105 562 fiTHSr ..'=.",*'i*.*r7="~. van um:vane-4M!"9w'v'M~**Lr-t¢-tz-'r"¥?!'FV-WWWWW 2M .: ' WWM'P’" AN EXPERUMENTAL STUDY 0’ TH! EFECTS OF NOTCHING ON THE 5mm OF 5TH. M ht fin 009m of I. S. MICHIGAN STAT! m William E. Grammar 1949 An Exporimantnl Study of the Effect- of Hatching on the Strength of Stool A Thesis Submitted to The Flonlty of MICHIGAH STATE COLLEGE or AGRICULTURE AHD APPLIED SCIEHCE by W1111¢m.E..g£gnmcr 61nd1dnto for the Degree of Bachelor of Science June 1949 THESIS ACKNOWLEDGEKENTS The suthor wishes to scknoslsdgs his ltdebtodness to lrofeasor C. L. Allen for his sid 1n.the'prepsrstion of this thesis. Ho slso wishes to extend his grstituda to Professor L. V. Nothstino for his advise, encouragement, and splendid photOgrsphie work. i p.- C) CD 0! ‘1 CONTENTS Psge Introduction 1 Definitions 3 Btress Determination and Distribution 8 Working Stresses 7 Snooimem ' 8 Tests 11 _ Data Sheets 15.22 » Conclusions ’ as IHTHOBUCTIOH The first bridge was prcbsbly s log thrown scrose s stresm. A furthur deveIOpment of this wee the use of two legs with cross sticks upon them to form e floor. When greater spans were needed the truss wss develOped and per- fected. It see not until 1847 thst the stresses in trusses were fully snslysed, slthou;h trusses were constructed sccording to the judgement of the builder before this dots. In 1847 Squire Whipple issued e book upon bridge building, and he wee the first to correctly enslyze the stresses in s truss, Soon efterwerds, the solution of stresses become very generslly understood, wooden trusses were discsrdsd for iron ones, and still later, steel replaced iron es s bridge-truss msteriel. From this time, the develop. ment of bridge building wss very rspid. Todsy we here structusl gients thet epen hundreds of feet of wster and tower over the lsrgsst cities. There sre s greet many minor etruetusl fsilures but. unless there is loss or life or other newsworthy features shoot the failure, it never comes to the sttention of enyons except the firm.thst repsirs the dsmsge. Many reilures ere sensed by imprOper details; It has been s habit of 'hendbook engineers' to select members of smple else and then to connect them.insdequstely. Undoubtedly. this is due tothe fact thst member selection is often quite simple Ihils Joint design requires e greet understanding of the problem. 2. It is no secret thst structual steel is hsndled rsther roughly in the shop end in the field, Rivet holes seldom line up persectly end they must be pulled into line. Welding wsrps end buckles the structure and lesves high residusl stresses. During fabrication, bent shspes sre strsightened es s stsndsrd port of the febricstion process. The more pundhing of s hole distorts the surrounding mstsrisl and losses high residusl'stresses. These processes sill result in s structure hsving “stress risers", such.es notches, ‘ holes, thrssds, end cross-sectional changes. Such s structure would be highly unsere if it were not constructed of s ductile. netsrisl such es structuel steel. When s minute flew in the netsrisl coincides with the locetion of e point of high residusl stress, s feilure is likely to result.’ Philurss hers otten.been trscsd to such influences. ; In sll.the connections or s truss there ere certsin stress risers. It is the purpose or this thesis to study the effect thst these notches here on the strength of steel. 3. DEF‘I NI TI OHS Stress is the interval resistance developed in e body when strsined by the spplication of external forces. V Btrsin is the distortion or change in ehspe of s body produced by the application or equsl but opposite forces, end is nessured in units of length. Elssticigz,is that property which s materiel possesses or returning to its.originsl form and dimensions shen.thc external forces sensing distortion ere removed. [223 Proportionsl.;igig is the greatest stress which s msterisl is cspsble or developing without devisting from the lee of proportionality of stress to strain. .392 Elsetic‘ligig is the greetest stress which a msterisl is capable of developing sithout s permsnent deforlstion remaining upon complete relesse of the stress. 23222 Strength is s measure of the msxinnn‘ulitiseble strength or.the materiel and is taken ss .2 per cent of the permsnent set. '313lg‘ggigg is the losd st shich the specimen elongstes considersbly sithout en incresse in load. Entimste Strength is the msxinun stress resched before breaking the specimen. These definitions csn be divided into tso clsssesi first, those desling with the elsstie properties of the aster- iel, end second. those desling with the non-elsetic or ductile properties. 0n the first depend entirely the possibility .lr ”j 4. of structure withstending the design loeds without permanent set cccuring end on the second depends the possibility of their being eble to carry, in emergency, locsl stresses in excess of those pertaining to elestic conditions. 5e STRESS DETERMINATION AVID DISTRIBUTION The determinetion and distribution of stresses in e structure ere of prime importance to the engineer. There ere en immense variety of problems thet erise from shet seem to be e ccmperstively simple problem. The problem is not only one of determinetion end distribution of stress but else of the engineering significsnce of the stresses and streins under vsrious conditions of loeding, The ussble strength of e member does not depend elone on the velue of the mex~ lune stresses end strsins but elso»shet edjustment these members sen mske in meeting the conditions different from those essumed in design. The extent to which these sdjusto ments sen be msde will depend on the properties of the mstsriel such es elssticity end ductility, on the reletive volume or the member, on.ths*method of loading. There ere, in generel, tso weys of determining the stresses end streins in s neuter: (l) by nethemeticsl enelysis end (2) by experimentel means, in which sees the setuel member mey be used es in who strein-gege method. The method of obteining the stress et e section of e member is to essume that the stresses ere distributed eccording to s definite methemeticsl lee. The essumpticn is mede thst there ere no ebrupt changes in the lee of elestic be- havior throughout the member. Four generel conditions must exist for this sssumption to be true. (1) the meteriel must be continuous. (8) The properties of the meteriel must not 6. change from point to point. (3) The cross-section shall be constant end there shell be no ebrupt change. (4) The meter» isl oonsidered.mustn;t be near the point at which the externel force is epplied. The sssumption that there is e definite lee of distribution of stress in s member is probsbly never reelised. This is due to the feet thst the material is not entirely continuous end ospeble of being subdivided indefinitely without losing sny property that it has when in e large piece. steel end other motels ere made up of crystalline grains shoes proper- ties very and shoes random errsngement'greetly influences the stress distribution.throughout the member. This is illustrsted in figure 1. The fonmnle sssume thet the stress is evenly distributed. While the colored line shows the probsble dis- tribution of stress. J So fer, the discussion.hss been-about bars of e prismetical form. Then, for centrally applied loads, the stress st some distenee from the end is nearly uniformly distributed over the cross-section. Abrupt changes in cross-section give rise to greet irregulsrities in stress distribution. These stress ooncentretions ere represented in figure 2 by colored line. «4—- p figure 1 figure 8 7. woman: STRESSES The selection of rorking streaeee in of the utmoet .iuportence to the engineer, end if the deeign ie to be eound. it in essential that we have very eleer ideee regarding them. If thie factor is taken too high.the etructure any prove week in service. On the other hand, if the working etreeeee ere too low, the etrueture becomes unnecessarily heavy and uneconomioel, In the ease of ductile materials, eudh as structural steel, it seems logical to teke the yield point no the belie for determining working etreeeee because of eoneidereble deformation which takes place et the yield point are eeldom permieeible in engineering structures. 8a THE SPECIMEKS Static teneion teete are the moat common type of test and are the meet neerul in revealing the true character or the aatcriel. This type of test cloeely resemblee the load that ie put on a etructurc there the effect: of impact an neglegiable. The eteel need in the teet eee a mild 20 carbon steel. Thie type or eteel ie commonly need in atrnctual aork. e11 the teat bare were cut for: the eane piece or eteel ahich eae elightly ever 15 feet in length and ahoee nominal dimeneione were 2 inchee by % inch. The tiret bgr to be made one the control bar (lA). full bar eae made eo that there would be no atreee concentra- tione. Tbie her would act ae if it had a continuone crcee- aection dinmneion of 0.433 X 1.383. Bar 25 baa I OQuare out notch, bar 5A hae e back eat out, and bar ea nae a V notch. Bar on repreeente any one of the above three eevere notched here that hae teen hollowed out. It ebould be noted that the least orcee-eectional dimen- tione of all the here are the cane. Originally there eere tee epeeinene made or each type, after teeting these ten‘tere it wee neceeeary to make three core to obtain more data for the eonclueicne. The nowhere on each bar note a type of catch and the lettere note the number of bare made of this type. ~——_4"——.)t‘_ 451+— 4”.._* 1A 13 [A [E ’15:” fl .4431)! #— CONTROL I -L 6" 34 n 2 A 1193" 2 A j?- .328'1>| k— 143’15' {ii SQUARE-CUT ! l4 5" _ r T l M X333 3A 3: ' £065.81}?! ‘(C—UT +13; H— EAR D/MfA/S/O/VS 6"————->4 .. T L383 u I 4/! 4. -0 4/4 .. ]i 60 143-5] I“ V-NOTCH l _ 435,1. 5" a r [ 5A 1.363" 5A 1-. ' W.fi43‘1A—ILI£‘ HOLLOWED OUT NOTCH 5/4/53 D/Mf/VS/O/VS 10. 11. Purpoae 1. To determine the effect that notching has on the etrength.or ductile eteel when it ia statically loaded. , 8. To find there the atrele ia ooneentrated. 3. To determine the care use of notched ductile material. Specimen 1. commercial type, having a 2 inch.gage length.and out to apecitieationa. Tent flaehine All the tests were run on a Richie nnivereel testing mmchine. The net up of the specimen can be seen in the photographs. The speed or the croee head vac , 0.0558 inohea per minute. Procedure 1. Punch mark a 2 indh gage length.on the specimen with the notch half way between the two punches. 2. Place the apocimen in the holdora an that it in gripped evenly by the Java. Take up the slack in the ayeten by moving the croae heed down and placing on initial load of 2,000 lbs. 3. Set the etrain gage in place and clamp firmly. Zero the etrein gage after the initial loed ia applied. 4. Record the gage reading and load to the elastic limit. Then remove the gage and load until complete failure. Apply the load uniformly. REMARKS There was a alight discrepancy between bare 5A and SB ao bar: 30 and 3D were made to find out more about the strength of the epooimenf I! was then noted that bore SB, 50, and 3D teated about the name so the reeulta of 3A were believed to be inaccurate. Bar 10 was made because there were not many points obtained for plotting a reliable gage-lead curve. Due to lack of time, bar 10 van made rather hurriedly and no the accuracy of the results are questionable. All the other here tested rather roll as can be aeen by tempering the curves of each type of notched bar. The teat apeoinan in place " - 7-‘\’*—‘ x— - \‘r" ¥\r‘\_\ ~A\_- \.M~~‘\\ -~\A_ X\~\—\.'\—r'~\ -\,~\- - \.-v Putting on the atrain gage 13. Adjuting the "nine gage l4. ‘- 15. MLIT-ZJZ ’ SM N“— z MECHANICAL ENGINEERING LABORATORY MICHIGAN STATE COLLEGE RunningLogot 7:?flS/0/7 7:33/ £2 ;:a£C£flffls Z 4/5123 om{ 4'” er { W‘M 194.9. 1/! V, 15 v. ‘ I t VIN ”‘0 : \‘§ m; x” E “\Q Q Q S n g 0 (pg Q N X K W‘Q \ h .1 K (“‘0 g g 2\ 33$ 2 :\ o $\ 3 “$336306 “fiei’fic‘ 1 g. a 0.0 2. 0.0 2 ,1 5‘ 2.2.. 5” . /.3 3 T /o 8 3. 0 4 11/5 .5./ ./o 1/ 5 .20 ' 8.2: [2. 5.0 6 .1 . _ . 1 /$’ 6. 0 7 35; 3207’0/71/2774713? . M» 7.0 8 . sire/57% /6 8.0 9. ‘ 20 r 9./ 10. .; 2.2 /d.0 11! .v . .24 //.a 12! . , 25 M18 13.’ ..j . I -- _- 14.5 ii . . . . 3523 0-}? a/flmal‘f 15! 570:6”ij 16} _ * . 171 18? ‘7 19? 7! 201 _ 21]w 22’. ,f 23? ? 24! T . I _ , ' . in”, 7, 1+ —— J . -174- ._— ,, Remarks: Int/Ia/ /oaq/ of 2,.th Gage l'q f/d /d 714/ -V' nun-232 Sheet N0- 24 MECHANICAL ENGINEERING LABORATORY MICHIGAN STATE COLLEGE . Runningbocdilslan f: S f 7/ :SIDQL/M‘Cfl J C WI DWI I WM' 194.9. ‘T 11'“ T‘"" "T’— ‘ 'T‘ ' "I " at: ’T -_-___,7_ ‘ “CT— “‘___' T." ’ 1C “‘2' SEE .§:: \rn K ”o e g: :e\ o' \‘zfix‘; Ok‘ .1. .; . . 1 E. 0.0 2 5 , 0.7 3 8 z./ 4 /o ' 3.0 5 : /2. sea 6 1 /5’ . 5.0. 7 /6 , 6.7 8 /8 3./ '9 /3 ./2.0. 10 2.0 “(2 11‘ 2/ 20.0 12 22. 19.4 13 23 . 14 ‘ 15 d 33, 960 o/r‘xma/e 16 sfren’q #A 17 18 19 20 21 22 23 24 .125. _-,_. 1; J —“ hm“ I”’7L"’/ /oad’ h/zea'o‘v‘g' Gog e ref/a /6 7‘0/ _" HLIT-ZJZ , Sheet. N0- 3 MECHANICAL ENGINEERING LABORATORY MICHIGAN STATE COLLEGE Running Lon «£15144 7:13.47! 0 / 5;;61 1/77 (/7 .5 37/435 / MW DWI { MMJsufi. _ 1 2A IT ‘1 h-T~_-— T 1-3—5 -_ "T” 2' _, f—‘M ""’ I v» n? V' 5:? °\ :4‘2 °I= \ V v5“ = 2 m‘E ‘3 \0?‘u‘g§ SELL“): . 8‘8\‘§U\Q 3£* 3;:X‘ i- .2“ ‘. k . ..* °.¢°‘ . 1 " 2 0.0 2. 0.0 2 5 ; /.o 5‘ 0.8 3 g 8 ,. 2.2. ._ 9 2.0 4 5:. /a . 3.0 .- {a 2-9, 5 :1/2 .18. /z .3.4. 6 "/‘lfié? ”iii. 7 M . 5:; , . /6 Sta 8 i1 /3 ‘GJ. . 19.6.7 9 I 20 . 7.5 .< 2.4 7,0 10 . 2/ _ 8./ . _. a/ 7.5 11 .1 22 ,/o.o: . » a; . 6.0 12 w 23 //.a i 2.3 6.9 13 ? 27 15.9 . - 27. 15.8. 14 :2: $53.0- . 2.2/5 ~72! _ 15 [25.5 , 902?, z! .540. 16 .5 2.6 139.0 5.5 625‘ 17 ‘ ’ : ‘ 18 :; 35070#0///m4%€ . 38, Vfdfla/fi/rld/é 19‘ 1: ‘ sfrfajfr} _ .. 5/;577} 7% 20 1 . , 1 _ I 21 . 1 I 22 [I ‘ 23 I! ‘; 24 '1 i ; g .25. fl 1 L J l 1 L l l 11 - , L - Remarks: III/'f/l/ /tcu/ 4/ 200075: 6-499 ”.471"../pfl/ ‘U. Hut-232 Sheet No. ‘7 MECHANICAL ENGINEERING LABORATORY MICHIGAN STATE COLLEGE Rummage—£15101] 7; 3/ 0/ .SIPJed/mcfl .s 3//,”jfl ML, (Itgflmél’ 0Wm{ <7." 57.907747? { 0.0.12... ‘3//" fi’é 35 n t g {'7‘ “first . wing Q71) § \ ‘ ‘6 ‘2 V n 3 E 3‘ 3‘3 '4 2.x '6 \ Z "ké ¢\: _. “N“ .W “5 - 1 Z. ‘ 0.0 Z 0.0, 2 5 . 0.8 5 0.8 3 8 , /.8 8 /.8. 4 /0 7.7. . ./0{Z.1/. 5 /z 3.3 . . . /z . 3./ 6 _. /$’ . 7.0 . . /7 4,0 7 ,. /0 5.0 L . /0 5.7 8 _ /8 5518 w /0 0.9 9. .: 20 : 0.8 _, . _ Z0 /0.0 - 10 ._ z/ ‘7/ i . . 2/ 72.0, H .21 £73 . . . 21 _/00 12 23 * 8,3 , 23 /9.0 131 .2'7’_ 3.7’ H 127’ 22.6-- 14 25' /3 8 ‘ 25' 2.7.0 . 15 Z5: 1/0. r/ . 25:30.0 16 _ 20 6‘2 0. ‘ . ‘20 70.5 17* W 25.5, 67.0 . ,; 20.5 50. 8 18 27 77.0 . .27 73.0 19' ”275' 875’. 27.5' 07.0 20 . . ‘ 21 .38’ 385#0/1m01e . 90,730 £0/1/77701e , 22 ,7 N jfro/zjfzé . 51/76/7314, 23 .. i . ‘ * 24 . . , . . J“:- ~:—:777 l:~~-i —— —- i -7-_ ——l ~77 . I — .. 77 ——_‘g-7————7‘»7 7-. Remarks: 23777470/ Add 07" 2,0001% G-efie r4170 /0 7‘0/ HHHn—IHHHHH coco-ammnoomjw ‘38 8E8 24 II i‘ 1", ‘ "LIT-232 Running Log «M417 I: 5 / MECHANICAL ENGINEERING LABORATORY MICHIGAN STATE COLLEGE ' 19. Sheet No. 07/ .5”ch 1317.: EC f 3? ... l ocooo-qmvmgwmw‘flo. | M 0m{ 3C] 57 5531’ 2 E: .S: figk‘K: 3&\ :3 3 ~41\§‘5“<~ i. 010 .6‘ ‘08 u 8 210 ./0 _. 3.0. /Z .39 ./§/ '43 ./4 n£e_ '/9 ~75‘ /9 /0.0 i 20 /Z.0 a/./00 22.200 23 2%0 27 320 25*7243 20.1.8.0 I. 38, 080 #0/12/774/6’ 52‘2th 1/9 l Ramada. Zg,//a/ /odd/ Gage I'd/w (4 7‘0/ .30. w “n 5‘35 P. 0‘ 9“; § 33‘ :7: 33“.; 38A 21 00 .5 A0 . 8 25‘ ./0 3.2 ‘/2 %/_ [7 570 la, 00 /3 Z/' A? .30 20 3/ “2/ 7M0 .22 _/2'0 23./Z§7 24/ 23.0. .25 230« 26 430 30350# 07/ 4400;?! 0mm, 194.97 0/1/777 01¢ sire/7’7 1/7. 309 "UT-m swam 6 MECHANICAL ENGINEERING LABORATORY MICHIGAN STATE COLLEGE mmuzaawn 225% 0/ SW Wt OW{ { New, 194.1 T44T “ “I I I I 4BT {’7 F [ I T? 3:: E“ 'E:§ 91%]: 3 '2 V} 2 § \ 51“- Q “3&1“th 32‘s}: . °£x ‘§\ ° ix :5 93‘ 5 V5. Q ‘5 ‘ V W. <2 k‘ 1 Z 0.0 E 0. 0 . 2 .i i J /.0 5' 0.8 3 I 8 2.0 8 A? 4 1/0 .3.0 /0 2.4.. 5 .7 /Z .3.f ./Z 3.Z 6 77/1743 77 4/./. 7 a /7 5:3 /6 5.0 , 8 'i! /3 3:9 /8 0.0 9‘ !20 03.9 20 . 0.6 10 2/ 7.2 22. 73 11 iZZ .28 27 73] 12 .w 23 8.7.. 25’ 90 13 .27 8.5 20 9.9. 14 :12: 9.0 20.57200' 15 ;' 22 9 9 _, 27 0720 16 .9 27 23 0 225’ 87.0 17 .; 275'. 720 18 28150 3853—0 aémaé: 19 .1 5 re” 20. .F 303 070 032/1777... 1e 3 21 I »~ 5778/7} f1; 22 H ' W 23 fit 24 ‘ . —. — 1-. — -2—I—7-,7—T Lf—Tvl —.—,—,--7I7—-_—--:. ~-7,4._,72_ 77 L _----.i7 _7 _ 7L Remarks: f)" 700/ ”do/ Gaje 0/ 2000# rev/m 0/ /0 1a / LIT-232 Sheet No. _. 7 MECHANICAL ENGINEERING LABORATORY MICHIGAN STATE COLLEGE Rmmum¢_zzd£¢117 7?:/'21:_.jiz¢azfifiLLJC41::§5 54.913 r0704 ./fl fi/ MW __ mmw4 . , { um4£flZiZmL1 7 "1 534 2‘: 5B TQ§ 'EE:;.§. \S§ ~?: ‘ C A ‘3‘ E1 E 23“ 357;; E g §§§¢£3 J§§¢K\ 1 2 0.0 2 0.0 2 5‘ w 0.0 5 0 o 3 .. 8 0.9 6 0.8 4 . /0 /.7 /o . A! 5 . /2 2.Z /2 2.0 - 6 l /}’ w 3.0 (f 3.0 7 /0 . 7. 0 x/0 7.0 8 ' ./8 {5.0 \N. mflhwguw $0020.. + 0.x 2000.. >1. a o 0 o 9‘be .. 0 *stc1 X «K! NOMAD NI Oi b .N \o*\\hm* *0 NM N“- i a: M F. 00.000 00.000 0 00-00.000 3:. 0 0 0 mm .000 00 I 00.000 00.000 00-00.000 00.000 0 0 0 mm. .000 00 0000000 00.000 00.000 00.000 00.000 0 + 0 mm .000 00050 E. 0» 00.000 00.000 00.000 00.000 0 0\0 0 mm .000 I 00 000000000 00.000 00.000 00.000 00.000 w 00 0 mm. .000 00 .. 00.000 5.000 00.000 00.000 H 00 0 mm .000 .0030...”0 0 . find 0. PD . 00 00.000 00.000 00.000 00.000 0 0\0 0 mm .000 0 L. 0 00 00.000 00.000 00.000 00.000 H 00 0 mm. .000 00 0000 00.... 000 00 00.000 00.000 00.000 00.000 p 0\0 0 0 .000 0» I I 1 00.000 00.000 00.000 0.0.000 0 00 0 mm .000 00 r3300; 00 00.000 00.000 04.000 00.000 H 00 0 umr...000 0» . w0 _ II M. 0.0.000 00.000 00.000 00.000 0 0\0 0 00. .00.. 00 00000000. 03. 04.000 00.000 00.000 00.000 p 00 0 mm. .000 ‘88 I I I I I I I I I I I I I “-4. .. _ __ _. - F+~Lq -— —. I 2. OI4D 6/1990” . . I 1 CURVE - _f; - .—~I-——-— 4000/ (0012/70/96) I I I . I i I .1 f I [/4 I 1* 1/4 I I I h .1, WI 1 (Ionfra/ Ibar I I I . I I I I : I -- 7..."...— _ I .1 I I i I I : : I = I = i I i I : I I I I I I . , I I I . I _,, , I- I Key 1I4 U/fI/ma/e /oaa’ 532011.: IIB U/ M707" 6 /000/_ 5330*- 1C O/fI/mw‘e 0.0 3,960% I I 2 I I I fi‘perm/Is/J/e I'% I "'II" o. In. 0.0 1 o. 6 aja o. 0.}.2 I Carri than afI. ool' f Gage Re c/Ing Ina/9e: % I I f . I i a ' ~ - o-—- . --. — p—I‘L---_’-- no.-- JI- ——— .—.—--.:—.—-— -II‘- o--- . o-~—- 4' -— -.—-.—- -- u- I c -. ~o .- p— .. o 4}. - - --—- -—-—~1I ---————.—---—.—- ’-— -J — —4I 0-- —-- - v— .. o—- c I} - J) - —-—-o ----o-4} - - o - .— I __ E-.- .- -—.——-—. ‘h—n—n. ——-———-——-.—-1Loo—- -—— .— —I) -. -‘ "—-1. «L - -- . —- — -1I -1D— Ir— o-IL db- l I --- ———. —.—-—-————1-—- ---—— , o- v—V a ‘ O I ' . 5 . f I “-- ' ' ° C W--- ., I l a» f -i,=‘-.l-fl --*:i.sfiumme- U Kb 1: I I9! Ill .ll'+ .Ilutulu .l‘.‘ {liaiullt III.‘ _ «I I ' llalnl‘l'lull‘ ill: I.l||ltl|‘||l.[_l.f¢llvl- )I'I I ll -llil‘l.» III'I’I\|III.lv|II 1.1111 Ar‘ )’ i ‘ “A.“ U/f/nboi‘e 4 3;, /‘ I ,. (/1/7’7377, :‘ I I I f 1 I ! fer/7N S‘IJ/e i l b 0. Va +c$cs), . . : ”V‘HI‘ d. 456 ;.-, (Z7 wactzokv Q\ O. V safe Rear/trig o 0.01: i E I 1 )1 l l 1‘, ti i- Inulprtllvlvlj a ,_ _. I: OH 0 A Q _ 1 0 a. 1 Q _ A a. Q a. at M f a, i a.) _ H E. M l 5. . . . . . _ h _ H w A 64 . col " i *— CoraFec {'14:} y l-l|'l ll'll.lu. flu? F . a . lil+11 Ill: IOJI'IO I‘ll..- I! ’4 .11.)! OI.III1!. I'll! li‘lilnllu 5’ 1.011 tl... II": ..+ OI] ' :0. 1'. I‘lla I‘ll'll‘lvll "I still... '1' El. I10 +£4.|llx.l .IOIIII! ‘I‘l ‘.|Iu av‘ll... II V I. x! I... DI olll. Ill _ v . _ . . . _ . < . , _ _ _ . . f 7 . _ . _ . _ . 7 a k, ,_ _ . . _ . . _ w _ V . . 't'l‘llli!!l+ti\i‘l IUI. Oilfill’li I‘lll‘ll'ltlllolnouk'ill +l‘rll‘.‘¢1lr‘ll‘llfill. O .I .0..." II .II ‘II 'II il’lL‘I‘ Y*\!Ifi‘i¥ T ‘ ll IO...l|Il ll!" | ‘Lill”- 1’!Itl Al .9 l ‘ . V — . , ~ . . . E‘I {I'l’l‘lui‘uC'l‘lll‘I‘t’ Illill'll . [It Ill“ rJ" O.‘ Iii: .I’l'lrt‘lflll ‘ 0.:{lll1tllv *l“’l‘l’ .- I J '0'. III?! - 1L4 In. ll ‘ll’illril. $1‘1IIII‘ ‘ . . ‘ _ . . . . . . , . _ A . . 7 . . . , _ ., F . , . _ . [r > r II a . . . . . _ . M _ _ . . .. , ‘ . , _ . _ . . _ _ _ . . IT Ill ‘ li‘l‘l E I'IO'l II _ . . _ _ . _ _ . . . ‘ . . w . .. . . . . . _ L1 i 0 } I I‘ll}! b lulLIlKl \ 4 4 #4 1%.“ V4 In .—O .— — 4 I 4 4 4 4 “ 4’ 4 4 4 4 3/44 4 4 4 4 4 4 4 4 4 4 4 4 4 4 _H_.;._--./:,uoh._lfi_ 4 -4 .- ._4 --.-. 4. 1 4 f ' A’e/ ' ' 44 3A am a/c 644/ 364385”! "mm 44__ _. 4 Slinglfflra/Cm/rJ» 3 44 4 34: (/60er ha 3 080*“ 4 4 349 U/f/4ma/e 4200/ 34,3 360# __-W__-4____J,m ' .____.-_.44____ __ _ __4-_ W4..- 4 4 - ...44._..-.; F4- 4 4 4 , 4 4 4 perm4vsSIé/e. 4 sev‘ 4 4 _ W46 ._ J i "*4 0.04 o. 4/ a. £46 a]; f Cartcf/on 4 4 0;! 040 ' 4 o 4.oa/" 4 Ga e RCTQI’nj 4/ncie54 ' | 4 4 4 4 M a _ _ k . . . . _ _ . n . ~ _ . _ . _ 4 >1 4 440 4 4' 4 44 4 4| (4 ‘ 4+4I 4+ 1'! 44 414 44+ 4 r 4 4 . _. .4 . u . a . fl , _ _ a . 4 _ _ . _ , V f . _ _ m _ y H “ fl . _ _ . . r . J _ k _ . . m 4 _ . _ m r . . _ _ _ r ,. k , A A _ . . . m W A . _ . 6 w _ . u . ~ _ A _ _ ~ ' 4| 0: 4444 4 4444444 0 4 4., 4044444 444 44 ! 44.44.(4 o 4444 .I4 44". I 44r4 .424i.‘ 4.44.4 I 41444444 41.444164414344 444 4 .4414944414.44 .4. 4 4 44744444 4444 44 4 44444 H . H . . g _ v , 4 , 4 . 4. A _ v . , m m A . m a w . _ m . _ . _ ‘ w . ~ _ _ , . . . _ 4 4 t al 44444.'l 4 4444 44.44 0|. 4 444I44o444. 4 I4II444|¢44 04 44.4 14.4404‘l4444 44.444444464444444 444.444 4444444 444 44444 4.4 44Oul‘lll N ~ _ A n _, . v m w _ W _ m H . _ _ _. _ . w m . _ m . . , , .4 . . _ q H . . . _ . fl , .m . _ , 6 r . u . a w , u A M .. . .. .. . k u . F . . , .. . . H . . 1 . ~ _. w . 4 . fl 4. r “ . _ u v . h w . . . n a k h m _ w _ . . _. ~ . a a _ d 4 4 _ ~ _ h g . u . a W _ _ . _ _ * _ 4 _ o u. . # r . n . fl .. w . _ M _ v _ . 4 a 44 .4 4 4 . 4 . r _ — o w _ m fl . , . u fi . . , . . _ fl , _ 4 _ a . . _ .6 . W . _ w w _ u M ._ _ . n . u . ‘ . v . u . . % 4 r .41 J. . u . w . _ L m . . m _, w m a m. h _ *, 4 _ , .. w _ _ . a u a w . . m w 44:44.44 4 «4 444- 1444 4444444416 4444- 41.4 4.4!4 44444. 4 414444444! 444 444, 4444|444444 444444444- 44444 44.444444444444444 4444 4444. 4-4 4 1 I 4"" a - -..‘.<.—.- .— f. ”Key a/e /o | 4 E U/ .97: ['0 ,1 e 4 a J 343, a”??? I x g, i7 3' / - .. -fi/ 2.2-.-. . i 0. ,__._ 4 i~llfll4ll4 ‘44Illlll .9444. . 4 .ll W0\§§§Qn\wv . \VOQVW. w . H _ n 9.. Q 0. O Q O 2 ‘7/4 U/f/ .75“ 44"..‘4 4 a 448 0./'4 [/73 (40618 5) r : 3;? a; Gd 0.12: 4 1,212 - - ilk- l l I | Cor+e¢+mn 01‘; .oo/ " . _ . y ., _ L _ M y , , A . _ _ _ . _ . 44% 44 44 44 44I4-444444444444 444 44¢44| 4-44 -444..+ l.4.|4.-4l|4.4440.l 4. 444.44.... 044144 4-444444444I 4% 4 4 4 4 I4 444 4IW44 , . _ _ H . H __ . . m . . - . . . H . . . . w _ . . i H + . . . . . _ 4 4 44 4| 4 Il44|44444v 4 4 4 4 .l .44.. Ozl. 4 4.44 4 .44 4 Ii. 44444 441.44440444ll 4 .44444‘ I44.4444.4 4| 4 4.4444 4Il4410 ..-4444|.-444.. 4 44444444444. 444 14.... 4446I4 .. .. ~ , L _ . 440 4 4 4.0. 44 .6 44444444444 4 o. 4.04444 4 44l.|l.444444.4.|4.4.44 «44.4444I4444‘4 4 4 44 44.! 4 4 I4 I4 O 444 4| ‘ . s , . . V . _ . . _ 7 p _ ; _ . 44, 4 4.4 4 k . _ _ k . v u , . . _ k 4 "04 4 4 4 I4 — _ _ _ _. n . ~ 4 4 4|4I44444I44 4 4 44 , . L _. , _ v . , fl . _ . . _ . _ . . . 4 6 I. 4 4 4 .0 C II I '44 I 4 44 .04 44 4| 444 4 44 Il444 4 4444 444444 4 4| 44l4 4.441 4 4 444 40 4 4444441 4444444 ”(D/$40460, oa/ oa/cfi . 1-4: - .iilrlii. '44:: 1 _ . key... f U/f/m o 7‘e 474 71.63 A9954 _3 U/7‘x 5/4 55 . .____ ..._...._.k...._’,.‘ _ ...-.-..- ‘ ...,. , - _._- ”-4 ._._ _ .-. ‘ ‘7 -7 n. __ fi-4 ,_, -,u,-,-,,-, ro J x)! w 0 <. T e H I” , M H .3“ 2!;t.+u . ( _ 0 M 9. _ m M 0.0? AWNMMMW Wflwo. u _ . an: 79m oa/” Afi Cor cc M 4. I 4.:49‘44 444 44 4..-):4444I144.IQ.II‘.4.44IO .4 v 4 9|.‘.|. -44.! 14),.)‘419. 1.44. 4.44.4.1 4),), 4;44|l!44 4:41:4filh4 4 4.41.4.4 I‘Is: 4 .| 4\.'4444444|44.1*I4 . _ . _ _ _ . y _ . _ . _ 7 . . ~ _ .. H . . . , a . _ , _ _ . _ fl . _ . . . . _ 4 4!. 44 4 44 4 4:4:144 444 4. 4 4 41 444 I. u 4 I4rllu1|4| 4 4444|44|44 4 44444444444444 ['4 ADJ l 444 I. 4414. 4y 4 ‘4440441I444 4044144444 4-4444. 4446‘4 .444 444‘44’ ll. . _ c . . V . , . _ _ _ _ . ‘4' 4 444444 ‘5 v44 44 4, 44 4 I. 44 4 O44 . A _ . _ . . J 4 4 1 A v p A . A _ ‘ 4 44 4 4 4 . _ _ _ , _ _ A 1144 44444 all4‘ll4 I 44 444 4 . A A . , .. _ p . . _ b 1 4 .II ’ l _Zoaa/ {(po urn/£5) "MW“? wan—*7 I _....-._.... _._...— H. __‘..-.___.,.______.L_._f, , » LQAQ ECGAQE ICU/‘3j l/f ! A1%r9.3g -flflarygnwfl 1:.-. miéfligaf - _.. . _ cal " .{ = waft/199’ 5/78 ”776/7 1 , ; sg . g ‘. i : I l r $ 1 r r E Q E .i. misty»- l . z i 3 TWP" 1% = 1 z TMDE 3 i 3 i TREE 3! 1 E I : 77/96 4 Q n _ C _L---hC----_.Z:nye_-_--55:________C C ; i ‘ i ! . i “-799 ”37/ an 1/: {58% i f 4“- (Mg 0,47 0. '5 4.0 0.40 an: F t i i Carrepf/ofl Ga‘ge Rec [”3 (I C585) ! l J-.- , ! I . . n . w _ h L, I M A w a Mr J n _ _ w . _ W Jmfi I _ _ _ ._ _ . m 29. ';?#§~fl fihk” 'av Jv"$ I? P’ A ~ . 3" v S" THE GGITIDL ~ 5 \k—y '\\_,.\ .\ 81:}... \Jr .I"?)F'II~)§!1-.‘O’1IC’|]III v1.1) '1‘" ‘3 I’. Rotor! touting WmeM’x~l—‘\__~-«x w WN~N\__I-\Q'\_,~‘J\‘ x \ W ‘V *—\‘,~"—\.‘_...~/-\ WW ‘9‘71{ '5 7.1! 7“. ,..‘\l 7"! '4; 1:),‘01 I).1p] ‘I ~/\" 1 After testing 30. TEE SQUA HE our 4 § 3 wv‘wu .nth --u‘-U‘-’\-~“'v~ L‘“ [‘0 t ) I I I _x\\ \ ‘ ~ \ \K‘. \'\ \\_ ‘\\ \v— K\‘\“WA\\»- —‘\-‘.\~"\"\"‘-W Boron tuna; H‘M-' 1 l .f , ‘r .5.“ ./'~---“ .l “NHH‘J‘IH J“ \I‘N- J’v ,l-q' #54 ~WMWW’WW ? i 5 Z an» mun; 51. In: HAGILEAW GU! . a..,-"‘ u . "A l‘n' " um- 0‘}. “M _’ I I .0 ’0 - fi '9'- ‘ I w ' V « ,4 J .0 I 1. . .‘ S ‘1ij .. . co .3!!! - . I OI . ‘ O . ‘ a . ’p a g y .. 4 s z M‘\Ja 1.11. It. ct , . . . fly “fl ‘ .. . ; ... . . . \ J‘w . 4- .. l‘o In. .oOtNP ( I o 1‘ t a F'IJ 4” "I’J‘fl’l’.’ 1"!!!) 1.1,!)1‘; " "\_-— \‘WWK \’\~\ \‘\~‘¥_\\~ \‘ ~\__ - Barbi. Boating \ —\ .. ,~' V __ W \/\—~ .'—\,_ ‘M_ '& —\,\’\ \_ —\_\._—‘\_\,~_.\~‘_ r~x'\—VWA\\v\-rd~/\‘~'~F\v~ W «hi/N ‘l71311471111\,,7"..."717‘7‘" Attor touting ¢ 52. m v-no'rcn I 1 \ \ A 43 ;, .o.‘ .1 I .'- -' .” . »‘ . . ‘ 3-0!. . g '1‘: . , ._.“\ ,‘_, _ ‘Q ' I ‘ n I \ ‘y. - .—’. ‘v . ~ . | I r . -. 1“. a . . > . ‘ _.\ b" ' . 38" ?- - _ 3 , .j‘ I ‘ . ‘ .- . ' '. , ' .51. o -‘ - z? - ‘ ."\'\ ‘d.. 0 , _ - n -» 4 a.» -- w .v A ' .3 . ' . - y. ‘ ’I "i ‘90.} . s ’3" p05; ‘2 I. a r“~4 “’VW “NW \‘Wv‘~‘v ~49"- \- fit” by N»? . O K » - ‘ N —\ ‘~—\\_~M§A \~~ W‘Nm‘ 9‘ M_V' MW \r’w Borer. hosting 1 o I *JJQ‘JJQHdeJwfl-Jw‘t—qu~qfi W M‘~’\ . A M After testing .2 g E 53. 'v J” J... m nomusn our um / ‘ J“"-f’~ ”F‘ x C .-w1.i .o . up .. .u AK...” IJov~ W2. “50‘. . .I'r 4.. ..On\.ou.r“ . . .. L. . ‘I ’40 .. ...o M J ~ . \/“ s.—-\, w notoro touting A Aftor touting 34o REMARKS 93 How enemas mom 1A end 18 (The Control) Thiu wee the central teet uectiona It can be observed in the photographu that the lineu curved outward co the yield wee grooteut in.the middle of the uection. The yield wee more evenly divided in this specimen then.eny other. Thie iu true or the yield in both the hori- gentel end vertical directionu. There was even noticeble yield beyond theggogo length. The Riohle gripe ore urolled in the center us on to grip the upecimen.hurdeut elcng itu exiu cf uy-netry. Thiu giveu the cane type of loeding es would be done in u riveted conutruotion. an end 28 (The Squere Notch) The epeeimen uturted to teer et the cdgeu when it failed. In thiu epecimen the yield one grouteut et the edgeu. Thin eon be uhovn in the photogrophe by the way the vertieul lineu bow cut end the increoee in the eiee of the uqueree. There in eluo considerable yield in the center or the her. The yield veu over e 1%” length. at end 33 (Heck;8ew Out) Thiu upecimen uterted to tour et the edgee. .The foot thet it did uturt to tear ettthe edgee euu more pronounced in thiu specimen then in uny other. There wee o high.con- oentrotion of utreuu uround the bottom of the‘hock III out. The yield veu over e 1%“ length. 35. 4A end 48 (The V Notch) Thie upecimen started to teor et the edges. The utreuu concentration wee nt the bottom of the V notch. The yield um over e 2 3/8” length: 5A end SB Thiu piece broke in the center first on did.the control. The ber‘hod its main etreae concentration in the center on did the control. Hanover it eluo hed etreeo concentration ' et the change inuection eu did the other notched epecinen. Thiu can be proved by cbuerving thet the lines bce outward hour the middle ind inverd et the change in section. The yield veu distributed over 1 3/4'. 36. CONCLUSIONS Ultinete 8trength.Beuultu The reeuon.thet the here hed their ccrreupcnding ultinete utrehgthu can be ehotn by oompering the notcheu. The ber uith.the eevereet notch, the V notch, touted A highoet in ultimte strength. The heck um out us’ the uoeond eeverout end one ccrreupondingly uecond in ultiuete utrength. The uquere notch touted third higheut, the hollowed out notch ueu fourth end the controlflburu were loweut in ultimete utrength. The more uevere the notch the more it reuiutu the necking down ection. Thiu cen be proved by observing the pictureu etter reilure. The necking down ection in the ueverely notched beru wee neinly confined to the long uide or the croue-uectionel eree. The control bur necked down on both uideu or the crouu ueetionel eroe. If there ie little necking down then there iu more eree to reuiut who lced end thiu ecccuntu for the renge of ultinete utrength. The Proportionel Limit The proportionel limit iu defined on the greateut utreue which o meteriel 1e cepeble of developing without dovieting from the lei of proportionelity of stress to utrein. ‘ Thiu iu e common definition of the proportional limit but it dose not mention enything ebcut the geometric shape of the body. In the tents ell the bore were of the some 57. materiel end the geonetrio ehepe of the bur eeu chengede The proportionel limit or the bare eeriea conuiderebly eith u change in geometricehepee ' The V notch.eeu highest in preportionel limit, the control ecu eecond, the equere end the holloeed out notch eere about the acne and the heck one out eeu the lowest. Thiu tende to prove the idea that utreue ie trenenitted in linen in ductile neteriele, The V notch offere the leeut reeiutence to flee or the utreeu linee end therefore hue the higheet preporticnel limit. The etreuu lines flee down the uidee ofithe.v end the motel on.the eidee ectoelly help reiee the proper? . cl limit beeeoue the reduction of eree ie beer ouch.e umell‘lenguh. The obntrol touted uecond highest in proportional lildt bedeuue there eee no etreue concentration. The equere notch end round notoh.hed the bed effect of etreee concentretion. The motel et the eidee of the notcheu did not help in the proportionel liant beceuue of the reduced eree eeu ever u longer length then in the ceue or the V noteh. ‘ The heokteee had the higheet etreee concentretion end therefore the loeeet proportionel limit- Thie eon eleo be ehcen by the eey the cureee ulope erter the proportionel limits Yield Point end Yield Strength The yield point end yield etrength ere ebont the meet importent dete obteined from the test beceuee they ere need for determining the eorkin; etreue for utructuel membere. 38. In tho case of etructual eteol the yield strength 1e defined et .2 per cent permanent not limit. It can be obeortcd from the grephe that the bars were in the following order of yield strength, V notch, heck new cut, square notch end control ebout the acne, and the hollowed out bar was the lowest. Generel Conclusione There static tonsil teats tend to prove that ductile etoel horn with e eovere notch are stronger then a her with e less covert notch or e bar with the notch effect removed. Thie is due to the that that es the severity of the notch incroneee, deform‘t to decreeeee. In e ductile netoriel the motel around the notch.helpethe etrongth of the bar_if the notch in eevore enough. I recommend thet more teats be run to confirm the above resulte. -The shape end veriety of notchee could elee be inereeeed to give more dete on which to been conclusions. 39. £181.; 03mm 52211“ Elasticity, by 3. Timelhonko and J. H. 1.0330113 Advances loohaniou g; Katerina, by P. B. Boely ' Bridszo and Structural}, D031 , by I. 0. Thomson Brittlo Coating. ~ Brittle Contin. for Qualitative Strain [ennui-omen“ . 5y LV. WForos , . 111:. P. 3. Storm Strut-coat Ami 31., by Joseph Gooohenn ~ FmoEIoaI 55min Infini- by Use a; Brittle Coating Dong 2g lodern Stool Structural , by L. E. Gunter Doug 2; {late 61rd. a, by L. E. Moor. Element. 2!; Strength 95 luterigln, by S. flmonhonko and G. H. the Cullough Gnghio station, by a. W. Halooln fitter-1:15 g; Conltmotion. by I. B. Johnna 801»th A. g. g. g. Btnndordn 33.! Student ‘13 Enggneogng M, by 8. L. Campbell strength 3; mug-1.1., by J. E. Boyd Structugol Theog, by A. Southorhnd and K. L. Baum ROOM USE ONLY ‘Ii HIL31'2I'5T TE UNI‘ ’ERSITY LIBRARIES I I II I III I I I” III I II I 046 9377