

TRANSMISSION STUDIES ON AVIAN LYMPHOMATOSIS

Thesis for the Degree of M. S.

MICHIGAN STATE COLLEGE

George Edward Cottral

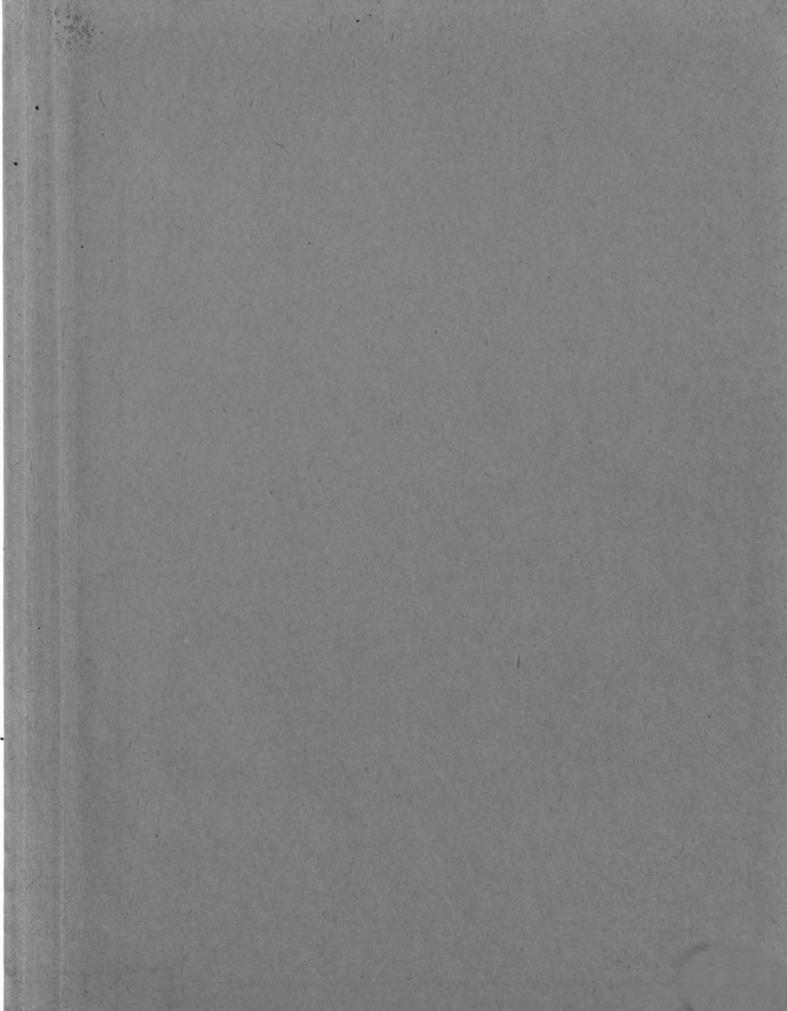
1950

This is to certify that the

thesis entitled

Transmission Studies on Avian Lymphomatosis

presented by


George E. Cottral

has been accepted towards fulfillment of the requirements for

M.S. degree in Animal Pathology

W. J. Stafreth Frank Thosp Jr. Major professor

Date 5-24-50

TRANSMISSION STUDIES ON AVIAN LYMPHOMATOSIS

TRANSMISSION STUDIES ON AVIAN LYMPHOMATOSIS

Вy

George Edward Cottral

A THESIS

Submitted to the Graduate School of Michigan State College of Agriculture and Applied Science in partial fulfilment of the requirements for the degree of

MASTER OF SCIENCE

Department of Animal Pathology

ACKNOWLEDGMENT

The writer wishes to express his sincere appreciation to Dr. B. R. Burmester and Dr. Nelson F. Waters for their help and cooperation in carrying out these studies. Gratitude is also expressed to Mr. Berley Winton, Dr. Frank Thorp, Jr., Dr. R. A. Runnells, Dr. A. M. Lucas, and Dr. E. F. Oakberg for their helpful and encouraging suggestions during the course of this study.

Special thanks are due to Mr. B. M. Larkins for his technical assistance in the experimental work, and to Mrs. Hazel W. Garrison, Mrs. Florence F. Hickok, and Miss Patricia A. Scavarda for consultation on the preparation of the manuscript.

TABLE OF CONTENTS

	Page
INTRODUCTION	1
HISTORY OF THE ETICLOGICAL CONCEPTS	3
REVIEW OF THE TRANSMISSION STUDIES	10
THE PROBLEM OF EGG TRANSMISSION	20
MATERIALS AND METHODS	24
RESULTS AND DISCUSSION	36
SUMMARY AND CONCLUSIONS	4 5
BIBLIOGRAPHY	47
TABLES	55

INTRODUCTION

Avian lymphomatosis is a fatal infectious neoplastic disease of chickens caused by one or more virus-like agents. It is characterized by the infiltration and multiplication of lymphoid cells in the various tissues of the bird's body. The invading cells ultimately become neoplastic and result in the formation of tumors of the visceral organs and other tissues, or may cause paralysis, blindness, or skeletal changes.

Avian lymphomatosis has been divided into four types, according to the tissues involved: visceral, neural, ocular, and osteopetrotic lymphomatosis. All of these disease entities are included under the classification, the avian leukosis complex, which also embraces three additional neoplastic diseases, namely, erythroblastosis, granuloblastosis, and myelocytomatosis. The scheme of nomenclature, as worked out by a committee of poultry pathologists, is given in table 1 along with some of the common names that have been applied to these diseases (Jungherr, 1941).

TABLE 1.--Outline of nomenclature of the avian leukosis complex

Recommended nomenclature	Common names
The avian leukosis complex	
Lymphomatosis:	
Neural	Fowl paralysis, Marek's paralysis
Ocular Viscoral	Grey eye, iritis Lymphocytoma, big liver disease
Osteopetrotic	Marble bone, big bone disease
Erythroblastosis	Fowl leukemia, blood disease
Granuloblastosis	n n n
Myelocytomatosis	Leukochloroma, white tumors

Visceral and neural lymphomatosis are the two most important diseases in this group; the others occur much less frequently. These diseases are widespread throughout the world, and it has been estimated that they cause an annual loss to the poultry industry of about 60 million dollars in the United States alone (Winton, 1949).

The plan of this thesis is to present the history of the various etiological concepts of the avian leukosis complex, to review the literature on the transmission of avian lymphomatosis, and to present the results of recent studies on the problem of egg transmission of avian lymphomatosis.

The problem has been approached from the viewpoint that the various diseases embraced by the avian leukosis complex are separable and that at least some of them are probably caused by separate, filtrable oneogenic agents. The pathological changes and diagnostic aspects of these diseases have been omitted purposely because they have been adequately covered in other reports (Jungherr, 1948; Feldman and Olson, 1948; Runnells, 1948). For elarity, a standard nomenclature has been used throughout.

HISTORY OF THE ETIOLOGICAL CONCEPTS

In 1896 Caparini in Italy described fowl leukemia, in 1905
Butterfield reported on "Aleukemic lymphoid tumors of the hen," and in
1907 Marek in Hungary described "Multiple polyneuritis of fowl." From
these beginnings two independent groups of workers evolved—one was the
fowl leukosis group, and the other was the fowl paralysis group. The
fowl leukosis group was composed of veterinary and comparative pathologists and medical men who were interested in tumors and in human leukemia.
They found in fowl leukosis a means of studying, experimentally, a
leukemic disease. The fowl paralysis group was composed of veterinary
pathologists, poultrymen and other investigators who were interested in
fowl paralysis primarily because of its economic importance to the
poultry industry.

The Original Etiological Concepts (1896 to 1929)

The fowl leukosis group. The disease entities originally included under the term fowl leukosis were: erythroblastosis, granuloblastosis, myelocytomatosis, and visceral lymphomatosis. In Ellermann's (1921, 1925) concept of fowl leukosis all of these diseases were caused by the same etiological agent. The studies by this group of workers were highlighted by the discovery of Ellermann Bang, in 1908, that fowl leukosis could be transmitted with a filtrable agent. All of the workers agreed that there were several types of fowl leukosis, but they disagreed on the nomenclature and the transmissibility of the various types. Some investigators reported an inability to transmit "lymphatic" or "extravascular leukosis" and others were inclined to classify visceral lymphomatosis as a separate disease (Andersen and Bang, 1928; Furth, 1929). Mathews (1929)

believed that leukochloroma (myelocytomatosis) was also a separate disease. Attempts to discover the natural mode of spread of fowl leukosis failed. This was the status of fowl leukosis in 1929. Ellermann's concept of the disease was beginning to be seriously questioned.

The fowl paralysis group .-- Originally fowl paralysis meant only neural lymphomatosis; later, ocular and visceral lymphomatosis were also included because of their frequent association with neural lymphomatosis. During the period 1907 to 1929 fowl paralysis spread throughout the major poultry producing areas of the world. It spread like an infectious disease. and the etiological agent was assumed to be a filtrable virus (Kaupp, 1921; Van der Walle and Winkler-Junius, 1924). Doyle (1929) suggested that fowl paralysis may be transmitted from dam to offspring through the egg. Pappenheimer and his associates (1926) demonstrated that this disease could be experimentally transmitted. The knowledge of fowl paralysis in 1929 was summed up quite well by Pappenheimer and his associates (1929a, 1929b): "Although the evidence, epidemiological and experimental, points to an infective agent, we are totally ignorant as to its nature, and as to the manner in which the disease is conveyed under natural conditions...... Our studies at least indicate that the agent which is responsible for the pathological changes in the nervous system is not exclusively neurotropic; it may in certain cases stimulate the proliferation of lymphoid cells in the viscera, and to a degree which makes them take on the morphological character of a neoplasm."

During the period 1921 to 1929 there were numerous comments in the literature that attempted to show a relation between fowl paralysis and intestinal parasites (coccidia, tapeworms, etc.) Eventually this

erroneous supposition was dropped as more facts concerning the disease became known.

The status of visceral lymphomatosis (lymphocytoma).--Visceral lymphomatosis was independently claimed by both the fowl leukosis and fowl paralysis groups. This dual relationship of visceral lymphomatosis was the result of its confusing association with the diseases studied by each group. Ultimately, visceral lymphomatosis became the common denominator that resulted in drawing the two groups closer together. Pappenheimer and his associates (1929a, 1929b) were the first to notice this overlapping. They saw that what Ellermann (1923) and his associates were calling "lymphatic leukosis," was similar to their "visceral lymphomata." However, they were emphatic in their denials of an association of visceral lymphomatosis with leukomia.

In the fowl leukosis group the later tendency was to exclude visceral lymphomatosis because it was thought to be a non-transmissible lymphoid tumor that was not accompanied by a true leukemic state.

Feldman (1927) preferred to classify this disease as lymphocytoma, defined as a malignant lymphoblastic neoplasm of chickens (Furth, 1929).

Later Etiological Concepts (1929-1950)

The fowl leukosis and fowl paralysis groups maintained their separate identifies up to 1932. At that time the two groups were united; however, many workers refused to join the union. The influence of the original groups has persisted up to the present time.

Unitarian view.--In 1932 Johnson came to the conclusion that fowl paralysis and fowl leucosis were all part of the same disease complex, after observing that all types of involvement resulted in his transmission

trials. In the same year, Patterson, Wilcke, Murray and Henderson (1932) presented the results of their study of "so-called range paralysis of the chicken," and they also concluded that these diseases were all part of the same disease complex. Johnson (1932) summed up this viewpoint as follows: "From this work it appears that the common cause of leucosis and lymphomatosis of fowls is a filtrable agent, and that the predominating cell in the lesions is the hemocytoblast which is a trivalent cell capable of differentiation into erythrocytes, granulocytes, and lymphocytes." Many workers adopted this viewpoint. Jungherr (1948) has termed this concept "the unitarian view."

Multitarian view.—Opposed to the unitarian view is the multitarian view, which as presented by Furth (1933) tended to demonstrate that each of the various diseases had its own etiological agent that performed quite true to type when maintained as a transmissible strain. Furth (1936) was inclined to view the few discrepancies that occurred as contaminants that were picked up in the course of serial passage. Feldman and Olson (1933, 1934) had a somewhat similar viewpoint based primarily on the pathological changes. They believed that lymphocytoma (visceral lymphomatosis) was non-transmissible, and that lymphocytoma, neural lymphomatosis, myelocytoma, and leukosis (myeloid and erythroleukosis) were all distinct, unrelated diseases.

Division of visceral lymphomatosis.—Furth (1934b) and Stubbs (1937) recognized "hepatolymphomatosis" (big-liver disease) as a separate disease, but classified it as lymphoid leukosis along with myeloid and erythroleukosis. Stubbs (1939) advocated placing the other visceral lymphoid tumors (i.e., other than hepatolymphomatosis) in the fowl paralysis category. Thus, a concept developed that there are two kinds

of visceral lymphomatosis: the visceral lymphomatosis associated with neural and ocular lymphomatosis, and a visceral lymphomatosis or lymphoid leukosis associated with erythroblastosis and granuloblastosis.

This was essentially a return to the concepts of the two original groups.

Leukosis-sarcoma virus. -- Oberling and Guerin (1933a, 1933b) presented evidence which suggested that fowl leukosis and sarcoma were caused by the same agent. Their viewpoint was as follows: "The virus of leukemia of fowls can give rise to sarcoma by affixing itself to connective or histiocytic cells, and this histiotropism is most plainly exhibited if, instead of making the transfers by intravenous injection of leukemic blood, one makes intramuscular or subcutaneous grafts of leukemic material, which hinders the virus from exteriorizing its always predominant hemotropism. Other workers also reported the apparent association of sarcoma and fowl leukosis or lymphomatosis (Troisier and Sifferlen, 1935; Rothemeyer and Engelbreth-Holm (1933). However, some workers felt that the association was simply a coincidence (Furth, 1934a). and Stubbs and Furth (1935) could not duplicate Oberling's claim that storage in glycerine modified the fowl leukosis agent, so that it would produce sarcoma. Nevertheless, the virus tumors described by Rous and his associates (1911-1914) had to be considered in subsequent studies on leukosis and lymphomatosis.

Mixed and complex strains. -- Furth (1934b) found that endothelioma and myelomatosis were sometimes associated with lymphomatosis. This brought the transmissible endothelioma described by Begg (1927) into the already confused picture. Furth (1934b, 1936) postulated mixed and complex strains. A mixed strain had several agents each one of which

produced a different type of neoplasia. A complex strain had a single agent with multiple potentialities for producing different types of neoplasia.

Osteopetrosis. -- Jungherr and Landauer (1938) observed that osteopetrosis was frequently associated with lymphomatosis. In their concept the agent of osteopetrosis was "non-dissociable from the agent of lymphomatosis."

Hemocytoblastosis. -- Emmel (1934, 1937) thought that the basic process in this group of diseases was a hemocytoblastosis, which resulted from numerous non-specific factors, such as vitamin and mineral deficiencies and bacterial toxins, particularly of the salmonella group.

Chick disease virus. -- In 1939 Blakemore reported on the discovery of a filtrable agent in the tissues of birds with lymphomatosis. This agent when inoculated into young birds produced an inflammatory response. Blakemore advanced the theory that this acute disease in chicks was caused by the same agent that was responsible for lymphomatosis in older birds, and that the lymphomatous involvements represented the end result or chronic stage of an acute infection. Glover (1940) and later Asplin (1947a, 1947b, 1947c) were also able to demonstrate this agent, which Asplin has since termed "'chick disease' virus." In his latest report Asplin (1947c) made the following comment, "Experiments were carried out in an effort to determine the validity of the theory that 'chick disease' is an acute reaction caused by the agent responsible for lymphomatosis. The results, whilst not conclusive, present evidence that this is not so."

The avian leukosis complex.--In 1940 a committee of pathologists met at the U. S. Regional Poultry Research Laboratory and suggested a tentative classification in which this whole group of diseases was

collectively called "the avian leukosis complex." (Jungherr, 1941) The classification was not intended to imply an etiological relationship of the various diseases, but was suggested as a means of arriving at a uniform terminology in the literature. In spite of the admonition, many people construed the classification to mean acceptance of the unitarian view.

Recent trends.--In the more recent literature the trend has been away from the unitarian viewpoint, especially in regard to separating lymphomatosis from erythroblastosis and granuloblastosis. Myelocytomatosis and sarcomatosis likewise have been set apart from the other diseases. Leukosis has been thought of as meaning only erythroblastosis and granuloblastosis, and lymphomatosis has been accepted generally as a term that includes neural, visceral, ocular and osteopetrotic forms. Recently there has been an attempt to separate the various types of lymphomatosis on an etiological basis, and the new evidence indicates that this eventually may be possible (Davis and Doyle, 1947a, 1947b, 1947c, 1949; Burmester, 1947c).

The difficulty in the separation of these agents in the past may have been due to the use of heterogeneous populations of birds, in which many agents may have been present in a latent form. The use of pedigreed inbred birds, whose strain and familial histories have been followed, and the use of isolated quarters may enable investigators to solve this problem of separation. Fortunately we have passed the day when an experimenter will rely on the results obtained with a crate of nondescript chickens from the local market.

REVIEW OF THE TRANSMISSION STUDIES ON AVIAN LYMPHOMATOSIS

Transmission of neural lymphomatosis .-- Neural lymphomatosis has been transmitted by inoculating birds with suspensions of nerve, ganglion, spinal cord, and brain tissues taken from birds with lesions of neural lymphomatosis. The inoculations were made via the intraperitoneal, intracranial, intraneural, subcutaneous, intramuscular, subdural, and intravenous routes (Pappenheimer, et al., 1926, 1929b; Baumann, 1936; Jungherr, 1937; Beach, 1938; DeOme, 1943). Intravenous inoculation of fresh or heparinized whole blood from cases of neural or ocular lymphomatosis appears to be the method of choice in transmitting neural lymphomatosis (Durant and McDougle, 1937, 1939, 1945, 1947). When the transmission of neural lymphomatosis is attempted, the resulting incidence is usually not very high, and other forms of the avian leukosis complex are likely to be transmitted also, especially visceral lymphomatosis. Transmissible strains of neural lymphomatosis have been reported (Furth, 1934c, 1935). Freezing at -30° C and drying from the frozen state inactivates inocula from such transmissible strains.

Transmission of neural lymphomatosis with a filtrable agent has been claimed (Van der Walle and Winkler-Junius, 1924). The evidence to support this assertion is quite insufficient, yet most workers agree that it is very likely that neural lymphomatosis is caused by a filtrable agent. The hypothetical agent is thought to be present in the circulating blood and in the involved nervous tissue.

The lesions found in peripheral nerves of paralyzed birds that show typical symptoms of neural lymphomatosis may be either microscopic foci of small lymphoid cells that have an inflammatory appearance, or

large areas of definite neoplastic cells. Birds that have been destroyed within a few days after they first developed paralytic symptoms usually had the inflammatory type of involvement; whereas, paralytic birds that were allowed to live several weeks after the appearance of symptoms usually had the neoplastic type of involvement. Microscopic lesions suggestive of neural lymphomatosis have been seen frequently in the peripheral nerves, adrenal ganglia and other sympathetic ganglia in birds that apparently were normal and showed no symptoms of nerve disorder during life.

Transmission of ocular lymphomatosis. -- Ocular lymphomatosis has been observed in the chickens of the inoculated groups by many workers (Johnson, 1932; Durant and McDougle, 1937, 1939, 1945). However, the incidence of this disease was usually so low that a significant difference between the inoculated and control groups could not be demonstrated. This has been a most disconcerting disease entity because of its rarity and sporadic occurrence. However, a rather high incidence of the disease has occasionally been reported in certain farm flocks.

Transmission of other types of lymphomatosis has resulted and tumor strains have been developed from donors that had ocular lymphomatosis (Brandly, et al., 1942). A series of transmission studies using whole blood from donors with ocular or neural lymphomatosis demonstrated that lymphomatosis could be transmitted in this manner. When a large amount of blood was transfused from such donors into chicks, a high incidence of neural lymphomatosis resulted (Durant and McDougle, 1945). Successful transmission of lymphomatosis, especially neural lymphomatosis, was accomplished using whole blood from normal chicks as the inoculum. The chicks were the offspring of birds with ocular lymphomatosis (Durant and McDougle, 1937, 1939).

Recently it has been demonstrated that a transplantable visceral lymphomatous tumor strain will survive and grow when inoculated into the anterior chamber of chicken eyes. In such cases the iris was often involved and presented a gross and histological picture similar to ocular lymphomatosis (Little, et al., 1949; Burmester, 1949).

Transmission of visceral lymphomatosis .-- Visceral lymphomatosis has been transmitted by inoculating chicks with whole blood from birds with visceral, neural, and ocular lymphomatosis (Johnson, 1932; Furth and Breedis, 1933; Brandly et al., 1942). The use of cell-containing inocula prepared from blood or tumor tissue from birds with naturally occurring visceral lymphomatosis led to the discovery that transplantable lymphoid tumor strains could be developed and carried in serial passage. One of these strains produced visceral lymphomatosis, myelomatosis and endothelioma (Furth and Breedis, 1933). A filtrable agent was demonstrated in this tumor strain. This evidence was not readily accepted because in the other tumor strains that produced visceral lymphoid tumors (lymphocytoma), filtrable agents could not be detected (Olson, 1941, 1944). This led to the idea that lymphocytoma could be set apart from the other diseases of the avian leukosis complex as a non-transmissible but transplantable neoplasm. Meanwhile, others contended that visceral lymphomatosis was a part of the avian leukosis complex and that it could be transmitted by inoculating whole blood into chicks (Brandly et al. 1942). Thus, transmissible strains of lymphomatosis were developed and carried in serial passage, using blood as an inoculum; later, other lymphoid tumor strains were developed by inoculating into chicks tumor cell suspensions from naturally occurring cases of visceral lymphomatosis (Burmester and Prickett, 1945).

The Olson lymphoid tumor, RPL 12 (Olson, 1941) was carried in serial passage and studied at the U. S. Regional Poultry Research

Laboratory (Burmester and Cottral, 1947d). A filtrable agent that produced lymphoid tumors and osteopetrosis was found in this tumor strain. Subsequently, this tumor strain was carried through six serial passages using cell-free inocula. Because the filtrable agent was found in a transplantable tumor strain and filtrable agents had not been demonstrated in naturally occurring visceral tumors, it was not accepted as the etiological agent of visceral lymphomatosis. It was believed that there was a difference between the naturally occurring visceral lymphomatosis and the filtrate induced lymphoid tumors. Recent studies have shown that this objection is no longer valid (Burmester and Denington, 1947e; Burmester, 1947f).

In a recent study it was found that visceral lymphomatosis (and in one group esteopetrosis) could be transmitted with cell-free inocula prepared from lymphoid tumors of denors with naturally occurring lymphomatosis (Burmester and Denington, 1947e). Four out of ten tumor bearing denors tested gave positive results using cell-free inocula. The types of lymphomatosis in the four denors were as follows: two had gross visceral and neural lymphomatosis; one had visceral lymphomatosis, only; and the other had gross visceral and ocular lymphomatosis and microscopic evidence of neural lymphomatosis. It was also found that lymphoid tumor strains could be developed and carried in serial passage using cell-suspensions prepared from the tumors of some of these denors. Furthermore, transmission of visceral lymphomatosis and esteopetrosis using cell-free inocula could be demonstrated at different stages during the course

of serial passage of some of these and other tumor strains. Some of the tumor strains were carried through several serial passages using cell-free inocula. One tumor strain was carried through seven serial passages using cell-free inocula, but it did not produce typical visceral lymphomatosis, and hemangiomatosis was associated with it (Burmester, 1947f).

Many workers have reported on the transmission of lymphomatosis using whole blood or tumor cell suspensions taken from cases of the naturally occurring disease. These cell-containing inocula have dual potentialities and it is exceedingly difficult, if not impossible, to demarcate strictly between these lymphoid tumors resulting from the multiplication of transplanted tumor cells and lymphomatosis caused by the etiological agent. Undoubtedly, many of the transmission studies reported in the literature, where cell suspensions were used, should be regarded as true transmissions and not transplantations. The difference in the incubation periods may be one method of separation. In transmission studies, using cell-free inocula and inbred susceptible birds, the incubation period for visceral lymphomatosis varied from about 60 to 250 days, with an average of about 150 days. After serial passage with cell-containing inocula the transplantable lymphoid tumor strains had a much shorter incubation period, varying between 6 and 30 days. Thus, when a cell-containing inoculum is used, those birds that die of lymphomatosis after a long incubation period, are more likely to develop lymphomatosis from the etiologic agent than from the multiplication of the transplanted tumor cells but a strict differentiation cannot be made.

Recently, the relationship of the other forms of the avian leukosis complex to visceral lymphomatosis was reviewed and subjected to critical

study. The conclusion was reached that visceral lymphomatosis could be readily transmitted, and that neural and ocular lymphomatosis were not transmitted by the method employed by these workers. The inoculum consisted of cell suspensions prepared from the tumorous organs of birds with visceral lymphomatosis (Davis and Doyle, 1947a, 1947b, 1947c, 1949). Other studies have borne out this conclusion. Further work suggested that there was no marked concentration of the causative agent or absence of it in any of the organs tested in the transmission studies. The organs tested were the liver, heart, spleen, kidney, ovary, and blood from a bird with naturally occurring visceral lymphomatosis (Davis and Doyle, 1947a, 1949).

In other experiments, visceral lymphomatosis, and possibly neural lymphomatosis, were transmitted to young chicks by inoculating them intratracheally and intranasally with tracheal and nasal washings from donors with neural and ocular lymphomatosis (Cottral and Burmester, 1948; Winton, 1948, 1949). Filtrates of the respiratory washings were not effective in producing lymphomatosis. In the same study, respiratory washings rendered bacteriologically sterile with penicillin and streptomycin were found to be effective in producing lymphomatosis when inoculated intravenously. However, the same inoculum was ineffective when inoculated via the respiratory route. Peroral administration of tumor cell suspensions appeared to be effective in transmitting visceral lymphomatosis but not all workers have been successful in the transmission of lymphomatosis when the oral and respiratory routes were used (Brewer and Brownstein, 1946; Barber, 1948). Successful transmission has been reported with fresh and desicoated feces (Jungherr, 1937).

Studies with tumor strains induced with cell-containing inocula .--The transplantable tumor strains have been carried in serial passage via the intraperitoneal, intravenous, intramuscular, or intraocular routes by adaptation. Serial passage reduced the incubation period of the tumor strain so that some of the strains produced tumors and caused the death of the recipients in 6 to 30 days (Olson, 1944; Burmester, 1945, 1947f). Dilute inocula containing as few as eight tumor cells still resulted in successful transplantation. The thermal death point of the tumor cells has been found to be between 45° and 50°C. (Cottral and Burmester, 1948; Winton, 1947, 1948). Chicks 30 days or less of age were the most susceptible to the transplanted tumors. However, the resistance of many of the older birds was overcome by increasing the dosage of the inoculum. Birds that developed transplanted tumors and survived were immune to further implants, but their immunity appeared to be only against the cells, as many of them developed typical visceral lymphomatosis and died at a later date (Burmester, et al., 1946, 1947b, 1947c). In some tumor strains a "hemorrhagic disease" has been seen in some of the inoculated birds. The lesions appeared to be similar to those that have been described in studies with the Rous agent (Duran-Reynals, 1940).

Several lymphoid tumor strains have been successfully transplanted on the chorio-allantoic membrane of embryonated eggs, and the resulting tumors have been carried in serial passage. When embryonated eggs were inoculated with cell-free filtrates of visceral tumors no measurable reaction took place in the embryos. Thus, the available embryonic time prior to hatching is sufficient for transplanted tumor cells to form a tumor, but appears to be insufficient for the induction of tumors with

the filtrable agent. Another interpretation would be that other factors necessary for tumor production with the cell-free agent may be lacking.

Transmission of osteopetrosis.—Osteopetrosis has been a relatively rare disease. The incidence was reported to be less than 0.05 percent. In an endemic outbreak studied, the incidence was less than 2.0 percent (Jungherr and Landauer, 1938). Osteopetrosis has usually occurred in association with visceral lymphomatosis. When birds with spontaneous osteopetrosis were used as donors the disease was transmitted to recipient birds by using cell suspension prepared from blood, bone marrow, and visceral lymphomata. Four serial passages were made with this strain. The agent survived desiccation up to 105 days.

A "lymphomatosis-osteopetrosis" strain was developed from donors that had neural and ocular lymphomatosis, but showed no evidence of osteopetrosis (Brandly, Nelson, and Cottral, 1942). Osteopetrosis occurred in six successive serial passages of this strain. Heparinized whole blood was used as the inoculum.

Recently it was found that osteopetrosis could be transmitted with a filtrable agent (Burmester, 1947a; Burmester and Cottral, 1947d).

The filtrable agent was first demonstrated with cell-free inocula prepared from the Olson visceral tumor strain (RPL 12). Filtrable agents producing osteopetrosis and visceral lymphomatosis were earried through six serial passages using cell-free inocula prepared from visceral tumors and blood derived originally from birds inoculated with strain RPL 12.

Osteopetrosis has been transmitted with a filtrable agent derived from an ovarian tumor of a bird with naturally occurring visceral and neural lymphomatosis (Burmester and Denington, 1947e). Cell suspensions prepared from this tumor also produced osteopetrosis. In other studies

osteopetrosis was produced with cell-free and cell-containing inocula prepared from visceral tumors and blood derived from birds inoculated with other lymphoid tumor strains. In many instances osteopetrosis has been latent or "masked" in donor birds and has been found in subsequent passages. The incubation period for osteopetrosis was quite variable in transmission studies. It ranged from about 60 to 300 days. Centrifugation studies indicated that it might be possible to effect a partial separation of the agents of osteopetrosis and visceral lymphomatosis (Burmester, 1947a). It has been suggested that these two diseases may be caused by separate agents.

A condition resembling osteopetrosis was found in chicks that received inoculations of bone marrow, both embryo and x-rayed adult marrow (Gohs, 1934). Osteopetrosis was occasionally seen in some of the complex strains of leukosis and lymphomatosis (Furth, 1936). Osteopetrosis was found in groups of chickens that had been inoculated with the Rous sarcoma (Pikovski and Doljanski, 1946). Recently a disease resembling osteopetrosis was observed in groups of chickens that had been inoculated when embryos with the blood of mice having mouse leukemia (Thiersch, 1944). In the same series of studies, osteopetrosis also occurred in groups that received chronic myeloid leukemic blood from man. These birds were also inoculated when they were embryos. In this particular study none of the other forms of the avian leukosis complex occurred.

Mechanical transmission. -- Insect and rodent vectors for the agents of the avian leukosis complex have been postulated. It has also been suggested that accidental transmission may take place during surgical, blood testing, and vaccinating operations, and by the use of certain

vaccines prepared from embryonated eggs. However, none of these methods of transmission have been established.

Contact transmission .-- The evidence indicates that naturally acquired lymphomatosis can be transmitted by contact of infected chicks with noninfected chicks in the incubator and during the first few weeks of life (Waters and Bywaters, 1949; Waters 1947a, 1947b). Contact transmission after the first month of life appears doubtful. Chicks artifically infected by inoculation via the intraperitoneal route usually do not transmit the disease to contact controls that are raised with them. On the other hand, chicks inoculated via the intravenous, oral, and respiratory routes in some instances appear to transmit the disease to chicks in the contact control groups. This suggests that the route of infection may play an important part in determining whether or not the disease is spread by contact. However, an important question not answered by the available data is: do these exposed birds pick up the etiological agent and become carriers not destined to die of the disease themselves, but capable of passing the agent on to the next generation? The transmission studies using the oral and respiratory routes of inoculation indicated that lymphomatosis can be transmitted via these routes and that the agents appear to be present in the respiratory tract of certain birds.

All of the evidence seems to favor the conclusion that erythroblastosis, granuloblastosis, and the Rous sarcoma are not transmitted by contact.

THE PROBLEM OF EGG TRANSMISSION

The natural mode of transmission of avian lymphomatosis has not been clarified. One of the main questions that needs to be answered is whether or not avian lymphomatosis can be transmitted from the dam or sire to the offspring through the egg. The second phase of this problem is to determine whether apparently normal birds, i.e., those without clinical or gross evidence of the disease, can be carriers of the agent or agents of lymphomatosis. With these points established, control measures for the disease may be more easily sought. An answer to this whole problem is of vital importance to the poultry industry.

Doyle (1929) was the first to suggest that avian lymphomatosis may be transmitted through the egg. Since then, many other workers have presented observations and experimental evidence both for and against this contention. The evidence favoring egg transmission of lymphomatosis may be classified as follows: epiornithic observations, flock isolation studies, family isolation studies, incubator exposure studies, histological studies, and transmission studies involving inoculation.

Epiornithological observations on the spread of lymphomatosis indicated to some workers that the disease may have been introduced into flocks by the purchase of hatching eggs from infected flocks (Doyle, 1929; Marginson and McGaughey, 1931; Warrack and Dalling, 1932).

Flock isolation studies, such as the establishment of the U.S.

Regional Poultry Research Laboratory flock, also suggested egg transmission. In this flock only eggs were introduced into previously unused quarters and the first cases of lymphomatosis were found during the second and subsequent months after the chicks hatched (Waters, 1945).

Family isolation studies were carried out in which only the eggs of individual hens were placed in isolated incubators (Waters and Prickett, 1944). Thus, each family group of chicks was hatched and reared in an isolated pen. Gross manifestations of lymphomatosis were later evident in the birds of certain family groups, but not in others. This was further evidence of egg transmission.

The incubator exposure studies also indicated egg transmission (Waters and Bywaters, 1949). These experiments were carried out with the offspring of isolated dams. Control groups were hatched and reared in isolated pens and their sibs, comprising the test groups, were hatched and reared in incubators and pens with the offspring of non-isolated highly "contaminated" parent stock. Other test groups of sibs were hatched in isolation and then exposed to the non-isolated or "contaminated" stock at different ages following hatching. At the termination of the experiments a significant difference in the incidence of gross lymphomatosis was found between the groups exposed continually from hatching on to termination and the groups that were hatched in isolation and then exposed from one day of age on to termination. The incubator exposed groups had the highest incidence of lymphomatosis. These results were interpreted to indicate that the offspring of the non-isolated or "contaminated" stock were being infected with lymphomatosis through the egg and that they were capable of infecting the test group in the incubator at hatching time to a greater degree than at any time thereafter. Thus, those birds hatched in isolation and exposed at one day of age had a lower incidence of lymphomatosis because they missed the incubator exposure.

Histological studies have given information relative to egg transmission, especially dealing with a possible mechanism of transmission and the carrier-bird problem (Lucas, 1946; Lucas, et al., 1949a, 1949b, 1949c, 1950; Oakberg and Lucas, 1949). If the agent of lymphomatosis causes the formation of lymphoid areas in the viscera and nerves of birds, then there is histological evidence for the presence of the agent in embryos, since such areas have been found in some embryos.

Transmission studies that tended to indicate egg transmission were conducted by Durant and McDougal (1937, 1939). They inoculated the blood from chicks that were the offspring of diseased parent stock (ocular lymphomatosis) into other susceptible chicks. A higher incidence of neural lymphomatosis was found in the inoculated chicks than in their uninoculated control sibs.

The evidence against egg transmission is very weak. Some workers have noted a lower incidence of lymphomatosis in heavily infected stock when it was raised in isolation as compared to similar populations left in the exposed environment (Johnson and Wilson, 1937; May, Tittsler and Goodner, 1925). Other investigators have been impressed by the low incidence of lymphomatosis in the offspring of certain dams with ocular lymphomatosis, and they have shown that the offspring of such dams do not have any higher incidence of lymphomatosis than the offspring of other apparently normal dams. (Madsen, 1937; Ball and Cole, 1946). Other workers have reported the opposite effect when infected dams were used (McClary and Upp, 1939).

Hutt and Cole (1947, using the results obtained with diallel and reciprocal crosses between lines that had been bred for resistance or susceptibility to lymphomatosis, concluded that the influence of egg

transmission, if it does occur, is not nearly as great as are genetic and environmental influences.

Recently, Cole (1949) made a study of several populations of birds, dividing them into two main groups. These two groups were as follows:

(1) Chickens that were the offspring of birds that died of lymphomatosis during the breeding season or shortly thereafter, and (2) chickens that were the offspring of birds that survived throughout the breeding season. There was no significant difference between the two groups of chickens in respect to the incidence of lymphomatosis. This evidence was interpreted to indicate that if egg transmission of lymphomatosis does occur it is not of great importance in determining the viability of the progeny. These experiments were based on the premise that carrier birds are destined to die of lymphomatosis within a relatively short period of time—a conclusion that does not seem to be justified.

MATERIALS AND METHODS

In the present study conducted at the U. S. Regional Poultry
Research Laboratory only single-comb White Leghorn chickens of both
sexes were used. The experimental chickens were all from inbred line 15
of the laboratory flock. The history of this line, which has been raised
in isolation, has been described by Waters, et al. (1944, 1949). This
line of chickens has had a relatively low incidence of lymphomatosis
when raised in isolated quarters, yet the birds were quite susceptible
to lymphomatosis, as proved by their performance when exposed in a
"contaminated" environment.

Fourteen hatches of inbred line 15 chickens were used in this study. All of the line 15 chickens were hatched in isolated incubators away from all other chickens. The chickens were brooded and raised in isolated pens; thus, they had no direct contact with any other chickens. In all of the experiments, except experiment No. 1, and the isolated controls for the other experiments, the following procedure for housing was used: When the birds were about 60 days old the males from the various experimental lots were removed and placed in a separate pen adjoining the pen of females. This was done to lessen the danger of cannibalism. Later. when the birds were about 100 days old, they were moved from their brooding pens and placed in laying house pens, still maintaining the separation of the sexes by placing them in adjoining pens. The diet fed to the birds was the standard laboratory poultry ration (Winton, Lucas, and Cottral, 1950). The experimental work was started in April, 1947, and was terminated in May, 1950. The experimental period for each group of birds was set at 310 days, except in the case of two groups which were terminated at 250 days. All birds that died during the course of the

experimental period were subjected to a necropsy examination. At the termination of the experimental period all surviving birds were killed and examined. The diagnosis of lymphomatosis was based on the gross necropsy findings.

Source and preparation of inoculum.—In order to provide inocula for these studies certain dams were selected as donors. The dams used were either picked at random from the exposed population or were selected on the basis of the incidence of lymphomatosis in their sibs and progeny. Eggs were saved from these selected dams and were then incubated. At the appropriate time these embryos or hatched chicks were killed and their tissues were aseptically removed. For the most part liver tissue was used in these studies.

Embryo and chick tissue.—In general the inocula were prepared as follows: The liver tissue was weighed, then ground in a sterile test tube grinder. Sterile 0.85 percent saline was added at the rate of 1 part tissue to 9 parts of saline. The cell suspension was then filtered through sterile gauze to remove the large clumps of tissue. The inoculum was then placed in rubber stoppered serum vials and held under refrigeration until used. The inoculum was never held in storage longer than two hours. Sterility tests were made at the time the inoculum was placed in the vials.

When filtered inocula were prepared the same procedure was followed except that the cell suspension was passed through a Seitz filter, using a No. 8 pad, and N2 pressure. The filters were tested following filtration of the inoculum for their ability to hold back cultures of bacteria in broth medium. Usually a culture of micrococci or Serratia marcescens was used for this test. Thus, one could assume that no cells were able

to pass through to the filtrate and that the filter was in good working condition.

Material from donor hens. -- In one experiment the blood of adult birds was used as an inoculum. The blood was drawn from the wing vein and was heparinized to prevent coagulation by using a solution of heparin at the rate of 1 mg. per 7.5 ml. of blood.

The respiratory washings were collected from the donor hens by holding the bird with its head down and washing sterile saline through its masal passages. A syringe with a rubber tip was used for this purpose and the fluid was injected into the choanae and caught as it came out the external nares. Approximately 10 ml. of fluid was used to wash through the masal passages of each donor. Penicillin (100,000 units) and streptomycin (33.0 mg.) were added to the respiratory washings to inactivate the bacteria. The material was held in the refrigerator for two hours before it was used.

All inoculations were made intraperitoneally, unless otherwise specified, and the amount used for this route was 0.25 ml. The birds were inoculated at one day of age.

Experimental groups. -- There were eight separate experiments, each of which was composed of various lots or groups of chickens that received different treatments. Each hatch used was divided so that each lot received as nearly an equal family representation as possible.

Experiment No. 1

Donors.--In this preliminary experiment 9 donor chicks were taken from the incubator tray on the morning they hatched. These chicks were selected at random, taking one chick from each of nine different inbred

lines (Table 2). The chicks were sacrificed and inocula were made as follows:

Inoculum(A) was composed of the pooled liver tissue of all of the chicks.

Inoculum (B) was the pooled yolk sacs of all of the chicks.

Inoculum (C) was the pooled intestines and trachea of the chicks.

Recipients.--The inocula were administered to the recipient line 15 chicks when they were one day old as follows: Lot No. 1.--14 chicks, inoculum (A) given intraperitoneally, 0.25 ml.; inoculum (C) given intratracheally, 0.12 ml.

Lot No. 2.--14 chicks, inoculum (B) given intraperitoneally, 0.25 ml. inoculum (C) given intratracheally, 0.12 ml. Lots 1 and 2 were from a single hatch and were raised together in an isolated pen.

Lot No. 3.--34 non-inoculated control chicks from a single hatch, hatched and raised in an isolated pen adjacent to the pen in which lots 1 and 2 were located.

Lot No. 4.--28 non-inoculated control chicks from a separate hatch, also raised as an isolated group.

This experiment was started on June 30, 1947, and terminated about 300 days later.

Experiment No. 2

Donors.--The donors for this experiment were 15 day old embryos,

18 day embryos and newly-hatched chicks--all were the offspring of 5

selected dams. These dams were selected because there was a fairly high
incidence of lymphomatosis among their offspring or their sibs. (See
table 3). All of the dams and sires of the donor embryos lived for 600
days, at which time they were killed. None of them showed any clinical

or gross evidence of lymphomatosis. No abnormalities were noted in the donor embryos and chicks. In order to carry out this experiment, it was necessary to set eggs from these selected dams at specified intervals so that on a predetermined date there would be available, embryos 15 and 18 days old and chicks just hatching. In each age group two embryos (or chicks) were used from each of the five dams. Thus, each inoculum was composed of the liver tissue of 10 embryos (or chicks).

Recipients. -- One hatch of line 15 chicks was divided into 5 experimental lots, i.e., lots 5 to 9 inclusive. All inoculations were made intraperitoneally.

Lot No. 5.*--17 chicks were inoculated with liver tissue from 10 newly-hatched donor chicks.

Lot No. 6.--14 chicks were inoculated with a cell-free filtrate of the liver tissue of the 10 newly-hatched donor chicks.

Lot No. 7.--17 chicks were inoculated with liver tissue from 10 embryos, 15 days old.

Lot No. 8.--17 chicks were inoculated with liver tissue from 10 embryos, 18 days old.

Lot No. 9.--17 chicks were used as uninoculated contact controls.

All of the above groups of chickens, i.e., lots 5 to 9, inclusive, were hatched and reared together in an isolated environment. When the birds were about 90 days old all of the males were removed and placed in an adjacent pen.

^{*}Note: Lot numbers were assigned consecutively through all of the experiments. Thus, experiment No. 1 contains lots 1 to 4, experiment No. 2 contains lots 5 to 11, etc.

Lot No. 10-20 chicks used as non-inoculated controls. This represented a single hatch and the birds were raised in complete isolation.

Lot No. 11.--25 chicks, likewise used as non-inoculated isolated controls.

This experiment was started on April 5, 1948, and terminated about 300 days later.

Experiment No. 3

Donors.—The information on the donors for this experiment is given in table 4. Liver tissue taken from embryos 15 days old was used as the inoculum. The embryos supplying inoculum for each experimental lot were from only one dam. At the time the eggs were laid and the embryos were used the dams and sires of the respective embryos were all clinically normal and apparently in good health. These dams and sires lived in an exposed environment where they had ample opportunity to become infected with lymphomatosis.

Recipients. -- One hatch of line 15 chicks was divided into 10 lots with as nearly as possible an equal family representation in each lot.

All inoculations were made intraperitoneally when the chicks were one day old. The protocol for this experiment was as follows:

				Liver tissue inoculum
			No. of birds	(dam No.)
Lot	No.	12	19	J7010
*	Ħ	13	16	J4 30H
n	Ħ	14	17	J404 N
19	11	15	17	J71 6R
W	W	16	17	J313N
17	***	17	17	J 310R
11	**	18	18	J2 56C
				Filtrate of liver tissue
n	Ħ	19	18	J310 R
11	11	20	16	Amnionic fluid J313N
11	11	21	18	Uninoculated contact controls

This experiment was started on Jan. 17, 1949 and terminated 220 days later.

Donors.--This experiment was similar to experiment No. 3 except that all of the dams and sires but two, lived in an isolated environment where they had less chance of becoming infected with lymphomatosis. In addition these isolated dams and sires were closely related to the recipient chicks, because they came from the same inbred line. The information on these dams is given in tables 4 and 5. All were clinically healthy at the time their eggs were used.

Recipients. -- One hatch of line 15 chicks was divided into 12 experimental lots, as in the previous experiment. All inoculations were made intraperitoneally when the chicks were one day old. The protocol for this experiment was as follows:

			No. of birds	Liver tissue inoculum (dam No.)
Lot	No.	22	18	J726Q
11	W	23	18	J709W
W	**	24	18	I1414H2
Ħ	W	25	18	I1406U2
Ħ	W	26	19	J1318K2
Ħ	*	27	18	I1413B2
n	**	28	18	J131882
Ħ	W	29	19	J1301W2
11	Ħ	30	19	J1301M2
*	Ħ	31	19	J1314W
**	Ħ	32	17	J1318B2
W	W	33	19	Non-inoculated contact control

Lot No. 34.--Was composed of 34 chicks from a single hatch reared in complete isolation. All of the other birds in lots 22 to 33 lived together as a population, except that the two sexes were separated as in the previous experiment. This experiment was started on Jan. 31, 1949, and terminated 220 days later.

Donors. --In this experiment 5 families were selected as donors (i.e., 5 dams and the males to which they were mated, table 6). Only high producing hens were used, and that was the main basis for the selection of the families. Eggs were set from these hens, so that on a predetermined day there would be available, embryos and chicks from these families as follows: embryos 1 day old, 8 days old, 15 days old, and chicks one day old, 8 days old, 15 days old, 29 days old and 43 days old. Two embryos or chicks from each respective age group and from each of the five families were sacrificed to prepare the inocula. Thus, a pooled inoculum was prepared from the livers of the birds in each age group. In addition, a filtered inoculum was prepared from the livers of the one day old chicks. Part of this filtrate was placed in a glass tube, sealed, and heated to 45°C for 30 minutes in a water bath. This treatment furnished another inoculum.

Recipients. -- One hatch of line 15 chicks was divided into 11 experimental lots. All inoculations were made intraperitoneally when the chicks were one day old. The protocol for the experiment was as follows:

			W0 1-4	Pooled liver tissue
			No. of bir	ds inoculum from:
Lot	No.	3 5	22	Embryos 1 day old
W	**	36	23	W 8 days old
11	*	37	25	w 15 m m
Ħ	Ħ	3 8	21	Chicks 1 day
11	11	39	26	* 8 days *
11	W	40	24	n 15 n n
11	*	41	25	n 29 n n
11	Ħ	42	22	n 43 n n
11	17	43	20	Filtrate of livers - 1 day old chicks
Ħ	W	44	24	Heated W W 1 W W
¥	*	45	23	Uninoculated contact controls

All birds lived together in a common isolated environment with the two sexes in separate adjoining pens. The experiment was started March 21, 1949, and was terminated approximately 310 days later.

Donors.--In this experiment a recheck was made on some of the donor dams previously used in experiments No. 3 and 4. In addition, other dams were tested. Eggs were set from the selected dams and when the embryos were 18 days old they were sacrificed to furnish liver tissue for the preparation of inocula. A pool of liver tissue from two sibling embryos was used for each inoculum. All of the donor hens and sires lived in the exposed population and they were clinically normal at the time the eggs were used. The information on the donors is given in tables 4 and 5.

Recipients. -- A single hatch of line 15 chicks was divided into ll experimental lots as in the previous experiments. The inoculations were all made intraperitoneally when the chicks were 4 days old. This experiment was initiated on May 2, 1949, and was terminated 310 days later.

The protocol for this experiment was as follows:

			No. of birds	Embryo inoculum (dam No.)
Lot	No.	46	19	(Filtrate of liver) J709W
11	Ħ	47	18	J709#
11	11	48	18	J404A
Ħ		49	18	J716R
Ħ	Ħ	50	18	(Amnionic fluid) J716R*
W	Ħ	51	18	(Filtrate of liver) J716R
11	Ħ	52	20	J306P
11	Ħ	53	20	J43 0H
n	W	54	18	J709D2
W	W	55	19	J310R
Ħ	11	56	18	Uninoculated contact controls

All of the birds in this experiment were housed in a common isolated environment and the management practices used were similar to those in

the previous experiments.

^{*}In lot No. 50 the undiluted amnionic fluid from the J716R embryos was used as the inoculum.

Donors.--In this experiment the donor hens used were some of the same ones that had been used in experiment No. 4. They were all housed in the isolated environment. They were closely related to the recipient chicks. From 2 to 5 embryos 18 days old were used to prepare each liver tissue inoculum.

Recipients.—A single hatch of line 15 chicks was divided into 6 experimental lots. The birds were inoculated when they were four days old. The birds were housed together in a common isolated environment as in the other experiments. This experiment was started on May 16, 1949, and was terminated 310 days later. The protocol for the experiment was as follows:

-	·· ·· · · · · · · · · · · · · · · · · 		No. of birds	Liver tissue inoculum (dam No.)
Lot	No.	57	20	I1413B2
Ħ	Ħ	58	22	J1318B2
11	*	59	29	J1301W2
11	*	60	24	J1314W
**	11	61	15	J1301M2
*	*	62	23	Uninoculated contact controls
		,		

Donors. -- In experiment No. 8 an attempt was made to determine what effect the inoculation of blood and respiratory washings from the dams, themselves, would have on the recipient chicks. Seven of the hens that had been previously tested by using their offspring were used in this study. The collection and preparation of the blood and respiratory washings have already been described. Two of the donor hens were from the isolated environment and the others were from the exposed environment. All of the hens were clinically normal when they were used as donors.

Recipients. -- A single hatch of line 15 chicks was divided into 10 experimental lots. The housing of the birds was similar to that of previous experiments. The experiment was started on May 50, 1949, and was terminated 310 days later. The protocol for the experiment was as follows:

			No. of birds	Incoulum and donor No.
Lot	No.	63	19	Blood J716R
Ħ	11	64	18	" J404 N
Ħ	Ħ	65	19	Resp. washings J7010
Ħ	Ħ	6 6	20	^ຖ ື ^ຖ ິ່ງ709₩
Ħ	Ħ	67	17	Blood J7010
11	11	68	18	" J709#
**	W	69	16	" I1413B2
11	11	70	18	" J430H
11	#	71	13	" I1414H2
#	Ħ ·	72	19	Noninoculated contact controls

Lot No. 73 was composed of 31 birds from a separate hatch that were used as a non-contact control group. This group of birds was hatched in isolation, but they subsequently had some degree of indirect exposure to lymphomatosis in the brooder house in which they were housed. During

their early life, these birds had more potential exposure to naturally occurring lymphomatosis than did any of the other groups of birds.

RESULTS AND DISCUSSION

The donor dams used in these experiments were all clinically normal at the time they were used as a source of eggs, blood, or respiratory washings. Later, some of them died of lymphomatosis, but most of them showed no clinical or gross evidence of the disease at the time of autopsy. Likewise, most of the sires were clinically normal. The donor embryos and chicks did not show any gross abnormalities when they were sacrificed.

The results of the eight experiments are given in table 7. The incidence of lymphomatosis in the various experimental lots is given in cumulative percentages, broken down into intervals of 30 days. The column marked "terminal" includes those birds that had lymphomatosis at the time they were killed. Experiments 3 and 4 were terminated at 220 days. Thus, the birds that survived to the end of the experiment, and showed lesions of lymphomatosis upon necropsy examination, were placed in the 221-250 age group. This was justified because observations have shown that it takes about 30 days for the tumors to develop from the microscopic stage (grossly invisible) to a large tumor mass (Davis and Doyle, 1947b; Lucas, 1950). Thus, the birds that had grossly evident tumors at 220 days would probably have died before 250 days had elapsed.

Both visceral and neural lymphomatosis occurred in the various experimental and control lots. The incidence of neural lymphomatosis varied considerably, but there was no significant difference in the incidence of neural lymphomatosis between the treated groups and the control groups. Thus, the difference in the incidence between the various lots was mainly due to visceral lymphomatosis. No cases of ocular lymphomatosis were found. In experiment No. 3, three cases of osteopetrosis occurred in combination

with visceral lymphomatosis during the 191 to 220 days age period (two in lot 13 and one in lot 15). Two uncomplicated cases of osteopetrosis were found in lot 23 of experiment No. 4 at the time of termination.

One case of osteopetrosis was observed in the 281-310 days age period of lot 37 in experiment No. 5. No cases of osteopetrosis were observed in any of the control groups for these experiments or in any other line 15 control groups for other experiments. However, this line of inbred birds has been found to be quite susceptible to osteopetrosis when inoculated with tumor strain RPL 12 (Burmester and Cottral, 1947d).

Birds of both sexes were used and the sex ratio in the various lots was balanced for the most part. Due to the small number of birds used in each lot it was not possible to make an accurate test of the effect of the two sexes. An analysis of the entire group of birds led to the observation that more males than females died of lymphomatosis during the early age periods. However, more females than males died later in the experimental period. Thus, at the termination of the experiments the females had a slightly higher incidence of lymphomatosis than the males. This difference was not statistically significant.

The first procedure followed in making an analysis of the eight experiments was to determine whether or not the birds in the various lots of each experiment belonged to the same population in respect to the incidence of lymphomatosis. This was accomplished by using the chi-square test as in the two examples that follow:

Experiment No. 1

No. in group	No. dying of lymphomatosis	Probability of dying of lymphomatosis	Products PX
14	9	0.6428	5.7852
14	5 .	0.3571	1.7855
34	6	0.1765	1.0590
62	SX = 20	SPX =	8.6297

$$x^2 = \frac{SPX - \overline{P}SX}{\overline{P} \overline{Q}} = \frac{8.6297 - 6.4520}{(.3226) (.6774)} = 9.966**$$

(with 2 D.F. at 1% level $X^2 = 9.210$)

Experiment No. 2

No. in group	No. dying of lymphomatosis	Probability of dying of lymphomatosis	Products PX
17	13	0.7647	9.9411
14	12	0.8571	10.2852
17	14	0.8235	11.5290
17	17	1.0000	17.0000
17	3	0 .176 5	0.5295
82	8X = 59	SPX =	49.2848

$$x^2 = \frac{49.2848 - 42.4505}{(.7195)(.2805)} = 33.866**$$
(with 4 D.F. at 1% level $x^2 = 13.277$)

**Significant at the 1.0 percent level.

• . . •

	The	results	of	the	chi-square	test	for	the	various	experiments
were	88	follows:								

Experiment No.	Inclusive lot Nos•	Degrees of freedom	Value of
1	1 - 3	2	9.966 **
2	5 - 9	4	33.866 **
3	12 -21	9	42.801 **
4	22 -33	11	26.051 **
5	3 5 -45	10	13.409 N.S.
6	46 -56	10	35.560 **
7	57 -62	5	4.915 N.S.
8	63 -72	9	21.578 *

^{**} Significant at the 1.0 percent level

From these tests it can be seen that the various lots of birds within each of these experiments do not represent homogeneous populations with respect to the incidence of lymphomatosis. This suggests that some of the treatments given to the birds within each experiment were responsible for the rise in the incidence of lymphomatosis over what the controls showed. Experiments 5 and 7 were the only ones that failed to show a significant difference between the various experimental lots.

Since the population of birds within each experiment (i.e., except 5 and 7) was not a homogeneous one, the next logical test is to compare each lot within an experiment to its respective control group. The contact control was used for this purpose in all cases except in experiment No. 1, which did not have a contact control. In this experiment the isolated control with the highest incidence of lymphomatosis was used. Therefore, in all of the experiments except No. 1, the experimental lots were tested against the most comparable control group. Thus, the control group that was used was made up of birds from the same hatch, the same families, and

^{* &}quot; " 5.0

N.S. Not significant

was subjected to the same environment as the inoculated groups. This comparison was made using the chi-square test as in the following example:

Experiment No. 1
(Test of lot 1 with lot 3)

Treatment	Take	Fail	Total
Lot 1 inoculated	9	5	14
* 3 control	6	28	34
	15	33	48

$$x^2 = \frac{((9)(28) - (6)(5) - 24)^2(48)}{(15)(33)(14)(34)} = 7.986 **$$

** = significant at the 1.0 percent level.

The results of the chi-square test for each experimentare given in table 8. The analysis was made at the 250 day point and at the termination point (310 days).

In experiment No. 1 there was no significant difference between the two control groups or between the control lot 3 and the inoculated lot 2. However, there was a significant difference between inoculated lot 1 and control lot 3. Both lots 1 and 2 received inoculum C, the pooled intestines and trachea of the donor chicks. However, lot 1 received the liver inoculum and lot 2 received the yolk sac inoculum. Thus, the higher incidence of lymphometosis in lot 1 was attributed to the liver inoculum. For this reason the liver of the donor chicks and embryos was chosen as the tissue to use as a source of inoculum for the experiments that followed.

In experiment No. 2 there was no significant difference between the three control groups. All of the inoculated groups had a high incidence of lymphomatosis, varying from 76.5 to 100.0 percent. Thus, lymphomatosis

was transmitted by using liver tissue from embryos 15 and 18 days old, chicks one day old, and by using a cell-free filtrate of the chick liver tissue.

The controls in experiment No. 3 had a rather high incidence of lymphomatosis, 22.2 percent. This was the highest incidence for all of the control groups at the 250 day point. Only two inoculated groups, lots 12 and 13, had an incidence of lymphomatosis that was significantly high.

The controls in experiment No. 4 had a low incidence of lymphomatosis and the incidence in the inoculated groups was also correspondingly lower than in the third experiment. Three inoculated groups (lots 23, 24, and 25) gave significant differences when compared to the controls.

Experiment No. 5 was designed to determine at what ages the embryos and chicks would have the agent of lymphomatosis in their liver tissue. However, when the experiment was terminated, none of the inoculated lots differed significantly from the controls.

In experiment No. 6, some of the previously used donor hens were retested. A filtrate prepared from the livers of embryos of J709M produced a significant increase in lymphomatosis in the inoculated birds, but the unfiltered preparation failed to give significant results. In the previous test of this hen's embryos the results were also positive (experiment No. 4).

The embryos of hen No. J716R gave positive results this time for both the liver preparation and the amnionic fluid, but the filtrate group did not show a significant increase in the incidence of lymphomatosis. In the previous test (experiment No. 3) the results with the offspring of this bird were not significant. Embryo J404A liver tissue gave significant

results. This hen was not previously tested. J430H, which gave positive results before, was negative in this test. J310R embryos were negative in both tests (experiments Nos. 3 and 6).

In experiment No. 7 none of the inoculated lots had as high an incidence as the control lot. The embryos of these hens had been previously tested and they were negative in both tests. Unfortunately, the hens, whose embryos had given significant results in experiment No. 4, had not produced any fertile eggs by the time this experiment was scheduled, so they were not represented in experiment No. 7.

The purpose of experiment No. 8 was to test the blood and respiratory washings of some of the donor hens that had been previously used in the other experiments. Hen No. J716R, which had given questionable results in experiment 3, and significant results in experiment 6, gave significant results this time. Hen J404N which also gave questionable results in experiment 3, was positive in this test. Hen No. J7010, whose embryos had shown significant results in experiment No. 3, gave only questionable results this time. The respiratory washings of this bird and those of hen No. J709W likewise produced questionable results. The results obtained with the other donor hens tested in this experiment were not significantly different from those of the control group.

A significantly high incidence of lymphomatosis was transmitted to experimental birds by inoculating them with the liver tissue of newly-hatched chicks and embryos 15 and 18 days old. The logical conclusion was that the donor chicks and embryos were infected with the agent of lymphomatosis. Thus, if the donor embryos and chicks were infected, they must have acquired the infecting agent from their parents. Lymphomatosis was transmitted by using the blood of some of these donor hems. The respiratory washings of two of these hems gave only questionable results.

At the time they were used, the donor hens and sires were all clinically normal and most of them remained clinically normal or free of gross evidence of lymphomatosis. (Some of them are still living.) There did not appear to be any definite correlation between the infectivity of the embryo or chick tissue or the dam's blood and the subsequent development of gross lymphomatosis by the dam or sire. Thus, clinically normal dams and sires may be carriers of the agent of lymphomatosis.

Some donor hens were checked several times, either by two tests with their embryos or by using the dam's blood for the re-test. The tests did not agree in all cases, however, one could not expect biological material to give constant results. Furthermore, the infected hens may be transmitting the disease to their offspring only at certain intervals or cycles. Thus, every egg laid by a carrier hen would not be infected. The work with pullorum disease brought out the fact that Salmonella pullorum could not be isolated at every attempt from carrier birds or their offspring (Rettger and Stoneburn, 1909).

In this study the work was greatly handicapped by the presence of naturally occurring lymphoratosis in the birds that were used. Thus, lymphomatosis was transmitted to some of the birds, but in others we apparently were only adding to the infection that they already had; therefore, the interpretation of the results depended upon the inoculated lots developing an incidence of lymphomatosis that was significantly higher than that observed in the control groups.

The concept of egg transmission of disease producing agents was established many years ago, in fact, the work of Pasteur in 1870 proved that pébrine, a protozoan disease of silkworms, caused by Nosema bombycis, was egg-borne. Since then it has been shown that nearly all types of

disease producing agents--protozoa, fungi, bacteria, rickettsia, and viruses--have been proved to be transmitted through eggs or seeds.

This type of transmission takes place in certain helminths, arthropods, birds, and plants (Cottral, 1949).

There are a great many difficulties in unequivocally proving that a disease producing agent is transmitted through the egg. The ideal situation would be one in which the etiological agent could be demonstrated in the dam, isolated from the interior of the dam's eggs at different stages of incubation, isolated from the hatched offspring, and, finally, in the ideal situation the offspring would remain carriers of the agent or subsequently develop the disease. Not all of these conditions have been satisfied in the study of lymphomatosis. However, three of the most important steps have been accomplished; namely, demonstration that the agent is present in certain 15 and 18 day old embryos, and in newly-hatched chicks, and in the blood of certain dams.

SUMMARY AND CONCLUSIONS

The history of the etiological concepts of the avian leukosis complex is presented, and the literature dealing with the transmission of avian lymphomatosis is reviewed. The problem of egg transmission of avian lymphomatosis is discussed and new evidence is presented.

The problem of egg transmission of avian lymphomatosis was studied by attempting to transmit the disease to experimental birds by making use of inocula prepared from the tissues of newly-hatched chicks and embryos 15 and 18 days old, and from the blood and respiratory washings of certain selected donor hens. Eight experiments were conducted and the results indicate that certain clinically normal dams and sires may produce offspring infected with the agent of lymphomatosis. Furthermore, in two experimental groups lymphomatosis was produced with a filtrate prepared from embryo and chick liver tissue. In another test, the amnionic fluid from eggs of a certain dam was infective.

The blood from two donor hens produced lymphomatosis when incoulated into susceptible birds. The results obtained with respiratory washings from donor hens were not statistically significant.

The interpretation of the results is rendered difficult due to the presence of the agent of naturally occurring lymphomatosis in the experimental birds that were used. Thus, the disease produced by inoculation was superimposed on the infection already present in the birds. If stock free of the agent of lymphomatosis could be found, studies of this kind would be much easier to earry out and interpret.

Many experiments have been conducted which suggest that lymphomatosis may be egg-borne, such as: epiornithic observations, flock isolation studies, incubator exposure studies, histological studies and transmission studies. The results of these studies in conjunction with the result of the present study justify the conclusion that avian lymphomatosis is transmitted from carrier parents to the offspring through the egg.

BI HLIOGRAPHY

- Andersen, C. W. and O. Bang. La leucémie ou leucose transmissible des poules. Festkrif til B. Bang. Kandrup und Wunsch, Copenhagen, 355-389, 1928.
- Asplin, F. D. Observations on the actiology of lymphomatosis. I. Study on "chick disease." J. Comp. Path. and Therap. 57: 116-125, 1947a.
- Asplin, F. D. Observations on the aetiology of lymphomatosis. II. The association of "chick disease" virus with field cases of lymphomatosis. J. Comp. Path. and Therap. 57: 126-133, 1947b.
- Asplin, F. D. Observations on the aetiology of lymphomatosis. III. The development of lymphomatosis in chickens free of the "chick disease" virus. J. Comp. Path. and Therap. 57: 134-141, 1947c.
- Bell, R. F. and R. K. Cole. A study of the relationship between the iris color of the dam and the mortality of her progeny. Poultry Sci. 25: 33-38, 1946.
- Parber, C. W. Transmission experiments on the avian leucosis complex. Cornell Vet. 38: 130-134, 1948.
- Baumann, R. Untersuchungen über Atiologie und Vorkommen der Hühnerlähme in Österreich. Sixth World's Poultry Congress. Proceedings 2: 98-109, 1936.
- Beach, J. R. Experiments in the transmission of fowl lymphomatosis by inoculation. Poultry Sci. 17: 67-71, 1938.
- Begg, A. M. A filterable endothelioma of the fowl. Lancet 212: 912, 1927.
- Plakemore, Frederick. The nature of fowl paralysis (neurolymphomatosis). J. Comp. Path. and Therap. 52: 144-159, 1939.
- Brandly, C. A., N. M. Nelson and G. E. Cottral. Serial passage of lymphomatosis-osteopetrosis in chickens. Am. J. Vet. Res. 3: 289-295, 1942.
- Prewer, N. R. and Bernard Brownstein. The transmission of lymphomatosis in the fowl. Am. J. Vet. Res. 7: 123-128, 1946.
- Burmester, B. R. and C. O. Prickett. The development of highly malignant tumor strains from naturally occurring avian lymphomatosis. Cancer Res. 5: 652-660, 1945.
- Burmester, B. R., C. O. Prickett and T. C. Belding. The occurrence of neural and visceral lymphomatosis in chickens proven immune to transplants of lymphoid tumor strains. Poultry Sci. 25: 616-621, 1946.

- Burmester, B. R. Centrifugation of a filtrable agent inducing osteopetrosis and lymphoid tumors in the domestic fowl. Poultry Sci. 26: 215-218, 1947a.
- Burmester, B. R. and T. C. Belding. Immunity and cross immunity reactions obtained with several avian lymphoid tumor strains. Am. J. Vet. Res. 8: 128-133, 1947b.
- Burmester, B. R. The cytotoxic effect of avian lymphoid tumor antiserum. Cancer Res. 7: 459-467, 1947c.
- Burmester, B. R. and G. E. Cottral. The propagation of filtrable agents producing lymphoid tumors and osteopetrosis by serial passage in chickens. Cancer Res. 7: 669-675, 1947d.
- Burmester, B. R. and E. M. Denington. Studies on the transmission of avian visceral lymphomatosis. I. Variation in transmissibility of naturally occurring cases. Cancer Res. 7: 779-785, 1947e.
- Burmester, B. R. Studies on the transmission of avian visceral lymphomatosis. II. Propagation of lymphomatosis with cellular and cell-free preparations. Cancer Res. 7: 786-797, 1947f.
- Burmester, B. R. and R. C. Belding. Propagation of lymphoid tumors in the anterior chamber of the chicken eye. Poultry Sci. 28: 759-760, 1949. (Abstract).
- Eutterfield, E. E. Aleukaemic lymphadenoid tumors of the hen. Folia Haemat. 2: 649-657, 1905.
- Caparini, U. Fegati leucemici nei polli. Clin. Vet. Milano 19: 433-435, 1896.
- Cole, R. K. The egg and avian leucosis. Poultry Sci. 28: 31-44, 1949.
- Cottral, G. E. and B. R. Burmester. Unpublished data, 1948.
- Cottral, G. E. Avian lymphomatosis, another egg-borne disease. Proceedings 53rd Annual Meeting U. S. Livestock Sanitary Assoc. 183-192, 1949.
- Davis, O. S. and L. P. Doyle. Studies in avian leucosis. I. The transmissibility of visceral lymphomatosis. Am. J. Vet. Res. 8: 103-112, 1947a.
- Davis, O. S. and L. P. Doyle. Studies in avian leucosis. II. The use of biopsy technique in the study of visceral lymphomatosis. Am. J. Vet. Res. 8: 113-119, 1947b.
- Davis, O. S., L. P. Doyle, F. L. Walkey and L. K. Cenker. Studies in avian leukosis. III. The incidence of avian leukosis in various breeds of chickens. Poultry Sci. 26: 499-507, 1947c.

- Davis, O. S. and L. P. Doyle. Studies in avian leucosis. IV. Further transmission of visceral lymphomatosis. Am. J. Vet. Res. 10: 85-91, 1949.
- DeOme, K. B. Intraperitoneal injection of lymphomatous nerve tissue into resistant or susceptible chickens. Poultry Sci. 22: 381-394, 1943.
- Poyle, L. P. Neuritis or paralysis of fowls. Poultry Sci. 8: 159-160, 1929.
- Duran-Reynals, F. and R. M. Thomas. A haemorrhagic disease occuring in chicks inoculated with the Rous and Fungiami viruses. Yale J. Biol. and Med. 13: 77-98, 1940.
- Durant, A. J. and H. C. McDougle. Fowl paralysis. Missouri. Agr. Exp. Sta. Bull. 387: 95, 1937.
- Durant, A. J. and H. C. McDougle. Studies on the origin and transmission of fowl paralysis (neurolymphomatosis) by blood inoculation. Missouri. Agr. Exp. Sta. Res. Bull. 304: 1-23, 1939.
- Durant, A. J. and H. C. McDougle. Further investigations of the transmission of fowl paralysis (neurolymphomatosis) by direct transfusion. Missouri. Agr. Exp. Sta. Res. Bull. 393, 1945.
- Durant, A. J. and H. C. McDougle. New symptoms of fowl paralysis artificially produced by blood transfusion. J. Am. Vet. Med. Assoc. 111: 295-296, 1947.
- Ellermann, V. and O. Bang. Experimentelle Leukamie bei Hühnern. Zbl. Bakt. 46: 595-609, 1908.
- Ellermann, V. Histogenese der übertragbaren Hühnerleukose. II. Die intravaskuläre lymphoide Leukose. Folia Haemat. 26: 165-175, 1921.
- Ellermann, V. Histogenese der übertragbaren Hühnerleukose. IV. Zusammenfassende Betrachtungen. Folia Haemat. 29: 203-212, 1923.
- Emmel, M. W. The etiology of fowl paralysis (neurolymphomatosis gallinarum Pappenheimer), leucosis and allied conditions in the fowl. J. Am. Vet. Med. Assoc. 38: 96-97, 1934.
- Emmel, M. W. The etiology of fowl paralysis, leukemia and allied conditions in animals. IX. Salmonella enteritidis as a casual microorganism for this group of diseases in the chicken. X. Salmonella schottmulleri as a casual micro-organism for this group of diseases in the chicken. Florida. Agr. Exp. Sta. Tech. Bull. 313, 1937.
- Feldman, W. H. The primary situation of 133 spontaneous tumors in the lower animals. J. Cancer Res. 11: 436-462, 1927.

• • • •

•

•

• • • • • • •

.

.

- Feldman, W. H. and Carl Olson, Jr. The pathology of spontaneous leukosis of chickens. J. Am. Vet. Med. Assoc. 82: 875-900, 1933.
- Feldman, W. H. and Carl Olson, Jr. Leukosis of the common chicken. J. Am. Vet. Med. Assoc. n.s. 37: 488-499, 1934.
- Feldman, W. H. and Carl Olson, Jr. Neoplastic diseases of the chicken. In Biester, H. E. and L. H. Schwarte, ed. Diseases of poultry. Iowa State College Press, Ames, Iowa, 637-714, 1948.
- Furth, Jacob. On the transmissibility of the leucemia of fowls. Soc. Exp. Biol. and Med. Proceedings 27: 155-157, 1929.
- Furth, Jacob and Charles Breedis. Lymphomatosis, myelomatosis and endothelioma of chickens caused by a filterable agent. I. Transmission experiments. J. Exp. Med. 58: 253-275, 1933.
- Furth, Jacob. On filtrable viruses of leukosis and sarcoma of chickens. J. Bact. 27: 79-80, 1934a.
- Furth, Jacob. Lymphomatosis, myelomatosis, and endothelioma of chickens caused by a filtrable agent. II. Morphological characteristics of the endotheliomata caused by this agent. J. Exp. Med. 59: 501-517, 1934b.
- Furth, Jacob. Observations on fowl paralysis (neurolymphomatosis). Soc. Exp. Biol. and Med. Proceedings 31: 921-923, 1934c.
- Furth, Jacob. Lymphomatosis in relation to fowl paralysis. Arch. Path. 20: 379-428, 1935.
- Furth, Jacob. Relation of leukosis to sarcoma of chickens. II. Mixed osteochondrosarcoma and lymphomatosis (strain 12). J. Exp. Med. 63: 127-143, 1936.
- Glover, R. E. Fowl paralysis: transmission of infective agent to young chickens. Vet. J. 96: 427-437, 1940.
- Gohs, Waldemar. Uber die Wirkung arteigener Knocken- und Knockenmarkzerfallsstoffe auf die Knocken- und Blutbildung der Hühner. Frankfurter Ztschr. f. Path. 46: 453-476, 1933-1934.
- Hutt, F. B. and R. K. Cole. Genetic control of lymphomatosis in the fowl. Science 106: 379-384, 1947.
- Johnson, E. P. A study of lymphomatosis of fowls. Virginia. Agr. Exp. Sta. Tech. Bull. 44: 1932.
- Johnston, J. W. and J. E. Wilson. Observations on an outbreak of fowl paralysis. Vet. J. 93: 13-19, 1937.
- Jungherr, Erwin. Studies on fowl paralysis. II. Transmission experiments. Storrs (Conn.) Agr. Exp. Sta. Bull. 218: 5-47, 1937.

- Jungherr, Erwin and Walter Landauer. Studies on fowl paralysis.

 III. A condition resembling osteopetrosis (marble bone) in the common fowl. Storrs (Conn.) Agr. Exp. Sta. Bull. 222: 5-34, 1938.
- Jungherr, Erwin, A. J. Durant and C. D. Lee. Tentative pathologic nomenclature, etc. Am. J. Vet. Res. 2: 116, 1941.
- Jungherr, Erwin. The avian leukosis complex. In Biester, H. E. and L. H. Schwarte, ed. Diseases of poultry. Iowa State College Press, Ames, Iowa, 421-474, 1948.
- Kaupp, B. F. Paralysis of the domestic fowl. J. Am. Assoc. Poultry Husbandry 7: 25-31, 1921.
- Little, P. A., Ephraim Woll and Angus Sampath. Comparative studies of avian lymphomatosis and Rous sarcoma. Poultry Sci. 28: 773, 1949. (Abstract).
- Lucas, A. M. Hematology of blood spots in eggs of White Leghorn chickens. Am. J. Anat. 79: 431-471, 1946.
- Lucas, A. M. Lymphoid tissue and its relation to so-called normal lymphoid foci and to lymphomatosis. I. Qualitative study of lymphoid areas in the pancreas of chickens. Am. J. Path. 25: 1197-1213, 1949a.
- Lucas, A. M. and E. F. Oakberg. Lymphoid tissue and its relation to so-called normal lymphoid foci and to lymphomatosis. II. Quantitative analysis of lymphoid areas in the pancreas of Laboratory and Farm chickens. Am. J. Path. 26: 75-111. 1950.
- Lucas, A. M. and J. B. Breitmayer. Lymphoid tissue and its relation to so-called normal lymphoid foci and to lymphomatosis. III. Qualitative and quantitative comparison of lymphoid areas in the pancreas of the White Pekin duck with those in chickens. Poultry Sci. 28: 436-445, 1949b.
- Lucas, A. M., C. C. Craig and E. F. Oakberg. Lymphoid tissue and its relation to so-called normal lymphoid foci and to lymphomatosis. IV. Simplification of methods for quantitative analyses and its application to the turkey. Growth 13: 339-357, 1949c.
- Madsen, D. E. The effect of iritis of breeding hens on their progeny. Poultry Sci. 16: 393-397, 1937.
- Marek, J. Multiple Nerven-Entzündung (Polyneuritis) bei Hühnern. Deuts. Tierärztl. Wschr. 15: 417-421, 1907.
- Marginson, G. C. and C. A. McGaughey. Field observations on the spread of fowl paralysis by eggs and young chicks. Vet. Rec. 18: 573-574, 1931.
- Mathews, F. P. Leukochloroma in the common fowl; its relation to myelogenic leukemia and its analogies to chloroma in man. Arch. Path. 7: 442-457, 1929.

- May, H. G., R. P. Tittsler and Kenneth Goodner. Field observations and laboratory findings in paralysis of the domestic fowl. Rhode Island. Agr. Exp. Sta. Bull. 202, 1925.
- McClary, C. F. and C. W. Upp. Is paralysis of fowls, as manifested by iritis, transmitted through the egg? Poultry Sci. 17: 435; 18: 210-219, 1939.
- Oakberg, E. F. and A. M. Lucas. Effect of age, sex and individual variability on lymphoid tissue of the pancreas in White Leghorn chickens. Poultry Sci. 28: 675-685, 1949.
- Oberling, Charles and M. Guérin. Lésions tumorales en rapport avec la leucémie transmissible des poules. Bull. Assoc. Franç. p. l'Étude du Cancer 22: 180-212, 1933a.
- Oberling, Charles and M. Guérin. Nouvelles recherches sur la production de tumeurs malignes avec le virus de la leucémie transmissible des poules. Bull. Assoc. Franç p. 1'Étude du Cancer 22: 326-360, 1933b.
- Olson, Carl, Jr. A transmissible lymphoid tumor of the chicken. Cancer Res. 1: 384-392, 1941.
- Olson, Carl, Jr. The serial passage of an avian lymphoid tumor of the chicken. Cancer Res. 4: 707-712, 1944.
- Pappenheimer, A. M., L. C. Dunn and Vernon Cone. A study of fowl paralysis (neuro-lymphomatosis gallinarum). Storrs (Conn.) Agr. Exp. Sta. Bull. 143: 187-290, 1926.
- Pappenheimer, A. M., L. C. Dunn and Vernon Cone. Studies on fowl paralysis (neurolymphomatosis gallinarum). I. Clinical features and pathology. J. Exp. Med. 49: 63-86, 1929a.
- Pappenheimer, A. M., L. C. Dunn and S. M. Seidlin. Studies on fowl paralysis (neurolymphomatosis gallinarum). II. Transmission experiments. J. Exp. Med. 49: 87-102, 1929b.
- Pasteur, L. Les maladies des vers à soie. Paris, 1870.
- Patterson, F. D., H. L. Wilcke, Charles Murray and E. W. Henderson. So-called range paralysis of the chicken. J. Am. Vet. Med. Assoc. n.s. 34: 747-767, 1932.
- Pikovski, M. and L. Doljanski. Bone tumors in fowls injected intravenously with causative agent of Rous sarcoma. Soc. Exp. Biol. and Med. Proceedings 61: 246-248, 1946.
- Rettger, L. F. and F. H. Stoneburn. Bacillary white diarrhea of young chicks. Storrs (Conn.) Agr. Exp. Sta. Bull. 60: 29-57, 1909.
- Rothe Meyer, A. and J. Engelbreth-Holm. Experimentelle Studien über die Beziehungen zwischen Hühnerleukose und Sarkom an der Hand eines Stammes von übertragbarer Leukose-Sarkom-Kombination. Acta Path. et Microbiol. Scandinav. 10: 380-428, 1933.

- Rous, Peyton. Adaptation of Rous sarcoma to other chickens. J. Exp. Med. 13: 397-443, 1911.
- Rous, Peyton and L. B. Lange. The characters of a third transplantable chicken tumor due to a filterable cause. A sarcoma of intra-canalicular pattern. J. Exp. Med. 18: 651-664, 1913.
- Rous, Peyton and J. B. Murphy. On the causation by filterable agents of three distinct chicken tumors. J. Exp. Med. 19: 52-69, 1914.
- Stubbs, E. L. and Jacob Furth. The relationship of leukosis to sarcoma of chickens. I. Sarcoma and erythroleukosis (strain 13) J. Exp. Med. 61: 593-615, 1935.
- Stubbs, E. L. A study of leukemia and allied diseases with particular reference to leukemia of chickens and its relation to tumors. Penn. Univ. Vet. Ext. Quar. 65: 3-7, 1937.
- Stubbs, E. L. Fowl leukosis. Seventh World's Poultry Congress. Proceedings 295-298, 1939.
- Thiersch, J. B. Attempts to transmit leucaemia of man and of mice to the chick embryo and to the young chick by the amniotic and intravenous routes. Australian J. Exp. Biol. and Med. Sci. 22: 57-61, 1944.
- Troisier, J. and J. Sifferlen. Leucose et sarcomatose des poules unité de virus. Ann. Inst. Pasteur 55: 501-517, 1935.
- Van der Walle, N. and E. Winkler-Junius. De Neuritis-epizoftie bij kippen te Barneveld in 1921. Tijd. v. Vergl. Geneesk. Enz. 10: 34-49, 1924.
- Warrack, G. H. and T. Dalling. So-called "fowl paralysis", also called neuritis in chickens, range paralysis, neuro-lymphomatosis gallinarum. Vet. J. 88: 28-43, 1932.
- Waters, Nelson F. and C. O. Prickett. The development of families of chickens free of lymphomatosis. Poultry Sci. 23: 321-333, 1944.
- Waters, Nelson F. Natural transmission of avian lymphomatosis. Poultry Sci. 24: 226-233, 1945.
- Waters, Nelson F. and C. O. Prickett. Types of lymphomatosis among different inbred lines of chickens. Poultry Sci. 25: 501-508, 1946.
- Waters, Nelson F. The contagious nature of a lymphoid tumor in chickens. Science 106: 246-247, 1947a.
- Waters, Nelson F. Factors involved in mortality from avian lymphomatosis. Poultry Sci. 26: 639-647, 1947b.
- Waters, Nelson F. and J. H. Bywaters. Influence of age of chickens at contact exposure on incidence of lymphomatosis. Poultry Sci. 28: 254-261, 1949.

- Winton, Berley. Eighth annual report. U. S. Bureau of Animal Industry. Regional Poultry Research Laboratory, East Lansing, Michigan, 1947.
- Winton, Berley. Ninth annual report. U. S. Bureau of Animal Industry. Regional Poultry Research Laboratory, East Lansing, Michigan, 1948.
- Winton, Berley. Tenth annual report. U. S. Bureau of Animal Industry. Regional Poultry Research Laboratory, East Lansing, Michigan, 1949.
- Winton, Berley, E. H. Lucas and G. E. Cottral. The effects of feeding tomatoes on the incidence of lymphomatosis in chickens (in press).

TABLE 2. -- History of parents of donor chicks for Experiment No. 1

					Lymphomatosis	in sibs of dams
Dams and Sires	Age at use	Days lived after use	Age killed or died	Diagnosis	Number of sibs	Percent lymphomatosis
Dem: Q1 Sire: J1	489 475	115 107	604 582	Normal Visceral lymphomatosis	15	13.33
Dam: M2 Sire: V2	483 868	121 113	604 981	Normal "	23	8.69
Dem: N3 Sire: W3	48 5 469	120 92	603 561	EE	19	5.26
Dam: N4 Sire: N4	483 476	677 677	632 625	E E	22	36.36
Dem: H5 Sire: W5	1,62 1,411	119 113	611 554	n Testicular neoplasm	16	18.75
Dam: R6 Sire: 16	371 399	232 58	603 457	Normal "	23	21.74
Dam: M7 Sire: C7	485 483	121 58	604 541	± £	13	15.38
Dem: N8 Sire: C8	476 424	133 58	60 9 764	= =	6	33.33
Dam: 19 Sire: 09	1441 1469	141 92	582 56 1	Cannibalism Normal	19	21.05

TABLE 3. History of parents of donor chicks and embryos for Experiment No. 2

					Lymphome:	ymphometosis in sibs of dems	Lymphoma offsi	Jymphomatosis in offspring
Dams and Sires	Age at use	Days lived after use	Age killed or died	Diagnosis	Number of sibs	Fercent lymphomatosis	Number of offspring	Number of Percent offspring lymphomatosis
Dam: H1 Sire: A1	9 <u>7</u> 71	156 204	109 109	Normal "	10	00*00	ή 7	28.57
Dam: O2 Sire: A2	72th	204 204	638 680	E E	10	00.00	10	00.09
Dam: B5 Sire: S5	927 740	156 204	9 [†] / ₉ 9	: E	12	29•99	19	21.05
Dam: M4 Sire: S4	1,76 1,76	156 204	632 680	: :	12	50.00	11	36.36
Dam: B5 Sire: J5	378 1448	249 232	<i>627</i> 680	= =	16	6.25	Disc	Discarded

TABLE 4.--History of parents of donor embryos (Experiments 3, 6, and 8)

	Age at	Days lived	Age		Lymphoma	tosis in sibs f dams
Dams and Sires	first use	after use	killed or died	Diagnosis	Number of sibs	Percent lymphomatosis
Dam: J7010 Sires: K T	301 315 301 301	259 177 177 53	560 492 478 354	Cannibalism Normal " Visceral lymph.	16	56.25
Dam: J430H Sire: Q	309 350	365 + 152	alive 502	Normal Neural lymph.	17	41 .1 8
Dam: J404N Sires: P V	350 350 336	168 177 129	518 52 7 46 5	No gross lesions Normal No gross lesions		46.67
Dam: J716R Sire: E	282 329	365+ 163	alive 492	Normal "	11	72.73
Dam: J313N Sire: G	309 321	365 + 178	alive 499	11 11	10	60.00
Dam: J310R Sires: D N	301 346 320 320	365 + n n	alive " "	11 11 11	ነ ነ	28•57
Dam: J256C Sire: D	350 350	365 + 177	alive 527	" Peritonitis	12	25•00
Dam: J726Q	294	17	311	Reproductive disorder	11	36•36
Sire: E Dam: J709W Sire: E	329 316 329	163 365 + 163	492 alive 492	Normal n n	14	50.00
Dam: J404A Sirea J403P V A2	496 455 440 440	365 + 72 25 73	alive 527 465 513	No gross lesions Normal	1 5	ц 6∙67
Dam: J306P Sires:J316C J320G J321L	1470 1459 1470 1450	365+ 73 73 73	alive 513 499 513	11 11 11	26	15.38
Dam: J709D ₂ Sires:J707H J715I	392 413 413	365 + 72 72	alive 485 485	11 11 11	14	50.00

TABLE 5.--History of parents of donor embryos (Experiments 4, 7, and 8)

Dams and	Sires	Age at first use	Days lived after use	Age killed or died	Diagnosis
Dam: IU	ИН2 R2	714 696	365+ 31	alive 727	Normal Bacterial infection
Dam: Illu Sire: *	06T2	714	38	752	Visceral lymphomatosis
Dam: 114: Sire: *	13B ₂	714	365+	alive	No rmal
Dam: J13	18K2	230	144	374	Visceral and neural lymphomatosis
Sires:	T T2	230 230	7小 21	374 25 1	Normal Neural lymphomatosis
	L	230	זויור	374	Visceral and neural lymphomatosis
	V	230	9	239	Neural lymphomatosis
Dam: J133 Sires: **		203	136	339	Visceral lymphomatosis
Dam: J13: Sires: **	_	259	3 65+	alive	Normal
Dam: J130 Sires: **	01₩ ₂	231	365+	alive	Normal
Dam: J130 Sires: **		2 59	365+	alive	Normal
Dam: J131 Sires:	ГР ГР ГР ГР ГР ГР ГР ГР ГР ГР ГР ГР ГР Г	231 244 244 216	365 + 284 389 175	alive 528 633 391	Normal n n No gross lesions
	ν ₂ Υ ₂	되다 530	215 320	ર્યµ45 564	Neural lymphomatosis Visceral lymphomatosis

^{*} The sire used was Il414R2.

^{**} The four sires used were J1318T, T2, L, and V.

TABLE 6.--History of parents of donor chicks and embryos

80	œ				
Lymphomatosis in sibs	Number Percent of sibs lymphomatosis	28.57	26.31	26.31	26.31
Lymphome of	Number of sibs	77	19	19	19
	Diagnosis	Normel "	n n No gross lesions Normal	E	No gross lesions Neural lymphomatosis
	Age killed or died	alive 499	alive 527 465 513	вліте	707 502
	Days lived after use	365 + 178	365 + 72 25 73	365•	337 152
	Age atuse	384 321	1757 1459 1410 1410	1 86	370 350
	Dams and Sires	Dem: J310R Sire:J322G	Dam: J403B Sires: P V A2	Dam: J403R Sires: *	Dam: J405Y Sire:J404Q

*The three sires used were J403P, V, and A2.

TABLE 7.--Cumulative percentage of lymphomatosis at intervals of 30 days

		Number				Int	Intervals c	of 30 days	eo l			
	Treatment	of birds	41-70	71-100	101-130	131-160	71-100 101-130 131-160 161-190 191-220	191-220	221-250	221-250 251-280 281-310 Terminal	281-310	Terminal
Exp. No. 1 Lot 1 2 3 4	Inoc. A & C " B & C Isol. controls	쿠쿠 큐 8	14.3	35.7 7.1	35.7 14.3	35.7 14.3 2.9	12.9 14.3 5.9	42.9 21.4 5.9	50.0 21.4 8.8 3.6	64.3 28.6 8.8 3.6	64.3 28.6 14.7 3.6	64.3 35.7 17.6 3.6
Exp. No. 2 Lot 5 6 7 7 8 9 10 11	Eilt. " " 15-day emb. " 18-day " " Contact Controls Isol. "	17 11 17 17 20 25		17.6 4.0	29.4 29.4 4.0	29.4 28.6 47.1 17.6 5.9 5.0	58.8 64.7 58.8 5.0 8.0	64.7 50.0 70.6 76.5 11.8 5.0 8.0	70.6 78.6 70.6 82.4 11.8 5.0	70.6 78.6 70.6 82.4 11.8 10.0	70.6 78.6 76.5 88.2 17.6 10.0	76.5 85.7 82.4 100.0 17.6 15.0
Exp. No. 3 Lot 12 14 15 16 17 18 19 19 20 21	Emb.liv. J7010 " 1420H " 14404N " 1716R Contact controls	19 17 17 18 18 18	10.5	36.8 18.7 11.8 5.9	42.1 25.0 11.8 5.9 11.8	65 61 61 61 61 61 61 61 61 61 61 61 61 61	78.9 43.7 17.8 17.8 17.6 11.1 11.1 12.5	78.9 75.0 52.9 411.2 411.2 75.3 16.7	84.2 81.3 58.8 17.0 41.2 25.3 11.1			

(continued)

TABLE 7. (continued) -- Cumulative percentage of lymphomatosis at intervals of 30 days

1	nal															ю.		0	n	_+	7	0	σ	0	5	0	
	Terminal															27.3	17.	8	77	15.	16.	88	04	Ŗ	12.	13.	
																5.3	2.0	0.0	₹	2.	2.5	0.	6•0	0.0	5.5	13.0	
	281-310															27	ä	12	검		16	75	3	<u>.</u> .	12	2	
	251-280															13.6	8.7	0.4	7.8	3.8	12.5	20.0	36.4	5.0	0.0	8.7	
78	221-250	33.3	50.0	55.5	38.9	31.6	25.2	16.7	15.8	15.8	15.8	11.8	5•3	5.9		9.1	8.7	7.0	0.0	3. 8	12.5	16.0	27.3	5.0	0.0	8.7	
of 30 days	191-220	22.2	38.9	7.11	16.7	31.6	16.7	16.7	15.8	5.3	10.5	5.9		5.9			4.5	0•4		3.8	12.5	16.0	22.7	5.0		4.3	
Intervals c	161-190	11.1	33.3	33.3	5.6	21.1	5.6	16.7	10.5		5.3			5.9			4.3			3. 8	8.3	8.0	15.6			4.3	
Int	131-160 161-190		27.8	27.2	5.6	15.8	2. 6	11.1	5.3		5.5			5.9			4.3				7.5		4.5			4.3	
	71-100 101-130		25.2	27.2		15.8	2. 6	5.6	5.3		5.3			S•9						,	7•5						
	71-100		16.7	11.1		5.3								2•9													
	41-70		5. 6	,										5. 9													
Number	of birds	18	18	18	18	19	18	18	19	19	19	17	19	34		55	23	25	23	8	র	25	55	8	ad24	23	
		J7269	W6077	1141年2	1140602	J1518K2	$11413B_2$	J1318S2	J1301W2	J1301M2	J1314W	$J1518B_2$	ontrols	=		(1 day)	(8 days)			(8 days)			43 days)	filt.	" heated24	Contact controls	
	Treatment	Emb.liv.	E E	=	=	z	E	£	E	E	=	E	Contact c	Isol.		Emb.liv.	=		Chick "	=	_ E) =) = =	E	=	Contact	
		Exp. No. 4 Lot 22	23	ন	25	92	27	28	&	30	31	82	33	34	Exp. No. 5		%	37		36	07	41	2†	743	†	45	

(continued)

TABLE 7. (continued) -- Cumulative percentage of lymphomatosis at intervals of 30 days

		Number				Inte	Intervals of	30 days	80				
	Treatment	birds	41-70	71-100 101-130		131-160	161-190	191-220	221-250	251-280	281-310	Terminal	i
Exp. No. 6 Lot 46	Filt.emb.liv.J709W	_	i	5.3	15.8	26.3	•	4-74	52.6	63.2	63.2	63.2	
47 118	Emb.liv.J709W " JJ10J1A					11.1	5.6 27.8	22.22 1.1.1.	33.3	38.9 61.1	4-h-4 61-1	55.5	
2	" " J716R	16R 18			5.6	11.1		27.8	38.9	50.0	61.1	<u>7.99</u>	
25	Amn. fluid J716R				•	11.1	•	27.8	33.3	17.17	7-17-1	61.1	
<u>17</u>	•					5.6	•	16.7	25.2	27.8	7.7	7-17-1	
52 52	Emb.liv.J506P	20 KOH 20 KOH				5.0	•	ب 0 د	10.0	15.0	0.00	30°0	
<u> </u>	170	٥					5.6	, r	5.0	11.1	11.1	11.1	
21	" " J310R	1							0.0	5.3	5.3	21.1	
22	Contact controls	ls 18						9.6	5. 6	11.1	16.7	25.2	
- 1									,	1	,	,	
Lot 57	Lmb.liv. II415B2							<u>.</u>	0 6	0 0	0 0	0.02	
25	113C	J1301W2 29						t•1	0.0	9	10.3	10.3	
%	1213							7.5	7.5	8.3	8.3	8.3	
61	" " JJ30	11M2 15							0.0	0.0	0.0	6.7	
29	Contact controls	I			4.3	4.3	8.7	8.7	13.0	13.0	21.7	26.1	
Exp. No. 8													
	og				10.5	21.1	26.3	12.1	74-77	7.89	†• 89	7. 89	
† ₉	-	_			5.6	11.1	11.1	33.3	1-1-1	55.5	61.1	61.1	
65 65	Resp.wash. J7010	19			5.3	5.3	ر د. د	15.8	26.3	36.8	36.8 1.5	22 0 0 0	
£9	Blood J7010						5.0	11.8	23.5	35.3	1 2 2 3	2.5	
. 89	W6076 "					11.1	25.2	22.2	27.8	33.3	33.3	33.3	
69					6.3	6.3	12.5	12.5	12.5	18.7	18.7	31.2	
70			5. 6	5. 6	•	5.6	5. 6	11.1	16.7	16.7	27.8	27.8	
71								7.7	7.7	7.7	7.7	7•7	
2./	Contact controls							10.5	10.5	10.5	21.1	21.1	
Lot 73	Exposed controls	ols 31	3.2	3.2	6.5	6.5	6.5	6.5	16.1	19.4	19.4	19.4	

(Chi-square test for the significance of the incidence of lymphomatosis in the various experimental lots) TABLE 8.--Analysis of egg transmission experiments at 250 days and at termination 310 days

		Number	Ana	Analysis lym	is at 250 days lymphomatosis	s fo:	Final 310 c	ana	at lymr	termination shomatosis
		of			Percent				Percent X2	X2
	Treatment	birds	Take	Fail	lymph.	value	Take	Fail	lymph.	value
Exp. No. 1		,							;	,
Lot 1	Inoc. A & C	7	۲	7	50.0	7.850**	6	₽.	64.3	7.986**
c۷	ນ ສ ສ	77	r	11	21•4	N.S.	2	6	35.7	N.S.
1	Isol. controls	젔	3	31	8° 8°	•	9	58	17.6	1
77	E	58	-	27	3.6	1	-	23	3.6	ı
Exp. No. 2										
1	chick liv.	17	12	r	9.07	9.836**	13	7	76.5	9.562**
1	Filt. " "	7	11	'n	78.6	11,622**	15	ď	85.7	11.647**
7	15-day emb. "	17	12	, LC	70.6	4*928*6	77	ч	82.4	11.764**
. დ	18-day " "	17	뒴	'n	82.4	14.284**	17	0	100.0	20.521**
6	Contact controls	17	· N	15	11.8		·ĸ	17	17.6	. 1
. 01	Isol. "	50	-	19	5.0	1	K	17	15.0	•
11	=	25	8	22	12.0	1	Ļ	21	16.0	ı
Exp. No. 3										
12	emb. 11v. J7010	19	16	к	84.2	12,037**				
13	HOĘŢſ " "		13	'n	81.3	9.562**				
` #	וו אליסלת " "	17	, S	· C	58.8	N.S.				
15	" " J716R		œ	0	17.0	N.S.				
91	n n J313N		7	10	41.2	N.S.				
17	" " J310R		9	11	35.3	N.S.				
18	" J256c		7	큐	22.5	N.S.				
19	Filt, " # J310R		ď	16	11.1	N.S.				
, 50	Arm. fluid J313N		r	13	18.7	N. S.				
23	ontr		_),	25.00					
i) }	ŀ	Ì						

(continued)

		Number	Ana	Analysis	is at 250 days lymphomatosis	8 IOL	710 (days for	at lymp	home tosis
		of			Percent	χς			Percent	χς
	Treatment	birds	Take	Fail	lymph.	value	Take	Fail	lymph.	value
Exp. No. 4										
22	emb. liv. J7269	18	9	12	33.3	N.S.				
23	M602c " "	18	6	6	50.0	7.248**				
੶ਜ਼	CHILITI " "	18	10	ω	55.5	8.913**				
25	" 114,06U2	18	7	11	38.9	4.342*				
92	" J1318K2	19	9	13	31.6	N.S.				
12	" " IILI3B5	18	4	1,	22.2	N.S.				
28	" " J1318S	18	2	15	16.7	N.S.				
53	" " J1301W5	19	'n	16	15.8	N.S.				
30	n n J1301M5	19	'n	16	15.8	N.S.				
31	=	19	K	16	15.8	N.S.				
32	" " J1318B2	17	, cu	15	11.8	N.S.				
33	Contact controls	19	-	18	5.3	•				
34	Isol. "	34	α	32	5.9	ı				
Exp. No. 5									`	
35	emb. liv. (1 day)	22	Q	50	9.1	N.S.	9	16	27.3	N
36	8)	53	a	2	8.7	N N	7	16	17.4	N.S.
37	" " (15 days)	2 5,	-	77	7.0	N.S.	. 7	80,	20.0	N.S.
38		21	0	21	0.0	N.S.	K	18	14.3	•
39	" (8 days)	8	7	25	3.8	N.S.	<u>'</u>	22	15.4	•
017	" " (15 days)	77.	~	2	12.5	N.S.	4	8	16.7	•
4	" (29 days)	25	4	ส	16.0	N.S.	7	18	28.0	•
각	(43	8	9	16	27.3	N.S.	0	13	6.04	N.S.
143	" Filt.	20	-	19	5.0	N.S.	-	19	5.0	•
1	" " heated		0	ਰੋ	0.0	N.S.	3	5	12.5	•
-										

TABLE 8. (continued)--Analysis of egg transmission experiments at 250 days and at termination 310 days (Chi-square test for the significance of the incidence of lymphomatosis in the various experimental lots)

(Chi-square test for the significance of the incidence of lymphomatosis in the various experimental lots) TABLE 8. (continued) -- Analysis of egg transmission experiments at 250 days and at termination 310 days

Tot 63 65 80 80 80 80 80 80 80 80 80 80 80 80 80	Exp. No. 7 Lot 57 58 59 60 61 62	Exp. No. 6 Lot 146 149 148 149 148 149 148 149 149 149 149 149 149 149 149	
Blood J716R " J404N Resp.wash. J7010 " " J709W	emb.liv.I1413B2 " J1318B2 " J1301W2 " " J1301W2 " " J1301M2 Contact controls	Filt.emb.liv. J709W Emb.liv. J709W " " J404A " " J716R emn. fluid J716R Filt.emb.liv. J716R " " J306P " " J430H " " J310R Contact controls	Treatment
19 18 19 20	52 52 52 53 53 53 53 53 53 53 54 54 54 55 56 56 57 57 58 58 58 58 58 58 58 58 58 58 58 58 58	18 18 18 18 20 20 18	Number of birds
ភ ភ ៙៙	00000	10 10 10 10 10 10	Ana Take
15 10 10 10	20 20 20 20 20 20 20 20 20 20 20 20 20 2	17 17 17 17 17 17 17	Analysis : lym ke Fail
47.4 44.4 26.3 25.0	0.0 9.1 0.0 4.2 0.0	5.60 5.60 5.60 5.60 5.60 5.60	is at 250 days lymphomatosis Percent il lymph.
1.606* 3.809* N.S.		7.681** 4.018* 4.018* N.S. N.S.	/s for X ²
13 11 10	0107tt	++256811818 101118	Final 310 Take
6 7 9	16 18 18 17 17	£4444444444444444444444444444444444444	l analysis days for Pe Fail ly
68.4 61.1 52.6 50.0	20.0 18.2 10.3 8.3 6.7 26.1	63.2 72.2 66.7 61.1 25.0 25.0 21.1 22.2	at lymp roen
6.812** 4.604* N.S.		1.753* 7.133* 4.114* 1.8. N.S. N.S.	termination homatosist

TABLE 8. (continued) -- Analysis of egg transmission experiments at 250 days and at termination 310 days (Chi-square test for the significance of the incidence of lymphomatosis in the various experimental lots)

Lot 73	Exp. No. 8 Lot 67 68 69 70 71 72	
Exposed controls	Blood J7010 " J709W" " I1413B2 " J430H " I1414H2 Contact controls	Treatment
31	17 18 16 18 13	Number of birds
Уī	429849	Ans Take
8	13 14 15 17	alysis lym lym Fail
16.1	23.5 27.8 12.5 16.7	Analysis at 250 days for lymphomatosis Percent X ke Fail lymph. va
ı		s for X2
6	£15567	Final 310 Take
25	12 13 11 12 10	
19.4	\$1.2 \$1.2 \$1.2 27.8 27.8	nal analysis at termination 10 days for lymphomatosis Percent X ² ke Fail lymph. value
1		mination atosis X ² Value

Significant at 1.0 percent level

N.S. Not significant

Significant at 5.0 percent level

ROOM USE DIVLY

AP 14:55

ROOM USE ONLY

