

tion, we first apply the fractional PDE transform based biomolecular surfaces to electrostatic

calculation of a group of proteins and then analyze the solvation free energies of a set of small

compounds, for which have the experimental data are available.

3.4.1 Electrostatic analysis of 15 proteins

3.4.1.1 Electrostatic potential

Once the surface has been generated, the electrostatic potential can be evaluated according

to the Poisson equation [194, 67, 33]

−∇·(ε∇φ) =
∑
j

qjδ(r− rj), (3.41)

where qj are the (fractional) charges of atoms at position rj(j = 1, 2, ..., Na). The dielectric

function ε is defined as a piecewise constant function

ε(r) =


εm, r ∈ Ωm,

εs, r ∈ Ωs,

(3.42)

119



where εm = 1 and εs = 80 are the dielectric constants in the molecular and solvent regions,

respectively; these two regions are separated by the molecular surface. Equation (3.41)

is a typical elliptic interface problem with discontinuous coefficients and singular sources.

It is very difficult to construct second-order convergent methods for this equation in the

biomolecular context due to the geometric complexity, complex interface, singular charge

sources and geometric singularities [194, 67, 33]. In this work, we make use of the second-

order convergent matched interface and boundary (MIB) method [196, 195, 199, 208, 207, 33]

to solve Eq. (3.41).

Figure 3.11 displays the electrostatic surface potential of three proteins obtained from

solving the Poisson equation (3.41). These potential values are projected on the protein

surfaces generated by using the proposed fractional PDE transform. In the figures, red

and blue colors represent negative and positive surface electrostatic potentials, respectively.

Surface electrostatic potential is highly correlated with ligand binding domains, which are

important to drug design.

(a) (b) (c)

Figure 3.11: Surface electrostatic potentials of three proteins based on the molecular surface
after fractional PDE transform with α = 11.5 and t = 104. (a) PDB code: 1VII; (b) PDB
code: 1FCA; (3) PDB code:1R69. Red: negative potential; blue: positive potential.
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3.4.1.2 Electrostatic solvation free energy

With the solution of the Poisson equation, one can calculate electrostatic solvation free

energies of proteins by

∆Gp =
1

2

∑
j

qj(φ(rj)− φhomo(rj)), (3.43)

where φ and φhomo correspond to the electrostatic potentials in the inhomogeneous and

homogeneous environments, respectively.

Electrostatic solvation free energies of twelve proteins are listed in Table 3.2. Results

are computed by using two types of surface definitions, namely, solvent excluded surface

generated by using the MSMS and the fractional PDE transform based surface. A good

consistence is obtained between these two methods.

3.4.2 Solvation analysis of 17 small compounds

Total solvation free energies, which include both polar (i.e., electrostatic solvation free en-

ergies ∆Gp) and nonpolar solvation free energies Gnp, are measured in many experiments.

The latter component of solvation free energy can be modeled in many ways. One of the

most commonly used model can be expressed as [165, 37]

Gnp = γArea + pVol +

∫
Ωs
ρsU

attdr, (3.44)

where γ is the surface tension, p is the hydrodynamic pressure, ρs is the solvent bulk density,

Ωs denotes the solvent accessible region, and Uatt(r) is the solute-solvent van der Waals

interaction potential at point ~r. The first term γArea is the surface energy, which describes

the disruption of intermolecular and/or intramolecular bonds that occurs when the surface
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of a molecule is created in the solvent. The second term pVol measures the mechanical work

of creating the vacuum of a biomolecular size in the solvent. The hydrophobic effect in the

first two terms are partially compensated by the third term
∫

Ωs
ρsU

attdr, which describes

the attractive dispersion effects near the solvent-solute interface. The reader is referred to

Ref. [37] for detailed description of the van der Waals interaction.

One of the important applications of FPDE transform-based solute-solvent interface is

the calculation of total solvation energies. As stated in Section 3.3.4, all the terms in Eq.

(3.44) can be calculated from the molecular surfaces generated from FPDE transform of

various types of initial data, and according to Section 3.4.1.2, the analysis of electrostatic

free energies also requires the definition of solute-solvent interface.

Compound Gnp ∆Gp ∆G Exptl Error
glycerol triacetate 3.38 -13.54 -10.16 -8.84 -1.32
benzyl bromide 2.00 -5.68 -3.67 -2.38 -1.29
benzyl chloride 1.97 -5.70 -3.73 -1.93 -1.8
m-bis(trifluoromethyl)benzene 4.38 -3.35 1.03 1.07 -0.04
N,N-dimethyl-p-methoxybenzamide 2.85 -10.43 -7.57 -11.01 3.44
N,N-4-trimethylbenzamide 2.71 -8.56 -5.85 -9.76 3.91
bis-2-chloroethyl ether 2.09 -4.57 -2.48 -4.23 1.75
1,1-diacetoxyethane 2.39 -8.77 -6.39 -4.97 -1.42
1,1-diethoxyethane 2.13 -4.52 -2.39 -3.28 0.89
1,4-dioxane 1.38 -6.85 -5.47 -5.05 -0.42
diethyl propanedioate 2.67 -9.04 -6.37 -6.00 -0.37
dimethoxymethane 1.34 -5.23 -3.89 -2.93 -0.96
ethylene glycol diacetate 2.31 -9.88 -7.57 -6.34 -1.23
1,2-diethoxyethane 2.14 -5.30 -3.15 -3.54 0.39
diethyl sulfide 1.74 -2.93 -1.2 -1.43 0.23
phenyl formate 1.98 -8.22 -6.25 -4.08 -2.17
imidazole 1.11 -13.45 -12.34 -9.81 -2.53

Table 3.3: Computation of solvation free energies ∆G (kcal/mol) for the 17 small compounds
based on the molecular surface generated by fractional PDE transform with order α = 11.5
and propagation time t = 104. Gnp: nonpolar component; ∆Gp: polar component; Exptl:
experimental data; Error: ∆Gp- Exptl.
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In Table 3.3, there list calculated total solvation free energies of a set of 17 small com-

pounds, compared with corresponding experimental data. The nonpolar free energy Gnp and

electrostatic energy ∆Gp are calculated by Eqs. (3.43) and (3.44), respectively, based on the

molecular surface based on the FPDE transform with order α = 11.5 and propagation time

t = 104. The reader is referred to Ref. [38] for a detailed description of atomic coordinate and

charge parameters. The total solvation free energy ∆G = Gnp + ∆Gp. For comparison, the

corresponding experimental measurements (Exptl) of these compounds are also listed. We

can conclude that the application of FPDE transform-based molecular surface in calculation-

s of free solvation energy is validated, because the agreement between the simulations and

experimental data is fairly good. The root mean square error (RMSE) of the computation

results is 1.77 kcal/mol and the average error is 1.42 kcal/mol. In comparison, Nicholls et al

[129] reported a RMSE of 1.87 kcal/mol for the same set of molecules by the linear Poisson

model and further, the RMSE was reduced to 1.71 ± 0.05 kcal/mol [129] by their explicit

solvent approach, which is much more expensive. Additionally, the RMSE in the current

work is only slightly greater than the one (RSME=1.76 kcal/mol) reported in [37], where the

biomolecular surface is defined and generated from a nonlinear mean curvature flow equation

so extra computational efforts are necessary. Therefore, FPDE transform-based molecular

surface provides a relatively good foundation to predict the solvation energies for this set of

molecules.

Figure 3.12 depicts the surface morphologies and surface electrostatic potentials of 9

compounds. It is seen that fractional PDE transform offers useful information of molecu-

lar morphology, which is crucial to the understanding of molecular physical, chemical and

biological properties.
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3.5 Chapter conclusion remarks

The emergence of complexity in self-organizing biological systems poses exciting challenges

to their quantitative descriptions and predictions. Images, surfaces and visualization of

complex biomolecules, such as proteins, DNAs, RNAs, molecular motors and viruses, are

crucial to the understanding and conceptualization of biomolecular systems, which in turn

can have significant impacts in biomedicine, rational drug design, drug discovery and gene

therapy. PDE transform is a new approach for mode decomposition of images, surfaces and

data [171, 169]. It makes use of arbitrarily high-order nonlinear PDEs for the control of

time-frequency localization and the regulation of spatial resolution. The PDE transform

has found its success in the analysis of non-stationary signals and noisy images [171, 169].

Recently, it has also been applied to the molecular generation of biomolecules [204]. However,

our previous PDE transform depends on the use of integer order PDEs of arbitrarily high-

orders. In this work, we extend the PDE transform to fractional PDE transform by using

fractional derivatives of arbitrarily high orders.

Fractional derivative or fractional calculus has received much attention in the past decade.

Its concept naturally arises in science and engineering, and includes integer derivatives as

special cases. However, most work in the field involves only relatively low order fractional

derivatives. Fractional derivatives of orders higher than 2 are seldom used. It is not clear that

how to use arbitrarily high-order fractional derivatives in theoretical modeling and practical

computation.

To demonstrate the utility of fractional derivatives of arbitrarily high-orders, we pro-

pose high-order fractional PDEs and the corresponding fractional PDE transform. Using

the fractional variational principle, we construct nonlinear fractional PDEs based fractional
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hyperdiffusion. Introducing an artificial time, the resulting high-order fractional PDEs are

converted to time-evolution fractional PDEs. Numerical techniques based on fast fraction-

al Fourier transform (FFFT) is developed to compute the high-order fractional PDEs in

three-dimensional setting.

The proposed high-order fractional PDEs are applied to the surface construction of

macromolecular surfaces, which are crucial components in the implicit solvent models [67],

charge transport models [201] and variational multiscale models [180, 184]. We consider

three types of initial values to study the proposed high-order fractional PDEs. Additionally,

we examine the effect of the orders of fractional PDEs on the surface morphology. It is found

that high-order fractional PDEs are crucial to the quality of molecular surfaces. We also test

the impact of the PDE integration time on surface generation. Moreover, we examine the

computational efficiency of the present method. Efficiency is one of major motivations for

developing new surface generation methods. It is found that the proposed high-order frac-

tional PDEs are of linear scaling with respect to number of atoms in a molecule. We further

validate the present method by quantitative analysis of surface areas and surface enclosed

volumes of proteins. Finally, the surfaces constructed by the present approach is applied to

a couple of biophysical problems, namely, the electrostatic analysis via the Poisson equation

and the solvation analysis via a full solvation model. The results from these biophysical

problems indicate that the proposed high-order fractional PDEs are a robust and efficient

method for macromolecular surface generation.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.12: Illustration of surface electrostatic potentials of nine small compounds at their
corresponding isosurfaces u(r, 104) = 0.5. (a) benzyl bromide; (b) bis-2-chloroethyl ether; (c)
1,1-diacetoxyethane; (d) diethyl propanedioate; (e) diethyl sulfide; (f) dimethoxymethane;
(g) m-bis benzene; (h) N,N-4-trimethylbenzamide; (i) phenyl formate.
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Chapter 4

Modeling of Impact of geometric,

thermal and tunneling effects on

nano-transistors

4.1 Introduction

Design, manufacture and operation of electronic devices, such as metal oxide semiconductor

field effect transistors (MOSFETs), have been down-scaled to nanometers, due to continuous

demand in improving the performance. The ultimate channel length of nano-MOSFETs is

expected to be below 10nm [65]. To this end, down-scaling of gate oxide, connecting mate-

rial, doping size, operating voltages and other physical parameters is required [54, 43, 23].

At such a channel length, characteristics of devices quickly approaches the atomic scale and

the associated physical limits. Consequently, quantum mechanical effects, including quan-

tum coherence, correlation and/or entanglement, become significant and will dramatically

impact macroscopic quantities of nano-devices, such as current-voltage characteristics and

conductance due to channel tunneling and gate leakage. These effects may devastate classical

functions of MOSFETs. Recently, many properties of down-scaling associated devices are

investigated using quantum mechanical means. Some of these properties include (i) electron
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scattering with semiconductor-on-insulator (SOI) interface roughness; (ii) electron scattering

under interactions with phonons; (iii) self-heating of devices; (iv) statistical fluctuations due

to atomistic dopants; (v) choice of high-k materials for optimal device design and perfor-

mances. Properties of nano-devices have been extensively studied for MOSFET, FinFET,

and various other silicon on insulator (SOI) devices in the literature [3, 84, 104, 189, 192, 193],

as well as two dimensional devices based on graphene [161].

Many tools in quantum mechanical theory have been developed in past decades in mod-

eling and simulation of nano-scale devices. First of all, electronic structure in terms of

wavefunctions is required in most transport evaluations. However, quantum mechanical first

principle description of nano-scale devices is intractable and approximations are indispens-

able. The coupled system including a Schrödinger equation and a Poisson equation usually

serves as one of the lowest levels of approaches [118, 160, 17, 100, 6, 59, 144, 12]. The

Schrödinger equation describes a single electron dynamics in a band structure of the solid,

whereas the Poisson equation provides the electrical potential of the device. Furthermore,

linear combination of bulk band (LCBB) method [97] , Hartree-Fock method [149] and the

density functional theory (DFT) [91, 107, 133] are theoretical models for many-body elec-

tronic interactions at different levels of approximation accuracies and computational costs.

The non-equilibrium Green’s function (NEGF) method [168, 89, 45, 44] is currently the

main workhorse for electron structure and transport modeling of nano-devices. It is a gen-

eral formalism to utilize the Fermi-Dirac statistics, and to include various interactions of

charge carries, such as scattering processes of particles (i.e., electrons and phonons), or

correlations due to the surroundings. On the other hand, some classical methods, such

as drift-diffusion models, Vlasov-Poisson equation, or Monte Carlo methods, can be modi-

fied by “quantum corrections” to study electron transport in the quantum ballistic regime
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[88, 26, 48, 26, 4, 103]. Additionally, quantum Boltzmann equation, or known as Waldmann-

Snider equation [166, 150], can also give derivations of transport equations with quantum

corrections. The reader is referred to the literature [40, 60, 124, 84, 96, 35, 42] for many

other models and computational methods.

Recently, we have introduced a multiscale variational framework for nano-device modeling

[35]. In this framework, the macroscopic description of electrostatic potentials is integrated

with the microscopic description of electronic structure. We set up an energy functional for

the total energy of the system, which includes the electrostatic energy of the device and

the energy of the electron. The latter constitutes kinetic and potential energies. From the

variation of the energy functional with respect to electron wavefunction and electrostatic

potential, we derive coupled Kohn-Sham equation and Poisson equation for nano electronic

devices. When down to nano-scale, the semiconductor-insulator material interface can not

be considered to be smooth. We introduced interfaces to model the material separation

among different components of device, which has an important impact on the governing

equations. For example, in order for the Poisson equation to describe the electrostatic

potential involving material interfaces, interface jump conditions are required to ensure the

well-posedness of the equation. Additionally, we introduce Dirac delta functions to model

random dopings. The resulting problems are elliptic equations with discontinuous coefficients

and singular sources. A set of advanced numerical algorithms have been developed to improve

computational efficiency and accuracy in nano-device simulations: the matched interface and

boundary (MIB) method [207] and Dirichlet-to-Neumann Mapping (DNM) scheme [196]

ensure the accuracy of the electric field with abruptly discontinuous dielectric permittivity

and individual dopants. We also used a mode-space decomposition method based on the

MOSFET geometry to reduce the fully 3D problem into the coupled 2D and 1D ones. A
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self-consistent iteration method is used to solve the coupled equations.

The objective of the present work is to explore the impact of nano device design parame-

ters on device the performance, including quantum tunneling effects. We show that different

configurations of channel geometries have impacts on device performance in terms of current-

voltage curves, or I-V curve, due to the geometry induced changes in electron confinement

and electron-interface scattering. Additionally, only electron-potential field scattering is

considered in the previous work, while in the formulation of current paper, electron-phonon

scattering is accounted as well. Further, temperature dependence and quantum tunneling

effects in the channel length are tested for the whole system. In this study, we explore the

quantum tunneling effect and macroscopic performances of a four-gate MOSFET model,

under different channel geometry, phonon-electron interactions and temperature.

The rest of this paper is organized as follows. In Section 4.2, the theoretical model is

briefly reviewed. A total free energy functional is set up and governing equations are derived

by the variational principle. Numerical algorithms for each governing equations and the

iteration procedure are described in Section 4.3. In Section 4.4, we design a number of inter-

esting channel-crossing section shapes to understand the impact of geometry on a four-gate

MOSFET model with silicon/silicon-dioxide (Si/SiO2) interfaces. Numerical simulations are

also carried out to explore quantum tunneling effects and phonon-electron interactions. The

paper ends with a conclusion in Section 4.5.

Our model is formulated with a unified free energy functional [35], which consists of

the free energy of electrons and electrostatic potential energy of the system. The whole

computational domain of the nano-device, denoted by Ω, is partitioned into two subdomains

due to the composited semiconductor and insulator materials. The silicon region and the

silicon dioxide part are denoted by ΩSi and ΩSiO2
, respectively. The semiconductor-insulator
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interface separating these two subdomains is ΓSi/SiO2
, i.e., Ω = ΩSi ∪ΩSiO2

and ΓSi/SiO2
=

ΩSi ∩ ΩSiO2
.

4.2 Theoretical models

Our model is formulated with a unified free energy functional [35], which consists of the free

energy of electrons and electrostatic potential energy of the system. The whole computational

domain of the nano-device, denoted by Ω, is partitioned into two subdomains due to the

composited semiconductor and insulator materials. The silicon region and the silicon dioxide

part are denoted by ΩSi and ΩSiO2
, respectively. The semiconductor-insulator interface

separating these two subdomains is ΓSi/SiO2
, i.e., Ω = ΩSi ∪ ΩSiO2

and ΓSi/SiO2
= ΩSi ∩

ΩSiO2
.

4.2.1 Free energy of electrons

For simplicity, we consider electrons as the major charge carriers in the device, i.e., density

and transport of holes are neglected. Due to the nano-scale of the device, electrons are

modeled quantum mechanically. The total Hamiltonian of the electrons includes kinetic

energy and potential energy, as described below.

4.2.1.1 Kinetic energy

Let Ψj be the Kohn-Sham orbitals of the electrons with energy Ej , then the kinetic energy

density of the electrons is

∫ ∑
j

~2f(Ej − µ)

2m(r)
|∇Ψj(r)|2dr, (4.1)
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where m(r) is the effective mass of electrons, ~ is the Planck constant, and µ is the Fermi

energy related to applied voltages. The general summation
∑
j

includes the situation when

j is continuous, in which we have the identity in Rs for a function g(j)

∑
j

g(j) =
2

(2π)2

∫
g(j)(dj)s. (4.2)

In Eq. (4.1), all energy levels Ej are weighted by the Fermi-Dirac function

f(Ej − µ) =
1

1 + exp

(
Ej−µ
kBT

) , (4.3)

where kB is the Boltzmann constant and T is the temperature.

4.2.1.2 Potential energy

The potential energy of electrons is associated with the density of electrons, which can be

represented by

n(r) =
∑
j

|Ψj(r)|2f(Ej − µ). (4.4)

The potential is formulated in terms of the interactions of electrons among themselves and

with surroundings. First, electrons interact repulsively among themselves, then the energy

is

Uelec/elec =
1

2

∫
q2n(r)n(r′)
ε|r− r′|

dr′, (4.5)

where ε is the dielectric permittivity.

Additionally, electrons interact with nuclei and the energy resulting from this interaction
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is described as

Uelec/nuclei = −
Na∑
i

q2n(r)Zi
ε|r− ri|

, (4.6)

where Ziq and ri (i = 1, 2, ..., Na) are the charges and positions of the i-th nucleus, respec-

tively.

Furthermore, devices are usually heavily doped, if we consider the specific N-type doping,

the interaction of electrons and dopants is

Uelec/dop = −
∫
q2n(r)nd(r

′)
ε|r− r′|

dr′, (4.7)

where nd(r
′) is the prescribed doping density. Note that at nano-scale, atomic dopants need

to be included. The formulation of interactions between electrons and individual dopants

can be accounted by the form of Eq. (4.6).

Since electrons are confined in the channel with the semiconductor-insulator interface

ΓSi/SiO2
, we can write the total energy for electrons

Gelectron
ΓSi/SiO2

[n] =

∫ ∑
j

~2f(Ej − µ)

2m(r)
|∇Ψj(r)|2 + EXC[n] + Ephon[n]

+
1

2

∫
q2n(r)n(r′)
ε(r)|r− r′|

dr′ −
Na∑
i

q2n(r)Zi
ε(r)|r− r′i|

−
∫
q2n(r)nd(r

′)
ε(r)|r− r′|

dr′

 dr,(4.8)

where the exchange correlation EXC[n] and electron-phonon interaction Ephon[n] are also

included.
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4.2.2 Electrostatic free energy of the system

The charge source of the nano-device system includes electrons, nuclei, and dopants, so

letting electrostatic potential of the system be u(r), we have the total free energy of electrics

as

Gelec
ΓSi/SiO2

[u] =

∫ ε(r)

2
|∇u(r)|2 − u(r)

n(r)(−q) +

Na∑
i

Ziqδ(r− r′i) + nd(r)q

 dr,

(4.9)

where ε(r) is the position-dependent dielectric permittivity since it is different in the semicon-

ductor and the insulator regions. The charge density of nuclei is expressed by

Na∑
i

Ziqδ(r− r′).

Notice that u(r) can be expressed in a free space as

u(r) =

∫
n(r′)(−q)
ε(r)|r− r′|

dr′ +
∫

nd(r
′)q

ε(r)|r− r′|
dr′ +

Na∑
i

Ziq

ε(r)|r− r′i|
, (4.10)

which is the formulation exactly representing the interactions between electrons and nuclei,

doping, and themselves in Eq. (4.8).
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4.2.3 Total free energy functional

Combining Eqs. (4.8) and (4.9), and with relation (4.10), we obtain the total free energy

functional

GΓSi/SiO2
[u, n] =

∫ ∑
j

~2f(Ej − µ)

2m(r)
|∇Ψj(r)|2 + Uelec[n] + EXC[n] + Ephon[n]

+ u(r)nd(r)q + u(r)q

Na∑
i

Ziδ(r− ri)−
ε(r)

2
|∇u|2

+ λ

n0 −
∑
j

f(Ej − µ)|Ψj(r)|2
 dr. (4.11)

The last line is the constraint for wavefunction Ψj(r), where λ is the Lagrange multiplier

and

n0 =
1√
2

(
mkBT

π~2

)3/2

is the intrinsic density-of-state of an electron system.

4.2.4 The Poisson equation

Taking variation of Eq. (4.11) with respect to function u(r), we have the Poisson equation

δGΓSi/SiO2
[u, n]

δu
= 0⇒ −∇ · (ε(r)∇u(r)) = qntotal, (4.12)

where

ntotal = −n(r) + nd(r) +

Na∑
i

Ziδ(r− r′i). (4.13)

Since the permittivity ε(r) takes different values in Si and SiO2 regions, it is discontinu-

ous across the semiconductor-insulator interface ΓSi/SiO2
. We consider the following jump
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conditions along ΓSi/SiO2
as

[u] = u+(r)− u−(r) = 0, at ΓSi/SiO2
(4.14)

[ε∇u · ~n] = ε+∇u+(r) · ~n− ε−∇u−(r) · ~n = 0, at ΓSi/SiO2
, (4.15)

where ~n is the unit outer normal direction of the interface ΓSi/SiO2
, and the superscripts

“+” and “−” represent limiting values of the corresponding functions on ΩSi and ΩSiO2
,

respectively. These conditions make the Poisson equation well-posed [196].

4.2.5 Generalized Kohn-Sham equation

Taking variation of Eq. (4.11) with respect to Ψ†(r), the complex conjugate of Ψ(r), we

have the generalized Kohn-Sham equation:

δGΓ[u, n]

δΨ†
= 0⇒

(
−∇ · ~

2

2m
∇+ u(r)(−q) + UXC[n(r)] + Uphon[n(r)]

)
Ψj(r) = EjΨj(r),

(4.16)

where UXC[n(r)] =
δEXC[n(r)]

δn and Uphon =
δEphon[n(r)]

δn are the exchange-correlation poten-

tial and electron-phonon potential, respectively.

The Poisson equation (4.12) and the Kohn-Sham equation (4.16) are to be solved itera-

tively to obtain the electrostatic potential and the wavefunction. This aspect is described in

the next section.
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4.3 Computational algorithms

In the present paper, we neglect UXC[n(r)] for simplicity and leave it for future studies. In

the following discussion of numerical methods, we first consider the model without phonon

effect Uphon as in [35] and incorporate the phonon-electron interactions later on. As a result,

the equation (4.16) turns into the typical Schrödinger equation.

(
−∇ · ~

2

2m
∇+ u(r)(−q)

)
Ψj(r) = EjΨj(r). (4.17)

Note that Eq. (4.17) is coupled back to the Poisson equation (4.12), so it is nonlinear.

4.3.1 The Poisson equation

Individual dopants and their induced fluctuations in device performance have been studied

elsewhere [35]. In the present work, we focus on the geometry effects, tunneling behavior and

phonon-electron interactions, so only the continuous doping is considered and the Poisson

equation is taken as

−∇ · (ε∇u) = −q(n+ND −NA), (4.18)

where ND and NA are given continuous doping density functions; the letter D and A

denotes donor and acceptor, respectively. For the boundary condition of Eq. (4.18), it takes

the Dirichlet boundary condition where external voltages are applied, denoted by Γvol, and

the Neumann boundary condition for the rest of the device.

Since ND and NA are given fixed functions, it is convenient to decompose the potential
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u as u = ufix + uloop. The potential component ufix solves the equation

−∇ · (ε∇ufix) =− q (ND −NA) (4.19)

[ufix] =0 at ΓSi/SiO2
(4.20)

[ε∇ufix · ~n] =0 at ΓSi/SiO2
, (4.21)

where the bracket [·] indicates the jump as defined in Eqs. (4.14) and (4.15). We set the

boundary conditions

ufix =0 at Γvol (4.22)

ε∇ufix · ~n =0 at other boundaries. (4.23)

And the function uloop solves

−∇ · (ε∇uloop) =− qn(r) (4.24)

[uloop] =0 in ΓSi/SiO2
(4.25)

[ε∇uloop · ~n] =0 in ΓSi/SiO2
, (4.26)

with boundary conditions

uloop =uvoltage at Γvol (4.27)

ε∇uloop · ~n =0 at other boundaries. (4.28)

The elliptic interface problems (4.19)-(4.23) and (4.24)-(4.28) are solved by the matched
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interface and boundary (MIB) method [33, 207, 194, 196], which is a high-order numerical

scheme that can handle various challenges from material interface and have been successfully

applied to many other areas. For more details about the formulation of high-order MIB

methods and their applications, the reader is referred to Refs. [33, 207, 194, 196].

4.3.2 Scattering problem

Fully solving Eq.(4.16) in 3D is always a challenge in MOSFET simulations because of the

heavy computational cost. However, the computational complexity can be reduced by taking

advantage of the geometry and working principles of the devices. Particularly, if we consider

the direction connecting source and drain ends of the devices as the transport direction (de-

noted by x-direction), then electrons are confined within y-z direction due to the insulator.

Therefore, the y-z directions are regarded as the confined directions. Based on this consid-

eration, the whole wave function can be written as Ψj(r) = Ψj,kx(r) = ϕj(y, z;x)ϕ
j
kx

(x),

and Eq. (4.16) is thus decomposed as, in the confined y-z directions at each position x0:

[
− ~2

2my,z

(
d2

dy2
+

d2

dz2

)
− qu(y, z;x0)

]
ϕj(y, z;x0) = E

j
scat(x0)ϕj(y, z;x0) (4.29)

and along the transport x-direction,

(
− ~2

2mx

d2

dx2
+ E

j
scat(x)

)
ϕ
j
kx

(x) = E
j
kx
ϕ
j
kx

(x), (4.30)

where mx and my,z are effective electrons mass in the x and y-z directions, respectively.

When the electric filed u(r) is available, we first need to solve eigenvalue problems as Eq.

(4.29) at each position x0, since the electrons are assumed not to penetrate the Si/SiO2 in-
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terface. The resulting eigenvalues (or confined energies) E
j
scat(x0), j = 1, 2, 3, ... are discrete

and only the lowest several of them make significant contributions due to the Fermi-Dirac

statistics, thus only the first M functions E
j
scat(x), j = 1, 2, ...,M and corresponding eigen-

functions ϕ
j
kx

(x) are typically utilized. Here M is usually less than 5 due to the fast increase

in energy E
j
scat(x) as j increases.

Equation (4.30) is a scattering problem so that the eigenvalue E
j
kx

is continuous; the

function E
j
scat(x) obtained from Eq. (4.29) is sometimes called subband energy and consid-

ered as transport potential energy. The wavefunction ϕ
j
kx

(x) is not directly solved, in stead,

the Hamiltonian of electrons in scattering direction, Hscat, is given as

Hscat = − ~2

2mx

d2

dx2
+ E

j
scat(x), (4.31)

and the j-th scattering electron density in Eq. (4.33) is calculated as [44, 35]:

n
j
scat(x) =

1

2π

∫
R

(
f(Hscat − µSI)AS(E

j
kx

) + f(Hscat − µDI)AD(E
j
kx

)
)
dE

j
kx
, (4.32)

where I is the identity operator, AS(E
j
kx

) and µS are the spectral operator and Fermi-level

at the source end, respectively. Similar notations, AD(E
j
kx

) and µD are used for the drain

end.

By this means, the total electron density is given by

n(r) =
M∑
j

|ψj(y, z;x)|2|ψjkx(x)|2f(E
j
kx
− µ)

=
M∑
j

|ψj(y, z;x)|2njscat(x), (4.33)
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and total electron current is computed in the formula of

Itot = −
∫ ∞
−∞

q

~
TrTDS(E

j
kx

)[f(Htot − µSI) + f(Htot − µDI)]dE
j
kx
, (4.34)

where Htot = Hscat + E
j
kx

is the total Hamiltonian, Tr(·) is the trace operator, and TDS is

the transmission operator [44, 35].

4.3.3 Modeling the phonon-electron interaction

Acoustic and optical phonon scattering is an important supplementary component of the

interactions of electron with the whole environment. In the Boltzmann transport equation-

based classical models [41], the phonon-electron interaction appears in the collision operators

of the Boltzmann equation, while in the non-equilibrium Green’s function (NEGF) model

for nano-devices [44], this interaction is considered as a self-energy function. Equation (4.11)

has taken into account the phonon-electron interaction in the total energy framework and

our goal here is to develop a direct formulation.

First we assume that, as in [41], all the phonons have a single frequency ωp and the

number density of phonons is homogeneous in the device. Thus we can consider the phonon-

electron interaction mainly in the transport direction, then the Eq. (4.30) is modified by

incorporating Uphon:

(
− ~2

2mx

d2

dx2
+ E

j
scat(x) + Uphon

)
ϕ
j
kx

(x) = E
j
xϕ

j
kx

(x). (4.35)

Further, it is assumed that the phonon density depends on its energy Ep = ~ωp and
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follows the Bose-Einstein statistics,

Np =

[
exp

(
Ep
KBT

)
− 1

]−1

. (4.36)

Therefore, we have Uphon

Uphon = NpEp. (4.37)

In the present model, two statistics, the Bose-Einstein statistics for phonons and the Fermi-

Dirac statistics for electrons, are involved. Since both statistics depend on temperature, T

will play an important role in the model performance.

4.3.4 Self-consistent iteration

The self-consistence of Eqs. (4.12) and (4.16) are numerically achieved by the Gummel-like

iteration [47, 35] and the procedure is outlined as following:

• Step 0 (Solution of ufix ) Solving Eq. (4.19-4.23) is out of the whole iteration loop and

once ufix is obtained, it remains fixed in every step in the proceeding iterations;

• Step 1 (Solution of uloop by inner iteration): We assume that nk and u
loop
k , k =

0, 1, 2, ... are available from the previous steps, then solve the following non-linear

Poisson equation for u
loop
k+1:

−∇ · (ε∇uloop
k+1) = −qn0F1/2

(ufix + u
loop
k+1 − ζk)q

kBT

 , (4.38)
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where ζk is the quasi-Fermi potential in the k-th step calculated through

ζk(r) = ufix + u
loop
k + F−1

1/2
(nk/n0), (4.39)

and F1/2 is the Fermi-Dirac integral of order 1/2 defined as

F1/2(x) =

∫ ∞
0

y1/2dy

1 + ey−x
. (4.40)

The non-linear Poisson equation (4.38) is iteratively solved with the corresponding

interface and boundary conditions in Eqs. (4.25)-(4.28).

• Step 2 (Eigenvalue problem): We solve Eq. (4.29) in the y-z directions for ψj(y, z;xi)

and E
j
scat(xi) along the x-direction at each grid point xi.

• Step 3 (Scattering problem and electron density): We solve the scattering problem

(4.30)-(4.32); using (4.33), we obtain the electron density nk+1(r) in the k+ 1-th step.

• Step 4 (Convergence check): The convergence is checked by ||nk+1 − nk|| < δ, where

δ is a given criteria. If convergence is achieved, then go to Step 5, otherwise go back

to Step 1.

• Step 5 (Electronic current): After we obtained the convergent potential and electron

density, we can obtain the electronic current by Eq. (4.34).

Figure 4.1 gives an illustration of the workflow for the current self-consistent iteration scheme.
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Solve for ufix

Solve uloop by inner iteration

Solve eigenvalue problem

Solve scattering problem

||nk+1 − nk|| < δ ?

Outer iteration

Output electronic current

no

yes

Figure 4.1: The flowchart of Gummel-like self-consistent iteration.

4.4 Numerical experiments and discussions

4.4.1 A four-gate MOSFET model

To study the channel geometric effects, electron tunneling and electron-phonon interactions

by the proposed model, we consider a simple four-gate MOSFET device, i.e., silicon nanowire

transistor and present our numerical results for the proposed models. Figure. 4.2(a) illus-

trates the overall configuration of this type of MOSFET: the semiconductor channel (silicon)

in cylinder shape is bounded by the insulator material (silicon dioxide). Functions of the

nano-devices are manipulated by two types of voltages: the source-drain denoted by VDS

and the voltage applied on the all-around gate denoted by VGate. Without loss of generality,

we set x-direction as the electron transport direction and y-z directions as the confined di-
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Figure 4.2: Illustration of a four-gate MOSFET with a cylinder channel: (a) Overall 3D
configuration; (b) View of the x-z cross section.

rections. Figure 4.2(b) gives a detailed demonstration of the device in the x-z cross-section,

from which it can be seen that N-type doping (denoted by N) is applied to the two ends of

the channel. In the current work, we also apply the present model to channels with different

shapes of y-z cross-sections other than the disk. As shown in Figure 4.3(a) and (b), the

channels with y-z cross-sections of a circle and a flower-like geometry, are also considered.

In the sequel, the three types of channels with different cross-sections in y-z directions are

called the cube, cylinder and flower-like channels as explained in Figure 4.2. The total length

of the device along x-direction is 30nm with 10nm for each doping area and channel.

For computational convenience, the x-z cross-section of the MOSFET shown in Figure

4.2 (b) is simplified as the one in Figure 4.4. The channel (LGHK) is sandwiched by the
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Figure 4.3: (a) y-z cross-section of a channel: circle; (b) y-z cross-section of channel: flower-
like shape.

insulator layers ABGL and KHCD, and LG and KH are the two Si/SiO2 interfaces. The

boundary segments EF and JI are considered where the gate voltages are applied while LK

and GH are regarded as source and drain ends, respectively. Hence, Figure 4.4 also indicates

the boundary conditions of the Poisson equation: Dirichlet boundary conditions VGate are

applied on EF and JI. Similarly, Dirichlet boundary conditions VDS are applied on LK and
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GH. Homogeneous Neumann boundary conditions are imposed on the rest of the boundary.

In solving the Schrödinger equation, electrons are assumed to be confined by LG and

KH, along with the boundaries of different shapes in the y-z cross-section (n(r) = 0 at these

boundaries), while scattering boundary conditions are used at LK and GH.

Figure 4.4: Demonstration of the simplified computational domain for the MOSFET. Dark:
insulator layer; grey: doped channel region; and white: un-doped channel region. Gate
voltages are applied at boundary segments EF and IJ, and source-drain voltages are applied
on the boundary segments GH and LK.

In the present model, the parameters for the equations are set as follows. For the Poisson

equation, the dielectric constants for silicon layer and silicon dioxide layer are εSi = 11.7ε0

and εSiO2
= 3.9ε0, respectively, where ε0 is the dielectric constant for the vacuum. The

reference continuous N-doping is taken as ND(r) = 2× 1020/cm3, NA(r) = −1× 1020/cm3.

For the eigenvalue problem and scattering problem, the first three subbands are adopted since

they dominantly contribute to electron density and current over higher ones. The electron

effective mass is taken as mx = 0.50m0 in the transport direction and myz = 0.318m0 in

the confined directions. Room temperature of T = 300K is assumed except when specified.
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4.4.2 General results of electric field and electron density
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Figure 4.5: Electrostatic and electron density profiles from the x-z cross-section view at
y = 2.5nm in the silicon area of the MOSFET with the cylinder channel (Source-drain
voltage VDS = 0.4V and gate voltage VGate = 0.4V). (a) Electrostatic potential energy
(eV); (b) Electron density (1e26/m3).
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We first present some fundamental profiles of electric field and electron density for the

MOSFET with a cylinder channel. In order to give a clear description, 2D data in the x-z

cross-section (at y = 2.5nm) of the silicon area of the MOSFET are shown in Figs. 4.5(a)

and (b), for electric field and electron density, respectively. In Figure 4.5(a), the electrostatic

potential energy of electrons is relatively lower in the source and drain regions due to the

dopants while remains as an energy barrier in the middle. Electrons are injected from the

source and collected at the drain; they have to overcome the potential barrier in the middle

in order to transport along the devices. Correspondingly, as shown by Figure 4.5(b), the

resulting electron density is lower in the middle and higher in the source and drain regions.

Since we assume that electrons cannot penetrate the semi-conductor-insulator interface, the

electron density is zero in the silicon dioxide region, which is not displayed in the figures.

In there figures, the source-drain voltage difference is taken as VDS =0.4V and the gate

voltage is taken as VGate = 0.4V. Later on we will see the performance of the device can be

controlled by adjusting VDS and VGate.

The potential barrier in the channel can also be illustrated by the subband energy profiles.

Due to the nano scale of the devices, there are strong confinement effects in the y-z cross-

section, thus the total transporting energy can be approximated as discrete subband energies.

Because of the Femi-Dirac distribution, only the first or lowest several of them have significant

contributions to the total electron current. Figure 4.6 illustrates the first subband energy

profiles of the MOSFET at two different gate voltages, with the source-drain voltages fixed

at VDS = 0.4V. It can be concluded from the figure that increasing the gate voltage will

lower down the potential barrier in the device channel and thus lead to a larger electron

current, which can be further seen in the I-VGate curve in Figure 4.7 (b).

Figure 4.7 illustrates the impacts of gate voltage and source-drain voltage differences on
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Figure 4.6: Subband energy profile along the transport direction under gate voltages VGate =
0.1V(Dashed line) and VGate = 0.4V(Solid line) for the MOSFET with the cylinder channel
(source-drain voltages is fixed at VDS = 0.4V).
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Figure 4.7: Current-voltage (I - V) curves of the MOSFET with the cylinder channel. (a)
I-VDS curve (gate voltage fixed at VGate=0.4V); (b) I-VGate curve (source-drain voltage
fixed at VDS =0.4V).

the electron current, respectively. It is observed from Figure 4.7(a) that, when the gate

voltage is fixed at VGate=0.4V, the electron current increases with the source-drain voltage
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Figure 4.8: I-VGate curves of MOSFETs with different geometries of channel (VDS=0.4V).
(a) Four types of cross-sections channels; (b) Corresponding I-VGate curves.

difference and achieves a saturation later on. In contrast, when the source-drain voltage is

fixed at VDS=0.4V, the electron current grows dramatically when the gate voltage VGate

passes a certain threshold, as shown in Figure 4.7 (b).

4.4.3 Performances of nano-MOSFETs with different channel ge-

ometries

Performances of nano-MOSFEs with different channels (cube, cylinder, and flower-like chan-

nels) are examined in terms of I-V curves.

In Figure 4.8 we compare the I-V curves of the channels that have different areas of the

cross-sections. Four types of channel cross sections, including a small circle, a large circle,

a square, and a flower-like shape, are tested in our experiments. These silicon channels are

embedded in the insulator materials (SiO2) of the same dimension (5nm by 5nm). The

interfaces enclose different silicon areas and their relations are shown in Figure 4.8(a). In
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Figure 4.9: The I-VGate curves of MOSFETs with different channel cross-sections but with
the same cross-section area ( source-drain voltage fixed at VDS=0.4V).

Figure 4.8(b), the I-V curves of the nano-MOSFETs with the corresponding y-z cross-sections

are displayed. It can be easily concluded that given the same gate and source/drain voltage,

the smaller of channel cross-section area is, the lower electron current is obtained in the

corresponding MOSFET.

It is also interesting to explore the performances of the nano-MOSFETs with different

channel geometries but with the same area of the y-z channel cross-section. This set of

experiments are designed to test geometry effects of the Si/SiO2 interfaces. We still consider

the nano-MOSFETs with square, circle and flower-like channel cross sections and examine

their corresponding I-V curves in Figure 4.9. The areas enclosed by the square, circle and

flower-like curve, see Figure 4.9 (a), are the same as the small circle does in Figure 4.8(a).

Comparing the three solid I-V curves in Figure 4.8(b) and Figure 4.9(b), respectively, we

find that although the areas of the cross-sections are the same, the electron currents at

various gate voltages from the cylinder channel are the highest, then followed by the currents
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from channels with square and flower-like cross sections. Therefore, we conjecture that for

the cross-sections of channels in the confined directions, the smaller perimeter of Si/SiO2

interface will result in larger magnitude of electron current, when the area are the same.

The performances of the three types of channels are further analyzed in terms of their

corresponding subband energies along the transport direction. In Figure 4.10, the subband

energy profiles of the channels with the same area of cross-sections but with square, circle

and flower-like cross section shapes, are plotted along the confined direction. As can be

seen in Figure 4.10 (a), the barriers of subband energies (i.e., eigenvalues) of the channels

with flower-like and circle cross sections are the highest and lowest, respectively, which are

consistent with the corresponding the smallest and largest magnitudes of electron currents.

The confinement effects of the three different cross-sections with the same area are shown in

Figure 4.10 (b), in which the difference between the first (u1
scat(x)) and the second (u2

scat(x))

subband energies is plotted for each channel. The differences between the first two subband

energies from the channels with flower-like and circle cross sections are the largest and

smallest, respectively, which indicate that the confinement of the channels with flower-like

and circle Si/SO2 interfaces are the strongest and weakest among the three geometries,

although their enclosed areas are the same.

4.4.4 Quantum tunneling effects

A significant difference between nano-devices and classical devices is the possible electron

tunneling effects. From Figure 4.5(a) or 4.6, we can see that there is an electric energy

barrier in the channel. We denote the maximum of subband energy by Emax, i.e., Emax =

sup
x0

E
j
scat(x0). In classical models, any electron with energy lower than Emax from the source

can not overcome the barrier and arrive the drain. However, in a quantum mechanical model,
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Figure 4.10: Subband energy profiles along the transport direction for MOSFETs with dif-
ferent geometries of channel cross-sections(source-drain voltages is fixed at VDS = 0.4V and
gate voltages VGate = 0.4V). (a) First subband energies of different channels; (b) Difference
of first two subband energies of each channel.
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electrons with energy less than Emax may be able to pass the barrier and result in electron

current. This electron tunneling current cannot be neglected in the nano-scale devices.

A method to study the quantum tunneling is to investigate the contribution to the

current density by electrons of various energies. The theoretical total current density Itot

is computed by the formula in Eq. (4.34). For convenience, we only consider the transport

energy E and use the formulation:

Itot = −
∫ ∞
−∞

q

~
TrTDS(E)[f(Htot − µSI) + f(Htot − µDI)]dE, (4.41)

define the total current contributed by the tunneling effects, Iqt, by

Iqt = −
∫ Emax

−∞

q

~
TrTDS(E)[f(Htot − µSI) + f(Htot − µDI)]dE, (4.42)

and denote the ratio of quantum tunneling current by

Rqt =
Iqt

Itot
. (4.43)

Obviously, if Iqt = 0, the mechanism is entirely classical. By contrast, in the present quantum

model, Iqt > 0 because of the quantum tunneling effect, i.e., there is a nonzero probability for

the electron with energy lower than the potential barrier to penetrate through the channel.

In Figure 4.11(a), we demonstrate the electron current (I) as a function of electron energy

(E) for a nano-MOSFET with cylinder channel under VGate = 0V and VDS = 0.4V. It can

be concluded that the electron current increases with higher electron energy (this is quite

understandable because the electron with a higher energy can overcome the potential barrier

more easily), and saturates fast when the energy is over around E = 0.5V. This is due to the
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Figure 4.11: Relation between electron current (µA) and electron energy E (eV) in the MOS-
FET with the cylinder channel. (a)Gate voltage and source-drain voltage are respectively
VGate = 0.0V and VDS = 0.4V. The red dot indicates the current w.hen electron energies
equal to the maximum energy barrier Emax (horizontal coordinate). (b)under various gate
voltages VGate (source-drain voltages fixed at VDS = 0.4V). The red dots from right to left
correspond to VGate = 0, 0.05, 0.1, ..., 0.4V.
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VGate (V) tunneling current(µA) total current(µA) tunneling ratio

0 1.92× 10−7 1.20× 10−6 15.94%

0.05 1.36× 10−6 8.79× 10−6 15.48%

0.10 9.57× 10−6 6.42× 10−5 14.92%

0.15 6.61× 10−5 4.69× 10−4 14.11%

0.20 4.44× 10−4 3.40× 10−3 13.04%

0.25 2.73× 10−3 2.43× 10−2 11.25%

0.30 1.45× 10−2 1.66× 10−1 8.78%

0.35 5.70× 10−2 9.60× 10−1 5.94%

0.40 2.26× 10−1 4.07 5.55%

Table 4.1: Tunneling ratio for the cylinder channel at different VGate (VDS=0.4V).

Fermi-Dirac distribution; the probability of electrons with higher energies is lower so they

do not contribute significantly. In this simulation, the maximum energy barrier Emax of the

first subband is Emax = 0.388eV; the point which has this value as horizontal coordinate on

the I-E curve is marked with a red dot. The tunneling current Iqt in this circumstance is

apparent since the electron current I is non-zero (up to 1.92 × 10−2µA) when E < Emax.

From the total current Itot = 1.20× 10−6µA, we compute Rqt =15.94%.

The tunneling current Iqt and ratio of tunneling current Rqt depend on the gate voltage

of the nano devices. In Figure 4.11(b) there collects the similar current-energy curves as in

Figure 4.11(a), but with VGate takes values from 0.0V to 0.4V. Since the currents are signif-

icantly different under values of VGate, these curves are normalized for better comparison.

In this sense the vertical coordinate of the red dots exactly represents the tunneling ratio

Rqt. We see that as VGate varies from 0.0V to 0.4V, the I-E curves shift to the left. This is

consistent with the fact that the electron with the same energy are easier to overcome the

potential barrier with assistance of voltage gate. It is also observed that the tunneling ratio

decreases as VGate increases. The detailed tunneling currents and tunneling ratios under

different VGate are listed in Table 4.1.
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Figure 4.12: Relation of electrons tunneling ratio and gate voltages VGate for nano-
MOSFETs with cylinder and flower-like channels (source-drain voltage fixed at VDS = 0.4V).

Figure 4.12 illustrates the tunneling ratios for the two different channels, the cylinder

channel and the flower-like channel, whose y-z cross-sections are shown in Figure 4.8 (a). For

both devices, the tunneling ratio decreases as gate voltages VGate increases. Furthermore,

the tunneling ratio of the device with flower-like channel is higher than the one with cylinder

channel. This is the evidence that stronger confinement of channels will result in more

significant quantum effects.

4.4.5 Phonon-electron interactions

In this section, we investigate the phonon effects based on the modified scattering equation

in Eq. (4.35). As seen from Eqs. (4.35)-(4.36), the potential energy component in Eq. (4.35)

will be higher than that in Eq. (4.30). There are essentially a couple of factors to affect the

Uphon, the phonon energy and phonon number. In the present work, the phonon energy Ep
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is assumed to take a constant in each simulation.

Figure 4.13(a) gives a comparison of I-VGate between the models with and without

phonon-electron (p-e) interactions. Compared to the model without p-e interactions, the

model with p-e interactions gives smaller electron currents. Moreover, the impact in the

case of Ep = 0.03eV is greater than that of Ep = 0.063eV. The impact of Uphon can be

seen as a trade-off between phonon energy and phonon number. In case of higher phonon

energy, there are a smaller number of phonons based on Bose-Einstein statistics in Eq.

(4.36). Eventually, the magnitude of Uphon decreases as Ep increases from Ep = 0.03eV

to Ep = 0.063eV, which results in a smaller impact for scattering potential barrier in the

scattering problem and furthermore higher current. Figure 4.13(b) gives results for the tun-

neling ratio. Although the tunneling ratio keeps decreasing as I-VGate increases, there is no

significant difference between models with and without p-e interactions.
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Figure 4.13: Effects of phonon-electron interactions in I-V curves and electron tunneling ratio
for the cylinder channel. (a) I-VGate curves with different electron-phonon interactions; (b)
Relations of electron tunneling ratios and gate voltages VGate with different electron-phonon
interactions (source-drain volate fixed at VDS=0.4V).
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Figure 4.14 illustrates the impact of phonon effects at different temperatures. The result

in Figure 4.14(a) shows that current density increases with the increase of temperature. It

is consistent with the fact that the electronic conductivity of semiconductor enhances as the

temperature increases.

Figure 4.13(b) suggests that the tunneling ratio decreases as the temperature increases. This

trend is consistent with the quantum mechanical principle that quantum effects play a more

important role under lower temperature.
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Figure 4.14: Temperature effects on electron currents under different phonon-electron inter-
actions for the cylinder channel (VDS=0.4V, VGate=0.3V). (a) Current-temperature curves;
(b) Electron tunneling ratios under different temperatures.

4.5 Chapter conclusion remarks

We present mathematical modeling and numerical simulations of semiconductor-insulator

geometric effects, quantum tunneling currents and phonon-electron interactions for nano-

scale electronic devices, using a four-gate MOSFET model. Transistors in nano-scales will
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not function in analog with conventional devices by classical physics and will lead to new

breakthroughs in devices science and technologies. For example, channel tunneling or gate

leakage under various voltage settings of ultimate MOSFETs and other nano-transistors

will be of main concerns of the modeling and simulations. Other factors may affect the

performances of nano-MOSFETs at such a scale or under quantum mechanics could include

channel surface roughness, and phonon scattering effects. However, quantum simulations are

intractable for individual particles because of the enormous degrees of freedom. We proposed

a two-scale energy functional which describes the electrons and the continuum electrostatic

potential of the nano-electronic device [35]. In our framework, the microscopic description

of electrons and the macroscopic description of the continuum electrostatic potential are

integrated on an equal footing at nano-scale.

The present work, based on our framework of free energy functional, addresses the mod-

eling issues of various types of Si/SiO2 geometries, tunneling ratios and phonon-electron

interface effects. Material interfaces are integrated in the energy formulation and serve as

continuity conditions of the Poisson equation and boundary conditions of the Schrödinger

equation. Thus, electric field, physical confinement of electrons, and in further macroscopic

performances of nano-MOSFETs will depend on these microscopic details. Phonon-electron

interactions are modeled as part of transport energy in a fashion of density functional theory,

in which density of phonons are assumed to be homogeneous in the channel and follows the

Bose-Einstein statistics. Finally, the tunneling effects of devices are measured as tunneling

ratios of electron currents.

A four-gate MOSFET with different shapes of channels is considered in the three-dimensional

numerical simulation in the present work. In our computations, advanced interface-problem

solvers are utilized to solve the Poisson equation for the electrostatic potentials with three

161



semiconductor-insulator geometries. The Schrödinger equation is solved based on the phys-

ical properties that electrons have continuous and discrete spectrum along transport and

confined direction, respectively. The self-consistence of the coupled system is achieved by

the so-called Gummel-like iteration. The performances of the nano-device are examined

in terms of current-voltage curves with three types of Si/SiO2 interfaces, a wide range of

source-drain and gate voltages, and different phonon energies.
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Chapter 5

Thesis achievements and future work

5.1 Contributions

The main contributions of this thesis are as follows. First, we propose a new electrostatic sol-

vation free energy functional to take into consideration the effect of hyperpolarizations. The

nonlinear Poisson equation(NLPE) is derived from electrostatic solvation free energy func-

tional based on the variational principle. Compared to the classic Poisson equation, which

is derived based on electric polarizations in a linear, isotropic, and homogeneous dielectric

medium, our NLPE partially accounts for the hyperpolarizations, which are important un-

der a strong electrical field, or involving highly charged nonlinear inhomogeneous media.

Moreover, our nonlinear Poisson equation gives rise to a smooth dielectric function, which

overcomes computational difficulty of employing a sharp solvent-solute boundary. A nonpo-

lar solvation model is further formulated on the basis of the dielectric profile obtained from

the nonlinear Poisson model by using geometric measure theory. The proposed solvation

models are extensively validated with the Kirkwood model and experimental measurements

of 17 molecules. Our new solvation models out-perform the classic Poisson equation based

solvation model. In fact, its performance is very close to the explicit solvation model, which is

much more computationally expensive. Application of the proposed nonlinear Poisson model

is considered to electrostatic analysis of 20 proteins. In addition, the test results for the set

of 21 compounds at different temperatures further validate that the proposed NLPE model
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does a good job in modeling the temperature effect on the solvation free energy. The good

agreement between our results and experimental data as well as theoretical results suggests

that the proposed nonlinear Poisson model is a potentially powerful model for electrostatic

analysis involving hyperpolarization effects.

Second, we employ the PDE transform to efficiently suppress Gibbs’ oscillations in the

numerical solution of hyperbolic conservation laws. Specifically, during the time integration

of a hyperbolic conservation law system, an intermediate numerical solution at a given time

step is used as an initial data for a special evolution PDE. Then the solution of such an

evolution PDE is accepted as an updated numerical solution at the given time step. Two

techniques are proposed to improve the efficiency of the present approach. First, we use an

adaptive measure of total variations to automatically determine whether the PDE transform

is needed at each time step. Additionally, we utilize a fast PDE transform, which offers the

analytical solution of an arbitrarily high order evolution PDE in the Fourier representation.

This technique bypasses the stability constraint of solving high order evolution PDEs. We

have employed a variety of benchmark in the present work to validate the proposed approach,

ranging from scalar conservation law systems to Euler equations in one and two spatial

dimensions. Among these problems, some typically prefer low-order shock capturing schemes;

whereas others are well known to require high order numerical methods. For example, low

order schemes will severely damp the amplitude of the entropy waves in the shock-entropy

interaction described by the Euler equation. The proposed PDE transform provides some

of the best results for solving the Burgers’ equation with non-convex flux. Furthermore,

only about 5 points per wavelength (PPW) is needed for the present approach to handle the

interaction of shock-entropy waves and shock-vortex interactions, which is among the fewest

number of PPW to out knowledge so far.
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Third, we propose high-order fractional PDEs and the corresponding fractional PDE

transform. Using the fractional variational principle, we construct nonlinear fractional PDEs

based on fractional hyperdiffusion. Introducing an artificial time, the resulting high-order

fractional PDEs are converted to time-evolution fractional PDEs. Numerical techniques

based on fast fractional Fourier transform (FFFT) is developed to compute the high-order

fractional PDEs in three-dimensional setting. The proposed high-order fractional PDEs are

applied to the surface construction of macromolecular surfaces, which are crucial compo-

nents in the implicit solvent models. We consider three types of initial values to study the

proposed high-order fractional PDEs. Additionally, we examine the effect of the orders of

fractional PDEs on the surface morphology. It is found that high-order fractional PDEs are

crucial to the quality of molecular surfaces. We also test the impact of the PDE integra-

tion time on surface generation. Moreover, we examine the computational efficiency of the

present method. Efficiency is one of major motivations for developing new surface genera-

tion methods. It is found that the proposed high-order fractional PDEs are of linear scaling

with respect to number of atoms in a molecule. We further validate the present method by

quantitative analysis of surface areas and surface enclosed volumes of proteins. Finally, the

surfaces constructed by the present approach is applied to a couple of biophysical problems,

namely, the electrostatic analysis via the Poisson equation and the solvation analysis via a

full solvation model. The results from these biophysical problems indicate that the proposed

high-order fractional PDEs are a robust and efficient method for macromolecular surface

generation.

Finally, we present mathematical modeling and numerical simulations of semiconductor-

insulator geometric effects, quantum tunneling currents and phonon-electron interactions

for nano-scale electronic devices, using a four-gate MOSFET model. The present work,
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based on our framework of free energy functional, addresses the modeling issues of various

types of Si/SiO2 geometries, tunneling ratios and phonon-electron interface effects. Mate-

rial interfaces are integrated in the energy formulation and serve as continuity conditions

of the Poisson equation and boundary conditions of the Schrödinger equation. Thus, elec-

tric field, physical confinement of electrons, and in further macroscopic performances of

nano-MOSFETs will depend on these microscopic details. Phonon-electron interactions are

modeled as part of transport energy in a fashion of density functional theory, in which density

of phonons are assumed to be homogeneous in the channel and follows the Bose-Einstein s-

tatistics. Finally, the tunneling effects of devices are measured as tunneling ratios of electron

currents.

Much of this dissertation has been written based on our papers:

• Langhua Hu and Guo-Wei Wei, Nonlinear Poisson equation for inhomogeneous media.

Biophysical Journal, 103, 758-766 (2012).

• Langhua Hu, Duan Chen and Guo-Wei Wei, High-order fractional partial differential

equations for molecular surface construction,Molecular Based Mathematical Biology,

1-25 (2012).

• Langhua Hu, Duan Chen and Guo-Wei Wei, Geometric and phonon effects on nano

transistors, submitted (2013).

• Langhua Hu, Siyang Yang and Guo-Wei Wei, Simulation of inviscid compressible flows

using PDE transform, submitted (2013).
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5.2 Future work

In our proposed nonlinear Poisson equation (NLPE), we only consider the molecular charge

density, which is treated as the point partial charge source as showed in Eq. (1.9). It would

be an interesting to consider the salt effect and incorporate the solvent charge distribution

in the nonlinear Poisson equation. When the solvent charge in the equilibrium, we can use

the Boltzmann distribution to approximate the solvent charge distribution, which is

ρs(r) =

Nc∑
i=1

ciqie
−φ(r)qi/kBT (5.1)

where qi is the charge of ion species i, Nc is the number of ion species, kB is the Boltzmann

constant, T is the temperature, and ci is the bulk concentration of the ith ionic species.

When the solvent charge distribution given by Eq. (5.1) appears in the right hand side of

the nonlinear Poisson equation in Eq. (1.14), the NLPE will become much more nonlinear.

It remain an open question how the proposed nonlinear Poisson equation with salt effect

will impact the electrostatic analysis. Furthermore, when the underlying chemical and bi-

ological system is far from the equilibrium, the Boltzmann distribution may no longer be

valid. Usually, these systems are described by coupled Nernst-Planck equation and Pois-

son equation, which is replaced by coupled Nernst-Planck equation and nonlinear Poisson

equation in the new framework. It’s a topic of interest to study how well the conjuncted

Nernst-Planck equation and nonlinear Poisson equation will work. Moreover, there are still

a huge room to explore in the field of high order PDE transform and fractional PDE trans-

form. For example, the molecular surface generation with the proposed high order fractional

PDE transform is much more time efficient than MSMS approach, which makes it possible

to greatly facilitate the molecular dynamics. At last, it would be interesting to see how
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the effect of geometry,thermal and quantum will impact more complicated nano-transistors,

such as the nano-scale bio-sensor.
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[172] A. Warshel and L. Åqvist. Electrostatic energy and macromolecular function. Annu.
Rev. Biophys. Biophys. Chem., 20:267–98, 1991.

[173] A. Warshel and A. Papazyan. Electrostatic effects in macromolecules: fundamental
concepts and practical modeling. Current Opinion in Structural Biology, 8(2):211–7,
1998.

[174] A. Warshel, P. K. Sharma, M. Kato, and W. W. Parson. Modeling electrostatic ef-
fects in proteins. Biochimica et Biophysica Acta (BBA) - Proteins & Proteomics,
1764(11):1647–76, 2006.

[175] J. Warwicker and H. C. Watson. Calculation of the electric potential in the active site
cleft due to alpha-helix dipoles. Journal of Molecular Biology, 157(4):671–9, 1982.

[176] J. D. Weeks, D. Chandler, and H. C. Andersen. Role of repulsive forces in determining
the equilibrium structure of simple liquids. Journal of Chemical Physics, 54(12):5237–
47, 1971.

[177] G. W. Wei. Discrete singular convolution for the solution of the Fokker-Planck equa-
tions. J. Chem. Phys., 110:8930–8942, 1999.

184



[178] G. W. Wei. Generalized Perona-Malik equation for image restoration. IEEE Signal
Processing Letters, 6(7):165–167, 1999.

[179] G. W. Wei. Oscillation reduction by anisotropic diffusions. Comput. Phys. Commun.,
144:317–342, 2002.

[180] G. W. Wei. Differential geometry based multiscale models. Bulletin of Mathematical
Biology, 72:1562 – 1622, 2010.

[181] G. W. Wei and Y. Gu. Conjugated filter approach for solving Burgers’ equation. J.
Comput. Appl. Math., 149:439–456, 2002.

[182] G. W. Wei and Y. Q. Jia. Synchronization-based image edge detection. Europhysics
Letters, 59(6):814–819, 2002.

[183] G. W. Wei, Y. B. Zhao, and Y. Xiang. Discrete singular convolution and its application
to the analysis of plates with internal supports, I theory and algorithm. Int. J. Numer.
Meth. Engng., 55:913–946, 2002.

[184] G. W. Wei, Q. Zheng, Z. Chen, and K. Xia. Differential geometry based ion transport
models. SIAM Review, accepted, 2012.

[185] T. P. Witelski and M. Bowen. ADI schemes for higher-order nonlinear diffusion equa-
tions. Applied Numerical Mathematics, 45(2-3):331–351, 2003.

[186] A. Witkin. Scale-space filtering: A new approach to multi-scale description. Proceed-
ings of IEEE International Conference on Acoustic Speech Signal Processing, 9:150–
153, 1984.

[187] K. Xu. A gas-kinetic BGK scheme for the Navier-Stokes equations and its connection
with artificial dissipation and Godunov method. J. Comput. Phys., 171:289–335, 2001.

[188] M. Xu and S. L. Zhou. Existence and uniqueness of weak solutions for a fourth-order
nonlinear parabolic equation. Journal of Mathematical Analysis and Applications,
325(1):636–654, 2007.

[189] Y. Xu, K. Zhu, S. Yan, Z. Jin, Y. Wang, H. Chen, J. Luo, and B. Yu. Quantum and
thermo-mechanical noise squeezing in nanoresonators: A comparative study. Applied
Physics Letters, 100:023105, 2012.

185



[190] H. C. Yee, N. D. Sandham, and M. J. Djomehri. Low-dissipative high-order shock-
capturing methods using characteristic-based filters. J. Comput. Phys., 150:199–238,
1999.

[191] Y. You and M. Kaveh. Fourth-order partial differential equations for noise removal.
IEEE Transactions on Image Processing, 9(10):1723–1730, 2002.

[192] B. Yu, L. Chang, S. Ahmed, H. H. Wang, S. Bell, C. Yang, C. Tabery, C. Ho, Q. Xiang,
T. King, J. Bokor, C. Hu, M. Lin, and D. Kyser. Finfet scaling to 10 nm gate length.
IEDM Tech. Dig., pages 251–254, 2002.

[193] B. Yu, C. H. J. Wann, E. D. Nowak, K. Noda, and C. M. Hu. Short-channel ef-
fect improved by lateral channel-engineering in deep-submicronmeter mosfet’s. IEEE
TRANSACTIONS ON ELECTRON DEVICES, 44:627–634, 1997.

[194] S. N. Yu, W. H. Geng, and G. W. Wei. Treatment of geometric singularities in implicit
solvent models. Journal of Chemical Physics, 126:244108, 2007.

[195] S. N. Yu and G. W. Wei. Three-dimensional matched interface and boundary (MIB)
method for treating geometric singularities. J. Comput. Phys., 227:602–632, 2007.

[196] S. N. Yu, Y. C. Zhou, and G. W. Wei. Matched interface and boundary (MIB) method
for elliptic problems with sharp-edged interfaces. J. Comput. Phys., 224(2):729–756,
2007.

[197] G. Zaslavsky. Fractional kinetic equation for hamiltonian chaos.chaotic advection,
tracer dynamics and turbulent dispersion. Phys.D, 76:110C122, 1994.

[198] Y. Zhang, G. Xu, and C. Bajaj. Quality meshing of implicit solvation models of
biomolecular structures. Computer Aided Geometric Design, 23(6):510–30, 2006.

[199] S. Zhao and G. W. Wei. High-order FDTD methods via derivative matching for
Maxwell’s equations with material interfaces. J. Comput. Phys., 200(1):60–103, 2004.

[200] S. L. Zhao, R. Ramirez, R. Vuilleumier, and D. Borgis. Molecular density function-
al theory of solvation: from polar solvents to water. Journal of chemical physics,
134(19):194102, 2011.

[201] Q. Zheng, D. Chen, and G. W. Wei. Second-order Poisson-Nernst-Planck solver for
ion transport. Journal of Comput. Phys., 230:5239 – 5262, 2011.

186



[202] Q. Zheng and G. W. Wei. Poisson-Boltzmann-Nernst-Planck model. Journal of Chem-
ical Physics, 134:194101, 2011.

[203] Q. Zheng, S. Yang, and G.-W. Wei. Molecular surface generation using pde trans-
form.international journal for numerical methods in biomedical engineering. in press,
2011.

[204] Q. Zheng, S. Y. Yang, and G. W. Wei. Molecular surface generation using pde trans-
form. International Journal for Numerical Methods in Biomedical Engineering, 2012.

[205] Y. C. Zhou, Y. Gu, and G. W. Wei. Shock-capturing with natural high frequency
oscillations. Int. J. Numer. Methods Fluid, 41:1319–1338, 2003.

[206] Y. C. Zhou and G. W. Wei. High resolution conjugate filters for the simulation of
flows. J. Comput. Phys., 189:159–179, 2003.

[207] Y. C. Zhou and G. W. Wei. On the fictitious-domain and interpolation formulations
of the matched interface and boundary (MIB) method. J. Comput. Phys., 219(1):228–
246, 2006.

[208] Y. C. Zhou, S. Zhao, M. Feig, and G. W. Wei. High order matched interface and
boundary method for elliptic equations with discontinuous coefficients and singular
sources. J. Comput. Phys., 213(1):1–30, 2006.

187


